煤油换热器设计说明书

煤油换热器设计说明书
煤油换热器设计说明书

目录

第1章设计任务书 (1)

1.1设计条件 (1)

1.2设计要求 (1)

第2章确定设计方案 (1)

2.1选择换热器的类型 (1)

2.2流程安排 (1)

第3章主要物性参数 (2)

3.1设计条件 (2)

3.2确定主要物性数据 (2)

3.2.1 定性温度的确定 (2)

3.2.2 流体有关物性数据 (2)

第4章估算传热面积 (3)

4.1热流量 (3)

4.2冷却水流量 (3)

4.3平均传热温差 (4)

4.4估算传热面积 (5)

第5章工程结构尺寸 (5)

5.1计算壳体厚度 (5)

5.2封头的选择 (6)

5.3垫圈的选择 (6)

5.4接管 (7)

5.4.1壳程流体进出口接管 (7)

5.4.2 管程流体进出口接管 (7)

5.5法兰 (7)

5.5.1 壳体法兰 (7)

5.5.2 管法兰 (8)

5.6支座的选用 (8)

第6章换热器核算 (9)

6.1核算压强降 (9)

6.1.1管程压强降 (9)

6.1.2壳程压强降 (9)

6.2传热能力核算 (10)

6.2.1 管程传热膜系数 (10)

6.2.2 壳程流体传热膜系数 (11)

6.2.3 污垢热阻 (12)

6.2.4 总传热系数 (12)

6.2.5 安全系数 (12)

第7章换热器主要结构尺寸和计算结果表 (13)

参考文献 (14)

致 (14)

第1章 设计任务书

1.1设计条件

1、设备处理量16000kg/h

2、煤油:入口温度140°C ,出口温度50°C

3、冷却水:入口温度30°C ,出口温度40°C

4、热损失可忽略。 两则污垢热阻分别为

W C m Rs /0017.020 ?= W C m Rs i /0034.02 ?=

5、壳程压降不大于30KPa

6、初设K=290w/(m

2

c)

1.2 设计要求

1.设计满足以上条件的换热器并写出设计说明书。

2.根据所选换热器画出设备装配图。

第2章 确定设计方案

2.1 选择换热器的类型

由于温差较大和要便于清洗壳程污垢,对于油品换热器,初步确定选用浮头式换热器。

采用折流挡板,可使作为被冷却的煤油易形成湍流,可以提高对流表面传热系数,提高传热效率。

2.2 流程安排

煤油黏度较大,走壳程在较低的Re 数时即可达到湍流,有利于提高其传热膜系数,

煤油可利用外壳向外散热,增强冷却效果。

第3章 主要物性参数

3.1设计条件

由设计任务书可得设计条件如下表:

注:要求设计的换热器在常压下操作。

3.2 确定主要物性数据

3.2.1 定性温度的确定

煤油的进出口温度分别为140°C、50°C;水的进出口温度30°C、40°C。可取流体进出口温度的平均值。

管程水的定性温度为:

352

40

30=+=

T ℃ 壳程煤油的定性温度为:

952

50

140=+=

t ℃ 3.2.2 流体有关物性数据

根据由上面两个定性温度数据,查阅参考书可得煤油和水的物理性质。可得壳程和管程流体的有关物性数据。

第4章 估算传热面积

4.1 热流量

换热器的热负荷是指在确定的物流进口条件下,使其达到规定的出口状态,冷流体和热流体之间交换的热量,或是通过冷、热流体的间壁所传递的热量。对无相变的工艺物流,换热器的热负荷由下式确定:

)(21T T c W Q ph h -=

式中 Q —— 热负荷,h kJ

h W —— 流体的流率,h kg

c ph

—— 流体热容,c kg kJ

1T 、2T ——流体的入口、出口温度,℃

故W Q 9200003600/)50140(103.2160003

=-???=

4.2 冷却水流量

)(/12t t c Q W pc C -=

式中 C W —— 冷却水流量,h kg

c

pc

—— 水的热容,c kg kJ

2t 、1t —— 流体的入口、出口温度,℃

故h Kg W C /79102)

3040(10187.43600

9200003=-???=

4.3 平均传热温差

平均传热温差是换热器的传热推动力。其值不但和流体的进出口温度有关,而且还与换热器两种流体的流行有关。平均传热温差可用换热器的两端流体温度的对数平均温差表示,即:

1

21

2ln 't t t t t m ???-?=

? 式中 'm t ?—— 逆流时的对数平均传热温差 t 1

?

——t 1

?=t T 1

2

-

t 2?——t 2?=t T 21-

故求得7.49305040

140ln )

3050()40140(ln

'1

212=-----=???-?=

?t t t t t m ℃ 而 09.030

14030

401212=--=--=

t T t t P 930

4050

1401221=--=--=

t t T T R 查图4-19,得 9.0=?t ?

所以 73.447.499.0'=?=??=??m t m t t ?℃ 其中,'m t ?——逆流时的对数平均传热温差,℃

m t ?——折流时的对数平均传热温差,℃

t ??——温度差校正系数,量纲为1

列管式换热器课程设计报告书

——大学《化工原理》列管式换热器 课程设计说明书 学院: 班级: 学号: 姓名: 指导教师: 时间:年月日

目录 一、化工原理课程设计任务书............................................................................ . (2) 二、确定设计方案............................................................................ (3) 1.选择换热器的类型 2.管程安排 三、确定物性数据............................................................................ (4) 四、估算传热面积............................................................................ (5) 1.热流量 2.平均传热温差 3.传热面积 4.冷却水用量 五、工艺结构尺寸............................................................................ (6) 1.管径和管内流速 2.管程数和传热管数 3.传热温差校平均正及壳程数 4.传热管排列和分程方法 5.壳体内径 6.折流挡板 (7) 7.其他附件 8.接管 六、换热器核算............................................................................ . (8) 1.热流量核算 2.壁温计算 (10) 3.换热器内流体的流动阻力 七、结构设计............................................................................ . (13) 1.浮头管板及钩圈法兰结构设计 2.管箱法兰和管箱侧壳体法兰设计 3.管箱结构设计 4.固定端管板结构设计 5.外头盖法兰、外头盖侧法兰设计 (14) 6.外头盖结构设计 7.垫片选择

课程设计换热器-煤油汇总

《化工过程设备设计Ⅰ(一)》 说明书 设计题目:换热器的设计 专业: 班级: 学号: 姓名: 指导教师: 设计日期: 设计单位:青海大学化工学院化学工程系

目录 前言 (4) 任务书 (5) 目的与要求 (6) 一、工艺设计方案 (8) 二、确定物性数据 (9) 三、估算传热面积 (9) 四、工艺结构尺寸 (10) 五、换热器核算 (12) 六、设计结果概要一览表 (17) 七、参考文献 (19)

前言 化工原理课程设计是化工原理教学的一个重要环节,是综合应用本门课程和有关先修课程所学知识,完成以单元操作为主的一次设计实践。通过课程设计使学生掌握化工设计的基本程序和方法,并在查阅技术资料、选用公式和数据、用简洁文字和图表表达设计结果、制图以及计算机辅助计算等能力方面得到一次基本训练,在设计过程中能够培养学生树立正确的设计思想和实事求是、严肃负责的工作作风。 化工原理课程设计是化工原理课程教学的一个实践环节,是使学生得到化工设计的初步训练,为毕业设计奠定基础。围绕以某一典型单元设备(如板式塔、填料塔、干燥器、蒸发器、冷却器等)的设计为中心,训练学生非定型设备的设计和定型设备的选型能力。设计时数为3周,其基本内容为: (1)设计方案简介:对给定或选定的工艺流程、主要设备的型式进行简要的论述。 (2)主要设备的工艺设计计算(含计算机辅助计算):物料衡算,能量衡量,工艺参数的选定,设备的结构设计和工艺尺寸的设计计算。 (3)辅助设备的选型:典型辅助设备主要工艺尺寸的计算,设备的规格、型号的选定。 (4)工艺流程图:以单线图的形式绘制,标出主体设备与辅助设备的物料方向,物流量、能流量,主要测量点。 (5)主要设备的工艺条件图:图面应包括设备的主要工艺尺寸,技术特性表和接管表。 (6)设计说明书的编写。设计说明书的内容应包括:设计任务书,目录,设计方案简介,工艺计算及主要设备设计,辅助设备的计算和选型,设计结果汇总,设计评述,参

列管式换热器说明书

目录 一、设计任务 (2) 二、概述与设计方案简介 (3) 2.1 概述 (3) 2.2设计方案简介 (4) 2.2.1 换热器类型的选择 (4) 2.2.2流径的选择 (6) 2.2.3流速的选择 (6) 2.2.4材质的选择 (6) 2.2.5管程结构 (6) 2.2.6 换热器流体相对流动形式 (7) 三、工艺及设备设计计算 (7) 3.1确定设计方案 (7) 3.2确定物性数据 (8) 3.3计算总传热系数 (8) 3.4计算换热面积 (9) 3.5工艺尺寸计算 (9) 3.6换热器核算 (11) 3.6.1传热面积校核 (11) 3.6.2.换热器压降的核算 (12) 四、辅助设备的计算及选型 (13) 4.1拉杆规格 (13)

4.2接管 (13) 五、换热器结果总汇表 (14) 六、设计评述 (15) 七、参考资料 (15) 八、主要符号说明 (15) 九、致 (16) 一、设计任务

二、概述与设计方案简介 2.1 概述 在工业生产中用于实现物料间热量传递的设备称为换热设备,即换热器。换热器是化工、动力、食品及其他许多部门中广泛采用的一种通用设备。 换热器的种类很多,根据其热量传递的方法的不同,可以分为3种形式,即间壁式、直接接触式、蓄热式。 间壁式换热器又称表面式换热器或间接式换热器。在这类换热器中,冷、热流体被固体壁面隔开,互不接触,热量从热流体穿过壁面传给冷流体。该类换热器适用于冷、热流体不允许直接接触的场合。间壁式换热器的应用广泛,形式繁多。将在后面做重点介绍。 直接接触式换热器又称混合式换热器。在此类换热器中,冷、热流体相互接触,相互

课程设计—列管式换热器

课程设计设计题目:列管式换热器 专业班级:应化1301班 姓名:王伟 学号: U201310289 指导老师:王华军 时间: 2016年8月

目录 1.课程设计任务书 (5) 1.1 设计题目 (5) 1.2 设计任务及操作条件 (5) 1.3 技术参数 (5) 2.设计方案简介 (5) 3.课程设计说明书 (6) 3.1确定设计方案 (6) 3.1.1确定自来水进出口温度 (6) 3.1.2确定换热器类型 (6) 3.1.3流程安排 (7) 3.2确定物性数据 (7) 3.3计算传热系数 (8) 3.3.1热流量 (8) 3.3.2 平均传热温度差 (8) 3.3.3 传热面积 (8) 3.3.4 冷却水用量 (8) 4.工艺结构尺寸 (9) 4.1 管径和管内流速 (9) 4.2 管程数和传热管数 (9)

4.3 传热管排列和分程方法 (9) 4.4 壳体内径 (10) 4.5 折流板 (10) 4.6 接管 (11) 4.6.1 壳程流体进出管时接管 (11) 4.6.2 管程流体进出管时接管 (11) 4.7 壁厚的确定和封头 (12) 4.7.1 壁厚 (12) 4.7.2 椭圆形封头 (12) 4.8 管板 (12) 4.8.1 管板的结构尺寸 (13) 4.8.2 管板尺寸 (13) 5.换热器核算 (13) 5.1热流量衡算 (13) 5.1.1壳程表面传热系数 (13) 5.1.2 管程对流传热系数 (14) 5.1.3 传热系数K (15) 5.1.4 传热面积裕度 (16) 5.2 壁温衡算 (16) 5.3 流动阻力衡算 (17) 5.3.1 管程流动阻力衡算 (17) 5.3.2 壳程流动阻力衡算 (17)

化工原理课程设计--用水冷却煤油产品的列管式换热器的工艺设计

化工原理课程设计 题目:用水冷却煤油产品的列管式换热器的工艺 设计 系别: 班级: 学号: 姓名: 指导教师: 日期:2015年6月26日

任务书 一、设计题目:用水冷却煤油产品的列管式换热器的工艺设计 二、设计任务: 1、处理能力:45t/年煤油 2、设备型号:列管式换热器 3、操作条件: 煤油:入口温度140℃,出口温度40℃ 冷却介质:循环水,入口温度20℃,出口温度30℃ 允许压降:不大于105Pa 每年按330天计 建厂地址:新乡 三、设计要求 1、选择适宜的列管式换热器并进行核算 2、要进行工艺计算 3、要进行主体设备的设计(主要设备尺寸、横算结果等) 4、编写设计任务书 5、进行设备结构图的绘制(设备技术要求、主要参数、接管表、部件明细表、标题栏。)

目录 一、设计方案 (4) 1.1换热器的选择 (4) 1.2流动空间及流速的确定 (4) 二、物性数据 (5) 三、计算总传热系数: (5) 3.3、估算传热面积 (5) 3.3.1热流量 (5) 3.3.2平均传热温差 (5) 3.3.3传热面积 (5) 3.3.4冷却水用量 (5) 3.4、工艺结构尺寸 (6) 3.4.1管径和管内流速 (6) 3.4.2管程数和传热管数 (6) 3.4.3平均传热温差校正及壳程数 (6) 3.4.4传热管排列和分程方法 (7) 3.4.5壳体内径 (7) 3.4.6折流板 (7) 3.4.7接管 (7) 3.5换热器核算 (8) 3.5.1热流量核算 (8) 3.5.2换热器内流体的流动阻力 (10) 四、设计结果设计一览表 (12) 五、设计自我评价 (12) 六、参考文献 (13) 七、主要符号说明 (13) 八、主体设备条件图及生产工艺流程图(附图) (13)

课程设计报告,列管式换热器设计

设计(论文)题目: 列管式换热器的设计 目录 1 前言 (3) 2 设计任务及操作条件 (3) 3 列管式换热器的工艺设计 (3) 3.1换热器设计方案的确定 (3) 3.2 物性数据的确定 (4) 3.3 平均温差的计算 (4) 3.4 传热总系数K的确定 (4) 3.5 传热面积A的确定 (6) 3.6 主要工艺尺寸的确定 (6) 3.6.1 管子的选用 (6) 3.6.2 管子总数n和管程数Np的确定 (6) 3.6.3 校核平均温度差 t m及壳程数Ns (7) 3.6.4 传热管排列和分程方法 (7) 3.6.5 壳体径 (7) 3.6.6 折流板 (7)

3.7 核算换热器传热能力及流体阻力 (7) 3.7.1 热量核算 (7) 3.7.2 换热器压降校核 (9) 4 列管式换热器机械设计 (10) 4.1 壳体壁厚的计算 (10) 4.2 换热器封头选择 (10) 4.3 其他部件 (11) 5 课程设计评价 (11) 5.1 可靠性评价 (11) 5.2 个人感想 (11) 6 参考文献 (11) 附表换热器主要结构尺寸和计算结果 (12) 1 前言 换热器(英语翻译:heat exchanger),是将热流体的部分热量传递给冷流体的设备,又称热交换器。换热器是化工、石油、动力、食品及其它许多工业部门的通用设备,在生产中占有重要地位。在化工生产中换热器可作为加热器、冷却器、冷凝器、蒸发器和再沸器等,应用更加广泛。换热器种类很多,但根据冷、热流体热量交换的原理和方式基本上可分三大类即:间壁式、混合式和蓄热式。 列管式换热器工业上使用最广泛的一种换热设备。其优点是单位体积的传热面积、处理能力和操作弹性大,适应能力强,尤其在高温、高压和大型装置中采用更为普遍。列管式换热器主要有以下几个类型:固定管板式换热器、浮头式换热器、U形管式换热器等。 设计一个比较完善的列管式换热器,除了能满足传热方面的要求外,还应该满足传热效率高、体积小、重量轻、消耗材料少、制造成本低、清洗维护方便和操作安全等要求。 列管式换热器的设计,首先应根据化工生产工艺条件的要求,通过化工工艺计算,确定换热器的传热面积,同时选择管径、管长,确定管数、管程数和壳程数,

列管式换热器设计

酒泉职业技术学院 毕业设计(论文) 2013 级石油化工生产技术专业 题目:列管式换热器设计 毕业时间: 2015年7月 学生姓名:陈泽功刘升衡李侠虎 指导教师:王钰 班级: 13级石化(3)班 2015 年 4月20日 酒泉职业技术学院 2013 届各专业 毕业论文(设计)成绩评定表

答辩小 组评价 意见及 评分 成绩:签字(盖章)年月日 教学系 毕业实 践环节 指导小 组意见 签字(盖章)年月日 学院毕 业实践 环节指 导委员 会审核 意见 签字(盖章)年月日 一、列管式换热器计任务书 某生产过程中,需用循环冷却水将有机料液从102℃冷却至40℃。已知有机料液的流量为2.23×104 kg/h,循环冷却水入口温度为30℃,出口温度为40℃,并要求管程压降与壳程压降均不大于60kPa,试设计一台列管换热器,完成该生产任务。 已知: 有机料液在71℃下的有关物性数据如下(来自生产中的实测值) 密度 定压比热容℃ 热导率℃

粘度 循环水在35℃下的物性数据: 密度 定压比热容K 热导率K 粘度 二、确定设计方案 (1)选择换热器的类型 (2)两流体温的变化情况: 热流体进口温度102℃出口温度40℃;冷流体进口温度30℃,出口温度为40℃,该换热器用循环冷却水冷却,冬季操作时,其进口温度会降低,考虑到这一因素,估计该换热器的管壁温度和壳体温度之差较大,因此初步确定选用浮头式换热器。 (3)管程安排 从两物流的操作压力看,应使有机料液走管程,循环冷却水走壳程。但由于循环冷却水较易结垢,若其流速太低,将会加快污垢增长速度,使换热器的热流量下降,所以从总体考虑,应使循环水走管程,混和气体走壳程。 三、确定物性数据 定性温度:对于一般气体和水等低黏度流体,其定性温度可取流体进出口温度的平均值。故壳程混和气体的定性温度为 T= =71℃ 管程流体的定性温度为 t=℃ 根据定性温度,分别查取壳程和管程流体的有关物性数据。对有机料液来说,最可靠的无形数据是实测值。若不具备此条件,则应分别查取混合无辜组分的有关物性数据,然后按照相应的加和方法求出混和气体的物性数据。有机料液在71℃下的有关物性数据如下(来自生产中的实测值) 密度

列管式换热器设计说明书

摘要: 列管式换热器属于间壁式换热器,冷热流体通过换热管壁进行热量的交换。参照任务书的任务量,需设计年冷却15000吨乙醇的列管式换热器,设计时先确定流体流程,壳程走乙醇,其进、出口温度都为80℃,相变放出潜热,井水走管程冷却乙醇,进口温度为32℃,出口温度为40℃。再进行热量衡算、传热系数校核,初选冷凝器的型号,然后通过进行设备强度校核等一系列的计算和选型,最终确定的设计方案为固定管板式换热器,所选用型号为BEM400-2.5-30-9/25-2 Ⅰ,换热器壳径为400mm,总换热面积为27.79m2,管程为2,管子总根数为60,管长6000 mm,管束为正三角排列,两端封头选取标准椭圆封头。 关键词:列管式换热器,乙醇,水,温度,固定管板式。 Abstract: The tube type heat exchanger is a dividing wall type heat exchanger, fluids with different temperatures exchange heat by means of tube wall’s heat transfer.According to the assignment, A tube type heat exchanger which has a process capacity of .?4 1510t/a is needed. The ethanol flow in the shell,the temperature in the entrance and exits is 80℃.The water which cool the ethanol flow in tubes, the inlet and outlet temperatures are 32℃and 40℃.Then by taking series calculating to confirm the module of the heat exchanger . After the design of intensity designing and a series calculating and choosing , the last result of our design is the fasten-board heat exchanger. The style of the heat exchange is 9 BEM400 2.530 2 25 Ⅰ ----, and the diameter of the receiver is 400mm ,The area of the heat exchange is 27.79 m2, The heat-exchanger in cludes two tube passes,one shell passes and 60 tubes.And the length of tubes is 6000mm . Tubes are ranked of the shape of triangle ,the envelops are oval-shaped.

列管式换热器课程设计

(封面) XXXXXXX学院 列管式换热器课程设计报告 题目: 院(系): 专业班级: 学生姓名: 指导老师: 时间:年月日 目录

1、设计题目(任务书) (2) 2、流程示意图 (3) 3、流程及方案的说明和论证 (3) 4、换热器的设计计算及说明 (4) 5、主体设备结构图 (10) 6、设计结果概要表 (11) 7、设计评价及讨论 (12) 8、参考文献 (12) 附图:主体设备结构图和花版设计图 一.任务书

(一)设计题目: 列管式冷却器设计 (二)设计任务: 将自选物料用河水冷却或自选热源加热至生产工艺所要求的温度 (三)设计条件: 1.处理能力:G=学号最后2位×300t物料/d; 2.冷却器用河水为冷却介质,考虑广州地区可取进口水温度为20~30C;加热器用热水或水蒸气为热源,条件自选; 3.允许压降:不大于105Pa; 4.传热面积安全系数5~15% 5.每年按330天计,每天24小时连续运行。 (四)设计要求: 1.对确定的设计方案进行简要论述; 2.物料衡算、热量衡算; 3.确定列管壳式冷却器的主要结构尺寸; 4.计算阻力; 5.选择合宜的列管换热器并运行核算; 6.用Autocad绘制列管式冷却器的结构(3号图纸)、花板布置图(3号图纸); 7.编写设计说明书(包括:①.封面;②.目录;③.设计题目;④.流程示意图;⑤.流程及方案的说明和论证;⑥设计计算及说明;⑦主体设备结构图;⑧设计结果概要表;⑨对设计的评价及问题讨论;⑩参考文献。) (五)设计进度安排: 备注:参考文献格式: 期刊格式为:作者姓名.出版年.论文题目.刊物名称.卷号(期号):起止页码。专著格式为:作者姓名.出版年.专著书名.出版社名.起止页码。 二.流程示意图

列管式换热器的设计

化工原理课程设计 学院: 化学化工学院 班级: | 姓名学号: 指导教师: $

目录§一.列管式换热器 ! .列管式换热器简介 设计任务 .列管式换热器设计内容 .操作条件 .主要设备结构图 §二.概述及设计要求 .换热器概述 .设计要求 ~ §三.设计条件及主要物理参数 . 初选换热器的类型 . 确定物性参数 .计算热流量及平均温差 壳程结构与相关计算公式 管程安排(流动空间的选择)及流速确定 计算传热系数k 计算传热面积 ^ §四.工艺设计计算 §五.换热器核算 §六.设计结果汇总 §七.设计评述 §八.工艺流程图 §九.主要符号说明 §十.参考资料

: §一 .列管式换热器 . 列管式换热器简介 列管式换热器又称为管壳式换热器,是最典型的间壁式换热器,历史悠久,占据主导作用,主要有壳体、管束、管板、折流挡板和封头等组成。一种流体在关内流动,其行程称为管程;另一种流体在管外流动,其行程称为壳程。管束的壁面即为传热面。 其主要优点是单位体积所具有的传热面积大,传热效果好,结构坚固,可选用的结构材料范围宽广,操作弹性大,因此在高温、高压和大型装置上多采用列管式换热器。为提高壳程流体流速,往往在壳体内安装一定数目与管束相互垂直的折流挡板。折流挡板不仅可防止流体短路、增加流体流速,还迫使流体按规定路径多次错流通过管束,使湍流程度大为增加。 列管式换热器中,由于两流体的温度不同,使管束和壳体的温度也不相同,因此它们的热膨胀程度也有差别。若两流体温差较大(50℃以上)时,就可能由于热应力而引起设备的变形,甚至弯曲或破裂,因此必须考虑这种热膨胀的影响。 设计任务 ¥ 1.任务 处理能力:3×105t/年煤油(每年按300天计算,每天24小时运行) 设备形式:列管式换热器 2.操作条件 (1)煤油:入口温度150℃,出口温度50℃ (2)冷却介质:循环水,入口温度20℃,出口温度30℃ (3)允许压强降:不大于一个大气压。 备注:此设计任务书(包括纸板和电子版)1月15日前由学委统一收齐上交,两人一组,自由组合。延迟上交的同学将没有成绩。 [ .列管式换热器设计内容 1.3.1、确定设计方案 (1)选择换热器的类型;(2)流程安排 1.3.2、确定物性参数 (1)定性温度;(2)定性温度下的物性参数 1.3.3、估算传热面积 (1)热负荷;(2)平均传热温度差;(3)传热面积;(4)冷却水用量 % 1.3.4、工艺结构尺寸 (1)管径和管内流速;(2)管程数;(3)平均传热温度差校正及壳程数;(4)

(完整版)煤油冷却器毕业课程设计

长沙学院 课程设计说明书 题目煤油冷却器的设计系(部) 生环系 专业(班级) 09应化2班 姓名 学号 指导教师宋勇

起止日期2012.5.28——2012.6.16 化工原理课程设计任务书 系主任___________ 指导教师____________ 学生__戴姣______ 2班 编号:2.2.7 一、设计题目名称:煤油冷却器的设计 二、设计条件: 1.煤油:入口温度:130℃,出口温度:50℃; 2.冷却介质,循环水(P为0.3MPa,进口温度28℃,出口温度40℃)3.允许压强降,不超过105Pa;

4.每年按300天计;每天24 s。参考数据见表2.1,表2.2[1]。 表2.1.列管式换热器内的适宜流速范围 流体种类流速(ms) 管程壳程一般液体0.5~3 0.5~1.5 易结垢液体>1 >0.5 气体5~30 3~15 表2.2不同粘度液体的流速(以普通钢壁为例) 液体粘度 mPa.s >1500 1500~ 500 500~ 100 100~35 35~1 <1 最大流速 (ms) 0.6 0.75 1.1 1.5 1.8 2.4

2.3确定物性数据 定性温度:对于一般气体和水等低黏度流体,其定性温度可取流体进出口温度的平均值。 壳程流体(煤油)的定性温度为:℃ 管程流体(硬水)的定性温度为:℃ 根据定性温度,分别查取壳程和管程流体的有关物性数据。见表2.3[1] 表2.3.物性数据 密度(㎏m3)比热容(kJkg ?℃)粘度(Pa? s) 导热系数(Wm ?℃) 煤油825 2.22 7.15× 10-4 0.14 水34℃) 993.95 4.174 7.27× 10-4 0.62 2.4计算总传热系数 (1).煤油的流量 已知要求处理能力为16.5万吨煤油每年(每年按300天计,每天24小时连续运行),则煤油的流量为:

列管式换热器设计

第一章列管式换热器的设计 1.1概述 列管式换热器是一种较早发展起来的型式,设计资料和数据比较完善,目前在许多国家中已有系列化标准。列管式换热器在换热效率,紧凑性和金属消耗量等方面不及其他新型换热器,但是它具有结构牢固,适应性大,材料范围广泛等独特优点,因而在各种换热器的竞争发展中得以继续应用下去。目前仍是化工、石油和石油化工中换热器的主要类型,在高温高压和大型换热器中,仍占绝对优势。例如在炼油厂中作为加热或冷却用的换热器、蒸馏操作中蒸馏釜(或再沸器)和冷凝器、化工厂中蒸发设备的加热室等,大都采用列管式换热器[3]。 1.2列管换热器型式的选择 列管式换热器种类很多,目前广泛使用的按其温度差补偿结构来分,主要有以下几种:(1)固定管板式换热器:这类换热器的结构比较简单、紧凑,造价便宜,但管外不能机械清洗。此种换热器管束连接在管板上,管板分别焊在外壳两端,并在其上连接有顶盖,顶盖和壳体装有流体进出口接管。通常在管外装置一系列垂直于管束的挡板。同时管子和管板与外壳的连接都是刚性的,而管内管外是两种不同温度的流体。因此,当管壁与壳壁温度相差较大时,由于两者的热膨胀不同,产生了很大的温差应力,以致管子扭弯或使管子从管板上松脱,甚至毁坏整个换热器。 为了克服温差应力必须有温度补偿装置,一般在管壁与壳壁温度相差50℃以上时,为安全起见,换热器应有温差补偿装置。 (2)浮头换热器:换热器的一块管板用法兰与外壳相连接,另一块管板不与外壳连接,以便管子受热或冷却时可以自由伸缩,但在这块管板上来连接有一个顶盖,称之为“浮头”,所以这种换热器叫做浮头式换热器。这种型式的优点为:管束可以拉出,以便清洗;管束的膨胀不受壳体的约束,因而当两种换热介质的温差大时,不会因管束与壳体的热膨胀量的不同而产生温差应力。其缺点为结构复杂,造价高。 (3)填料函式换热器:这类换热器管束一端可以自由膨胀,结构与比浮头式简单,造价也比浮头式低。但壳程内介质有外漏的可能,壳程终不应处理易挥发、易爆、易燃和有毒的介质。 (4)U型管换热器:这类换热器只有一个管板,管程至少为两程管束可以抽出清洗,

化工原理课程设计换热器的设计

中南大学《化工原理》课程设计说明书 题目:煤油冷却器的设计 学院:化学化工学院 班级:化工0802 学号: 1505080802 姓名: ****** 指导教师:邱运仁 时间:2010年9月

目录 §一.任务书 (2) 1.1.题目 1.2.任务及操作条件 1.3.列管式换热器的选择与核算 §二.概述 (3) 2.1.换热器概述 2.2.固定管板式换热器 2.3.设计背景及设计要求 §三.热量设计 (5) 3.1.初选换热器的类型 3.2.管程安排(流动空间的选择)及流速确定 3.3.确定物性数据 3.4.计算总传热系数 3.5.计算传热面积 §四. 机械结构设计 (9) 4.1.管径和管内流速 4.2.管程数和传热管数 4.3.平均传热温差校正及壳程数 4.4.壳程内径及换热管选型汇总 4.4.折流板 4.6.接管 4.7.壁厚的确定、封头 4.8.管板 4.9.换热管 4.10.分程隔板 4.11拉杆 4.12.换热管与管板的连接 4.13.防冲板或导流筒的选择、鞍式支座的示意图(BI型) 4.14.膨胀节的设定讨论 §五.换热器核算 (21) 5.1.热量核算 5.2.压力降核算 §六.管束振动 (25) 6.1.换热器的振动 6.2.流体诱发换热器管束振动机理 6.3.换热器管束振动的计算 6.4.振动的防止与有效利用 §七. 设计结果表汇 (28) §八.参考文献 (29) §附:化工原理课程设计之心得体会 (30)

§一.化工原理课程设计任务书 1.1.题目 煤油冷却器的设计 1.2.任务及操作条件 1.2.1处理能力:40t/h 煤油 1.2.2.设备形式:列管式换热器 1.2.3.操作条件 (1).煤油:入口温度160℃,出口温度60℃ (2).冷却介质:循环水,入口温度17℃,出口温度30℃ (3).允许压强降:管程不大于0.1MPa,壳程不大于40KPa (4).煤油定性温度下的物性数据ρ=825kg/m3,黏度7.15×10-4Pa.s,比热容2.2kJ/(kg.℃),导热系数0.14W/(m.℃) 1.3.列管式换热器的选择与核算 1.3.1.传热计算 1.3. 2.管、壳程流体阻力计算 1.3.3.管板厚度计算 1.3.4.膨胀节计算 1.3.5.管束振动 1.3.6.管壳式换热器零部件结构 §二.概述 2.1.换热器概述 换热器是化工、炼油工业中普遍应用的典型的工艺设备。在化工厂,换热器的费用约占总费用的10%~20%,在炼油厂约占总费用35%~40%。换热器在其他部门如动力、原子能、冶金、食品、交通、环保、家电等也有着广泛的应用。因此,设计和选择得到使用、高效的换热器对降低设备的造价和操作费用具有十分重要的作用。 在不同温度的流体间传递热能的装置称为热交换器,即简称换热器,是将热流体的部分热量传递给冷流体的设备。 换热器的类型按传热方式的不同可分为:混合式、蓄热式和间壁式。其中间壁式换热器应用最广泛,如表2-1所示。 表2-1 传热器的结构分类

中文版列管式冷却器说明书

中文版列管式冷却器说明 书 Prepared on 24 November 2020

冷却器 产品使用说明书 中国广东 郁南县中兴换热器有限公司 一﹑概述 郁南县中兴换热器有限公司是广东中兴液力传动有限公司下属生产热交换器的专业厂家,主要产品有GLC﹑GLL﹑LQ型系列列管式冷却器,BR型系列板式冷却器, FL型﹑KL型、YOFL型(液力偶合器专用)系列空气(风)冷却器及各种热交换器,换热面积从~800m2。产品广泛使用在电力﹑冶金﹑矿山﹑机械﹑船舶﹑化工﹑空调、食品以及液压润滑行业,将工作介质换热(冷却)到规定的温度。 列管式冷却器由进出端盖﹑壳体﹑管束﹑后端盖、密封件及紧固件等组成,冷却介质(水)一般从换热管内通过,被冷却介质(油)从换热管外壳体内通过,冷热介质通过换热管传热,使被冷却介质温度下降。 列管式冷却器一般采用优质铜管﹑不锈钢管﹑钛管等作为换热管,管程可采用单回程、二回程或多回程,管程数增加使冷却介质流通时间加长,提高换热效果,换热管束上一般采用弓形折流板,使被冷却介质(油)在壳程内的流道为S形,达到被冷却介质(油)与换热管充分接触目的。 空气冷却器由进出端盖、本体、后端盖、风机、密封件、紧固件等组成,换热管采用单金属或双金属高效复合管。空气冷却器采用空气(风)作为冷却介质,具有工作稳定、无介质混合、运行费用低、节能环保、维护方便的优点。 二﹑型号及参数

三﹑使用说明 1﹑首先检查冷却器型号与规定要求是否相符,资料附件是否齐全(见装箱单),检查冷却器外观是否破损,紧固螺栓是否松动,冷却器出厂时已进行压力试验和清洗,一般不允许拆动紧固螺栓,确需拆卸清洗的,清洗完后必须进行压力试验,无泄漏、无异常方可使用。 2﹑冷却器安装前须确认进入冷却器的介质压力不大于冷却器铭牌标示设计压力。冷却器一般安装在系统回路或系统中压力相对较低处,必要时设置压力保护装置。列管式冷却器介质为油水时,油侧压力一般应大于水侧压力。试车前应在系统中设计傍路防止过高压力冲坏冷却器。连接冷却器的管道和系统须清洗干净,进入冷却器的介质须进行过滤,严防杂质堵塞和污染冷却器,以免影响冷却器效果。 空气冷却器安装应考虑进出风顺畅,在1米内无阻挡物。安装在室外时,应设置遮盖,防曝晒、防雨淋,以提高换热效率和使用寿命。 3﹑安装时须检查冷却器介质进出口无堵塞,将冷却器与介质管道连接紧密无泄漏。 4﹑冷却器工作时,先打开冷却器出口阀门,缓慢打开冷介质(水)进入阀,再缓慢打开热介质(油)进入阀,调整介质进入流量,以达到最佳效果。注意在打开冷却水进口阀门时不要过快,否则使换热管表面产生导热性很差的“过冷层”影响换热效果。 5﹑冷却器接通介质后,应检查各部位有无泄漏,并注意排尽冷却器中的气体,以提高换热效率和减少腐蚀。 6﹑在冬季冷却器停用时应放尽介质,防止介质冻结澎胀损坏冷却器。长期停用,应将冷却器拆下进行清洗、防锈等维护保养。

列管式换热器设计(水蒸气加热水)要点

食品工程原理课程设计 设计题目:列管式换热器的设计 班级:食品卓越111班 设计者:张萌 学号:5603110006 设计时间:2013年5月13日~5月17日指导老师:刘蓉

目录 概述 1.1.换热器设计任务书 ......................................................................... - 7 - 1.2换热器的结构形式 ....................................................................... - 10 - 2.蛇管式换热器 ................................................................................. - 11 - 3.套管式换热器 ................................................................................. - 11 - 1.3换热器材质的选择 ....................................................................... - 11 - 1.4管板式换热器的优点 ................................................................... - 13 - 1.5列管式换热器的结构 ................................................................... - 14 - 1.6管板式换热器的类型及工作原理 ............................................... - 16 - 1.7确定设计方案 ............................................................................... - 17 - 2.1设计参数........................................................................................ - 18 - 2.2计算总传热系数 ........................................................................... - 19 - 2.3工艺结构尺寸 ............................................................................... - 20 - 2.4换热器核算.................................................................................... - 21 - 2.4.1.换热器内流体的流动阻力 (21) 2.4.2.热流量核算 (22)

煤油冷却器设计

课程设计报告 ( 2016—2017年度第一学期) 名称:化工原理 题目:煤油冷却器的设计院系:环境科学与工程学院班级:能化1402 学号:201405040207 学生姓名:冯慧芬 指导教师:朱洪涛 设计周数: 1 成绩: 日期:2016 年11月

目录 一.任务书 1.1目的与要求 1.2.主要内容 二.设计方案简介 2.1.换热器概述 2.2 列管式换热器 2.3.设计方案的拟定 三.工艺计算及主体设备设计 3.1热量设计 3.1.1.初选换热器的类型 3.1.2.管程安排(流动空间的选择)及流速确定 3.1.3.确定物性数据 3.1. 4.计算总传热系数 3.1.5.计算传热面积 3.2工艺结构设计 3.2.1管径和管内流速 3.2.2管程数和传热管数 3.2.3平均传热温差校正及壳程数 3.2.4传热管排列和分程方法 3.2.5折流板 3.2.6壳程内径及换热管选型汇总 3.3换热器核算 3.3.1热量核算 3.3.2压力降核算 四.辅助设备的计算及选型 4.1 封头 4.2 缓冲挡板 4.3 放气孔、排液管 4.4 假管 4.5 拉杆和定距管 4.6 膨胀节 4.7 接管 五.设计结果一览表 六.心得体会 七.参考文献 八.主体设备的工艺条件图

一.任务书 1.1 目的与要求 1. 要求学生能综合运用本课程和前修课程的基本知识,进行融会贯通的独立思考,在规定的时间内完成列管换热器设计任务。 2. 使学生了解工程设计的基本内容,掌握化工设计的主要程序和方法,培养学生分析和解决工程实际问题的能力。 3. 熟悉和掌握查阅技术资料、国家技术标准,正确地选用公式和数据。 1.2 主要内容 1.2.1处理能力:25000kg/h 煤油 1.2.2设备型式:列管换热器 1.2.3操作条件: 煤油:入口温度:140℃出口温度:40℃ 冷却介质:自来水入口温度:30℃出口温度:40℃ 允许压强降:不大于100kPa 煤油定性温度下的物性参数:密度825kg/m3粘度7.15×10-4Pa·s 比热容2.22kJ/kg·℃导热系数0.14W/m·℃水定性温度下的物性参数:密度994kg/m3粘度7.28×10-4Pa·s 比热容4.174kJ/kg·℃导热系数0.626W/m·℃ 1.2.4主体设备工艺条件图。

列管式换热器设计课程设计说明

化工原理课程设计说明书列管式换热器设计 专业:过程装备与控制工程 学院:机电工程学院

化工原理课程设计任务书 某生产过程的流程如图3-20所示。反应器的混合气体经与进料物流换热后,用循环冷却水将其从110℃进一步冷却至60℃之后,进入吸收塔吸收其中的可溶性组分。已知混合气体的流量为220301kg h ,压力为6.9MPa ,循环冷却水的压力为0.4MPa ,循环水的入口温度为29℃,出口的温度为39℃,试设计一列管式换热器,完成生产任务。 已知: 混合气体在85℃下的有关物性数据如下(来自生产中的实测值) 密度 3190kg m ρ= 定压比热容1 3.297p c kj kg =g ℃ 热导率10.0279w m λ=g ℃ 粘度51 1.510Pa s μ-=?g 循环水在34℃下的物性数据: 密度 31994.3kg m ρ= 定压比热容1 4.174p c kj kg =g K 热导率10.624w m λ=g K 粘度310.74210Pa s μ-=?g

目录 1、确定设计方案 ............................................................................................. - 4 - 1.1选择换热器的类型 (4) 1.2流程安排 (4) 2、确定物性数据............................................................................................. - 4 - 3、估算传热面积............................................................................................. - 5 - 3.1热流量 (5) 3.2平均传热温差 (5) 3.3传热面积 (5) 3.4冷却水用量 (5) 4、工艺结构尺寸............................................................................................. - 5 - 4.1管径和管内流速 (5) 4.2管程数和传热管数 (5) 4.3传热温差校平均正及壳程数 (6) 4.4传热管排列和分程方法 (6) 4.5壳体内径 (6) 4.6折流挡板 (7) 4.7其他附件 (7) 4.8接管 (7) 5、换热器核算 ................................................................................................ - 8 - 5.1热流量核算 (8) 5.1.1壳程表面传热系数.......................................................................................... - 8 -5.1.2管内表面传热系数.......................................................................................... - 8 -5.1.3污垢热阻和管壁热阻...................................................................................... - 9 -5.1.4传热系数.......................................................................................................... - 9 -5.1.5传热面积裕度.................................................................................................. - 9 -5.2壁温计算. (9) 5.3换热器内流体的流动阻力 (10) 5.3.1管程流体阻力................................................................................................ - 10 -5.3.2壳程阻力........................................................................................................ - 11 - 5.3.3换热器主要结构尺寸和计算结果................................................................ - 11 - 6、结构设计 .................................................................................................. - 12 - 6.1浮头管板及钩圈法兰结构设计 (12) 6.2管箱法兰和管箱侧壳体法兰设计 (13) 6.3管箱结构设计 (13) 6.4固定端管板结构设计 (14) 6.5外头盖法兰、外头盖侧法兰设计 (14) 6.6外头盖结构设计 (14) 6.7垫片选择 (14)

课程设计——煤油冷却器

化工原理课程设计 题目煤油冷却器 学院名称化学化工学院 指导教师 职称教授 班级 学号 学生姓名 2015年9月8日 目录 目录 目录............................................................... I 前言.............................................................. I I 概述 (1) 第二章设计任务与条件 (2) 第三章工艺设计 (3) 3、1生产条件的确定 (3) 3、2换热器的设计计算 (3) 3、2、1确定设计方案 (3)

3、2、2确定物性数据 (3) 3、2、3计算总传热系数 (4) 3、2、4计算传热面积 (5) 3、2、5工艺结构尺寸 (5) 3、2、6换热器核算 (7) 第四章设计结果列表 (11) 4、1换热器主要结构尺寸与计算结果 (11) 4、2设计结果的讨论 (12) 结束语 (12) 参考文献 (13) 符号说明 (13) 附录 (14) 前言 煤油一般就是通过对石油进行分馏而制得,刚刚分馏得到的煤油温度会比较高,不利于保存与运输等,需要进行冷却。在工业大生产过程中自然冷却远远达不到煤油冷却的时间要求,选用低温水进行冷却就是比较好的冷却方式。设计性能优良的冷却器就十分的必要了,本文通过大量数据运算得到的理论冷却器比较接近现实生产要求,有待于进一步的实践证实与运用。 关键词:煤油;水;换热器

概述 在化工、石油、能源、制冷、食品等行业中广泛使用各种换热器,它们也就是这些行业的通用设备,并占有十分重要的地位。 随着换热器在工业生产中的地位与作用不同,换热器的类型也多种多样,不同类型的换热器也各有优缺点,性能各异。列管式换热器就是最典型的管壳式换热器,它在工业上的应用有着悠久的历史,而且至今仍在所有换热器中占据主导地位。 列管式换热器有以下几种: 1、浮头式 换热器两端的管板,一端不与壳体相连,该端称浮头。管子受热时,管束连同浮头可以沿轴向自由伸缩,完佺消除了温差应力。 特点:结构复杂、造价高,便于清洗与检修,消除温差应力,应用普遍。 设计评述: 1、在换热器选型的时候,考虑各种常用的换热器优缺点: ⑴固定板式换热器:结构简单,在相同的壳体直径内,排管最多,比较紧凑,使壳侧清洗困难。当管子与壳体壁温相差大于50°C 时,应在壳体上设置温差补偿--膨胀节,依靠膨胀节的弹性变形可以减少温差应力。但就是当壳体与管子的温差大于60°C 及壳程压力超过Pa 5 106 时,由于补偿圈过厚,难以伸缩,失去温差补偿作用,就应考虑其她结构。 ⑵U 型管式换热器:其结构特点就是只有一个管板。换热管为U 形,管束可以自由伸缩,当壳体与U 型换热管有温差时,不会产生温差应力。密封面少,运行可靠,造价较低,管间清洗较方便。但就是由于管子需要一定的弯曲半径,故管板的利用率低;管束最内层管间距较大,壳程易短路;内层管子坏了不能更换,因而报废率较高。一般用于管、壳壁温差较大或壳程介质易结垢而管程介质清洁以及高温高压、腐蚀性强的场合。

相关文档
最新文档