何东健数字图像处理课后答案

合集下载

数字图像处理课后参考答案

数字图像处理课后参考答案

数字图像处理第一章1、1解释术语(2) 数字图像:为了便于用计算机对图像进行处理,通过将二维连续(模拟)图像在空间上离散化,也即采样,并同时将二维连续图像的幅值等间隔的划分成多个等级(层次)也即均匀量化,以此来用二维数字阵列并表示其中各个像素的空间位置与每个像素的灰度级数的图像形式称为数字图像。

(3)图像处理:就是指对图像信息进行加工以满足人的视觉或应用需求的行为。

1、7 包括图像变化、图像增强、图像恢复、图像压缩编码、图像的特征提取、形态学图像处理方法等。

彩色图像、多光谱图像与高光谱图像的处理技术沿用了前述的基本图像处理技术,也发展除了一些特有的图像处理技术与方法。

1、8基本思路就是,或简单地突出图像中感兴趣的特征,或想方法显现图像中那些模糊了的细节,以使图像更清晰地被显示或更适合于人或及其的处理与分析。

1、9基本思路就是,从图像退化的数学或概率模型出发,研究改进图像的外观,从而使恢复以后的图像尽可能地反映原始图像的本来面目,从而获得与景物真实面貌相像的图像。

1、10基本思路就是,,在不损失图像质量或少损失图像质量的前提下,尽可能的减少图像的存储量,以满足图像存储与实时传输的应用需求。

1、11基本思路就是,通过数学方法与图像变换算法对图像的某种变换,以便简化图像进一步处理过程,或在进一步的图像处理中获得更好的处理效果。

1、12基本目的就是,找出便于区分与描述一幅图像中背景与目标的方法,以方便图像中感兴趣的目标的提取与描述。

第二章2、1解释下列术语(18)空间分辨率:定义为单位距离内可分辨的最少黑白线对的数目,用于表示图像中可分辨的最小细节,主要取决于采样间隔值的大小。

(19)灰度分辨率:就是指在灰度级别中可分辨的最小变化,通常把灰度级数L称为图像的灰度级分辨率。

(20)像素的4邻域:对于图像中位于(x,y)的像素p来说,与其水平相邻与垂直相邻的4个像素称为该像素的4邻域像素,她们的坐标分别为(x-1,y)(x,y-1)(x,y+1)(x+1,y)。

《数字图像处理》课后习题答案第一章

《数字图像处理》课后习题答案第一章

1.2图像处理的基本特征
图像处理的基本特征:系统的输入和输出都是图像。

1.3图像分析的基本特征
图像分析的基本特征:输入是图像,输出是对输入图像进行描述的信息。

1.6数字图像处理系统主要由哪几部分组成?各部分的功能是什么?
图像数字化设备:
是一种将景物转换成计算机可以接受的数字图像的图像采集设备。

有的直接作为数字化图像输入设备,有些是间接的数字化图像输入设备。

图像处理计算机:专用或通用图像处理系统。

图像输出设备:根据图像处理应用目的的不同,图像的处理结果可以打印输出,存储在记录设备上或者采用立体显示等多种输出方式。

1.14 简述一个你所熟悉的图像处理应用实例。

言之有理即可。

数字图像处理课后参考答案

数字图像处理课后参考答案

数字图像处理第一章1.1解释术语(2)数字图像:为了便于用计算机对图像进行处理,通过将二维连续(模拟)图像在空间上离散化,也即采样,并同时将二维连续图像的幅值等间隔的划分成多个等级(层次)也即均匀量化,以此来用二维数字阵列并表示其中各个像素的空间位置和每个像素的灰度级数的图像形式称为数字图像。

(3)图像处理:是指对图像信息进行加工以满足人的视觉或应用需求的行为。

1.7 包括图像变化、图像增强、图像恢复、图像压缩编码、图像的特征提取、形态学图像处理方法等。

彩色图像、多光谱图像和高光谱图像的处理技术沿用了前述的基本图像处理技术,也发展除了一些特有的图像处理技术和方法。

1.8基本思路是,或简单地突出图像中感兴趣的特征,或想方法显现图像中那些模糊了的细节,以使图像更清晰地被显示或更适合于人或及其的处理与分析。

1.9基本思路是,从图像退化的数学或概率模型出发,研究改进图像的外观,从而使恢复以后的图像尽可能地反映原始图像的本来面目,从而获得与景物真实面貌相像的图像。

1.10基本思路是,,在不损失图像质量或少损失图像质量的前提下,尽可能的减少图像的存储量,以满足图像存储和实时传输的应用需求。

1.11基本思路是,通过数学方法和图像变换算法对图像的某种变换,以便简化图像进一步处理过程,或在进一步的图像处理中获得更好的处理效果。

1.12基本目的是,找出便于区分和描述一幅图像中背景和目标的方法,以方便图像中感兴趣的目标的提取和描述。

第二章2.1解释下列术语(18)空间分辨率:定义为单位距离内可分辨的最少黑白线对的数目,用于表示图像中可分辨的最小细节,主要取决于采样间隔值的大小。

(19)灰度分辨率:是指在灰度级别中可分辨的最小变化,通常把灰度级数L称为图像的灰度级分辨率。

(20)像素的4邻域:对于图像中位于(x,y)的像素p来说,与其水平相邻和垂直相邻的4个像素称为该像素的4邻域像素,他们的坐标分别为(x-1,y)(x,y-1)(x,y+1)(x+1,y)。

精品文档-数字图像处理(第三版)(何东健)-第1章

精品文档-数字图像处理(第三版)(何东健)-第1章

第1章 概论
5. 图像分析(Image Analysis 图像处理应用的目标几乎均涉及图像分析, 即对图像中 的不同对象进行分割、 特征提取和表示, 从而有利于计算机 对图像进行分类、 识别和理解。 在工业产品零件无缺陷且正确装配检测中, 图像分析是 把图像中的像素转化成一个“合格”或“不合格”的判定。 在医学图像处理中, 不仅要检测出异变(如肿瘤)的存在, 而且还要检查其尺寸大小。
第1章 概论 图像自动分割是图像处理中最困难的问题之一。 人类视 觉系统能够将所观察的复杂场景中的对象分开并识别出每个物 体。 但对计算机来说, 却是一个非常困难的问题。 由于解 决和分割有关的基本问题是特定领域中图像分析实用化的关键 一步, 因此, 将各种方法融合在一起并使用知识来提高处理 的可靠性和有效性是图像分割的研究热点。
第1章 概论 4. 图像分割(Image Segmentation 把图像分成区域的过程即图像分割。 图像中通常包含多 个对象, 例如, 一幅医学图像中显示出正常的或有病变的各 种器官和组织。 为达到识别和理解的目的, 必须按照一定的 规则将图像分割成区域, 每个区域代表被成像的一个物体 (或部分)。
第1章 概论
(4) 图像数据量庞大。 图像中包含有丰富的信息, 可以通过图像处理技术获取图像中包含的有用信息。 但是, 数字图像的数据量巨大。 一幅数字图像是由图像矩阵中的像 素(Pixel )组成的, 通常每个像素用红、 绿、 蓝三种颜 色表示, 每种颜色用8bit表示灰度级。 那么一幅1024×768 不经压缩的真彩色图像, 数据量达2.25 MB (1024×768×8×3/8), 一幅遥感图像的数据量达3240× 2340×4=30Mb 。 如此庞大的数据量给存储、 传输和处理 都带来巨大的困难。 如果再提高颜色位数及分辨率, 数据量 将大幅度增加。

(完整版)数字图像处理:部分课后习题参考答案

(完整版)数字图像处理:部分课后习题参考答案

第一章1.连续图像中,图像为一个二维平面,(x,y)图像中的任意一点,f(x,y)为图像于(x,y)于处的值。

连续图像中,(x,y)的取值是连续的,f(x,y)也是连续的数字图像中,图像为一个由有限行有限列组成的二维平面,(i,j)为平面中的任意一点,g(i,j)则为图像在(i,j)处的灰度值,数字图像中,(i,j) 的取值是不连续的,只能取整数,对应第i行j列,g(i,j) 也是不连续的,表示图像i行j列处图像灰度值。

联系:数字图像g(i,j)是对连续图像f(x,y)经过采样和量化这两个步骤得到的。

其中g(i,j)=f(x,y)|x=i,y=j2. 图像工程的内容可分为图像处理、图像分析和图像理解三个层次,这三个层次既有联系又有区别,如下图所示。

图像处理的重点是图像之间进行的变换。

尽管人们常用图像处理泛指各种图像技术,但比较狭义的图像处理主要是对图像进行各种加工,以改善图像的视觉效果并为自动识别奠定基础,或对图像进行压缩编码以减少所需存储空间图像分析主要是对图像中感兴趣的目标进行检测和测量,以获得它们的客观信息,从而建立对图像的描述。

如果说图像处理是一个从图像到图像的过程,则图像分析是一个从图像到数据的过程。

这里的数据可以是目标特征的测量结果,或是基于测量的符号表示,它们描述了目标的特点和性质。

图像理解的重点是在图像分析的基础上,进一步研究图像中各目标的性质和它们之间的相互联系,并得出对图像内容含义的理解以及对原来客观场景的解释,从而指导和规划行动。

如果说图像分析主要以观察者为中心来研究客观世界,那么图像理解在一定程度上是以客观世界为中心,借助知识、经验等来把握整个客观世界(包括没有直接观察到的事物)的。

联系:图像处理、图像分析和图像理解处在三个抽象程度和数据量各有特点的不同层次上。

图像处理是比较低层的操作,它主要在图像像素级上进行处理,处理的数据量非常大。

图像分析则进入了中层,分割和特征提取把原来以像素描述的图像转变成比较简洁的非图形式的描述。

(完整版)数字图像处理每章课后题参考答案

(完整版)数字图像处理每章课后题参考答案

数字图像处理每章课后题参考答案第一章和第二章作业:1.简述数字图像处理的研究内容。

2.什么是图像工程?根据抽象程度和研究方法等的不同,图像工程可分为哪几个层次?每个层次包含哪些研究内容?3.列举并简述常用表色系。

1.简述数字图像处理的研究内容?答:数字图像处理的主要研究内容,根据其主要的处理流程与处理目标大致可以分为图像信息的描述、图像信息的处理、图像信息的分析、图像信息的编码以及图像信息的显示等几个方面,将这几个方面展开,具体有以下的研究方向:1.图像数字化,2.图像增强,3.图像几何变换,4.图像恢复,5.图像重建,6.图像隐藏,7.图像变换,8.图像编码,9.图像识别与理解。

2.什么是图像工程?根据抽象程度和研究方法等的不同,图像工程可分为哪几个层次?每个层次包含哪些研究内容?答:图像工程是一门系统地研究各种图像理论、技术和应用的新的交叉科学。

根据抽象程度、研究方法、操作对象和数据量等的不同,图像工程可分为三个层次:图像处理、图像分析、图像理解。

图像处理着重强调在图像之间进行的变换。

比较狭义的图像处理主要满足对图像进行各种加工以改善图像的视觉效果。

图像处理主要在图像的像素级上进行处理,处理的数据量非常大。

图像分析则主要是对图像中感兴趣的目标进行检测和测量,以获得它们的客观信息从而建立对图像的描述。

图像分析处于中层,分割和特征提取把原来以像素描述的图像转变成比较简洁的非图形式描述。

图像理解的重点是进一步研究图像中各目标的性质和它们之间的相互联系,并得出对图像内容含义的理解以及对原来客观场景的解释,从而指导和规划行为。

图像理解主要描述高层的操作,基本上根据较抽象地描述进行解析、判断、决策,其处理过程与方法与人类的思维推理有许多相似之处。

第三章图像基本概念1.图像量化时,如果量化级比较小时会出现什么现象?为什么?答:当实际场景中存在如天空、白色墙面、人脸等灰度变化比较平缓的区域时,采用比较低的量化级数,则这类图像会在画面上产生伪轮廓(即原始场景中不存在的轮廓)。

精品文档-数字图像处理(第三版)(何东健)-第9章

精品文档-数字图像处理(第三版)(何东健)-第9章

第9章 图像编码
它将标量数据组织成一系列k维矢量, 根据一定的失真测 度(如均方误差、 lp范数、 极大范数等)在码书中搜索出 与输入矢量失真最小的码字的索引, 传输时仅传输相应码字 的索引,接收方根据码字索引在码书中查找对应码字, 再现 输入矢量。 矢量量化编码的核心是码书设计, 经典的码书设 计算法有LBG(Linde, Buzo和Gray三人的首字母) 算法(又称为K-means算法)。 码书设计过程就是寻求把M 个训练矢量分成N类(N<M)的一种最佳方案(如均方误差最 小), 并把各类的中心矢量作为码书中的码字。
第9章 图像编码 9.1.2
人们不断提出新的图像编码方法, 如基于人工神经网络 的编码、 子带编码(Sub band Coding)、 分形编码 (Fractal Coding)、 小波编码(Wavelet Coding)、 基 于模型的编码(Model based Coding)、 基于对象的编码 (Object based Coding)和基于语义的编码(Semantic Based Coding)等。
(2) 预测编码。 预测编码是基于图像数据的空间或时 间冗余特性, 它用相邻的已知像素(或像素块)来预测当 前像素(或像素块)的取值, 然后再对预测误差进行量化和 编码。 预测编码可分为帧内预测和帧间预测, 常用的预测编 码有差分脉码调制(DPCM, Differential Pulse Code Modulation)和运动补偿法。 图9-1和图9-2分别给出了无损 预测编码和有损预测编码系统的原理图,均包括编码器和解码 器, 其中符号编码器通常采用变长编码。
第9章 图像编码 信息熵是无损编码的理论极限, 当平均码长大于等于信 息熵时, 总可设计出一种无失真编码, 这是熵编码的理论基 础。 若使用相同长度的码字表示信源符号, 则称该编码方法 为等长编码, 否则称为变长编码。 变长编码的基本原理是给 出现概率较大的符号赋予短码字, 而给出现概率较小的符号 赋予长码字, 从而使得最终的平均码长很小。 哈夫曼编码和 香农-范诺编码就是两种变长编码方法。

《数字图像处理》习题参考附标准答案

《数字图像处理》习题参考附标准答案

《数字图像处理》习题参考附标准答案《数字图像处理》习题参考答案第1章概述1.1连续图像和数字图像如何相互转换?答:数字图像将图像看成是许多大小相同、形状一致的像素组成。

这样,数字图像可以用二维矩阵表示。

将自然界的图像通过光学系统成像并由电子器件或系统转化为模拟图像(连续图像)信号,再由模拟/数字转化器(ADC)得到原始的数字图像信号。

图像的数字化包括离散和量化两个主要步骤。

在空间将连续坐标过程称为离散化,而进一步将图像的幅度值(可能是灰度或色彩)整数化的过程称为量化。

1.2采用数字图像处理有何优点?答:数字图像处理与光学等模拟方式相比具有以下鲜明的特点:1.具有数字信号处理技术共有的特点。

(1)处理精度高。

(2)重现性能好。

(3)灵活性高。

2.数字图像处理后的图像是供人观察和评价的,也可能作为机器视觉的预处理结果。

3.数字图像处理技术适用面宽。

4.数字图像处理技术综合性强。

1.3数字图像处理主要包括哪些研究内容?答:图像处理的任务是将客观世界的景象进行获取并转化为数字图像、进行增强、变换、编码、恢复、重建、编码和压缩、分割等处理,它将一幅图像转化为另一幅具有新的意义的图像。

1.4讨论数字图像处理系统的组成。

列举你熟悉的图像处理系统并分析它们的组成和功能。

答:如图1.8,数字图像处理系统是应用计算机或专用数字设备对图像信息进行处理的信息系统。

图像处理系统包括图像处理硬件和图像处理软件。

图像处理硬件主要由图像输入设备、图像运算处理设备(微计算机)、图像存储器、图像输出设备等组成。

软件系统包括操作系统、控制软件及应用软件等。

图1.8 数字图像处理系统结构图11.5常见的数字图像处理开发工具有哪些?各有什么特点?答.目前图像处理系统开发的主流工具为Visual C++(面向对象可视化集成工具)和MATLAB 的图像处理工具箱(ImageProcessingToolbox)。

两种开发工具各有所长且有相互间的软件接口。

精品文档-数字图像处理(第三版)(何东健)-第2章

精品文档-数字图像处理(第三版)(何东健)-第2章
一幅彩色图像的像素值可看作是光强和波长的函数值f(x, y, λ), 但实际使用时, 将其看作是一幅普通二维图像, 且每个像素有红、 绿、 蓝3个灰度值会更直观些。
第2章 数字图像处理基础
2. 颜色的3 颜色是外界光刺激作用于人的视觉器官而产生的主观感觉。 颜色分两大类: 非彩色和彩色。 非彩色是指黑色、 白色和 介于这二者之间深浅不同的灰色, 也称为无色系列。 彩色是 指除了非彩色以外的各种颜色。 颜色有3个基本属性, 分别 是色调、 饱和度和亮度。 基于这3个基本属性, 提出了一 种重要的颜色模型HSI(Hue, Saturation, Intensity)。 在HSI颜色模型部分, 将详细介绍这3个基本属性。
(5) 输出存储装置: 将量化器产生的颜色值(灰度或彩 色)按某种格式存储,以用于后续的计算机处理。
第2章 数字图像处理基础
2. 图像数字化设备的性能 虽然数字化设备的组成各不相同,但可从如下几个方面比 较和评价其性能。 (1) 像素大小。采样孔的大小和相邻像素的间距是两个 重要的性能指标。如果数字化设备是在一个放大率可变的光学 系统上,那么对应于输入图像平面上的采样点大小和采样间距 也是可变的。 (2) 图像大小。图像大小即数字化设备所允许的最大输 入图像的尺寸。
第2章 数字图像处理基础
g(t) g(iT )s(t iT ) i
式中
s(t) sin(2t) 2t
采样示意图如图2-2所示。
第2章 数字图像处理基础
图2-2
采样示意图
第2章 数字图像处理基础
2.1.2 量化 模拟图像经过采样后,在空间上离散化为像素。但采样所
得的像素值(即灰度值)仍是连续量。把采样后所得的各像素的 灰度值从模拟量到离散量的转换称为图像灰度的量化。图23(a)说明了量化过程。若连续灰度值用z来表示,对于满足 zi≤z<zi+1的z值,都量化为整数qi。qi称为像素的灰度值。z 与qi的差称为量化误差。一般,像素值量化后用一个字节 8 bit来表示。如图2-3(b)所示,把由黑—灰—白的连续变化 的灰度值量化为0~255共256级灰度值。

精品文档-数字图像处理(第三版)(何东健)-第6章

精品文档-数字图像处理(第三版)(何东健)-第6章

第6章 数学形态学处理 图6-5 S+x的3种可能状态
第6章 数学形态学处理
例6-1 腐蚀运算图解。图6-6给出腐蚀运算的1个简单示例。 其中图6-6(a)中的黑点部分为集合X, 图6-6(b)中的黑点部 分为结构元素S, 而图6-6(c)中黑点部分给出X S (白点部分为原属于X现腐蚀掉的部分)。 由图可见腐蚀将图 像(区域)缩小了。
第6章 数学形态学处理 图6-9 用5×5矩形结构元素进行膨胀
第6章 数学形态学处理
6.2.3 1. 如果结构元素为圆形, 则膨胀操作可填充图像中比结构
元素小的孔洞以及图像边缘处小的凹陷部分。 而腐蚀可以消 除图像中的毛刺及细小连接成分, 并将图像缩小, 从而使其 补集扩大。 但是, 膨胀和腐蚀并非互为逆运算, 所以它们 可以结合使用。 在腐蚀和膨胀两个基本运算的基础上, 可以 构造出形态学运算簇, 它由膨胀和腐蚀两个运算的复合与集 合操作(并、 交、 补等)组合成的所有运算构成。 例如, 可使用同一结构元素, 先对图像进行腐蚀然后膨胀其结果, 该运算称为开运算; 或先对图像进行膨胀然后腐蚀其结果, 称其为闭运算。 开运算和闭运算是形态学运算族中两种最为 重要的运算。
第6章 数学形态学处理 数学形态学的基本思想是用具有一定形态的结构元素去量 度和提取图像中的对应形状, 以达到图像分析和识别的 目的。 数学形态学由一组形态学的代数运算子组成, 其基本 运算有: 膨胀、 腐蚀、 开和闭运算。 基于这些基本运算 还可推导和组合成各种数学形态学实用算法, 用它们可进行 各种复杂的图像分析及处理, 包括图像分割、 特征抽取、 边界检测、 图像滤波、 图像增强和恢复等。
第6章 数学形态学处理
6.2.2
腐蚀可以看作是将图像X中每一个与结构元素S全等的子集

数字图像处理课后参考答案

数字图像处理课后参考答案

数字图像处理第一章1、1解释术语(2) 数字图像:为了便于用计算机对图像进行处理,通过将二维连续(模拟)图像在空间上离散化,也即采样,并同时将二维连续图像的幅值等间隔的划分成多个等级(层次)也即均匀量化,以此来用二维数字阵列并表示其中各个像素的空间位置与每个像素的灰度级数的图像形式称为数字图像。

(3)图像处理:就是指对图像信息进行加工以满足人的视觉或应用需求的行为。

1、7 包括图像变化、图像增强、图像恢复、图像压缩编码、图像的特征提取、形态学图像处理方法等。

彩色图像、多光谱图像与高光谱图像的处理技术沿用了前述的基本图像处理技术,也发展除了一些特有的图像处理技术与方法。

1、8基本思路就是,或简单地突出图像中感兴趣的特征,或想方法显现图像中那些模糊了的细节,以使图像更清晰地被显示或更适合于人或及其的处理与分析。

1、9基本思路就是,从图像退化的数学或概率模型出发,研究改进图像的外观,从而使恢复以后的图像尽可能地反映原始图像的本来面目,从而获得与景物真实面貌相像的图像。

1、10基本思路就是,,在不损失图像质量或少损失图像质量的前提下,尽可能的减少图像的存储量,以满足图像存储与实时传输的应用需求。

1、11基本思路就是,通过数学方法与图像变换算法对图像的某种变换,以便简化图像进一步处理过程,或在进一步的图像处理中获得更好的处理效果。

1、12基本目的就是,找出便于区分与描述一幅图像中背景与目标的方法,以方便图像中感兴趣的目标的提取与描述。

第二章2、1解释下列术语(18)空间分辨率:定义为单位距离内可分辨的最少黑白线对的数目,用于表示图像中可分辨的最小细节,主要取决于采样间隔值的大小。

(19)灰度分辨率:就是指在灰度级别中可分辨的最小变化,通常把灰度级数L称为图像的灰度级分辨率。

(20)像素的4邻域:对于图像中位于(x,y)的像素p来说,与其水平相邻与垂直相邻的4个像素称为该像素的4邻域像素,她们的坐标分别为(x-1,y)(x,y-1)(x,y+1)(x+1,y)。

数字图像处理课后参考答案

数字图像处理课后参考答案

数字图像处理第一章1.1解释术语(2)数字图像:为了便于用计算机对图像进行处理,通过将二维连续(模拟)图像在空间上离散化,也即采样,并同时将二维连续图像的幅值等间隔的划分成多个等级(层次)也即均匀量化,以此来用二维数字阵列并表示其中各个像素的空间位置和每个像素的灰度级数的图像形式称为数字图像。

(3)图像处理:是指对图像信息进行加工以满足人的视觉或应用需求的行为。

1.7 包括图像变化、图像增强、图像恢复、图像压缩编码、图像的特征提取、形态学图像处理方法等。

彩色图像、多光谱图像和高光谱图像的处理技术沿用了前述的基本图像处理技术,也发展除了一些特有的图像处理技术和方法。

1.8基本思路是,或简单地突出图像中感兴趣的特征,或想方法显现图像中那些模糊了的细节,以使图像更清晰地被显示或更适合于人或及其的处理与分析。

1.9基本思路是,从图像退化的数学或概率模型出发,研究改进图像的外观,从而使恢复以后的图像尽可能地反映原始图像的本来面目,从而获得与景物真实面貌相像的图像。

1.10基本思路是,,在不损失图像质量或少损失图像质量的前提下,尽可能的减少图像的存储量,以满足图像存储和实时传输的应用需求。

1.11基本思路是,通过数学方法和图像变换算法对图像的某种变换,以便简化图像进一步处理过程,或在进一步的图像处理中获得更好的处理效果。

1.12基本目的是,找出便于区分和描述一幅图像中背景和目标的方法,以方便图像中感兴趣的目标的提取和描述。

第二章2.1解释下列术语(18)空间分辨率:定义为单位距离内可分辨的最少黑白线对的数目,用于表示图像中可分辨的最小细节,主要取决于采样间隔值的大小。

(19)灰度分辨率:是指在灰度级别中可分辨的最小变化,通常把灰度级数L称为图像的灰度级分辨率。

(20)像素的4邻域:对于图像中位于(x,y)的像素p来说,与其水平相邻和垂直相邻的4个像素称为该像素的4邻域像素,他们的坐标分别为(x-1,y)(x,y-1)(x,y+1)(x+1,y)。

数字图像处理课后习题部分答案

数字图像处理课后习题部分答案

2.22:通常设d(x,y)=g(x,y)- f(x,y);g(x,y)为金图像,f(x,y)系统输入的图像,d (x,y)需取值在阈值(Tmin,Tmax)之间。

两图像需满足条件:1)像素点位置对应相同2)光照条件相同,3)图像的噪声影响足够小。

3.6All that histogram equalization does is remap histogram components on the intensity scale. To obtain a uniform (flat) histogram would require in general that pixel intensities actually be redistributed so that there are L groups of n/L pixels with the same intensity, where L is the number of allowed discrete intensity levels and n =MN is the total number of pixels in the input image. The histogram equalization method has no provisions for this type of (artificial) intensity redistribution process.由于离散图像的直方图也是离散的,其灰度累积分布函数是一个不减的阶梯函数。

如果映射后的图像仍然能取到所有灰度级,则不发生任何变化。

如果映射的灰度级小于256,变换后的直方图会有某些灰度级空缺。

即调整后灰度级的概率基本不能取得相同的值,故产生的直方图不完全平坦。

3.14:A)不相同,因为右图黑白边界比左图的黑白边界要多很多,对于均值滤波而言,在有像素变化的地方才会产生新的像素值,因此右侧图像产生的新的像素值的比例比左侧要大。

何东健数字图像处理课后答案

何东健数字图像处理课后答案

何东健数字图像处理课后答案【篇一:数字图像处理课后参考答案】>1.1解释术语(2)数字图像:为了便于用计算机对图像进行处理,通过将二维连续(模拟)图像在空间上离散化,也即采样,并同时将二维连续图像的幅值等间隔的划分成多个等级(层次)也即均匀量化,以此来用二维数字阵列并表示其中各个像素的空间位置和每个像素的灰度级数的图像形式称为数字图像。

(3)图像处理:是指对图像信息进行加工以满足人的视觉或应用需求的行为。

1.7 包括图像变化、图像增强、图像恢复、图像压缩编码、图像的特征提取、形态学图像处理方法等。

彩色图像、多光谱图像和高光谱图像的处理技术沿用了前述的基本图像处理技术,也发展除了一些特有的图像处理技术和方法。

1.8基本思路是,或简单地突出图像中感兴趣的特征,或想方法显现图像中那些模糊了的细节,以使图像更清晰地被显示或更适合于人或及其的处理与分析。

1.9基本思路是,从图像退化的数学或概率模型出发,研究改进图像的外观,从而使恢复以后的图像尽可能地反映原始图像的本来面目,从而获得与景物真实面貌相像的图像。

1.10基本思路是,,在不损失图像质量或少损失图像质量的前提下,尽可能的减少图像的存储量,以满足图像存储和实时传输的应用需求。

1.11基本思路是,通过数学方法和图像变换算法对图像的某种变换,以便简化图像进一步处理过程,或在进一步的图像处理中获得更好的处理效果。

1.12基本目的是,找出便于区分和描述一幅图像中背景和目标的方法,以方便图像中感兴趣的目标的提取和描述。

第二章2.1解释下列术语(18)空间分辨率:定义为单位距离内可分辨的最少黑白线对的数目,用于表示图像中可分辨的最小细节,主要取决于采样间隔值的大小。

(19)灰度分辨率:是指在灰度级别中可分辨的最小变化,通常把灰度级数l称为图像的灰度级分辨率。

(20)像素的4邻域:对于图像中位于(x,y)的像素p来说,与其水平相邻和垂直相邻的4个像素称为该像素的4邻域像素,他们的坐标分别为(x-1,y)(x,y-1)(x,y+1)(x+1,y)。

数字图像处理课程作业答案

数字图像处理课程作业答案
在 RG 部分( 00 H 1200 ) 1 b (1 S ) 3 1 S cos H r 1 0 3 cos(60 H )
g 1 ( r b)
10
Homework 1
由式 r g b 1 的 定义,上面得到的颜色分量是归一 化了的。由式可以恢复 RGB 分量
16
Homework 2
P175 3. 二维Fourier变换有哪些性质? 答:二维 Fourier 变换具有 (1) 可分性 (2) 线性 (3) 共轭对称性 (4) 旋转性 (5) 比例变换特性
(6) 帕斯维尔(Parseval)定理 (7) 相关定理 (8) 卷积定理
17
Homework 2
若R=G=B=180,则 Y=R=G=B=180, Cb=Cr=128。
14
Homework 2
A2. MATLAB图像处理工具箱支持哪四种基本图 像类型? 答:MATLAB图像处理工具箱支持四种基本的图 像类型:
二值图像(Binary Images)
索引图像(Indexed Images) 灰度图像(Grayscale Images) 真彩色图像( Truecolor Images)
24
Homework 2
P175 16. 延拓,即:
f ( x) fe x 0 x 0,1,2,, N 1 x N , N 1,,2 N 1
相关。
8
Homework 1
25. 如何由RGB模型转换为HSI 模型?
答: 为了由[0,1]范围的 RGB 值得到同样在[0, 1]范围内的 HSI 值,可以得出了以下几个表达 式: I 1 / 3( R G B)

(完整版)数字图像处理课后题答案

(完整版)数字图像处理课后题答案

1. 图像处理的主要方法分几大类?答:图字图像处理方法分为大两类:空间域处理(空域法)和变换域处理(频域法)。

空域法:直接对获取的数字图像进行处理。

频域法:对先对获取的数字图像进行正交变换,得到变换系数阵列,然后再进行处理,最后再逆变换到空间域,得到图像的处理结果2. 图像处理的主要内容是什么?答:图形数字化(图像获取):把连续图像用一组数字表示,便于用计算机分析处理。

图像变换:对图像进行正交变换,以便进行处理。

图像增强:对图像的某些特征进行强调或锐化而不增加图像的相关数据。

图像复原:去除图像中的噪声干扰和模糊,恢复图像的客观面目。

图像编码:在满足一定的图形质量要求下对图像进行编码,可以压缩表示图像的数据。

图像分析:对图像中感兴趣的目标进行检测和测量,从而获得所需的客观信息。

图像识别:找到图像的特征,以便进一步处理。

图像理解:在图像分析的基础上得出对图像内容含义的理解及解释,从而指导和规划行为。

3. 名词解释:灰度、像素、图像分辨率、图像深度、图像数据量。

答:像素:在卫星图像上,由卫星传感器记录下的最小的分立要素(有空间分量和谱分量两种)。

通常,表示图像的二维数组是连续的,将连续参数 x,y ,和 f 取离散值后,图像被分割成很多小的网格,每个网格即为像素 图像分辨率:指对原始图像的采样分辨率,即图像水平或垂直方向单位长度上所包含的采样点数。

单位是“像素点/单位长度”图像深度是指存储每个像素所用的位数,也用于量度图像的色彩分辨率.图像深度确定彩色图像的每个像素可能有的颜色数,或者确定灰度图像的每个像素可能有的灰度级数.它决定了彩色图像中可出现的最多颜色数,或灰度图像中的最大灰度等级(图像深度:位图图像中,各像素点的亮度或色彩信息用二进制数位来表示,这一数据位的位数即为像素深度,也叫图像深度。

图像深度越深,能够表现的颜色数量越多,图像的色彩也越丰富。

)图像数据量:图像数据量是一幅图像的总像素点数目与每个像素点所需字节数的乘积。

精品文档-数字图像处理(第三版)(何东健)-第5章

精品文档-数字图像处理(第三版)(何东健)-第5章

第5章 频域处理 图5-1 任意波形可分解为正弦波的加权和
第5章 频域处理 为便于理解, 将图5-1(b)所示的正弦波取出来, 如图 5-2。 如果将虚线表示的振幅为1, 且初相位为0的正弦波作 为基本正弦波, 则实线表示的波形可由其振幅A和初相位 φ确定。
第5章 频域处理 图5-2 正弦波的振幅A和相位φ
由欧拉公式可知:
e j cos j sin
(5-9)
将式(5-9)代入式(5-7),并利用cos(-θ)=cos(θ),可得:
N 1
cos2ux sin2ux
F(u) f (x)(
j
)
x0
N
N
(5-10)
第5章 频域处理
可见, 离散序列的傅立叶变换仍是一个离散的序列, 对每一个u对应的傅立叶变换结果是所有输入序列f(x)的加权 和(每一个f(x)都乘以不同频率的正弦和余弦值), u决定了 每个傅立叶变换结果的频率。
在数字图像处理中应用傅立叶变换, 还需要解决两个问 题: 一是在数学中进行傅立叶变换的f(x)为连续(模拟)信号, 而计算机处理的是数字信号(图像数据); 二是数 学上采用无穷大概念, 而计算机只能进行有限次计算。 通常, 将受这种限制的傅立叶变换称为离散傅立叶变换 (DFT, Discrete Fourier Transform)。
…, N-1; x, y为时域变量; u,v为频域变量。
第5章 频域处理
和一维离散傅立叶变换一样, 系数1/(MN)可以在正变换 或逆变换中, 也可以分别在正变换和逆变换前分别乘上系 数 1 MN, 只要两系数的乘积等于1/(MN)即可。
二维离散函数的傅立叶频谱、 相位谱和能量谱分别为
F(u,v) R2(u,v) I 2(u,v)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

何东健数字图像处理课后答案【篇一:数字图像处理课后参考答案】>1.1解释术语(2)数字图像:为了便于用计算机对图像进行处理,通过将二维连续(模拟)图像在空间上离散化,也即采样,并同时将二维连续图像的幅值等间隔的划分成多个等级(层次)也即均匀量化,以此来用二维数字阵列并表示其中各个像素的空间位置和每个像素的灰度级数的图像形式称为数字图像。

(3)图像处理:是指对图像信息进行加工以满足人的视觉或应用需求的行为。

1.7 包括图像变化、图像增强、图像恢复、图像压缩编码、图像的特征提取、形态学图像处理方法等。

彩色图像、多光谱图像和高光谱图像的处理技术沿用了前述的基本图像处理技术,也发展除了一些特有的图像处理技术和方法。

1.8基本思路是,或简单地突出图像中感兴趣的特征,或想方法显现图像中那些模糊了的细节,以使图像更清晰地被显示或更适合于人或及其的处理与分析。

1.9基本思路是,从图像退化的数学或概率模型出发,研究改进图像的外观,从而使恢复以后的图像尽可能地反映原始图像的本来面目,从而获得与景物真实面貌相像的图像。

1.10基本思路是,,在不损失图像质量或少损失图像质量的前提下,尽可能的减少图像的存储量,以满足图像存储和实时传输的应用需求。

1.11基本思路是,通过数学方法和图像变换算法对图像的某种变换,以便简化图像进一步处理过程,或在进一步的图像处理中获得更好的处理效果。

1.12基本目的是,找出便于区分和描述一幅图像中背景和目标的方法,以方便图像中感兴趣的目标的提取和描述。

第二章2.1解释下列术语(18)空间分辨率:定义为单位距离内可分辨的最少黑白线对的数目,用于表示图像中可分辨的最小细节,主要取决于采样间隔值的大小。

(19)灰度分辨率:是指在灰度级别中可分辨的最小变化,通常把灰度级数l称为图像的灰度级分辨率。

(20)像素的4邻域:对于图像中位于(x,y)的像素p来说,与其水平相邻和垂直相邻的4个像素称为该像素的4邻域像素,他们的坐标分别为(x-1,y)(x,y-1)(x,y+1)(x+1,y)。

(21)像素的8邻域:对于图像中位于(x,y)的像素p来说,与其水平相邻和垂直相邻的8个像素称为该像素的8邻域像素,他们的坐标分别为(x-1,y-1)(x-1,y)(x-1,y+1)(x,y-1)(x,y+1)(x+1,y-1)(x+1,y)(x+1,y+1)。

(28)欧氏距离:坐标分别位于(x,y)和(u,v)处的像素p和像素q之间的欧氏距离定义为:de(p,q)=[(x-u)2+(y-v)2]1/2(29)街区距离:欧氏距离:坐标分别位于(x,y)和(u,v)处的像素p和像素q之间的街区距离定义为:d4(p,q)=|x-u|+|y-v|。

(30)棋盘距离:欧氏距离:坐标分别位于(x,y)和(u,v)处的像素p和像素q之间的欧氏距离定义为:d8(p,q)=max(|x-u|,|y-v|)。

(33)调色板:是指在16色或者256色显示系统中,将图像中出现最频繁的16种或者256种颜色组成的一个颜色表,并将他们分别编号为0~15或0~255,这样就使每一个4位或者8位的颜色编号或者颜色表中的24位颜色值相对应。

这种4位或者8位的颜色编号称为颜色的索引号,由颜色索引号及对应的24位颜色值组成的表称为颜色查找表,即调色板。

2.7对图像进行描述的数据信息一般应至少包括:(1)图像的大小,也即图像的宽和高(2)表示每个像素需要的位数,当其值为1时说明是黑白图像,当其值为4时说明是16色或16灰度级图像,当其值为8时说明是256色或256灰度级图像,当其值为24是说明是真彩色图像。

同时,根据每个像素的位数和调色板的信息,可进一步指出是16色彩色图像还是16灰度级图像;是256色彩色图像还是256灰度级图像。

(3)图像的调色板信息。

(4)图像的位图数据信息。

对图像信息的描述一般用某种格式的图像文件描述,比如bmp等。

在用图像文件描述图像信息时,相应的要给出图像文件的格式信息、图像文件是否压缩及其压缩格式信息等。

不同格式的图像文件有各自的约定。

2.15 由于存储一副m*n的灰度级为l的数字图像所需的位数为:m*n*k,其中l=2k二值图像、16级灰度级图像和256灰度级图像的k值分别为1、4、8,也即存储一个像素需要的位数分别为1位、4位、8位。

所以,一副200*300的二值图像所需的存储空间为200*300*1/8=7.5kb;衣服200*300的16灰度级图像所需的存储空间为200*300*4/8=30kb;一副200*300的256灰度级图像所需的存储空间为200*300*8/8=60kb。

第三章3.5 功率谱表示的意义是什么答:功率谱的定义为频谱的平方,反应了离散信号的能量在频率域上的分布情况。

对于二维数组数字图像来说,由于傅里叶频谱的低频主要集中在二维频谱图的中心,所以图像的功率谱反应了该图像中低频能量到高频能量的分布情况,以及低频能量聚集于频谱图的中心的程度。

后者反应了该图像中低频信号的图像功率与图像总功率的比率关系。

3.6 进行图像傅里叶变换的目的何在?答:总体上说来,其目的有以下3方面:(1)简化计算,也即傅里叶变换可将空间域中复杂的卷积运算转化为频率域中简单的乘积运算;(2)对于某些在空间域中难以处理或处理起来比较复杂的问题,利用傅里叶变换把用空间域表示的图像映射到频率域,在利用频率域滤波或频域分析方法对其进行处理和分析,然后再把频域中处理和分析的结果变换回空间域,从而可达到简化处理和简化的目的(3)特殊目的的应用需求,比如通过某些频率域的处理方法,实现对图像的增强,特征提取,数据压缩,纹理分析,水印嵌入等,从而实现在空间域难以达到的效果。

3.7 对于m*n 的图像f(x,y),其基函数大小是多少?基图像大小是多少答:对于m*n的图像f(x,y),其二维离散傅里叶反变换式子为:f(x,y)=∑m-1u=0分析上式可知,对于每个特定的x 和y,u有m个可能的取值,v 有n个可能的取值,也即(u,v)共有m*n个特定的取值,所以其基矩阵的大小为m*n,也即及图像由m*n块组成。

当(x,y)取遍所有可能的值(x=0,1,2….m-1;y=0,1…n-1)时,就可得到由(m*n)*(m*n)块组成的基图像,所以其基图像大小为m平方*n平方。

3.8 简述二维离散傅里叶变换可分离性的意义答:根据二维离散傅里叶变换的可分离性,在计算二维离散傅里叶变换时,可先对图像像素矩阵的所有列分别进行列变换,然后再对变换结果的所有行分别进行行变换,这样就可以利用一维离散傅里叶变换算法串行计算二维离散傅里叶变换,这在某种程度上就简化了计算的过程3.9 答:因为一副m*n的图像的灰度平均值可表示为:f=1/n2 ∑由二维离散傅里叶变换公式又有:f(0,0)=1/n ∑n-1x=0n-1x=0∑n-1y=0f(x,y)∑n-1y=0f(x,y)比较这两个公式可知,一副图像的灰度平均值与该图像的傅里叶变换之间的联系可表示为: f=1/nf(0,0) . 3.10答:傅里叶频谱的低频主要取决于图像在平坦的区域中灰度的总体分布,而高频主要取决于图像的边缘和噪声等细节。

按照图像空间域和频率域的对应关系,空域中的强相关性,即由于图像中存在大量的平坦区域,使得图像中的相邻或相近像素一般趋向于取相同的灰度值,反映在频率域中,就是图像的能量主要集中于低频部分。

根据傅里叶频谱的周期性和平移性,当把傅里叶频谱图的原点从(0,0)平移至(m/2,n/2)时,图像的低频分量就主要集中在以(m/2,n/2)为坐标原点的中心区域。

具有这种特点的图像二维频谱图,就比较清楚的展现了图像中低频信号在图像总能量中所占的比率,以及低频信号向高频信号过渡的变化情况,既具有可视化的特点,又便于频率域低通滤波和高频滤波实现。

3.11直接对f(x,y)进行傅立叶变换所得的傅立叶频谱即为f(u,v),其坐标原点位于(0,0),图像的低频分量主要集中在频谱图的四个角区域。

对(-1)(x+y)f(x,y)进行傅立叶变换所得的频谱图即为f(u-m/2,v-n/2),其坐标原点位于(m/2,n/2),图像的低频分量主要集中频谱图的中心区域。

因为当u0=m/2和v0=n/2时,有(x+y)f(x,y)根据二维离散傅立叶变换的平移性(x+y)所以,对(-1)f(x,y)进行傅立叶变换后所得频谱图的坐标原点位于(m/2,n/2),图像的低频分量就集中在频谱图的中心区域。

第四章4.1解释下列术语(1)空间域图像增强:是指在平面中对图像的像素灰度值直接进行处理的图像增强方法。

(2)频率域图像增强:是指利用傅立叶变换等先将图像从空间域变换到频率域,然后利用图像的幅频特性在频率域对图像再进行某种滤波处理,处理后再利用傅立叶反变换等将图像变换回空间域来实现图像增强的方法。

(6)归一化直方图:设图像f(x,y)的第k级归一化灰度值为rk,图像f(x,y)中具有诡异会灰度值rk的像素个数为nk,图像f(x,y)中的总像素个数为n,则图像f(x,y)的归一化直方图由p(rk)=nk/n给出。

其中,0rk1(k=0,…l-1)。

(7)图像锐化:是一种突出和加强图像中景物的边缘和轮廓的技术。

(9)图像的噪声:在图像上出现的一些随机的、离散的和鼓励的不惜条的像素点称为图像的噪声。

图像的噪声在视觉上通常与它们相邻的像素明显不同,表现形式为在较黑区域上的随机白点或较白区域上的随机黑点,明显会影响图像的视觉效果。

4.2直方图均衡的基本思想就是把一幅具有任意灰度概率分布的图像,变换成一幅接近俊宇的概率分布的新图像。

步骤如下:1、计算原图的归一化灰度级别及其分布概率。

2、根据直方图均衡化公示求变换函数的各灰度等级值。

3、将所得变换函数的各灰度等级值转化成标准的灰度级别值,从而得到均衡化后的新图像的灰度级别值。

4、根据相关关系求新图像的各灰度级别值的像素数码。

5、求新图像各灰度级别的分布概率。

6、画出均衡化后的新图像的直方图。

4.4解:(1)根据直方图均衡化公式球变换函数的各个灰度等级值s0=t(r0)=∑s1=t(r1)=∑s2=t(r2)=∑同理有j=01j=02j=0nj/n=pr(r)=0.354nj/n=pr(r)+pr(r)=0.354+0.2511nj/n= 0.354+0.251+0.129=0.734s3=0.824 s4=0.892 s5=0.960 s6=0.997 s7=1.00(2)将所得的变换函数的灰度等级值转化为标准的灰度级别值根据8个灰度级别的十进制数值:0 0.143 0.286 0.792 0.571 0.721 0.857 1 分析可得s0=2/7 s1=4/7 s2=5/7 s3=s4=6/7 s5= s6= s7=1(4)画出原图像和均衡化后新图像的直方图原图像和均衡化后新图像的直方图如图示4.7点运算是一种逐像素点对图像进行变换的增强方法,典型的方法是对比度拉伸灰度变换的方法。

相关文档
最新文档