压力容器应力分析典型局部应力

合集下载

压力容器应力分析与安全设计

压力容器应力分析与安全设计
压力容器应力分析与安全设计
钢制压力容器 用材料许用应 力的取值方法
碳素钢或低合金钢>420℃,铬钼合金钢>450℃, 奥氏体不锈钢>550℃时,同时考虑基于高温蠕变极限
或持久强度
的许用应力


压力容器应力分析与安全设计
表9-2 钢制压力容器用材料许用应力的取值方法
材料
许用应力 取下列各值中的最小值/MPa
压力容器应力分析与安全设计
3. 对边缘应力的处理
若用塑性好的材料制造筒体,可减少容器发生破坏的危险 性。 正是由于边缘应力的局部性与自限性,设计中一般不 按局部应力来确定厚度,而是在结构上作局部处理。但对 于脆性材料,必须考虑边缘应力的影响。
压力容器应力分析与安全设计
第二节 压力容器的安全设计
压力容器设计是保障压力容器安全的首要环 节。压力容器设计从安全角度包括强度安全设计和 结构安全设计,两者都离不开正确选材,不同材料 的容器的承载能力与结构可靠程度是不同的。
碳素钢、低合金 钢、铁素体高合
金钢
奥氏体高合金钢
压力容器应力分析与安全设计
4、焊接接头系数——焊缝金属与母材强度的比值,反映容器 强度受削弱的程度。
焊缝缺陷
夹渣、未熔透、 裂纹、气孔等
焊缝热影响区晶粒粗大
薄弱环节
母材强度或塑性降低
影响因素
接头形式 无损检测要求及长度比例
压力容器应力分析与安全设计
焊缝系数的大小与材料的焊接性能、被焊母材的厚度、焊接 结构、坡 口型式、焊接方法、焊缝无损检测长度比例以及焊前 预热处理及焊后热处理等因素有关。目前我国《钢制压力容器》 中的焊缝系数主要依据焊缝结构、坡口型式、无损检测的要求等 确定。焊缝系数的选择见下表。

JB4732钢制压力容器分析设计应力分类过程简介

JB4732钢制压力容器分析设计应力分类过程简介

路径 1-1

MEMBRANE MEM+BEND 73.80 128.7
PEAK 22.63
TOTAL 151.0
MEMBRANE 可能是一次总体薄膜应力也可能是一次局 部薄膜应力。BEND可能是一次弯曲应力也可能属于二 次应力。MEM PLUS BEND根据前2者可能是一次薄膜+ 一次弯曲(1.5kSm),也可能是一次+二次应力(3Sm)。 ANSYS只能把应力根据平均应力、线性化应力和非线性 化应力来区分薄膜应力弯曲应力和峰应力,而不能分 出总体薄膜应力和局部薄膜应力,一次应力还是二次 应力。




[7]陈小辉.基于有限元法压力容器分析设计方法的评议. 硕士论文,2010.
应力强度: 该点最大主应力与最小主应力之差 五类基本的应力强度:
S I , S II , S III , S IV


SV
(1) 一次总体薄膜应力强度 SⅠ (2) 一次局部薄膜应力强度 SⅡ (3) 一次薄膜(总体或局部)加一次弯曲应(PL+Pb) 强度 SⅢ (4) 一次加二次应力( PL+Pb +Q)强度 SⅣ (5) 峰值应力强度 SⅤ(由PL+Pb +Q+F算得)
应力强度限制 :
(1)一次总体薄膜应力强度S1
限制条件:S1≤KSm
K----载荷组合系数, K=1.0~1.25
(2)一次局部薄膜应力强度SⅡ
限制条件:SⅡ ≤1.5KSm
(3)一次薄膜(总体或局部)加一次弯曲应力强度SⅢ
限制条件:S Ⅲ ≤1.5KSm
(4)一次加二次应力强度SⅣ 限制条件:S Ⅳ ≤3Sm


(4)对于线性化后的应力根据标准释义中的相关规定 区分一次总体薄膜应力,一次局部薄膜应力,一次弯 曲应力,二次应力和峰值应力,并分别校核;

2、压力容器应力分析

2、压力容器应力分析
线与平行圆走同一个圆;
r——平行圆半径; R1(经线在B点的曲率半径)——第一曲率半径; R2(与经线在B点处的切线相垂直的平面截交回转曲面得一平面曲线,该
平面曲线在B点的曲率半径)——第二曲率半径,R2=r/sinφ 考虑 壁厚,含纬线的正交圆锥面能截出真实壁厚,含 平行圆的横截面不能截出真实壁厚。
24
b. 球形壳体
压力容器应力分析
任一点M:p=ρgR(1-cosφ)
注:充满液体
25
经推导得:


gR 2
6t
(1 2 cos2 ) 1 cos


gR 2
6t
(5 6 cos 2 cos2 ) 1 cos


gR 2
6t
(5 2 cos2 ) 1 cos
t
gx
, 则
(0 gx)R
t
注:容器上方是封闭的
23
p0
t
R
σφ
σφ
径向朝外的p0相互抵消,产生σθ而与σφ无关,朝下的p0由筒底承担, 筒底将力又传给支座和基础,朝上的p0与σφ相平衡:
2πRtσφ=πR2p0


p0R 2t
若容器上方是开口的,或无气体压力(p0=0)时,σφ=0
薄壁圆筒 厚壁圆筒
Do/Di≤1.1 Do/Di>1.1
压力容器应力分析 t——壳体厚度 R——中间面曲率半径
Do——圆筒外径 Di——圆筒内径
3
2.1.1 薄壁圆筒的应力
压力容器应力分析
σφ ——经向应力(轴向应力);σθ——环向应力(周向应力)σr— —径向应力,很小、忽略
4
压力容器应力分析

第2章 压力容器应力分析

第2章 压力容器应力分析

郑州大学化工与能源学院
过程设备设计
2.2.5 回转薄壳的不连续分析
图2-12 组合壳
图2-13 连接边缘的变形
郑州大学化工与能源学院
过程设备设计
2.2.5 回转薄壳的不连续分析
w1 w2
1 2
Q M 0 w1p w1 0 w1M 0 w2p wQ2 w2 0 Q M 1p 1Q 1M 2p 2 2
图2-11 储存液体的球壳
郑州大学化工与能源学院
过程设备设计
2.2.4 无力矩理论的应用
三、无力矩理论的 应用条件 为保证回转薄壳处于薄膜状态,壳体形状、 加载方式及支承一般应满足如下条件: 1、几何形状、载荷、材料连续; 2、壳体的边界处不受横向剪力、弯矩和扭 矩作用。 3、壳体的边界处的约束沿经线的切线方向, 不得限制边界处的扭角与挠度。
第2章 压力容器应力分析
第2.2节
回转薄壳应力分析
过程设备设计
第2-2节 回转薄壳应力分析
压力容器的各种壳体,多属于回转薄壳。 壳体—以两个曲面为界,且曲面之间的距 离远比其他方向尺寸小得多的构件。 壳体的厚度—两曲面之间的距离,用“t或 δ”表示。 壳体的中面—与壳体内、外两个曲面等距 离的曲面。
过程设备设计
第2章
压力容器应力分析
第2章 压力容器应力分析
第2.1节 载荷分析
过程设备设计
第2-1节 载荷分析
载荷:能够在压力容器上产生应力、 应变的 因素,如:压力、风载荷、地震载荷等。 2.1.1 载荷分类:压力载荷和非压力载荷。 1、压力载荷:它是压力容器承受的基本载荷。 一般采用表压。 压力容器中的压力载荷主要来源有: ①泵或压缩机; ②液体膨胀或汽化; ③饱和蒸汽压。 (另外,液体重量产生液体静压力) 压力容器上的压力,可能是内压、外压或两 者都有。

第二章压力容器应力分析

第二章压力容器应力分析

《过程设备设计基础》教案2—压力容器应力分析课程名称:过程设备设计基础专业:过程装备与控制工程任课教师:第2章 压力容器应力分析§2-1 回转薄壳应力分析一、回转薄壳的概念薄壳:(t/R )≤0.1 R----中间面曲率半径 薄壁圆筒:(D 0/D i )max ≤1.1~1.2 二、薄壁圆筒的应力图2-1、图2-2 材料力学的“截面法”三、回转薄壳的无力矩理论1、回转薄壳的几何要素(1)回转曲面、回转壳体、中间面、壳体厚度 * 对于薄壳,可用中间面表示壳体的几何特性。

tpD td pR tpD Dt D p i 22sin 24422====⨯⎰θπθϕϕσσαασπσπ(2)母线、经线、法线、纬线、平行圆(3)第一曲率半径R1、第二曲率半径R2、平行圆半径r(4)周向坐标和经向坐标2、无力矩理论和有力矩理论(1)轴对称问题轴对称几何形状----回转壳体载荷----气压或液压应力和变形----对称于回转轴(2)无力矩理论和有力矩理论a、外力(载荷)----主要指沿壳体表面连续分布的、垂直于壳体表面的压力,如气压、液压等。

P Z= P Z(φ)b、内力薄膜内力----Nφ、Nθ(沿壳体厚度均匀分布)弯曲内力---- Qφ、Mφ、Mθ(沿壳体厚度非均匀分布)c、无力矩理论和有力矩理论有力矩理论(弯曲理论)----考虑上述全部内力无力矩理论(薄膜理论)----略去弯曲内力,只考虑薄膜内力●在壳体很薄,形状和载荷连续的情况下,弯曲应力和薄膜应力相比很小,可以忽略,即可采用无力矩理论。

●无力矩理论是一种近似理论,采用无力矩理论可是壳地应力分析大为简化,薄壁容器的应力分析和计算均以无力矩理论为基础。

在无力矩状态下,应力沿厚度均匀分布,壳体材料强度可以得到合理的利用,是最理想的应力状态。

(3)无力矩理论的基本方程a、无力矩理论的基本假设小位移假设----壳体受载后,壳体中各点的位移远小于壁厚。

考虑变形后的平衡状态时壳用变形前的尺寸代替变形后的尺寸直法线假设----变形前垂直于中面的直线变形后仍为直线,且垂直于变形后的中面。

压力管道局部应力分析

压力管道局部应力分析

I.
采用有限元法对特殊管件进行分析,得到应力集中系数;
II. 应力增大系数等于应力集中系数的一半。
应力增大系数应用的注意事项!
根据GB 50316、ASME B31.1和ASME B31.3的规定,计算二次应力时应 采用应力增大系数。这是由于采用应力增大系数的目的,是考虑局部应力 集中的影响,而局部应力集中主要对管件的疲劳破坏产生作用。因为局部 的高应力循环,将使材料产生裂纹并不断扩展,最终导致破坏。校核二次 应力的目的正是为了防止疲劳破坏,因此在计算二次应力时必须考虑应力 集中的影响,应该采用应力增大系数。另外,根据ASME B31.3的标准释 义,计算一次应力可不考虑应力增大系数。这主要是因为校核一次应力是 为了控制管道的整体破坏,局部的应力集中对管道的整体破坏影响不大。 另外一次应力采用弹性分析方法,认为某一点达到屈服管道失效,已经非 常保守,如果在考虑应力集中的影响将导致过分保守。
l 为了能够表示出WRC107、297计算的误差,使用有 限元分析软件(NozzlePro/FEpipe)来进行对比计算。
l 有限元法严格按照理论分析方法,结合ASME Ⅷ-2 中的应力分类来对特定结构进行应力计算,当满足 理想化假设条件时,其结果与真实应力十分接近, 并且有限元分析法不受任何几何条件的限制,计算 精度与网格划分的疏密程度相关。
可以提高至0.6
PPT文档演模板
压力管道局部应力分析
WRC107应用范围及限制条件
PPT文档演模板
压力管道局部应力分析
WRC107应用范围及限制条件
PPT文档演模板
压力管道局部应力分析
WRC297应用范围及限制条件
l WRC297继承了WRC107的一些限制条件,另外,当连接区 域的接管壁厚小于补强壁厚时,其局部应力计算值可能过于 保守

压力容器应力分析

压力容器应力分析

载荷
2.1.1 载荷
压力(包括内压、外压和液体静压力)
非压力载荷 载荷
重力载荷 风载荷 地震载荷 运输载荷 波动载荷 管系载荷 支座反力 吊装力
整体载荷 局部载荷
压力容器
应力、应变的变化
上述载荷中,有的是大小和/或方向随时间变化的交 变载荷,有的是大小和方向基本上不随时间变化的静载荷
压力容器交变载荷的典型实例:
分析载荷作用下压力容器的应力和变形, 是压力容器设计的重要理论基础。
●2.1 载荷分析
2.1.1 载荷 2.1.2 载荷工 况
●2.2 回转薄壳应力分析
●2.3 厚壁圆筒应力分析 ●2.4 平板应力分析 ●2.5 壳体的稳定性分析 ●2.6 典型局部应力
2.2.1 薄壳圆筒的应力 2.2.2 回转薄壳的无力矩理论 2.2.3 无力矩理论的基本方程 2.2.4 无力矩理论的应用 2.2.5 回转薄壳的不连续分析
a.正常操作工况:
容器正常操作时的载荷包括:设计压力、液体静压力、重力 载荷(包括隔热材料、衬里、内件、物料、平台、梯子、管 系及支承在容器上的其他设备重量)、风载荷和地震载荷及 其他操作时容器所承受的载荷。
b. 特殊载荷工况
特殊载荷工况包括压力试验、开停工及检修等工况。 制造完工的容器在制造厂进行压力试验时,载荷一般包括试 验压力、容器自身的重量。
有力矩理论或 弯曲理论 (静不定)
无力矩理论所讨论的问题都是围绕着中面进行的。 因壁很薄,沿壁厚方向的应力与其它应力相比很小, 其它应力不随厚度而变,因此中面上的应力和变形可 以代表薄壳的应力和变形。
二、无力矩理论与有力矩理论 平行圆
j
j
jq
Nq
q
qj

压力容器局部应力的分析计算与补强措施

压力容器局部应力的分析计算与补强措施

百度文库- 让每个人平等地提升自我东北石油大学课程综合实践(二)课程过程设备设计题目典型局部应力学院机械科学与工程学院专业班级装备12-2班学生姓名李早东学生学号指导教师林玉娟2014年5月11日目录第一章局部应力 (1)1.局部应力的计算方法与概述 (1)WRC方法 (1)介质压力引起的应力计算 (3)强度评定 (3)欧盟的压力容器标准EN13445 (4)有限元法 (4)第二章补强分析 (5)2.降低局部应力的方法与措施 (5)直立容器支承式支座处的强度校核 (5)支座处封头的局部载荷 (5)支座处封头截面上的应力 (6)支座处封头的强度校核条件 (9)补强措施 (10)第三章结束语 (12)第一章局部应力1.局部应力的计算方法与概述压力容器除了承受介质压力载荷外,常常还要受到附件传来的其他外载荷。

通过支座、托架、吊耳等附件传来的载荷,主要是设备的自重及其内部物料等静重;通过接管传来的载荷主要是管道和管系反力、重量以及由于受热膨胀引起的推力和力矩。

这些载荷对壳体的影响虽仅限于附件与壳体连接处附近的局部区域,但常会产生较高的局部应力。

除外载荷产生的局部应力外,介质压力载荷还将在附件与壳体连接区产生另外一些局部应力,如局部薄膜应力、弯曲应力,以及截面尺寸突变的转角处的应力集中。

外载荷应力和介质压力载荷应力的联合作用将会使附件和壳体连接区域成为压力容器发生破坏的主要根源。

因此,计算外载荷作用下附件和壳体中的局部应力就显得十分重要,但是由于问题的非对称性,对局部应力作完整的理论计算过于复杂,对于实际设计往往不便于应用。

目前,对于压力容器壳体上由接管外载荷引起的局部应力的计算,主要有以Bijlaard理论为基础的两种方法:一是美国焊接研究协会(WRC)第107公报和有关补充规定WRC第297公报介绍的方法;二是英国压力容器设计标准BS550附录G建议的方法。

随着压力容器向高参数化发展和分析设计方法的广泛采用,要求进行局部应力计算和采用分析设计法进行强度评定的压力容器会越来越多,故本文在对WRC107方法理解基础上,对一高压反应器底封头上由接管载荷引起的局部应力作了详细计算,并按分析设计原理对接管和封头连接区的应力进行了强度评定,以便对工程中同类结构的局部应力计算、强度评定及压力容器分析设计方法的应用提供一定的参考。

压力容器的局部应力应变寿命分析

压力容器的局部应力应变寿命分析

第5 期
金维国 压 力容器的局部应力应变寿命 分析
. 5一 2
式 中:^ 理论应 力集中系数; , 厂 环强度 系 数 ;/ 循环 应变硬化 系数 ;E 弹性模 量; △ 0一 7 L 一 局部 应力 历程 ; A e 一局 部应 变历 程 。
式 中 :血 一 每 个载 荷 块 中的第 i 级应 力 的循 环 次 数 ;M 一 第i 级应 力下 的疲 劳 寿命 ;卜 应力 水平 级数。
Байду номын сангаас
3方 程 求 解
由式(X ) ( = 0 Bo E e 1 2 ̄f 1: + _ o) l 1 ( ). 4 式中 E 1 +1 A f S , 、 △
. .
6举 例
内径 为 1 0 0 6 0 mm,壁 厚 6 0 m 的 圆 筒 =1 r a 形 压 力 容 器 ,材 料 为 3 C Mn i 2 0 r SNiA,其E= 2×
2 一 ■ 论文广场 4

2 O 第1 石1 化 3备 0 与 工卷 油年 设
压力容器的局部应力应变寿命分析
金维 国
( 宁石油化工大学机械工程学院 , 辽宁 抚顺 1 3 0 ) 辽 01 1
[ 摘 要] 基 于局部应 力一 变法理论 ,阐述 了疲劳寿命估算的方法和思路 ,研究 了动态数据采样 与处理 方法,以实例计算 应
b=. 1 0. 026 Pa, c 0. M =一 781 6,
7 = /t

=一 2647. 69M Pa,
4采 用 雨流 计 数 法 进 行 载 荷 谱 循环 计 数
由于产 生疲劳损 伤 的主要 因素是 循环次 数 、应 力 幅值及 幅值等 , 因此必须 将 以上计算 出的应 力一 时 间历程简 化为 一系列 不 同大小应 力幅值 的全 循环 或 半 循环 载 荷 ,这 一 简 化 的 过 程称 为 “ 数 法 ” 计 ( onig to ) C u t h d,一般采用简化 雨流计数 法 。 n Me 在 进 行 雨 流 计 数 时 , 取 时 间 为 纵 坐 标 , 垂 直 向下 ,载 荷一 时 间 历程 形 如宝 塔 屋 顶 。雨 滴 以 峰 、谷 为起 点 , 向下 流动 。

压力容器管口局部应力校核方法对比分析

压力容器管口局部应力校核方法对比分析





图 1 参数化分析模型


图 2 开口接管外载荷方向 (SH/T3074)
收稿日期:20230720 作者简介:胡峰源 (1995-),男,中级工程师,研究方向为压力管道应力分析。Email:277174307@qqcom
2024,34(2)
胡峰源等 压力容器管口局部应力校核方法对比分析
FG/N -5932 11238 12966 10800 200.6% 3482 6920 7032 7200 97.7%
FL/N 6496 10233 11003 14400 76.4% -882 7200 -8650 9600 90.1%
MT/N·m 8864 23091 -7820 12960
入开孔外接管和压力容器自身的外径、壁厚、弹性
模量、泊松比和腐蚀余量等参数,设置真实存在的
操作、设计和持续工况以及可能发生的地震、风载
等偶然工况,如图 3所示。根据开孔外接管荷载计
算出一次薄膜应力和二次应力,根据总应力和合成 应力可计算出其他应力强度,分析开孔外接管处的 局部应力是否小于许用应力。
图 3 WRC297柔性管口参数设置
荷载 持续工况 操作工况 偶然工况 许用荷载 90.9% 持续工况 操作工况 偶然工况 许用荷载 最大比值
表 2 不同工况下 N1、N2管口校核结果 (WRC107模拟)
FA/N
FG/N
FL/N
MT/N·m
MG/N·m
1933
-2734
896
803
-1311
9097
12043
8430
24015
4022
20
CHEMICALENGINEERING DESIGN

第二章 压力容器应力分析2.1-2.2

第二章 压力容器应力分析2.1-2.2
39
2.2 回转薄壳应力分析
2.2 回转薄壳应力分析
2.2.1 薄壁圆筒的应力 2.2.2 回转薄壳的无力矩理论 2.2.3 无力矩理论的基本方程 2.2.4 无力矩理论的应用 2.2.5 回转薄壳的不连续分析
过程设备设计
40
2.2 回转薄壳应力分析
2.2.3 无力矩理论的基本方程
过程设备设计
求解思路
制造安装 正常操作
开停工 压力试验
检修 等等
正常操作工况 特殊载荷工况 意外载荷工况
根据不同载荷工况,分别计算载荷
21
2.1 载荷分析
过程设备设计
1、正常操作工况
载荷
设计压力 液体静压力 重力载荷 风载荷 地震载荷 其他载荷
隔热材料、衬里、内件、物 料、平台、梯子、管系、支 承在容器上的其他设备重量 等
绝对压力
以绝对真空为 基准测得的压 力。 通常用于过程 工艺计算。
表压
以大气压为基准 测得的压力。 压力容器机械设 计中,一般采用 表压。
8
2.1 载荷分析
压力容器中的压力来源
过程设备设计
1
流体经泵或压 缩机,通过与 容器相连接的 管道,输入容 器内而产生压 力,如氨合成 塔、尿素储罐 等。
2
3
加热盛装液体 的密闭容器, 液体膨胀或汽 化后使容器内 压力升高,如 人造水晶釜。
30
2.2 回转薄壳应力分析
过程设备设计
B点受力分析
B点
内压P
轴向:经向应力或轴向应力σφ 圆周的切线方向:周向应力或环向应力σθ 壁厚方向:径向应力σr
σθ 、σφ >>σr 三向应力状态
二向应力状态
31
2.2 回转薄壳应力分析

《压力容器应力分析》课件

《压力容器应力分析》课件

CHAPTER
06
压力容器应力分析的实践应用
压力容器设计中的应力分析
总结词
在压力容器设计中,应力分析是关键环节,用于评估容器在不同工况下的受力情况,确保容器的安全性和稳定性 。
详细描述
在压力容器设计阶段,应力分析的目的是确定容器在不同压力、温度和介质等工况下的应力分布,以及由此产生 的变形和疲劳损伤。通过使用有限元分析等数值方法,可以预测容器的应力水平和可能出现的应力集中区域,从 而优化设计,避免因过度应力而导致的容器破裂或失效。
CHAPTER
05
压力容器应力分析的结论与展 望
结论
01
压力容器应力分析是确保压力容器安 全运行的重要手段,通过对压力容器 的应力分析,可以评估容器的安全性 能和可靠性,预防因应力集中、疲劳 损伤等问题引起的容器破裂和泄漏等 事故。
02
压力容器的应力分析方法包括有限元 分析、有限差分法、边界元法等数值 计算方法和实验方法。这些方法可以 模拟和预测压力容器的应力分布和强 度,为容器的设计、制造、检验和使 用提供科学依据。
目的
确保压力容器的安全运行,防止因过 大的应力导致容器破裂或失效,提高 容器的使用寿命和可靠性。
应力分类
一次应力
01
由外部载荷引起的应力,如压力、重力和惯性力等。
二次应力
02
由容器内部压力引起的应力,通常是由于容器结构不连续或约
束条件引起的。
峰值应力
03
由于结构局部不连续或温度梯度引起的应力,通常在容器的高
在此添加您的文本16字
总结词:分析结果
在此添加您的文本16字
总结词:应用实例
在此添加您的文本16字
详细描述:展示简单压力容器应力分析的结果,包括应力 分布、应力强度和安全系数的计算等。

2压力容器应力分析

2压力容器应力分析

2.2.1 薄壁圆筒的应力
A t

B 点 受力 分析




A


Di

Di D Do
图2-1 薄壁圆筒在内压作用下的应力 B点
轴向:经向应力或轴向应力σ
φ θ
内压P
圆周的切线方向:周向应力或环向应力σ 壁厚方向:径向应力σ r
σ
三向应力状态
θ 、 φ
σ >>σ r
二向应力状态
θ
因而薄壳圆筒B点受力简化成二向应力σ φ 和σ
2、压力容器应力分析
CHAPTER Ⅱ
STRESS ANALYSIS OF
PRESSURE VESSELS
河北科技大学装控系
1
压力容器受到介质压力、支座反力等 多种载荷的作用。 确定全寿命周期内压力容器所受的各种 载荷,是正确设计压力容器的前提。 分析载荷作用下压力容器的应力和变形, 是压力容器设计的重要理论基础。

p R1 R2 t

(2-3)
■ 微元平衡方程,又称拉普拉斯方程。
三、区域平衡方程(图2-6)
图2-6 部分容器静力平衡
环带所受压力在0-0′轴方向的分量:
d V 2 r p d l c o s
压力在0-0′轴方向产生的合力:
r m 0
dr cos dl
V 2 prdr
2.2 回转薄壳应力分析 2.2.4 无力矩理论的应用
◇ 分析几种工程中典型回转薄壳的薄膜应力: 球形壳体 承受气体内压的回转薄壳 薄壁圆筒 锥形壳体 椭球形壳体 圆筒形壳体 储存液体的回转薄壳
球形壳体
2.2.4 无力矩理论的应用
一、承受气体内压的回转薄壳

压力容器应力分析

压力容器应力分析





(2-69)
2 压力容器应力分析
2.3 平板应力分析
可以看出,最大弯矩和相应的最大应力均在板中心处r=0处 , 2 pR ax M M 3 r m ax m 16
2 3 3 pR ax r m ax m 2 8 t
Te——锥壳当量厚度 te t cos
适用于:
60o
o 若 60 按平板计算,平板直径取锥壳最大直径
2 压力容器应力分析
注意: 除受外压作用外,只要壳体在较大区域内存在压缩薄膜应 2.4 壳体稳定性分析 力,也有可能产生失稳。 例如:塔受风载时,迎风侧产生拉应力,而背风侧产生压 缩应力,当压缩应力达到临界值时,塔就丧失稳定性。 受内压的标准椭圆形封头,在赤道处 稳。 即:不仅受外压的壳体可能失稳,受内压的壳体也可能 失稳。 为压应力,可能失
Et R
R 500 t
修正系数C=0.25
Et cr 0.25 R
(2-101)
2 压力容器应力分析
2.4 壳体稳定性分析
b、联合载荷作用下圆筒的失稳 一般先确定单一载荷作用下的失效应力,计算 单一载荷引起的应力和相应的失效应力之比,再求 出所有比值之和。 若比值的和<1,则筒体不会失稳 若比值的和≥1,则筒体会失稳
2 压力容器应力分析
2.4 壳体稳定性分析
p
p
p a
轴向
周向
b
周向 轴
c
本节讨论:受周向均匀外压薄壁回转壳体的弹性失稳问题
2 压力容器应力分析
2.4 壳体稳定性分析
二、临界压力 1、临界压力
壳体失稳时所承受的相应压力,称为临界压力, 用pcr表示。 外载荷达到某一临界值,发生径向挠曲,并 迅速增加,沿周向出现压扁或波纹。 见表2-5

压力容器的应力分析

压力容器的应力分析

按应用情况
反应压力容器(R)完成物理、化学反应,如反应器、反应釜、分解锅、聚合釜、变换炉等; 换热压力容器(E)热量交换,如热交换器、管壳式余热锅炉、冷却器、冷凝器、蒸发器等; 分离压力容器(S)流体压力平衡缓冲和气体净化分离,如分离器、过滤器、缓冲器、吸收塔、干燥塔等; 储存压力容器:(C,球罐为B)储存、盛装气体、液体、液化气体等介质,如各种形式的贮罐、贮槽、高位槽、计量槽、槽车等。
图片
压力容器的结构图
零部件的二个基本参数:公称直径DN
对于用钢板卷制的容器筒体而言,其公称直径的数值等于筒体内径。 当容器筒体直径较小时,可直接采用无缝钢管制作时,这时容器的公称直径等于钢管的外径。 管子的公称直径(通径)既不是管子的内径也不是管子的外径,而是一个略小于外径的数值。 见P181 表14-1压力容器的公称直径DN
球形壳体
球壳R1=R2=D/2,得: 直径与内压相同,球壳内应力仅是圆筒形壳体环向应力的一半,即球形壳体的厚度仅需圆筒容器厚度的一半。 当容器容积相同时,球表面积最小,故大型贮罐制成球形较为经济。
圆锥形壳体
圆锥形壳半锥角为a,A点处半径为r,厚度为d,则在A点处:
圆锥形壳体
锥形壳体环向应力是经向应力两倍,随半锥角a的增大而增大;a角要选择合适,不宜太大。 在锥形壳体大端r=R时,应力最大,在锥顶处,应力为零。因此,一般在锥顶开孔。
工程上常用的应力分析方法:
有力矩理沦:不仅承受拉应力,还承受弯矩和弯曲应力; 无力矩理沦:只承受拉压应力,不能承受力矩的作用 无力矩理沦有近似性和局限性,其误差在工程计算允许的范围内,计算方法大大简化,该方法常被采用。 应用条件:
圆筒的应力计算
作用力: 由内压作用在端盖上产生轴向拉应力 ,称为经向应力或轴向应力; 由内压作用使圆筒向外均匀膨胀,在圆周切线方向所产生的拉力称为环形应力或周向应力,用表示 常为薄壁容器,筒壁较薄, 可认为 是均匀分布的,径向应力 可忽略不计

压力容器应力分析_典型局部应力

压力容器应力分析_典型局部应力

(1)什么是局部载荷
2.5.1 概述
容器除了受内
压或外压外,在其
制造、安装和使用
过程中还受到许多
通过附件传来的其
他载荷。

这些附件
包括支座、托架、
吊耳和接管等。


些载荷称为局部载
荷。

(2)局部载荷的特点
局部载荷对壳件的影响通常仅限于附件与壳体连接处附近的局部地区,局部载荷将在壳体相接管等附件中产生较高的局部应力。

(3)局部载荷的计算方法
理论计算过于繁复,解决的范围较窄,而且结果与实际相差较大。

现在通常采用数值解与实验结合的方式,归纳整理出经验公式和大量的工程分析用图表。

本节仅以承受内压壳体与接管连接处局部应力的分析为例,介绍局部引力的求解方法。

2.5.2 内压壳体与接管连接处的局部应力
目前,工程上对局部应力的分析,主要采用的方法是应力集中系数法。

它是结合了理论分析、数值计算、实验测试等方法,归纳总结而成。

以下举二个实例来分析一下应力集中系数法的具体使用。

这二个实例是:①球形封头开孔接管应力分析;②圆柱壳开孔接管应力分析。

2.5 典型局部应力 2.5.3 降低局部应力的措施
2.5.3 降低局部应力的措施
(1)合理的结构设计
①减少两连接件的刚度差;②尽量采用圆弧过渡;
③局部区域补强;④选择合适的开孔方位。

(2)减少附件传递的局部载荷
(3)尽量减少结构中的缺陷。

JB4732钢制压力容器分析设计应力分类过程简介

JB4732钢制压力容器分析设计应力分类过程简介

应力强度限制 :
(1)一次总体薄膜应力强度S1
限制条件:S1≤KSm
K----载荷组合系数, K=1.0~1.25
(2)一次局部薄膜应力强度SⅡ
限制条件:SⅡ ≤1.5KSm
(3)一次薄膜(总体或局部)加一次弯曲应力强度SⅢ
限制条件:S Ⅲ ≤1.5KSm
(4)一次加二次应力强度SⅣ 限制条件:S Ⅳ ≤3Sm
在结构不连续区产生的薄膜应力
(二)二次应力 Q
——相邻部件的约束或结构的自身约束所引起 的正应力或切应力 基本特征:自限性
① 总体结构不连续处的弯曲应力 ② 总体热应力
(三)峰值应力 F
——由局部结构不连续和局部热应力的影响而叠 加到一次加二次应力之上的应力增量
应力强度计算 :
应力强度: 该点最大主应力与最小主应力之差 五类基本的应力强度:
校核线 0-0 :

校核线0-0通过筒体最大应力处,方向沿壁厚方向,远 离结构不连续处。
圆筒壳体薄膜应力理论解: Pm=PR/S =146.7MPa 与有限元结果相对误差为2.7% 球壳薄膜应力理论解: Pm=PR/2S =122.1MPa 与有限元结果相对误差为0.2%
路径 0-0 MEMBRANE 150.6 Pm=SⅡ ≤KSm MEM+BEND 157.8 Pm+Pb+Q=SⅣ ≤3Sm TOTAL 157.9 PL+Pb +Q+F=SⅤ ≤Sa




[7]陈小辉.基于有限元法压力容器分析设计方法的评议. 硕士论文,2010.
(5)峰值应力强度SⅤ 限制条件:S Ⅴ ≤Sa
Sa----由疲劳设计曲线得到的应力幅
二、应力分类法具体操作
应力分类的原则与实施:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Rodabaugh 和Decock 公式,分别具有各自的 使用范围。
压力容器应力分析典型局部应力
三、数值计算
应力数值计算的方法比较多,如差分法、变分法、有限单 元法和边界元法等。但目前使用最广泛的是有限单元法。
有限单元法的基本思路: 将连续体离散为有限个单元的组合体,以单元结点的参
量为基本未知量,单元内的相应参量用单元结点上的数值插 值,将一个连续体的无限自由度问题变成有限自由度的问题, 再利用整体分析求出未知量。显然,随着单元数量的增加, 解的近似程度将不断改进,如单元满足收敛要求,近似解也 最终收敛于精确解。
为边缘效应的衰减长度。故开孔系数 表示开孔 大小和壳体局部应力衰减长度的比值。
压力容器应力分析典型局部应力
随着开孔系数的增大而增大
Kt 随壁厚比t/T的增大而减小
内伸式接管的应力集中系数较小 即:增大接管和壳体的壁厚,减小接管半径,
有利于降低应力集中系数
压力容器应力分析典型局部应力
球壳带接管的应力集 中系数曲线适用范围:
压力容器应力分析典型局部应力
二、减少附件传递的局部载荷
如果对与壳体相连的附件采取一定的措施,就可以减少 附件所传递的局部载荷对壳体的影响,从而降低局部应力。 例如:
● 对管道、阀门等设备附件设置支撑或支架,可降低这些附
件的重量对壳体的影响;
● 对接管等附件加设热补偿元件可降低因热胀冷缩所产生的
热载荷。
压力容器应力分析典型局部应力
一、应力集中系数法
1、应力集中系数 ——受内压壳体与接管连接处的最大弹性应力 ——该壳体不开孔时的环向薄膜应力
通过理论计算,数据整理,得到一系列曲线。通过应力集中 系数曲线图查Kt,就可得到最大应力
压力容器应力分析典型局部应力
应力集中系数曲线
图中 是开孔系数, r :接管平均半径, R:壳体平均半径, T:壳体壁厚。
温度变化引起的载荷等
附 在压力作用下,压力容器 加 材料或结构不连续处,在 应 局部区域产生的附加应力, 力 如截面尺寸、几何形状突
变的区域、两种不同材料 的连接处等
压力容器应力分析典型局部应力
二、局部应力的危害性 材料韧性
局部应力的危害性与 载荷形式
大小 载荷作用处的 局部结构形状 和尺寸
有关
危害性
压力容器应力分析典型局部应力
(3)局部区域补强: 在有局部载荷作用的壳体处,适当给以补强。 例如,壳体与吊耳的连接处、卧式容器与鞍式支座连接处,
在壳体与附件之间加一块垫板,可以有效地降低局部应力。 (4)选择合适的开孔方位:
根据载荷的情况,选择适当的开孔位置、方向和形状。 如椭圆孔的长轴应与开孔处的最大应力方向平行, 孔尽量开在原来应力水平比较低的部位,以降低局部应力。
压力容器应力分析典型局部应力
演讲完毕,谢谢听讲!
再见,see you again
2020/11/14
压力容器应力分析典型局部应力
过大的局部应力使结构处于不安定状态, 在交变载荷下,易产生裂纹,可能导致 疲劳失效。
压力容器应力分析典型局部应力
2.6.2 受内压壳体与接管连接处的局部应力
由于几何形状及尺寸的突变,受内压壳体与接管连接处附 近的局部范围内会产生较高的不连续应力。
理论分析方法 工程常用方法
薄膜解 弯曲解 应力集中系数法 数值解法 实验测试法 经验公式
径向应力 法向应力 (见图2-49)
压力容器应力分析典型局部应力应力指数————所考虑的各应力分量与壳体在无开孔接 管时
的环向应力之比。 应力指数法已列入中国、美国、日本等国家压力容器分析 设计标准。
见《钢制压力容器——分析设计标准》P159
压力容器应力分析典型局部应力
二、经验公式
综合试验研究、数值计算、理论分析,用无因次 参量表示应力集中系数
一、合理的结构设计
(1)减少两连接件的刚度差
(2)尽量采用圆弧过渡
(3)局部区域补强
(4)选择合适的开孔方位
压力容器应力分析典型局部应力
(1)减少两连接件的刚度差 两连接件变形不协调会引起边缘应力。 壳体的刚度与材料的弹性模量、曲率半径、壁厚等因素有关。 设法减少两连件的刚度差,是降低边缘应力的有效措施之一。 (2)尽量采用圆弧过渡 几何形状或尺寸的突然改变是产生应力集中的主要原因之一。 在结构不连续处应尽可能采用圆弧或经形状优化的特殊曲线过 渡。
压力容器应力分析典型 局部应力
2020/11/14
压力容器应力分析典型局部应力
主要内容 2.6.1 概述 2.6.2 受内压壳体与接管连接处的局部应力 2.6.3 降低局部应力的措施
压力容器应力分析典型局部应力
2.6.1 概述
一、局部应力的产生 局部应力的产生
设备的自重、
局 物料的重量、 部 载 管道及附件的重量、 荷 支座的约束反力、
压力容器应力分析典型局部应力
压力容器应力分析典型局部应力
椭圆形封头上接管连接处的局部应力 只要将椭圆曲率半径折算成球的半径 (当量半径),就可采用球壳上接管连 接处局部应力的计算方法。
压力容器应力分析典型局部应力
2、应力指数法 美国压力容器研究委员会提出
与应力集中系数曲线不同的是: 考虑了连接处的三个应力: 经向应力
压力容器应力分析典型局部应力
四、应力测试
用实验应力分析的方法直接测量计算部位的应力,是验 证计算结果可靠性的有效方法。
常用实验应力分析方法 1 电测法 2 光弹性法 测试机理及 特点和注意事项参见教材P82
压力容器应力分析典型局部应力
2.6.3 降低局部应力的措施
方法
合理的结构设计 减少附件传递的局部载荷 尽量减少结构中的缺陷
相关文档
最新文档