(完整版)19圆锥曲线与方程(中职数学春季高考练习题)

合集下载

(完整版)职高圆锥曲线练习题

(完整版)职高圆锥曲线练习题

圆锥曲线 练习题一、选择题1、已知椭圆方程为202x +112y =1,则它的焦距是 ( ) A 、 6 B 、 3 C 、 231 D 、312. 椭圆14522=+y x 的焦点坐标为( ) A .(-3,0)(3,0) B.(0,-3)(0,3)C.(-1,0)(1,0)D.(0,-1)(0,1)3. 双曲线的两条渐近线方程为y=x ±,则该双曲线的离心率为( )A.1B.2C.3D.24.过抛物线y 2=8x 的焦点F 且垂直于对称轴的直线交抛物线于A ,B 两点, 则|AB|=( )A.8B.4 C .16 D.25. 曲线125)2(16)6(22=+--y x 的实轴长为( ) A.8 B.16 C.10 D.56.已知圆 方程(x-1)2+(y+1)2=4,则圆心到直线y=x-4的距离是 ( ) A.22 B.22 C.2 D. 2 7.已知点P(1,-4),Q(3,2),那么以PQ 为直径的圆的方程是( )A.(x-2)2+(y+1)2=10B.(x+2)2+(y-1)2=10C.(x-2)2+(y+1)2=40D.(x+2)2+(y-1)2=408.若直线2x-y+b=0与圆x 2+y 2=9相切,则b 的值是( ) A.35 B.-35 C.±35 D. 59.长轴是短轴的2倍,且经过点P (-2,0)的椭圆的方程是( ) A.1422=+y x B.141622=+y x 或1422=+y x C.116422=+y x D. 116422=+y x 或1422=+y x 10.方程12322=++-ky k x 表示椭圆,则k 的取值范围是( ) A.-2<k<3 B.k<21且 k>-2 C.k>21 D.-2<k<21或 21<k<3 11、 两椭圆252x +92y =1与k x -252+ky -92=1(k<9) ( ) A. 有相同的顶点 B .有相同的焦点C .有相同的离心率 D. 有相同的准线12.双曲线191622=-y x 的焦点坐标是( ) A.(0,-5)和(0,5) B.(-5,0)和(5,0)C.(0,-7)和(0,7)D.(-7,0)和(7,0)13.抛物线x 2-5y=0的准线方程是( )A.x=-45 B.x=25 C.y=45 D.y=-45 14.若双曲线焦点在x 轴上,且它的一条渐近线方程是y=43x,则离心率为( ) A. 45 B.35 C.774 D.773 15.顶点在原点,以坐标轴为对称轴,且过点(2,-3)的抛物线方程是( )A.y 2=x 29或x 2=-y 34B. y 2=-x 29 C. y 2=-x 29或x 2=y 34 D. x 2=y 34 16.过点M (-2,1)的圆x 2+y 2-2x-6y-5=0的最短弦所在直线方程为( )A.2x-3y+7=0B.3x+2y+4=0C.3x+2y-2=0D.3x-2y+8=017.两圆x 2+y 2-2x=0 与x 2+y 2-4x=0 ( )A.外切B.内切C.相交D.相离18.设α∈(0,2π),方程1cos sin 22=+ααy x 表示中心在坐标原点且焦点在x 轴上的椭圆,则α的取值范围是( ) A.(0,4π) B.⎥⎦⎤ ⎝⎛4,0π C.(2,4ππ) D. ⎪⎭⎫⎢⎣⎡2,4ππ 二、填空题1、已知椭圆的两个焦点与其短轴的一个顶点恰好是正三角形的三个顶点, 则椭圆的离心率=___________2.直线x-2y+5=0与圆x 2+y 2-4x-2y=0的位置关系是____________________________.3.已知椭圆162x +142=y ,过其焦点F 1的直线与椭圆交于A 、B 两点,则A 、B 与另一焦点F 2构成的三角形的周长为 __________________.4.双曲线1251622=-y x 上一点M 到左焦点F 1的距离为9, 则点M 到右焦点F 2的距离为______________5.过点(1,4)的抛物线的标准方程为___________________6、 直线y=x+b 过圆 x 2+y 2-4x+2y-4=0的圆心,则b=____________7、 直线4x-3y=20被圆 x 2+y 2=25截得的弦长为___________________8、 椭圆9x 2+25y 2=225的离心率e=________________________9、 椭圆9x 2+25y 2=225上一点到椭圆一个焦点的距离是3,则到另一个焦点的距离为_________________.10、 以点(2,-3)为圆心,且与直线x+y-1=0相切的圆的方程为______________________11、直线4x-3y=20被圆 x 2+y 2=25截得的弦长为____________________- 12、椭圆9x 2+25y 2=225的离心率e=________________________ 13、 以双曲线191622=-y x 的右焦点为顶点,左顶点为焦点的抛物线方程是_____________________14、 抛物线(y-2)2=5x 的焦点坐标是_____________________15.椭圆14222=+a y x 与双曲线12222=-y ax 有相同的焦点, 则a 2=________________三、解答题1、椭圆的两焦点为F 1(-4,0),F 2(4,0).椭圆的弦AB 过点F 1,且ΔABF 2的周长为20,那么,求椭圆的方程。

2019年高考数学理试题分类汇编:圆锥曲线(含答案)

2019年高考数学理试题分类汇编:圆锥曲线(含答案)

2019年高考数学理试题分类汇编:圆锥曲线(含答案)2019年高考数学理试题分类汇编——圆锥曲线一、选择题1.(2019年四川高考)设O为坐标原点,P是以F为焦点的抛物线y=2px(p>0)上任意一点,M是线段PF上的点,且PM=2MF,则直线OM的斜率的最大值为2/3.(答案:C)2.(2019年天津高考)已知双曲线x^2/4 - y^2/9 = 1(b>0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A、B、C、D四点,四边形ABCD的面积为2b,则双曲线的方程为x^2/4 - y^2/9 = 1.(答案:D)3.(2019年全国I高考)已知方程x^2/n^2 - y^2/m^2 = 1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是(-1,3)。

(答案:A)4.(2019年全国I高考)以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点。

已知|AB|=42,|DE|=25,则C的焦点到准线的距离为4.(答案:B)5.(2019年全国II高考)圆(x-1)^2 + (y-4)^2 = 13的圆心到直线ax+y-1=0的距离为1,则a=-2/3.(答案:A)6.(2019年全国II高考)已知F1,F2是双曲线E:x^2/4 -y^2/2 = 1的左、右焦点,点M在E上,MF1与x轴垂直,sin∠MF2F1=1/3,则E的离心率为2/3.(答案:A)7.(2019年全国III高考)已知O为坐标原点,F是椭圆C:x^2/a^2 + y^2/b^2 = 1(a>b>0)的左焦点,A、B分别为C的左、右顶点。

P为C上一点,且PF⊥x轴。

过点A的直线l与线段PF交于点M,与y轴交于点E。

若直线BM经过OE的中点,则C的离心率为1/3.(答案:A)8.(2019年浙江高考)已知椭圆 + y^2/(m^2-1) = 1(m>1)与双曲线- y^2/(n^2-1) = 1(n>0)的焦点重合,e1,e2分别为m,n,则e1+e2=3.(答案:C)解析】Ⅰ)由题意可知,椭圆C的离心率为$\frac{\sqrt{3}}{2}$,根据离心率的定义可得:$\frac{c}{a}=\frac{\sqrt{3}}{2}$,其中$c$为椭圆的焦距之一,即$2c$为椭圆的长轴长度,$a$为椭圆的半长轴长度,$b$为椭圆的半短轴长度,则有:$$\frac{2c}{2a}=\frac{\sqrt{3}}{2}$$ 即:$$\frac{c}{a}=\frac{\sqrt{3}}{4}$$ 又因为焦点$F$在椭圆的一个顶点上,所以该顶点的坐标为$(a,0)$,即$2c=2a$,代入上式可得:$$\frac{b}{a}=\frac{1}{2}$$ 又因为椭圆的方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$,代入$\frac{b}{a}=\frac{1}{2}$可得:$$\frac{x^2}{a^2}+\frac{4y^2}{a^2}=1$$ 即:$$x^2+4y^2=a^2$$ (Ⅱ)(i)设椭圆C的另一个顶点为$V$,则$OV$为椭圆的长轴,$OF$为椭圆的短轴,且$OV=2a$,$OF=\sqrt{3}a$。

中职数学直线 圆 圆锥曲线练习测试题(含答案)

中职数学直线 圆 圆锥曲线练习测试题(含答案)

解析几何测试题3时间:120分钟 满分120分一、选择题(本题共15小题,每题3分,共45分).1.直线2x -y +2=0和x +3y +1=0的位置关系是( ).A .x -3y +5=0 В.x -3y +6-0C .3x -y -1=0D .3x -y +5=02.方程222460x y x y ++--=表示的图形是( ).A .以(1.-2)为半径的圆B .以(1.2)为半径的圆C .以(-1.-2)为半径的圆D .以(-1.2)为半径的圆3. 直线y -2x +5=0与圆224220x x y y +-++=的图形之间的关系是( ).A .相离B .相切C .相交但不过圆心D .相交且过圆心4. 若220)12x y x y λλλ++-++=(表示圆,则λ的取值范围是( ).A . 0λ>B .115λ C . 1λ>或15λ< D . R λ∈ 5. 若直线3x +4y +k =0与圆22650x y x +-+=相切,则k 的值等于( ).A .1或-19B .10或-10C .-1或-19D . -1或196.已知椭圆221169+=x y 上一点到椭圆的一个焦点的距离为3,则P 到另一个焦点的距离为( ).A .3B .4C .5D .67.焦点在x 轴上,长轴长为8.离心率为12,那么椭圆的标准方程为( ). A . 2211612+=x y B . 2211612-=x yC . 2211216+=x y D . 2211216-=x y 8. 顶点在坐标原点,焦点是(0,-1)的抛物线的标准方程是( ).A . 24=xy B . 24=-x y C . 24=-y x D . 24=y x 9. 若直线3x -2y +c =0与坐标轴围成的三角形的面积为3,则c 为( ).A .6B .-6C .-6或6D .3或-310. 经过圆x 2+y 2=4上一点M的切线方程为( ).A .x -y-0 B .x +y -C .x + y +0 D .x +2y -4=011.如图所示,直线1l : 0ax y b -+=与直线0bx y a +-=在同一坐标系中只可能是( ).A .B .C .D .12. 若方程x 2cosα-y 2sinα=1表示的曲线是双曲线,则角α的终边在( ).A .第一、二象限B .第二、三象限C .第二、四象限D .第一、三象限13. 等轴双曲线的渐近线方程为( ).A .y =±xB .y =±2xC .y =±12xD .y =±23x14. 若ab >0,则方程ax 2-by 2=ab 表示的曲线是( ).A .双曲线B .椭圆C .椭圆或双曲线D .圆或椭圆15. 椭圆22259x y +=1与双曲线22259x y k k ---=1(9<k <25)始终有( ). A .相同的离心率 B .相同的顶点C .相同的焦点D .以上结论均错误二、填空题(本题共15道小题每题2分,共30分)16.已知直线3x +(1-a )y +5=0与直线x -y =0平行,则 a =________.17.两平行线3x +4y -10-0与6x +8y -7=0之间的距离是________.18. 抛物线的准线方程为12x =,则抛物线的标准方程为________. 19. 已知直线l 经过点P 0(1,2),倾斜角为135°,则直线l 的方程为________.20. 以点(-2,3)为圆心,且经过点(2,5)的圆的标准方程为__________.21. 若A (-2,3),B (-1,7),C (2,a )三点共线,实数a 的值为________.22.若方程x 2+y 2+(1-m )x +1=0表示圆,则m 的取值范围是___________.23. 椭圆的长轴长为18,离心率为13,则椭圆的标准方程为________. 24.若221213x y m m+=--表示椭圆,则m 的取值范围为________. 25. 双曲线222516400-=xy 的两条渐近线方程是___________. 26. 若抛物线22=y px (0p >)上到焦点距离为3的点的横坐标为2.则p =___________.27. 经过P (-1,1),Q (0,2)两点,且圆心在x 轴上的圆的标准方程是_______.28. 圆(x -2)2+(y +2)2=2截直线x -y -5=0所得的弦长为_______.28. 与圆x 2+y 2+6x -2y -15=0有相同的圆心,且过点(-2,3)的圆的半径为______.29. 若圆x+y 2+y 2=2与直线y =x +b 相交,则b 的取值范围是________.30. 若经过双曲线22x -y 2=1的右焦点F 2的直线交双曲线的右支于A ,B 两点,|AB |=5,F 1是左焦点,则△F 1BA 的周长为___________.三、解答题(本题共7小题,共45分)31. (6分)若抛物线y 2=2px 与直线ax +y -4=0的一个交点坐标是(1,2),求抛物线的焦点到直线的距离.32. (6分)一直线经过点(-2,4),它的倾斜角是直线y +3的倾斜角的2倍,求它的方程.33. (6分)已知圆过点A (-1,1),B (1,3),且圆心在x 轴上,求圆的方程.34. (6分)求经过点A (3, 2),圆心在直线y =2x 上,且与直线2x -y +5=0相切的圆的标准方程.35. (7分)已知点A (3,4),F 是抛物线y 2=8x 的焦点,M 是抛物线上的动点,求|MA |+|MF |的最小值,并求出此时点M 的坐标.36. (7分)求以椭圆2285x y +=1的顶点为焦点、焦点为顶点的双曲线方程. 37. (7分)已知经过点(0,-2),且倾斜角为π4的直线与抛物线y 2=4x 相交于A ,B 两点.(1)求线段AB 的中点M 的坐标;(2)若某椭圆中心在坐标原点,一个焦点是抛物线的焦点,且长轴长等于 |AB |,求椭圆的标准方程.解析几何测试题3答案一、选择题(本题共15小题,每题3分,共45分)1—5 A D D C A 6—10 C A B C B 11—15 B D A A C二、填空题(本题共15小题,每题2分,共30分)16. 4 17. 131018. 22y x =- 19. x +y -3=020. (x +2)2+(y -3)2=20 21. 1922. m <-1或m >3 23. 2218172x y +=或2217281x y += 24. 144,,3233⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭25. 54y x =± 26. 2 27. (x -1)2+y 2=528.29. (-2,2)30. 10三、解答题(本题共7小题,共45分)31. 解:将点 (1,2)分别代入抛物线方程y2=2px与直线方程ax+y-4=0,得p=2,a=2,∴抛物线方程y2=4x,∴焦点F(1,0),∴抛物线的焦点到直线2x+y-4=0的距离为d=32.解:由直线33y x=+可知3k=_,所以tanθ=3k=,所以θ=30︒. 所以所求方程的倾斜角为60︒.故tan60k=︒=.所以所求直线方程为y-4x+2)-y+4+33. 解:设所求圆的圆心为()0a,=解得a=2.所以圆心为()3,0,半径r=所以所求圆的方程为()22310x y-+=34. 解:圆心在直线y=2x上,设圆心坐标为(a,2a),半径为r,则222(3)(22),a a rr⎧-+-=⎪⎨==⎪⎩整理得5a2-14a+8=0,解得a=2或a=45∴圆的标准方程为(x-2)2+(y-4)2=5或224855x y⎛⎫⎛⎫-+-⎪ ⎪⎝⎭⎝⎭=5.35. 解:抛物线y2=8x的焦点F的坐标为(2,0),准线l的方程为x=-2,过点M作MN⊥l,垂足为N.根据抛物线的定义知|MF |=|MN |,∴|MA |+|MF |=|MA |+|MN |, 当点M 的纵坐标与点A 的纵坐标都是4时,|MA |+|MF |的最小值为 |3-(-2)|=5.此时,点M 的坐标是(2,4).36. 解:椭圆2285x y +=1的顶点坐标为(-20),(0),焦点坐标为(0),0),∴双曲线的顶点坐标为(0),0),焦点坐标为(-0),(20),即双曲线中a c =∴b 2=c 2-a 2=8-3=5.∵双曲线的焦点在x 轴上, ∴双曲线方程为2235x y -=1. 37. 解:(1) 直线经过点(0,-2),且斜率为k =tanπ4=1, 所以直线方程为y -(-2)=x ,即y =x -2.由22,4,y x y x =-⎧⎨=⎩得x 2-8x +4=0.设A (x 1,y 1),B (x 2,y 2),线段AB 的中点M (x 0,y 0),则x 1+x 2=8,x 1x 2=4,∴x 0=12822x x +==4,y 0=x 0-2=4-2=2, ∴点M 的坐标为(4,2).(2)∵椭圆的焦点是抛物线y 2=4x 的焦点(1,0),椭圆的长轴长2a =|AB |∴a =c =1,∴b 2=a 2-c 2=2-1=23.∵焦点在x 轴上, ∴椭圆的标准方程为222423x y +=1.。

中职高考数学一轮复习讲练测第八章 圆锥曲线(测)(含详解)

中职高考数学一轮复习讲练测第八章 圆锥曲线(测)(含详解)

第八章 圆锥曲线检测题1.已知直线经过点A (0,3)和点B (-1,2),则直线AB 的斜率为( )A .-1B .1C .-12D .122.已知直线l 1:(k -3)x +(4-k )y +1=0与l 2:2(k -3)x -2y +3=0平行,则k 的值是( ) A .1或3B .1或5C .3或5D .1或23.圆x 2+y 2+x -3y -32=0的半径是( )A .1B .2C .2D .224.以(-2,1)为圆心且与直线x +y =3相切的圆的方程为( ) A .(x -2)2+(y +1)2=2 B .(x +2)2+(y -1)2=4 C .(x -2)2+(y +1)2=8D .(x +2)2+(y -1)2=85. 直线(m +2)x +my +1=0与直线(m -1)x +(m -4)y +2=0互相垂直,则m 的值为( ) A .12B .-2C .-12或2D .-2或126.椭圆x 29+y 24=1的离心率是( )A .133 B .53C .23D .597. 抛物线y 2=8x 的焦点到直线x -3y =0的距离是( ) A .23 B .2 C .3D .18. 设双曲线x 2a 2-y 2b 2=1(a >0,b >0)的虚轴长为2,焦距为23,则双曲线的渐近线方程为( )A .y =±2xB .y =±2xC .y =±22x D .y =±12x9.在方程mx 2-my 2=n 中,若mn <0,则方程的曲线是( ) A .焦点在x 轴上的椭圆 B .焦点在x 轴上的双曲线 C .焦点在y 轴上的椭圆D .焦点在y 轴上的双曲线10.椭圆x 29+y 2k 2=1与双曲线x 2k -y 23=1有相同的焦点,则k 的值为( )A .k =3B .k =4C .k =2D .k =1二、填空题1.直线l 过点M (1,-2),倾斜角为30°.则直线l 的方程为 . 2.若抛物线y 2=2px (p >0)的准线经过双曲线x 2-y 2=1的一个焦点,则p =__ __.3.已知椭圆的焦点在y 轴上,其上任意一点到两焦点的距离和为8,焦距为215,则此椭圆的标准方程为__ __.4.双曲线的一个焦点坐标是(0,-6),经过点A (-5,6),则双曲线的标准方程为__ __. 5.方程x 2+y 2+ax +2ay +54a 2+a -1=0表示圆,则a 的取值范围是6.直线l :2x -y +2=0过椭圆左焦点F 和一个顶点B ,则该椭圆的离心率为 7.若k ∈R ,方程x 2k +3+y 2k +2=1表示焦点在x 轴上的双曲线,则k 的取值范围是__ __.8.设抛物线y 2=8x 上一点P 到y 轴的距离是6,则点P 到该抛物线焦点的距离为 三、解答题1.直线l 经过两点(2,1)、(6,3). (1)求直线l 的方程;(2)圆C 的圆心在直线l 上,并且与x 轴相切于(2,0)点,求圆C 的方程. 2.求焦点在直线x -y +2=0上的抛物线的标准方程.3.椭圆的中心在原点,焦点在坐标轴上,焦距为213.一双曲线和该椭圆有公共焦点,且双曲线的实半轴长比椭圆的长半轴长小4,双曲线离心率与椭圆离心率之比为7:3,求椭圆和双曲线的方程.4.已知椭圆C的两焦点分别为F1(-22,0)、F2(22,0),长轴长为6.(1)求椭圆C的标准方程;(2)已知过点(0,2)且斜率为1的直线交椭圆C于A、B两点,求线段AB的长.5.已知双曲线C:x2a2-y2b2=1(a>0,b>0)的离心率为3,点(3,0)是双曲线的一个顶点.(1)求双曲线的方程;(2)经过双曲线右焦点F2作倾斜角为30°的直线l,直线l与双曲线交于不同的A,B两点,求AB的长.第八章 圆锥曲线检测题1.已知直线经过点A (0,3)和点B (-1,2),则直线AB 的斜率为( B )A .-1B .1C .-12D .12[解析] 由斜率公式,得k AB =2-3-1-0=1. 2.已知直线l 1:(k -3)x +(4-k )y +1=0与l 2:2(k -3)x -2y +3=0平行,则k 的值是( C ) A .1或3B .1或5C .3或5D .1或2[解析] 当k =3时,两直线显然平行;当k ≠3时,由两直线平行,斜率相等,得-k -34-k =2(k -3)2.解得k =5,故选C .3.圆x 2+y 2+x -3y -32=0的半径是( C )A .1B .2C .2D .22[解析] 圆x 2+y 2+x -3y -32=0化为标准方程为(x +12)2+(y -32)2=4,∴r =2.4.以(-2,1)为圆心且与直线x +y =3相切的圆的方程为( D ) A .(x -2)2+(y +1)2=2 B .(x +2)2+(y -1)2=4 C .(x -2)2+(y +1)2=8D .(x +2)2+(y -1)2=8[解析] 由所求的圆与直线x +y -3=0相切,∴圆心(-2,1)到直线x +y -3=0的距离d =|-2+1-3|2=22,∴所求圆的方程为(x +2)2+(y -1)2=8.5. 直线(m +2)x +my +1=0与直线(m -1)x +(m -4)y +2=0互相垂直,则m 的值为( C )A .12B .-2C .-12或2D .-2或12[解析] 由题意,得(m +2)(m -1)+m (m -4)=0,解得m =-12或2.6.椭圆x 29+y 24=1的离心率是( B )A .133B .53C .23D .59[解析] ∵椭圆方程为x 29+y 24=1,∴a =3,c =a 2-b 2=9-4= 5. ∴e =c a =53.故选B .7. 抛物线y 2=8x 的焦点到直线x -3y =0的距离是( D ) A .23 B .2 C .3D .1[解析] 由y 2=8x 可得其焦点坐标(2,0),根据点到直线的距离公式可得d =|2-3×0|12+(-3)2=1.8. 设双曲线x 2a 2-y 2b2=1(a >0,b >0)的虚轴长为2,焦距为23,则双曲线的渐近线方程为( C )A .y =±2xB .y =±2xC .y =±22x D .y =±12x[解析] ∵2b =2,2c =23,∴b =1,c =3,∴a 2=c 2-b 2=3-1=2,∴a =2,故渐近线方程为y =±22x .9.在方程mx 2-my 2=n 中,若mn <0,则方程的曲线是( D ) A .焦点在x 轴上的椭圆 B .焦点在x 轴上的双曲线 C .焦点在y 轴上的椭圆 D .焦点在y 轴上的双曲线[解析] 方程mx 2-my 2=n可化为:y 2-n m -x 2-n m=1,∵mn <0,∴-nm>0,∴方程的曲线是焦点在y 轴上的双曲线.10.椭圆x 29+y 2k 2=1与双曲线x 2k -y 23=1有相同的焦点,则k 的值为( C )A .k =3B .k =4C .k =2D .k =1[解析] 双曲线x 2k -y 23=1的焦点(±3+k ,0),椭圆的焦点坐标(±9-k 2,0),椭圆x 29+y 2k 2=1与双曲线x 2k -y 23=1有相同的焦点,可得:3+k =9-k 2,k >0,解得k =2.故选C . 二、填空题1.直线l 过点M (1,-2),倾斜角为30°.则直线l 的方程为 . [解析] ∵直线l 的倾斜角为30°,∴直线l 的斜率k =tan30°=33,∴直线方程x -3y -23-1=02.若抛物线y 2=2px (p >0)的准线经过双曲线x 2-y 2=1的一个焦点,则p =[解析] 由题意可知,抛物线的准线方程为x =-p2,因为p >0,所以该准线过双曲线的左焦点,由双曲线的方程可知,左焦点坐标为(-2,0);故由-2=-p2可解得p =2 2.3.已知椭圆的焦点在y 轴上,其上任意一点到两焦点的距离和为8,焦距为215,则此椭圆的标准方程为__y 216+x 2=1__.[解析] 由已知,2a =8,2c =215,∴a =4,c =15, ∴b 2=a 2-c 2=16-15=1, ∴椭圆的标准方程为y 216+x 2=1.4.双曲线的一个焦点坐标是(0,-6),经过点A (-5,6),则双曲线的标准方程为__y 216-x 220=1__.[解析] 解法一:由已知得,c =6,且焦点在y 轴上,则另一焦点坐标是(0,6).因为点A (-5,6)在双曲线上,所以点A 与两焦点的距离的差的绝对值是常数2a ,即 2a =|(-5)2+(6+6)2-(-5)2+(6-6)2| =|13-5|=8,得a =4,b 2=c 2-a 2=62-42=20. 因此,所求的双曲线标准方程是y 216-x 220=1.5.方程x 2+y 2+ax +2ay +54a 2+a -1=0表示圆,则a 的取值范围是[解析] 由题意知,a 2+(2a )2-4⎝⎛⎭⎫54a 2+a -1=-4a +4>0.∴a <1.6.直线l :2x -y +2=0过椭圆左焦点F 和一个顶点B ,则该椭圆的离心率为[解析] ∵直线l :2x -y +2=0中,令x =0,得y =2;令y =0,得x =-1. 直线l :2x -y +2=0过椭圆左焦点F 1和一个顶点B , ∴椭圆左焦点F 1(-1,0),顶点B (0,2). ∴c =1,b =2,a =1+4=5, ∴该椭圆的离心率为e =c a =15=55.7.若k ∈R ,方程x 2k +3+y 2k +2=1表示焦点在x 轴上的双曲线,则k 的取值范围是__ -3<k <-2 __.[解析] 由题意可知,⎩⎪⎨⎪⎧k +3>0k +2<0,解得-3<k <-2.8.设抛物线y 2=8x 上一点P 到y 轴的距离是6,则点P 到该抛物线焦点的距离为 [解析] ∵点P 到y 轴的距离为6,∴点P 到抛物线y 2=8x 的准线x =-2的距离d =6+2=8, 根据抛物线的定义知点P 到抛物线焦点的距离为8. 三、解答题1.直线l 经过两点(2,1)、(6,3). (1)求直线l 的方程;(2)圆C 的圆心在直线l 上,并且与x 轴相切于(2,0)点,求圆C 的方程. [解析] (1)直线l 的斜率k =3-16-2=12,∴直线l 的方程为y -1=(x -2),即x -2y =0.(2)由题意可设圆心坐标为(2a ,a ),∵圆C 与x 轴相切于(2,0)点,∴圆心在直线x =2上, ∴a =1.∴圆心坐标为(2,1),半径r =1.∴圆C 的方程为(x -2)2+(y -1)2=1. 2.求焦点在直线x -y +2=0上的抛物线的标准方程. [解析] 因为是标准方程,所以其焦点应该在坐标轴上, 所以其焦点坐标即为直线x -y +2=0与坐标轴的交点, 所以其焦点坐标为(-2,0)和(0,2)当焦点为(-2,0)时,可知其方程中的p =4,所以其方程为y 2=-8x , 当焦点为(0,2)时,可知其方程中的p =4, 所以其方程为x 2=8y ,故所求方程为y 2=-8x 或x 2=8y .3.椭圆的中心在原点,焦点在坐标轴上,焦距为213.一双曲线和该椭圆有公共焦点,且双曲线的实半轴长比椭圆的长半轴长小4,双曲线离心率与椭圆离心率之比为7:3,求椭圆和双曲线的方程.[解析] ①焦点在x 轴上,设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),且c =13.设双曲线为x 2m 2-y 2n 2=1(m >0,n >0),m =a -4.因为e 双e 椭=73,所以a m =73,解得a =7,m =3.因为椭圆和双曲线的半焦距为13, 所以b 2=36,n 2=4. 所以椭圆方程为x 249+y 236=1,双曲线方程为x 29-y 24=1.②焦点在y 轴上,椭圆方程为x 236+y 249=1,双曲线方程为y 29-x 24=1.4. 已知椭圆C 的两焦点分别为F 1(-22,0)、F 2(22,0),长轴长为6.(1)求椭圆C 的标准方程;(2)已知过点(0,2)且斜率为1的直线交椭圆C 于A 、B 两点,求线段AB 的长.[解析] (1)由F 1(-22,0)、F 2(22,0),长轴长为6,得:c =22,a =3,所以b =1. ∴椭圆方程为x 29+y 2=1.(2)设A (x 1,y 1),B (x 2,y 2), 由(1)可知椭圆方程为x 29+y 2=1①,∵直线AB 的方程为y =x +2②把②代入①得化简并整理得10x 2+36x +27=0 ∴x 1+x 2=-185,x 1x 2=2710,又|AB |=(1+12)(18252-4×2710)=635. 5.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为3,点(3,0)是双曲线的一个顶点.(1)求双曲线的方程;(2)经过双曲线右焦点F 2作倾斜角为30°的直线l ,直线l 与双曲线交于不同的A ,B 两点,求AB 的长. [解析] (1)∵双曲线C :x 2a 2-y 2b 2=1的离心率为3,点(3,0)是双曲线的一个顶点,∴ca =3,a =3,解得c =3,又c 2=a 2+b 2,b =6, ∴双曲线的方程为x 23-y 26=1.(2)双曲线x 23-y 26=1的右焦点为F 2(3,0),∴直线l 的方程为y =33(x -3), 联立⎩⎨⎧x 23-y 26=1,y =33(x -3),得5x 2+6x -27=0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-65,x 1x 2=-275,所以|AB |=1+13·(-65)2-4×(-275)=1635.。

(完整版)19圆锥曲线与方程(中职数学春季高考练习题)(可编辑修改word版)

(完整版)19圆锥曲线与方程(中职数学春季高考练习题)(可编辑修改word版)

7 7532+ = - = - = + = + = + = + = + = + = + = + = 数学试题 圆锥曲线与方程8. 椭圆的一个焦点与短轴的两个端点的连线互相垂直,则该椭圆的离心率是16 41. 设 F 、F 为定点, F F = 6 ,动点 M 满足 MF + MF= 8 ,则动点 M 的轨迹是10. 若双曲线的焦点在 x 轴上,且它的渐近线方程为 y = ± 3 x ,则双曲线的离心率为1 2A. 椭圆 1 2B. 直线 1 2C. 圆D. 线段55A .B .4344 7 3 7 C .D .772. 若抛物线焦点在 x 轴上,准线方程是 x = -3 ,则抛物线的标准方程是x 2y 2 A . y 2 = 12xB . y 2 = -12xC . y 2 = 6xD . y 2 = -6x11. 椭圆+ 169= 1与 x 轴 正半轴交于点 A ,与 y 轴 正半轴交于点 B ,则 AB 等于x 2 3. 已知椭圆方程为 y 21,那么它的焦距是 A .5 B . C . D .49 16x 2y 2 A .10B .5C .D .2 12. 如果椭圆+a2b 2= 1经过两点 A (4 ,0)、B (0 ,3) ,则椭圆的标准方程是4. 抛物线 y 2 = -6x 的焦点到准线的距离为x 2 y 2A . x 2y 2B . x 2 y 2C . x 2 y 2D . A .2B .3C .4D .625 9 16 316 99 165. 若椭圆满足 a = 4 ,焦点为(0 ,- 3),(0 ,3) ,则椭圆方程为 13. 双曲线 x 2 - 4 y 2 = 4 的顶点坐标是x 2y 2A .x 2y 2B .y 2x 2C .y 2 x 2D . A . (-2 ,0)、(2 ,0) B . (0 ,- 2)、(0 ,2) C . (-1,0)、(1,0) D . (0 ,-1)、(0 ,1) 16 7216 9 16 716 9x 2 14. 若双曲线 a 2 y 2b 21的两条渐近线互相垂直,则该双曲线的离心率是6. 抛物线 y + 4x = 0 上一点到准线的距离为 8,则该点的横坐标为3A .7B .6C . -7D . -6A .2B .C .D .27. 一椭圆的长轴是短轴的 2 倍,则其离心率为x 2 15. 双曲线 y 2 1的焦点坐标为 3A .43 B . 22 C . 21 D .216 9A . (±4 ,0) B . (±3,0)C . (±5 ,0) D . (± 7 ,0)7学校班级专业考试号姓名密封线11111111注意事项: 1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分 100 分,考试时间 90 分钟, 考试结束后,将本试卷和答题卡一并交回. 2. 本次考试允许使用函数型计算器,凡使用计算器的题目,最后结果精确到 0.01.13A .B .22x 2 y 22C .21D .4第Ⅰ卷(选择题,共 60 分)9. 椭圆 + = 1在 y 轴上的顶点坐标是一、选择题(本大题共 30 小题,每小题 2 分,共 60 分.在每小题列出的四个选项中,只有一项符合题目要求,请将符合题目要求的选项选出)A . (±2 ,0) B . (±4 ,0) C . (0 ,± 4) D . (0 ,± 2)5 231 ABF 的周长是2- = - = - = - = - = - = - = - = - = - = x 216. 若过椭圆 + y 2= 1 的左焦点 F 的直线交椭圆于 A 、B 两点,则∆ x 2 24. 双曲线 y 2 1的离心率为 25 16A .10B .20C .16D .85 45 5 9 A.B .C .D .17. 方程x 2k + 2 y 2 1 表示焦点在 y 轴上的双曲线,则 k 的取值范围是 k +14345A. k > 1x 2 y 2B. k < -1C. k < 2D. k < -225. 双曲线9 y 2 -16x 2 = 144 的虚轴长为A .3B .6C .4D .818. 椭圆+ 25 9= 1 上一点 M 到焦点 F 1 的距离为 2, A 是 MF 1 的中点,则 OA 等于326. 双曲线 x 2 - y 2 = -4 的焦点坐标为A .2B .4C .8D .2A . (-2 2 ,0) ,(2 2 ,0)B . (0 ,2 2 ),(0 ,- 2 2)19. 双曲线的实轴长为4 ,焦点在 y 轴上,且经过点 A (2 ,- 5) ,则双曲线的标准方程是y 2x 2A .x 2y 2B .y 2x 2C .x 2 y 2D . C . (- 2 ,0),( 2 ,0)D . (0 , 2 ),(0 ,- 2)20 1620 1620 2016 2027. 抛物线 y 2 = -4x 的焦点坐标为20. 已知两点 F 1 (-5 ,0)、F 2 (5 ,0) ,与它们的距离的差的绝对值等于 6 的点的轨迹方程是A . (1,0)B . (-1,0)C . (0 ,1)D . (0 ,-1) y 2x 2A . x 2 y 2B . x 2 y 2C . y 2 x 2D . 9 16x 2 y 216 99 1616 928. 顶点在坐标原点,关于 x 轴对称,并且经过点(5 ,- 4) ,则抛物线的标准方程为21. 双曲线 - = 1的渐近线方程是916 A . y 2 =16 xB . y 2 = -16 xC . x 2 =16 yD . x 2 = -16 yA. y = ± 4 xB. y = ± 3xC. y = ± 16xD. y = ± 9x55553 491629. 已知抛物线的准线方程为 y = -1,则抛物线的标准方程是22. 如果方程 x 2 + ky 2 = 2 表示焦点在 y 轴上的椭圆,则实数 k 的取值范围是A. y 2 = 4xB. y 2 = -4xC. x 2 = 4 yD. x 2 = -4 yA . (0 ,+ ∞) B . (0 ,2) C . (1,+ ∞) D . (0 ,1)23. 若双曲线的渐近线方程为 y = ± x ,则它的离心率为30. 下列曲线离心率大于 1 的是A .1B .C .D .不存在A . 25x 2 + 9 y 2 = 144B . y 2 = -144xC . x 2 + y 2 - 4x = 0D . 25x 2 - 9 y 2 = 1443 5 学校班级专业考试号姓名密封线11111111- = 第Ⅱ卷(非选择题,共 40 分)二、填空题(本大题共 4 小题,每小题 3 分,共 12 分)31. 抛物线y 2 = 4x 上一点 P (4, y ) 到焦点的距离为 . 32. 过点P (2 ,3) 的等轴双曲线的标准方程为 .37. 已知双曲线的渐近线方程为 y = ± 13x ,经过点 M (9 ,1) ,求双曲线的标准方程.x 2 33. 已知双曲线 y 21右支上一点 M 到左焦点 F 1 的距离为 12,则 M 到右焦点 F 2 的距离 16 25为 .34. 若椭圆的两焦点恰好是长轴的三等分点,则椭圆的离心率为 .三、解答题(本大题共 4 小题,共 28 分)35. 求双曲线16x 2 - 9 y 2 = 144 的实轴长、虚轴长、焦距、顶点坐标、焦点坐标、离心率及渐近线方程.38. 已知直线 y = x - 2 与抛物线 y 2 = 2x 相交于 A ,B 两点,求证: OA ⊥ OB .x 2 y 236. 已知点 P (3,4) 是椭圆 a 2 + b 2= 1 (a > b > 0) 上的一点, F 1 、F 2 为椭圆的两个焦点,若PF 1 ⊥ PF 2 ,试求:(1)椭圆的方程;(2) ∆PF 1F 2 的面积.学校班级专业考试号姓名密封线。

(完整版)数学高职高考专题复习__直线、圆锥曲线问题

(完整版)数学高职高考专题复习__直线、圆锥曲线问题

高考直线、圆锥曲线问题专题复习一、直线基础题1、已知直线L 与直线2x -5y -1=0平行,则L 的斜率为 ( ) A.52 B.52- C.25 D.25- 2、平行直线2x+3y-6=0和4x+6y-7=0之间的距离等于 ( ) A.1313 B.26135 C.13132 D.26133、已知点A (1,3)和B (-5,1),则线段AB 的垂直平分线的方程是 ( ) A.3x +y+4=0 B.x -3y+8=0 C.x+3y -4=0 D.3x -y+8=04、 过点(-3,1)且与直线3x -y -3=0垂直的直线方程是 ( ) A.x +3y=0 B.3x +y=0 C.x -3y +6=0 D.3x -y -6=05、已知M (3,-1),N (-3,5),则线段MN 的垂直平分线方程为 ( )A.x -y -2=0B.x +y -2=0C.3x -2y +3=0D.x -y +2=06、如果点(4,a)到直线4x -3y -1=0的距离不大于3,那么a 的取值范围是区间 ( ) A.[2,12] B.[1,12] C. [0,10] D. [-1,9]7、实数a=0是直线ax -2y -1=0与2ax -2y -3=0平行的 ( ) A.充分而非必要的条件 B.充分且必要的条件C.必要而非充分的条件D.既非必要又非充分的条件 8、已知P ,M 和N 三点共线,且点M 分有向线段所成的比为2,那么点N 分有向线段所成的比为 ( ) A.31-B.-3C.31D.3 9、已知A (-2,1),B (2,5),则线段AB 的垂直平分线的方程是_________.10、在x 轴上截距为3且垂直于直线x+2y=0的直线方程为___ _______________.二、圆锥曲线基础题11、已知抛物线方程为y 2=8x ,则它的焦点到准线的距离是 ( ) A.8 B.4 C.2 D.6 12、已知椭圆上一点到两焦点(-2,0),(2,0)的距离之和等于6,则椭圆的短轴长为 A.5 B.10 C.5 D.52 ( )13、椭圆9x 2+16y 2=144的焦距为 ( ) A.10 B.5 C.72 D.1414、已知双曲线上有一点到两焦点(-2,0),(2,0)的距离差是2,则双曲线方程为 ( )A.1322=-y x B.1322-=-y x C.1322-=-y x D.1322=-y x 15、P 为椭圆25X 2+9Y 2=225上一点,F 1,F 2是该椭圆的焦点,则| PF 1 |+| PF 2|的值为A.6B.5C.10D.3 (01年成人) ( )16、过双曲线193622=-y x 的左焦点F 1的直线与这双曲线交于A ,B 两点,且|AB|=3.F 2是右焦点,则|AF 2|+|BF 2|的值是 ( ) A.21 B.30 C.15 D.27 17、平面上到两定点F 1(-7,0),F 2(7,0)距离之差的绝对值等于10的点的轨迹方程为 ( )A.11610022=-y x B.14910022=-y x C.1242522=+y x D.1242522=-y x 18、抛物线x y 82=的准线方程是 ( ) A.x =﹣4 B.x =﹣2 C.=y ﹣4 D.=y ﹣219、椭圆15922=+y x 的焦距等于 ( ) A.6 B.214 C.4 D.1420、长为2的线段MN 的两个端点分别在x 轴、y 轴上滑动,则线段MN 的中点的轨迹方程是 ( )A.222=+y xB.422=+y x C.222=+y x D.122=+y x21、记双曲线15422=-y x 的右焦点为F,右准线为l .若双曲线上的点P 到l 的距离为35,则=PF ( )A.25 B.35 C.27D.10922、若抛物线px y 22=上到焦点距离为3的点之横坐标为2,则P= ( ) A.4 B.3 C.2D.123、设P 是双曲线191622=-y x 上一点,已知P 到双曲线的一个焦点的距离等于10,则P 到另一个焦点的距离是 ( )A.2B.18C.20D.2或18 24、中心在坐标原点,焦点在x 轴,且离心率为22、焦距为1的椭圆方程是 ( ) A.14222=+y xB.14222=+y x C.12422=+y xD.12422=+y x 25、方程0)()(22=-+-b y a x 的图形是 ( ) A.一个圆 B.两条直线 C.两条射线 D.一个点26、方程0)2)(1(2=+-y x 的图形是 ( ) A.一条直线 B.两条直线 C.一条抛物线 D.直线或抛物线27、如果圆x 2+y 2= r 2 (r>0) 与圆x 2+y 2-24x -10y +165=0相交,那么r 的取值范围是区间 A.(5,9) B.(6,10) C.(10,12) D.(11,15)( ) 28、椭圆21222=+y x 的准线方程是 ( ) A.x=±1 B. y=±1 C. y=±2 D. x=±2 29、焦点在x 轴上,以直线x y 3=与x y 3-=为渐近线的双曲线的离心率为 ( )A.4B.2C.2D.0.530、焦距为2,离心率为33的椭圆,它的两条准线的距离为 ( ) A.6 B.8 C.34 D.3331、如果方程x 2+ky 2=2表示焦点在y 轴上的椭圆,那么实数k 的取值范围是区间( ) A.(0,+∞) B.(0,2) C.(1,+∞) D.(0,1)32、如果方程192222=-+-a y a x 表示焦点在y 轴上的双曲线,那么实数a 的取值范围是区间 ( )A.(-3,2)B.(-3,3)C.(-3,+∞)D.(-∞,2)33、已知椭圆2222b x a y +=1(a >b >0)的离心率为53,两焦点的距离为3,则a+b=_______.三、直线、圆锥曲线综合题35、过圆x 2+y 2=25上一点P (3,4)并与该圆相切的直线方程是 ( ) A.3x -4y=0 B.3x+4y=0 C. 3x -4y -25=0 D.3x +4y -25=0 36、圆x 2+y 2-10y=0的圆心到直线3x +4y -5=0的距离等于 ( )A.53 B.3 C.75D.15 37、如果直线4x -3y+5=0与圆x 2+y 2-4x -2y+m=0相离,那么m 的取值范围是区间( )A.(0,5)B.(1,5)C.(2,6)D.(-1,4)38、直线012=++y x 被圆9)1()2(22=-+-y x 所截得的线段长等于 . 39、(8分)设双曲线x 2-y 2=1上一点P (a ,b )到直线y=x 的距离等于2,其中a>b,求a,b.40、(10分)已知椭圆1222=+y x ,过点P (1,0)作直线L,使得L 与该椭圆交于A 、B 两点,L 与y 轴交于Q 点,P 、Q 在线段AB 上,且︱AQ ︱=︱BP ︱,求L 的方程.41、(8分) 已知圆的方程为x 2+y 2-6x -4y+12=0,求圆的过点P(2,0)的切线方程.42、(10分) 已知抛物线以原点为顶点,x 轴为对称轴,开口向左,且焦点与顶点的距离为p.在此抛物线上取A 、B 、C 、D 四点,分别记M 和N 为AB 和CD 的中点,如果AB ⊥CD ,求点M 和点N 的纵坐标的乘积.43、(10分) 已知斜率为a ,在y 轴上的截距为2的直线与椭圆132222=+ay a x 有两个不同的交点,求实数a 的取值范围.44、(8分) 已知直线在x 轴上的截距为-1,在y 轴上的截距为1,又抛物线y=x 2+bx+c的顶点坐标为(2,-8),求直线和抛物线两个交点横坐标的平方和.45、(10分) 设F 1和F 2分别是椭圆1422=+y x 的左焦点和右焦点,A 是该椭圆与y 轴负半轴的交点.在椭圆上求点P 使得| PF 1 |,| PA |,| PF 2 |成等差数列.46、(11分) 已知椭圆12222=+by a x 和点P (a ,0).设该椭圆有一关于x 轴对称的内接正三角形,使得P 为其一个顶点,求该正三角形的边长.47、(11分) 设椭圆)0(16222φλλ=+y x 的焦点在x 轴上,O 为坐标原点,P 、Q 为椭圆上两点,使得OP 所在直线的斜率为1,OP ⊥OQ ,若△POQ 的面积恰为λ423,求该椭圆的焦距.48、(12分) 已知正方形ABCD 对角的两个顶点A,C 都在抛物线x y 42=上,另外两个顶点B,D 在直线942=-y x 上,求正方形的中心N 的坐标和正方形的面积.49、( 12分) 已知直线b x y +=2与椭圆18222=+y x 相交于不同的两点..、B A 定点P的坐标为(1,2).求b 值,使PAB ∆的面积最大,并求这个最大值.50、给出定点P (2,2)和Q (-2,0),动点M 满足:直线PM 的斜率与QM 的斜率的比值等于2.求动点M 的轨迹方程. 51、经过点P (2,0)且与定圆0422=++x y x 相切的圆的圆心轨迹如何?52、已知椭圆的焦点是F 1(0,50-)和F 2(0,50),且直线y=3x -2被它截得的线段的中点之横坐标为21,求这个椭圆的方程.53、给定抛物线y 2=8x 和定点P (3,2).在抛物线上求点M ,使M 到P 的距离与到抛物线焦点的距离之和最小,并求这个最小值.附:参考答案 1-8 ABAAD CBA 9.x+y -3=0 10.2x -y -6=0 11-32.BDCAC DDBCDACDAD ADBBA DA 33.29 35-37 DBB 38.4 39.43,45-==b a 40.2222,2222+-=-=x y x y 41.3x -4y -6=0或x=2 42.-4p 243.a >1或a<-1 44.35 45.)31,324(,)31,324(),1,0(--- 46.222334b a ab + 47.4 48.N (25,-1),24549.当b=±22时,面积有最大值250.xy+2x -6y+4=0(x ≠±2) 51.双曲线1322=-y x 52.1752522=+y x 53.)2,21(M ,5。

(完整版)职高《圆锥曲线》章节测试卷

(完整版)职高《圆锥曲线》章节测试卷
3的椭圆方程是(
5
2
y
16
B•准线方程是
6,离心率e
1
36100
a,b,c三者的关系是
2 2 2
c aC.
a2
2
x
25
)
2
c
2
x
D.
16
2
y
25
0)
b2
F2(5,0),与它们的距离的差的绝对值是
2 2
L工1
916
2 2
L冬1
169
以上都不对
6的点的轨迹方程是(
2 2
x-乂1
96
2
以椭圆—
25
()
y2
20
A.
2.
A.
c.
《圆锥曲线》章节测试卷
、选择题:(12*2分=24分)
在椭圆标准方程中a,b,c三者的关系是
2,2 2 2 2
a b cB.b c
中心在原点,焦点在坐标轴上,
2
x
13
2
x
13
2
y
12
3.已知椭圆方程
A.
长轴长是3,
个焦点为(
C.
焦距是、、5,短轴长是4
中心在原点,焦点在
A.
A.
6.
A.
12
2
y_
9
1的焦点为焦点,离心率椭圆
2的双曲线的标准方程
2
x_
6
8.在直角坐标平面内,到定点(
A.
9.
A.
A.
直线B
抛物线x2
1
x-
8
.抛物线C
4y的准线方程是
1
C
2

中职数学 圆锥曲线专项

中职数学 圆锥曲线专项

石城县职业技术学校圆锥曲线专项数学试题第Ⅰ卷(选择题,共70分)一、判断题:本大题共10小题,每小题3分,共30分,对每小题的命题作出判断,对的选A ,错的选B 。

1、抛物线y x 82=的焦点坐标为(2,0); (A B )2、双曲线171622=-x y 的焦距为6; (A B ) 3、双曲线1162522=-y x 的渐近线方程为x y 45±=; (A B ) 4、若抛物线x y 42-=上一点P 到焦点的距离为4,则它的横坐标也为4;(A B )5、以坐标轴为对称轴,焦距是8且过点(5,0)的椭圆方程是192522=+y x ;(A B ) 6、双曲线的离心率e 的范围为0<e<1; (A B ) 7、点(—2,3)与抛物线)0(22 p px y =的焦点的距离是5,则p 的值是2;(A B )8、椭圆252x +42y =1的焦点在x 轴上; (A B )9、椭圆14322=+y x 的焦点坐标为(-1,0),(1,0); (A B ) 10、双曲线16x 2-92y 的离心率是45; (A B )二、选择题:本大题共8小题,每小题5分,共40分(在每小题给出的四个选项中,只有一项符合题目要求)。

11、方程192522=+y x 表示的曲线是 ( ). A 、双曲线 B 、抛物线 C 、椭圆 D 、圆12、已知点M (-3,4)和抛物线y 2=4x 的焦点F ,则MF 的中点坐标是( )A 、(-1,2)B 、(-1,-2)C 、(1,2)D 、(1,-2)13、椭圆1422=+y m x 的焦距为2,则m 的值等于 ( ). A .5 B .8 C .5或3 D .5或814、设F 1和F 2为椭圆1422=+y x 的两个焦点,P 在椭圆上,且∠F 1PF 2=2π,则△F 1PF 2的面积是( )A 、1B 、23C 、2D 、3 15、中心在坐标原点,一个焦点坐标是(-3,0),它的一条渐近线方程是5x-2y=0的双曲线方程是( )A 、14522=-y xB 、15422=-y xC 、131222=-x yD 、112322=-y x 16、已知椭圆1162522=+Y X 上一点P 到椭圆一个焦点的距离是3,则P 到另一个焦点的距离是( )A 、2B 、3C 、5D 、717、抛物线24x y =上的一点M 到焦点的距离为1,则点M 的纵坐标为( ) A .1617 B .1615 C .87D .018、以椭圆焦点1F 、2F 为直径的两个端点的圆,恰好过椭圆的两顶点,则这个椭圆的离心率是( )A 、21B 、22C 、23D 、552南城职业中专2013级高考班2015年5月月考数学试题总分:150分 考试时间:120分钟 命题:邹文明一、是非选择题:(本大题共10小题,每小题3分,共30分,对每小题的命题作出选择,对的选A ,错的选B )二、单项选择题:(本大题共8小题,每小题5分,共40分)第Ⅱ卷 (非选择题,两大题,共80分)三、填空题:本大题有6小题,每小题5分,共30分。

高考分类汇编(圆锥曲线大题含答案)

高考分类汇编(圆锥曲线大题含答案)

7k2 1
2
0,
2k 1
解得 k 2
1 ,即k
7
.
7
7
故直线 l 的方程为 x 7y 1 0 或 x 7 y 1 0 .
学习必备
欢迎下载
12 .( 20XX
年高考四川卷
(理))已知椭圆
C:
x2 a2
y2 b2
1,(a
b
0) 的两个焦点分别为 F1( 1,0), F2(1,0) ,
且椭圆
C
经过点
41 P( , )
kk1 kk2
x2 y2
b2
解:( Ⅰ) 由于 c 2 a 2 b2 , 将 x
c 代入椭圆方程 a 2
b2
1y

a
2
2b 由题意知 a
1 ,即 a
2b 2
ec
3
又 a2
所以 a 2 , b 1
x2 y2 1 所以椭圆方程为 4
( Ⅱ) 由题意可知 :
PF1 PM = PF2 PM
, PF1
PM = PF2
中, 过椭圆
M
x2 : a2
y2 b2 1(a b 0) 的右焦点 F 作直 x y
3 0交 M 于 A, B 两点 , P 为 AB 的中点 ,
且 OP 的斜率为 1 . 2
( Ⅰ) 求 M 的方程 ;( Ⅱ) C, D 为 M 上的两点 , 若四边形 ABCD 的对角线 CD AB, 求四边形 ABCD 面
8.( 20XX 年普通高等学校招生统一考试天津数学(理)试题(含答案)
) 设椭圆
x2
2
a
y2 2 1(a b 0) 的左焦 b
点为 F, 离心率为 3 , 过点 F 且与 x 轴垂直的直线被椭圆截得的线段长为 3

(完整版)历年圆锥曲线高考题(带答案)

(完整版)历年圆锥曲线高考题(带答案)

历年高考圆锥曲线2000年:(10)过原点的直线与圆相切,若切点在第三象限,则该直03422=+++x y x 线的方程是( )(A ) (B ) (C )(D )x y 3=x y 3-=x 33x 33-(11)过抛物线的焦点F 作一条直线交抛物线于P 、Q 两点,若线()02>=a ax y段PF 与FQ 的长分别是、,则等于( )p q qp 11+(A )(B )(C ) (D )a 2a21a 4a4(14)椭圆的焦点为、,点P 为其上的动点,当为钝角14922=+y x 1F 2F 21PF F ∠ 时,点P 横坐标的取值范围是________。

(22)(本小题满分14分)如图,已知梯形ABCD 中,点E 分有向线段所成的比为,CD AB 2=AC λ双曲线过C 、D 、E 三点,且以A 、B 为焦点。

当时,求双曲线离心率4332≤≤λ的取值范围。

e 2004年3.过点(-1,3)且垂直于直线的直线方程为( )032=+-y x A .B .C .D .12=-+y x 052=-+y x 052=-+y x 072=+-y x 8.已知圆C 的半径为2,圆心在轴的正半轴上,直线与圆C 相切,则圆x 0443=++y x C 的方程为( )A .B .03222=--+x y x 0422=++x y x C .D .3222=-++x y x 0422=-+x y x 8.(理工类)已知椭圆的中心在原点,离心率,且它的一个焦点与抛物线21=e 的焦点重合,x y 42-= 则此椭圆方程为( )A .B .13422=+y x 16822=+y x C .D .1222=+y x 1422=+y x 22.(本小题满分14分)双曲线的焦距为2c ,直线过点(a ,0)和(0,b ),且点)0,1(12222>>=-b a by a x l (1,0)到直线的距离与点(-1,0)到直线的距离之和求双曲线的离心率e l l .54c s ≥的取值范围.2005年:9.已知双曲线的焦点为,点在双曲线上且则点1222=-y x 12,F F M 120,MF MF ⋅= 到M 轴的距离为(x )A .B .CD435310.设椭圆的两个焦点分别为过作椭圆长轴的垂线交椭圆于点P ,若△为12,,F F 2F 12F PF等腰直角三角形,则椭圆的离心率是()A B C .D 2121、(理工类)(本小题满分12分)设,两点在抛物线上,是的垂直平分线。

精选最新版2019高中数学单元测试《圆锥曲线方程》完整考试题(含参考答案)

精选最新版2019高中数学单元测试《圆锥曲线方程》完整考试题(含参考答案)

2019年高中数学单元测试卷圆锥曲线与方程学校:__________ 姓名:__________ 班级:__________ 考号:__________一、选择题1.(2008山东理)设椭圆C 1的离心率为135,焦点在X 轴上且长轴长为26.若曲线C 2上的点到椭圆C 1的两个焦点的距离的差的绝对值等于8,则曲线C 2的标准方程为( )(A )1342222=-y x (B)15132222=-y x (C)1432222=-y x (D)112132222=-y x2.(1994山东理8) 设F 1和F 2为双曲线42x -y 2=1的两个焦点,点P 在双曲线上且满足∠F 1PF 2=90°,则△F 1PF 2的面积是 ( ) A . 1 B .25C . 2D . 5 3.(1999山东理)13.已知两点,45,4,45,1⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛N M 给出下列曲线方程:①0124=-+y x ②322=+y x ③1222=+y x ④1222=-y x 在曲线上存在点P 满足|MP |=|NP |的所有曲线方程是 ( )A . ①③B . ②④C . ①②③D . ②③④4.(2008湖北10)如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞 向月球,在月球附近一点P 轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 变点第二次变轨进入仍以月球球心F 为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点第三次变轨进入以F 为圆心的圆形轨道Ⅲ绕月飞行,若用12c 和22c 分别表示椭轨道Ⅰ和Ⅱ的焦距,用12a 和22a 分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子:①1122a c a c +=+; ②1122a c a c -=-; ③1212c a a c >; ④11c a <22c a . 其中正确式子的序号是 ( )A . ①③B . ②③C . ①④D . ②④ 二、填空题5. 已知双曲线22221y x a b-=(00a b >>,)的两个焦点为()10F、)20F ,点P是第一象限内双曲线上的点,且121tan 2PF F ∠=,21tan 2PF F ∠=-,则双曲线的离心率为▲ .6.中心在坐标原点,一个顶点为(4,0),且以直线y为渐近线的双曲线方程为_________.7.抛物线22y x =-的焦点坐标为 .8. 已知21F F 、为椭圆192522=+y x 的两个焦点,过1F 的直线交椭圆于A 、B 两点,若1222=+B F A F ,则AB =___________.9.如图,正六边形ABCDEF 的两个顶点,A D 为椭圆的两个焦点,其余四个顶点在椭圆上,则该椭圆的离心率的值是___________________.10.与椭圆22143x y +=具有相同的离心率且过点(2,-)的椭圆的标准方程是___________11.直线:23120l x y x y A B -+=与轴、轴分别交于、两点,则以A 为焦点,经过B 点的椭圆的标准方程是 .12.已知椭圆22221(0)x y a b a b+=>>的中心、右焦点、右顶点分别为O 、F 、A ,右准线与x 轴的交点为H ,则FAOH的最大值为 13.抛物线22x y =的焦点坐标是 .14.焦点在x 轴上的椭圆方程为2212x y m +=,离心率为12,则实数m 的值为 15.双曲线x 25-y 24=1的焦点坐标是 .16. 已知点A (2,1),F 是椭圆22198x y +=的右焦点,P 是椭圆上的点,则13PA+PF 的最小值 ____▲____.17.已知圆07622=--+x y x ,与抛物线)0(22>=p px y 的准线相切,则=p ___________.18.如图,已知椭圆=1(a >b >0)的离心率为,以该椭圆上的点和椭圆的左、右焦点F 1、F 2为顶点的三角形的周长为4(+1),一等轴双曲线的顶点是该椭圆的焦点,设P 为该双曲线上异于顶点的任一点,直线PF 1和PF 2与椭圆的交点分别为A 、B 和C 、D .(1)求椭圆和双曲线的标准方程;(2)设直线PF 1、PF 2的斜率分别为k 1、k 2,证明:k 1·k 2=1;(3)是否存在常数λ,使得|AB |+|CD |=λ|AB |·|CD |恒成立?若存在,求λ的值;若不存在,请说明理由.19.已知F 1、F 2是椭圆的两个焦点,P 为椭圆上一点,∠F 1PF 2=60°.则椭圆离心率的取值范围为20.已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于点D ,且FD BF 2=,则椭圆C 的离心率为____________.21.抛物线24x y =的焦点坐标为三、解答题22.(2013年高考广东卷(文))已知抛物线C 的顶点为原点,其焦点()()0,0F c c >到直线:20l x y --=的距离为2.设P 为直线l 上的点,过点P 作抛物线C 的两条切线,PA PB ,其中,A B 为切点.(1) 求抛物线C 的方程;(2) 当点()00,P x y 为直线l 上的定点时,求直线AB 的方程; (3) 当点P 在直线l 上移动时,求AF BF ⋅的最小值.23.(本小题满分15分)如图,过点3(0,)a 的两直线与抛物线2y ax =-相切于A 、B 两点, AD 、BC 垂直于直线8y =-,垂足分别为D 、C ..(1)若1a =,求矩形ABCD 面积;(2)若(0,2)a ∈,求矩形ABCD 面积的最大值.24.如图,已知:椭圆M 的中心为O ,长轴的两个端点为A 、B ,右焦点为F ,AF=5BF .若椭圆M 经过点C ,C 在AB 上的射影为F ,且△ABC 的面积为5. (Ⅰ)求椭圆M 的方程;(Ⅱ)已知圆O :22+x y =1,直线:l mx ny +=1,试证明:当点P (m ,n )在椭圆M 上运动时,直线l 与圆O 恒相交;并求直线l 被圆O 截得的弦长的取值范围.25.已知斜率为(0)k k ≠的直线l 过抛物线2:4C y x =的焦点F 且交抛物线于A 、B 两点。

(完整word版)圆锥曲线高考真题汇编(2013--2019新课标卷)(2019)

(完整word版)圆锥曲线高考真题汇编(2013--2019新课标卷)(2019)

解析几何高考真题1、【2019年新2文理】若抛物线22y px =(p>0)的焦点是椭圆2213x y p p+=的一个焦点,则p=( ) A.2 B.3 C.4 D.82、【2019年新2文理】设F 为双曲线C:22221(0,0)x y a b a b-=>>的右焦点,O 为坐标原点,以OF 为直径的圆与圆222x y a +=交于P ,Q 两点,若PQ OF =,则C 的离心率为( )B.C. 23、【2019新1文理】已知双曲线C:22221(0,0)x y a b a b-=>>D 的左、右焦点分别为12,F F ,过1F 的直线与C的两条渐近线分别交于A,B 两点,若112,0F A AB FB F B =⋅=u u u r u u u r u u u r u u u u r,则C 的离心率为________4、【2019新1文理】已知椭圆C 的焦点为12(1,0),(1,0)F F -,过2F 的直线与C 交于A,B 两点2212,AF F B AB BF ==,则C 的方程为( )A.2212x y += B.22132x y += C.22143x y += D.22154x y += 5、【2019新3文理】10.双曲线C :2242x y -=1的右焦点为F ,点P 在C 的一条渐进线上,O 为坐标原点,若=PO PF ,则△PFO 的面积为( )ABC.D.6、【2019新3文理】15.设12F F ,为椭圆C :22+13620x y =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.7、【2018新2文理】5.双曲线,则其渐近线方程为( )A .B .C .D .22221(0,0)x y a ba b-=>>y =y =2y x =y =8、【2018新2理】12.已知,是椭圆的左、右焦点,是的左顶点,点在过的直线上,为等腰三角形,,则的离心率为( ) A .B .C .D .9、【2018新2文】11.已知,是椭圆的两个焦点,是上的一点,若,且,则的离心率为() A . B .CD10、【2018新1理】8.设抛物线C :y 2=4x 的焦点为F ,过点(–2,0)且斜率为的直线与C 交于M ,N 两点,则=()A .5B .6C .7D .811、【2018新1理】11.已知双曲线C:,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M、N .若为直角三角形,则|MN |=( ) A .B .3C .D .412、【2018新1文】4.已知椭圆C :22214x y a +=的一个焦点为(20),,则C 的离心率为A .13B.12C D 13、【2018新1文】15.直线1y x =+与圆22230x y y ++-=交于A B ,两点,则AB =________ 14、【2018新3文理】6.直线分别与轴,轴交于,两点,点在圆上,则面积的取值范围是( ) A .B .C .D .15、【2018新3理】11.设是双曲线()的左,右焦点,是坐标原点.过作的一条渐近线的垂线,垂足为.若,则的离心率为( )A B .2 C D16、【2018新3理】16.已知点和抛物线,过的焦点且斜率为的直线与交于,1F 2F 22221(0)x y C a b a b+=>>:A C PA 12PF F △12120F F P ∠=︒C 231213141F 2F C P C 12PF PF ⊥2160PF F ∠=︒C 12-123FM FN ⋅u u u u r u u u r2213x y -=OMN △3220x y ++=x y A B P ()2222x y -+=ABP △[]26,[]48,⎡⎣12F F ,22221x y C a b-=:00a b >>,O 2F C P 1PF =C ()11M -,24C y x =:C k C A两点.若,则________.17、【2018新3文】10.已知双曲线,则点到的渐近线的距离为() AB .CD .18、【2017新2理】9. 若双曲线C:22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的离心率为( )A .2BCD 19、【2017新2理】16. 已知F 是抛物线C :28y x =的焦点,M 是C 上一点,F M 的延长线交y 轴于点N .若M 为F N 的中点,则FN = .20、【2017新1理】10.已知F 为抛物线2:4C y x =的焦点,过F 作两条互相垂直的直线12,l l ,直线1l 与C交于A 、B 两点,直线2l 与C 交于D 、E 两点,则|AB |+|DE |的最小值为( ) A .16B .14C .12D .1021、【2017新1理】15.已知双曲线2222:1(0,0)x y C a b a b-=>>的右顶点为A ,以A 为圆心,b 为半径做圆A ,圆A 与双曲线C 的一条渐近线交于M 、N 两点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学校______________班级______________专业______________考试号______________姓名______________
数学试题 圆锥曲线与方程
. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分100分,考试时间90分钟,
考试结束后,将本试卷和答题卡一并交回.
. 本次考试允许使用函数型计算器,凡使用计算器的题目,最后结果精确到0.01.
第Ⅰ卷(选择题,共60分)
30小题,每小题2分,共60分.在每小题列出的四个选项中,只有一项
. 设12F F 、
为定点,126F F =,动点M 满足128MF MF +=,则动点M 的轨迹是 A .椭圆
B .直线
C .圆
D .线段
. 若抛物线焦点在x 轴上,准线方程是3x =-,则抛物线的标准方程是 A .2
12y x =
B .2
12y x =-
C .2
6y x =
D .2
6y x =-
. 已知椭圆方程为
22
1916
x y +=,那么它的焦距是 A .10
B .5
C .7
D .27
. 抛物线2
6y x =-的焦点到准线的距离为 A .2
B .3
C .4
D .6
. 若椭圆满足4a =,焦点为()()0303-,,,
,则椭圆方程为 A .
22
1167
x y += B .
22
1169x y += C .
22
1167y x += D .
22
1169
y x += . 抛物线2
40y x +=上一点到准线的距离为8,则该点的横坐标为 A .7
B .6
C .7-
D .6-
. 一椭圆的长轴是短轴的2倍,则其离心率为 A .34
B .
32
C .
22
D .12
8. 椭圆的一个焦点与短轴的两个端点的连线互相垂直,则该椭圆的离心率是
A .
12
B .
32
C

2
D .
14
9. 椭圆
22
1164
x y +=在y 轴上的顶点坐标是
A .()20±,
B .()40±,
C .()04±,
D .()02±,
10. 若双曲线的焦点在x 轴上,且它的渐近线方程为3
4
y x =±
,则双曲线的离心率为 A .
54
B .
53
C

7
D .
7
11. 椭圆
22
1169
x y +=与x 轴正半轴交于点A ,与y 轴正半轴交于点B ,则AB 等于
A .5
B .7
C . 5
D .4
12. 如果椭圆22
221x y a b
+=经过两点()()4003A B ,、,,则椭圆的标准方程是
A .
221259
x y += B .
22
1163x y += C .
22
1169x y += D .
22
1916
x y += 13. 双曲线2
2
44x y -=的顶点坐标是
A .()()2020-,、,
B .()()0202-,、,
C .()()1010-,、,
D .()()0101-,、,
14. 若双曲线22
221x y a b
-=的两条渐近线互相垂直,则该双曲线的离心率是
A .2
B . 3
C . 2
D .32
15. 双曲线
22
1169
x y -=的焦点坐标为
A .()40±,
B .()30±,
C .()50±,
D .()
学校______________班级______________专业______________考试号______________姓名______________
. 若过椭圆22
12516
x y +=的左焦点1F 的直线交椭圆于A B 、两点,则2ABF ∆的周长是 A .10
B .20
C .16
D .8
. 方程
22
121
x y k k -=++表示焦点在y 轴上的双曲线,则k 的取值范围是 A .1k >
B .1k <-
C .2k <
D .2k <-
. 椭圆
2
2
1259
x y +=上一点M 到焦点1F 的距离为2,A 是1MF 的中点,则OA 等于 A .2
B .4
C .8
D .
32

双曲线的实轴长为y 轴上,且经过点()25A -,,则双曲线的标准方程是
A .
22
12016y x -= B .
22
12016x y -= C .
22
12020y x -= D .
22
11620
x y -= . 已知两点()()125050F F -,
、,,与它们的距离的差的绝对值等于6的点的轨迹方程是 A .
22
1916
y x
-= B .
22
1169
x y -= C .
22
1916
x y -= D .
22
1169
y x
-= . 双曲线
22
1916
x y -=的渐近线方程是 A .43
y x =±
B .34
y x =±
C .169
y x =±
D .916
y x =±
. 如果方程2
2
2x ky +=表示焦点在y 轴上的椭圆,则实数k 的取值范围是
A .()0+∞,
B .()02,
C .()1+∞,
D .()01,
. 若双曲线的渐近线方程为y x =±,则它的离心率为 A .1
B
C
D .不存在
24. 双曲线22
154
x y -=的离心率为 A .
54
B .
53
C .
94
D
25. 双曲线2
2
916144y x -=的虚轴长为
A .3
B .6
C .4
D .8
26. 双曲线2
2
4x y -=-的焦点坐标为
A

()()
00-,
B .
((00-,,
C .(
))00
D .
((00,,
27. 抛物线2
4y x =-的焦点坐标为
A .()10,
B .()10-,
C .()01,
D .()01-,
28. 顶点在坐标原点,关于x 轴对称,并且经过点()54-,,则抛物线的标准方程为
A .2
165
y x =
B .2
165
y x =-
C .2
165
x y =
D .2
165
x y =-
29. 已知抛物线的准线方程为1y =-,则抛物线的标准方程是
A .2
4y x = B .2
4y x =- C .2
4x y = D .2
4x y =-
30. 下列曲线离心率大于1的是
A .2
2
259144x y += B .2
144y x =- C .2
2
40x y x +-= D .2
2
259144x y -=
学校______________班级______________专业______________考试号______________姓名______________
第Ⅱ卷(非选择题,共40分)
4小题,每小题3分,共12分)
. 抛物线2
4y x =上一点()4,P y 到焦点的距离为_______________________.
. 过点()23P ,的等轴双曲线的标准方程为_______________________.
. 已知双曲线
22
11625
x y -=右支上一点M 到左焦点1F 的距离为12,则M 到右焦点2F 的距离为____________.
. 若椭圆的两焦点恰好是长轴的三等分点,则椭圆的离心率为_________. 4小题,共28分)
. 求双曲线2
2
169144x y -=的实轴长、虚轴长、焦距、顶点坐标、焦点坐标、离心率及渐近
线方程. . 已知点()34P ,是椭圆()22
2210x y a b a b
+=>>上的一点,12F F 、
为椭圆的两个焦点,若12PF PF ⊥,试求:(1)椭圆的方程;(2)12PF F ∆的面积.
37. 已知双曲线的渐近线方程为1
3
y x =±,经过点()91M ,,求双曲线的标准方程.
38. 已知直线2y x =-与抛物线2
2y x =相交于A B ,两点,求证:OA OB ⊥.。

相关文档
最新文档