清华大学遗传算法PPT——cn06-basicNetDesign-v1.00
合集下载
清华大学遗传算法PPT
2.1 Basic Concept of dc-MST 2.2 Genetic Algorithms Approach 2.3 GA procedure for dc-MST 2.4 Numerical Experiments
3. Degree-based Permutation GA for dc-MST
4.1 Basic Concept of lc-MST 4.2 Genetic Algorithms Approach 4.3 GA procedure for lc-MST 4.4 Numerical Experiments
Soft Computing Lab.
WASEDA UNIVERSITY , IPS
Stochastic MST
Ishii, H., H. Shiode, & T. Nishida: Stochastic spanning tree problem, Discrete Applied Mathematics, vol.3, pp.263-273,1981.
Quadratic MST
Leaf-constrained MST
Fernandes, L. M. & L. Gouveia: Minimal spanning trees with a constraint on the number of leaves, European J. of Operational Research, vol.104, pp.250-261, 1998. Soft Computing Lab. WASEDA UNIVERSITY , IPS 7
3.1 Concept on Degree-based Permutation GA 3.2 Genetic Algorithms Approach 3.3 Degree-based Permutation GA for dc-MST 3.4 Numerical Experiments
3. Degree-based Permutation GA for dc-MST
4.1 Basic Concept of lc-MST 4.2 Genetic Algorithms Approach 4.3 GA procedure for lc-MST 4.4 Numerical Experiments
Soft Computing Lab.
WASEDA UNIVERSITY , IPS
Stochastic MST
Ishii, H., H. Shiode, & T. Nishida: Stochastic spanning tree problem, Discrete Applied Mathematics, vol.3, pp.263-273,1981.
Quadratic MST
Leaf-constrained MST
Fernandes, L. M. & L. Gouveia: Minimal spanning trees with a constraint on the number of leaves, European J. of Operational Research, vol.104, pp.250-261, 1998. Soft Computing Lab. WASEDA UNIVERSITY , IPS 7
3.1 Concept on Degree-based Permutation GA 3.2 Genetic Algorithms Approach 3.3 Degree-based Permutation GA for dc-MST 3.4 Numerical Experiments
【正式版】遗传算法基本原理PPT
k=1,2,…,K; l=1,2,…,L; K=2L
akl0,1
表示精度为x(vu)/2 (L1)。
将个体又从位串空间转换到问题空间的译码函数 :{0,1}L[u,v]
的公式定义为:
x k (a k1 ,a k2 , ,a k)L u 2 v L u 1 (jL 1a k2 jL j)
故现在排序选择概率为
p s(a j) n 1 ( ( n 1 )(j 1 )),j 1 ,2 , ,n
4.1.6 遗传算子
一、选择(selection)算子
4、联赛选择(tournament selection) • 基本思想:从当前群体中随机选择一定数量的个体(放回或者不
放回),将其中适应值最大的个体放入配对池中。反复执行这一 过程,直到配对池中的个体数量达到设定的值。
4.1 遗传算法的基本描述
对于n维连续函数 f( x ) x ,( x 1 ,x 2 , ,x n ) x i ,[ u i,v i] i ( 1 , 2 , ,n ) ,
各 成总维长变度量为的L二进n制li 编的码二位进制串编的码长位度串为。li,那相应么的x的G编A编码码从空左间到为右:依次构
4.1.6 Байду номын сангаас传算子
二、交叉(Crossover)算子
1、一致交叉
一致交叉即染色体位串上的每一位按相同概率进行随机均匀交叉。
一致交叉算子生成的新个体位:
s'1a'1a 1'1 2 a'1L s'2a'2a 1'2 2 a'2L
操作描述如下:
O(pc, x) :
a'1i aa12ii,,
x1/2 x1/2,
akl0,1
表示精度为x(vu)/2 (L1)。
将个体又从位串空间转换到问题空间的译码函数 :{0,1}L[u,v]
的公式定义为:
x k (a k1 ,a k2 , ,a k)L u 2 v L u 1 (jL 1a k2 jL j)
故现在排序选择概率为
p s(a j) n 1 ( ( n 1 )(j 1 )),j 1 ,2 , ,n
4.1.6 遗传算子
一、选择(selection)算子
4、联赛选择(tournament selection) • 基本思想:从当前群体中随机选择一定数量的个体(放回或者不
放回),将其中适应值最大的个体放入配对池中。反复执行这一 过程,直到配对池中的个体数量达到设定的值。
4.1 遗传算法的基本描述
对于n维连续函数 f( x ) x ,( x 1 ,x 2 , ,x n ) x i ,[ u i,v i] i ( 1 , 2 , ,n ) ,
各 成总维长变度量为的L二进n制li 编的码二位进制串编的码长位度串为。li,那相应么的x的G编A编码码从空左间到为右:依次构
4.1.6 Байду номын сангаас传算子
二、交叉(Crossover)算子
1、一致交叉
一致交叉即染色体位串上的每一位按相同概率进行随机均匀交叉。
一致交叉算子生成的新个体位:
s'1a'1a 1'1 2 a'1L s'2a'2a 1'2 2 a'2L
操作描述如下:
O(pc, x) :
a'1i aa12ii,,
x1/2 x1/2,
遗传算法的实例ppt课件.ppt
上述操作反复执行,个体逐渐优化
病 原 体 侵 入 机体, 消弱机 体防御 机能, 破坏机 体内环 境的相 对稳定 性,且 在一定 部位生 长繁殖 ,引起 不同程 度的病 理生理 过程
遗传算法的手工模拟计算示例
为更好地理解遗传算法的运算过程,下面用手工计算来简单地模拟遗传算法的各 个主要执行步骤。
例:求下述二元函数的最大值:
个体
A
B
C
D
病 原 体 侵 入 机体, 消弱机 体防御 机能, 破坏机 体内环 境的相 对稳定 性,且 在一定 部位生 长繁殖 ,引起 不同程 度的病 理生理 过程
步骤三:交叉
• 选中的优势个体进行交叉 ----- 由父个体生成子个体
相同的两个父个体生成相同的两个子个体
病 原 体 侵 入 机体, 消弱机 体防御 机能, 破坏机 体内环 境的相 对稳定 性,且 在一定 部位生 长繁殖 ,引起 不同程 度的病 理生理 过程
• 程序结束时,最优个体即为所求解 • 程序结束的判定
根据循环次数 根据最大适应度 根据种群中相同个体数与总个体数的比值
病 原 体 侵 入 机体, 消弱机 体防御 机能, 破坏机 体内环 境的相 对稳定 性,且 在一定 部位生 长繁殖 ,引起 不同程 度的病 理生理 过程
遗传算法各步骤的评价
• 选择 --- 优胜劣汰
011101 111001 101011 111001
配对情况 交叉点位置
1-2
1-2:2
3-4
3-4:4
交叉结果
011001 111101 101001 111011
变异点 变异结果
4 011101 5 111111 2 111001 6 111010
子代群体p(1) x1 x2
病 原 体 侵 入 机体, 消弱机 体防御 机能, 破坏机 体内环 境的相 对稳定 性,且 在一定 部位生 长繁殖 ,引起 不同程 度的病 理生理 过程
遗传算法的手工模拟计算示例
为更好地理解遗传算法的运算过程,下面用手工计算来简单地模拟遗传算法的各 个主要执行步骤。
例:求下述二元函数的最大值:
个体
A
B
C
D
病 原 体 侵 入 机体, 消弱机 体防御 机能, 破坏机 体内环 境的相 对稳定 性,且 在一定 部位生 长繁殖 ,引起 不同程 度的病 理生理 过程
步骤三:交叉
• 选中的优势个体进行交叉 ----- 由父个体生成子个体
相同的两个父个体生成相同的两个子个体
病 原 体 侵 入 机体, 消弱机 体防御 机能, 破坏机 体内环 境的相 对稳定 性,且 在一定 部位生 长繁殖 ,引起 不同程 度的病 理生理 过程
• 程序结束时,最优个体即为所求解 • 程序结束的判定
根据循环次数 根据最大适应度 根据种群中相同个体数与总个体数的比值
病 原 体 侵 入 机体, 消弱机 体防御 机能, 破坏机 体内环 境的相 对稳定 性,且 在一定 部位生 长繁殖 ,引起 不同程 度的病 理生理 过程
遗传算法各步骤的评价
• 选择 --- 优胜劣汰
011101 111001 101011 111001
配对情况 交叉点位置
1-2
1-2:2
3-4
3-4:4
交叉结果
011001 111101 101001 111011
变异点 变异结果
4 011101 5 111111 2 111001 6 111010
子代群体p(1) x1 x2
遗传算法初等知识PPT
2
值
• 一个简单的表示解的编码是二进制编码,即0,1 字符串。由于取值范围我们采用5位数的二进制码。 01101,11000,01000,10011 • 复习下十进制转换二进制的方法, • 编码与解码的介绍
初始种群和它的适应度值
染色体的交换操纵
遗传算法流程图
遗传算法的语言描述步骤
• step1 选择问题的一个编码;给出一个有N个染色体的初始群体POP
生物遗传 7种群 8交配 9变异
遗传算法中作用 1 在算法停止时最优目标值的解有最大的可能性被留住 2解 3 解的编码(二进制字符串) 4 解中的每一个分量的特征 5 适应函数值 6 选定的一组解(其解的个数为群体的规模) 7 根据适应函数值选取的一组解 8 通过交配原则产生一组新解的过程 9 编码的某一分量发生变化的过程
存在的问题
• 一 存在编码不规范及表示不准确等问题。 • 二 单一的遗传算法编码不能全面地将优化 问题的约束表示出来。 • 三 无法确定是否一定保证收敛到最优解。
T n
s .t .
c i x 0 , i 1, 2 , L m ,
c i x 0 , i m 1, L , p ,
约 束 条 件
其中 x x1 , x 2 , x n R
决策变量
例题:用GA求解问题
f ( x ) x , 0 x 31 , x 为整数的最大
遗传算法 —一种基于仿生学的计算方法
11级基础科学学院 应用数学 袁杰
本章基本内容
• 1.1遗传算法的基本概念和计算流程
• • • • • • 1.1.1遗传算法的基本概念 1.1.2遗传算法的计算流程 1.2.1模版理论概述 1.2.2模版理论 1.3.1马氏链的一些基本性质 1.3.2马尔可夫链收敛性质
值
• 一个简单的表示解的编码是二进制编码,即0,1 字符串。由于取值范围我们采用5位数的二进制码。 01101,11000,01000,10011 • 复习下十进制转换二进制的方法, • 编码与解码的介绍
初始种群和它的适应度值
染色体的交换操纵
遗传算法流程图
遗传算法的语言描述步骤
• step1 选择问题的一个编码;给出一个有N个染色体的初始群体POP
生物遗传 7种群 8交配 9变异
遗传算法中作用 1 在算法停止时最优目标值的解有最大的可能性被留住 2解 3 解的编码(二进制字符串) 4 解中的每一个分量的特征 5 适应函数值 6 选定的一组解(其解的个数为群体的规模) 7 根据适应函数值选取的一组解 8 通过交配原则产生一组新解的过程 9 编码的某一分量发生变化的过程
存在的问题
• 一 存在编码不规范及表示不准确等问题。 • 二 单一的遗传算法编码不能全面地将优化 问题的约束表示出来。 • 三 无法确定是否一定保证收敛到最优解。
T n
s .t .
c i x 0 , i 1, 2 , L m ,
c i x 0 , i m 1, L , p ,
约 束 条 件
其中 x x1 , x 2 , x n R
决策变量
例题:用GA求解问题
f ( x ) x , 0 x 31 , x 为整数的最大
遗传算法 —一种基于仿生学的计算方法
11级基础科学学院 应用数学 袁杰
本章基本内容
• 1.1遗传算法的基本概念和计算流程
• • • • • • 1.1.1遗传算法的基本概念 1.1.2遗传算法的计算流程 1.2.1模版理论概述 1.2.2模版理论 1.3.1马氏链的一些基本性质 1.3.2马尔可夫链收敛性质
遗传算法(GeneticAlgorithm)PPT课件
2021
14
选择(Selection)
设种群的规模为N xi是i为种群中第i个染色体
1/6 = 17%
A BC
3/6 = 50% 2/6 = 33%
染色体xi被选概率
ps (xi )
F (xi )
N
F(xj)
j 1
fitness(A) = 3 fitness(B) = 1 fitness(C) = 2
假如交叉概率Pc =50%,则交配池中50%的染色体(一半染色体) 将进行交叉操作,余下的50%的染色体进行选择(复制)操作。
GA利用选择和交叉操作可以产生具有更高平均适应值 和更好染色体的群体
2021/3/21
2021
22
变异(Mutation)
➢ 以 编变码异时概,变率P异m改的变基染因色由体0变的成某1一,个或基者因由,1当变以成二0。进制 ➢ 变 间,异平概均率约Pm 1一-2般% 介于1/种群规模与1/染色体长度之
编码(Coding)
10010001
10010010
010001001 011101001
解码(Decoding)
2021/3/21
2021
13
选择(Selection)
➢ 选择(复制)操作把当前种群的染色体按与适应值成正比 例的概率复制到新的种群中
➢ 主要思想: 适应值较高的染色体体有较大的选择(复制) 机会
➢交叉(crossover):
将群体P(t)内的各个个体随机搭配成对,对每一个
个 rat体e),交以换某它个们概之率间P的c (部称分为染交色叉体概。率,crossvoer
➢变异(mutation):
变对异群概体率P,(tm)u中ta的ti每on一r个at个e)体改,变以某某一一个概或率一P些m(基称因为座
遗传算法ppt
现代优化算法-遗传算法
于是,得到第二代种群 S 2 :
s1 11001 25 , s2 01100 12 , s3 11011 27 , s4 10000 16
第二代种群 S2 中各染色体的情况如表 10-1 所示。 表 10-1 第二代种群 S2 中各染色体的情况 染色体 s1=11001 s2=01100 s3=11011 s4=10000 适应度 625 144 729 256 选择概率 积累概率 估计的选中次数 0.36 0.08 0.41 0.15 0.36 0.44 0.85 1.00 1 0 2 1
0, 1 二进制串。串的长度取决于求解的精度,例如假设解空间为[-1,
因为 221<3106<222,所以编码所用的二进制串至少需要 22 位。
2],求解精度
为保留六位小数,由于解空间[-1, 2]的长度为 3,则必须将该区间分为 3106 等分。
现代优化算法-遗传算法
(1) 采用 5 位二进制数编码染色体,将种群规模设定为 4,取下列个体组成初始 种群 S1 : s1 13(01101), s2 24(11000), s3 8(01000), s4 19(10011) (2) 定义适应度函数为目标函数 f x x 2 (3) 计算各代种群中的各个体的适应度, 并对其染色体进行遗传操作,直到适应 度最高的个体,即 31(11111)出现为止。迭代的过程为: 首先计算种群 S1 中各个体 si 的适应度 f si 如下。
f ( s1 ) f (13) 132 169; f ( s2 ) f (24) 24 2 576; f ( s3 ) f (8) 82 64; f ( s4 ) f (19) 19 2 61
《遗传算法详解》课件
特点
遗传算法具有全局搜索能力、对问题 依赖性小、可扩展性强、鲁棒性高等 特点。
遗传算法的基本思想
初始化
随机生成一组解作为初始种群。
适应度评估
根据问题的目标函数计算每个解 的适应度值。
选择操作
根据适应度值的大小,选择优秀 的解进行遗传操作。
迭代更新
重复以上过程,直到满足终止条 件。
变异操作
对某些基因进行变异,增加解的 多样性。
《遗传算法详解》 ppt课件
• 遗传算法概述 • 遗传算法的基本组成 • 遗传算法的实现流程 • 遗传算法的优化策略 • 遗传算法的改进方向 • 遗传算法的未来展望
目录
Part
01
遗传算法概述
定义与特点
定义
遗传算法是一种模拟生物进化过程的 优化算法,通过模拟基因遗传和变异 的过程来寻找最优解。
Part
05
遗传算法的改进方向
混合遗传算法的研究
混合遗传算法
结合多种优化算法的优点,提高遗传算法的全局搜索能力和收敛速 度。
混合遗传算法的原理
将遗传算法与其他优化算法(如梯度下降法、模拟退火算法等)相 结合,利用各自的优势,弥补各自的不足。
混合遗传算法的应用
在许多实际问题中,如函数优化、路径规划、机器学习等领域,混 合遗传算法都取得了良好的效果。
自适应交叉率
交叉率控制着种群中新个体的产生速度。自适应交叉率可以根据种群中个体的适应度差 异进行调整,使得适应度较高的个体有更低的交叉率,而适应度较低的个体有更高的交 叉率。这样可以提高算法的搜索效率。
自适应变异率
变异率决定了种群中新个体的产生速度。自适应变异率可以根据种群中个体的适应度进 行调整,使得适应度较高的个体有更低的变异率,而适应度较低的个体有更高的变异率
遗传算法具有全局搜索能力、对问题 依赖性小、可扩展性强、鲁棒性高等 特点。
遗传算法的基本思想
初始化
随机生成一组解作为初始种群。
适应度评估
根据问题的目标函数计算每个解 的适应度值。
选择操作
根据适应度值的大小,选择优秀 的解进行遗传操作。
迭代更新
重复以上过程,直到满足终止条 件。
变异操作
对某些基因进行变异,增加解的 多样性。
《遗传算法详解》 ppt课件
• 遗传算法概述 • 遗传算法的基本组成 • 遗传算法的实现流程 • 遗传算法的优化策略 • 遗传算法的改进方向 • 遗传算法的未来展望
目录
Part
01
遗传算法概述
定义与特点
定义
遗传算法是一种模拟生物进化过程的 优化算法,通过模拟基因遗传和变异 的过程来寻找最优解。
Part
05
遗传算法的改进方向
混合遗传算法的研究
混合遗传算法
结合多种优化算法的优点,提高遗传算法的全局搜索能力和收敛速 度。
混合遗传算法的原理
将遗传算法与其他优化算法(如梯度下降法、模拟退火算法等)相 结合,利用各自的优势,弥补各自的不足。
混合遗传算法的应用
在许多实际问题中,如函数优化、路径规划、机器学习等领域,混 合遗传算法都取得了良好的效果。
自适应交叉率
交叉率控制着种群中新个体的产生速度。自适应交叉率可以根据种群中个体的适应度差 异进行调整,使得适应度较高的个体有更低的交叉率,而适应度较低的个体有更高的交 叉率。这样可以提高算法的搜索效率。
自适应变异率
变异率决定了种群中新个体的产生速度。自适应变异率可以根据种群中个体的适应度进 行调整,使得适应度较高的个体有更低的变异率,而适应度较低的个体有更高的变异率
《遗传算法》PPT课件
遗传算法
学习过程如下:
选择适应度最好的4个
11 01001101 -4 13 01001101 -4 14 00111001 -4 15 00101111 -5
11与13交叉
16 01001101 -4 17 01001101 -4
14与15交叉
18 00111011 -4 19 00101101 -5
遗传算法
遗传算法是一种通过模拟自然进化过程搜索最优解 的方法。 遗传算法是一类随机算法通过作用于染色体上的基 因,寻找好的染色体来求解问题。 遗传算法对求解问题的本身一无所知,它所需要的 仅是对算法所产生的每个染色体进行评价,并基于适 应值来选择染色体,使适应性好的染色体比适应性差 的染色体有更多的繁殖机会。 遗传算法通过有组织地而且是随机地信息交换来重 新结合那些适应性好的串,在每一个新的串的群体中 作为额外增添,偶尔也要在串结构中尝试用新的位和 段来代替原来的部分。
遗传算法
要做的第一件事是将染色体转换成二进制串, 00表示0 01表示1 10表示2 11表示3 交叉位置:6,即父代染色体被复制下来产生两个后代 然后两个后代交换他们的最后两位 变异:由随机选择一位、求反
遗传算法
例如,染色体0223的适应度为4。 若所有7个规则都满足(也就是当染色体是0133),则 适应度为7。 适应度值可以求负操作,以使任务成为最小化搜索。 因此,目标染色体具有-7的适应度。 要做的第一件事是将染色体转换成二进制串, 这可通过由00表示0,01表示1,10表示2,11表示3来完 成。现在每个基因由两位表示,目标染色体有00011111 表示。 为了简化例子,总是在位置6处应用单点交叉。 父染色体被复制下来产生两个后代,然后两个后代交换 他们的最后两位。 变异由随机选择一位且对他求反组成。
《遗传算法》课件
个体选择策略
轮盘赌选择
按照适应度大小进行选择, 适应度越大的个体被选中的 概率越高。
锦标赛选择
随机选择一组个体进行比较, 选择适应度最好的个体。
随机选择
随机选择一部分个体作为下 一代。
杂交操作的实现方法
单点杂交 多点杂交 均匀杂交
从两个个体的某个交叉点将两个个体分割,并交 换剩下的部分。
从两个个体的多个交叉点将两个个体分割,并交 换剩下的部分。
遗传算法的基本流程
1
评估适应度
2
计算每个个体的适应度。
3
交叉操作
4
通过交叉操作产生新的个体。
5
替换操作
6
将新的个体替换种群中的一部分个体。
7
输出结果
8
输出最优解作为最终结果。
初始化种群
生成初始的候选解。
选择操作
根据适应度选择优秀的个体。
变异操作
对个体进行变异以增加多样性。
迭代
重复执行选择、交叉和变异操作直至满足 终止条件。
智能控制
如机器人路径规划和智能决策。
数挖掘
例如聚类、分类和回归分析。
遗传算法的优缺点
1 优点
能够全局搜索、适应复杂问题和扩展性强。
2 缺点
计算量大、收敛速度慢和参数选择的难度。
遗传算法的基本概念
个体
候选解的表示,通常采用二进 制编码。
适应度函数
评价候选解的质量,指导选择 和进化过程。
种群
多个个体组成的集合,通过遗 传操作进行进化。
遗传算法实例分析
旅行商问题
遗传算法可以用于求解旅行商问 题,找到最短路径。
背包问题
调度问题
遗传算法可以用于求解背包问题, 找到最优的物品组合。
《遗传算法》课件
总结词
达到预设迭代次数
详细描述
当遗传算法达到预设的最大迭代次数时,算法终止。此时 需要根据适应度值或其他指标判断是否找到了满意解或近 似最优解。
总结词
达到预设精度
详细描述
当遗传算法的解的精度达到预设值时,算法终止。此时可 以认为找到了近似最优解。
总结词
满足收敛条件
详细描述
当遗传算法的解满足收敛条件时,算法终止。常见的收敛 条件包括个体的适应度值不再发生变化、最优解连续多代 保持不变等。
多目标优化
传统的遗传算法主要用于单目标优化问题。然而 ,实际应用中经常需要解决多目标优化问题。因 此,发展能够处理多目标优化问题的遗传算法也 是未来的一个重要研究方向。
适应性遗传算法
适应性遗传算法是指根据问题的特性自适应地调 整遗传算法的参数和操作,以提高搜索效率和精 度。例如,可以根据问题的复杂度和解的质量动 态调整交叉概率、变异概率等参数。
自适应调整是指根据个体的适应度值动态调整 适应度函数,以更好地引导遗传算法向更优解 的方向进化。
选择操作
总结词
基于适应度选择
详细描述
选择操作是根据个体的适应 度值进行选择,通常采用轮 盘赌、锦标赛等选择策略, 以保留适应度较高的个体。
总结词
多样性保护
详细描述
为了保持种群的多样性,选择操作可以采 用一些多样性保护策略,如精英保留策略 、小生境技术等。
梯度下降法是一种基于函数梯度的优化算法,与遗传算法结合使用可以加快搜索速度, 提高解的质量。
遗传算法的基本思想
初始化
随机生成一组解作为初始种群。
适应度评估
根据问题的目标函数计算每个解 的适应度值。
选择操作
根据适应度值的大小,选择适应 度较高的解进行遗传操作。
达到预设迭代次数
详细描述
当遗传算法达到预设的最大迭代次数时,算法终止。此时 需要根据适应度值或其他指标判断是否找到了满意解或近 似最优解。
总结词
达到预设精度
详细描述
当遗传算法的解的精度达到预设值时,算法终止。此时可 以认为找到了近似最优解。
总结词
满足收敛条件
详细描述
当遗传算法的解满足收敛条件时,算法终止。常见的收敛 条件包括个体的适应度值不再发生变化、最优解连续多代 保持不变等。
多目标优化
传统的遗传算法主要用于单目标优化问题。然而 ,实际应用中经常需要解决多目标优化问题。因 此,发展能够处理多目标优化问题的遗传算法也 是未来的一个重要研究方向。
适应性遗传算法
适应性遗传算法是指根据问题的特性自适应地调 整遗传算法的参数和操作,以提高搜索效率和精 度。例如,可以根据问题的复杂度和解的质量动 态调整交叉概率、变异概率等参数。
自适应调整是指根据个体的适应度值动态调整 适应度函数,以更好地引导遗传算法向更优解 的方向进化。
选择操作
总结词
基于适应度选择
详细描述
选择操作是根据个体的适应 度值进行选择,通常采用轮 盘赌、锦标赛等选择策略, 以保留适应度较高的个体。
总结词
多样性保护
详细描述
为了保持种群的多样性,选择操作可以采 用一些多样性保护策略,如精英保留策略 、小生境技术等。
梯度下降法是一种基于函数梯度的优化算法,与遗传算法结合使用可以加快搜索速度, 提高解的质量。
遗传算法的基本思想
初始化
随机生成一组解作为初始种群。
适应度评估
根据问题的目标函数计算每个解 的适应度值。
选择操作
根据适应度值的大小,选择适应 度较高的解进行遗传操作。
遗传算法原理及其应用PPT课件
遗传算法原理及其应 用
目录
• 遗传算法概述 • 遗传算法的基本原理 • 遗传算法的实现步骤 • 遗传算法的应用案例 • 遗传算法的优缺点与改进方向
01
遗传算法概述
定义与特点
01
定义
遗传算法是一种模拟生物进化过程的优化算法, 通过模拟基因遗传和自然选择的过程来寻找最优
解。 02
特点
遗传算法具有全局搜索能力、隐含并行性、自适 应性、对初始条件要求不严格等优点。
排班问题
遗传算法可以用于解决排班问题,如航空公司的航班排班、医院的医 护人员排班等,以实现资源的高效利用和满足各种约束条件。
遗传算法的优缺点与改进方
05
向
优点
全局搜索能力
遗传算法采用生物进化中的遗传机制, 通过种群搜索的方式进行搜索,能够 跳出局部最优解,寻找全局最优解。
鲁棒性
遗传算法对初始解和参数选择不敏感, 能够在不同领域和问题中应用。
02 多峰值函数优化
遗传算法能够处理多峰值函数,即函数值在多个 点达到最大或最小值的情况,通过全局搜索找到 所有峰值。
03 噪声和异常值处理
遗传算法具有较强的鲁棒性,能够处理噪声和异 常值对优化结果的影响。
组合优化问题
1 2 3
旅行商问题
遗传算法可用于求解旅行商问题,即寻找一条最 短的旅行路线,使得一个推销员能够访问所有指 定的城市并返回出发城市。
交叉操作
单点交叉
在个体基因串中选择一个点作为交叉点,将该点前后的基因进行互换,形成新的 个体。
多点交叉
在个体基因串中选择多个点作为交叉点,将不同个体的对应基因进行互换,形成 新的个体。
变异操作
基因位变异
随机选择个体基因串中的某个基因位,对该 基因位进行取反操作或随机替换。
目录
• 遗传算法概述 • 遗传算法的基本原理 • 遗传算法的实现步骤 • 遗传算法的应用案例 • 遗传算法的优缺点与改进方向
01
遗传算法概述
定义与特点
01
定义
遗传算法是一种模拟生物进化过程的优化算法, 通过模拟基因遗传和自然选择的过程来寻找最优
解。 02
特点
遗传算法具有全局搜索能力、隐含并行性、自适 应性、对初始条件要求不严格等优点。
排班问题
遗传算法可以用于解决排班问题,如航空公司的航班排班、医院的医 护人员排班等,以实现资源的高效利用和满足各种约束条件。
遗传算法的优缺点与改进方
05
向
优点
全局搜索能力
遗传算法采用生物进化中的遗传机制, 通过种群搜索的方式进行搜索,能够 跳出局部最优解,寻找全局最优解。
鲁棒性
遗传算法对初始解和参数选择不敏感, 能够在不同领域和问题中应用。
02 多峰值函数优化
遗传算法能够处理多峰值函数,即函数值在多个 点达到最大或最小值的情况,通过全局搜索找到 所有峰值。
03 噪声和异常值处理
遗传算法具有较强的鲁棒性,能够处理噪声和异 常值对优化结果的影响。
组合优化问题
1 2 3
旅行商问题
遗传算法可用于求解旅行商问题,即寻找一条最 短的旅行路线,使得一个推销员能够访问所有指 定的城市并返回出发城市。
交叉操作
单点交叉
在个体基因串中选择一个点作为交叉点,将该点前后的基因进行互换,形成新的 个体。
多点交叉
在个体基因串中选择多个点作为交叉点,将不同个体的对应基因进行互换,形成 新的个体。
变异操作
基因位变异
随机选择个体基因串中的某个基因位,对该 基因位进行取反操作或随机替换。
《遗传算法简介》幻灯片PPT
〔i〕计算群体中每个个体的适应值; 〔ii〕应用复制、杂交和变异算子产生下一代 群体。
3.把在任一代中出现地最好的个体串指定为遗传 算法的执行结果,这个结果可以表示问题的一个解
GEN=0 产生初始群体
结束
是
是否满足停止准则
指定结果
否 计算每个个体的适应值
以概率选择遗传算子
pr
pc
pm
i=0
选择一个个体 选择两个个体 选择一个个体
染色体是由基因及其有规律的排列构成,遗传进 化过程发生在染色体上。
生物的繁衍由基因的复制过程完成。 通过同源染色体之间的穿插或染色体的变异会产
生新物种,使生物呈现新性状。 对环境适应性好的基因比适应性差的基因有更多
时机遗传到下一代。
遗传算法的根本概念
由于遗传算法是由进化论和遗传学机理而产生的直接搜索优 化方法,故而在这个算法中要用到各种进化和遗传学的概 念。这些概念如下:
Microstrategy
息
数据挖掘 (正在流
行)
“下个月波士顿的 销售会怎么样?为 什么?”
目前的数据库系统可以高效地实现数据的录入、查询、 统计等功能,但无法发现数据中存在的关系和规那么, 无法根据现有的数据预测未来的开展趋势。缺乏挖掘 数据背后隐藏的知识的手段,导致了“数据爆炸但知 识贫乏〞的现象。
数据挖掘的概念
数据挖掘就是从大量的数据中挖掘出有用的信 息。
它是根据人们的特定要求,从浩如烟海的数据 中找出所需的信息来,供人们的特定需求使用。
应用遗传算法求解问题需完成四个主要步骤:
1.确定表示方案; 2.确定适应值度量; 3.确定控制算法的参数和变量; 4.确定指定结果的方法和停顿运行的准那么。
根本遗传算法的构成要素
3.把在任一代中出现地最好的个体串指定为遗传 算法的执行结果,这个结果可以表示问题的一个解
GEN=0 产生初始群体
结束
是
是否满足停止准则
指定结果
否 计算每个个体的适应值
以概率选择遗传算子
pr
pc
pm
i=0
选择一个个体 选择两个个体 选择一个个体
染色体是由基因及其有规律的排列构成,遗传进 化过程发生在染色体上。
生物的繁衍由基因的复制过程完成。 通过同源染色体之间的穿插或染色体的变异会产
生新物种,使生物呈现新性状。 对环境适应性好的基因比适应性差的基因有更多
时机遗传到下一代。
遗传算法的根本概念
由于遗传算法是由进化论和遗传学机理而产生的直接搜索优 化方法,故而在这个算法中要用到各种进化和遗传学的概 念。这些概念如下:
Microstrategy
息
数据挖掘 (正在流
行)
“下个月波士顿的 销售会怎么样?为 什么?”
目前的数据库系统可以高效地实现数据的录入、查询、 统计等功能,但无法发现数据中存在的关系和规那么, 无法根据现有的数据预测未来的开展趋势。缺乏挖掘 数据背后隐藏的知识的手段,导致了“数据爆炸但知 识贫乏〞的现象。
数据挖掘的概念
数据挖掘就是从大量的数据中挖掘出有用的信 息。
它是根据人们的特定要求,从浩如烟海的数据 中找出所需的信息来,供人们的特定需求使用。
应用遗传算法求解问题需完成四个主要步骤:
1.确定表示方案; 2.确定适应值度量; 3.确定控制算法的参数和变量; 4.确定指定结果的方法和停顿运行的准那么。
根本遗传算法的构成要素
遗传算法详解ppt课件
A1=0110 | 1 A2=1100 | 0 交叉操作后产生了两个新的字符串为:
A1’=01100 A2’=11001
一般的交叉操作过程:
图5-2 交叉操作
遗传算法的有效性主要来自于复制和交叉操作。复制虽然能够从旧种 群中选择出优秀者,但不能创造新的个体;交叉模拟生物进化过程中 的繁殖现象,通过两个个体的交换组合,来创造新的优良个体。
遗传算法在以下几个方面不同于传统优化 方法
① 遗传算法只对参数集的编码进行操作,而不是 参数集本身。
② 遗传算法的搜索始于解的一个种群,而不是单 个解,因而可以有效地防止搜索过程收敛于局部 最优解。
③ 遗传算法只使用适值函数,而不使用导数和其 它附属信息,从而对问题的依赖性小。
④ 遗传算法采用概率的、而不是确定的状态转移 规则,即具有随机操作算子。
表6-3列出了交叉操作之后的结果数据,从中可以看出交叉操作 的具体过程。首先,随机配对匹配集中的个体,将位串1、2配对,位
串3、4配对;然后,随机选取交叉点,设位串1、2的交叉点为k=4,
二者只交换最后一位,从而生成两个新的位串,即 串 串 1 2 : : 1 01 11 00 0 1 0 1 01 11 00 01 0 新 新 1 2串 串
图5–3
遗传算法的工作原理示意图
5.2 遗传算法应用中的一些基本问题
5.2.1 目标函数值到适值形式的映射
适值是非负的,任何情况下总希望越大越好;而目标 函数有正、有负、甚至可能是复数值;且目标函数和适值 间的关系也多种多样。如求最大值对应点时,目标函数和 适值变化方向相同;求最小值对应点时,变化方向恰好相 反;目标函数值越小的点,适值越大。因此,存在目标函 数值向适值映射的问题。
5.遗传算法
A1’=01100 A2’=11001
一般的交叉操作过程:
图5-2 交叉操作
遗传算法的有效性主要来自于复制和交叉操作。复制虽然能够从旧种 群中选择出优秀者,但不能创造新的个体;交叉模拟生物进化过程中 的繁殖现象,通过两个个体的交换组合,来创造新的优良个体。
遗传算法在以下几个方面不同于传统优化 方法
① 遗传算法只对参数集的编码进行操作,而不是 参数集本身。
② 遗传算法的搜索始于解的一个种群,而不是单 个解,因而可以有效地防止搜索过程收敛于局部 最优解。
③ 遗传算法只使用适值函数,而不使用导数和其 它附属信息,从而对问题的依赖性小。
④ 遗传算法采用概率的、而不是确定的状态转移 规则,即具有随机操作算子。
表6-3列出了交叉操作之后的结果数据,从中可以看出交叉操作 的具体过程。首先,随机配对匹配集中的个体,将位串1、2配对,位
串3、4配对;然后,随机选取交叉点,设位串1、2的交叉点为k=4,
二者只交换最后一位,从而生成两个新的位串,即 串 串 1 2 : : 1 01 11 00 0 1 0 1 01 11 00 01 0 新 新 1 2串 串
图5–3
遗传算法的工作原理示意图
5.2 遗传算法应用中的一些基本问题
5.2.1 目标函数值到适值形式的映射
适值是非负的,任何情况下总希望越大越好;而目标 函数有正、有负、甚至可能是复数值;且目标函数和适值 间的关系也多种多样。如求最大值对应点时,目标函数和 适值变化方向相同;求最小值对应点时,变化方向恰好相 反;目标函数值越小的点,适值越大。因此,存在目标函 数值向适值映射的问题。
5.遗传算法
遗传算法pptPPT课件
轮盘赌选择又称比例选择算子,它的基本思想是: 各个个体被选中的概率与其适应度函数值大小成 正比。
P(xi )
f (xi )
N
f (xj)
j 1
第18页/共66页
上述按概率选择的方法可用一种称为赌轮的原理来实现。 即做一个单位圆, 然后按各个染色体的选择概率将圆面划分 为相应的扇形区域(如图1所示)。这样, 每次选择时先转动轮 盘, 当轮盘静止时,上方的指针所正对着的扇区即为选中的扇 区,从而相应的染色体即为所选定的染色体。 例如, 假设种群 S中有4个染色体: s1,s2, s3, s4,其选择概率依次为: 0.11, 0.45, 0.29, 0.15, 则它们在轮盘上所占的份额如图1中的各扇形区域 所示。
i
qi P(xj ) j 1
第20页/共66页
一个染色体xi被选中的次数, 可以用下面的期望值 e(xi)来确定:
e(xi ) P(xi ) N
f (xi )
N
N
f (xj)
N
f (xi ) f (xj)/ N
f (xi ) f
j 1
j 1
其中f 为种群S中全体染色体的平均适应度值。
图1 赌轮选择示例
第19页/共66页
在算法中赌轮选择法可用下面的过程来模拟:
① 在[0, 1]区间内产生一个均匀分布的伪随机数r。 ② 若r≤q1,则染色体x1被选中。 ③ 若qk-1<r≤qk(2≤k≤N), 则染色体xk被选中。 其中的qi称为染色体xi(i=1, 2, …, n)的积累概率, 其计算公式 为:
步2 随机产生U中的N个染色体s1, s2, …, sN,组成初始 种群S={s1, s2, …, sN},置代数计数器t=1;
遗传算法——遗传算法PPT课件
第25页/共81页
(3)遗传算子:基本遗传算法使用下述三种遗传算 子: ① 选择运算:使用比例选择算子; ② 交叉运算:使用单点交叉算子; ③ 变异运算:使用基本位变异算子或均匀变异算子。
第26页/共81页
(4)基本遗传算法的运行参数 有下述4个运行参数需要提前设定:
M:群体大小,即群体中所含个体的数量,一般取为 20~100; G:遗传算法的终止进化代数,一般取为100~500; Pc:交叉概率,一般取为0.4~0.99;
产调度问题进行精确求解。在现实生产中多采用一些 经验进行调度。遗传算法是解决复杂调度问题的有效 工具,在单件生产车间调度、流水线生产车间调度、 生产规划、任务分配等方面遗传算法都得到了有效的 应用。
第19页/共81页
(4)自动控制。 在自动控制领域中有很多与优化相关的问题需要求
解,遗传算法已经在其中得到了初步的应用。例如, 利用遗传算法进行控制器参数的优化、基于遗传算法 的模糊控制规则的学习、基于遗传算法的参数辨识、 基于遗传算法的神经网络结构的优化和权值学习等。
第22页/共81页
(9)机器学习 基于遗传算法的机器学习在很多领域都得到了应
用。例如,采用遗传算法实现模糊控制规则的优化,可 以改进模糊系统的性能;遗传算法可用于神经网络连接 权的调整和结构的优化;采用遗传算法设计的分类器系 统可用于学习式多机器人路径规划。
第23页/共81页
10.4 遗传算法的优化设计
(2)变异:亲代和子代之间以及子代的不同个体之间 的差异,称为变异。变异是随机发生的,变异的选择 和积累是生命多样性的根源。
(3)生存斗争和适者生存:具有适应性变异的个体被 保留下来,不具有适应性变异的个体被淘汰,通过一 代代的生存环境的选择作用,性状逐渐逐渐与祖先有 所不同,演变为新的物种。
(3)遗传算子:基本遗传算法使用下述三种遗传算 子: ① 选择运算:使用比例选择算子; ② 交叉运算:使用单点交叉算子; ③ 变异运算:使用基本位变异算子或均匀变异算子。
第26页/共81页
(4)基本遗传算法的运行参数 有下述4个运行参数需要提前设定:
M:群体大小,即群体中所含个体的数量,一般取为 20~100; G:遗传算法的终止进化代数,一般取为100~500; Pc:交叉概率,一般取为0.4~0.99;
产调度问题进行精确求解。在现实生产中多采用一些 经验进行调度。遗传算法是解决复杂调度问题的有效 工具,在单件生产车间调度、流水线生产车间调度、 生产规划、任务分配等方面遗传算法都得到了有效的 应用。
第19页/共81页
(4)自动控制。 在自动控制领域中有很多与优化相关的问题需要求
解,遗传算法已经在其中得到了初步的应用。例如, 利用遗传算法进行控制器参数的优化、基于遗传算法 的模糊控制规则的学习、基于遗传算法的参数辨识、 基于遗传算法的神经网络结构的优化和权值学习等。
第22页/共81页
(9)机器学习 基于遗传算法的机器学习在很多领域都得到了应
用。例如,采用遗传算法实现模糊控制规则的优化,可 以改进模糊系统的性能;遗传算法可用于神经网络连接 权的调整和结构的优化;采用遗传算法设计的分类器系 统可用于学习式多机器人路径规划。
第23页/共81页
10.4 遗传算法的优化设计
(2)变异:亲代和子代之间以及子代的不同个体之间 的差异,称为变异。变异是随机发生的,变异的选择 和积累是生命多样性的根源。
(3)生存斗争和适者生存:具有适应性变异的个体被 保留下来,不具有适应性变异的个体被淘汰,通过一 代代的生存环境的选择作用,性状逐渐逐渐与祖先有 所不同,演变为新的物种。
《遗传算法》PPT课件
2021/7/12
33
一、遗传算法入门
生物只有经过许多世代的不断演化(evolution),才能 更好地完成生存与繁衍的任务。 遗传算法也遵循同样的方式,需要随着时间的推移不 断成长、演化,最后才能收敛,得到针对某类特定问 题的一个或多个解。 因此,了解一些有关有生命的机体如何演化的知识, 对理解遗传算法的演化机制是是有帮助的。我们将扼 要阐述自然演化的机制(通常称为“湿”演化算法), 以及与之相关的术语。理解自然演化的基本机制。我 想,你也会和我一样,深深叹服自然母亲的令人着迷!
2021/7/12
23
智能交通
2021/7/12
24
图像识别系统
2021/7/12
25
云松
銮仙玉骨寒, 松虬雪友繁。 大千收眼底, 斯调不同凡。
2021/7/12
26
(无题)
白沙平舟夜涛声, 春日晓露路相逢。 朱楼寒雨离歌泪, 不堪肠断雨乘风。
2021/7/12
27
2021/7/12
28
2021/7/12
1.7.12 智能制造
1.7.13 智能CAI
1.7.14 智能人机接口
1.7.15 模式识别
1.7.16 数据挖掘与数据库中的知识发现
1.7.17 计算机辅助创新
1.7.18 计算机文艺创作
1.7.19 机器博弈
1.7.20 智能机器人
2021/7/12
18
1.8 人工智能的分支领域与研究方向
从模拟的层次和所用的方法来看,人工智能可分为符号智 能和计算智能两大主要分支领域。而这两大领域各自又有 一些子领域和研究方向。如符号智能中又有图搜索、自动 推理、不确定性推理、知识工程、符号学习等。计算智能 中又有神经计算、进化计算、免疫计算、蚁群计算、粒群 计算、自然计算等。另外,智能Agent也是人工智能的一 个新兴的重要领域。智能Agent或者说Agent智能则是以符
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Munakata, T. & D. J. Hashier: “A genetic algorithm applied to the maximum flow problem”, Proc. of the 5th Inter. Conf. on Genetic Algorithms, San Francisco, pp.488-493, 1993. Gen, M. & R. Cheng: Genetic Algorithms and Engineering Design, John Wiley & Sons, New York, 1997. Munetomo, M., Y. Takai & Y. Sato: “A migration Scheme for the Genetic Adaptive routing Algorithm”, Proc. of IEEE Int. Conf. Systems, Man, and Cybernetics, pp.2774-2779, 1998. Inagaki, J., M. Haseyama & H. Kitajima: “A Genetic Algorithm for Determining Multiple Routes and Its Applications”, Proc. of IEEE Int. Symp. Circuits and Systems, pp.137-140, 1999. Gen, M. & R. Cheng: Genetic Algorithms and Engineering Optimization, John Wiley & Sons, New York, 2000. Gen, M., R. Cheng & S.S. Oren: "Network design techniques using adapted genetic algorithms", Advances in Engineering Software, Vol.32, pp.731-744, 2001. Ahn, C.W. & R. Ramakrishna: “A Genetic Algorithm for Shortest Path Routing Problem and the Sizing of Populations”, IEEE Trans. on Evol. Comput., Vol.6, No.6, pp.566-579, 2002. Zhou, G. & M. Gen: “A Genetic Algorithm Approach on Tree-like Telecommunication Network Design Problem”, J. of Operational Research Society, Vol. 54, No. 3, pp.248-254, 2003.
18 2 36 s 16 11 13 5 27 3 12 23 12 13 6 38 9 7 4 20 t 15 10 32 8 24
Data table of example network i 1 1 2 3 3 3 4 4 5 6 6 7 8 8 9 j 2 3 4 2 5 6 7 8 4 7 9 8 9 10 10 cij 36 27 18 13 12 23 11 32 16 12 38 20 15 24 13
SPP can be formulated as follows:
2. Maximum Flow (MXF) Problem
3. Minimum Cost Flow (MCF) Problem
4. Bicriteria Network Design Problem (BNP)
5. Multi-criteria Network Design Problem
Soft Computing Lab.
WASEDA UNIVERSITY , IPS 7
Soft Computing Lab.
1. Shortest Path Problem (SPP)
1.1 Basic Concept of Shortest Path Problem
SPP is perhaps the simplest of all network design problems. For this problem, the object is to find a path of minimum cost (or length) from a specified source node s to another specified sink node t, assuming that each arc (i, j)∈A has an associated cost (or length) cij.
vBNS Logical Network Map
/index.jsp
Soft Computing Lab.
WASEDA UNIVERSITY , IPS
5
6. Basic Network Design
1. Shortest Path Problem (SPP)
Soft Computing Lab. 2
WASEDA UNIVERSITY , IPS
6. Basic Network Design
In the past few years, the genetic algorithms community has turned much of its attention toward the optimization of network design problems:
1
1
1
i
cij
j
Soft Computing Lab.
WASEDA UNIVERSITY , IPS
8
1. Shortest Path Problem (SPP)
1.1 Basic Concept of Shortest Path Problem
Directed graph G=(V, A)
Michalewicz, Z. : Genetic Algorithm + Data Structure = Evolution Programs, 2nd ed., Springer-Verlag, New York, 1994 Gen, M. & R. Cheng: Genetic Algorithms & Engineering Design, John Wiley & Sons, New York, 1997.
1.4.1 Reviewing Encoding Methods 1.4.2 Priority-based Genetic Algorithm 1.4.3 Genetic Operators
1.5 Numerical Examples
2. 3. 4. 5.
Maximum Flow (MXF) Problem Minimum Cost Flow (MCF) Problem Bicriteria Network Design Problem (BNP) Multi-criteria Network Design Problem
Graduate School of Information, Production and Systems, Waseda University
6. Basic Network Design
6. Basic Network Design
Genetic Algorithms (GAs) are one of the most powerful and broadly applicable stochastic search and optimization techniques based on principles from evolution theory (Holland, 1976):
Soft Computing Lab.
WASEDA UNIVERSITY , IPS
3
vBNS Backbone Network Map
/index.jsp
Soft Computing Lab.
4 WASEDA UNIVERSITY , IPS high speed Backbone Network Services vBNS: very
Data table of example network
i 1 1 2 3 3 3 4 4 5 6 6 7 8 8 9 j 2 3 4 2 5 6 7 8 4 7 9 8 9 10 10 cij 36 27 18 13 12 23 11 32 16 12 38 20 15 24 13
where V is a set of nodes, A is a set of links.
WASEDA UNIVERSITY , IPS
6
6. Basic Network Design
1. Shortest Path Problem (SPP)
1.1 Basic Concept of Shortest Path Problem 1.2 Application of Shortest Path Problem 1.3 Methods for solving SPP 1.4 Genetic Approach for solving SPP
Recent advances in evolutionary computation have made it possible to solve such practical network optimization problems:
Ali, M. & F. Kamoun: “Neural Networks for Shortest Path Computation and Routing in Computer Networks”, IEEE Trans. on Neural Networks, vol.4, pp.941-954, 1993. Perfetti, R. : “Optimization Neural Network for Solving Flow Problems”, IEEE Trans. on Neural Network, Vol.6, No.5, pp.1287-1291, 1995. Gen, M. & K. Ida: Neural Networks and Optimization with Mathematica, Kyoritsu Shuppan, 1998 in Japanese. Ahn, C. W., R. Ramakrishna, C. Kang & I. Choi: “Shortest Path Routing Algorithm using Hopfield Neural Network”, Electronic Letter, Vol.37, No.19, pp.1176-1178, 2001.
18 2 36 s 16 11 13 5 27 3 12 23 12 13 6 38 9 7 4 20 t 15 10 32 8 24
Data table of example network i 1 1 2 3 3 3 4 4 5 6 6 7 8 8 9 j 2 3 4 2 5 6 7 8 4 7 9 8 9 10 10 cij 36 27 18 13 12 23 11 32 16 12 38 20 15 24 13
SPP can be formulated as follows:
2. Maximum Flow (MXF) Problem
3. Minimum Cost Flow (MCF) Problem
4. Bicriteria Network Design Problem (BNP)
5. Multi-criteria Network Design Problem
Soft Computing Lab.
WASEDA UNIVERSITY , IPS 7
Soft Computing Lab.
1. Shortest Path Problem (SPP)
1.1 Basic Concept of Shortest Path Problem
SPP is perhaps the simplest of all network design problems. For this problem, the object is to find a path of minimum cost (or length) from a specified source node s to another specified sink node t, assuming that each arc (i, j)∈A has an associated cost (or length) cij.
vBNS Logical Network Map
/index.jsp
Soft Computing Lab.
WASEDA UNIVERSITY , IPS
5
6. Basic Network Design
1. Shortest Path Problem (SPP)
Soft Computing Lab. 2
WASEDA UNIVERSITY , IPS
6. Basic Network Design
In the past few years, the genetic algorithms community has turned much of its attention toward the optimization of network design problems:
1
1
1
i
cij
j
Soft Computing Lab.
WASEDA UNIVERSITY , IPS
8
1. Shortest Path Problem (SPP)
1.1 Basic Concept of Shortest Path Problem
Directed graph G=(V, A)
Michalewicz, Z. : Genetic Algorithm + Data Structure = Evolution Programs, 2nd ed., Springer-Verlag, New York, 1994 Gen, M. & R. Cheng: Genetic Algorithms & Engineering Design, John Wiley & Sons, New York, 1997.
1.4.1 Reviewing Encoding Methods 1.4.2 Priority-based Genetic Algorithm 1.4.3 Genetic Operators
1.5 Numerical Examples
2. 3. 4. 5.
Maximum Flow (MXF) Problem Minimum Cost Flow (MCF) Problem Bicriteria Network Design Problem (BNP) Multi-criteria Network Design Problem
Graduate School of Information, Production and Systems, Waseda University
6. Basic Network Design
6. Basic Network Design
Genetic Algorithms (GAs) are one of the most powerful and broadly applicable stochastic search and optimization techniques based on principles from evolution theory (Holland, 1976):
Soft Computing Lab.
WASEDA UNIVERSITY , IPS
3
vBNS Backbone Network Map
/index.jsp
Soft Computing Lab.
4 WASEDA UNIVERSITY , IPS high speed Backbone Network Services vBNS: very
Data table of example network
i 1 1 2 3 3 3 4 4 5 6 6 7 8 8 9 j 2 3 4 2 5 6 7 8 4 7 9 8 9 10 10 cij 36 27 18 13 12 23 11 32 16 12 38 20 15 24 13
where V is a set of nodes, A is a set of links.
WASEDA UNIVERSITY , IPS
6
6. Basic Network Design
1. Shortest Path Problem (SPP)
1.1 Basic Concept of Shortest Path Problem 1.2 Application of Shortest Path Problem 1.3 Methods for solving SPP 1.4 Genetic Approach for solving SPP
Recent advances in evolutionary computation have made it possible to solve such practical network optimization problems:
Ali, M. & F. Kamoun: “Neural Networks for Shortest Path Computation and Routing in Computer Networks”, IEEE Trans. on Neural Networks, vol.4, pp.941-954, 1993. Perfetti, R. : “Optimization Neural Network for Solving Flow Problems”, IEEE Trans. on Neural Network, Vol.6, No.5, pp.1287-1291, 1995. Gen, M. & K. Ida: Neural Networks and Optimization with Mathematica, Kyoritsu Shuppan, 1998 in Japanese. Ahn, C. W., R. Ramakrishna, C. Kang & I. Choi: “Shortest Path Routing Algorithm using Hopfield Neural Network”, Electronic Letter, Vol.37, No.19, pp.1176-1178, 2001.