[物理]1、光纤通信基础知识
光纤通信原理及基础知识
t D • Δ PMD= pmd * LΛ0.5
•
PMD Link
y=
1
n
n k 1
x
2 k
1 2
• PMDQ :99.99% probability of 100000 y
光纤的基本参数
光纤的光学及传输特性参数之一------偏振模色散受限的最大理 论传输距离
偏振模色散受限的最大理论传输距离
光纤的通信原理及基础知识
第一章 光纤通信的基本原理 第二章 光纤的基本结构和分类 第三章 光纤的基本参数 第四章 光纤的制造方法
第一章 光纤、光缆的基本知识
§1.1 光纤通信的基本原理
信号 处理
发送端
光波导
信号 处理
接收端
光纤通信的基本原理
频谱分配
电磁波谱
低频
高频
微波
直流电
LW MW KW UKW dm cm
微观弯曲损耗:是指光纤受到不均匀应力的作
用,光纤轴产生的微小不规则弯曲所引入的附加损耗。
光纤的基本参数
参数典型值 光纤的光学及传输特性参数之一------
• 模场直径: • 衰减系数:
• 色散系数:
• 偏振模色散:
• 截止波长: • 弯曲损耗:
•1310nm: 8-10m; 1550nm: 9-11m
包层(SiO2+F )掺氟二氧化硅
125 µm
标准单模光纤
标准梯度折射率分布多模光纤
涂层(acrylic) 250 µm
涂层 250 µm
涂层
力学影响的防护
塑料光纤
涂层 1000 µm
光纤的基本结构和分类
光纤的分类
按材料分类:
光纤通信基本知识
一、光纤通信的基本知识(一)光纤通信的概念1870年的一天,英国物理学家丁达尔到皇家学会的演讲厅讲光的全反射原理,他做了一个简单的实验:在装满水的木桶上钻个孔,然后用灯从桶上边把水照亮。
结果使观众们大吃一惊。
人们看到,放光的水从水桶的小孔里流了出来,水流弯曲,光线也跟着弯曲,光居然被弯弯曲曲的水俘获了。
这些现象引起了丁达尔的注意,经过他的研究,发现这是由于全反射的作用,由于水等介质密度由于比周围的物质(如空气)大,即光从水中射向空气,当入射角大于某一角度时,折射光线消失,全部光线都反射回水中。
表面上看,光好像在水流中弯曲前进。
后来人们造出一种透明度很高、粗细像蜘蛛丝一样的玻璃丝──玻璃纤维,当光线以合适的角度射入玻璃纤维时,光就沿着弯弯曲曲的玻璃纤维前进。
由于这种纤维能够用来传输光线,所以称它为光导纤维。
(视频)光纤通信的原理是:在发送端首先要把传送的信息(如话音)变成电信号,然后调制到激光器发出的激光束上,使光的强度随电信号的幅度(频率)变化而变化,并通过光纤发送出去;在接收端,检测器收到光信号后把它变换成电信号,经解调后恢复原信息。
(视频)(二)光纤通信的发展光纤通信是现代通信网的主要传输手段,它的发展历史只有一二十年,已经历三代:短波长多模光纤、长波长多模光纤和长波长单模光纤。
采用光纤通信是通信史上的重大变革,美、日、英、法等20多个国家已宣布不再建设电缆通信线路,而致力于发展光纤通信。
中国光纤通信已进入实用阶段。
(三)光纤通信的优缺点1、光纤通信的优点现代通信网的三大支柱是光纤通信、卫星通信和无线电通信,而其中光纤通信是主体,这是因为光纤通信本身具有许多突出的优点:①频带宽,通信容量大。
光纤可利用的带宽约为50000GHz,1987年投入使用的1.7Gb/s光纤通信系统,一对光纤能同时传输24192路电话,2.4Gb/s系统,能同时传输30000多路电话。
频带宽,对于传输各种宽频带信息具有十分重要的意义,否则,无法满足未来宽带综合业务数字网(B-ISDN)发展的需要。
光纤通信基础知识
一、优点: 1、传输频带宽、通信容量大; 2、传输损耗低;0.2dB/Km 3、不受电磁干扰;光纤非金属介质 4、成缆细、重量轻;光纤直径小(125μm) 5、丰资富源丰富;光纤的制造材料Sio2在自然中的含量十分 6、绕性好;弯曲直径达3mm时也不会折断 7、不怕潮湿、耐高压、耐高温、抗腐蚀。光纤的化学性
能稳定
主要因素
光纤通信的优点
光纤通信的缺点
使用光引起的
使用光纤引起 的
使用光半导体 元件引起的
信息传输容量大;无电磁干 需要光电变换设备 扰;无短路引起的事故;不 光直接放大难 发生火花;接地设计容易
传输损耗小、频带宽;无电 电力传输困难 磁感应障碍;可忽略串音; 弯曲半径不宜太小 重耐资高源量温 问轻、 题;不抗 小怕腐潮蚀湿;、有耐可高绕压性、;需 术 分要路高耦合级不切断方接便续技
损耗 使用波长
光纤主要尺寸参数
光纤类别
光纤数
谢谢!
三、按套塑结构可分为紧套光纤和松套光纤;按传输模 数可分为单模光纤和多模光纤。
四、按折射率分布可分为阶跃型光纤和梯度型光纤。
损利散射 米氏散射 受激布里渊散射 受激拉曼散射
非本征 金属离子 OH离子、H2
制造缺陷
2、偏振模色散产生的原因
响应速度快 方向性好 光功率大
光纤通信的基本组成
电发 路光 盘盘
电收 路光 盘盘
收电电电发 光路放路光 盘盘大盘盘
发电电电收 光路放路光 盘盘大盘盘
收电 光路 盘盘
发电 光路 盘盘
纤芯 包层
一次涂层 缓冲层 二次涂层
纤芯 包层
树脂涂层 硬冲层
一、按传输模数分为单模光纤和多模光纤;
二、按传输波长可分为短波长光纤(0.85μm)和长波长 光纤(1.3—1.6μm)
光纤通信基础知识
光纤通信的基本概念光导纤维,是一种介质光波导,能把光封闭其中并且使光沿轴向进行传播的导波结构。
由石英玻璃、合成树脂等材料制成的极细的纤维。
单模光纤:纤芯8-10um、包层125um多模光纤:纤芯51um、包层125um利用光导纤维传输光信号的通信方式称为光纤通信。
光波属于电磁波的范畴。
可见光的波长范围是390-760nm,大于760nm部分是红外光,小于390nm部分是紫外光。
光波的工作窗口(三个通信窗):光纤通信中应用的波长范围是在近红外区短波长区(可见光,肉眼看是一种橘黄色的光)850nm橘黄色的光长波长区(不可见光区)1310nm(理论上的色散最小点)、1550nm (理论上的衰减最小点)光纤的结构与分类1. 光纤的结构理想的光纤结构:纤芯、包层、涂覆层、护套构成。
纤芯和包层用石英材料制作,机械性能比较脆弱,容易断,故一般会加两层涂覆层,一层树脂型、一层尼龙型,使得光纤柔性性能达到工程实际运用的要求。
2.光纤的分类(1)光纤按照光纤横截面的折射率分布划分:分为阶跃型光纤(均匀光纤)和渐变型光纤(非均匀光纤)。
假设,纤芯折射率为n1,包层折射率为n2为了使纤芯能够远距离传光,构成光纤的必要条件是n1>n2均匀光纤的折射率分布是个常数非均匀光纤的折射率分布规律:其中,△——相对折射率差α——折射指数,α=∞——阶跃型折射率分布光纤,α=2——平方律折射率分布光纤(一种渐变型光纤)这种光纤比起其他渐变型光纤,模式色散最小最优(2)按纤芯中所传输的模式数量来划分:分为多模光纤和单模光纤这里的模式是指:在光纤中所传输的光线的一种电磁场的分布,不同的场分布就是一种不同的模式。
单模(光纤中只传输一种模式)、多模(光纤中同时传输多种模式)目前由于对传输的速率要求越来越高、传输的数量要求越来越多,城域网向高速大容量方向发展,所以采用的多是单模阶跃型光纤。
(本身传输特性优于多模光纤)(3)光纤的特性:①光纤的损耗特性:光波在光纤中传输,随着传输距离的增加而光功率逐渐下降。
光纤通信基础知识
同步 TDM A1 B1 C1 D1 A2 B2 C2 D2
周期1 周期 周期2 周期
可用带宽
异步TDM 异步 A1 B1
周期1 周期
B2
周期2 周期
C2
ATM是一项数据传输技术。ATM是以信元为基础的一种分组交换和复用技术,它是一种 是一项数据传输技术。 是以信元为基础的一种分组交换和复用技术, 是一项数据传输技术 是以信元为基础的一种分组交换和复用技术 为了多种业务设计的通用的面向连接的传输模式。 为了多种业务设计的通用的面向连接的传输模式。 ATM的传送单元是固定长度 的传送单元是固定长度53byte的CELL(信元) 的传送单元是固定长度 的 (信元) ATM适配层(AAL)是把一特定的数据源转换成ATM通讯量的特定类型的服务,也就是说 适配层( )是把一特定的数据源转换成 通讯量的特定类型的服务, 适配层 通讯量的特定类型的服务 处理建立用户所要求的服务质量的机制。有四个被定义的类: 它 处理建立用户所要求的服务质量的机制。有四个被定义的类: A 级 - 固定比特率 固定比特率(CBR)业务 业务:ATM适配层 适配层1(AAL1),支持面向连接的业务 其比特率固 支持面向连接的业务,其比特率固 业务 适配层 支持面向连接的业务 常见业务为64Kbit/s话音业务 固定码率非压缩的视频通信及专用数据网的租用电 话音业务,固定码率非压缩的视频通信及专用数据网的租用电 定,常见业务为 常见业务为 话音业务 路。 B 级 - 可变比特率 可变比特率(VBR)业务 业务:ATM适配层 适配层2(AAL2)。支持面向连接的 业务 适配层 。 业务, 其 比特率是可变的。常见业务为压缩的分组语音通信 业务 比特率是可变的。 和压缩的视频传输。该业务具有传递介面延迟物性, 和压缩的视频传输。该业务具有传递介面延迟物性 其原因是 接收器需要重新组装原来的非压缩语音和视频信息。 接收器需要重新组装原来的非压缩语音和视频信息。 C 级 - 面向连接的数据服务 面向连接的数据服务:AAL3/4。该业务为面向连接的业务 适 。该业务为面向连接的业务,适 用于文件传递和数据网业务,其连接是在数据被传送以前建立 用于文件传递和数据网业务 其连接是在数据被传送以前建立 的。它是可变比特率的,但是没是介面传递延迟。 它是可变比特率的 但是没是介面传递延迟。 但是没是介面传递延迟 D 级 - 无连接数据业务 常见业务为数据报业务和数据网业务。 在 无连接数据业务:常见业务为数据报业务和数据网业务 常见业务为数据报业务和数据网业务。 传递数据前, 其连接不会建立。 均支持此业务。 传递数据前 其连接不会建立。AAL3/4或AAL5均支持此业务。 或 均支持此业务
光纤通信原理和基础知识
光纤通信原理和基础知识光纤通信是一种利用光纤传输信息的通信技术。
光纤是一种由高纯度玻璃或塑料制成的非导体材料,可以通过内部反射原理传输光信号。
相对于传统的铜线传输,光纤具有更大的带宽、更低的损耗、更长的传输距离和更高的抗干扰能力,因此被广泛应用于现代通信领域。
光纤通信的工作原理基于光的全反射现象。
当光线通过光纤的两侧,并以超过临界角的角度射入光纤中时,光线会在内部完全反射。
这样,光信号就可以沿着光纤进行传输,直到遇到终端设备或者光纤长度超过极限。
光纤通信的基础知识包括以下几个方面:1.光纤的构成:光纤主要由纤芯和包层组成。
纤芯是光信号传输的核心部分,由高纯度玻璃或者塑料制成。
包层是纤芯的保护层,通常由具有低折射率的材料制成,可以减小信号的损耗和干扰。
2.光纤的损耗:光信号在光纤中传输过程中会发生损耗,主要包括衰减损耗和色散损耗。
衰减损耗是光信号强度随着传输距离增加而逐渐减小的现象,通常使用分贝(dB)来表示。
色散损耗是由于光信号的频率不同而引起的,会导致信号失真。
3.光纤的带宽:带宽是指光纤传输信号的能力,通过单位时间内传输的数据量来衡量。
光纤的带宽比铜线更大,可以支持更高速率的数据传输。
4.光纤的连接方式:光纤的连接方式主要有插拔式连接和固定式连接。
插拔式连接通常使用光纤连接器,可以方便地插入和拔出。
固定式连接通常使用光纤接头或者光纤焊接,适用于长期固定的连接。
5.光纤的传输距离:光纤通信可以实现长距离的传输,最远甚至可以达到几百公里。
传输距离的限制主要取决于信号的衰减和光纤的噪声级别。
光纤通信基础知识ppt课件
光检测器广泛应用于光纤通信、光传 感、激光雷达等领域,特别是在高速、 长距离的光纤通信系统中,光检测器 的作用尤为关键。
光放大器
光放大器是光纤通信系统中的关键器件之一,主要分 为掺铒光纤放大器(EDFA)和拉曼光纤放大器(RA)
两类。
输入 标题
作用
光放大器的作用是对光信号进行放大,补偿光纤传输 过程中的光信号损耗,提高光纤通信系统的传输距离 和稳定性。
光检测器
分类
光检测器是光纤通信系统中的另一重 要器件,主要分为光电二极管(PIN) 和雪崩光电二极管(APD)两类。
性能参数
光检测器的性能参数包括响应度、带 宽、噪声等,这些参数直接影响着光 纤通信系统的接收灵敏度和动态范围。
作用
光检测器的作用是将光信号转换为电 信号,从而实现光信号的接收和检测。
模拟光纤通信系统的应用
03
在音频广播、视频传输等领域得到广泛应用。
光纤通信系统设计
01
光纤通信系统设计的基本原则
确保系统的传输性能、稳定性、可靠性和经济性。
02
光纤通信系统设计的主要内容
包括光源、光检测器、光纤、中继器和放大器等器件的选择和配置。
03
光纤通信系统设计的优化
通过采用先进的调制技术、编码技术等手段,提高系统的传输性能和容
性能参数
光源的性能参数包括波长、光谱宽度、输出功率、阈值电 流等,这些参数对光纤通信系统的性能和稳定性有着重要 影响。
作用
光源的作用是将电能转换为光能,为光纤通信系统提供光 信号。
应用场景
光源广泛应用于光纤通信、光传感、光谱分析等领域,特 别是在长距离、大容量的光纤通信系统中,光源的作用尤 为重要。
光纤通信发展历程
光纤通信技术的使用教程分享
光纤通信技术的使用教程分享光纤通信技术是一种高速、高带宽的通信传输方法,这种技术已经广泛运用于今天的现代通信网络中。
光纤通信技术的使用可以极大地提高传输速度和信号质量,满足了人们对于数据传输的高要求。
在这篇文章中,我们将为大家分享光纤通信技术的相关知识和使用教程,希望能帮助大家更好地了解和应用这项重要的通信技术。
一、光纤通信技术的基础知识1. 光纤通信的原理:光纤通信是利用光纤作为传输介质,通过将信息转换成光信号传输,再通过接收器将光信号转换回电信号的方式进行数据传输。
这种方式能够实现高速、高带宽和长距离传输。
2. 光纤的构成和类型:光纤通信中常用的光纤主要由纤芯和包层组成,其中纤芯是光信号传输的核心,包层则用来保护纤芯并提高信号传输效率。
根据光纤的结构和用途不同,可以分为单模光纤和多模光纤两种类型。
3. 光纤通信的优势:与传统的电缆通信相比,光纤通信具有许多优势。
光纤通信具有更大的带宽和更低的传输损耗,能够支持更高速的数据传输。
此外,光纤通信还具有抗电磁干扰、安全性高、体积小和免维护等优势。
二、光纤通信技术的应用及使用教程1. 光纤通信的应用领域:光纤通信技术广泛应用于各个领域,包括电信、互联网、有线电视、数据中心等。
在电信行业中,光纤通信技术被用于电话、宽带网络和移动通信基站等。
在互联网领域,光纤通信实现了高速、稳定的网络连接。
2. 光纤通信的设备和组件:为了实现光纤通信,我们需要一些特定的设备和组件。
这些设备包括光纤收发器、光纤放大器、分光器、光开关等。
在选择和使用这些设备时,需要根据实际需求和使用环境来确定。
3. 光纤通信系统的建设和维护:搭建光纤通信系统需要进行前期规划、设计和施工等工作。
首先,需要确定信号传输距离、带宽要求和网络拓扑结构等信息,并选择合适的设备和光纤类型。
在系统建设完成后,还需要定期进行光纤的检测和维护工作,以保证系统的正常运行和性能优化。
4. 光纤通信技术的故障排除:光纤通信系统可能会出现一些故障,如信号中断、传输质量下降等。
光纤通信原理及基础知识
光纤通信原理及基础知识光纤通信是一种利用光信号传输信息的通信技术。
它基于光波在光纤中的传输,具有高带宽、低损耗、抗干扰等优点,因此在现代通信领域得到广泛应用。
下面将介绍光纤通信的原理和一些基础知识。
1.光纤通信原理光纤通信的原理基于光的全内反射。
光纤是由一个或多个折射率不同的材料构成,光信号通过光纤中的光核进行传输。
当光信号从一个折射率较高的材料传到折射率较低的材料时,会发生全内反射,光信号会在光纤中沿着光核一直传输。
光纤通信系统主要包括光源、光纤和光接收器三个部分。
光源产生光信号并将其注入光纤中,光纤将光信号传输到目标位置,光接收器将光信号转化为电信号进行处理。
这样就完成了光纤通信的整个过程。
2.光纤类型根据应用场景和使用材料的不同,光纤可以分为多种类型。
常见的光纤类型有单模光纤和多模光纤。
单模光纤(Single-Mode Fiber,SMF)是一种具有较小光纤芯径的光纤,适用于远距离传输。
它可以在光纤中传输一个光模式,具有较低的传输损耗和较小的色散效应。
单模光纤主要用于长距离通信和数据传输。
多模光纤(Multi-Mode Fiber,MMF)是一种具有较大光纤芯径的光纤,适用于短距离传输。
多模光纤可以在光纤中传输多个光模式,但由于折射率不同,不同光模式的传输速度会有差异。
多模光纤主要用于局域网、数据中心等短距离通信场景。
3.光纤连接方式光纤连接主要有两种方式:直连和连接器。
直连是将两根光纤通过激光焊接技术直接连接起来。
直连具有较低的插损和回波损耗,但连接时需要专业操作,一旦连接失败将无法更换。
连接器是将光纤端面抛光并用连接器将两根光纤连接在一起。
连接器具有灵活性,连接和更换方便,但具有一定的插损和回波损耗。
4.光纤通信的关键参数光纤通信中,有几个重要的参数需要关注。
带宽是指光纤传输信号的频率范围。
带宽越大,传输速率越高。
损耗是光信号在光纤中传输时丢失的能量。
损耗越小,信号传输的距离越远。
色散是指光信号在光纤中传输时信号传播速度与光波长之间的关系。
光纤通信的物理原理
光纤通信的物理原理光纤通信是一种利用光信号传输信息的通信方式。
它利用光纤作为传输介质,通过光的全反射来实现信号的传输。
光纤通信具有传输速度快、带宽大、抗干扰能力强等优点,因此在现代通信领域得到了广泛应用。
本文将介绍光纤通信的物理原理。
一、光的传播特性光是一种电磁波,具有波粒二象性。
在光纤通信中,我们主要关注光的波动性质。
光的传播速度与介质的折射率有关,光在不同介质中传播时会发生折射和反射。
当光从一个介质传播到另一个折射率较大的介质中时,会发生折射现象。
而当光从一个介质传播到折射率较小的介质中时,会发生反射现象。
二、光纤的结构光纤是由一个或多个纤维芯和包围在外面的包层组成。
纤维芯是光信号传输的主要部分,包层则用来保护纤维芯并提供光的全反射。
光纤的直径通常在几个微米到几十个微米之间,纤维芯的直径约为几个微米。
光纤的材料通常采用高纯度的二氧化硅或塑料。
三、光的全反射光纤通信的核心原理是光的全反射。
当光从一个介质传播到折射率较小的介质中时,会发生反射现象。
如果入射角小于临界角,光将会完全反射回原介质中。
这种现象称为全反射。
光纤的包层折射率较小,纤维芯折射率较大,因此光在光纤中的传播主要是通过全反射来实现的。
四、光的传输方式光纤通信中,光信号的传输方式主要有单模光纤和多模光纤两种。
单模光纤是指只能传输一种光模式的光纤,它的纤维芯直径较小,光信号只能沿着一条路径传输。
多模光纤是指可以传输多种光模式的光纤,它的纤维芯直径较大,光信号可以沿着多条路径传输。
单模光纤的传输距离较长,传输损耗较小,适用于远距离通信;而多模光纤的传输距离较短,传输损耗较大,适用于短距离通信。
五、光的调制与解调在光纤通信中,光信号需要经过调制和解调的过程。
调制是将要传输的信息信号转换成光信号的过程,常用的调制方式有振幅调制、频率调制和相位调制。
解调是将光信号转换成原始信息信号的过程,常用的解调方式有光电转换和光解调。
六、光纤通信的应用光纤通信在现代通信领域得到了广泛应用。
光纤通信基本知识
传送层
复用段层网络
段层
再生(zàishēng)段层网络
传输
媒质层
物理层网络
2
第二十七页,共36页。
SJTU
SDH的承载(chéngzài)业务
L5~7
Application
L4
TCP/UDP
L3
IP
L2 ATM FR PPP/HDLC LAPS SDL
L1
SDH
L0
WDM
FR: Frame Relay
具有广泛的适应性
丰富的开销比特,加强了网络的OAM能力 (nénglì)
统一的标准光接口
采用软件进行网络配置和控制,便于扩展 具有完全的后向兼容性和前向兼容性
2
第二十一页,共36页。
SJTU
SDH的比特率
等级(děngjí) 速率(Mb/s)
STM-1
155.520
STM-4
622.080
光纤通信(ɡuānɡ xiān tōnɡ xìn)系统 的新技术
延长中继距离的新技术(jìshù) 光放大器(EDFA) 外调制器(电光晶体LiNbO3) 色散补偿(DCF、Bragg光纤光栅)
提高通信容量的新技术(jìshù) 时分复用技术(jìshù)(TDM) 波分复用技术(jìshù)(WDM)
同步数字系列(SDH---Synchronous Digital
Hierarchy) SDH是由一些网络单元(NE)组成
的、在光纤上进行同步信息传输、复用、分插
和交叉连接的网络
2
第二十页,共36页。
SJTU
SDH的特点(tèdiǎn)
国际统一的数字传输标准STM-N 采用同步复用方式和灵活的复用映射结构,
光纤基础知识
光纤的导光原理
光纤是一种导光的石英玻璃纤维,光在纤芯内由于全反 射作用而向前传播 当光沿纤芯向前传播时,同时存在反射和折射现象。
反射:当纤芯中的光传到芯/包界面时,被反射回纤芯内。 折射:当纤芯中的光传到芯/包界面时,透过界面进入包层。
12
光的反射和折射
“法线” 折射角
折射
空气n2 玻璃n1 反射
18
光纤结构与传输参数
19
光纤的结构
涂覆层(Ø250 m) 包层( Ø125 m )
芯(单模 Ø 8~10 m ; 多模Ø 50 m 、Ø 62.5 m )
模场直径() 光主要在纤芯中传播,涂覆层起保护光纤的作用
20
光纤结构
涂覆层 包层
芯层: SiO2+Ge+F 包层: SiO2+F 内涂覆层:丙烯酸树脂 外涂敷层:丙烯酸树脂
4
二、单模光纤
1. 1980年成功研制零色散点在1.31μm的单模光纤(非色散位移单模光纤,或 者简称标准单模光纤)。1983年,标准单模光纤进入商用。国际电信联盟 (ITU-T)建议将这种单模光纤定为G.652光纤。单模光纤的设计思想是只能 传输一个模式,所以不会发生多模光纤中传输时所发生的模式噪声。
3
光纤通信系统概述—光纤品种演进及分类
一、多模光纤 1.光纤通信的思想是由美籍华人在1966年发表的论文《光频介质纤维表面 波导》中提出用石英玻璃纤维(简称光纤)传送光信号进行通信。该论 文明确指出(Ⅰ)光纤可实现超高速通信;(Ⅱ)光纤对光能的损失< 20dB/km。英国邮电和贝尔实验室与美国康宁玻璃公司合作,在1970 年研制出世界第一根衰减系数为20dB/km的多模光纤。 2.与单模光纤相比,多模光纤具有大芯径(>50μm)和大数值孔径等特点。 这些特点赋予多模光纤比较好的集光能力和抗弯曲能力,解决了光纤通 信工程应用及初期所遇到光源与光纤的光源与光纤的光注入耦合或者光 纤与光纤的熔接难题,从而推动了多模官衔在短距离的应用的步伐。 3.自20世纪80年代到90年代初期,多模光纤因衰减大,工作波长窄、带宽 小(模间色散导致的带宽只有几百Mb/S),使得其只能用在传输距离 短、带宽小于几百Mb/S的局域网。
光纤基础,SDH原理,WDM原理
一, 光纤通信基础1-光纤裸纤一般分为三层:纤芯,包层和保护套2-光纤分类:按最佳传输频率窗口:常规型单模光纤和色散位移型单模光纤按材料分类:- 玻璃光纤:纤芯与包层都是玻璃,损耗小,传输距离长,成本高;- 胶套硅光纤:纤芯是玻璃,包层为塑料,特性同玻璃光纤差不多,成本较低;- 塑料光纤:纤芯与包层都是塑料,损耗大,传输距离很短,价格很低。
多用于家电、音响,以及短距的图像传输。
3-光缆接续一般可分为两大类:一、光纤的固定接续(俗称死接头)。
一般采用光纤熔接机;用于光缆直接头。
二、光纤的活动接头(俗称活接头)。
用能够拆卸的连接器连接(俗称活接头)。
用于光纤跳线、设备连接等地方4-光纤连接损耗的监测方法有三种:1、在熔接机上进行监测。
2、光源、光功率计监测。
3、OTDR测量法5-光纤接续操作一般分为:1、光纤端面的处理。
2、光纤的接续安装。
3、光纤的熔接。
4、光纤接头的保护。
5、余纤的盘留五个步骤。
1310 nm : 0.35 ~ 0.5 dB/Km1550 nm : 0.2 ~ 0.3dB/Km850 nm : 2.3 ~ 3.4 dB/Km光纤熔接点损耗:0.08dB/点光纤熔接点 1点/2km6---基本光纤系统的构架及其功能介绍:1.发送单元:把电信号转换成光信号;2.传输单元:载送光信号的介质;3.接收单元:接收光信号并转换成电信号;4.连接器件:连接光纤到光源、光检测以及其它光纤。
7--光纤通信中常用单位的定义:1. dB = 10 log10 ( Pout / Pin )=10lgPout-10lgPinPout :输出功率 ; Pin :输入功率2. dBm = 10 log10 ( P / 1mw)是通信工程中广泛使用的单位;通常表示以1毫瓦为参考的光功率;example: -10dBm表示光功率等于100uw。
3. dBu = 10 log10 ( P / 1uw)8-光纤收发器。
光纤通信原理及基础知识ppt课件
第一章 光纤通信的基本原理
第二章 光纤的基本结构和分类
第三章 光纤的基本参数
第四章 光纤的制造方法
光纤的基本结构和分类
光纤的结构及组成
纤芯 (SiO2+Ge+F) (掺锗二氧化硅) 8.6-9.5 µm
纤芯
(掺锗二氧化硅) 50 µm / 62.5 µm / 100 µm 纤芯 (聚甲基丙烯酸甲酯 ) 980 µm
衰减单 模光纤 G655光纤:在1550nm窗口给定波长区间内色散不为零的色 散位移单模 光纤, 称为非零色散位移光纤 G655A :单信道光纤(1995)
G655B、 G655C :DWDM光纤(2000.10,2003.1) G656光纤:使用于DWDM 系统S+C+L波带的非零色散位移光纤 (2003.10提出,2004.4争取会议同意)
1 2
媒质1
折射率n1
1
媒质1 折射率n1
媒质2 折射率n2
2
媒质2 折射率n2
1=2
n1· Sin1=n2· Sin2
光纤通信的基本原理
光的全反射定律
折射率 n=光在真空中的传播速度/光在该媒质中的传播速度
媒质 折射率 真空 空气 水 多模光纤 单模光纤
玻璃
钻石
1.0
1.0003 1.33
光纤的基本结构和分类
单模光纤的特性
单模光纤特性
G.652光纤 G.653光纤 G.654光纤 最成熟的单模光纤,但未把最小的衰 减与最小的色散有效的结合在一起。 过渡性的单模光纤,把零色散点移到 了衰减最小的波长。
过渡性的单模光纤,通过对光纤的截 止波长进行位移而获得极低的衰减。
一种新型的单模光纤,把最小的衰减 与小的色散结合在一起。
光通信基础知识
GRIN LENS 的应用
用于Collimator
Collimated beam
Fiber end
Real image of the fiber end
Grin Lenses (0.23 pitch)
GRIN LENS 的应用
用于Isolator
GRIN LENS 的应用
用于Isolator
您即将接触到的光学产品
无源器件(PASSIVE)-被动器件(光-光传输)
Active Products
Sourcing laser
Cooled TOSA
CW1550
Uncooled TOSA
Tunable
Pump laser
Modulator
OA
2.5Gb/s
APE
10Gb/s
PD
x,y,z
Grin Lenses (0.23 pitch)
GRIN LENS 的应用
另外,有提出:由于单片GRIN Lens难以同时满足单模光纤的小芯径(约8~10μm)小数值孔径的要求(一般为0.11),而采用两片GEIN Lens 构成耦合系统,这样可进一步降低器件的插损。
Application of GRIN LENS
Parameters of GRIN Lens
4. 节距(pitch)
指光线在GRIN Lens中所走过的一个完整周期的长度L。 在光纤通信用的器件中,常采用的是1/4(L)节距的GRIN Lens。
Point Source
0.25 pitch
Parameters of GRIN Lens
H
M
L
Uniformity, Batch-to-batch
光纤通信原理及基础知识
光纤通信原理及基础知识
一、光纤通信原理
光纤通信的核心技术是光子学,它是利用光纤光缆中的光纤对光信号进行传播和传输。
光纤光缆是一种由多根光纤缆组成的电缆,用来传输可见光或近红外波长范围内的光信号。
它包含一根中心的内管,围绕着由若干根绝缘光缆组成的外面,以及外面包裹的电缆套管。
光纤具有比一般电线传输快和体积小的优势。
而且它可以传输的信息量比一般电线传输的信息量大得多,在数据传输,广播和电视节目传输,网络传输,数据中心和建筑物的内部数据传输,机场、地铁和高速列车的安全监控等场合有广泛的应用。
二、光纤通信基础知识
1、光纤的基本结构
光纤是由内管、纤芯、护套和外皮组成的。
内管是光纤的中心,由若干根细细的玻璃或塑胶的纤维组成,用来把发出的信号紧密包裹起来;纤芯则由抗光折射率差异的介质层组成,可以实现光子的数字信号传输;护套是中心纤芯的保护层,由特殊的材料构成,用以抗折和抗磨损;。
光纤通信概述及光纤和光缆基础知识介绍
光纤通信概述及光纤和光缆基础知识介绍一、光纤通信概述光纤通信是一种基于光纤传输信息的技术,它利用光的特性实现信号的传输和处理。
与传统的铜线和无线通信相比,光纤通信具有更高的带宽、更低的信号衰减和更远的传输距离等优点,因此成为国际上普遍采用的通信方式之一。
光纤通信系统通常由三部分组成:光源、传输介质和接收器。
其中,光源产生光信号,光纤负责传输;光接收器接收信号并将其转化为电信号。
光源可以是半导体激光器、发光二极管等,而光接收器则可以是光电二极管、光二极管等。
光纤通信系统具有以下优点:1.高速传输:光纤的传输速度很快,可达到每秒数十亿位的传输速率,远高于传统的铜线通信。
2.信号衰减小:由于光纤中传播的是光信号,而光信号的衰减比电信号小很多,因此在长距离传输时,光纤的信号衰减相对较小,传输质量更好。
3.安全可靠:由于光信号无法被窃听和干扰,因此光纤通信更安全可靠。
二、光纤和光缆基础知识介绍1. 光纤光纤是将光束导入硅基、石英等材料中传播的一种技术。
一般由芯、包层和包覆层组成。
芯是载流介质,包层是用来防止信号泄漏的介质,包覆层是用来保护光纤的外层。
光纤的类型主要有多模光纤和单模光纤两种。
多模光纤的芯的直径一般为50或62.5微米,单模光纤的芯的直径只有几个微米左右。
单模光纤的优点在于传输质量更好,由于芯的直径小,所以功率损失更少,传输距离也更远,但造价也较高。
2. 光缆光缆是用来保护和传输光纤的一种材料。
它主要由光纤、护套、铠装层和防水层等组成。
光缆的护套一般由PVC、LSZH和PE等材料构成,不同的护套材料具有不同的特性,一般用于不同的场合。
光缆比较脆弱,需要特别的保护,因此在光缆的外层一般要铺设防水层、铠装层等来进行保护。
其中的防水层主要作用是保护光缆不能被水泡,铠装层则是为了防止外力对光缆的影响。
三、总结光纤通信是一种现代化的通信技术,它具有高速传输、信号衰减小和安全可靠等优点。
光纤通信系统由光源、传输介质和接收器三部分组成。
物理知识总结物理学在通信技术中的应用
物理知识总结物理学在通信技术中的应用物理知识总结:物理学在通信技术中的应用通信技术作为现代社会中不可或缺的一部分,与物理学密切相关。
物理学所涉及的原理和概念在通信技术领域中有着重要的应用。
本文将对物理学在通信技术中的应用进行总结和介绍。
一、光纤通信光纤通信是一种利用光作为传输介质进行信息传递的技术。
在光纤通信系统中,物理学中的光的传播原理起着关键作用。
光纤通信通过利用光的全反射特性来实现信号的传输。
光信号经过编码和调制后通过光纤传输,再经过解码和解调,接收方即可还原出原始信号。
物理学中研究光的特性以及在光纤中的传播行为对光纤通信技术的发展起到了非常重要的推动作用。
二、卫星通信卫星通信是一种利用人造卫星进行通信的技术。
物理学中的天体力学、电磁学和波动光学等知识为卫星通信的实现提供了理论基础。
卫星通信中,信号通过地面设备发送到卫星上,卫星再将信号转发到目标地点。
物理学中的轨道力学研究了卫星的运行轨道,天体力学则研究了天体之间的相互作用。
电磁学和波动光学的知识则用于解析和处理信号在传输过程中的衰减和扩散问题。
三、移动通信移动通信是一种利用无线电波进行信息传输的技术。
物理学中的电磁学起到了决定性的作用。
移动通信中,信号以电磁波的形式通过无线电设备进行传输。
物理学中的电磁波理论和天线原理可以解释无线电波的传播方式。
此外,物理学中与信号的编码和调制有关的知识也在移动通信中得到了应用。
通过合理的编码和调制方案,可以在有限的频谱资源下提高通信的可靠性和传输速率。
四、量子通信量子通信是一种基于量子力学原理的通信技术。
量子通信中利用量子比特(qubit)进行信息的传输和处理。
物理学中的量子力学和量子信息理论为量子通信的实现提供了理论支持。
量子通信的特点是具有高度的安全性和抗干扰能力,尤其在信息加密和密钥分发上具有优势。
目前,量子通信技术仍处于发展初期,但是在信息安全领域中具有广阔的应用前景。
总结:物理学在通信技术中的应用是非常广泛的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
h
20
三、光纤通信的缺点
光纤弯曲半径不宜过小; 光纤的切断和连接操作相对复杂; 分路、耦合相对麻烦。
h
21
四、光纤通信的应用
光纤可以传输数字信号,也可以传输模拟信号。 光纤通信的各种应用可概括如下:
① 通信网,包括全球通信网(如横跨大西洋和 太平洋的海底光缆和跨越欧亚大陆的洲际光缆 干线)、各国的公共电信网(如我国的国家一级 干线、各省二级干线和县以下的支线)、各种 专用通信网(如电力、铁道、国防等部门通信、 指挥、调度、 监控的光缆系统)、特殊通信手 段(如石油、化工、煤矿等部门易燃易爆环境 下使用的光缆, 以及飞机、军舰、潜艇、导 弹和宇宙飞船内部的光缆系统)。
h
15
2、损耗低,中继距离长
目前实用石英光纤的损耗可低于0.2dB/km, 比其它任何传输介质的损耗都低,若将来采用 非石英系极低损耗光纤,其理论分析损耗可下 降至10-9 dB/km。由于光纤的损耗低,所以 能实现中继距离长,由石英光纤组成的光纤通 信系统最大中继距离可达200多千米,由非石 英系极低损耗光纤组成的通信系统,其最大中 继距离则可达数千甚至数万千米,这对于降低 海底通信的成本、提高可靠性和稳定性具有特 别的意义。
h
16
3、抗电磁干扰
光纤是绝缘体材料,它不受自然界的雷 电干扰、电离层的变化和太阳黑子活动 的干扰,也不受电气化铁路馈电线和高 压设备等工业电器的干扰,还可用它与 高压输电线平行架设或与电力导体复合 构成复合光缆。
h
17
4、无串音干扰,保密性好
光波在光缆中传输,很难从光纤中泄漏出来, 即使在转弯处,弯曲半径很小时,漏出的光波 也十分微弱,若在光纤或光缆的表面涂上一层 消光剂效果更好,这样,即使光缆内光纤总数 很多,也可实现无串音干扰,在光缆外面,也 无法窃听到光纤中传输的信息。
h
22
四、光纤通信的应用
② 因特网的计算机局域网和广域网,如光纤 以太网、 路由器之间的光纤高速传输链路。 ③ 有线电视网的干线和分配网;工业电视系 统,如工厂、 银行、商场、交通和公安部门 的监控; 自动控制系统的数据传输。
④ 综合业务光纤接入网,分为有源接入网和 无源接入网, 可实现电话、数据、视频(会议 电视、可视电话等)及多媒体业务综合接入核 心网,提供各种各样的社区服务。
h
11
二、光通信发展简史
1976 年和 1978 年,日本先后进行了速率为34 Mb/s,传输距离为64 km的突变型多模光纤通信系 统, 以及速率为100 Mb/s的渐变型多模光纤通信系 统的试验。1983年敷设了纵贯日本南北的光缆长途干 线,全长3400 km,初期传输速率为400 Mb/s,后 来扩容到1.6 Gb/s。
广东中人网络发展有限公司
光纤通信基础知识
(Fiber Handbook Technology Data)
作 者:吴宝林
h
1
目录
➢ 一、光纤通信的概念 ➢ 二、光纤通信发展简史 ➢ 三、光纤通信的优缺点 ➢ 四、光纤通信的应用 ➢ 五、光纤通信系统的组成
h
2
一、光纤通信的概念
光通信是指以光作为信息载体而实现的通信方 式。按传输介质的不同,可分为大气激光通信和光 纤通信,大气激光通信是利用大气作为传输介质的 激光通信。光纤通信是以光波作为信息载体,以光 导纤维(光纤)作为传输介质的一种通信方式。光 纤通信技术是30年来迅猛发展起来的高新技术,给 世界通信技术乃至国民经济、国防事业和人民生活 带来了巨大变革。
h
25
1. 光发射机(光端机)
➢ 光发射机的功能是把输入电信号转换为光信号,并用耦合技术把 光信号最大限度地注入光纤线路。
➢ 光发射机由光源、 驱动器和调制器组成,光源是光发射机的核心。 ➢ 目前广泛使用的光源有半导体发光二极管(LED)和半导体激光二极
管(或称激光器)(LD), 以及谱线宽度很小的动态单纵模分布反馈 (DFB)激光器。有些场合也使用固体激光器,例如大功率的掺钕钇 铝石榴石(Nd: YAG)激光器。 光发射机把电信号转换为光信号的过程(简称为电/光或E/O转换), 是通过电信号对光的调制实现的。 目前采用直接调制方式,用电信号直接调制半导体激光器或发光 二极管的驱动电流,使输出光随电信号变化而实现的。 这种方案 技术简单, 成本较低,容易实现,但调制速率受激光器的频率特 性所限制。
h
4
电磁波谱
1cm 1mm 100um 10um 1um 100nm 10nm 1nm λ波長
10G 100G 1T 10T 100T 10^15 10^16 10^17
f (Hz)
红外线
1.6um 1.5 1.4 1.3 1.2 1.1 1.0um 900 800 700 600nm
紫外线
光通信使用范围
目前使用的石英光纤有多模光纤和单模光纤,单模光纤的传输特 性比多模光纤好,价格比多模光纤便宜,因而得到更广泛的应用。
单模光纤配合半导体激光器,适合大容量长距离光纤传输系统, 而小容量短距离系统用多模光纤配合半导体发光二极管更加合适。
由美、日、 英、法发起的第一条横跨大西洋 TAT-8海 底光缆通信系统于1988年建成,全长6400 km;
第一条横跨太平洋 TPC-3/HAW-4 海底光缆通信系 统于1989年建成, 全长13 200 km。 从此,海底光 缆通信系统的建设得到了全面展开,促进了全球通信 网的发展。
h
12
二、光通信发展简史
h
10
二、光通信发展简史
1976 年,美国在亚特兰大(Atlanta)进行了世界上第 一个实用光纤通信系统的现场试验,系统采用 GaAlAs激光器作光源,多模光纤作传输介质,速率 为44.7 Mb/s,传输距离约10 km。1980 年,美国 标准化FT - 3光纤通信系统投入商业应用, 系统 采用渐变型多模光纤,速率为44.7 Mb/s。随后美 国 很 快 敷 设 了 东 西 干 线 和 南 北 干 线 , 穿 越 22 个 州 光缆总长达5×104 km。
h
26
1. 光发射机(光端机)
➢ 光端机的图例 GD/MF8HS-IIIC 上盖板图
电源 收无光 失步 误码 2M中断 对告 环回 呼叫 截铃
GD/MF8HS-IIIC 后面板图
.- DC48V + 音频接口
数据接口
2M:入4 入3 入2 入1 2M:出4 出3 出2 出1
光发
.
光收
.
h
27
纤线径细、重量轻、柔软
光纤的芯径很细,约为0.1mm,它只有单管 同轴电缆的百分之一;光缆的直径也很小,8 芯光缆的横截面直径约为10mm,而标准同轴 电缆为47mm。利用光纤这一特点,使传输系 统所占空间小,解决地下管道拥挤的问题,节 约地下管道建设投资。此外,光纤的重量轻, 光缆的重量比电缆轻得多,例如18管同轴电缆 1m的重量为11kg,而同等容量的光缆1m重 只有90g,这对于在飞机、宇宙飞船和人造卫 星上使用光纤通信更具有重要意义。
国内外光纤通信发展的现状
光纤:
多模
单模,
工作波长: 0.85 μm
1.31 μm和1.55 μm,
传输速率: 几十Mb/s
几十Gb/s。
应用范围: 市话局间中继
长途干线
用
户接入网
数字电话
有线电视(CATV)
单一类型信息的传输
多种业务的传输。
目前光纤已成为信息宽带传输的主要媒质,光纤通信 系统将成为未来国家信息基础设施的支柱。
h
7
二、光通信发展简史
1960年,美国人梅曼(Maiman)发明了第一台红宝石激光器, 给光通信带来了新的希望,和普通光相比,激光具有波谱宽 度窄,方向性极好, 亮度极高,以及频率和相位较一致的良 好特性。
h
8
二、光通信发展简史
1966年,英籍华裔学者高锟(C.K.Kao)和霍克哈姆 (C.A.Hockham)发表了利用光纤(Optical Fiber)进行信息 传输的可能性和技术途径。
1970 年,光纤研制取得了重大突破。 美国康宁(Corning)公司就研制成功损耗20 dB/km的石英
光纤。 1972年,康宁公司高纯石英多模光纤损耗降低到4 dB/km。 1973 年,美国贝尔(Bell)实验室取得了更大成绩,光纤损
耗降低到2.5dB/km。 1974 年降低到1.1dB/km。 1976 年,日本电报电话(NTT)公司等单位将光纤损耗降低
光端机的正面图片
h
28
1. 光发射机(光端机) 光端机的背面图片
h
29
2. 光纤线路
光纤线路的功能是把来自光发射机的光信号,以尽可能小的畸变(失 真)和衰减传输到光接收机。光纤线路由光纤、光纤接头和光纤连接 器组成。光纤是光纤线路的主体,接头和连接器是不可缺少的器件。 实际工程中使用的是容纳许多根光纤的光缆。 对光纤的基本要求: 损耗和色散小, 机械特性和环境特性好. 例如,在不可避免的应力作用下和环境温度改变时,保持传输特性稳 定。
h
19
6、光纤的原材料资源丰富,用光纤可节约金属 材料
光纤的材料主要是石英(二气化硅),地球上有取之不 尽用之不竭的原材料,而电缆的主要材料是铜,世界 上铜的储藏量并不多,用光纤取代电缆,则可节约大 量的金属材料,具有合理使用地球资源的重大意义。 光纤除具有以上突出的优点外,还具有耐腐蚀力强、 抗核幅射、能源消耗小等优点,其缺点是质地脆、机 械强度低,连接比较困难,分路、耦合不方便,弯曲 半径不宜太小等。这些缺点在技术上都是可以克服的, 它不影响光纤通信的实用。近年来,光纤通信发展很 快,它已深刻地改变了电信网的面貌,成为现代信息 社会最坚实的基础,并向我们展现了无限美好的未来。
h
5
二、光通信发展简史
2000多年前,中国古代开始用“烽火台”报警,这是一种目视光通 信。