射频测试基本知识(精选)
Wi-Fi射频测试技术

OFDM(正交频分复用)
正交频分复用技术OFDM是一种多载波发射技术,它将可用频谱划分为 许多载波,每一个载波都用低速率数据流进行调制。它获取高数据传输率的 诀窍就是,把高速数据信息分开为几个交替的、并行的BIT流,分别调制到 多个分离的子载频上,从而使信道频谱被分到几个独立的、非选择的频率子 信道上,在AP与无线网卡之间进行传送,实现高频谱利用率。
MCS
空间流
调制方式
0
1
CCK
1
1
CCK
2
1
PBCC
3
1
PBCC
4
1
OFDM
5
1
OFDM
6
1
OFDM
7
1
OFDM
8
1
OFDM
9
1
OFDM
10
1
OFDM
11
1
OFDM
编码率
传输速率 5.5 11 22 33 6 9 12 18 24 36 48 54
备注 b/g b/g b/g b/g g g g g g g g g
定义了推荐方法和公用接入点协议,使得接入点之间能够交换需要的信息,以支持分 布式服务系统,保证不同生产厂商的接入点的互联性,例如支持漫游。
2003年推出,工作在2.4GHz ISM频段,组合了802.11b和802.11a标准的优点,在兼容 802.11b标准的同时,采用OFDM调制方式,速率可高达54Mbps。
射频知识

射频知识———基本概念和术语一、基础知识1、功率/电平(dBm):放大器的输出能力,一般单位为w、mw、dBm注:dBm是取1mw作基准值,以分贝表示的绝对功率电平。
换算公式:电平(dBm)=10lgw5W → 10lg5000=37dBm10W → 10lg10000=40dBm20W → 10lg20000=43dBm从上不难看出,功率每增加一倍,电平值增加3dBm2、增益(dB):即放大倍数,单位可表示为分贝(dB)。
即:dB=10lgA(A为功率放大倍数)3、插损:当某一器件或部件接入传输电路后所增加的衰减,单位用dB表示。
4、选择性:衡量工作频带内的增益及带外辐射的抑制能力。
-3dB带宽即增益下降3dB时的带宽,-40dB、-60dB同理。
5、驻波比(回波损耗):行驻波状态时,波腹电压与波节电压之比(VSWR)附:驻波比——回波损耗对照表:SWR 1.2 1.25 1.30 1.35 1.40 1.50回波损耗(dB)21 19 17.6 16.6 15.6 14.06、三阶交调:若存在两个正弦信号ω1和ω2 由于非线性作用将产生许多互调分量,其中的2ω1-ω2和2ω2-ω1两个频率分量称为三阶交调分量,其功率P3和信号ω1或ω2的功率之比称三阶交调系数M3。
即M3 =10lg P3/P1 (dBc)7、噪声系数:一般定义为输出信噪比与输入信噪比的比值,实际使用中化为分贝来计算。
单位用dB。
8、耦合度:耦合端口与输入端口的功率比, 单位用dB。
9、隔离度:本振或信号泄露到其他端口的功率与原有功率之比,单位dB。
10、天线增益(dB):指天线将发射功率往某一指定方向集中辐射的能力。
一般把天线的最大辐射方向上的场强E与理想各向同性天线均匀辐射场场强E0相比,以功率密度增加的倍数定义为增益。
Ga=E2/ E0211、天线方向图:是天线辐射出的电磁波在自由空间存在的范围。
方向图宽度一般是指主瓣宽度即从最大值下降一半时两点所张的夹角。
(整理)射频基础知识.

第一部分射频基本概念第一章常用概念一、特性阻抗特征阻抗是微波传输线的固有特性,它等于模式电压与模式电流之比。
对于TEM波传输线,特征阻抗又等于单位长度分布电抗与导纳之比。
无耗传输线的特征阻抗为实数,有耗传输线的特征阻抗为复数。
在做射频PCB板设计时,一定要考虑匹配问题,考虑信号线的特征阻抗是否等于所连接前后级部件的阻抗。
当不相等时则会产生反射,造成失真和功率损失。
反射系数(此处指电压反射系数)可以由下式计算得出:z1二、驻波系数驻波系数式衡量负载匹配程度的一个指标,它在数值上等于:由反射系数的定义我们知道,反射系数的取值范围是0~1,而驻波系数的取值范围是1~正无穷大。
射频很多接口的驻波系数指标规定小于1.5。
三、信号的峰值功率解释:很多信号从时域观测并不是恒定包络,而是如下面图形所示。
峰值功率即是指以某种概率出现的尖峰的瞬态功率。
通常概率取为0.1%。
四、功率的dB表示射频信号的功率常用dBm、dBW表示,它与mW、W的换算关系如下:dBm=10logmWdBW=10logW例如信号功率为x W,利用dBm表示时其大小为五、噪声噪声是指在信号处理过程中遇到的无法确切预测的干扰信号(各类点频干扰不是算噪声)。
常见的噪声有来自外部的天电噪声,汽车的点火噪声,来自系统内部的热噪声,晶体管等在工作时产生的散粒噪声,信号与噪声的互调产物。
六、相位噪声相位噪声是用来衡量本振等单音信号频谱纯度的一个指标,在时域表现为信号过零点的抖动。
理想的单音信号,在频域应为一脉冲,而实际的单音总有一定的频谱宽度,如下页所示。
一般的本振信号可以认为是随机过程对单音调相的过程,因此信号所具有的边带信号被称为相位噪声。
相位噪声在频域的可以这样定量描述:偏离中心频率多少Hz处,单位带宽内的功率与总信号功率相比。
例如晶体的相位噪声可以这样描述:七、噪声系数噪声系数是用来衡量射频部件对小信号的处理能力,通常这样定义:单元输入信噪比除输出信噪比,如下图:对于线性单元,不会产生信号与噪声的互调产物及信号的失真,这时噪声系数可以用下式表示:Pno 表示输出噪声功率,Pni 表示输入噪声功率,G 为单元增益。
射频基础知识点

一、频谱分析仪部分什么是频谱分析仪?频谱分析仪是研究电信号频谱结构的仪器,用于信号失真度、调制度、谱纯度、频率稳定度和交调失真等信号参数的测量,可用以测量放大器和滤波器等电路系统的某些参数,是一种多用途的电子测量仪器。
我们现在所用的频谱仪大部分是扫频调谐超外差频谱分析仪.频谱仪工作原理输入信号经衰减器以限制信号幅度,经低通输入滤波器滤除不需的频率,然后经混频器与本振(LO)信号混频将输入信号转换到中频(IF).LO的频率由扫频发生器控制。
随着LO频率的改变,混频器的输出信号(它包括两个原始信号,它们的和、差及谐波,)由分辨力带宽滤波器滤出本振比输入信号高的中频,并以对数标度放大或压缩。
然后用检波器对通过IF滤波器的信号进行整流,从而得到驱动显示垂直部分的直流电压。
随着扫频发生器扫过某一频率范围,屏幕上就会画出一条迹线。
该迹线示出了输入信号在所显示频率范围内的频率成分。
输入衰减器保证频谱仪在宽频范围内保持良好匹配特性,以减小失配误差;保护混频器及其它中频处理电路,防止部件损坏和产生过大的非线性失真.混频器完成信号的频谱搬移,将不同频率输入信号变换到相应中频.在低频段(<3G Hz)利用高混频和低通滤波器抑制镜像干扰;在高频段(>3GHz)利用带通跟踪滤波器抑制镜像干扰。
本振(LO)它是一个压控振荡器,其频率是受扫频发生器控制的。
其频率稳定度锁相于参考源。
扫频发生器除了控制本振频率外,它也能控制水平偏转显示,锯齿波扫描使频谱仪屏幕上从左到右显示信号,然后重复这个扫描不断更新迹线。
扫频宽度(Span)是从左fstart到右fstop10格的频率差,例如:Span=1MHz,则100kHz/div.中频放大器其增益和衰减器设置值连动工作,即当输入衰减10dB时,则中频增益同时增加10dB,使输入信号电平保持不变。
屏幕顶格线参考电平间接设置中频增益值.当参考电平↑(或↓)10dB,则增益↓(或↑)使信号↓移(或↑移)10dB,即改变信号显示位置,但信号幅度保持不变。
射频(RF)基础知识

●什么是RF?答:RF 即Radio frequency 射频,主要包括无线收发信机。
2. 当今世界的手机频率各是多少(CDMA,GSM、市话通、小灵通、模拟手机等)?答:EGSM RX: 925-960MHz, TX:880-915MHz;CDMA cellular(IS-95)RX: 869-894MHz, TX:824-849MHz。
3. 从事手机Rf工作没多久的新手,应怎样提高?答:首先应该对RF系统(如功能性)有个系统的认识,然后可以选择一些芯片组,研究一个它们之间的连通性(connectivities among them)。
● 4. RF仿真软件在手机设计调试中的作用是什么?答:其目的是在实施设计之前,让设计者对将要设计的产品有一些认识。
5. 在设计手机的PCB时的基本原则是什么?答:基本原则是使EMC最小化。
6. 手机的硬件构成有RF/ABB/DBB/MCU/PMU,这里的ABB、DBB和PMU等各代表何意?答:ABB是Analog BaseBand,DBB是Ditital Baseband,MCU往往包括在DBB芯片中。
PMU是Power Management Unit,现在有的手机PMU和ABB在一个芯片上面。
将来这些芯片(RF,ABB,DBB,MCU,PMU)都会集成到一个芯片上以节省成本和体积。
7. DSP和MCU各自主要完成什么样的功能?二者有何区别?答:其实MCU和DSP都是处理器,理论上没有太大的不同。
但是在实际系统中,基于效率的考虑,一般是DSP处理各种算法,如信道编解码,加密等,而MCU处理信令和与大部分硬件外设(如LCD等)通信。
8. 刚开始从事RF前段设计的新手要注意些什么?答:首先,可以选择一个RF专题,比如PLL,并学习一些基本理论,然后开始设计一些简单电路,只有在调试中才能获得一些经验,有助加深理解。
9. 推荐RF仿真软件及其特点?答:Agilent ADS仿真软件作RF仿真。
射频知识基本概念和术

E面方向图指与电场平行的平面内辐射方向图;
H面方向图指与磁场平行的平面内辐射方向图。
一般是方向图越宽,增益越低;方向图越窄,增益越高。
12、天线前后比:指最大正向增益与最大反向增益之比,用分贝表示。
TNC型:外导体内径为6.5mm(0.256英寸)、特性阻抗50Ω的螺纹式射频同轴连接器。(IEC169-17)
SMA型:外导体内径为4.13mm(0.163英寸)、特性阻抗50Ω的螺纹式射频同轴连接器。(IEC169-15)
SMB型:外导体内径为3mm(0.12英寸)、特性阻抗50Ω的推入锁定式射频同轴连接器。(IEC169-10)
SSMC型:外导体内径为2.08mm(0.082英寸)、特性阻抗50Ω的螺纹式射频同轴连接器。(IEC169-20)
SC型(SC-A和SC-B型):外导体内径为9.5mm(0.374英寸)、特性阻抗50Ω的螺纹式(两种型号有不同类型连接螺纹)射频同轴连接器。(IEC169-21)
APC7型:外导体内径为7mm(0.276英寸)、特性阻抗50Ω的精密中型射频同轴连接器。(IEC457-2)
10、蜂窝:用正六边形无线小区(又称蜂窝小区)邻接构成的整个通信面状服务区的形状很象蜂窝,故形象地称为蜂窝状网(Cellular System),也称为蜂窝移动通信网。
四、电连接器命名方法
通用射频连接器的型号由主称代号和结构形式代号两部分组成,中间用短横线"-"隔开。其它需说明的情况可在详细轨范中作出规定,并用短横线与结构形式代号隔开。
11、尾 纤:一端带有光纤连接器的单芯光缆。
射频测试基本知识-精品文档

第一章.射频同轴电缆和连接器
1.2射频同轴连接器
射频连接器介绍
1.N 型连接器:良好的无源互调特性 2.BNC型连接器:一般2G 以下场合 3.TNC型连接器:改进,良好抗震 4.7mm型连接器:无极性 5.HN型连接器:耐高压,5kv,最高4G, 大功率射频源的输出端和传输线使用 6.LC型连接器:耐高压,10KW, 最高1G,大功率场合使用 7.DIN7-16型连接器:内导体外径7mm,外16mm DIN:Deutsche Industries Norm 德国工业标准,低无源互调,后改善塑料螺纹 8.SMA,SSMA型连接器:超小A型Subminiature,高频 9.SMB,SMC型连接器:超小B/C型Subminiature,高频 10.3.5MM,2.92mm型连接器:空气介质,SMA 升级版
第一章.射频同轴电缆和连接器
1.2射频同轴连接器
主要指标
1.特性阻抗 50Ω,75 Ω 2.工作频率范围 外导体尺寸越小,介质的介电常数越低,工作频率越高, 3.VSWR 传输线上电压的最大值和最小值之比 4.接触电阻,内外导体接触点的电阻,mΩ级,越小越好 5.绝缘电阻,内外导体接触点的电阻,mΩ级,越小越好 6.连接器的耐久性(拔插寿命) 7.连接器的配接力矩(拔插寿命) 越高意味着拔插寿命越长
第一章.射频同轴电缆和连接器
1.2射频同轴连接器
射频连接器介绍
11.2.4mm,1.85mm 型连接器:空气介质 12.1mm型连接器:110G 频率,昂贵 13.QMA,QN型连接器:6G 频率,快速连接,占用空间小(对SMA,N型)--新型 14.MCX 型连接器:快速插拔插入式结构的有极性连接器,类似SMB 15.MMCX型连接器: 16.SMP型连接器:
(完整word版)射频测试

您需要什么样的射频仪器以满足您的测试需求?低频测试仪器正不断丰富普及,射频测试仪器的种类也越来越多,应用越来越广泛,包括从信号源和功率计,到频谱和网络分析仪等各种仪器。
这些仪器用于产生射频信号,以及测量大量信号参数。
射频功率计——射频领域的数字万用表功率是射频领域中最经常被测量的一个量。
测量功率最简单的方法就是使用功率计,它实际上是用来功率计是所有测量功率的射频仪器中最准确的。
高端功率计(通常需要一个外部功率传感器)可以实现0.1dB或更高的测量精度。
功率计最低可以测量- 70dBm(100pW)的功率。
传感器有各种模型,从高功率模型、高频率(40GHz)模型,到峰值功率测量的高带宽模型等。
功率计有单通道和双通道两种。
每个通道都需要配置自己的传感器。
两个通道的功率计就能够测量出一个器件、电路或系统的输入和输出功率,并计算出增益或损耗。
某些功率计能够达到每秒200到1500次读数的测量速度。
而有些功率计能够测量多种信号的峰值功率特性,包括通信和某些应用中使用的调制信号和脉冲射频信号。
双通道的功率计还能够准确测量出相对功率。
功率计还可以针对便携式应用的需要设计成尺寸精巧的外形,使其更适合于现场测试的需要。
功率计的主要局限在于其幅值测量范围。
频率范围是与测量量程之间进行折衷的。
此外,功率计虽然能够非常准确地测量出功率,但是无法表示信号的频率分量。
射频频谱或射频信号分析仪——射频工程师的示波器频谱或矢量信号分析仪利用窄带检测技术在频域内测量射频信号。
其主要的输出显示是功率频谱与频率之间的关系,包括绝对功率和相对功率。
这种分析仪还可以输出解调信号。
频谱分析仪和矢量信号分析仪没有像功率计那样的精确性,但是,射频分析仪中使用的窄带检测技术使其能够测量低达-150dBm的功率。
射频分析仪的精度一般在±0.5d B以上。
频谱和矢量信号分析仪可以测量的信号频率从1kHz到40GHz(甚至以上)。
频率范围越宽,分析仪的成本就越大。
射频参数测试方法

射频参数测试方法
射频参数测试方法用于评估和验证射频设备或电路的性能。
以下是常见的射频参数测试方法:
1.频率测量:此测试方法用于确定设备的工作频率。
常见的测试
仪器包括频谱分析仪、频率计等。
通过测量设备的输出信号频
率,可以确定设备的工作频率是否在要求范围内。
2.输出功率测量:输出功率是衡量射频设备输出能力的重要参数。
通常使用功率计或功率传感器进行测量。
测试时需要将功率计
连接到设备的输出端口,以获取设备的输出功率值。
3.灵敏度测试:灵敏度是指设备在接收信号时的最低输入功率。
该测试方法通常使用信号发生器和功率计结合,通过逐渐降低
输入信号的功率,观察设备的接收能力和误码率,以确定设备
的灵敏度水平。
4.相位噪声测量:相位噪声是指设备输出信号的相位稳定性和纯
净度。
通常使用频谱分析仪进行测量。
通过将设备的输出信号
连接到频谱分析仪,可以确定设备的相位噪声水平。
5.谐波和杂散测试:谐波和杂散是设备输出信号中非预期频率成
分的表现。
通过使用频谱分析仪或谐波分析仪,可以检测设备
输出信号中的谐波和杂散水平。
6.带宽测量:带宽指设备能够传输的信号频率范围。
常见的方法
是使用频谱分析仪进行测量,观察设备输出信号的功率在不同频率上的分布情况,以确定设备的带宽。
7.信噪比测量:信噪比是指设备输出信号中所包含的有效信号与
噪声的比值。
该测试方法通常使用信号发生器提供有效信号,配合功率计或频谱分析仪测量噪声水平,从而计算信噪比值。
射频基本知识

引言在进入射频测试前,让我们回顾一下单相交流电的基本知识。
一、单相交流电的产生在一组线圈中,放一能旋转的磁铁。
当磁铁匀速旋转时,线圈内的磁通一会儿大一会儿小,一会儿正向一会儿反向,也就是说线圈内有呈周期性变化的磁通,从而线圈两端即感生出一个等幅的交流电压,这就是一个原理示意性交流发电机。
若磁铁每秒旋转50周,则电压的变化必然也是50周。
每秒的周期数称为频率f,其单位为赫芝Hz。
103Hz=千赫kHz,,106Hz=兆赫MHz,109Hz=吉赫GHz。
b5E2RGbCAP 在示波器上可看出电压的波形呈周期性,每一个周期对应磁铁旋转一周。
即转了2π弪,每秒旋转了f个2π,称2πf为ω<常称角频率,实质为角速率)。
则单相交流电的表达式可写成:p1EanqFDPwV=Vm=Vm式中Vm(电压最大值>=Ve(有效值或Vr.m.s.>。
t为时间<秒),为初相。
二、对相位的理解1、由电压产生的角度来看·设想有两个相同的单相发电机用连轴器连在一起旋转,当两者转轴<磁铁的磁极)位置完全相同时,两者发出的电压是同相的。
而当两者转轴错开角度时,用双线示波器来看,两个波形在时轴上将错开一个角度;这个角度就叫相位角或初相。
相位领先为正,滞后为负。
DXDiTa9E3d·假如在单相发电机上再加一组线圈,两组线圈互成90°<也即两电压之间相位差90°),即可形成两相电机。
假如用三组线圈互成120°<即三电压之间,相位各差120°)即可形成三相电机。
两相电机常用于控制系统,三相电机常用于工业系统。
RTCrpUDGiT2、同频信号<电压)之间的叠加当两个电压同相时,两者会相加;而反相时,两者会抵消。
也就是说两者之间为复数运算关系。
若用方位平面来表示,也就是矢量关系。
矢量的模值<幅值)为标量,矢量的角度为相位。
5PCzVD7HxA虽然人们关心的是幅值,但运算却必须采用矢量。
GSM射频测试基础知识

GSM频段选1、62、124三个频道,功率级别选最大LEVEL5;DCS频段选512、 698、885三个频道,功率级别选最大LEVEL0进行测试。GSM和DCS的相位峰值误差均 小于20度,平均误差均小于5度。实际测试中相位峰值误差小于7度时为最好,大于 7度小于10度时为良好,大于10度小于20度时为一般,大于20度时为不合格;相位 平均误差小于2.5度时为最好,大于2.5度小于4度时为良好,大于4度小于5度时为 一般,大于5度时为不合格。
测试原理: 在GSM系统中,话音是经过数字编码和纠错处理的,因此很难通过测量解调以
后的话音信号来准确地评价接收机的性能,一般而言解调以后的数据是无法从手机 外部进行测试的,因为它在芯片的内部,无法去检测它,为使解调以后的比特可以 被测试,GSM规范要求所有的手机都工作在回环模式中,GSM综合测试仪会在其下行 的SACCH信道中发出相应的控制命令来指定手机进入回环模式。一旦解调的数据被 回环,综合测试仪便可计算出比特误码率。即综合测试仪生成一组数据送给手机, 手机重新将这组数据返回给综合测试仪。综合测试仪对收发的数据进行比较后得出 的结果即为误码率。 条件参数
测试目的
用于检查手机的TDMA突发脉冲的上升、下降及平坦部分与模板的吻合程度。 手机发射突发信号的上升与下降部分应在+4dM——-30dB模板范围之内,顶部起 伏部分应在±1dB模板范围之内。若突发信号超出模板范围,将会对临近时隙的 用户产生干扰。
测量方法
对功率/时间关系的测量可以看作两部分。一部分是对上升、下降沿的测量, 对上升、下降沿的要求是为了保证两个相邻突发之间不产生干扰。因为前一个突 发的下降沿和后一个突发的上升沿各有一部分处于一个相同的时段,即前一个突 发最后的8。25比特时间的保护段。另一部分是对突发有用部分的幅度平坦度的 测量,对幅度平坦度的要求是为了保证不出现有用部分的某个或几个比特的码元 功率过大,从而造成对其它比特的干扰
射频基础知识单选题100道及答案

射频基础知识单选题100道及答案一、射频基本概念1. 射频通常指的是频率范围在()的电磁波。
A. 3Hz - 30kHzB. 30kHz - 300kHzC. 300kHz - 3MHzD. 3MHz - 300GHz答案:D2. 以下哪个单位通常用于表示射频功率?A. 伏特(V)B. 安培(A)C. 瓦特(W)D. 欧姆(Ω)答案:C3. 射频信号在自由空间中的传播速度大约是()。
A. 3×10⁵千米/秒B. 3×10⁶米/秒C. 3×10⁷米/秒D. 3×10⁸米/秒答案:D4. 射频信号的波长与频率的关系是()。
A. 波长=频率/光速B. 波长=光速×频率C. 波长=光速/频率D. 波长=频率×光速答案:C5. 射频信号的极化方式不包括()。
A. 水平极化B. 垂直极化C. 圆极化D. 三角极化答案:D二、射频电路元件6. 以下哪种元件主要用于储存电场能量?A. 电感B. 电容C. 电阻D. 二极管答案:B7. 一个理想电容在射频电路中的阻抗随着频率的增加而()。
A. 增加B. 减少C. 不变D. 先增加后减少答案:B8. 电感在射频电路中的主要作用是()。
A. 阻碍交流,通过直流B. 阻碍直流,通过交流C. 储存磁场能量D. 储存电场能量答案:C9. 电阻在射频电路中的作用主要是()。
A. 分压和分流B. 储能C. 滤波D. 放大答案:A10. 二极管在射频电路中的主要作用不包括()。
A. 整流B. 检波C. 放大D. 开关答案:C三、射频传输线11. 常见的射频传输线有()。
A. 同轴电缆、双绞线、光纤B. 同轴电缆、微带线、波导C. 双绞线、光纤、波导D. 微带线、双绞线、光纤答案:B12. 同轴电缆的主要特点是()。
A. 损耗小、带宽大B. 成本低、易安装C. 抗干扰能力强D. 以上都是答案:D13. 微带线主要用于()。
射频指标测试介绍(精选)

目录1GSM部分 (1)1.1常用频段介绍 (1)1.2发射(transmitter)指标 (2)1.2.1发射功率 (2)1.2.2发射频谱(Output RF spectrum<ORFS>) (4)1.2.2.1调制频谱 (4)1.2.2.2开关频谱 (5)1.2.3杂散(spurious emission) (5)1.2.4频率误差(Frequency Error) (6)1.2.5相位误差(Phase Error) (6)1.2.6功率时间模板(PVT) (7)1.2接收(receiver)指标 (8)1.2.1接收误码率(BER) (8)2 WCDMA (9)2.1常用频段介绍 (9)2.2发射(Transmitter)指标 (9)2.3接收(receiver)指标 (15)3 CDMA2000 (15)3.1常用频段介绍 (15)3.2发射(transmitter)指标 (16)3.3接收(receiver)指标 (19)4 TDSCDMA部分 (20)常用频段介绍 (20)发射(transmitter)指标 (20)接收指标(Receiver) (26)1GSM部分1.1常用频段介绍GSM类别信道号上行频率(MHz)下行频率(MHz)上下行频率相差(MHz)EGSM9000<=n<=124Fu(n)=890+0.2*n Fd(n)=Fu(n)+4545975<=n<=1023Fu(n)=890+0.2*(n1024)PGSM9001<=n<=124Fu(n)=890+0.2*n Fd(n)=Fu(n)+4545GSM850128<=n<=251Fu(n)=82+0.2*(n128)Fd(n)=Fu(n)+4545DCS1800512<=n<=885Fu(n)=1710.2+0.2*(n512)Fd(n)=Fu(n)+9595PCS1900512<=n<=810Fu(n)=1850.2+0.2*(n512)Fd(n)=Fu(n)+80801.2发射(transmitter)指标1.2.1发射功率定义:发射机载波功率是指在一个突发脉冲的有用信息比特时间上内,基站传送到手机天线或收集及其天线发射的功率的平均值。
射频测试基本知识共30页

31、只有永远躺在泥坑里的人,才不会再掉进坑里。——黑格尔 32、希望的灯一旦熄灭,生活刹那间变成了一片黑暗。——普列姆昌德 33、希望是人生的乳母。——科策布 34、形成天才的决定因素应该是勤奋。——郭沫若 35、学到很多东西的诀窍,就是一下子不要学很多。——洛克
射频测试基本知识
1、纪律是管理关系的形式。——阿法 纳西耶 夫 2、改革如果不讲纪律,就难以成功。
3、道德行为训练,不是通过语言影响 ,而是 让儿童 练习良 好道德 行为, 克服懒 惰、轻 率、不 守纪律 、颓废 等不良 行为。 4、学校没有纪律便如磨房里没有水。 ——夸 美纽斯
5、教导儿童服从真理、服从集体,养 成儿童 自觉的 纪律性 ,这是 儿童道 德教育 最重要 的部分 。—
射频测试基本知识共30页

10.3.5MM,2.92mm型连接器:空气介质,SMA 升级版
分类与选择
半刚性:外导体用铝管或铜管,泄露小于-120db 半柔性:半刚性替代品,稳定性不足 柔性:编织电缆,测试级电缆,成本高 波纹铜管电缆:用于天馈系统。外导体为波纹导管
测试电缆组件的选择原则: 1.够用原则 2.平衡柔软性和电性能指标的矛盾 3.关于VSWR 4.关于插入损耗(可以被校准) 5.关于使用寿命
8.传播速度(相速度) --射频信号在电缆中传输的速度和光速的比值,与介质的介电常数有关
9.电长度
10.电缆的弯曲特性(最小弯曲半径) 最小弯曲半径不要小于其直径的10倍,接头与电缆根部的防弯曲工艺
第一章.射频同轴电缆和连接器
性能和指标
11.同轴电缆的无源互调特性 三阶互调产物:2f1-f2或2f2-f1
连接器的插拔次数:如N型 500次,实际2000次以上,插入损耗0.2db,VSWR无变化
第一章.射频同轴电缆和连接器
1.2射频同轴连接器
基本结构
针对内导体而言分为 有极性:Male(插头,阳头), Female(插座,阴性)
无极性:7mm连接器(APC7 或叫平接头)
反极性:如WIFI设备中,RP-SMA,RP-TNC,RP-BNC 针对外导体的配合方式分为 螺纹式:精密型,如N,SMA型
第一章.射频同轴电缆和连接器
1.2射频同轴连接器
射频连接器介绍
11.2.4mm,1.85mm 型连接器:空气介质