函数概念发展史
函数概念发展的历史过程
函数概念发展的历史过程函数的概念在数学上被广泛应用,它是描述自变量和因变量之间关系的一种数学工具。
在数学的发展历史上,函数的概念经历了漫长的发展过程,从最初的平面几何到现代的抽象代数,函数的概念不断得到丰富和深化。
本文将从古希腊时期的几何学开始,对函数的概念发展历史进行全面梳理。
古希腊时期的函数概念古希腊的几何学家在研究曲线的运动过程中,开始对函数的概念进行初步的探讨。
在古希腊时期,数学家们主要从几何的角度来研究函数,如阿基米德、亚历山大的庞德等人。
他们主要关注几何图形的变化规律,即自变量和因变量之间的关系。
在这一时期,函数的概念主要是从曲线的运动、几何图形的变化中产生,并没有形成系统的数学理论。
17世纪的微积分学在17世纪,微积分学的发展推动了函数概念的进一步深化。
牛顿和莱布尼兹等数学家发展了微积分学,首次明确地提出了函数的概念,并将其作为研究曲线和图形的基本工具。
微积分学将函数的概念与导数、积分等概念结合起来,形成了现代函数论的雏形。
在这一时期,函数的概念逐渐从几何的范畴中脱离出来,成为了一种独立的数学对象。
19世纪的分析学19世纪是函数概念发展的一个重要时期,分析学的兴起推动了函数概念的进一步发展。
在这一时期,柯西、魏尔斯特拉斯等数学家对函数的性质进行了深入研究,提出了连续性、可导性等概念,逐渐建立起了现代函数论的基本框架。
函数的概念开始从简单的数学工具演变为一种抽象的数学对象,其研究不再局限于几何或微积分学的范畴,而是成为了一种独立的数学分支。
20世纪的抽象代数与拓扑学20世纪是函数概念发展的一个新阶段,随着抽象代数和拓扑学的兴起,函数的研究逐渐从实数域扩展到了更一般的数学结构。
在这一时期,泛函分析、代数拓扑等新的数学分支涌现出来,为函数概念的进一步深化提供了新的视角。
函数不再局限于实数域或复数域,而是被推广到了更一般的数学结构上,如度量空间、拓扑空间等。
函数概念在数学应用中的发展除了在纯数学理论中的发展,函数的概念在数学应用中也得到了广泛的应用。
函数概念发展的历史过程
函数概念发展的历史过程函数概念的发展可以追溯到古希腊数学,特别是毕达哥拉斯学派和欧多克斯学派的数学家。
在古希腊的数学中,函数的概念最初是通过几何问题的讨论而产生的,随后逐渐发展成为独立的数学概念。
函数的概念在数学和物理学等领域中扮演着重要的角色,它的发展历程与数学和物理学领域的发展密切相关。
在古希腊时期,毕达哥拉斯学派和欧多克斯学派的数学家开始讨论角度和传统的几何学问题,这些问题往往需要利用变量和关系式来描述。
例如,在求出一个等腰三角形的斜边与底边的关系时,需要描述角度和直角三角形之间的关系,这种描述可以看做是角度与斜边长度的函数关系。
在此过程中,数学家们开始意识到,不同的输入可以对应到不同的输出,即输入和输出之间有一定的关系,这种关系可以通过公式或者表格来表示。
在欧几里得的《几何原本》中,已经出现了对线性函数的讨论。
在古希腊时期,欧几里得就提出了比例和相似的概念,这是对函数概念的提前探索。
另外,在数学家阿基米德的著作中也出现了对曲线形状和其对应的方程关系的讨论,这也为函数的发展奠定了理论基础。
在中世纪和文艺复兴时期,数学家们又开始重新探讨古希腊时期的数学问题,特别是对函数概念的研究。
文艺复兴时期的数学家伽利略、笛卡尔等人,开始将代数和几何联系起来,提出了解析几何和坐标系的概念。
在笛卡尔的《几何学》中,首次将函数的概念和直角坐标系联系起来,提出了函数与坐标之间的对应关系。
这一理论的提出,对函数的发展起到了重要的推动作用。
在17世纪,微积分的发展进一步推动了函数概念的发展。
牛顿和莱布尼兹分别独立地发明了微积分学,引入了函数的导数和积分的概念。
微积分理论的出现,使函数概念得以系统化和深化,为函数的发展奠定了数学基础。
例如在牛顿的《自然哲学的数学原理》中,函数的概念已经被广泛应用于描述物体的运动、速度和加速度等物理现象。
18世纪和19世纪,函数概念得到了进一步的发展。
在18世纪,欧拉和拉格朗日对函数的极限、连续性和泰勒级数进行了深入的研究,引入了许多函数的概念和性质。
函数de发展史
函数概念 欧拉 L.Euler 1707-1783 瑞士数学家
如果某些变量,以这样一种方式依赖于另一 些变量,即当后面这些变量变化时,前面这些变 量也随之变化,则将前面的变量称为后面变量的 函数. ————Euler
函数概念
狄利克雷 P.G.L.Dirichlet 1805-1859 德国数学家
函数概念的发展历程
函数概念
“function”一词最初由 德国数学家莱布尼兹在1692 年使用. 用“function”表示随曲 线的变化而改变的几何量, 如坐标、切线等.
莱布尼兹 G.W.Leibniz 1646-1716 德国数学家
函数概念
约翰· 伯努利(Bernoulli Johan) 1667-1748 瑞士数学家 强调函数要用公式表示.
17
47 x 16cos t 5 cos t 3 y 12si nt 3 si n 44 t 3
返回目录
现实世界是数学的丰富源泉,数 学源于生活、寓于生活、用于生活。 数学家华罗庚曾经说过:宇宙之大,粒 子之微,火箭之速,化工之巧,地球之变, 日用之繁,无处不用数学。这是对数学 与生活的精彩描述。这次学习,希望 我们体会到了数学的魅力。
如果对于x的每一个值,y总有完全确定的 值与之对应,则y是x的函数.
函数概念
李善兰 1811-1882 清朝数学家
在1859年和英国传教士伟烈亚力和译的《代 微积拾积》中首次将“function”译做“函数”.
函数的应用
对数函数
叶形线 其解析式为:x3+y3=3axy
返回目录
李萨茹曲线
其中
-5
0 x
5
10
Байду номын сангаас
函数发展史
ቤተ መጻሕፍቲ ባይዱ
终于出了一个像样的
1821年,法国数学家柯西给 出了类似现在中学课本的函数 对应关系(条件)是 定义:“在某些变数间存在着 必要的,要利用这个 关系以求出每一个x 一定的关系,当一经给定其中 的对应值。 某一变数的值,其他变数的可 随着而确定时,则将最初的变 数叫自变量,其他各变数叫做 函数。”
Long long ago,
最早提出函数概念的,是1 7世纪德国数学家莱 布尼茨。1673年, 莱布尼兹首次使用 函数一词表示“幂” 由此可以看出,函数 一词最初的数学含义是相当 广泛而较为模糊的。
函数就是描述曲线的 一个相关量,如曲线 的斜率或者曲线上的 某一点。
有一个大胆的人定义了函数
• 1755 年欧拉把函数定义为 “如果 1718 年约翰· 伯努利对函数概念 某些变量,以某一种方式依赖于 进行了定义:“由任一变量和常 另一些变量,即当后面这些变量 数的任一形式所构成的量。”他 变化时,前面这些变量也随着变 的意思是凡变量x和常量构成的 化,我们把前面的变量称为后面 式子都叫做x的函数,并强调函 变量的函数。 ” 数要用公式来表示。
罗巴契夫斯基
现代概念终究出炉了
罗巴契夫斯基
康托尔
欧拉
狄利克雷
在某个坐标变化过程中,如果有 两个变量x和y,对每一个给定的 x 柯西 值,y都有唯一确定的值与它对应, 确定y=x的函数。x=自变量,y作 为x的因变量。 傅里叶
贝努利 莱布尼茨
|y| = ±x 能不能说‘y是x的函数’? 答:
函数概念发展的历史过程
函数概念发展的历史过程函数概念的发展是数学领域的一项重要进展,经历了长时间的发展过程。
本文将从古希腊时期的初步思考开始,逐步介绍函数概念的发展历程直至现代数学的函数定义。
最早对函数的思考可以追溯到古希腊数学家们对几何曲线的研究。
古希腊的数学家们研究了一系列的曲线,如圆、椭圆和抛物线等等。
他们发现几何曲线上的每一个点都可以通过其坐标来确定,这种坐标的确定性使得数学家们开始思考是否可以将曲线上的点表示为一个或多个变量的函数关系。
直到17世纪,数学家马克思·奥雷利(Marquis de l'Hôpital)首次提出了函数这一词汇,但在这之前,欧洲数学界对于函数的定义还没有达成一致。
那时的数学家们对于函数抱有一种“坐标”的观念,即函数可以描述曲线上的点与坐标的关系。
在18世纪初,瑞士数学家莱昂哈德·欧拉(Leonhard Euler)对函数的研究做出了重要贡献。
他将函数的概念扩展到了复变函数,并系统地研究了指数函数、三角函数和对数函数等等。
他的研究成果对现代数学的发展起到了重要的推动作用。
到了19世纪,法国数学家阿道夫·科斯提(Augustin-Louis Cauchy)和德国数学家卡尔·威尔斯特拉斯(Karl Weierstrass)提出了一种更加严格的函数定义。
科斯提提出了连续函数的严格定义,并发展了复变函数的理论基础。
威尔斯特拉斯则通过严格的极限定义来定义函数。
这些严格的函数定义使得数学研究更加系统和准确。
20世纪初,法国数学家勒贝格(Henri Léon Lebesgue)提出了测度论的概念,并将其应用于函数的理论研究中。
他提出了勒贝格积分的概念,从而为函数的积分提供了新的方法和工具。
随着数学的发展和应用的拓宽,函数的概念也得到了进一步的发展。
在现代数学中,函数被定义为将一个集合的元素映射到另一个集合的元素的规则。
这是一种更加抽象和广泛的定义,使得函数的研究可以应用于各个数学领域,如代数、几何、拓扑等等。
函数的发展历程
函数的发展历程一、古希腊时期古希腊数学家希腊斯科特·伯涅劳斯(Scctonius)在公元前4世纪就提出了函数的概念。
他用字母表示一个量,并用等式将这个量和另一个量联系在一起。
例如,他用f(x)表示x的平方,即f(x)=x^2。
但是,他并没有将函数作为独立的数学概念来看待,只是作为一种辅助工具。
二、17世纪17世纪是函数发展的重要时期。
著名数学家斯特林(Stevin)在其著作《五十个数学问题》中提出了函数的概念。
他指出,函数是一种可以用数学公式表示的规律,即f(x)=x^2。
三、18世纪18世纪是函数发展的关键时期。
著名数学家莫尔(Leibniz)在公元1694年提出了微积分的概念。
他认为,微积分是一种研究变化的工具,可以用来研究连续函数的变化。
这为函数研究开辟了新的天地。
四、19世纪19世纪是函数发展的全盛时期。
著名数学家高斯(Gauss)在公元1801年提出了高维空间的概念。
他认为,高维空间是一个可以用函数表示的数学模型,即可以用函数来描述多维空间的性质。
这为函数的研究提供了更加广阔的空间。
五、20世纪20世纪是函数发展的高潮时期。
著名数学家华罗庚(Huang Qiu-Guang)在公元1943年提出了泛函分析的概念。
他认为,泛函分析是一种研究函数性质的数学方法,可以用来研究连续函数和离散函数的性质。
这为函数的研究提供了更加丰富的内容。
六、21世纪21世纪是函数发展的新时期。
计算机技术的发展使得函数在计算机科学和工程领域中发挥着越来越重要的作用。
函数也被广泛用于数据挖掘和人工智能领域,为科学技术的发展做出了重要贡献。
综上,函数作为一种独立的数学概念,在古希腊时期就已经提出,但是直到17世纪才得到正式的定义。
随着时间的推移,函数在数学和工程领域的应用越来越广泛,为科学技术的发展做出了巨大贡献。
函数概念的发展历史和应用总结报告
一、概述函数作为数学、计算机科学、工程学等多个学科领域中的重要概念,在其发展历史中扮演着至关重要的角色。
本报告将对函数概念的发展历史进行回顾,并总结其在各个领域中的应用情况,以期为相关领域的研究和教育提供参考。
二、函数概念的发展历史1. 函数的最早概念函数的最早概念可以追溯至古希腊数学家欧几里得的《几何原本》中,他将函数理解为图形和数之间的关系。
此后,函数的概念在数学中逐渐得到发展,包括勒让德、傅里叶、魏尔斯特拉斯等数学家的贡献。
2. 函数在工程学中的应用函数在工程学中的应用可以追溯至17世纪,当时牛顿和莱布尼兹分别发现了微积分学科,其中涉及了函数的概念。
自此之后,函数的应用在工程学中不断深入,成为解决工程问题的重要数学工具。
3. 函数在计算机科学中的发展函数在计算机科学中的发展可以追溯至20世纪50年代的代数逻辑理论。
随着计算机的发展,函数成为了编程和算法设计中的基础概念,如递归函数、高阶函数等。
三、函数在各领域中的应用总结1. 数学领域在数学领域中,函数的应用广泛,涉及微积分、数学分析、代数学等多个分支。
函数作为数学建模的基础,被广泛应用于科学研究和工程技术中。
2. 工程学领域在工程学领域中,函数的应用与数学领域紧密相关,包括控制系统、信号处理、电路分析等。
工程师通过函数分析和设计,解决了许多现实世界中的难题。
3. 计算机科学领域在计算机科学领域中,函数的应用涉及编程语言、算法设计、数据结构等多个方面。
函数作为计算机程序中的基本单位,对计算机科学的发展起到了至关重要的作用。
四、结语函数作为一个跨学科的概念,在数学、工程学、计算机科学等多个领域中得到了广泛的应用。
通过回顾函数概念的发展历史及其在各领域中的应用情况,我们可以更好地理解函数的重要性和作用,为今后在相关领域的研究和应用提供借鉴和指导。
希望本报告能对相关领域的研究和教育工作有所助益。
五、函数概念的发展历史和应用案例1. 函数在物理学中的应用在物理学中,函数的概念被广泛运用于描述自然界中的各种规律和现象。
函数发展史
函数发展简史最早提出函数(function)概念的,是17世纪德国数学家莱布尼茨.后又经历了贝努利、欧拉等人的改译。
1821年,法国数学家柯西给出了类似现在中学课本的函数定义:“在某些变数间存在着一定的关系,当一经给定其中某一变数的值,其他变数的可随着而确定时,则将最初的变数叫自变量,其他各变数叫做函数,在柯西的定义中,首先出现了自变量一词。
1834年,俄国数学家罗巴契夫斯基进一步指出了对应关系(条件)的必要性,利用这个关系以求出每一个x的对应值.康托尔自从德国数学家康托尔的集合论被大家接受后,用集合对应关系来定义函数概念就是现在高中课本里用的了。
. 中文数学书上使用的“函数”一词是转译词.是我国清代数学家李善兰在翻译《代数学》一书时,把“function”译成函数。
优美的函数图象笛卡尔的故事当时法国正流行黑死病,笛卡儿不得不逃离法国,于是他流浪到瑞典当乞丐。
某天,他在市场乞讨时,有一群少女经过,其中一名少女发现他的口音不像是瑞典人,她对笛卡儿非常好奇,于是上前问他…… 你从哪来的啊? “法国”“你是做什么的啊?” “我是数学家。
” 这名少女叫克丽丝汀,18岁,是一个公主,她和其它女孩子不一样,并不喜欢文学,而是热衷于数学。
当她听到笛卡儿说名身份之后,感到相当大的兴趣,于是把笛卡儿邀请回宫。
笛卡儿就成了她的数学老师,将一生的研究倾囊相授给克丽丝汀。
而克丽丝汀的数学也日益进步,直角坐标当时也只有笛卡儿这对师生才懂。
后来,他们之间有了不一样的情愫,发生了喧腾一时的师生恋。
这件事传到国王耳中,让国王相当愤怒!下令将笛卡儿处死,克丽丝汀以自缢相逼,国王害怕宝贝女儿真的会想不开,于是将笛卡儿放逐回法国,并将克丽丝汀软禁。
笛卡儿一回到法国后,没多久就染上了黑死病,躺在床上奄奄一息。
笛卡儿不断地写信到瑞典给克丽丝汀,但却被国王给拦截没收。
所以克丽丝汀一直没收到笛卡儿的信…… 在笛卡儿快要死去的时候,他寄出了第13封信,当他寄出去没多久后...就气绝身亡了。
函数概念的历史发展(完整版)
函数概念的历史发展(完整版)(文档可以直接使用,也可根据实际需要修改使用,可编辑欢迎下载)函数概念的历史发展众所周知,函数是数学中一个重要概念,它几乎渗透到每一个数学分支,因此考察函数概念的发展历史及其演变过程,无疑有助于我们学生更深刻、更全面地理解函数的本职,并且从中得到有益的方法论启示。
1 函数概念的产生阶段—变量说马克思曾认为,函数概念是源于代数中自罗马时代就已经开始的不定方程的研究,那时,伟大的数学家丢番图对不定方程的研究已有相当程度,据此,可以认为函数概念至少在那时已经萌芽。
实际上作为变量和函数的朴素概念,几乎和数学源于同一时期,因为数学家在研究物体的大小及位置关系时,自然会导致通常称为函数关系的那种从属关系。
但是,真正导致函数概念得以迅速发展则是在16世纪以后,特别是由于微积分的建立,伴随这一学科的产生、发展和完善,函数概念也经历了产生、发展和完善的演变过程。
哥白尼的天文学革命以后,运动成为文艺复兴时期科学家共同感兴趣的问题,到了16世纪,对于运动的研究已变成自然科学的中心问题。
在这一时期,函数概念在不同科学家那里有着不同形式的描述。
在伽利略的《两门新科学》一书中,几乎从头到尾包含着函数的思想,他用文字和比例的语言表述函数关系。
例如,他提出:“两个等体积圆柱体的面积之比,等于它们高度之比的平方根。
”“两个侧面积相等的正圆柱,其体积之比等于它们高度之比的反比。
”他又说:“从静止状态开始以定常加速度下降的物体,其经过的距离与所用时间的平方成正比。
”这些描述非常清楚地表明伽利略已涉及并讨论变量和函数,但他并没有做出一般的抽象,并且也没有把文字叙述表示为符号形式。
几乎与此同时,许多数学家,如托里拆利、瓦里斯、笛卡儿、牛顿、莱布尼兹等,从不同角度对函数进行了不同程度的研究.有的数学家是把一些具体的函数看成曲线进行研究,尽管当时还没有建立实连续的概念,但数学家却默认曲线都是连续的。
托里拆利就曾对曲线()0≥y ex进行过研究;而瓦里斯在他的《动学》中研究过正弦曲=xae线,并注意到了这一函数的周期性。
函数定义的发展历程
函数定义的发展历程一、函数概念的萌芽时期函数思想是随着人们开始运用数学知识研究事物的运动变化情况而出现的,16世纪,由于实践的需要,自然科学界开始转向对运动的量进行研究,各种变化着的物理量之间的关系也就成为数学家们关注的对象。
17世纪意大利数学家、科学家伽利略(Galileo,1564-16421是最早研究这方面的科学家,伽俐略在《两门新科学》一书中多处使用比例关系和文字表述了量与量之间的依赖关系,例如,从静止状态自由下落的物体所经过的距离与所用时间的平方成正比,这实际上就运用了函数思想,与此同时,英国著名的物理学家、数学家、天文学家牛顿(Newton,1642-1727)在对微积分的讨论中,使用了“流量”一词来表示变量间的关系,1673年,法国数学家笛卡尔(Descartes,1596-1650)在研究曲线问题时,发现了量的变化及量与量之间的依赖关系,引进了变量思想,并在他的《几何学》一书中指出:所谓变量是指“不知的和未定的量”,这成为数学发展的里程碑,也为函数概念的产生奠定了基础。
直到17世纪后期,在德国数学家莱布尼兹(Leib-niz,1646-1716)、牛顿建立微积分学时,还没有人明确函数的一般意义,大部分的函数是被当作研究曲线的工具,最早把“函数”(function)一词用作数学术语的是莱布尼兹,当时,莱布尼兹用“函数”(function)一词表示幂,后来又用函数表示任何一个随着曲线上的点变动而变动的量,例如曲线上的点的横坐标、纵坐标、切线的长度、垂线的长度等,从这个定义,我们可以看出,莱布尼兹利用几何概念,在几何的范围内揭示了某些量之间的依存关系。
二、函数概念的初步形成18世纪微积分的发展促进了函数概念“解析定义”的发展,瑞士著名数学家约翰·贝努利(Bernoulli Jo-hann,1667-1748)在研究积分计算问题时提出,积分工作的目的是在给定变量的微分中,找出变量本身之间的关系,而要用莱布尼兹定义的函数表示出变量本身之间的关系是很困难的,于是,1718年贝努利从解析的角度,把函数定义为:变量的函数就是由某个变量及任意一个常数结合而成的量,其意思是凡变量x和常量构成的式子都叫作x的函数,并且贝努利强调,函数要用公式来表示才行。
函数概念的发展历史
在公元前十六世纪之前,数学上占统治地位的是常量数学,其特点是用孤立\静止的观点去研究食物,具体的函数在数学中比比皆是,但没有一把的函数概念,十六世纪,随着欧洲过度到新的资本主义生产方式,迫切需要天文知识和力学原理,当时,自然科学研究的中心转向对运动,对各种变化过程和变化着的梁之间依赖关系的研究,数学研究也从常量转向了变量数学,数学的这个转折主要是有法国数学家笛卡尔完成的,他在<几何学>一文中首先引入变量思想,称为”未知和未定的量”,同时引入了两个变量之间的相依关系,这便是函数概念的萌芽函数是数学中最重要的基本概念之一,它作为变量数学时期的开端,同变欲概念几乎同时步入数学领域,至今已有三百余年历史.长期以来,经过众多数学家的探索和改进,函数概念从萌芽到成熟,反映了数学本身的日益进步和不断完善.回顾函数概念的演变历史.对加深函数概念的理解大有裨益,同时对了解数学概念的物质性,说明事物是变化运动,相互联系的都有了具体的实例.函数概念的演变大体上可分为五个阶段函数概念是中学数学重要概念之一,从常量数学到变量数学的转变,是从函数概念的系统学习开始的。
本文从自17世纪下半叶到现在300年来函数概念的纵向历史研究函数概念是全部数学概念中最重要的概念之一,纵观300年来函数概念的发展,众多数学家从集合、代数、直至对应、集合的角度不断赋予函数概念以新的思想,从而推动了整个数学的发展。
函数概念的萌芽,可以追溯到古代对图形轨迹的研究,随着社会的发展,人们开始逐渐发现,在所有已经建立起来的数的运算中,某些量之间存在着一种规律:一个或几个量的变化,会引起另一个量的变化,这种从数学本身的运算中反映出来的量与量之间的相互依赖关系,就是函数概念的萌芽。
函数概念的发展历史1.早期函数概念——几何观念下的函数十七世纪伽俐略(G.Galileo,意,1564-1642)在《两门新科学》一书中,几乎全部包含函数或称为变量关系的这一概念,用文字和比例的语言表达函数的关系。
函数概念发展史
函数概念发展史
函数概念的发展史可以追溯到17世纪和18世纪。
以下是函数概念的发展历程:
- 1718年,莱布尼茨的学生、瑞士数学家贝努利把函数定义为:“由某个变量及任意的一个常数结合而成的数量。
”意思是凡变量和常量构成的式子都叫做函数。
贝努利强调函数要用公式来表示。
- 1755年,瑞士数学家欧拉把函数定义为:“如果某些变量,以某一种方式依赖于另一些变量,即当后面这些变量变化时,前面这些变量也随着变化,我们把前面的变量称为后面变量的函数。
”在欧拉的定义中,就不强调函数要用公式表示了。
- 1821年,法国数学家柯西给出了类似现在中学课本的函数定义:“在某些变数间存在着一定的关系,当一经给定其中某一变数的值,其他变数的值可随着而确定时,则将最初的变数叫自变量,其他各变数叫做函数。
”在柯西的定义中,首先出现了自变量一词。
- 1834年,俄国数学家罗巴切夫斯基进一步提出函数的定义:“函数是这样的一个数,它对于每一个都有确定的值,并且随着一起变化。
函数值可以由解析式给出,也可以由一个条件给出,这个条件提供了一种寻求全部对应值的方法。
函数的这种依赖关系可以存在,但仍然是未知的。
”这个定义指出了对应关系(条件)的必要性,利用这个关系,可以求出每一个的对应值。
- 1837年,德国数学家狄里克雷认为怎样去建立与之间的对应关系是无关紧要的,所以他的定义是:“如果对于x的每一个值,总有一个完全确定的y值与之对应,则y是x 的函数。
”这个定义抓住了概念的本质属性,变量y称为x的函数,只须有一个法则存在,使得这个函数取值范围中的每一个值,有一个确定的值和它对应就行了,不管这个。
函数概念的发展历史
函数概念的发展历史在数学领域,函数是描述两个变量之间关系的一个重要概念。
它的发展历史可以追溯到古希腊时期,而现代函数的概念则是在18世纪由数学家Leonhard Euler和Joseph Fourier等人逐渐发展起来的。
在古希腊数学中,人们已经开始研究图形与运动之间的关系。
例如,亚历山大大帝时期的数学家Heron给出了一个描述圆的面积与其半径关系的公式,这可以看作是一个函数关系的例子。
然而,古希腊人并没有将函数作为一个独立的数学概念进行研究,并且函数的定义和表示方式也相对简单。
随着数学的发展,人们开始研究曲线和运动的关系。
17世纪的法国数学家René Descartes发明了坐标系,为函数的研究提供了重要的工具。
这一时期的数学家还没有对函数有一个明确的定义,但是他们对函数有一种直观的认识,即函数是一个可由数值对表示的数量。
18世纪的数学家Joseph Fourier成为了函数概念发展的重要推动者之一、他的研究主要集中在热传导方程上,他发现可以将复杂的周期函数分解为简单的正弦和余弦函数的和。
这一发现极大地促进了函数概念的发展,使得人们开始将函数看作是由一个或多个无限可微的数学表达式表示的。
同时,17世纪和18世纪的数学家们也对函数的相关概念进行了严格的定义和分类。
例如,约翰·贝恩霍尔茨在1748年引入了函数的连续性的概念,他提出一个函数在其中一点连续的充要条件是它在该点处的极限与函数值相等。
这一定义对于后来对函数连续性的严格研究提供了基础。
随着数学的不断发展,函数的研究范围也在不断拓展。
19世纪的数学家高斯和柯西发展了复变函数的理论,在复平面上研究了函数在无穷远处的行为和奇点。
这一研究对于现代函数理论的建立起到了重要的推动作用。
20世纪的数学家们进一步深入研究了函数的性质和特征。
例如,勒贝格和黎曼等人发展了函数的测度论和积分论。
在这一时期,函数的定义越来越抽象和严格,数学家开始关注一般情况下的函数类。
函数概念的发展史
函数概念的发展史
THANKS!
大学生活即将结束,在此,我要感谢所有老师和一起成长的同学,是你们在我的 大学生涯给予了极大的帮助。本论文能够顺利完成,要特别感谢我的导师张老师,
感谢您的耐心指导,您辛苦了!
函数概念的发 展史
函数概念的发展史
目录
函数概念的发展史
函数概念的发展经历了漫长而曲折的过程,其根源可以追溯到古代数学中的对应和映射思 想。然而,函数概念的真正形成和完善是在17世纪到19世纪之间,经历了几个重要的里程 碑
早期函数概念:在早期数学中,人们开始使用"函数"这个词来表示解析表达式 中的项。例如,在莱布尼茨的著作中,他使用"函数"来表示一个多项式或三角 多项式。这个时期的函数概念比较模糊,没有明确的定义
函数概念的发展史
幂级数和解析几何的推动
在18世纪,数学家开始研究幂级数和解析几何,这推动了函数概念的进一步发展。这个时期,函数被视为幂级数展开中的项,或 者解析几何中的曲线。这个概念下的函数可以表示为x的任意多项式或三角多项式
函数概念的完善
在19世纪初,数学家开始对函数概念进行更深入的探讨和定义。其中,欧拉、高斯和狄利克雷等人都对函数概念的发展做出了重 要贡献。狄利克雷在1837年给出了函数的定义,即如果对于每一个x的值,都存在一个确定的y值与之对应,那么就说y是x的函数。 这个定义强调了函数的对应关系,被认为是函数概念的经典定义
函数概念的发展史
基础性
函数作为数学的基本概念之一, 是描述数学问题中变量关系的 重要工具。无论是自然科学、 社会科学还是工程领域,许多 问题都可以通过建立函数关系 来描述和解决
一般性
函数概念具有一般性,可以应 用于各种不同的问题和领域。 通过不同的函数形式和性质, 可以描述各种不同的数学问题 和物理现象
函数概念的发展简史
函数概念的发展简史函数是数学中一个基本且重要的概念,它的历史发展可以分为几个关键时期。
以下是对函数概念发展简史的概述:1.早期函数概念在早期的数学文献中,函数一词已经出现,但其所指的概念较为模糊,主要指代一些数学表达式和方程。
这一时期的函数概念尚未形成严谨的定义和理论体系。
2.18世纪函数概念在18世纪,函数概念得到了更深入的发展。
莱布尼茨(Leibniz)是这一时期函数概念的重要代表人物,他将函数定义为:如果一个量可以通过另一个量来计算,则称这两个量为函数。
这一概念强调了函数与数学表达式的密切关系,但仍然没有明确函数的定义和性质。
3.19世纪函数概念在19世纪,函数概念得到了更深入的探讨和定义。
伯努利(Bernoulli)家族、欧拉(Euler)等数学家对函数概念进行了更严谨的表述。
例如,欧拉将函数定义为:如果两个变量x和y满足某种关系,使得对于x的每一个值,y都有一个唯一确定的值与之对应,则称y是x的函数。
这个定义明确了函数的映射关系,为后续函数理论的发展奠定了基础。
4.20世纪函数概念进入20世纪后,函数概念逐渐成为数学领域的基础知识之一。
现代数学中,函数被定义为:对于给定的数集A和B中的元素之间建立一种对应关系,使得A中的每一个元素x都有一个唯一的元素y与之对应,则称y是x的函数,记为y=f(x)。
这个定义明确了函数的本质和基本性质,为后续函数理论的发展提供了坚实的基础。
5.现代函数概念随着数学学科的发展,函数概念也在不断拓展和深化。
现代数学中,函数已经成为一个重要的基础概念,被广泛应用于各个领域。
同时,函数的概念也在不断发展,如泛函分析、非线性分析等方向的研究进一步丰富了函数理论体系。
函数的发展以及函数概念教学
函数的发展以及函数概念教学
从函数概念的历史可以看出,函数概念的发展顺序是:运算——解析式——变量的依赖关系或对应关系——映射——集合的对应关系——序偶集。
以下是不同时期的数学家对函数概念的定义。
第一阶段:运算
1677年,格列高里:它是从其它的一些量经过一系列代数运算而得到的,或经过任何其它可以想象到的运算而得到。
第二阶段:解析式、曲线/图像
1797年,拉格朗日:所谓一个或几个量的函数是指任意一个适于计算的表达式,这些量在其中可以按任何形式出现于表达式中。
表达式中可以有其它一些被视为具有不变的值的量,而函数的值可以取所有可能的值。
1879年,弗雷格:如果在一个表达式中,一次或多次出现一个简单的或复合的符号,并且,我们认为这个符号在某些或所有出现的地方可以用其它事物替代(但各处要用同一事物替代),那么称表达式中保持不变的成分为函数,可替代的部分则是这个函数的自变量。
第三阶段:变量的依赖关系或对应关系
第四阶段:映射
第五阶段:集合的对应关系
第六阶段:序偶集
综上,函数主要概念经历了“变量说”——“对应说”——“关系说”300多年的变化,从初中到高中,最好到大学,教材上的函数概念一步步的抽象,直到用“序偶”来定义函数。
函数概念发展的历史过程
函数概念发展的历史过程函数的概念发展是数学领域的一项重要成果,也是数学发展历史中的一个重要组成部分。
函数最早的概念可以追溯到古希腊的数学家阿基米德和欧几里得。
然而,对函数概念的系统阐述和确立要追溯到17世纪以后,而且对函数的深入研究和应用更是要追溯到19世纪以后。
函数的概念发展历程不仅反映了数学知识的深化和发展,同时也与数学在科学研究和工程技术中的应用密切相关。
1.古希腊的初步探索在古代希腊,数学家已经开始讨论和研究数学对象之间的关系。
阿基米德和欧几里得都研究了相对的数值关系。
而欧几里得就探讨了比例关系的平均比例。
这些早期的研究工作,奠定了函数概念发展的基础。
2.笛卡尔坐标系的建立近代函数概念的确立和发展,与笛卡尔坐标系的建立密不可分。
笛卡尔在17世纪提出了笛卡尔坐标系,引入了坐标系和代数表达法,使得函数可以通过方程和坐标来表示。
3.函数概念的确立17世纪,莱布尼兹和牛顿等数学家在微积分的研究中提出了函数的概念。
他们认为,函数是一种数学对象,是一种数值之间的对应关系。
这一概念的确立,标志着函数作为数学对象的独立性和重要性得到了认可。
4.函数的深入研究在函数的概念确立之后,数学家们开始深入研究函数的性质、性质和变化规律。
在19世纪,勒贝格和黎曼等数学家提出了积分和微分的理论,为函数的深入研究提供了有力的工具。
5.函数在科学和工程中的应用随着函数的研究深入和发展,函数的应用范围也得到了扩展。
在物理学、工程技术和金融领域,函数成为了研究和描述现实世界的重要工具。
总之,函数概念的发展是数学发展史上的一大里程碑,它标志着数学在研究方法和工具上的重大进步,也有力地推动了数学在科学和工程中的应用。
函数概念发展史的概述
函数概念发展史概述在数学的历史长河中,函数概念的发展经历了几个重要的阶段,从早期的函数概念到现代的函数概念,不断地推动着数学的发展。
本文将概述函数概念的发展史,包括早期函数概念、符号函数、连续函数、现代函数概念和泛函分析等方面。
1. 早期函数概念在早期,函数概念并没有明确的定义,而是通过描述函数的性质和用途来理解。
例如,在17世纪,莱布尼茨提出了“函数”一词,用来表示幂运算的一般概念。
同时,函数也被用来表示曲线下的面积等。
这些早期的函数概念都为后来函数概念的发展奠定了基础。
2. 符号函数在19世纪,科学家们开始用符号来表示函数,这标志着函数概念的发展进入了一个新的阶段。
法国数学家拉格朗日是最早使用符号表示函数的人之一,他引入了符号f(x)来表示函数,并开始研究函数的性质和分类。
这一时期的函数概念主要关注的是函数的表达式和分类,以及函数的运算性质等。
3. 连续函数在微积分学中,连续函数是一个非常重要的概念。
在19世纪初,数学家们开始研究函数的连续性,其中最具代表性的是柯西。
柯西给出了连续函数的定义,并证明了连续函数的许多重要性质。
连续函数的定义和性质的研究为实数理论的发展奠定了基础,同时也推动了微分方程、实变函数等学科的发展。
4. 现代函数概念随着数学学科的发展,函数概念的内涵也不断地得到丰富和发展。
在20世纪初,德国数学家豪斯多夫提出了现代函数的概念,即如果对每个x的值都存在一个y值与之对应,则称y为x的函数。
这个定义使得函数的范围更加广泛,包括了离散函数、取值无限的函数等。
现代函数概念的提出为函数论的发展奠定了基础,同时也促进了泛函分析、调和分析等分支的发展。
5. 泛函分析泛函分析是现代数学的一个重要分支,它主要研究的是函数空间上的数学问题。
在这个领域中,函数不再被看作是孤立的个体,而是被看作是定义在某种空间上的映射或操作。
泛函分析的研究成果被广泛应用于物理、工程、经济等领域,同时也为其他数学分支的发展提供了重要的工具和方法。
函数概念的发展史
函数概念的发展史函数是数学中的基本概念之一,它被广泛应用于各个领域,包括物理、化学、经济以及计算机科学等。
然而,函数的概念的发展历程可以追溯到公元前300年左右的古希腊。
以下是函数概念的发展史的综述。
1.阿基米德的方法(公元前287年)公元前300年左右,古希腊的数学家阿基米德提出了一个称为方法论(Method of Exhaustion)的方法来解决几何问题。
这一方法涉及到以一个恒定的速率逼近一个特定的数量,并通过这种逼近来计算其他数量。
这种方法实际上使用了近似函数的思想,被认为是函数概念的早期雏形。
2.斯嘉尼的分析(公元前200年)公元前200年左右,亚历山大的斯嘉尼(Apollonius of Perga)开始使用变量来表示几何问题中的未知量。
他将变量视为是一个数学对象,并使用代数的方法来研究几何形状。
斯嘉尼的分析(Apollonian Analysis)为后来函数的发展奠定了基础。
3.阿拉伯数学家的贡献(9-10世纪)在中世纪,阿拉伯数学家对函数的研究做出了重要贡献。
在9-10世纪,数学家阿尔哈桑·本·阿尔哈伯(Alhazen)和阿尔卡直赛(Al-Khazini)提出了类似于现代函数的概念。
他们将阿基米德的方法与斯嘉尼的分析相结合,引入了数学函数的概念。
此外,阿拉伯数学家还研究了三角函数和指数函数等一些基本函数。
4.勒让德和牛顿的贡献(17世纪)在17世纪,数学家皮埃尔-西蒙·勒让德(Pierre-Simon Laplace)和艾萨克·牛顿(Isaac Newton)对函数的概念进行了显著发展。
勒让德提出了现代函数概念的定义,他指出函数是输入值与输出值之间的关系。
牛顿则在他的微积分理论中广泛使用了函数的概念,将其与导数和积分等运算结合使用。
5.庞加莱和蔡氏的贡献(19-20世纪)在19-20世纪,法国数学家亨利·庞加莱(Henri Poincaré)和斯通达哈·拉马努金(Srinivasa Ramanujan)以及华罗庚等数学家对函数的研究做出了突出贡献。
函数概念的发展历程
函数概念的发展历程
函数是数学中一种重要的概念,它可以将一组输入值映射到一组输出值。
函数的发展历史可以追溯到古希腊时期,当时古希腊数学家们就开始研究函数的概念。
古希腊数学家们发现,函数可以用来描述数学关系,并且可以用来解决复杂的数学问题。
例如,古希腊数学家们发现,可以使用函数来描述一个点在平面上的位置,以及一个点在三维空间中的位置。
17世纪,英国数学家约翰·斯托克斯发明了函数的概念,他把函数定义为“一种从一组输入值到一组输出值的映射”。
他还发现,函数可以用来描述复杂的数学关系,并且可以用来解决复杂的数学问题。
18世纪,德国数学家卡尔·莱布尼茨发明了函数的概念,他把函数定义为“一种从一组输入值到一组输出值的映射,其中输入值和输出值都是实数”。
他还发现,函数可以用来描述复杂的数学关系,并且可以用来解决复杂的数学问题。
19世纪,法国数学家亚历山大·德拉克罗斯发明了函数的概念,他把函数定义为“一种从一组输入值到一组输出值的映射,其中输入值和输出值都是实数或复数”。
他还发现,函数可以用来描述复杂的数学关系,并且可以用来解决复杂的数学问题。
20世纪以来,函数的概念发展得非常快,函数的概念已经被广泛应用于计算机科学、物理学、统计学等领域。
函数的概念也被用来描述复杂的系统,并且可以用来解决复杂的问题。
总之,函数是一种重要的概念,它可以用来描述复杂的数学关系,并且可以用来解决复杂的数学问题。
函数的发展历史可以追溯到古希腊时期,它已经被广泛应用于计算机科学、物理学、统计学等领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
制作人:唐沁
---
-
1.早期函数概念
几何观念下的函数 十七世纪伽俐略 (G.Galileo,意,1564-1642)在《两门 新科学》一书中,几乎全部包含函数 或称为变量关系的这一概念,用文字 和比例的语言表达函数的关系。1673 年前后笛卡尔(Descartes,法,15961650)在他的解析几何中,已注意到 一个变量对另一个变量的依赖关系, 但因当时尚未意识到要提炼函数概念, 因此直到17世纪后期牛顿、莱布尼兹 建立微积分时还没有人明确函数的一 般意义,大部分函数是被当作曲线来 -研-- 究的。
1667-1748 瑞士数学
家
-
欧拉
L.Euler 1707-1783 瑞士数学家
把函数定义为“如果某些变量,以某一种方式依
赖于另一些变量,即当后面这些变量变化时,前
面这些变量也随着变化,我们把前面的变量称为
后面变量的函数。”————Euler
---
-
3.十九世纪函数概念--对应关系下的函数
1821年,柯西(Cauchy,法,1789-
1718年约翰•贝努利(Johann Bernoulli ,瑞,1667-1748)在 莱布尼兹函数概念的基础上对 函数概念进行了定义:“由任一 变量和常数的任一形式所构成 的量。”他的意思是凡变量x和 常量构成的式子都叫做x的函 数,并强调函数要用公式来表 示。
---
约翰·伯努利
(Bernoulli Johan)
狄利克雷
P.G.L.Dirichlet
1805-1859
德国数学家
2020/4/2
等到康托(Cantor,德,1845-1918)创 立的集合论在数学中占有重要地位之后, 维布伦(Veblen,美,1880-1960)用 “集合”和“对应”的概念给出了近代 函数定义,通过集合概念把函数的对应 关系、定义域及值域进一步具体化了, 且打破了“变量是数”的极限,变量可 以是数,也可以是其它对象。
---
2020/4着一定的
关系,当一经给定其中某一变数
的值,其他变数的值可随着而确
定时,则将最初的变数叫自变量,
其他各变数叫做函数。”在柯西
的定义中,首先出现了自变量一
词,同时指出对函数来说不一定
要有解析表达式。不过他仍然认 柯西(Cauchy,法,
为函数关系可以用多个解析式来 1789-1857)
--表- 示,这是一个很大的局限。
2020/4/2
1822年傅里叶(Fourier,法 国,1768--1830)发现某些 函数也已用曲线表示,也 可以用一个式子表示,或 用多个式子表示,从而结 束了函数概念是否以唯一 一个式子表示的争论,把 对函数的认识又推进了一 个新层次。
---
傅里叶 (Fourier,法 国,1768-1830)
---
2020/4/2
4.现代函数概念--集合论下的函数
1914年豪斯道夫(F.Hausdorff)在《集合论纲要》 中用不明确的概念“序偶”来定义函数,其避 开了意义不明确的“变量”、“对应”概念。 库拉托夫斯基(Kuratowski)于1921年用集合概念 来定义“序偶”使豪斯道夫的定义很严谨了。 1930 年新的现代函数定义为“若对集合M的任 意元素x,总有集合N确定的元素y与之对应,则 称在集合M上定义一个函数,记为y=f(x)。元素 x称为自变元,元素y称为因变元。”
---
2020/4/2
中文“函数”名称的 由来
李善兰 1811-1882 清朝数学家
在1859年和英国传教士伟烈亚力和译的《代微 积拾积》中首次将“function”译做“函数”, 此译名沿用至今。对为什么这样翻译这个概念, 书中解释说“凡此变数中函彼变数者,则此为 彼--- 之函数”;这里的“函”是包含的意思。 2020/4/2
伽利略
-
1673年,莱布尼兹首次使 用“function” (函数)表示 “幂”,后来他用该词表示 曲线上点的横坐标、纵坐 标、切线长等曲线上点的 有关几何量。与此同时, 牛顿在微积分的讨论中, 使用 “流量”来表示变量间 的关系。
---
戈特弗里德·威 廉·莱布尼茨
-
2.十八世纪函数概念--代数 观念下的函数
2020/4/2
1837年狄利克雷(Dirichlet, 德,1805-1859) 突破了这一 局限,认为怎样去建立x与y 之间的关系无关紧要,他拓 广了函数概念,指出:“对于 在某区间上的每一个确定的x 值,y都有一个或多个确定的 值,那么y叫做x的函数。” 这个定义避免了函数定义中 对依赖关系的描述,以清晰 的方式被所有数学家接受。 这就是人们常说的经典函数 定义。 ---