分式方程应用题-分类解析
(完整版)分式方程应用题总汇和答案(可编辑修改word版)
分式方程应用题总汇及答案1、A、B 两地的距离是 80 公里.一辆公共汽车从 A 地驶出 3 小时后.一辆小汽车也从A 地出发.它的速度是公共汽车的3 倍.已知小汽车比公共汽车迟20 分钟到达B 地.求两车的速度。
【提示】设共交车速度为 x.小汽车速度为 3x.列方程得:80/(3x) +3=80/x +20/602、为加快西部大开发.某自治区决定新修一条公路.甲、乙两工程队承包此项工程。
如果甲工程队单独施工.则刚好如期完成;如果乙工程队单独施工就要超过 6 个月才能完成.现在甲、乙两队先共同施工 4 个月.剩下的由乙队单独施工.则刚好如期完成。
问原来规定修好这条公路需多长时间?【提示】设时间为 x 个月.列方程得:[1/x+1/(x+6)]*4+(x-4)/(x+6)=13、某工人原计划在规定时间内恰好加工 1500 个零件.改进了工具和操作方法后. 工作效率提高为原来的 2 倍.因此加工 1500 个零件时.比原计划提前了五小时.问原计划每小时加工多少个零件?【提示】设原计划每小时加工 x 个零件.列方程得:1500/2x +5=1500/x4、甲、乙两组学生去距学校 4.5 千米的敬老院打扫卫生.甲组学生步行出发半小时后.乙组学生骑自行车开始出发.结果两组学生同时到达敬老院.如果步行的速度是骑自行车的速度的 1/3.求步行和骑自行车的速度各是多少?【提示】设步行的速度是每小时 x 千米.则 4.5/3x +0.5=4.5/x5、某质检部门抽取甲、乙两个相同数量的产品进行质量检测.结果甲厂有 48 件合格产品.乙厂有 45 件合格产品.甲厂合格率比乙厂高 5%.求抽取检验的产品数量及甲厂的合格率。
【提示】设抽取检验的产品数量为 x.则(48/x -45/x)*100%=5%6、某车间加工 1200 个零件后.采用了新工艺.工效提高 50%.这样加工同样多的零件就少用 10 小时.采用新工艺前后每小时分别加工多少个零件?7、A、B 两地相距 48 千米.一艘轮船从 A 地顺流航行至 B 地.又立即从 B 地逆流返回A 地.共用去 9 小时.已知水流速度为 4 千米/时.若设该轮船在静水中的速度为x 千米/时.则可列方程求解。
分式方程应用题及解题技巧
分式方程应用题及解题技巧分式方程是代数中的重要内容之一,它的应用广泛而且深远。
分式方程常常出现在实际生活中的各种问题中,比如物体的速度、加速度、浓度、比例关系等等。
学习分式方程的应用,不仅可以帮助我们解决实际生活中的问题,还可以提高我们的数学分析和解决问题的能力。
在本文中,我们将介绍分式方程的应用题,并给出解题技巧,希望能够帮助大家更好地掌握这一部分知识。
一、分式方程的应用题1.速度问题小明骑自行车以每小时10公里的速度向前行驶,小李以每小时8公里的速度向前追赶小明,问小李追上小明需要多长时间?解:设小李追上小明需要t小时,那么小明与小李的相对速度为10-8=2公里/小时,根据速度=路程/时间,可得速度的分式方程为:10t = 8t + 8解得t=4,所以小李追上小明需要4小时。
2.浓度问题一瓶含有30%酒精的溶液200毫升,现在加了一些蒸馏水,使得酒精浓度变为20%,问加了多少蒸馏水?解:设加了x毫升的蒸馏水,那么酒精的量为0.3*200,水的量为x,根据浓度=溶质的量/溶液的总量,可得浓度的分式方程为:0.3*200 / (200+x) = 0.2解得x=100,所以加了100毫升的蒸馏水。
二、分式方程的解题技巧1.设未知数在应用题中,需要根据实际情况设立未知数,一般来说,设立一个未知数是最为合适的。
比如速度问题中,可以设小明与小李相对速度t小时后能相遇;浓度问题中,可以设加了x毫升的蒸馏水。
2.建立方程根据实际情况,可以建立出分式方程,一般是根据速度=路程/时间,浓度=溶质的量/溶液的总量等公式建立分式方程。
3.求解方程利用分式方程的性质,将方程化简为一元方程,然后求解,得到未知数的值。
4.检验解将求得的未知数代入原方程中,检验是否符合实际情况,如果符合则说明解是正确的。
通过以上的介绍,相信大家对分式方程的应用题及解题技巧有了一定的了解。
在解决实际问题时,我们可以根据问题中的实际情况设立未知数,建立分式方程,并通过求解方程来得到问题的解。
第十六章_分式方程应用题分类解析
分式方程应用题分类解析一.行程问题 【重点考点例析】(2010山东淄博)小明7:20离开家步行去上学,走到距离家500米的商店时,买学习用品用了5分钟.从商店出来,小明发现要按原来的速度还要用30分钟才能到校.为了在8:00之前赶到学校,小明加快了速度,每分钟平均比原来多走25米,最后他到校的时间是7:55.求小明从商店到学校的平均速度.(1)一般行程问题1、从甲地到乙地有两条公路:一条是全长600Km 的普通公路,另一条是全长480Km 的告诉公路。
某客车在高速公路上行驶的平均速度比在普通公路上快45Km ,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需要的时间。
2、我军某部由驻地到距离30千米的地方去执行任务,由于情况发生了变化,急行军速度必需是原计划的1.5倍,才能按要求提前2小时到达,求急行军的速度。
(2)水航问题 3、轮船顺水航行80千米所需要的时间和逆水航行60千米所用的时间相同。
已知水流的速度是3千米/时,求轮船在静水中的速度。
二.工程问题1、一台甲型拖拉机4天耕完一块地的一半,加一天乙型拖拉机,两台合耕,1天耕完这块地的另一半。
乙型拖拉机单独耕这块地需要几天?2、某 市为治理污水,需要铺设一段全长3000米的污水输送管道,为了尽量减少施工对城市交通造成的影响,实际施工时每天的工效比原计划增加25%,结果提前30天完成了任务,实际每天铺设多长管道? 3.某一工程,在工程招标时,接到甲、乙两个工程队的投标书.施工一天,需付甲工程队工程款1.2万元,乙工程队工程款0.5万元.工程领导小组根据甲、乙两队的投标书测算,有如下方案:(1)甲队单独完成这项工程刚好如期完成;(2)乙队单独完成这项工程要比规定日期多用6天;(3)若甲、乙两队合做3天,余下的工程由乙队单独做也正好如期完成.试问:在不耽误工期的前提下,你觉得哪一种施工方案最节省工程款?请说明理由.三.利润(成本、产量、价格、合格)问题1、某煤矿现在平均每天比原计划多采330吨,已知现在采煤33000吨煤所需的时间和原计划采23100吨煤的时间相同,问现在平均每天采煤多少吨。
分式方程应用题含答案(经典)
分式方程 应用题专题1、温(州)--福(州)铁路全长298千米.将于2009年6月通车,通车后,预计从福州直达温州的火车行驶时间比目前高速公路上汽车的行驶时间缩短2小时.已知福州至温州的高速公路长331千米,火车的设计时速是现行高速公路上汽车行驶时速的2倍.求通车后火车从福州直达温州所用的时间(结果精确到0。
01小时).2、某商店在“端午节”到来之际,以2400元购进一批盒装粽子,节日期间每盒按进价增加20%作为售价,售出了50盒;节日过后每盒以低于进价5元作为售价,售完余下的粽子,整个买卖过程共盈利350元,求每盒粽子的进价.3、甲、乙两个清洁队共同参与了城中垃圾场的清运工作.甲队单独工作2天完成总量的三分之一,这时增加了乙队,两队又共同工作了1天,总量全部完成.那么乙队单独完成总量需要( )A.6天 B.4天 C.3天 D.2天4、炎炎夏日,甲安装队为A 小区安装66台空调,乙安装队为B 小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x 台,根据题意,下面所列方程中正确的是( )A .66602x x =-B .66602x x =-C .66602x x =+D .66602x x=+ 5、张明与李强共同清点一批图书,已知张明清点完200本图书所用的时间与李强清点完300本图书所用的时间相同,且李强平均每分钟比张明多清点10本,求张明平均每分钟清点图书的数量.6.(2008西宁)“5·12”汶川大地震导致某铁路隧道被严重破坏.为抢修其中一段120米的铁路,施工队每天比原计划多修5米,结果提前4天开通了列车.问原计划每天修多少米?某原计划每天修x 米,所列方程正确的是( )A .12012045x x -=+B .12012045x x -=+ C .12012045x x -=- D .12012045x x -=-7、有两块面积相同的试验田,分别收获蔬菜900kg 和1500kg,已知第一块试验田每亩收获蔬菜比第二块少300kg ,求第一块试验田每亩收获蔬菜多少千克.设一块试验田每亩收获蔬菜x kg,根据题意,可得方程( C )A .9001500300x x =+B .9001500300x x =- C .9001500300x x =+ D .9001500300x x=- 8、进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:9、甲、乙两个施工队共同完成某居民小区绿化改造工程,乙队先单独做2天后,再由两队合作10天就能完成全部工程.已知乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的错误!,求甲、乙两个施工队单独完成此项工程各需多少天?10、南水北调东线工程已经开工,某施工单位准备对运河一段长2240m 的河堤进行加固,由于采用新的加固模式,现在计划每天加固的长度比原计划增加了20m ,因而完成河堤加固工程所需天数将比原计划缩短2天,若设现在计划每天加固河堤x m ,则得方程为 .11、某超级市场销售一种计算器,每个售价48元.后来,计算器的进价降低了4%,但售价未变,从而使超市销售这种计算器的利润提高了5%.这种计算器原来每个进价是多少元?(利润=售价-进价,利润率100%=⨯利润进价)12、某市在旧城改造过程中,需要整修一段全长2400m的道路.为了减少施工对通过这段对话,请你求出该地驻军原来每天加固的米数.城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修x m ,则根据题意可得方程13、今年4月18日,我国铁路实现了第六次大提速,这给旅客的出行带来了更大的方便.例如,京沪线全长约1500公里,第六次提速后,特快列车运行全程所用时间比第五次提速后少用871小时.已知第六次提速后比第五次提速后的平均时速快了40公里,求第五次提速后和第六次提速后的平均时速各是多少?14、某书店老板去图书批发市场购买某种图书.第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书数量比第一次多10本.当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少?15、甲、乙两火车站相距1280千米,采用“和谐”号动车组提速后,列车行驶速度是原来速度的3.2倍,从甲站到乙站的时间缩短了11小时,求列车提速后的速度.16、某公司投资某个工程项目,现在甲、乙两个工程队有能力承包这个项目.公司调查发现:乙队单独完成工程的时间是甲队的2倍;甲、乙两队合作完成工程需要20天;甲队每天的工作费用为1000元、乙队每天的工作费用为550元.根据以上信息,从节约资金的角度考虑,公司应选择哪个工程队、应付工程队费用多少元?17、A 、B 两地相距18公里,甲工程队要在A 、B 两地间铺设一条输送天然气管道,乙工程队要在A 、B 两地间铺设一条输油管道.已知甲工程队每周比乙工程队少铺设1公里,甲工程队提前3周开工,结果两队同时完成任务,求甲、乙两工程队每周各铺设多少公里管道?18、轮船先顺水航行46千米再逆水航行34千米所用的时间,恰好与它在静水中航行80千米所用的时间相等,水的流速是每小时3千米,则轮船在静水中的速度是千米/时.19、(2008咸宁) A、B两种机器人都被用来搬运化工原料,A型机器人比B型机器人每小时多搬运20千克,A型机器人搬运1000千克所用时间与B型机器人搬运800千克所用时间相等,两种机器人每小时分别搬运多少化工原料?20.(2008山西)某文化用品商店用2000元购进一批学生书包,面市后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了4元,结果第二批用了6300元。
分式方程及应用题
5
添加标题
放射性衰变是一个自然过程,其衰变规
律可以用分式方程来描述。
6
添加标题
在物理中,分式方程可以用来描述物体
运动的速度和加速度随时间的变化关系。
化学问题
01 化学反应速率
在化学反应中,分式方程可 以用来描述反应速率与反应 物浓度的关系。
03
药物代谢
药物在体内的代谢过程可以 用分式方程来描述,以便更 好地了解药物的作用和效果。
含有多个未知数的分式方程。
高次分式方程
未知数的最高次数大于二次的分式方程。
分式方程的应用题
单击此处添加文本具体内容,简明扼要地 阐述你的观点
速度、时间、距离问题
题目
甲、乙两地相距100千米,一辆汽车从甲地开往乙地,已经行驶了全 程的$frac{1}{4}$,若保持匀速行驶,则还需多少时间才能到达乙地?
6
添加标题
注意定义域的连续性
化简问题
1
添加标题
合并同类项
2
添加标题
在解分式方程时,需要将同类项合并,
简化方程。
3
添加标题
分解因式
4
添加标题
对于某些复杂的分式方程,可以通过分
解因式的方法来简化。
5
添加标题
约分
6
添加标题
在解分式方程时,可以通过约分进一步
简化方程。
检验问题
检验解的合理性
在得到分式方程的解后,需要进行检验,确保解的合 理性。
解答
设选出男生代表$a$人,女生代表$b$人。根据题意,有$a + b = 3$且$a geq 1, b geq 1$。列举出所有 可能的组合:$(a=1, b=2)$,$(a=2, b=1)$。共有$2$种选法。
分式方程应用题的常见类型汇总(含答案)
分式方程应用题的常见类型汇总类型1 工程问题1.某城市进行道路改造,若甲、乙两工程队合作施工20天可完成;若甲、乙两工程队合作施工5天后,乙工程队在单独施工45天可完成.求乙工程队单独完成此工程需要多少天?设乙工程队单独完成此工程需要x天,可列方程为________________.2.(十堰中考)甲、乙两名学生练习计算机打字,甲打一篇1 000字的文章与乙打一篇900字的文章所用的时间相同.已知甲每分钟比乙每分钟多打5个字,问:甲、乙两人每分钟各打多少个字?3.(扬州中考)某漆器厂接到制作480件漆器的订单,为了尽快完成任务,该厂实际每天制作的件数比原来每天多50%,结果提前10天完成任务.求原来每天制作多少件?4.一项工程,甲、乙两公司合做,12天可以完成,共需付施工费102 000元;如果甲、乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1 500元.(1)甲,乙两公司单独完成此项工程,各需多少天?(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?类型2 行程问题5.小王乘公共汽车从甲地到相距40千米的乙地办事,然后乘出租车返回.出租车的平均速度比公共汽车多20千米/时,回来时路上所花的时间比去时节省了14.设公共汽车的平均速度为x千米/时,则下面列出的方程中正确的是( )A.40x+20=34×40xB.40x=34×40x+20C.40x+20+14=40xD.40x=40x+20-146.(贵阳中考)2014年12月26日,西南真正意义上的第一条高铁——贵阳至广州高速铁路将开始试运行.从贵阳到广州,乘特快列车的行程约为1 800 km,高铁开通后,高铁列车的行程约为860 km,运行时间比特快列车所用的时间减少了16 h.若高铁列车的平均速度是特快列车平均速度的2.5倍,求特快列车的平均速度.类型3 销售问题7.某学校后勤人员到一家文具店给九年级的同学购买考试用文具包,文具店规定一次购买400个以上,可享受8折优惠.若给九年级学生每人购买一个,不能享受8折优惠,需付款1 936元;若多买88个,就可享受8折优惠,同样只需付款1 936元.请问该学校九年级学生有多少人?8.华昌中学开学初在金利源商场购进A、B两种品牌的足球,购买A品牌足球花费了2 500元,购买B品牌足球花费了2 000元,且购买A品牌足球数量是购买B品牌足球数量的2倍,已知购买一个B品牌足球比购买一个A品牌的足球多花30元.(1)求购买一个A品牌、一个B品牌的足球各需多少元;(2)华昌中学为响应习总书记“足球进校园”的号召,决定再次购进A、B两种品牌足球共50个.恰逢金利源商场对两种品牌足球的售价进行调整,A品牌足球售价比第一次购买时提高了8%,B品牌足球按第一次购买时售价的9折出售.如果这所中学此次购买A、B两种品牌足球的总费用不超过3 260元,那么华昌中学此次最多可购买多少个B品牌足球?9.某商场销售的一款空调机,每台的标价是1 635元.在一次促销活动中,按标价的8折销售,仍有9%的利润率.(1)求这款空调机每台的进价;(利润率=利润进价=售价-进价进价)(2)在这次促销活动中,商场销售了这款空调机100台.问:共盈利多少元?参考答案1.520+45x=12.设乙每分钟打x个字,则甲每分钟打(x+5)个字,由题意得1 000x+5=900x,解得x=45.经检验:x=45是原方程的解.答:甲每分钟打50个字,乙每分钟打45个字.3.设原来每天制作x件,由题意,得480x-480(1+50%)x=10,解得x=16.检验:x=16时,1.5x≠0,所以x=16是原分式方程的解.答:原来每天制作16件.4.(1)设甲公司单独完成此项工程需x天,则乙公司单独完成此项工程需1.5x天.根据题意,得1x+11.5x=112,解得x=20,经检验x=20是方程的解且符合题意.1.5x=30.故甲,乙两公司单独完成此项工程,各需20天,30天.(2)设甲公司每天的施工费为y元,则乙公司每天的施工费为(y-1 500)元,根据题意得12(y+y-1 500)=102 000,解得y=5 000,甲公司单独完成此项工程所需的施工费为:20×5 000=100 000(元);乙公司单独完成此项工程所需的施工费为:30×(5 000-1 500)=105 000(元).故甲公司的施工费较少.5.A6.设特快列车的平均速度为x km/h,根据题意可列出方程为1 800x=8602.5x+16,解得x=91.检验:当x=91时,2.5x≠0.所以x=91是方程的根.答:特快列车的平均速度为91 km/h.7.设九年级学生有x人,根据题意,列方程得:1 936x×0.8=1 936x+88,整理得0.8(x+88)=x,解得x=352.经检验x=352是原方程的解.答:这个学校九年级学生有352人.8.(1)设购买一个A品牌足球x元,则购买一个B品牌足球(x+30)元,根据题意得2 500x=2 000x+30×2,解得x=50.经检验,x=50是原方程的解.x+30=80.答:购买一个A品牌足球需50元,购买一个B品牌足球80元.(2)设本次购买a个B品牌足球,则购进A品牌足球(50-a)个,根据题意得50×(1+8%)(50-a)+80×0.9a≤3 260,解得a≤3119 .∵a取正整数,∴a最大值为31.答:此次华昌中学最多可购买31个B品牌足球.9.(1)设这款空调机每台的进价为x元,则根据利润率公式有:9%=1 635×0.8-xx.解这个方程,得x=1 200.检验略.答:这款空调机每台的进价为1 200元.(2)1 200×0.09×100=10 800.答:商场盈利10 800元.。
分式方程及其应用(含答案)
分式方程及其应用【分类解析】 例1. 解方程:x x x --+=1211分析:首先要确定各分式分母的最简公分母,在方程两边乘这个公分母时不要漏乘,解完后记着要验根解:方程两边都乘以()()x x +-11,得x x x x x x xx x 22221112123232--=+---=--∴==()()(),即,经检验:是原方程的根。
例2. 解方程x x x x x x x x +++++=+++++12672356分析:直接去分母,可能出现高次方程,给求解造成困难,观察四个分式的分母发现()()()()x x x x ++++6723与、与的值相差1,而分子也有这个特点,因此,可将分母的值相差1的两个分式结合,然后再通分,把原方程两边化为分子相等的两个分式,利用分式的等值性质求值。
解:原方程变形为:x x x x x x x x ++-++=++-++67562312方程两边通分,得167123672383692()()()()()()()()x x x x x x x x x x ++=++++=++=-∴=-所以即经检验:原方程的根是x =-92。
例3. 解方程:121043323489242387161945x x x x x x x x --+--=--+--分析:方程中的每个分式都相当于一个假分数,因此,可化为一个整数与一个简单的分数式之和。
解:由原方程得:3143428932874145--++-=--++-x x x x即2892862810287x x x x ---=---于是,所以解得:经检验:是原方程的根。
1898618108789868108711()()()()()()()()x x x x x x x x x x --=----=--==例4. 解方程:61244444402222y y y y y y yy +++---++-=2分析:此题若用一般解法,则计算量较大。
资料---分式方程应用题归类及常见题型
列分式方程解应用题的常见类型分析列分式方程解决实际问题和列一元一次方程解决实际问题的思考和处理过程是类似的,只是多了对分式方程的根的检验。
这里的检验应包括两层含义:第一,检验得到的根是不是分式方程的根;第二,检验得到的根是不是使实际问题有意义。
一、路程问题:这类问题涉及到三个数量:路程、速度和时间。
它们的数量关系是:路程=速度×时间。
列分式方程解决实际问题要用到它的变形公式:速度=路程/时间,时间=路程/速度。
例1 A、B两地相距60千米。
甲骑自行车从A地出发到B地,出发1小时后,乙骑摩托车也从A地出发到B地,且比甲早到3小时。
已知乙的速度是甲的3倍,求甲、乙的速度。
相等关系:二、工程问题这类问题也涉及三个数量:工作量、工作效率和工作时间。
它们的数量关系是:工作量=工作效率×工作时间。
列分式方程解决实际问题用它的变形公式:工作效率=工作量/工作时间。
特别地,有时工作总量可以看作整体“1”,这时,工作效率=1/工作时间。
例2某项工作,甲、乙两人合作3天后,剩下的工作由乙单独来做,用1天即可完成。
已知乙单独完成这项工作所需天数是甲单独完成这项工作所需天数的2倍。
甲、乙单独完成这项工作各需多少天?相等关系:三、销售问题:解决这类问题,首先要弄清一些有关的概念:商品的进价:商店购进商品的价格;商品的标价:商店销售商品时标出的价格;商品的售价:商店售出商品时的实际价格;利润:商店在销售商品时所赚的钱;利润率:商店在销售商品时利润占商品进价的百分率;打折:商店在销售商品时的实际售价占商品标价的百分率。
其次,还要弄清它们之间的关系:商品的售价=商品的标价×商品的打折率;商品的利润=商品的售价-商品的进价;商品的利润率=商品的利润/商品的进价。
例3 某超市销售一种钢笔,每枝售价为12元。
后来,钢笔的进价降低了4%,从而使超市销售这种钢笔的利润率提高了5%。
这种钢笔原来每枝进价是多少元?本题中的主要等量关系:练习:1.某地为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?2.甲乙两车在A、B两城间连续往返行驶,甲车从A城出发,乙车从B城出发,且比甲车早出发1小时,两车在途中分别距离200千米和240千米的C处第一次相遇。
分式方程应用题分类解析
分式方程应用题分类解析一.行程问题(1)一般行程问题1.从甲地到乙地有两条公路:一条是全长600Km的普通公路,另一条是全长480Km的高速公路。
某客车在高速公路上行驶的平均速度比在普通公路上每小时快45Km,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需要的时间。
2.A、B两地距80千米,一公共汽车从A到B,2小时后又从A同方向开出一辆小汽车,小汽车车速是公共汽车的3倍,结果小汽车比公共汽车早40分钟到达B地,求两车速度。
3.我军某部由驻地到距离30千米的地方去执行任务,由于情况发生了变化,急行军速度必需是原计划的1.5倍,才能按要求提前2小时到达,求急行军的速度。
(2)水航问题4.轮船顺水航行80千米所需要的时间和逆水航行60千米所用的时间相同。
已知水流的速度是3千米/时,求轮船在静水中的速度。
二.工程问题1.某市为了进一步缓解交通拥堵现象,决定修建一条从市中心到飞机场的轻轨铁路,为使工程能提前3个月完成,需要将原定的工作效率提高12%。
问原计划这项工程用多少个月.2.一台甲型拖拉机4天耕完一块地的一半,加一天乙型拖拉机,两台合耕,1天耕完这块地的另一半。
乙型拖拉机单独耕这块地需要几天?3.甲、乙两个工程队共同完成一项工程,乙队先单独做1天, 再由两队合作2天就完成全部工程,已知甲队与乙队完成此工作时间比是2:3,求甲、乙两队单独完成此项工程各需多少天?4.某市为治理污水,需要铺设一段全长3000米的污水输送管道,为了尽量减少施工对城市交通造成的影响,实际施工时每天的工效比原计划增加25%,结果提前30天完成了任务,实际每天铺设多长管道?5.市政工程公司修建6000米长的河岸,修了30天后,从有关部门获知汛期将提前,公司决定增派施工人员以加快速度,工效比原来提高了20%,工程恰好比原计划提前5天完成。
求该公司完成这项工程实际的天数.6.为加快西部大开发,某自治区决定新修一条公路,甲、乙两工程队承包此项工程。
培优专题18 分式方程应用题的常见类型-解析版
专题18 分式方程应用题的常见类型◎类型一:工程问题1.(2022·四川成都·八年级期末)某车间加工1300个零件后,采用了新工艺,工效提升了30%,这样加工同样多的零件就少用10小时.若设采用新工艺前每小时加工x 个零件,则可列方程为( )A .()1300130010130%x x -=-B .()1300130010130%x x -=+C .()1300130010130%x x -=-D .()1300130010130%x x -=+2.(2022·浙江湖州·七年级期末)某帐篷生产企业承接生产7000顶帐篷的任务,原计划每天生产x 顶,但后因帐篷急需,该企业加大生产投入,提高生产效率,实际每天生产数量提高到原计划的1.4倍,结果提前4天完成任务.根据题意,下面所列方程正确的是( )A .7000700041.4x x x -=+B .7000700041.4x x =-C .7000700041.4x x x -=+D .7000700041.4x x-=【答案】D3.(2022·甘肃·武威第九中学八年级期末)建筑公司修建一条400米长的道路,开工后每天比原计划多修10米,结果提前2天完成了任务.如果设建筑公司实际每天修x米,那么可得方程是________.4.(2022·江苏泰州·八年级期末)为了改善生态环境,防止水土流失,某村计划在荒坡上种树960棵,由于青年志愿者支援,实际每天种树的棵数比原计划多50%,结果提前4天完成任务,设原计划每天植树x 棵,根据题意列出方程________.5.(2022·河南信阳·八年级期末)在学习“分式方程应用”时,张老师板书了如下的问题,小明和小亮两名同学都列出了对应的方程.15.3分式方程例:有甲乙两个工程队,甲队修路800m与乙队修路1200m所用时间相等,乙队每天比甲队多修40m,求甲队每天修路的长度小明:800120040x x=+小亮:120080040y y-=根据以上信息,解答下列问题:(1)小明同学所列方程中x表示______,列方程所依据的等量关系是________________________________;小亮同学所列方程中y表示______,列方程所依据的等量关系是________________________________;(2)请你在两个方程中任选一个,解答老师的例题.6.(2022·福建·莆田二中八年级期末)甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队每天比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍.求甲、乙两个工程队每天各修路多少千米?【答案】甲每天修路1.5千米,则乙每天修路1千米【分析】可设甲每天修路x千米,则乙每天修路(x-0.5)千米,则可表示出修路所用的时间,可列分式方程,求解即可;【详解】解:设甲每天修路x千米,则乙每天修路(x﹣0.5)千米,◎类型二:行程问题(1)基本数量关系:路程=速度×时间(2)常见应用题中的等量关系:①同一路程慢速-同一路程快速=时间差②顺水速度=船的速度+水速 逆水速度=船的速度-水速③一段路程原计划按甲速度行驶完,但行驶途中速度变为乙速度,则:全部路程甲速度=原计划时间,甲速度行驶路程+乙速度行驶路程=全部路程,全部路程甲速度-甲速度行驶路程甲速度-乙速度行驶路程乙速度=时间差7.(2022·浙江金华·七年级期末)某校组织七年级同学乘坐大巴到金华万福塔开展社会实践活动.该塔距离学校5千米.1号车出发4分钟后,2号车才出发,结果两车同时到达.已知2号车的平均速度是1号车的平均速度的1.5倍,求2号车的平均速度.设1号车的平均速度为x km/h ,可列方程为 ( )A .5541.5x x -=B .5541.5x x -=C .5541.560x x -=D .5541.560x x -=8.(2022·辽宁朝阳·中考真题)八年一班学生周末乘车去红色教育基地参观学习,基地距学校60km ,一部分学生乘慢车先行,出发30min后,另一部分学生乘快车前往,结果同时到达.已知快车的速度是慢车速度的1.5倍,求慢车的速度.设慢车每小时行驶x km,根据题意,所列方程正确的是( )A.60x﹣601.5x=3060B.601.5x﹣60x=3060C.60x﹣601.5x=30D.601.5x﹣60x=309.(2022·山西·寿阳县教研室九年级期末)斑马线前“礼让行人”,不仅体现着对生命的尊重,也直接反映着城市的文明程度.如图,某路口的斑马线路段“A﹣B﹣C”横穿双向行驶车道,其中AB=BC=12米,在绿灯亮时,小敏共用20秒通过AC,其中通过BC的速度是通过AB速度的1.5倍,求小敏通过AB时的速度.设小敏通过AB时的速度是x米/秒,根据题意列方程为____.10.(2022·浙江浙江·二模)某班同学到距学校12千米的森林公园植树,一部分同学骑自行车先行,半小时后,其余同学乘汽车出发,结果他们同时到达,已知汽车的速度是自行车速度的3倍,求自行车和汽车的速度.设自行车的速度为x千米/时,则根据题意可列方程为________.11.(2022·辽宁沈阳·一模)小明家距学校980m.(1)若他从家跑步上学,路上时间不超过490s,请直接写出小明跑步的平均速度至少为______m/s.(2)若他从家出发,先步行了350m后,发现上学要迟到了,因此换骑上了共享单车,达到学校时,全程共花了480s.已知小明骑共享单车的平均速度是步行平均速度的3倍,求小明骑共享单车的平均速度是多少?(转换出行方式时,所需时间忽略不计,假设家到学校随时都有共享单车).【点睛】本题考查实际运用题的求解,熟练掌握解实际应用题的步骤“设、列、解、答”,读懂题意,找到等量关系列出方程是解决问题的关键.12.(2022·山东潍坊·八年级期末)甲、乙两列高铁列车在不同的时刻分别从北京出发开往上海.已知北京到上海的距离约为1320千米,列车甲行驶的平均速度为列车乙行驶平均速度的43倍,全程运行时间比列车乙少1.5小时,求列车甲从北京到上海运行的时间.◎类型三:打折销售问题总售价=单价×销售量总利润=单价利润×销售量=总售价-总成本1--%100成本售价成本成本售价成本利润利润率==⨯=利润率售价成本+=1利润=成本×利润率=售价-成本价(进价)售价=成本×(1+利润率)=标价×打折数(不打折时,售价=标价)=成本价+利润=成本价×(1+利润率)标价=成本价×(1+提高成数)成本价=售价-利润13.(2022·安徽合肥·七年级期末)母亲节前夕,某花店购进若干束花,很快售完,接着又在原总进价的基础上增加12.5%购进第二批花.已知第二批所购花束数是第一批所购花束数的1.5倍,且每束花的进价比第一批的进价少8元,设第一批花束每束的进价为x 元,依据题意可得方程( )A .1.5112.5%8x x +=-B .1.512.5%8x x =-C .1112.5%81.5x x+-=D .112.5%181.5x x +-=14.(2022·内蒙古巴彦淖尔·八年级期末)某图书馆计划选购甲、乙两种图书,已知甲图书每本价格是乙图书每本价格的2.5倍,用800元单独购买甲图书比用800元单独购买乙图书要少24本.求甲、乙两种图书每本价格分别为多少元,我们设乙图书每本价格为x 元,则可得方程( )A .8008002.5x x -=4B .8008002.5x x -=24C .800 2.5800x x ⨯-=24D .800800 2.5x x⨯-=24故答案为A.【点睛】本题主要考查了列分式方程,正确理解等量关系是解答本题的关键.15.(2022·贵州铜仁·八年级期末)为做好新冠疫情的防控工作,某单位需购买甲、乙两种消毒液,经了解每桶甲种消毒液的零售价比乙种消毒液的零售价多6元,该单位以零售价分别用900元和720元采购了相同桶数的甲、乙两种消毒液.求甲、乙两种消毒液的零售价分别是每桶多少元?设乙种消毒液零售价x元/桶,则可立方程为:________.16.(2022·辽宁·沈阳市第七中学八年级阶段练习)某商厦进货员预测一种应季衬衫能畅销市场,就用8万元购进这种衬衫,面市后果然供不应求.商厦又用17.6万元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了5元.商厦销售这种衬衫时每件定价都是60元,最后剩下200件按7折销售,很快售完.在这两笔生意中,商厦共盈利______元.2760000840080000176000=+--=(元)28400∴在这两笔生意中,商厦共盈利28400元.故答案为:28400.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.17.(2022·山东·济南市天桥区泺口实验学校八年级期中)购买甲、乙两种物品,已知乙种物品的单价比甲种物品的单价贵10元,用480元购买乙种物品的数量与用360元购买甲种物品的数量相同,求甲、乙两种物品的单价各是多少元?18.(2022·甘肃·民勤县第六中学八年级期末)列方程解应用题:某商店用2000元购进一批小学生书包,出售后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了2元,结果购买第二批书包用了6600元.(1)请求出第一批每只书包的进价;(2)该商店第一批和第二批分别购进了多少只书包;(3)若商店销售这两批书包时,每个售价都是30元,全部售出后,商店共盈利多少元?【答案】(1)20元(2)第一批购进100只,第二批购进300只(3)3400元【分析】(1)设第一批书包的单价为x元,然后可得到第二批书包的单价,最后依据第二所购书包的数量◎类型四:方案选择问题19.(2022·辽宁沈阳·八年级期末)某校组织540名学生去外地参观,现有A,B两种不同型号的客车可供选择.在每辆车刚好满座的前提下,每辆B型客车比每辆A型客车多坐15人,单独选择B型客车比单独选择A型客车少租6辆.设A型客车每辆坐x人,根据题意可列方程( )A.54015x-﹣540x=6B.540x﹣54015x+=6C.54015x+﹣540x=6D.540x﹣54015x-=620.(2013·山东泰安·九年级期末)小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.若设走路线一时的平均速度为x千米/小时,根据题意得A.B.C.D.21.(2020·黑龙江哈尔滨·二模)为了配合新型冠状病毒的防控工作,某社区欲购进一批酒精对社区进行消毒,现有A、B 两种酒精可供选择,B 种酒精比 A 种酒精每瓶贵 2 元,用600 元购买 A 种酒精和用800 元购买B 种酒精的数量相同,现要求出A、B 两种酒精每瓶的价格.设A 种酒精每瓶的价格为x 元,则可列方程为__________.22.(2019·浙江温州·中考模拟)某校组织1080名学生去外地参观,现有A、B两种不同型号的客车可供选择.每辆B型客车的载客量比每辆A型客车多坐15人,若只选择B型客车比只选择A型客车少租12辆(每辆客车均坐满).设B型客车每辆坐x人,则列方程为_____.23.(2022·江苏·扬州市江都区第三中学八年级阶段练习)某公司有960件新产品需经加工后才能投放市场,现有甲、乙两家工厂都想加工加工这批产品.已知甲工厂单独完成这批产品比乙工厂单独完成这批产品多用20天,而甲工厂每天加工数量是乙工厂每天加工的数量的23,公司需付甲工厂加工费每天80元,需付乙工厂加工费每天120元.(1)甲、乙两工厂每天能加工多少件新产品?(2)公司制定的方案如下:可以由每个厂家单独完成,也可以有两个厂家合作完成.在加工过程中,公司派一名工程师进行技术指导,并担负每天25元的午餐补助,请帮公司需出一种既省时又省钱的加工方案,并说明理由.16a+24a=960∴a=24∴需要的总费用为:24×(80+120+25)=5400元综上所述:甲、乙两工厂合作完成此项任务既省时又省钱.【点睛】本题主要考查分式方程的应用,解题的关键在于理解清楚题意,找出等量关系,列出方程求解.需要注意:①分式方程求解后,应注意检验其结果是否符合题意;②选择最优方案时,需将求各个方案所需时间和所需费用,经过比较后选择最优的那个方案.24.(2022·浙江舟山·七年级期末)舟山市疫情防控工作领导小组在5月30日发布了常态化核酸检测工作的通知,6月3日起我市居民进入公共场所须凭7天内核酸采样或检测阴性证明.根据文件要求,学生在校期间每周要组织核酸检测一次,某校积极响应,安排校医甲和教师乙进行核酸采集培训.经过培训后,甲采集的速度是乙的两倍,且甲采集52人用时比乙采集30人用时少2分钟.(1)求甲、乙平均每分钟分别采集多少人?(2)该校七年级学生人数比八年级少18人,其中七年级有7个班,每班m人,8八年级有6个班,每班n 人,两名采集员各自用了87分钟完成了七、八年级学生核酸采集工作,求m和n的值;(3)该校教职工70人完成核酸采集后要放入10人试管或20人试管中,在保证每个试管不浪费情况下,有哪几种分装方案?【答案】(1)甲平均每分钟采集4人,乙平均每分钟采集2人;(2)3645 mn=ìí=î(3)有4种方案:①5个10人试管,1个20人试管;②3个10人试管,2个20人试管;③1个10人试管,3个20人试管;④7个10人试管,0个20人试管.【分析】(1)可设乙速度为平均每分钟采集x人,甲为2x人,根据所用的时间可列出方程,解方程即可;(2)根据题意列出关于m,n的二元一次方程组,解方程组即可;(3)设10人试管有x个,20人试管有y个,从而得到10x+20y=70,根据x与y都是正整数,从而可求解.(1)解:设乙速度为平均每分钟采集x人,则甲为每分钟采集2x人,。
(完整版)分式方程应用题专题训练(有解析)
华师大版数学八年级下册第16章分式方程应用题专题训练一、行程问题解题策略:在解行程问题的分式方程应用题时,可以依据时间=路程速度,利用分式来表示时间,根据时间之间的关系建立分式方程。
例:马小虎的家距离学校1800米,一天马小虎从家去上学,出发10分钟后,爸爸发现他的数学课本忘记拿了,立即带上课本去追他,在距离学校200米的地方追上了他,已知爸爸的速度是马小虎速度的2倍,求马小虎的速度.分析:设马小虎的速度是x米/分,列表分析如下.依据马小虎多走10分钟建立方程.解:设马小虎的速度是x米/分,根据题意列方程,1600 x -16002x=10解得:x=80经检验,x=80是原方程的根.答:马小虎的速度是80米/分.练习:1、为了迎接北京和张家口共同申办及举办2020年冬奥会,全长174千米的京张高铁于2014年底开工. 按照设计,京张高铁列车从张家口到北京最快用时比最慢用时少18分钟,最快列出时速是最慢列车时速的2920倍,求京张高铁最慢列车的速度是多少?解:设京张高铁最慢列车的速度是x 千米/时。
由题意,得17417418296020x x -=, 解得 180x =经检验,180x =是原方程的解,且符合题意。
答:京张高铁最慢列车的速度是180千米/时.2、早晨,小明步行到离家900米的学校去上学,到学校时发现眼镜忘在家中,于是他立即按原路步行回家,拿到眼镜后立即按原路骑自行车返回学校.已知小明步行从学校到家所用的时间比他骑自行车从家到学校所用的时间多10分钟,小明骑自行车速度是步行速度的3倍. (1)求小明步行速度(单位:米/分)是多少;(2)下午放学后,小明骑自行车回到家,然后步行去图书馆,如果小明骑自行车和步行的速度不变,小明步行从家到图书馆的时间不超过骑自行车从学校到家时间的2倍,那么小明家与图书馆之间的路程最多是多少米?解:(1)设小明步行的速度是x 米/分,由题意得:900900103x x=+, 解得:x=60,经检验:x=60是原分式方程的解, 答:小明步行的速度是60米/分; (2)设小明家与图书馆之间的路程是y 米, 根据题意可得:900260180y ≤⨯ 解得:y ≤600,答:小明家与图书馆之间的路程最多是600米.3、甲、乙两同学的家与学校的距离均为3000米.甲同学先步行600米,然后乘公交车去学校、乙同学骑自行车去学校.已知甲步行速度是乙骑自行车速度的,公交车的速度是乙骑自行车速度的2倍.甲乙两同学同时从家发去学校,结果甲同学比乙同学早到2分钟. (1)求乙骑自行车的速度;(2)当甲到达学校时,乙同学离学校还有多远?解:(1)设乙骑自行车的速度为x 米/分钟,则甲步行速度是x 米/分钟,公交车的速度是2x 米/分钟,根据题意得600300060030002 122x xx-+=-,解得:x=300米/分钟,经检验x=300是方程的根,答:乙骑自行车的速度为300米/分钟;(2)∵300×2=600米,答:当甲到达学校时,乙同学离学校还有600米.二、工程问题解题策略:在解工程问题的分式方程应用题时,可以依据工作时间=工作量工作效率,利用分式来表示工作时间,根据工作时间之间的关系建立分式方程。
解分式方程应用题的步骤
解分式方程应用题的步骤分式方程应用题及解析。
一、行程问题。
1. 题目。
- 一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?- 解析。
- 设江水的流速为x千米/时。
- 顺流速度 = 轮船在静水中的速度+水流速度,即(30 + x)千米/时;逆流速度=轮船在静水中的速度 - 水流速度,即(30 - x)千米/时。
- 根据时间 = 路程÷速度,顺流航行100千米所用时间为(100)/(30 + x)小时,逆流航行60千米所用时间为(60)/(30 - x)小时。
- 因为顺流航行100千米所用时间与逆流航行60千米所用时间相等,所以可列方程(100)/(30+x)=(60)/(30 - x)。
- 交叉相乘得:100(30 - x)=60(30 + x)。
- 展开括号:3000-100x = 1800+60x。
- 移项:-100x-60x=1800 - 3000。
- 合并同类项:-160x=-1200。
- 解得:x = 7.5。
- 经检验,当x = 7.5时,(30 + x)(30 - x)=(30+7.5)(30 - 7.5)=37.5×22.5≠0,所以x = 7.5是原分式方程的解。
2. 题目。
- 甲、乙两地相距19千米,某人从甲地去乙地,先步行7千米,然后改骑自行车,共用了2小时到达乙地,已知这个人骑自行车的速度是步行速度的4倍,求步行的速度和骑自行车的速度。
- 解析。
- 设步行速度为x千米/时,则骑自行车速度为4x千米/时。
- 步行7千米所用时间为(7)/(x)小时,骑自行车(19 - 7)=12千米所用时间为(12)/(4x)小时。
- 根据共用了2小时到达乙地,可列方程(7)/(x)+(12)/(4x)=2。
- 方程可化为(7)/(x)+(3)/(x)=2。
- 合并同类项得(10)/(x)=2。
分式方程应用题含答案(经典)
分式方程 应用题专题1、温(州)--福(州)铁路全长298千米.将于2009年6月通车,通车后,预计从福州直达温州的火车行驶时间比目前高速公路上汽车的行驶时间缩短2小时.已知福州至温州的高速公路长331千米,火车的设计时速是现行高速公路上汽车行驶时速的2倍.求通车后火车从福州直达温州所用的时间(结果精确到0.01小时).解:设通车后火车从福州直达温州所用的时间为x 小时. 依题意,得29833122x x =⨯+. 解这个方程,得14991x =. 经检验14991x =是原方程的解. 148 1.6491x =≈.4、甲、乙两个清洁队共同参与了城中垃圾场的清运工作.甲队单独工作2天完成总量的三分之一,这时增加了乙队,两队又共同工作了1天,总量全部完成.那么乙队单独完成总量需要( D )A.6天 B.4天 C.3天 D.2天5、炎炎夏日,甲安装队为A 小区安装66台空调,乙安装队为B 小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x 台,根据题意,下面所列方程中正确的是( D )A .66602x x =-B .66602x x =-C .66602x x =+D .66602x x=+ 6、张明与李强共同清点一批图书,已知张明清点完200本图书所用的时间与李强清点完300本图书所用的时间相同,且李强平均每分钟比张明多清点10本,求张明平均每分钟清点图书的数量.解:设张明平均每分钟清点图书x 本,则李强平均每分钟清点(10)x +本, 依题意,得20030010x x =+. 3分 解得20x =.经检验20x =是原方程的解.答:张明平均每分钟清点图书20本. 5分注:此题将方程列为30020020010x x -=⨯或其变式,同样得分7、有两块面积相同的试验田,分别收获蔬菜900kg 和1500kg ,已知第一块试验田每亩收获蔬菜比第二块少300kg ,求第一块试验田每亩收获蔬菜多少千克.设一块试验田每亩收获蔬菜x kg ,根据题意,可得方程( C )A .9001500300x x=+ B .9001500300x x =-C .9001500300x x =+D .9001500300x x =- 8、进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:解:设原来每天加固x 米,根据题意,得926004800600=-+xx . 去分母,得 1200+4200=18x (或18x =5400)解得 300x =.检验:当300x =时,20x ≠(或分母不等于0).∴300x =是原方程的解.答:该地驻军原来每天加固300米.9、甲、乙两个施工队共同完成某居民小区绿化改造工程,乙队先单独做2天后,再由两队合作10天就能完成全部工程.已知乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的45,求甲、乙两个施工队单独完成此项工程各需多少天? 解:设甲施工队单独完成此项工程需x 天,则乙施工队单独完成此项工程需45x 天, 根据题意,得 10x +1245x =1 解这个方程,得x =25经检验,x =25是所列方程的根10、南水北调东线工程已经开工,某施工单位准备对运河一段长2240m 的河堤进行加固,由于采用新的加固模式,现在计划每天加固的长度比原计划增加了20m ,因而完成河堤加固工程所需天数将比原计划缩短2天,若设现在计划每天加固河堤x m ,则得方程为22402240220x x-=-.11、某超级市场销售一种计算器,每个售价48元.后来,计算器的进价降低了4%,但售价未变,从而使超市销售这种计算器的利润提高了5%.这种计算器原来每个进价是多少元?(利润=售价-进价,利润率100%=⨯利润进价) 解:设这种计算器原来每个的进价为x 元, 1分 根据题意,得4848(14)1005100(14)x x x x---⨯+=⨯-%%%%%. 5分 解这个方程,得40x =. 8分经检验,40x =是原方程的根. 9分答:这种计算器原来每个的进价是40元. 10分12、某市在旧城改造过程中,需要整修一段全长2400m的道路.为了减少施工对城市交通所通过这段对话,请你求出该地驻军原来每天加固的米数.造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修x m ,则根据题意可得方程240024008(120)x x-=+%14、某书店老板去图书批发市场购买某种图书.第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书数量比第一次多10本.当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少?解:设第一次购书的进价为x 元,则第二次购书的进价为(1)x +元.根据题意得:1200150010 1.2x x+= 解得:5x =经检验5x =是原方程的解 所以第一次购书为12002405=(本). 第二次购书为24010250+=(本)第一次赚钱为240(75)480⨯-=(元)第二次赚钱为200(75 1.2)50(70.45 1.2)40⨯-⨯+⨯⨯-⨯=(元)所以两次共赚钱48040520+=(元)答:该老板两次售书总体上是赚钱了,共赚了520元.15、甲、乙两火车站相距1280千米,采用“和谐”号动车组提速后,列车行驶速度是原来速度的3.2倍,从甲站到乙站的时间缩短了11小时,求列车提速后的速度.解法一:设列车提速前的速度为x 千米/时,则提速后的速度为3.2x 千米/时,根据题意,得12801280113.2x x-=. 4分 解这个方程,得80x =. 5分经检验,80x =是所列方程的根. 6分80 3.2256∴⨯=(千米/时).所以,列车提速后的速度为256千米/时. 7分解法二: 设列车提速后从甲站到乙站所需时间为x 小时,则提速前列车从甲站到乙站所需时间为(11)x +小时,根据题意,得128012803.211x x⨯=+.5x ∴=. 则 列车提速后的速度为=256(千米/时)答:列车提速后的速度为256千米/时.。
分式方程应用题含答案(经典)
分式方程 应用题专题1、温(州)--福(州)铁路全长298千米.将于2009年6月通车,通车后,预计从福州直达温州的火车行驶时间比目前高速公路上汽车的行驶时间缩短2小时.已知福州至温州的高速公路长331千米,火车的设计时速是现行高速公路上汽车行驶时速的2倍.求通车后火车从福州直达温州所用的时间2、某商店在“端午节”到来之际,以2400元购进一批盒装粽子,节日期间每盒按进价增加20%作为售价,售出了50盒;节日过后每盒以低于进价5元作为售价,售完余下的粽子,整个买卖过程共盈利350元,求每盒粽子的进价.4、甲、乙两个清洁队共同参与了城中垃圾场的清运工作.甲队单独工作2天完成总量的三分之一,这时增加了乙队,两队又共同工作了1天,总量全部完成.那么乙队单独完成总量需要( )A.6天 B.4天 C.3天D.2天5甲安装队为A 小区安装66台空调,乙安装队为B 小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x 台,根据题意,下面所列方程中正确的是( )A .66602x x =- B .66602x x =- C .66602x x =+ D .66602x x=+ 6、张明与李强共同清点一批图书,已知张明清点完200本图书所用的时间与李强清点完300本图书所用的时间相同,且李强平均每分钟比张明多清点10本,求张明平均每分钟清点图书的数量.7、有两块面积相同的试验田,分别收获蔬菜900kg 和1500kg ,已知第一块试验田每亩收获蔬菜比第二块少300kg ,求第一块试验田每亩收获蔬菜多少千克.设一块试验田每亩收获蔬菜x kg ,根据题意,可得方程( )A .9001500300x x =+B .9001500300x x =-C .9001500300x x =+ D .9001500300x x =- 8、进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这9、甲、乙两个施工队共同完成某居民小区绿化改造工程,乙队先单独做2天后,再由两队合作10天就能完成全部工程.已知乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天数的45,求甲、乙两个施工队单独完成此项工程各需多少天? 10、南水北调东线工程已经开工,某施工单位准备对运河一段长2240m 的河堤进行加固,由于采用新的加固模式,现在计划每天加固的长度比原计划增加了20m ,因而完成河堤加固工程所需天数将比原计划缩短2天,若设现在计划每天加固河堤x m ,则得方程为 .11、某超级市场销售一种计算器,每个售价48元.后来,计算器的进价降低了4%,但售价未变,从而使超市销售这种计算器的利润提高了5%.这种计算器原来每个进价是多少元?12、某市在旧城改造过程中,需要整修一段全长2400m 的道路.为了减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修x m ,则根据题意可得方程 .13、今年4月18日,我国铁路实现了第六次大提速,这给旅客的出行带来了更大的方便.例如,京沪线全长约1500公里,第六次提速后,特快列车运行全程所用时间比第五次提速后少通过这段对话,请你求出该地驻军原来每天加固的米数.用871小时.已知第六次提速后比第五次提速后的平均时速快了40公里,求第五次提速后和第六次提速后的平均时速各是多少?14、某书店老板去图书批发市场购买某种图书.第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书数量比第一次多10本.当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少?15、甲、乙两火车站相距1280千米,采用“和谐”号动车组提速后,列车行驶速度是原来速度的3.2倍,从甲站到乙站的时间缩短了11小时,求列车提速后的速度.16、某公司投资某个工程项目,现在甲、乙两个工程队有能力承包这个项目.公司调查发现:乙队单独完成工程的时间是甲队的2倍;甲、乙两队合作完成工程需要20天;甲队每天的工作费用为1000元、乙队每天的工作费用为550元.根据以上信息,从节约资金的角度考虑,公司应选择哪个工程队、应付工程队费用多少元?17、A 、B 两地相距18公里,甲工程队要在A 、B 两地间铺设一条输送天然气管道,乙工程队要在A 、B 两地间铺设一条输油管道.已知甲工程队每周比乙工程队少铺设1公里,甲工程队提前3周开工,结果两队同时完成任务,求甲、乙两工程队每周各铺设多少公里管道?18、轮船先顺水航行46千米再逆水航行34千米所用的时间,恰好与它在静水中航行80千米所用的时间相等,水的流速是每小时3千米,则轮船在静水中的速度是 千米/时.分式方程的应用题 答案1、解:设通车后火车从福州直达温州所用的时间为x 小时.依题意,得29833122x x =⨯+. 2、解:设每盒粽子的进价为x 元,由题意得 20%x ×50-(x 2400-50)×5=350 3、解:(1)设2006年平均每天的污水排放量为x 万吨,则2007年平均每天的污水排放量为1.05x 万吨,依题意得: 341040%1.05x x-= 解得56x ≈ 经检验,56x ≈是原方程的解1.0559x ∴≈答:2006年平均每天的污水排放量约为56万吨,2007年平均每天的污水排放量约为59万吨.(可以设2007年平均每天污水排放量约为x 万吨,2007年的平均每天的污水排放量约为1.05x 万吨) (2)解:59(120%)70.8⨯+=70.870%49.56⨯=49.563415.56-=答:2010年平均每天的污水处理量还需要在2007年的基础上至少增加15.56万吨.4、D5、D6、解:设张明平均每分钟清点图书x 本,则李强平均每分钟清点(10)x +本, 依题意,得20030010x x =+.7、C8、解:设原来每天加固x 米,根据题意,得926004800600=-+x x . 9、解:设甲施工队单独完成此项工程需x 天,则乙施工队单独完成此项工程需45x 天, 根据题意,得 10x +1245x =1 10、22402240220x x-=- 11、解:设这种计算器原来每个的进价为x 元, 根据题意,得4848(14)1005100(14)x x x x---⨯+=⨯-%%%%%. 12、240024008(120)x x -=+% 13、 解:设第五次提速后的平均速度是x 公里/时,则第六次提速后的平均速度是(x +40)公里/时.根据题意,得:x 1500-401500+x =815, 14、解:设第一次购书的进价为x 元,则第二次购书的进价为(1)x +元.根据题意得:1200150010 1.2x x+= 15、解法一:设列车提速前的速度为x 千米/时,则提速后的速度为3.2x 千米/时,根据题意,得12801280113.2x x-=. 解法二: 设列车提速后从甲站到乙站所需时间为x 小时,则提速前列车从甲站到乙站所需时间为(11)x +小时,根据题意,得128012803.211x x⨯=+. 16、解:设甲队单独完成需x 天,则乙队单独完成需要2x 天.根据题意得111220x x +=, 17、解:设甲工程队每周铺设管道x 公里,则乙工程队每周铺设管道(1+x )公里根据题意, 得 311818=+-x x 18、 20。
初中数学:分式方程应用题专题练习附详解(精)
(1)实际购买时,该农产品多少元每千克?
(2)据预测,该农产品的市场价格在实际购买价的基础上每天每千克上涨0.5元,已知冷库存放这批农产品,每天需要支出各种费用合计为280元,同时,平均每天将有8千克损坏不能出售.则将这批农产品存放多少天后一次性全部出售,该公司可获得利润19600元?
(1)求每盒口罩和每盒水银体温计的价格各是多少元?
(2)如果给每位学生发放2只口罩和1支水银体温计,且口罩和水银体温计均整盒购买.设购买口罩m盒(m为正整数),则购买水银体温计多少盒能和口罩刚好配套?请用含m的代数式表示.
(3)在健康大药房累计购医用品超过1800元后,超出1800元的部分可享受8折优惠.该校按(2)中的配套方案购买,共支付w元,求w关于m的函数关系式.若该校九年级有1000名学生,需要购买口罩和水银体温计各多少盒?所需总费用为多少元?
经检验,x=40原方程的解,
∴x+8=48.
答:每件乙种商品的价格为40元,每件甲种商品的价格为48元.
(2)
解:设购买y件甲种商品,则购买(80-y)件乙种商品,
根据题意得:48y+40(80-y)≤3600,
解得:y≤50.
答:最多可购买50件甲种商品.
【点睛】
本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)根据数量=总价÷单价,列出关于x的分式方程;(2)根据总价=单价×购买数量,列出关于y的一元一次不等式.
3.第十一届江苏书展在苏州国际博览中心设有400个展台,并在全省多地线上、线下同步举行.本届书展设置了“读经典、学四史、童心向党和百年辉煌”等活动.为保障书展的准备工作比原计划提前2天完成,每天准备展台的个数需比原计划增加 .
分式方程50题 参考答案与试题解析
分式方程50题参考答案与试题解析一.解答题(共50小题)1.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:(x+1)2﹣4=x2﹣1,整理得:x2+2x+1﹣4=x2﹣1,解得:x=1,经检验x=1是增根,分式方程无解;(2)去分母得:(x﹣2)2=(x+2)2+16,整理得:x2﹣4x+4=x2+4x+4+16,解得:x=﹣2,经检验x=﹣2是增根,分式方程无解.2.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:3(x﹣1)=2x,去括号得:3x﹣3=2x,解得:x=3,经检验x=3是分式方程的解;(2)去分母得:(x﹣2)2﹣x2+4=16,整理得:x2﹣4x+4﹣x2+4=16,解得:x=﹣2,经检验x=﹣2是增根,分式方程无解.3.【分析】(1)方程两边同乘2(4+x),得关于x的一元一次方程,解方程可求解x值,最后验根即可;(2)方程两边同乘x2﹣1,得关于x的一元一次方程,解方程可求解x值,最后验根即可.【解答】解:(1)方程两边同乘2(4+x),得2(3﹣x)=4+x,解得x=,当x=时,2(4+x)≠0,∴x=是原方程的解.(2)方程两边同乘x2﹣1,得x﹣1+2=0解得x=﹣1,当x=﹣1时,x2﹣1=0,∴x=﹣1是方程的增根,∴原方程无解.4.【分析】分式方程整理后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:方程整理得:﹣=1﹣,方程两边同乘以(x+3)(x﹣3)得:x+3﹣8x=x2﹣9﹣x(x+3),解这个方程得:x=3,经检验,x=3是原方程的增根,所以原方程无解.5.【分析】(1)原式括号中两项通分并利用同分母分式的减法法则计算,约分即可得到结果;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=•=•=;(2)分式方程整理得:=1+,去分母得:x=2x﹣1+2,解得:x=﹣1,检验:当x=﹣1时,2x﹣1≠0,则分式方程的解为x=﹣1.6.【分析】两方式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:3(x+1)=2(x﹣2),去括号得:3x+3=2x﹣4,解得:x=﹣7,经检验x=﹣7是分式方程的解;(2)去分母得:x2+2x+1=x2﹣1+4,解得:x=1,经检验x=1是增根,分式方程无解.7.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2(x+2)=3(3x﹣1),去括号得:2x+4=9x﹣3,移项合并得:﹣7x=﹣7,解得:x=1,经检验x=1是分式方程的解.8.【分析】分式方程整理后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:原方程可化为:﹣=1,去分母,得3x﹣6=x﹣2,解得:x=2,经检验:x=2是原方程的增根,所以原方程无解.9.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x+3=2x,解得:x=3,检验:把x=3代入得:x(x+3)=18≠0,则分式方程的解为x=3.10.【分析】分式方程整理后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:分式方程整理得:+=4,去分母得:x+4+2=4x﹣12,移项合并得:﹣3x=﹣18,解得:x=6,经检验x=6是分式方程的解.11.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:5x+7﹣2(x+5)=x2+4x﹣5,整理得:x2+x﹣2=0,即(x﹣1)(x+2)=0,解得:x=1或x=﹣2,经检验x=1是增根,则分式方程的解为x=﹣2.12.【分析】根据解分式方程的解法步骤求解即可.【解答】解:去分母得,(x+1)(x﹣2)﹣(x+2)(x﹣2)=3(x+2)去括号得,x2﹣x﹣2﹣x2+4=3x+6移项得,x2﹣x﹣x2﹣3x=6+2﹣4合并同类项得,﹣4x=4系数化为1得,x=﹣1经检验,x=﹣1是原方程的解,所以原方程的解为x=﹣1.13.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:最简公分母为(x﹣2)2,去分母得:x(x﹣2)﹣(x﹣2)2=4,整理得:x2﹣2x﹣x2+4x﹣4=4,解得:x=4,检验:把x=4代入得:(x﹣2)2=4≠0,∴分式方程的解为x=4.14.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到m的值,经检验即可得到方程的解.【解答】解:去分母得:5﹣m=m﹣2﹣3,移项合并得:2m=10,解得:m=5,检验:把m=5代入得:m﹣2=5﹣2=3≠0,∴分式方程的解为m=5.15.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:3+x2﹣9=x(x+3),解得:x=﹣2,检验:当x=﹣2时,x2﹣9≠0,∴原方程的解为x=﹣2.16.【分析】方程两边都乘以x﹣1得出3x+2=5,求出方程的解,再进行检验即可.【解答】解:方程两边都乘以x﹣1得:3x+2=5,解得:x=1,检验:当x=1时,x﹣1=0,所以x=1不是原方程的解,即原方程无解.17.【分析】方程两边都乘以x(x﹣1)得出x﹣8+3x=0,求出方程的解,再进行检验即可.【解答】解:方程两边都乘以x(x﹣1)得:x﹣8+3x=0,解得:x=2,检验:当x=2时,x(x﹣1)≠0,所以x=2是原方程的解,即原方程的解是:x=2.18.【分析】(1)方程两边都乘以x(x+1)得出5x+2=3x,求出方程的解,再进行检验即可;(2)方程两边都乘以2(x﹣1)得出2x=3﹣4(x﹣1),求出方程的解,再进行检验即可.【解答】解:(1)方程两边都乘以x(x+1)得:5x+2=3x,解得:x=﹣1,检验:当x=﹣1时,x(x+1)=0,所以x=﹣1是增根,即原方程无解;(2)方程两边都乘以2(x﹣1)得:2x=3﹣4(x﹣1),解得:x=,检验:当x=时,2(x﹣1)≠0,所以x=是原方程的解,即原方程的解是:x=.19.【分析】方程两边都乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:=+1,方程两边都乘(x﹣1)(x+1),得x(x+1)=4+(x﹣1)(x+1),解得x=3,检验:当x=3时,(x﹣1)(x+1)=8≠0.故x=3是原方程的解.20.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)方程两边同乘x(x﹣1)得:9(x﹣1)=8x,解得:x=9,经检验x=9是分式方程的解;(2)方程两边同乘x﹣2得:x﹣1﹣3(x﹣2)=1,解得:x=2,经检验x=2是增根,分式方程无解.21.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:方程﹣=1,去分母得:x2﹣4x+4﹣3x=x2﹣2x,解得:x=,经检验x=是分式方程的解.22.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)分式方程整理得:﹣=1,去分母得:1﹣2=x﹣2,解得:x=1,经检验x=1是分式方程的解;(2)去分母得:x2+x﹣x2+1=3,解得:x=2,经检验x=2是分式方程的解.23.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)=,去分母得:x﹣3=2x,解得:x=﹣3,经检验x=﹣3是分式方程的解;(2)方程整理得:﹣1=﹣,去分母得:x﹣2x+1=﹣3,解得:x=4,经检验x=4是分式方程的解.24.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:(x+3)(x﹣1)﹣x2+9=2,整理得:x2+2x﹣3﹣x2+9=2,即2x=﹣4,解得:x=﹣2,经检验x=﹣2是分式方程的解.25.【分析】(1)方程组整理后,利用加减消元法求出解即可;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)方程组整理得:,①×2+②得:11x=22,解得:x=2,把x=2代入①得:y=3,则方程组的解为;(2)去分母得:3x+3﹣4x=x﹣1,解得:x=2,经检验x=2是分式方程的解.26.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)+=0,去分母得:x﹣2+x+3=0,解得:x=﹣,经检验x=﹣是分式方程的解;(2)﹣=1,去分母得:(x+1)2﹣4=x2﹣1,解得:x=1,经检验x=1是增根,分式方程无解.27.【分析】(1)方程组利用加减消元法求出解即可;(2)分式方程整理后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1),①×2+②得:5x=10,解得:x=2,把x=2代入①得:y=1,则方程组的解为;(2)分式方程整理得:﹣2=﹣,去分母得:3x﹣2(x﹣3)=﹣3,去括号得:3x﹣2x+6=﹣3,解得:x=﹣9,经检验x=﹣9是分式方程的解.28.【分析】分式方程整理后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:方程整理得:+1=﹣,去分母得:2x﹣4+4x﹣2=﹣3,移项合并得:6x=3,解得:x=,经检验x=是增根,分式方程无解.29.【分析】(1)方程组利用加减消元法求出解即可;(2)分式方程去分母转化为整式方程,求出整式方程的解得到y的值,经检验即可得到分式方程的解.【解答】解:(1),①+②得:3x=9,解得:x=3,把x=3代入①得:y=0,则方程组的解为;(2)分式方程=+1,去分母得:3=1+y﹣2,解得:y=4,经检验y=4是分式方程的解.30.【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)方程组整理后,利用加减消元法求出解即可.【解答】解:(1)=,去分母得:3x=2x﹣2,解得:x=﹣2,经检验x=﹣2是分式方程的解;(2)方程组整理得:,①+②得:6y=6,解得:y=1,把y=1代入①得:x=3,则方程组的解为.31.【分析】(1)方程组利用加减消元法求出解即可;(2)分式方程整理后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1),①+②得:4x=12,解得:x=3,把x=3代入②得:y=1,则方程组的解为;(2)分式方程整理得:﹣=1,去分母得:4﹣3=x﹣2,解得:x=3,经检验x=3是分式方程的解.32.【分析】(1)方程组利用加减消元法求出解即可;(2)分式方程整理后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1),②×2﹣①得:7y=7,解得:y=1,把y=1代入②得:x=2,则方程组的解为;(2)分式方程整理得:﹣=﹣5,去分母得:﹣3=x﹣5(x﹣1),去括号得:﹣3=x﹣5x+5,移项合并得:4x=8,解得:x=2.33.【分析】(1)根据加减消元法解方程即可求解;(2)方程两边都乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:(1).②﹣①×2得:7x=﹣14,解得:y=﹣2,把y=﹣2代入①得:x=2.故方程组的解为;(2)+2=,方程两边都乘(x﹣2)得1﹣x+2(x﹣2)=﹣1,解得x=2,检验:当x=2时,x﹣2=0,是增根.故原方程无解.34.【分析】(1)利用加减消元法解方程组;(2)方程两边乘以(x+1)(x﹣1)得到整式方程,然后解整式方程后进行检验确定原方程的解.【解答】解:(1),②﹣①得4x=28,解得x=7,把x=7代入①得7﹣3y=﹣8,解得y=5,所以方程组的解为;(2)去分母得﹣2=2(x﹣1)﹣(x+1),解得x=1,经检验:原方程的解为x=1.35.【分析】(1)方程两边都乘最简公分母,可以把分式方程转化为整式方程求解;(2)根据加减消元法解方程即可求解.【解答】解:(1)=1+,方程两边都乘(x﹣2)得x=x﹣2+x+1,解得x=1,检验:当x=1时,x﹣2≠0.故x=1是原方程的解;(2),①+②×5得:17x=17,解得:x=1,把x=1代入②得:y=﹣5.故方程组的解为.36.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:方程+1=,去分母得:2+1+x=4x,解得:x=1,经检验x=1是分式方程的解.37.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:分式方程整理得:﹣1=,去分母得:(x﹣2)2﹣(x2﹣4)=12,整理得:x2﹣4x+4﹣x2+4=12,移项合并得:﹣4x=4,解得:x=﹣1,检验:把x=﹣1代入得:(x+2)(x﹣2)≠0,∴分式方程的解为x=﹣1.38.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:分式方程整理得:﹣=1,去分母得:(x+2)2﹣20=x2﹣4,整理得:x2+4x+4﹣20=x2﹣4,移项合并得:4x=12,解得:x=3,检验:把x=3代入得:(x+2)(x﹣2)≠0,则分式方程的解为x=3.39.【分析】(1)方程组利用加减消元法求出解即可;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1),①+②得:6x=18,解得:x=3,①﹣②得:4y=8,解得:y=2,则方程组的解为;(2)分式方程整理得:﹣2=,去分母得:x﹣2(x﹣3)=3,去括号得:x﹣2x+6=3,移项合并得:﹣x=﹣3,解得:x=3,检验:把x=3代入得:x﹣3=0,∴x=3是增根,则分式方程无解.40.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:方程整理得:﹣=1,去分母得:x﹣2﹣4x+8=x2﹣4,即x2+3x﹣10=0,分解因式得:(x﹣2)(x+5)=0,解得:x=2或x=﹣5,经检验x=2是增根,则分式方程的解为x=﹣5.41.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x+1=4(x﹣2),解得:x=3,检验:把x=3代入得:(x﹣2)(x+1)≠0,∴x=3是原方程的解.42.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:4﹣(x+2)=0,解得:x=2,经检验x=2是增根,分式方程无解.43.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3﹣2(x+3)=x﹣3,去括号得:3﹣2x﹣6=x﹣3,移项合并得:﹣3x=0,解得:x=0,经检验x=0是分式方程的解.44.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:3x﹣6﹣2x=0,解得:x=6,经检验x=6是分式方程的解;(2)去分母得:x2+2x+1﹣4=x2﹣1,解得:x=1,经检验x=1是增根,分式方程无解.45.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:方程两边同时乘以(x+3)(x﹣3)得(x﹣3)+2(x+3)=12,去括号得:x﹣3+2x+6=12,移项得:x+2x=12+3﹣6,合并得:3x=9,解得:x=3,检验:把x=3代入(x+3)(x﹣3)=0,∴x=3是增根,原方程无解.46.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x2+4x+4﹣3x2=2x2+4x,整理得:4x2=4,即x2=1,解得:x=1或x=﹣1,经检验x=1和x=﹣1都为分式方程的解.47.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:2x=3x﹣6,解得:x=6,经检验x=6是分式方程的解;(2)去分母得:x2+2x+1﹣4=x2﹣x,解得:x=1,经检验x=1是增根,则原方程无解.48.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:2=2x﹣1﹣3,解得:x=3,经检验x=3是分式方程的解;(2)去分母得:x﹣3﹣2=1,解得:x=6,经检验x=6是分式方程的解.49.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)方程两边同乘(3+x)(3﹣x),得9(3﹣x)=6(3+x),解这个方程,得x=,检验:当x=时,(3+x)(3﹣x)≠0,则x=是原方程的解;(2)方程两边同乘(x+1)(x﹣1),得4+x2﹣1=(x﹣1)2,解这个方程,得x=﹣1,检验:当x=﹣1时,(x+1)(x﹣1)=0,x=﹣1是增根,则原方程无解.50.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:x+3=5x,解得:x=,经检验x=是分式方程的根;(2)去分母得:3﹣x+1=x﹣4,解得:x=4,经检验x=4是增根,方程无解.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式方程应用题分类解析
一、营销类应用性问题
例1 某校办工厂将总价值为2000元的甲种原料与总价值为4800元的乙种原料混合后,其平均价比原甲种原料0.5kg 少3元,比乙种原料0.5kg 多1元,问混合后的单价0.5kg 是多少元?
解:设混合后的单价为0.5kg x 元,则甲种原料的单价为0.5kg (3)x +元,混合后的总价值为(2000+4800)元,混合后的重量为x 48002000+斤,甲种原料的重量为32000+x ,乙种原料的重量为14800
-x ,依题意,得:
32000+x +14800-x =x 4800
2000+,解得17x =,
经检验,17x =是原方程的根,所以17x =.
二、工程类应用性问题
例2 某工程由甲、乙两队合做6天完成,厂家需付甲、乙两队共8700元,乙、丙两队合做10天完成,
厂家需付乙、丙两队共9500元,甲、丙两队合做5天完成全部工程的32
,厂家需付甲、丙两队共5500元. ⑴求甲、乙、丙各队单独完成全部工程各需多少天?
⑵若工期要求不超过15天完成全部工程,问由哪个队单独完成此项工程花钱最少?请说明理由. 分析:这是一道联系实际生活的工程应用题,涉及工期和工钱两种未知量.对于工期,一般情况下把整个工作量看成1,设出甲、乙、丙各队完成这项工程所需时间分别为x 天,y 天,z 天,可列出分式方程组. 解:⑴设甲队单独做需x 天完成,乙队单独做需y 天完成,丙队单独做需z 天完成,依题意可得: 116()11110()11125()3x y y z
x z ⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩,
①,
②.③
①×61+②×101+③×51,得x 1+y 1+z 1=51
.④ ④-①×61,得z 1=301
,即z = 30,
④-②×101,得x 1=101
,即x = 10, ④-③×51,得y 1=151,即y = 15.
经检验,x = 10,y = 15,z = 30是原方程组的解.
⑵设甲队做一天厂家需付a 元,乙队做一天厂家需付b 元,丙队做一天厂家需付c 元,根据题意,得 6()870010()95005()5500a b b c c a +=⎧⎪+=⎨⎪+=⎩,,.⇒800650300a b c =⎧⎪=⎨⎪=⎩,,
.
由⑴可知完成此工程不超过工期只有两个队:甲队和乙队.
此工程由甲队单独完成需花钱108000a =元;此工程由乙队单独完成需花钱159750b =元.
所以,由甲队单独完成此工程花钱最少.
评析:在求解时,把x 1,y 1,z 1
分别看成一个整体,就可把分式方程组转化为整式方程组来解.
三、行程中的应用性问题
例3 甲、乙两地相距828km ,一列普通快车与一列直达快车都由甲地开往乙地,直达快车的平均速度是普通快车平均速度的1.5倍.直达快车比普通快车晚出发2h ,比普通快车早4h 到达乙地,求两车的平均速度.
分析:这是一道实际生活中的行程应用题,基本量是路程、速度和时间,基本关系是路程= 速度×时间,应根据题意,找出追击问题总的等量关系,即普通快车走完路程所用的时间与直达快车由甲地到乙地所用时间相等.
解:设普通快车车的平均速度为x km /h ,则直达快车的平均速度为1.5x km /h ,依题意,得
x x 6828-=x 5.1828
,解得46x =,
经检验,46x =是方程的根,且符合题意.
∴46x =,1.569x =,
即普通快车车的平均速度为46km /h ,直达快车的平均速度为69km /h .
列分式方程与列整式方程一样,注意找出应用题中数量间的相等关系,设好未知数,列出方程.不同之处是:所列方程是分式方程,最后进行检验,既要检验其是否为所列方程的解,要要检验是否符合题意,即满足实际意义.
四、轮船顺逆水应用问题
例4 轮船在顺水中航行30千米的时间与在逆水中航行20千米所用的时间相等,已知水流速度为2千米/时,求船在静水中的速度
分析:此题的等量关系很明显:顺水航行30千米的时间= 逆水中航行20千米的时间,即
顺水航行速度千米30=逆水航行速度千米
20.设船在静水中的速度为x 千米/时,又知水流速度,于是顺水航行速度、逆水航行速度可用未知数表示,问题可解决.
解:设船在静水中速度为x 千米/时,则顺水航行速度为(2)x +千米/时,逆水航行速度为(2)x -千米/时,依题意,得
230+x =220
-x ,解得10x =.
经检验,10x =是所列方程的根.
即船在静水中的速度是10千米/时.
五、浓度应用性问题
例5 要在15%的盐水40千克中加入多少盐才能使盐水的浓度变为20%.
分析:浓度问题的基本关系是:溶液溶质
=浓度.此问题中变化前后三个基本量的关系如下表:
设加入盐x 千克.
根据基本关系即可列方程. 解:设应加入盐x 千克,依题意,得x x ++⨯40%1540=10020
.
100(40×15%+x ) = 20(40+x ),解得25x =.
. 经检验,25x =.
是所列方程的根,即加入盐2.5千克. 六、货物运输应用性问题
例6 一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用.已知甲、乙、丙三辆车每次运货物量不变,且甲、乙两车单独运这批货物分别运2a 次、a 次能运完;若甲、丙两车合运相同次数运完这批货物时,甲车
共运了180t ;若乙、丙两车合运相同次数运完这批货物时,乙车共运了270t .
问:⑴乙车每次所运货物量是甲车每次所运货物量的几倍;
⑵现甲、乙、丙合运相同次数把这批货物运完时,货主应付车主运费各多少元?(按每运1t 付运费20元计算)
分析:解题思路应先求出乙车与甲车每次运货量的比,再设出甲车每次运货量是丙车每次运货量的n 倍,列出分式方程.
解:⑴设这批货物共有T t ,甲车每次运x t ,乙车每次运y t .
212a x T a y T x y ===g ∵,∶ ∴∶∶,
即乙车每次运货量是甲车的2倍.
⑵甲车每次运货量是丙车每次运货量的n 倍,乙车每次运货量是丙车每次运货量的2n 倍.
则180+n 180= 270+n 2170,解得
12n =. 所以这批货物总量为180+180×2 = 540 (t).
∵甲车运180t ,丙车运540-180 =360 (t),
∴丙车每次运货量也是甲车的2倍.
∴甲车车主应得运费:540×51
×20 = 2160(元),
乙、丙两车主各得运费:540×52
×20 = 4320(元).
即应付甲车主运费2160元,付乙、丙两车车主运费各4320元.
1、 有两块面积相同的试验田,分别收获蔬菜900千克和1500千克,已知第一块试验田每亩收获蔬菜比第二块
少300千克,求第一块试验田每亩收获蔬菜多少千克?
2、甲、乙两地相距19千米,某人从甲地去乙地,先步行7千米,然后改骑自行车,共用了2小时到达乙地。
已知这个人骑自行车的速度是步行速度的4倍。
求步行的速度和骑自行车的速度。
2、 一个分数的分母比分子大7,如果把此分数的分子加17,分母减4,所得新分数是原分数的倒数,求
原分数。
4、(2007吉林长春课改,5分)张明与李强共同清点一批图书,已知张明清点完200本图书所用的时间与李强清点完300本图书所用的时间相同,且李强平均每分钟比张明多清点10本,求张明平均每分钟清点图书的数量.
5、(2007辽宁沈阳课改,10分)甲、乙两个施工队共同完成某居民小区绿化改造工程,乙队先单独做2天后,再由两队合作10天就能完成全部工程.已知乙队单独完成此项工程所需天数是甲队单独完成此项工程所需天
数的45
,求甲、乙两个施工队单独完成此项工程各需多少天?。