函数发展史

合集下载

函数de发展史

函数de发展史

函数概念 欧拉 L.Euler 1707-1783 瑞士数学家
如果某些变量,以这样一种方式依赖于另一 些变量,即当后面这些变量变化时,前面这些变 量也随之变化,则将前面的变量称为后面变量的 函数. ————Euler
函数概念
狄利克雷 P.G.L.Dirichlet 1805-1859 德国数学家
函数概念的发展历程
函数概念
“function”一词最初由 德国数学家莱布尼兹在1692 年使用. 用“function”表示随曲 线的变化而改变的几何量, 如坐标、切线等.
莱布尼兹 G.W.Leibniz 1646-1716 德国数学家
函数概念
约翰· 伯努利(Bernoulli Johan) 1667-1748 瑞士数学家 强调函数要用公式表示.
17
47 x 16cos t 5 cos t 3 y 12si nt 3 si n 44 t 3
返回目录
现实世界是数学的丰富源泉,数 学源于生活、寓于生活、用于生活。 数学家华罗庚曾经说过:宇宙之大,粒 子之微,火箭之速,化工之巧,地球之变, 日用之繁,无处不用数学。这是对数学 与生活的精彩描述。这次学习,希望 我们体会到了数学的魅力。
如果对于x的每一个值,y总有完全确定的 值与之对应,则y是x的函数.
函数概念
李善兰 1811-1882 清朝数学家
在1859年和英国传教士伟烈亚力和译的《代 微积拾积》中首次将“function”译做“函数”.
函数的应用

对数函数
叶形线 其解析式为:x3+y3=3axy
返回目录
李萨茹曲线
其中
-5
0 x
5
10
Байду номын сангаас

函数发展史

函数发展史
思考: |y| = ±x 能不能说‘y是x的函数’?
ቤተ መጻሕፍቲ ባይዱ
终于出了一个像样的

1821年,法国数学家柯西给 出了类似现在中学课本的函数 对应关系(条件)是 定义:“在某些变数间存在着 必要的,要利用这个 关系以求出每一个x 一定的关系,当一经给定其中 的对应值。 某一变数的值,其他变数的可 随着而确定时,则将最初的变 数叫自变量,其他各变数叫做 函数。”
Long long ago,

最早提出函数概念的,是1 7世纪德国数学家莱 布尼茨。1673年, 莱布尼兹首次使用 函数一词表示“幂” 由此可以看出,函数 一词最初的数学含义是相当 广泛而较为模糊的。
函数就是描述曲线的 一个相关量,如曲线 的斜率或者曲线上的 某一点。
有一个大胆的人定义了函数
• 1755 年欧拉把函数定义为 “如果 1718 年约翰· 伯努利对函数概念 某些变量,以某一种方式依赖于 进行了定义:“由任一变量和常 另一些变量,即当后面这些变量 数的任一形式所构成的量。”他 变化时,前面这些变量也随着变 的意思是凡变量x和常量构成的 化,我们把前面的变量称为后面 式子都叫做x的函数,并强调函 变量的函数。 ” 数要用公式来表示。
罗巴契夫斯基
现代概念终究出炉了
罗巴契夫斯基

康托尔
欧拉
狄利克雷
在某个坐标变化过程中,如果有 两个变量x和y,对每一个给定的 x 柯西 值,y都有唯一确定的值与它对应, 确定y=x的函数。x=自变量,y作 为x的因变量。 傅里叶
贝努利 莱布尼茨
|y| = ±x 能不能说‘y是x的函数’? 答:

函数概念的发展历史

函数概念的发展历史

函数概念的发展历史1.早期函数概念几何观念下的函数十七世纪伽俐略(G.Galileo,意,1564-1642)在《两门新科学》一书中,几乎全部包含函数或称为变量关系的这一概念,用文字和比例的语言表达函数的关系。

1673年前后笛卡尔(Descartes,法,1596-1650)在他的解析几何中,已注意到一个变量对另一个变量的依赖关系,但因当时尚未意识到要提炼函数概念,因此直到17世纪后期牛顿、莱布尼兹建立微积分时还没有人明确函数的一般意义,大部分函数是被当作曲线来研究的。

1673年,莱布尼兹首次使用function(函数)表示幂,后来他用该词表示曲线上点的横坐标、纵坐标、切线长等曲线上点的有关几何量。

与此同时,牛顿在微积分的讨论中,使用流量来表示变量间的关系。

2.十八世纪函数概念──代数观念下的函数1718年约翰柏努利(Johann Bernoulli ,瑞,1667-1748)在莱布尼兹函数概念的基础上对函数概念进行了定义:由任一变量和常数的任一形式所构成的量。

他的意思是凡变量x 和常量构成的式子都叫做x的函数,并强调函数要用公式来表示。

1755,欧拉(L.Euler,瑞士,1707-1783) 把函数定义为如果某些变量,以某一种方式依赖于另一些变量,即当后面这些变量变化时,前面这些变量也随着变化,我们把前面的变量称为后面变量的函数。

18世纪中叶欧拉(L.Euler,瑞,1707-1783)给出了定义:一个变量的函数是由这个变量和一些数即常数以任何方式组成的解析表达式。

他把约翰贝努利给出的函数定义称为解析函数,并进一步把它区分为代数函数和超越函数,还考虑了随意函数。

不难看出,欧拉给出的函数定义比约翰贝努利的定义更普遍、更具有广泛意义。

3.十九世纪函数概念──对应关系下的函数1821年,柯西(Cauchy,法,1789-1857) 从定义变量起给出了定义:在某些变数间存在着一定的关系,当一经给定其中某一变数的值,其他变数的值可随着而确定时,则将最初的变数叫自变量,其他各变数叫做函数。

数学函数的发展历史

数学函数的发展历史

数学函数的发展历史数学函数的发展历史可以追溯到古希腊时期的数学家欧几里得和阿基米德。

欧几里得在其著作《几何原本》中首次引入了直线和曲线的概念,这可以认为是函数概念的起源之一、然而,直到十七世纪,函数的研究才真正取得了重要进展。

十七世纪的最伟大的数学家之一,法国数学家勒让德·伽洛阿是函数论的奠基人之一、伽洛阿在他的著作《分析术》中,首次提出了函数的概念。

他将函数定义为一种变量的规则,将一个数域的元素映射到另一个数域的元素。

他的著作中展示了对代数方程解的研究,这奠定了今天代数学关于解方程的基础。

在十七世纪晚期,数学家约瑟夫·路易·拉格朗日和奥古斯丁·路易·柯西对函数的理论进行了扩充。

拉格朗日在他的著作《微积分学》中对函数的性质进行了详细的研究。

他提出了拉格朗日方程和拉格朗日乘子法等重要理论,为动力学问题提供了创新的解决方法。

柯西则系统地发展了实变函数和复变函数的理论,提出了柯西序列、柯西准则和柯西-黎曼方程等重要概念。

在十九世纪,数学家高斯、魏尔斯特拉斯和韦尔斯特拉斯等人在函数论领域做出了重要贡献。

高斯提出了正切函数的首个定义,并引入了复数函数的概念。

魏尔斯特拉斯则发展了连续函数的理论,他证明了任何函数都可以用无限个三角函数的和来逼近,这被称为魏尔斯特拉斯逼近定理。

韦尔斯特拉斯研究了无穷可导函数的性质,提出了拟均一函数的概念。

十九世纪末至二十世纪初,函数论得到了进一步的拓展。

翁·费尔塞、埃里希·希尔伯特和大卫·希尔伯特等数学家在实变函数和复变函数的理论上做出了重要贡献。

翁・费尔塞证明了任何周期函数都可以用三角函数的无穷和表示,这被成为费尔塞级数。

埃里希·希尔伯特在他的著作《函数论》中系统地阐述了函数论的基本概念和理论,提出了希尔伯特空间和希尔伯特曲线等重要概念。

大卫·希尔伯特则研究了无穷维函数空间的理论,他给出了希尔伯特空间的公理化定义。

函数的发展历程

函数的发展历程

函数的发展历程一、古希腊时期古希腊数学家希腊斯科特·伯涅劳斯(Scctonius)在公元前4世纪就提出了函数的概念。

他用字母表示一个量,并用等式将这个量和另一个量联系在一起。

例如,他用f(x)表示x的平方,即f(x)=x^2。

但是,他并没有将函数作为独立的数学概念来看待,只是作为一种辅助工具。

二、17世纪17世纪是函数发展的重要时期。

著名数学家斯特林(Stevin)在其著作《五十个数学问题》中提出了函数的概念。

他指出,函数是一种可以用数学公式表示的规律,即f(x)=x^2。

三、18世纪18世纪是函数发展的关键时期。

著名数学家莫尔(Leibniz)在公元1694年提出了微积分的概念。

他认为,微积分是一种研究变化的工具,可以用来研究连续函数的变化。

这为函数研究开辟了新的天地。

四、19世纪19世纪是函数发展的全盛时期。

著名数学家高斯(Gauss)在公元1801年提出了高维空间的概念。

他认为,高维空间是一个可以用函数表示的数学模型,即可以用函数来描述多维空间的性质。

这为函数的研究提供了更加广阔的空间。

五、20世纪20世纪是函数发展的高潮时期。

著名数学家华罗庚(Huang Qiu-Guang)在公元1943年提出了泛函分析的概念。

他认为,泛函分析是一种研究函数性质的数学方法,可以用来研究连续函数和离散函数的性质。

这为函数的研究提供了更加丰富的内容。

六、21世纪21世纪是函数发展的新时期。

计算机技术的发展使得函数在计算机科学和工程领域中发挥着越来越重要的作用。

函数也被广泛用于数据挖掘和人工智能领域,为科学技术的发展做出了重要贡献。

综上,函数作为一种独立的数学概念,在古希腊时期就已经提出,但是直到17世纪才得到正式的定义。

随着时间的推移,函数在数学和工程领域的应用越来越广泛,为科学技术的发展做出了巨大贡献。

函数发展历程

函数发展历程

函数发展历程函数作为一种数学概念和计算机编程的核心概念,经历了长期的发展历程。

本文将从函数的起源、确立、扩展和应用等方面,依次介绍函数的发展历程。

函数的起源可以追溯到古希腊时期。

数学家欧几里得就曾经研究直线上的某一点与其它点之间的关系,这种对抽象关系的研究正是函数学的起源。

而其他古代数学家如阿基米德、欧拉等人也都在他们自己的研究中使用了类似函数的概念,但这些早期的函数概念尚未明确并没有统一的定义。

17世纪,数学家伯努利兄弟为数学函数确立了更加明确的定义。

他们认为,函数是一个可见量与适当的自变量之间的依赖关系,从而引入了函数的图像和变化率的概念。

这个定义为后来函数的发展奠定了基础。

18世纪,数学分析学的奠基人牛顿、莱布尼茨进一步推动了函数的发展。

他们发明了微积分学,不仅完善了函数的定义和性质,还研究了函数的极限、导数和积分等重要概念,且提出了函数的泰勒级数展开理论。

这些成果使函数概念在数学领域得到广泛应用,并为物理学、工程学等学科提供了重要工具。

随着计算机的发展,函数得到了更广泛的应用。

20世纪50年代,计算机语言FORTRAN的出现为函数在计算机编程中的应用奠定了基础。

FORTRAN语言支持用户定义函数,并且强调了函数的重复利用性。

这为以后编程语言的函数概念提供了一个先例。

从20世纪60年代开始,函数在计算机编程中的应用逐渐得到重视。

ALGOL语言提供了一种新的函数定义和调用方式,引入了块结构和局部变量的概念。

这些特性使函数的使用得到进一步简化,并使函数模块化成为可能。

在20世纪70年代,C语言的出现进一步推动了函数的发展。

C语言引入了参数传递和返回值的机制,使得函数的调用和返回更加灵活。

此外,C语言还支持递归调用,这使得函数能够实现更加复杂的功能。

随着计算机科学的不断发展,函数的应用领域也不断扩展。

从科学计算到图形学、数据库、人工智能等领域,函数都发挥着不可替代的作用。

同时,函数式编程的兴起也推动了函数的进一步发展。

函数的发展史

函数的发展史

函数的发展史学家从集合、代数、直至对应、集合的角度持续赋予函数概念以新的思想,从而推动了整个数学的发展。

本文拟通过对函数概念的发展与比较的研究,对函数概念的教学实行一些探索。

1、函数概念的纵向发展1.1 早期函数概念——几何观点下的函数十七世纪伽俐略(G.Galileo,意,1564-1642)在《两门新科学》一书中,几乎从头到尾包含着函数或称为变量的关系这个概念,用文字和比例的语言表达函数的关系。

1673年前后笛卡尔(Descartes,法,1596-1650)在他的解析几何中,已经注意到了一个变量对于另一个变量的依赖关系,但因为当时尚未意识到需要提炼一般的函数概念,所以直到17世纪后期牛顿、莱布尼兹建立微积分的时候,数学家还没有明确函数的一般意义,绝绝大部分函数是被当作曲线来研究的。

1.2 十八世纪函数概念——代数观点下的函数1718年约翰·贝努利(BernoulliJohann,瑞,1667-1748)才在莱布尼兹函数概念的基础上,对函数概念实行了明确定义:由任一变量和常数的任一形式所构成的量,贝努利把变量x和常量按任何方式构成的量叫“x的函数”,表示为,其在函数概念中所说的任一形式,包括代数式子和超越式子。

18世纪中叶欧拉(L.Euler,瑞,1707-1783)就给出了非常形象的,一直沿用至今的函数符号。

欧拉给出的定义是:一个变量的函数是由这个变量和一些数即常数以任何方式组成的解析表达式。

他把约翰·贝努利给出的函数定义称为解析函数,并进一步把它区分为代数函数(只有自变量间的代数运算)和超越函数(三角函数、对数函数以及变量的无理数幂所表示的函数),还考虑了“随意函数”(表示任意画出曲线的函数),不难看出,欧拉给出的函数定义比约翰·贝努利的定义更普遍、更具有广泛意义。

1.3 十九世纪函数概念——对应关系下的函数1822年傅里叶(Fourier,法,1768-1830)发现某些函数可用曲线表示,也可用一个式子表示,或用多个式子表示,从而结束了函数概念是否以唯一一个式子表示的争论,把对函数的理解又推动了一个新的层次。

函数发展史

函数发展史

函数发展史1。

函数的起源现在,我们所用到的函数多是从无到有的。

最早使用“函数”一词的是文艺复兴时期的意大利数学家莱布尼兹。

他在1536年发表的《关于“切线”和“求极大量”的论文》一文中首先使用了“函数”一词。

他将自变量取自方程,因变量是含x, y的一个未知数,并把这种方程称为“增量方程”,也就是说,自变量在方程两端,因变量是一个数。

这种“增量方程”是与二元一次方程组联系着的,这个定义反映了当时人们对函数性质的认识。

由于现在各种高科技的发展,人们又陆续发明了另外一些函数。

下面让我来介绍几种比较常见的函数吧。

1。

对数函数是以自然对数e为底,以自然对数e的对数(以底数)为顶角的函数。

这个函数有许多特殊值。

在某一点处,它的单调增加;而在某一点处,它的单调减少。

因此我们称这个函数为减函数。

例如:当自然对数等于1时,它就成为“正”函数。

2。

指数函数以自然对数e为底,以e的对数f(以底数)为顶角的函数。

记作: exp(记住要把f读成大写的“ e”,而不是小写的“ e”),又叫“指数”函数。

通俗地说,这个函数是把自然对数的底数乘以e以后再除以2。

这个函数也有很多特殊值。

当它的值等于1时,它就成为“正”函数。

3。

对数指数函数这个函数的图像是一条直线,所以我们把它简称为“直线函数”。

第一代,主要是建立在莱布尼兹的“函数”基础上的。

是对“函数”的认识。

2。

第二代,指数函数。

这一阶段,有“柯西”。

伽罗瓦。

阿贝尔等人对“函数”做出了贡献。

3。

第三代,幂函数。

这个阶段,是与计算机有关的。

到了电脑普及的今天,函数就不仅限于人类使用,各种专业都开始运用电脑来解决问题。

函数的发展史已经过去,但它带给我们的东西却不会消失。

从现在开始,一个更广阔的世界向我们打开了大门。

“函数”这个名字随着时间的流逝被更广泛地接受了,并被加入到了各个领域之中。

在教育领域中,我相信“函数”的身影会越来越多。

在我们的生活中,“函数”带给我们的好处会越来越多。

函数的发展历史

函数的发展历史

3、
用符号Φx 表示一般函数的是瑞士数学家约翰•伯努利(一世)(1667-1748)。 1734 年欧拉(1707-1783)采纳这一定义用 f(x)作为函数的记号。该用法一直保持 到今天。1769 年,达朗贝尔(1717-1783)第一次导出了函数方程 f(x+y)+f(xy)=2f(x)f(y)。柯西(1789-1857)在 1821 年导入了更多的函数方程: f(x+y)=f(x)f(y),f(xy)=f(x)+f(y),f(xy)=f(x)f(y)。一系列重要的函数方程由阿贝尔 (1802-1827)年解决。
1 ,当 q
x 是有理数
0,当 x 是 0 或者无理数时
8、
(德)魏尔斯特拉斯(1815-1897)构造了一个没有导数的连续函数,即构造了一 条处处没有切线的连续曲线。
4、
傅里叶(1768-1830)引入三角级数,例如:y=sinx/1+sin(3x)/3+sin(5x)/5+┅。 拉格朗日(1736-1813)
∞ sin 2k+1 x k=1 2k+1
5、
狄利克雷(1805-1859)第一个给出函数一般定义的数学家。他于 1837 年给出函 数如下的定义:如果对于给定区间的每一个 x 值,都有唯一的 y 值与之对应,那 么 y 是 x 的函数。他还在 1829 年给出了著名的狄利克雷函数:f(x)=0,x 是无理 数;f(x)=1,x 是有理数。这个函数有四个特点:1)没有公式 2)没有图形 3)不 连续 4)没有实际背景
1、
伽利略(1564-1642)的落体运动定律、牛顿(1642-1727)的万有引力定律、爱 因斯坦(1879-1955)的质能转化公式等等都是用函数概念来表(1638-1675)的文章《论元和双曲线的求积》中。 在费马(1601-1665)、笛卡尔(1596-1650)的工作中也涉及到这些概念。牛顿 开始微积分工作后,一直用“流量”来表示变量间的关系。莱布尼兹(1646-1716) 在 1673 年的一篇手稿里面用了“函数”一词。

函数起源发展历程

函数起源发展历程

函数起源发展历程函数起源于数学领域,可以追溯到古希腊时期。

最早的数学思想可以追溯到公元前4世纪的希腊数学家欧几里得。

他在其著作《几何原本》中,首次提到了连续变化的概念,并使用了字母来表示不同的量。

然而,在欧几里得的时代,函数的概念并不是成熟的,它只是当时数学领域中的一种辅助工具。

函数的真正起源可以追溯到17世纪的科学革命。

当时,数学家们开始深入研究变量之间的关系,并开始注意到一种普遍的数学模式。

这些数学模式描述了自然界中许多现象的重要特征。

数学家们逐渐认识到,这些模式可以通过一种称为函数的工具来表示和描述。

在17世纪早期,法国数学家勒让德首次引入了函数的概念。

他将函数定义为一个数学关系,其中一个变量的值取决于另一个变量的值。

他还引入了函数的符号表示法,即将函数用字母表示,并将变量和函数之间的关系表示为f(x),其中x是一个变量,f(x)是x的函数。

在18世纪,数学家们对函数的理解进一步深化,并开始研究更复杂的函数。

著名的数学家欧拉对函数的研究做出了重要贡献。

他发现了自然对数函数和三角函数之间的关系,并发展了对复数函数的理解。

在19世纪,数学家高斯和傅里叶进一步发展了函数的理论。

高斯提出了复变量函数的概念,并发展了复变量函数的分析学。

他还引入了连续函数和可导函数的概念,并通过极限的概念完善了函数的定义。

傅里叶则发展了傅里叶级数和傅里叶变换的概念,这对于描述周期性现象和信号处理非常重要。

他的工作对现代工程学和物理学有着深远的影响。

到了20世纪,随着计算机的发展,对函数的研究进入了新的阶段。

数学家们开始研究离散函数和数值函数,并发展了数值计算和数据分析的方法。

现代计算机科学的发展使函数成为了重要的编程概念,广泛应用于计算机编程和数据处理。

总的来说,函数的起源可以追溯到古希腊时期,但它真正的发展和成熟是在17世纪以后的科学革命中。

数学家们通过对变量之间关系的研究,逐渐形成了现代函数的概念。

随着时间的推移,函数的理论和应用不断发展,对现代科学和技术的进步起到了重要作用。

函数概念的发展简史

函数概念的发展简史

函数概念的发展简史函数是数学中一个基本且重要的概念,它的历史发展可以分为几个关键时期。

以下是对函数概念发展简史的概述:1.早期函数概念在早期的数学文献中,函数一词已经出现,但其所指的概念较为模糊,主要指代一些数学表达式和方程。

这一时期的函数概念尚未形成严谨的定义和理论体系。

2.18世纪函数概念在18世纪,函数概念得到了更深入的发展。

莱布尼茨(Leibniz)是这一时期函数概念的重要代表人物,他将函数定义为:如果一个量可以通过另一个量来计算,则称这两个量为函数。

这一概念强调了函数与数学表达式的密切关系,但仍然没有明确函数的定义和性质。

3.19世纪函数概念在19世纪,函数概念得到了更深入的探讨和定义。

伯努利(Bernoulli)家族、欧拉(Euler)等数学家对函数概念进行了更严谨的表述。

例如,欧拉将函数定义为:如果两个变量x和y满足某种关系,使得对于x的每一个值,y都有一个唯一确定的值与之对应,则称y是x的函数。

这个定义明确了函数的映射关系,为后续函数理论的发展奠定了基础。

4.20世纪函数概念进入20世纪后,函数概念逐渐成为数学领域的基础知识之一。

现代数学中,函数被定义为:对于给定的数集A和B中的元素之间建立一种对应关系,使得A中的每一个元素x都有一个唯一的元素y与之对应,则称y是x的函数,记为y=f(x)。

这个定义明确了函数的本质和基本性质,为后续函数理论的发展提供了坚实的基础。

5.现代函数概念随着数学学科的发展,函数概念也在不断拓展和深化。

现代数学中,函数已经成为一个重要的基础概念,被广泛应用于各个领域。

同时,函数的概念也在不断发展,如泛函分析、非线性分析等方向的研究进一步丰富了函数理论体系。

函数概念的历史发展

函数概念的历史发展

函数概念的历史发展函数概念是中学中最重要的概念之一,它既是数学研究的对象,又是解决数学问题的基本思想方法。

早在16、17世纪,生产和科学技术的发展要求数学不仅研究静止不动的量,而且要研究运动过程中各个量之间的依赖关系,从而促进数学由常量上学时期进入到变量数学时期。

函数也就成为研究变量数学必不可少的概念。

函数(function)一词,始用于1692年,见著于微积分创始人之一莱布尼兹G.W.Leibnic,1646—1717)的著作。

而f(x)则由欧拉(Euler)于1724年首次使用。

我国于1859年引进函数的概念,它首次是在清代数学家李善兰与英国传教士伟烈亚历山大合译的《代微积拾级》中出现。

函数在初高等数学中,在物理、化学和其他自然科学中,在经济领域和社会科学中,均有广泛的应用,起着基础的作用。

函数的概念随着数学的发展而发展,函数的定义在发展过程中不断地精确、完善、抽象,函数的概念也不断得到严谨化、精确化的表达。

牛顿在《自然哲学的数学原理》中提出的“生成量”就是函数概念的雏形。

最初,函数是表示代数上的幂(23,,,x x x…),1673年,莱布尼兹把任何一个随着曲线上的点变动的几何量,如切线、法线,以及点的横坐标都成为函数。

一、解析的函数概念在18世纪占主导地位的观点是,把函数理解为一个解析表达式.1698年,瑞士著名数学家约翰·贝努利定义:由变量x和常量用任何方式构成的量都可以称为x的函数.这里任何方式包括代数式子和超越式子.1748年,约翰的学生,杰出数学家欧拉在它著名的《无穷小分析引沦》中把函数定义为“由一个变量与一些常量通过任何方式形成的解析表达式”,这就把变量与常量以及由它们的加、减、乘、除、乘方、开方和三角、指数、对数等运算构成的式子,均称为函数.并且,欧拉还给出了函数的分类,把函数分为:代数函数与超越函数,有理函数与无理函数,整函数与分函数,单值函数与多值函数.当时把函数看作一个解析表达式的还有著名的法国数学家达朗贝尔和拉格朗日.但这种解析的函数概念有其局阳性,如某些变量之间的对应关系不能用解析式子表达出来,那么根据这个定义就不能称之为函数关系.例如著名的狄利克雷(D1richkt)函数1 D(x)=0x x⎧⎨⎩,为有理数,为无理数二、几何的函数概念因为解析表达式在几何上可表示为曲线,一些数学家把曲线称为函数.1746年,达朗贝尔在研究弦振动问题时,提出了用单独的解析表达式给出的曲线是函数.后来欧拉发现有些曲线不一定是由单个解析式给出的,他提出了一个新定义:函数是“xy 平面上随手画出来的曲线所表示的y 与x 间的关系”.即把函数定义为一条随意画出来的曲线.欧拉称之为任意函数,即包括了由单个解析表达式给出的连续函数,也包括由若干个解析式表示的不连续函数(“不连续”函数的名称是欧拉首次提出的).但是,欧拉的观点没有被达朗贝尔接受,并展开了激烈争论.1822年,法国数学家傅立叶提出了任意函数可展开为三角级数,这实际上是说,不管是连续函数或不能用解析表达式给出的函数(凡能用图形给出)都可以用三角级数表示.因此也说明了,仅从表达式是否“单一”,或函数是否连续来区别是不是函数,显然是不合理的. 傅立叶在论文《热的分析理论》中,证明了“由不连续的线给出的函数,能用一个三角函数式来表式”.他举例指出图7.2.1所示的不连续曲线,表达式有无穷多个,即 ,2(21)40,0,1,2,,(21)2(1)4k x k y x k k k x k πππππππ⎧<<+⎪⎪===±±⎨⎪⎪-+<<+⎩…但可以用单一的三角式表示为sin sin sin 135x x x y =+++…这有力地揭示了,用函数表示式的“单一”与否来区别函数的真伪是不行的,不久人们进一步发现了同一曲线即可用同一个函数,也可用两个以上的函数表示的种种例子:三、科学定义的雏形1775年,欧拉在《微分学》一书中,给出了函数的另一定义:“如果某些变量,以这样一种方式依赖于另一些变量,即当后者变化时前者也随之变化,则称前面的变量为后面变量的函数.”值得指出的是这里的“依赖”,“随之变化”等的含意不十分确切.例如g=x^2,当x取一3,十3时y均等于9,y没有变化.又如常量函数y=c,不论x如何变化y总是一个不变的值.因此,该定义限制了函数的外延,只能算函数概念的科学雏型.19世纪最杰出的法国数学家柯西也给出了如下函数定义:“若当x的每个值,都有完全确定的y值与之对应,则称y是f的函数.”此定义澄清了函数概念与曲线、连续、解析式等纠缠不清的关系,也避免了数学意义欠严格的“变化”一词,但对函数概念的本质---对应思想强调不够.而且,当时柯西仍然考虑f和y的关系用若干个解析式表示的情况.其实,所谓用解析式表示这一点,对x与y的关系并无多大意义,因此该定义也只能算科学函数概念的维型.四、函数概念的精确化1837年,德国数学家黎曼和狄里克雷克服了前述定义的缺陷,给出函数概念的精确化表述:“若对x的每一个值,有完全确定的y 值与之对应,不管建立起这种对应的方式如何,都称y是x的函数.”这个定义彻底地抛弃了前述一些定义中解析式等的束缚,特别强调和突出函数概念的本质——对应思想,使之具有更加丰富的内涵.因而,此定义可视为称得上科学的函数定义.按照此定义,1 D(x)=0x x⎧⎨⎩,为有理数,为无理数就是一个函数了.五、函数定义域限制的取消前述定义基本上达到了精确化的表达.但它对自变量x却存在着一些限制,只允许它在实数集或在实数区间上取值,而不能像f(x)的值那样,既允许取连续的,也允许取不连续的值.因此,为使函数概念的适用范围更加广泛,使保y=f(x)=1/x!(x为正整数)也可看作函数,就促使函数概念朝着取消函数定义域限制的方向发展.为此,人们又给出了如下函数概念:“函数y=f(x)的自变量x可以不必取区间[a,b]中的一切值,而可以仅取其中任一部分.”换句话说是x的取值范围可以是任一数集.这就解除了对自变量x的限制,使函数概念较前广泛得多了.但是,自变量及函数值仍然仅限于数的范围,随着数学的发展.函数概念仍需拓广.六、近代函数定义为了克服上述的局限性,必须重新认识“变量”、“变域”、“常量”等概念.美国数学家维布伦认为:变量是代表某集合中任意一个“元素”的记号.由变量所表示的任一元素,称为该变量的值.变量x所代表的“元素的集合”,称为该变量的变域,而常量是特殊的变量,它是上述集合中只包含一个“元素”情况下的变量.这突破丁“变量是数”的限制,变量可以是数,也可以是别的,如点、线、面、体、向量、矩阵、函数、算子等等,甚至可以泛指任何一种研究对象,这样“变量”、“变域”、“常量”的意义较前一般化了,在此基础上,维布伦给出了近代函数定义:若在变量y的集合与另一变量x的集合之间,有这样的关系成立,即对x的每一值,有完全确定的y与之对应,则称变量y是变量x的函数.建立在“集合对应”基础上的这一函数定义,使得函数概念能广泛地应用于数学的各个分支中,比如,数学分析,复变函数,实变函数,泛函分析中.七、集合函数进人20世纪以后,在德国数学家康托创立的集合论基础上,人们对函数的认识又有深化,出现了“集函数”和“用集合定义的函数”,前者可这样表述:对于以集合为元素构成的集合P的每一个元素A.如果在另一个以集合为元素构成的集合Q中有完全确定的元素B与之对应,那么集合Q叫做集合P的集合函数.显然,当P、Q中的元素A、B是由单元素集构成时,该定义与维布伦的函数定义相吻合.我们说勒贝格(Lebesgue)测度mE是集函数,是把可测集类nϑ视为这定义中P,非负实数(包括十∞)的单元素集构成的集为这定义中的Q.当然,长度、面积、体积等也可视为集函数.20世纪60年代后,人们开始视函数为集合,这种定义可表述为:设A,B是两个集合,f是乘积A B x y x A y B⨯=∍∍{(,)|,}的一个子集,如果当(x,y)且(x,z)时,总有y=z,则称f为一个函数.当B为实数集时,此定义确定了一实值函数f,当A,B均为实数集时,定义确定的函数f与数学分析中函数f的定义一致.八、总结目前,使用较多的定义有如下三种:定义1设在某个变化过程中有两个变量x,y,如果对于x在某一范围内的每一个确定的值,y都有唯一确定的值与之对应,就说y 是x的函数,x叫做自变量。

函数概念发展的历史过程

函数概念发展的历史过程

函数概念发展的历史过程函数的概念发展是数学领域的一项重要成果,也是数学发展历史中的一个重要组成部分。

函数最早的概念可以追溯到古希腊的数学家阿基米德和欧几里得。

然而,对函数概念的系统阐述和确立要追溯到17世纪以后,而且对函数的深入研究和应用更是要追溯到19世纪以后。

函数的概念发展历程不仅反映了数学知识的深化和发展,同时也与数学在科学研究和工程技术中的应用密切相关。

1.古希腊的初步探索在古代希腊,数学家已经开始讨论和研究数学对象之间的关系。

阿基米德和欧几里得都研究了相对的数值关系。

而欧几里得就探讨了比例关系的平均比例。

这些早期的研究工作,奠定了函数概念发展的基础。

2.笛卡尔坐标系的建立近代函数概念的确立和发展,与笛卡尔坐标系的建立密不可分。

笛卡尔在17世纪提出了笛卡尔坐标系,引入了坐标系和代数表达法,使得函数可以通过方程和坐标来表示。

3.函数概念的确立17世纪,莱布尼兹和牛顿等数学家在微积分的研究中提出了函数的概念。

他们认为,函数是一种数学对象,是一种数值之间的对应关系。

这一概念的确立,标志着函数作为数学对象的独立性和重要性得到了认可。

4.函数的深入研究在函数的概念确立之后,数学家们开始深入研究函数的性质、性质和变化规律。

在19世纪,勒贝格和黎曼等数学家提出了积分和微分的理论,为函数的深入研究提供了有力的工具。

5.函数在科学和工程中的应用随着函数的研究深入和发展,函数的应用范围也得到了扩展。

在物理学、工程技术和金融领域,函数成为了研究和描述现实世界的重要工具。

总之,函数概念的发展是数学发展史上的一大里程碑,它标志着数学在研究方法和工具上的重大进步,也有力地推动了数学在科学和工程中的应用。

函数概念的发展历史过程

函数概念的发展历史过程

函数概念的发展历史过程函数的概念在数学上具有重要的地位,它在数学的各个分支中被广泛应用。

函数的起源可以追溯到古代巴比伦、古埃及、古希腊等文明,随着时间的推移,在欧洲文艺复兴时期,人们对函数的概念有了更深入的理解,并在18世纪和19世纪逐步形成了现代函数的严密定义。

在古代巴比伦、古埃及和古希腊文明中,人们对于函数的概念有了初步的认识。

巴比伦文明的天文学家和数学家在计算恒星的位置时使用了三角函数,而古埃及和古希腊的数学家则提出了一些与函数相关的问题。

例如,希腊数学家柏拉图和欧几里德在处理经验数据和几何问题时使用了由点组成的连续曲线。

在18世纪,欧洲出现了一批杰出的数学家,如莱布尼茨、牛顿、欧拉和拉格朗日等人,他们为函数的发展做出了重要的贡献。

莱布尼茨和牛顿独立地发现并发展了微积分,将函数和导数的概念提出并进行了深入的研究。

欧拉则进一步扩展了函数的概念,推广了三角函数和指数函数,并研究了复变函数。

拉格朗日则在微积分中引入了函数的全局性质,提出了拉格朗日乘数法等方法。

19世纪是函数概念发展的重要时期,特别是在实分析和复分析方面。

实分析方面,庞加莱对函数极限进行了更加严密的定义,引入了现代函数序列和级数的概念。

庞加莱同时也提出了“everything is a function”(一切皆为函数)的观点,将数学中的各种对象都抽象为函数进行研究。

在复分析方面,魏尔斯特拉斯、黎曼和庞加莱等人对复变函数的性质进行了深入的研究,提出了调和函数、解析函数等概念,并发展了复数平面上的全纯函数理论。

20世纪以后,函数的概念进一步发展和丰富。

随着拓扑学、泛函分析和函数空间理论的发展,函数的概念在更加广泛的领域得到了应用。

拓扑学将函数的连续性引入数学中,并研究了函数空间的拓扑性质。

泛函分析则通过对函数空间中函数的线性和连续性进行研究,为函数的理论提供了更加深入的数学工具和方法。

函数概念的发展史

函数概念的发展史

函数概念的发展史函数是数学中的基本概念之一,它被广泛应用于各个领域,包括物理、化学、经济以及计算机科学等。

然而,函数的概念的发展历程可以追溯到公元前300年左右的古希腊。

以下是函数概念的发展史的综述。

1.阿基米德的方法(公元前287年)公元前300年左右,古希腊的数学家阿基米德提出了一个称为方法论(Method of Exhaustion)的方法来解决几何问题。

这一方法涉及到以一个恒定的速率逼近一个特定的数量,并通过这种逼近来计算其他数量。

这种方法实际上使用了近似函数的思想,被认为是函数概念的早期雏形。

2.斯嘉尼的分析(公元前200年)公元前200年左右,亚历山大的斯嘉尼(Apollonius of Perga)开始使用变量来表示几何问题中的未知量。

他将变量视为是一个数学对象,并使用代数的方法来研究几何形状。

斯嘉尼的分析(Apollonian Analysis)为后来函数的发展奠定了基础。

3.阿拉伯数学家的贡献(9-10世纪)在中世纪,阿拉伯数学家对函数的研究做出了重要贡献。

在9-10世纪,数学家阿尔哈桑·本·阿尔哈伯(Alhazen)和阿尔卡直赛(Al-Khazini)提出了类似于现代函数的概念。

他们将阿基米德的方法与斯嘉尼的分析相结合,引入了数学函数的概念。

此外,阿拉伯数学家还研究了三角函数和指数函数等一些基本函数。

4.勒让德和牛顿的贡献(17世纪)在17世纪,数学家皮埃尔-西蒙·勒让德(Pierre-Simon Laplace)和艾萨克·牛顿(Isaac Newton)对函数的概念进行了显著发展。

勒让德提出了现代函数概念的定义,他指出函数是输入值与输出值之间的关系。

牛顿则在他的微积分理论中广泛使用了函数的概念,将其与导数和积分等运算结合使用。

5.庞加莱和蔡氏的贡献(19-20世纪)在19-20世纪,法国数学家亨利·庞加莱(Henri Poincaré)和斯通达哈·拉马努金(Srinivasa Ramanujan)以及华罗庚等数学家对函数的研究做出了突出贡献。

函数概念的发展历程

函数概念的发展历程

函数概念的发展历程
函数是数学中一种重要的概念,它可以将一组输入值映射到一组输出值。

函数的发展历史可以追溯到古希腊时期,当时古希腊数学家们就开始研究函数的概念。

古希腊数学家们发现,函数可以用来描述数学关系,并且可以用来解决复杂的数学问题。

例如,古希腊数学家们发现,可以使用函数来描述一个点在平面上的位置,以及一个点在三维空间中的位置。

17世纪,英国数学家约翰·斯托克斯发明了函数的概念,他把函数定义为“一种从一组输入值到一组输出值的映射”。

他还发现,函数可以用来描述复杂的数学关系,并且可以用来解决复杂的数学问题。

18世纪,德国数学家卡尔·莱布尼茨发明了函数的概念,他把函数定义为“一种从一组输入值到一组输出值的映射,其中输入值和输出值都是实数”。

他还发现,函数可以用来描述复杂的数学关系,并且可以用来解决复杂的数学问题。

19世纪,法国数学家亚历山大·德拉克罗斯发明了函数的概念,他把函数定义为“一种从一组输入值到一组输出值的映射,其中输入值和输出值都是实数或复数”。

他还发现,函数可以用来描述复杂的数学关系,并且可以用来解决复杂的数学问题。

20世纪以来,函数的概念发展得非常快,函数的概念已经被广泛应用于计算机科学、物理学、统计学等领域。

函数的概念也被用来描述复杂的系统,并且可以用来解决复杂的问题。

总之,函数是一种重要的概念,它可以用来描述复杂的数学关系,并且可以用来解决复杂的数学问题。

函数的发展历史可以追溯到古希腊时期,它已经被广泛应用于计算机科学、物理学、统计学等领域。

函数发展史

函数发展史

函数发展简史最早提出函数(function)概念的,是17世纪德国数学家莱布尼茨.后又经历了贝努利、欧拉等人的改译。

1821年,法国数学家柯西给出了类似现在中学课本的函数定义:“在某些变数间存在着一定的关系,当一经给定其中某一变数的值,其他变数的可随着而确定时,则将最初的变数叫自变量,其他各变数叫做函数,在柯西的定义中,首先出现了自变量一词。

1834年,俄国数学家罗巴契夫斯基进一步指出了对应关系(条件)的必要性,利用这个关系以求出每一个x的对应值.康托尔自从德国数学家康托尔的集合论被大家接受后,用集合对应关系来定义函数概念就是现在高中课本里用的了。

. 中文数学书上使用的“函数”一词是转译词.是我国清代数学家李善兰在翻译《代数学》一书时,把“function”译成函数。

优美的函数图象笛卡尔的故事当时法国正流行黑死病,笛卡儿不得不逃离法国,于是他流浪到瑞典当乞丐。

某天,他在市场乞讨时,有一群少女经过,其中一名少女发现他的口音不像是瑞典人,她对笛卡儿非常好奇,于是上前问他…… 你从哪来的啊? “法国”“你是做什么的啊?” “我是数学家。

” 这名少女叫克丽丝汀,18岁,是一个公主,她和其它女孩子不一样,并不喜欢文学,而是热衷于数学。

当她听到笛卡儿说名身份之后,感到相当大的兴趣,于是把笛卡儿邀请回宫。

笛卡儿就成了她的数学老师,将一生的研究倾囊相授给克丽丝汀。

而克丽丝汀的数学也日益进步,直角坐标当时也只有笛卡儿这对师生才懂。

后来,他们之间有了不一样的情愫,发生了喧腾一时的师生恋。

这件事传到国王耳中,让国王相当愤怒!下令将笛卡儿处死,克丽丝汀以自缢相逼,国王害怕宝贝女儿真的会想不开,于是将笛卡儿放逐回法国,并将克丽丝汀软禁。

笛卡儿一回到法国后,没多久就染上了黑死病,躺在床上奄奄一息。

笛卡儿不断地写信到瑞典给克丽丝汀,但却被国王给拦截没收。

所以克丽丝汀一直没收到笛卡儿的信…… 在笛卡儿快要死去的时候,他寄出了第13封信,当他寄出去没多久后...就气绝身亡了。

函数概念的历史发展

函数概念的历史发展

函数概念的历史发展函数概念是中学中最重要的概念之一,它既是数学研究的对象,又是解决数学问题的基本思想方法。

早在16、17世纪,生产和科学技术的发展要求数学不仅研究静止不动的量,而且要研究运动过程中各个量之间的依赖关系,从而促进数学由常量上学时期进入到变量数学时期。

函数也就成为研究变量数学必不可少的概念。

函数(function)一词,始用于1692年,见著于微积分创始人之一莱布尼兹G.W.Leibnic,1646—1717)的著作。

而f(x)则由欧拉(Euler)于1724年首次使用。

我国于1859年引进函数的概念,它首次是在清代数学家李善兰与英国传教士伟烈亚历山大合译的《代微积拾级》中出现。

函数在初高等数学中,在物理、化学和其他自然科学中,在经济领域和社会科学中,均有广泛的应用,起着基础的作用。

函数的概念随着数学的发展而发展,函数的定义在发展过程中不断地精确、完善、抽象,函数的概念也不断得到严谨化、精确化的表达。

牛顿在《自然哲学的数学原理》中提出的“生成量”就是函数概念的雏形。

最初,函数是表示代数上的幂(23,,,x x x…),1673年,莱布尼兹把任何一个随着曲线上的点变动的几何量,如切线、法线,以及点的横坐标都成为函数。

一、解析的函数概念在18世纪占主导地位的观点是,把函数理解为一个解析表达式.1698年,瑞士著名数学家约翰·贝努利定义:由变量x和常量用任何方式构成的量都可以称为x的函数.这里任何方式包括代数式子和超越式子.1748年,约翰的学生,杰出数学家欧拉在它著名的《无穷小分析引沦》中把函数定义为“由一个变量与一些常量通过任何方式形成的解析表达式”,这就把变量与常量以及由它们的加、减、乘、除、乘方、开方和三角、指数、对数等运算构成的式子,均称为函数.并且,欧拉还给出了函数的分类,把函数分为:代数函数与超越函数,有理函数与无理函数,整函数与分函数,单值函数与多值函数.当时把函数看作一个解析表达式的还有著名的法国数学家达朗贝尔和拉格朗日.但这种解析的函数概念有其局阳性,如某些变量之间的对应关系不能用解析式子表达出来,那么根据这个定义就不能称之为函数关系.例如著名的狄利克雷(D1richkt)函数1 D(x)=0x x⎧⎨⎩,为有理数,为无理数二、几何的函数概念因为解析表达式在几何上可表示为曲线,一些数学家把曲线称为函数.1746年,达朗贝尔在研究弦振动问题时,提出了用单独的解析表达式给出的曲线是函数.后来欧拉发现有些曲线不一定是由单个解析式给出的,他提出了一个新定义:函数是“xy 平面上随手画出来的曲线所表示的y与x间的关系”.即把函数定义为一条随意画出来的曲线.欧拉称之为任意函数,即包括了由单个解析表达式给出的连续函数,也包括由若干个解析式表示的不连续函数(“不连续”函数的名称是欧拉首次提出的).但是,欧拉的观点没有被达朗贝尔接受,并展开了激烈争论.1822年,法国数学家傅立叶提出了任意函数可展开为三角级数,这实际上是说,不管是连续函数或不能用解析表达式给出的函数(凡能用图形给出)都可以用三角级数表示.因此也说明了,仅从表达式是否“单一”,或函数是否连续来区别是不是函数,显然是不合理的. 傅立叶在论文《热的分析理论》中,证明了“由不连续的线给出的函数,能用一个三角函数式来表式”.他举例指出图7.2.1所示的不连续曲线,表达式有无穷多个,即,2(21)40,0,1,2,,(21)2(1)4k x k y x k k k x k πππππππ⎧<<+⎪⎪===±±⎨⎪⎪-+<<+⎩…但可以用单一的三角式表示为 sin sin sin 135x x x y =+++…这有力地揭示了,用函数表示式的“单一”与否来区别函数的真伪是不行的,不久人们进一步发现了同一曲线即可用同一个函数,也可用两个以上的函数表示的种种例子:三、科学定义的雏形1775年,欧拉在《微分学》一书中,给出了函数的另一定义:“如果某些变量,以这样一种方式依赖于另一些变量,即当后者变化时前者也随之变化,则称前面的变量为后面变量的函数.”值得指出的是这里的“依赖”,“随之变化”等的含意不十分确切.例如g =x^2,当x 取一3,十3时y 均等于9,y 没有变化.又如常量函数y =c ,不论x 如何变化y 总是一个不变的值.因此,该定义限制了函数的外延,只能算函数概念的科学雏型.19世纪最杰出的法国数学家柯西也给出了如下函数定义:“若当x 的每个值,都有完全确定的y 值与之对应,则称y 是f 的函数.”此定义澄清了函数概念与曲线、连续、解析式等纠缠不清的关系,也避免了数学意义欠严格的“变化”一词,但对函数概念的本质---对应思想强调不够.而且,当时柯西仍然考虑f 和y 的关系用若干个解析式表示的情况.其实,所谓用解析式表示这一点,对x 与y 的关系并无多大意义,因此该定义也只能算科学函数概念的维型.四、函数概念的精确化1837年,德国数学家黎曼和狄里克雷克服了前述定义的缺陷,给出函数概念的精确化表述:“若对x 的每一个值,有完全确定的y 值与之对应,不管建立起这种对应的方式如何,都称y 是x 的函数.”这个定义彻底地抛弃了前述一些定义中解析式等的束缚,特别强调和突出函数概念的本质——对应思想,使之具有更加丰富的内涵.因而,此定义可视为称得上科学的函数定义.按照此定义,1D(x)=0x x ⎧⎨⎩,为有理数,为无理数就是一个函数了.五、函数定义域限制的取消前述定义基本上达到了精确化的表达.但它对自变量x 却存在着一些限制,只允许它在实数集或在实数区间上取值,而不能像f(x)的值那样,既允许取连续的,也允许取不连续的值.因此,为使函数概念的适用范围更加广泛,使保y =f(x)=1/x!(x 为正整数)也可看作函数,就促使函数概念朝着取消函数定义域限制的方向发展.为此,人们又给出了如下函数概念:“函数y =f(x)的自变量x 可以不必取区间[a ,b]中的一切值,而可以仅取其中任一部分.”换句话说是x 的取值范围可以是任一数集.这就解除了对自变量x 的限制,使函数概念较前广泛得多了.但是,自变量及函数值仍然仅限于数的范围,随着数学的发展.函数概念仍需拓广.六、近代函数定义为了克服上述的局限性,必须重新认识“变量”、“变域”、“常量”等概念.美国数学家维布伦认为:变量是代表某集合中任意一个“元素”的记号.由变量所表示的任一元素,称为该变量的值.变量x 所代表的“元素的集合”,称为该变量的变域,而常量是特殊的变量,它是上述集合中只包含一个“元素”情况下的变量.这突破丁“变量是数”的限制,变量可以是数,也可以是别的,如点、线、面、体、向量、矩阵、函数、算子等等,甚至可以泛指任何一种研究对象,这样“变量”、“变域”、“常量”的意义较前一般化了,在此基础上,维布伦给出了近代函数定义:若在变量y 的集合与另一变量x 的集合之间,有这样的关系成立,即对x 的每一值,有完全确定的y 与之对应,则称变量y 是变量x 的函数.建立在“集合对应”基础上的这一函数定义,使得函数概念能广泛地应用于数学的各个分支中,比如,数学分析,复变函数,实变函数,泛函分析中.七、集合函数进人20世纪以后,在德国数学家康托创立的集合论基础上,人们对函数的认识又有深化,出现了“集函数”和“用集合定义的函数”,前者可这样表述:对于以集合为元素构成的集合P 的每一个元素A .如果在另一个以集合为元素构成的集合Q 中有完全确定的元素B 与之对应,那么集合Q 叫做集合P 的集合函数.显然,当P 、Q 中的元素A 、B 是由单元素集构成时,该定义与维布伦的函数定义相吻合.我们说勒贝格(Lebesgue)测度mE 是集函数,是把可测集类n ϑ视为这定义中P ,非负实数(包括十∞)的单元素集构成的集为这定义中的Q.当然,长度、面积、体积等也可视为集函数.20世纪60年代后,人们开始视函数为集合,这种定义可表述为:设A,B是两个集合,f是乘积⨯=∍∍A B x y x A y B{(,)|,}的一个子集,如果当(x,y)且(x,z)时,总有y=z,则称f为一个函数.当B为实数集时,此定义确定了一实值函数f,当A,B均为实数集时,定义确定的函数f 与数学分析中函数f的定义一致.八、总结目前,使用较多的定义有如下三种:定义1设在某个变化过程中有两个变量x,y,如果对于x在某一范围内的每一个确定的值,y都有唯一确定的值与之对应,就说y是x的函数,x叫做自变量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数发展简史
最早提出函数(function)概念的,是17世纪德国数学家莱布尼茨.
后又经历了贝努利、欧拉等人的改译。

1821年,法国数学家柯西给出了类似现在中学课本的函数定义:“在某些变数间存在着一定的关系,当一经给定其中某一变数的值,其他变数的可随着而确定时,则将最初的变数叫自变量,其他各变数叫做函数,在柯西的定义中,首先出现了自变量一词。

1834年,俄国数学家罗巴契夫斯基进一步指出了对应关系(条件)的必要性,利用这个关系以求出每一个x的对应值.
康托尔
自从德国数学家康托尔的集合论被大家接受后,用集合对应关系来定义函数概念就是现在高中课本里用的了。

. 中文数学书上使用的“函数”一词是转译词.是我国清代数学家李善兰在翻译《代数学》一书时,把“function”译成函数。

优美的函数图象
笛卡尔的故事
当时法国正流行黑死病,笛卡儿不得不逃离法国,于是他流浪到瑞典当乞丐。

某天,他在市场乞讨时,有一群少女经过,其中一名少女发现他的口音不像是瑞典人,她对笛卡儿非常好奇,于是上前问他…… 你从哪来的啊? “法国”“你是做什么的啊?” “我是数学家。

” 这名少女叫克丽丝汀,18岁,是一个公主,她和其它女孩子不一样,并不喜欢文学,而是热衷于数学。

当她听到笛卡儿说名身份之后,感到相当大的兴趣,于是把笛卡儿邀请回宫。

笛卡儿就成了她的数学老师,将一生的研究倾囊相授给克丽丝汀。

而克丽丝汀的数学也日益进步,直角坐标当时也只有笛卡儿这对师生才懂。

后来,他们之间有了不一样的情愫,发生了喧腾一时的师生恋。

这件事传到国王耳中,让国王相当愤怒!下令将笛卡儿处死,克丽丝汀以自缢相逼,国王害怕宝贝女儿真的会想不开,于是将笛卡儿放逐回法国,并将克丽丝汀软禁。

笛卡儿一回到法国后,没多久就染上了黑死病,躺在床上奄奄一息。

笛卡儿不断地写信到瑞典给克丽丝汀,但却被国王给拦截没收。

所以克丽丝汀一直没收到笛卡儿的信…… 在笛卡儿快要死去的时候,他寄出了第13封信,当他寄出去没多久后...
就气绝身亡了。

这封信的内容只有短短的一行……
r=a(1-sinθ)
国王拦截到这封信之后,拆开看,发现并不是一如往常的情话。

国王当然看不懂这个数学式,于是找来城里所有科学家来研究,但都没有人能够解开到底是什么意思。

国王心想……反正笛卡儿快要
死了,而且公主被软禁时郁闷不乐的,所以,就把信交给克丽丝汀。

当克丽丝汀收到这封信时,雀跃无比,她很高兴她的爱人还是在想念她的。

她立刻动手研究这行字的秘密。

没多久就解出来了,用的就是直角坐标图。

当θ=0°时,r=a(1-0)=a……A点
当θ=90°时,r=a(1-1)=0……B点
当θ=180°时,r=a(1-0)=a……C点
当θ=270°时,r=a(1+1)=2a……D点a为四截距的比值
将整个曲线图作出来,就是有名的心形线!
不久之后那位国王也死了,克丽丝汀继承王位,登基之后马上派人在欧洲四寻找笛卡儿的踪迹,可惜……人已故,才子和佳人没能有童话般的结局。

相关文档
最新文档