大学物理空气比热容的测量实验报告
测定空气比热容比实验报告
测定空气比热容比实验报告实验报告:测定空气比热容比一、实验目的1.学习和掌握比热容比的概念及其物理意义。
2.通过实验测定空气的比热容比。
3.提高实验操作技能和数据处理能力。
二、实验原理比热容比是指一种物质在等压比热容与等容比热容之比,即γ=cp/cv。
对于理想气体,其比热容比为γ=cp/cv=1+1/273K+1/373K。
本实验采用绝热压缩过程的方法测定空气的比热容比。
三、实验步骤1.准备实验器材:温度计、压力表、空气压缩机、秒表、恒温水槽、保温杯、绝热材料等。
2.将恒温水槽设定在不同温度值,测量恒温水槽的实际温度。
3.将保温杯置于恒温水槽中,使其保持稳定的温度。
4.使用空气压缩机将空气压缩到保温杯中,同时记录压缩时间和压力。
5.将保温杯中的空气通过绝热材料导入绝热材料下方的恒温水槽中,测量压缩空气的温度变化。
6.重复步骤4和5,改变恒温水槽的温度值,得到多组数据。
四、数据处理与分析1.根据实验数据,计算出空气的等压比热容cp和等容比热容cv。
2.利用空气的等压比热容cp和等容比热容cv,计算出空气的比热容比γ。
3.将空气的比热容比γ与理想气体的比热容比进行比较,分析误差来源和实验误差。
4.根据实验数据和误差分析,得出结论,并讨论实验中需要注意的问题。
五、结论通过本实验,我们学习和掌握了比热容比的概念和物理意义,通过测定空气的比热容比实验提高了实验操作技能和数据处理能力。
同时,通过误差分析和讨论,我们发现实验中存在一些误差来源,例如温度测量误差、压力测量误差、气体不完全绝热等。
为了提高实验精度,需要采取措施减小误差,例如使用高精度的温度计和压力传感器、确保绝热材料的密封性能等。
本实验所用的方法可以推广到其他气体,例如二氧化碳、氧气等。
通过对比不同气体的比热容比,可以研究它们的物理性质和反应特性。
同时,对于一些复杂的气体,其比热容会受到压力、温度等因素的影响,本实验方法可以用来研究这些影响的大小和规律。
空气比热容比测定实验报告
空气比热容比测定实验报告一、实验目的通过测量空气比热容比,掌握气体的热力学性质,了解气体的热膨胀特性,从而深入理解物理学中的热力学基础知识。
二、实验原理空气比热容比测定实验主要利用了两个方面的知识,一个是气体的状态方程,另一个是热力学第一定律。
对于理想气体来说,其状态方程可以表示为PV = nRT,其中P表示气体压强,V表示气体体积,n表示气体摩尔数,R表示气体普适气体常数,T表示气体温度。
对于气体在绝热条件下的变化,根据热力学第一定律可以得出:ΔU = Q - W,其中,ΔU表示气体内能的变化量,Q表示热量,W表示功。
在绝热条件下,Q = 0,所以ΔU = -W。
气体的内能是由分子的内部能量和分子运动所带来的动能组成的,比热容则是热量增加单位温度所需要的比率,所以等于内能和温度的比率,可以表示为Cp = ΔU/ΔT。
对于压缩气体来说,功是负值,所以ΔU也是负值。
得到如下公式:Cp - Cv = R,其中Cv表示气体的等密比热容。
三、实验内容1. 实验器材1) 绝热容器2) 气压计3) 温度计4) 手摇式风扇5) 水壶6) 水槽2. 实验步骤实验步骤如下:1) 在绝热容器中加入适量的干燥空气,并使用气压计记录其初始压强和初始温度。
2) 手摇风扇使其在绝热条件下进行气体的压缩。
3) 当气体温度上升一定温度时,暂停手摇风扇。
4) 记录停止手摇风扇后的气体压强和温度。
5) 将停止手摇风扇后的绝热容器放入水壶中的水中,并记录水的温度。
6) 将绝热容器中的气体放入水槽中,与水进行热交换直至稳定。
7) 测量气体最终的压强和温度。
四、实验结果通过实验,我们得到的数据如下表所示:| | 初始气压(Pa) | 初始温度(℃) | 停止风扇后气压(Pa) | 停止风扇后气温(℃) | 热交换后气压(Pa) | 热交换后气温(℃) | 水的温度(℃) || --- | --- | --- | --- | --- | --- | --- | --- ||1 | 98683 | 21.5 | 128340 | 40.0 | 100092 | 21.5 | 25.0||2 | 98703 | 21.5 | 130330 | 44.0 | 101325 | 21.5 | 25.0||3 | 98703 | 21.5 | 131320 | 46.0 | 101325 | 21.5 | 25.0|根据热力学第一定律,得到:ΔU = -W绝热容器中压缩气体所做的功可以表示为:W = P1V1 - P2V2其中,P1和V1表示气体的初始压强和体积,P2和V2表示气体的压强和体积。
大学物理空气比热容的测量实验报告
大物实验报告撰写模板2空气比热容比的测定在热学中比热容比是一个基本物理量。
过去,由于实验测量手段的原因使得对它的测量误差较大。
现在通过先进的传感器技术使得测量便得简单而准确。
本实验通过压力传感器和温度传感器来测量空气的比热容比。
一、实验目的1. 用绝热膨胀法测定空气的比热容。
2. 观察热力学过程中状态变化及基本物理规律。
3. 学习气体压力传感器和电流型集成温度传感器的原理及使用方法。
二、实验原理理想气体定压摩尔热容量和定体摩尔热容量之间的关系由下式表示R C C v p =- (4-6-1)其中, R 为普适气体常数。
气体的比热容比γ定义为vp C C =γ(4-6-2)气体的比热容比也称气体的绝热系数,它是一个重要的物理量,其值经常出现在热力学方程中。
测量仪器如图4-6-1所示。
1为进气活塞C 1,2 为放气活塞C 2,3为电流型集成温度传感器,4为气体压力传感器探头。
实验时先关闭活塞C 2,将原处于环境大气压强为P 0、室温为T 0的空气经活塞C 1送入贮气瓶B 内,这时瓶内空气压强增大,温度升高。
关闭活塞C 1,待瓶内空气稳定后,瓶内空气达到状态Ⅰ(101,,V T P ),V 1为贮气瓶容积。
然后突然打开阀门C 2,使瓶内空气与周围大气相通,到达状态Ⅱ(),,220V T P 后,迅速关闭活塞C 2。
由于放气过程很短,可认为气体经历了一个绝热膨胀过程,瓶内气体压强减小,温度降低。
绝热膨胀过程应满足下述方程γγ2011V P V P =(4-6-3)在关闭活塞C 2之后,贮气瓶内气体温度将升高,当升到温度T 0时,原气体的状态为Ⅰ(101,,V T P )改变为状态Ⅲ(202,,V T P ),两个状态应满足如下关系:2211V P V P =(4-6-4)由(4-6-3)式和(4-6-4)式,可得)lg /(lg )lg (lg 1210P P P P --=γ(4-6-5)利用(4-6-5)式可以通过测量P 0、P 1和P 2值,求得空气的比热容比γ值。
实验报告空气比热容比的测定
1. 实验名称空气比热容比的测定 2. 实验目的(1)了解绝热、等容的热力学过程及有关状态方程。
(2)测定空气的比热容比。
3. 实验原理:主要原理公式及简要说明、原理图(1)热力学第一定律及定容比热容和定压比热容 热力学第一定律:系统从外界吸收的热量等于系统内能的增加和系统对外做功之和。
考虑在准静态情况下气体由于膨胀对外做功为PdV dA =,所以热力学第一定律的微分形式为PdV dE dA dE dQ +=+= (1)定容比热容C v 是指1mol 的理想气体在保持体积不变的情况下,温度升高1K 所吸收的热量。
由于体积不变,那么由(1)式可知,这吸收的热量也就是内能的增加(d Q =d E ),所以dTdE dT dQ C v v =⎪⎪⎭⎫⎝⎛=(2) 由于理想气体的内能只是温度的函数,所以上述定义虽然是在等容过程中给出,实际上任何过程中内能的变化都可以写成d E =C v dT定压比热容是指1mol 的理想气体在保持压强不变的情况下,温度升高1K 所吸收的热量。
即pp dT dQ C ⎪⎪⎭⎫⎝⎛=(3) 由热力学第一定律(3)式,考虑在定压过,就有dT dV pdT dE dT dQ pp +⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛(4) 由理想气体的状态方程PV =RT 可知,在定压过程中P R dT dV =,又利用v C dTdE=代入(4)式,就得到定压比热容与定容比热容的关系R C C v p +=(5)R 是气体普适常数,为8.31 J / mol· K ,引入比热容比γ为v p C C /=γ(6)在热力学中,比热容比是一个重要的物理量,它与温度无关。
气体运动理论告诉我们,γ与气体分子的自由度f 有关ff 2+=γ(7) 例如,对单原子气体(Ar 、He),3=f 67.1=γ对双原子气体(N 2、H 2、O 2)5=f40.1=γ,对多原子气体(CO 2、CH 4),6=f 33.1=γ(2)绝热过程系统如果与外界没有热交换,这种过程称为绝热过程,因此,在绝热过程中,d Q =0。
实验报告-空气比热容比的测量
大学物理实验报告实验3-5 空气比热容比的测量一、实验目的:测量室温下的空气比热容比二、实验原理:理想气体的定压摩尔热容为pC ,定容摩尔热容为vC ,气体的比热容比γ值为:v pC C =γ,γ又称摩尔热容比。
瓶内贮入气体后,将瓶内的气体看成由两部分组成,一部分是放气后进入大气的气体,另一部分是放气前在瓶内具有体积V1,放气后,这部分气体充满贮气瓶,体积为V2,以放气后留在瓶内的这部分气体为系统,实验中系统经三个状态,Ⅰ−−−→−绝热膨胀),,(011T V P Ⅱ−−−→−定容升温),,(20x T V P Ⅲ),,(022T V P由于气体处于状态Ⅰ和状态Ⅲ时,气体的量不变,温度相同时应有2211V P V P =,另外状态Ⅰ至状态Ⅲ是绝热过程,应有γγ2011V P V P =,此二式联立解得1210lg lg lg lg P P P P --=γ(3-5-3)所以只要测出环境大气压强0P 和瓶内气体初末态的压强1P 、2P ,即可通过上式求出气体的比热容比。
三、实验器材:储气瓶一套(包括玻璃瓶、活塞两只、橡皮球、打气球)、两只传感器(扩散硅压力传感器和电流型集成温度传感器AD590各一只)、测量空气压强的三位半数字电压表、测空气温度的四位半数字电压表、连接电缆以及电阻。
四、实验步骤:(1)按图3-5-2接线,注意AD590的正负极。
用Forton 式气压计测定大气压强,P 用水银温度计测环境温度T 。
(2)开启电源,将电子仪器部分预热20min ,然后用调零电位钮调节零点,把三位半数字电压表示值调到0。
(3)将2C 关闭,与打气手球相连的活塞1C 打开,用打气球把空气稳定地徐徐输入贮气瓶内,关闭活塞1C ,稳定后测量并记录此时温度(该温度即为瓶内气体的温度,也为室温T0(℃),此温度在电压表上显示为0T ',再测量并记录瓶内压强1P ' (电压表示数)。
(4)突然打开活塞2C ,当贮气瓶的空气压强降低至环境大气压强0P 时(这时放气声消失),迅速关闭2C 。
空气比热容比的测量实验报告
空气比热容比的测量实验报告一、实验目的1、学习用绝热膨胀法测量空气的比热容比。
2、观察热力学过程中状态的变化及基本物理规律。
3、学习使用气体压力传感器和计算机等现代实验技术手段进行实验数据的采集和处理。
二、实验原理比热容比γ是指气体定压比热容Cp与定容比热容Cv之比,即γ =Cp / Cv 。
对于理想气体,γ值只与气体分子的自由度有关。
本实验采用绝热膨胀法测量空气的比热容比。
实验装置主要由贮气瓶、压力表、活塞、打气球等组成。
实验时,首先关闭放气阀,通过打气球向贮气瓶内缓慢打入一定量的气体,使瓶内压强增大。
当压强达到一定值时,突然打开放气阀,瓶内气体迅速绝热膨胀,压强急剧降低。
由于绝热膨胀过程中,气体与外界没有热量交换,内能的减少等于对外做功。
待瓶内气体温度恢复到环境温度时,再次关闭放气阀,此时瓶内气体的压强为P1。
然后用打气球缓慢打入气体,使瓶内压强再次增大到一定值,重复上述过程,测量出第二次绝热膨胀后的压强P2。
根据绝热方程PVγ =常数,可得:P1V1γ =P2V2γ由于两次膨胀过程中,贮气瓶的体积不变,即 V1 = V2 ,所以:P1γ =P2γ则空气的比热容比γ为:γ = ln(P1 / P2) / ln(V2 / V1) = ln(P1 / P2)三、实验仪器1、贮气瓶:一个带有活塞和压力表的玻璃容器,用于储存气体。
2、压力表:测量贮气瓶内气体的压强。
3、打气球:用于向贮气瓶内打气。
4、计算机及数据采集系统:用于采集和处理实验数据。
四、实验步骤1、检查实验装置的气密性,确保系统无漏气现象。
2、打开计算机数据采集系统,将压力表与计算机连接好。
3、关闭放气阀,用打气球缓慢向贮气瓶内打气,使压力表读数达到一定值(例如 12 × 10^5 Pa),记录此时的压强 P1 。
4、迅速打开放气阀,使瓶内气体绝热膨胀,待瓶内气体温度恢复到环境温度后,关闭放气阀。
5、再次用打气球缓慢向贮气瓶内打气,使压力表读数达到与第一次相同的值,记录此时的压强 P2 。
大学物理实验空气比热容比的测定实验报告
大学物理实验空气比热容比的测定实验报告一、实验目的1、学习用绝热膨胀法测定空气的比热容比。
2、观测热力学过程中状态变化及基本物理规律。
3、掌握用气体压力传感器和温度传感器测量气体的压强和温度的原理和方法。
二、实验原理气体的比热容比γ定义为气体的定压比热容Cp与定容比热容Cv之比,即γ = Cp / Cv。
对于理想气体,γ只与气体分子的自由度有关。
本实验采用绝热膨胀法测定空气的比热容比。
实验装置如图1 所示,主要由储气瓶、打气球、U 型压力计、传感器等组成。
图 1 实验装置示意图实验中,首先关闭放气阀,通过打气球向储气瓶内缓慢打入一定量的气体,使瓶内压强升高。
此时瓶内气体处于状态Ⅰ(P1、V1、T1)。
然后迅速打开放气阀,瓶内气体绝热膨胀,压强迅速降低,经过一段时间后达到新的平衡状态Ⅱ(P2、V2、T2)。
由于过程绝热,满足绝热方程:P1V1^γ =P2V2^γ又因为放气过程较快,瓶内气体来不及与外界交换热量,可近似认为是绝热过程。
同时,实验中储气瓶的容积不变,即 V1 = V2,所以有:P1^γ =P2^γ两边取对数可得:γ = ln(P1) / ln(P2)通过测量状态Ⅰ和状态Ⅱ的压强 P1 和 P2,即可计算出空气的比热容比γ。
三、实验仪器1、储气瓶2、打气球3、 U 型压力计4、压力传感器5、温度传感器6、数据采集器7、计算机四、实验步骤1、仪器连接与调试将压力传感器和温度传感器分别与数据采集器连接,再将数据采集器与计算机连接。
打开计算机上的实验软件,对压力传感器和温度传感器进行校准和调试。
2、测量初始状态参数关闭放气阀,用打气球缓慢向储气瓶内打气,直至 U 型压力计的示数稳定在一定值,记录此时的压强 P1 和温度 T1。
3、绝热膨胀过程迅速打开放气阀,使瓶内气体绝热膨胀,当 U 型压力计的示数稳定后,记录此时的压强 P2 和温度 T2。
4、重复实验重复上述步骤 2 和 3,进行多次测量,以减小实验误差。
空气比热容比的测量实验报告
空气比热容比的测量实验报告在这次实验中,我们的目标是测量空气的比热容比。
这听起来可能有些复杂,但其实,了解这个过程会让你感到意外的有趣。
首先,我们得了解比热容的概念。
简单来说,比热容就是物质在升高温度时所需要的热量。
空气的比热容比是指空气与其他物质(如水)之间的比值。
为什么这很重要呢?因为这直接关系到我们生活中的许多现象,比如气候变化、天气预报等等。
在实验的第一步,我们准备了一个简单的装置。
我们用到的是一个容器,里面装着水。
水的比热容是比较稳定的,因此非常适合作为对照。
接着,我们将一个热源放在水上方,确保它能均匀加热水。
热源的选择很重要。
我们使用电热丝,它加热迅速,温度也很容易控制。
接下来,我们要记录温度变化。
这一过程是实验的关键。
我们用温度计实时监测水的温度,并记录下加热的时间。
很快,水的温度开始上升。
看着水面上涌起的热气,心里不禁感叹,原来科学也能这么神奇!在这一阶段,我们需要计算热量。
根据公式Q=mcΔT,我们可以算出水吸收的热量。
Q是热量,m是水的质量,c是水的比热容,而ΔT是温度变化。
水的比热容是4.18焦耳/(克·摄氏度),所以只要一代入数据,计算就简单多了。
之后,我们开始测量空气的比热容。
这个环节稍微复杂一些。
我们需要用到一个封闭的容器,把空气放进去。
然后同样地,用热源加热这个容器。
不同的是,这次我们不直接测量空气的温度变化,而是通过容器的温度变化来间接推算。
我们用的设备有些高科技,配有精确的传感器。
这时候,空气的比热容比就成了我们要重点关注的对象。
随着温度的变化,我们记录下了每一个细节。
这是一个耐心活,然而每次看到数据在屏幕上跳动,都让人兴奋不已。
在这个过程中,空气的流动也不可忽视。
因为空气是流动的,热量的传播和分布会受到影响。
为了确保数据的准确性,我们还做了一些控制实验,尽量排除其他因素的干扰。
科学就是这样,细节决定成败。
然后,我们对比了水与空气的比热容比。
通过前面计算的数据,我们发现空气的比热容比水要低得多。
测定空气比热容比实验报告
测定空气比热容比实验报告实验目的:1.测定空气的比热容比;2.掌握热平衡的方法和实验技巧;3.掌握冷热水混合的热平衡方法。
实验器材:1.中空金属绝热杯2.温度计3.可调节加热器4.隔热垫5.实验用水实验原理:空气的比热容比是在恒压下单位质量空气温度升高1℃所需要的热量与单位质量空气温度升高1℃所需要的热量的比值,用γ表示。
热平衡指两个物体达到相同温度的状态。
根据热平衡原理及能量守恒定律,可得到热平衡的关系式:m1c1ΔT1=m2c2ΔT2,其中m为质量,c为比热容,ΔT为温度变化。
实验步骤:1.按实验器材准备好实验装置,将中空金属绝热杯放在隔热垫上;2.称取一定质量的水m1,通过温度计测量其初始温度T1;3.将水倒入中空金属绝热杯中,并再次测量水的质量m2;4.放入温度计,迅速记录下水的最高温度T2;5.加热器以适当的功率加热冷水,使水温随时间增长,并记录加热时间t;6.每隔一段时间t1,记录一次水的温度T3,并保持加热功率不变直到水的温度上升到T2;7.根据实验数据计算空气的比热容比γ。
实验数据:水的质量m1=100g水的初始温度T1=20℃最高温度T2=40℃水的质量m2=80g加热时间t=600s间隔时间t1=60s温度变化ΔT1=T2-T1数据处理:1.根据热平衡关系式可得到:m1c1ΔT1=m2c2ΔT2m1c1(T2-T1)=m2c2(T2-T3)根据上式可计算出c2:c2=c1(T2-T1)/(T2-T3)2.根据给定数据计算结果。
实验结果:根据实验数据和计算公式,可以得到计算出的空气比热容比γ的数值。
实验讨论与误差分析:1.实验过程中,可能存在温度计读数不准确、水温升高不均匀等误差因素;2.实验结果可能会受到环境温度的影响;3.实验中加热水的同时要保证绝热杯外部不受热,从而减小热量的损失。
实验结论:通过本实验测定得到空气的比热容比为γ。
实验结果可与已知的理论值进行比较。
如果两者相差较大,可能是由于实验误差及实验装置等因素造成的,需要进一步排除误差源,并改进实验方法和装置。
空气比热容比的测量实验报告
南昌大学物理实验报告课程名称:普通物理实验(2)实验名称:空气比热容比的测量学院:专业班级:学生姓名:学号:实验地点:座位号:实验时间:一、 实验目的:1. 学习用绝热膨胀法测定空气的比热容比。
2. 观察热力学过程中状态变化及基本物理规律。
3. 学习气体压力传感器和电流型集成温度传感器的原理及使用方法。
二、 实验仪器:气压计、FD-TX-NCD 空气比热容测定仪。
三、 实验原理:遵循两条基本原则:其一是保持系统为孤立系统;其二是测量一个系统的状态参量时,应保证系统处于平衡态。
气体的定压比热容P C 和定容比热容V C 之比称为气体的比热容比,用符号γ表示(即pV C C γ=),又称气体的绝热系数。
如图所示,实验开始时,首先打开活塞C2,储气瓶与大气相通,当瓶内充满与周围空气同压强同温度的气体后,再关闭活塞C2。
打开充气活塞C1,将原处于环境大气压强为0p 、室温为0T 的空气,用打气球从活塞C1处向瓶内打气,充入一定量的气体,然后关闭充气活塞C1。
此时瓶内空气被压缩而压强增大,温度升高,等待瓶内气体温度稳定,即达到与周围温度平衡。
此时的气体处于状态I(1p ,1V ,0T ),其中1V 为储气瓶容积。
然后迅速打开放气阀门C2,使瓶内空气与周围大气相通,瓶内气体做绝热膨胀,将有一部分体积为V ∆的气体喷泻出储气瓶。
当听不见气体冲出的声音,即瓶内压强为大气压强0p ,瓶内温度下降到1T (1T <0T ),此时,立即关闭放气阀门C2,。
由于放气过程较快,瓶内保留的气体由状态I(1p ,1V ,0T )转变为状态II (0p ,2V ,1T )。
由于瓶内气体温度1T 低于室温0T ,所以瓶内气体慢慢从外界吸热,直至达到室温0T 为止,此时瓶内气体压强也随之增大为1p 。
稳定后的气体状态为III (2p ,2V ,0T ),从状态II 到状态III 的过程可以看作是一个等容吸热的过程。
总之,气体从状态I 到状态II 是绝热过程,由泊松公式得:110101p p T T γγγ-γ-= (1)从状态II 到状态III 是等容过程,对同一系统,由盖吕萨克定律得0210p p T T =(2)由以上两式子可以得到11200p p P P γγ-⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭(3)两边取对数,化简得(4)利用 (4)式,通过测量0p 、1p 和2p 的值就可求得空气的比热容比的值。
空气的比热容比实验报告
一、实验目的1. 了解空气比热容比的概念和意义。
2. 掌握绝热膨胀法测定空气比热容比的方法。
3. 通过实验,验证热力学基本规律在气体状态变化过程中的应用。
二、实验原理空气的比热容比(γ)是描述气体在绝热过程中,压强与温度变化关系的物理量。
对于理想气体,比热容比定义为定压比热容(Cp)与定容比热容(Cv)的比值,即γ = Cp/Cv。
实验采用绝热膨胀法测定空气的比热容比。
根据热力学第一定律,在绝热过程中,气体对外不做功,内能的变化等于吸收的热量。
设气体初态压强为P0,温度为T0,体积为V0,末态压强为P1,温度为T1,体积为V1,则有:ΔU = Q + W由于绝热过程,Q = 0,且W = 0,因此ΔU = 0。
根据理想气体状态方程,有:P0V0/T0 = P1V1/T1联立以上两式,可得:γ = (Cp/Cv) = (P0V0/T0) / (P1V1/T1)三、实验仪器与材料1. 气体压力传感器2. 电流型集成温度传感器3. 贮气瓶4. 进气活塞5. 放气活塞6. 温度计7. 计时器8. 计算器四、实验步骤1. 将气体压力传感器、电流型集成温度传感器连接到相应的仪器上。
2. 将进气活塞和放气活塞分别安装在贮气瓶的两个端口。
3. 将贮气瓶置于室温下,等待气体温度稳定。
4. 打开进气活塞,将气体压力传感器探头伸入贮气瓶内,调整进气速度,使气体充满贮气瓶。
5. 关闭进气活塞,记录气体压强P0和温度T0。
6. 等待一段时间,使气体温度稳定。
7. 突然打开放气活塞,使气体与大气相通,迅速关闭放气活塞。
8. 观察气体温度变化,记录气体温度达到T1时对应的压强P1。
9. 重复实验步骤4-8,至少进行三次实验,取平均值。
五、数据处理与结果分析1. 根据实验数据,计算空气的比热容比γ。
2. 分析实验误差来源,如仪器精度、操作误差等。
3. 将实验结果与理论值进行比较,分析实验误差。
六、实验结果与讨论1. 实验结果:通过实验,得到空气的比热容比γ为1.40,与理论值1.4接近。
空气比热容比的测定实验报告
一、实验目的1. 通过实验测定室温下空气的比热容比。
2. 深入理解理想气体在绝热膨胀过程中的热力学规律。
3. 掌握气体压力传感器和电流型集成温度传感器的原理及使用方法。
二、实验原理空气的比热容比(γ)是指空气的定压比热容(Cp)与定容比热容(Cv)的比值,即γ = Cp / Cv。
对于理想气体,根据热力学定律,有γ = (Cp - Cv) / Cv。
本实验通过测量气体在绝热膨胀过程中的压强和温度变化,计算出空气的比热容比。
三、实验器材1. 储气瓶一套2. 气体压力传感器3. 电流型集成温度传感器4. 测空气压强的三位半数字电压表5. 测空气温度的四位半数字电压表6. 连接电缆及电阻7. 打气球8. 计时器四、实验步骤1. 将储气瓶充满与周围空气同压强同温度的气体,关闭活塞C2。
2. 将打气球连接到充气活塞C1,向储气瓶内充入一定量的气体,使瓶内压强增大,温度升高。
3. 关闭充气活塞C1,等待瓶内气体温度稳定,达到与周围温度平衡。
4. 迅速打开放气阀门C2,使瓶内空气与周围大气相通,瓶内气体做绝热膨胀。
5. 使用气体压力传感器和电流型集成温度传感器实时测量瓶内气体的压强和温度变化。
6. 记录气体膨胀过程中的关键数据,如初始压强P0、初始温度T0、膨胀后压强P1、膨胀后温度T1等。
五、实验结果及数据处理1. 根据实验数据,绘制气体膨胀过程中的压强-温度图。
2. 利用理想气体状态方程 P0V0 = P1V1 和理想气体绝热方程P0^γ = P1^γ,求解空气的比热容比γ。
3. 对实验数据进行误差分析,包括系统误差和随机误差。
六、实验结果分析1. 通过实验,测量得到室温下空气的比热容比γ ≈ 1.4。
2. 分析实验结果,发现实验值与理论值基本吻合,说明本实验方法可靠。
3. 通过实验,加深了对理想气体绝热膨胀过程中热力学规律的理解。
七、实验总结1. 本实验通过测定室温下空气的比热容比,验证了理想气体绝热膨胀过程中的热力学规律。
大学物理实验空气比热容比的测定实验报告
空气比热容比的测定实验报告一.实验目的1.了解空气比热容比的概念;2.用FB212型气体比热容比测定仪测定空气的比热容比值。
二.仪器与用具FB212型气体比热容比测定仪 三、 实验原理实验基本原理如下图所示,振动物体小球A 直径比玻璃管B 直径仅小0.01~0.02mm 。
它能在此精密的玻璃管中上下移动,在瓶子的壁上有一小口,并插入一根细管,通过它各种气体可以注入到玻璃瓶中。
钢球A 的质量为m ,半径为r (直径为d ),当瓶子内压力P 满足下面条件时,钢球A 处于力平衡状态,这时2r mgP P L π+=,式中L P 为大气压力。
若物体偏离平衡位置一个较小距离x ,则容器内的压力变化dP ,物体的运动方程为dP r dtxd m 222π= (1) 物体振动非常快,可看作绝热过程,满足绝热方程常数=γPV (2)将(2)式求导,,P 2x r dV VdVP d πγ=-=并代入方程(1)得: 04222=+x mV P r dt x d γπ (3)此即是小球作简谐振动的运动方程,振动角频率为TmVP r πγπω242==由此得424264Pr 4PdT mVT mV ==γ (4) 式中各量均可方便测得,因而可算出γ值。
空气是许多气体的混合,一般说其中99%以上是双原子气体氮和氧,因此经典理论得出空气的γ值接近1.40。
.振动周期采用可预置测量次数的数字计时仪,采用重复多次测量。
振动物体直径螺旋测微计测出,质量用物理天平称量,玻璃瓶容积大气压力由实验室给出。
四.实验内容 1.实验仪器的调整(1)将气泵、储气瓶用橡皮管连接好,装有钢球的玻璃管插入球形储气瓶。
将光电接收装置利用方形连接块固定在立杆上,固定位置于空心玻璃管小孔附近。
(2)调节底板上三个水平调节螺钉,使底板处于水平状态。
(3)接通气泵电源,缓慢调节气泵上的调节螺旋,数分钟后,待储气瓶内注入一定压力的气体后,玻璃管中的钢球离开弹簧,向管子上方移动,此时应调节好进气的大小,使钢球在玻璃管中以小孔为中心上下振动。
大学物理空气比热容的测量实验分析报告
大学物理空气比热容的测量实验报告————————————————————————————————作者:————————————————————————————————日期:大物实验报告撰写模板2空气比热容比的测定在热学中比热容比是一个基本物理量。
过去,由于实验测量手段的原因使得对它的测量误差较大。
现在通过先进的传感器技术使得测量便得简单而准确。
本实验通过压力传感器和温度传感器来测量空气的比热容比。
一、实验目的1. 用绝热膨胀法测定空气的比热容。
2. 观察热力学过程中状态变化及基本物理规律。
3. 学习气体压力传感器和电流型集成温度传感器的原理及使用方法。
二、实验原理理想气体定压摩尔热容量和定体摩尔热容量之间的关系由下式表示R C C v p =- (4-6-1)其中, R 为普适气体常数。
气体的比热容比γ定义为vp C C =γ(4-6-2)气体的比热容比也称气体的绝热系数,它是一个重要的物理量,其值经常出现在热力学方程中。
测量仪器如图4-6-1所示。
1为进气活塞C 1,2 为放气活塞C 2,3为电流型集成温度传感器,4为气体压力传感器探头。
实验时先关闭活塞C 2,将原处于环境大气压强为P 0、室温为T 0的空气经活塞C 1送入贮气瓶B 内,这时瓶内空气压强增大,温度升高。
关闭活塞C 1,待瓶内空气稳定后,瓶内空气达到状态Ⅰ(101,,V T P ),V 1为贮气瓶容积。
然后突然打开阀门C 2,使瓶内空气与周围大气相通,到达状态Ⅱ(),,220V T P 后,迅速关闭活塞C 2。
由于放气过程很短,可认为气体经历了一个绝热膨胀过程,瓶内气体压强减小,温度降低。
绝热膨胀过程应满足下述方程γγ2011V P V P = (4-6-3)在关闭活塞C 2之后,贮气瓶内气体温度将升高,当升到温度T 0时,原气体的状态为Ⅰ(101,,V T P )改变为状态Ⅲ(202,,V T P ),两个状态应满足如下关系:2211V P V P =(4-6-4)由(4-6-3)式和(4-6-4)式,可得)lg /(lg )lg (lg 1210P P P P --=γ(4-6-5)利用(4-6-5)式可以通过测量P 0、P 1和P 2值,求得空气的比热容比γ值。
大学物理空气比热容的测量实验报告
大物实验报告撰写模板2空气比热容比的测定在热学中比热容比是一个基本物理量。
过去,由于实验测量手段的原因使得对它的测量误差较大。
现在通过先进的传感器技术使得测量便得简单而准确。
本实验通过压力传感器和温度传感器来测量空气的比热容比。
一、实验目的1. 用绝热膨胀法测定空气的比热容。
2. 观察热力学过程中状态变化及基本物理规律。
3. 学习气体压力传感器和电流型集成温度传感器的原理及使用方法。
二、实验原理理想气体定压摩尔热容量和定体摩尔热容量之间的关系由下式表示R C C v p =- (4-6-1)其中, R 为普适气体常数。
气体的比热容比γ定义为vp C C =γ(4-6-2)气体的比热容比也称气体的绝热系数,它是一个重要的物理量,其值经常出现在热力学方程中。
测量仪器如图4-6-1所示。
1为进气活塞C 1,2 为放气活塞C 2,3为电流型集成温度传感器,4为气体压力传感器探头。
实验时先关闭活塞C 2,将原处于环境大气压强为P 0、室温为T 0的空气经活塞C 1送入贮气瓶B 内,这时瓶内空气压强增大,温度升高。
关闭活塞C 1,待瓶内空气稳定后,瓶内空气达到状态Ⅰ(101,,V T P ),V 1为贮气瓶容积。
然后突然打开阀门C 2,使瓶内空气与周围大气相通,到达状态Ⅱ(),,220V T P 后,迅速关闭活塞C 2。
由于放气过程很短,可认为气体经历了一个绝热膨胀过程,瓶内气体压强减小,温度降低。
绝热膨胀过程应满足下述方程γγ2011V P V P =(4-6-3)在关闭活塞C 2之后,贮气瓶内气体温度将升高,当升到温度T 0时,原气体的状态为Ⅰ(101,,V T P )改变为状态Ⅲ(202,,V T P ),两个状态应满足如下关系:2211V P V P =(4-6-4)由(4-6-3)式和(4-6-4)式,可得)lg /(lg )lg (lg 1210P P P P --=γ (4-6-5)利用(4-6-5)式可以通过测量P 0、P 1和P 2值,求得空气的比热容比γ值。
物理实验报告空气比热
一、实验目的1. 理解空气比热容的概念,掌握测量空气比热容的方法。
2. 通过实验,加深对热力学基本定律的理解。
3. 培养实验操作能力和数据处理能力。
二、实验原理空气比热容是指单位质量空气在温度变化1℃时所吸收或放出的热量。
本实验采用绝热膨胀法测量空气比热容,其原理如下:在绝热膨胀过程中,气体对外界不做功,根据热力学第一定律,气体的内能变化等于吸收的热量。
假设气体为理想气体,其内能仅与温度有关,则内能变化可以表示为:ΔU = nCvΔT其中,ΔU为内能变化,n为气体物质的量,Cv为气体的定容比热容,ΔT为温度变化。
在绝热膨胀过程中,气体体积增大,压强降低,根据理想气体状态方程:PV = nRT其中,P为压强,V为体积,R为气体普适常数,T为温度。
由于绝热膨胀过程,气体对外界不做功,根据热力学第一定律,吸收的热量等于内能变化:Q = ΔU将上述两个公式联立,可得:Q = nCvΔT = nCpΔT其中,Cp为气体的定压比热容。
因此,空气比热容可以表示为:Cp = Cv / (1 - γ)其中,γ为气体的绝热指数。
三、实验仪器与设备1. 空气比热容测量装置:包括绝热容器、温度传感器、压力传感器、数据采集器等。
2. 计时器。
3. 计算器。
四、实验步骤1. 将空气比热容测量装置安装调试完毕,确保各部件工作正常。
2. 将温度传感器和压力传感器分别插入绝热容器内的气体进出口,连接数据采集器。
3. 在绝热容器内加入一定量的空气,确保气体充满容器。
4. 开启计时器,打开阀门,使气体从绝热容器内膨胀到大气压强,记录膨胀过程中的温度和压力数据。
5. 关闭阀门,等待气体温度稳定,记录稳定后的温度和压力数据。
6. 重复步骤4和5,记录多组膨胀和稳定过程中的温度和压力数据。
7. 将实验数据输入计算机,进行数据处理和分析。
五、实验结果与分析1. 计算各次实验的定压比热容Cp。
2. 计算平均定压比热容。
3. 分析实验误差来源,如仪器精度、环境温度变化等。
空气比热容比的测量实验报告
空气比热容比的测量实验报告在我们进行空气比热容比的测量实验时,首先得搞清楚什么是比热容。
简单来说,比热容是物质吸收或释放热量的能力。
就空气而言,这个数值可不仅仅是个冷冰冰的数字,它关乎我们生活的方方面面,像是天气变化、气候调节等等。
想想吧,当你在炎热的夏天里大口喘气,正是空气的比热容在调节你的体感温度。
实验准备阶段,我们需要一些设备。
热水器、温度计和一个大容器,像个大桶子,里面装满水。
想象一下,水的温度从热烫的变得温暖如春,空气在其中悄悄地参与着。
温度计记录着变化,空气的角色就像在表演一场默剧,虽不显山露水,却扮演着重要的角色。
接下来,开始加热水,观察温度的变化。
温度上升的时候,空气也在悄悄吸收热量。
就像你在寒冷的冬天,穿上厚厚的外套,温暖是逐渐渗透的。
每一次的升温都让人心里涌起一股期待。
究竟这次测量能给我们带来什么样的惊喜呢?实验过程中,记录数据是至关重要的。
每一度温度的变化,每一秒的时间,都不容忽视。
就像细水长流,点滴积累,才能形成波澜壮阔的成果。
空气的比热容在这个过程中显露无疑,数据图表逐渐丰满,像是描绘出一幅美丽的画卷。
我们时而惊呼,时而沉思,空气的魅力正慢慢展现。
在测量结果中,我们发现空气的比热容比其他物质要小,这意味着它在温度变化时,热量吸收得并不多。
这一发现让人恍若穿越到科学的殿堂,深入思考,究竟这对我们的生活有何影响?比如说,在炎热的夏季,空气的冷却速度慢,正是这项特性让我们感受到一丝丝凉意。
最后,实验结果的分析是不可或缺的。
我们将数据进行整理,找出规律。
比热容的具体数值、计算公式、甚至误差分析,全部一一列出。
这一刻,所有的努力似乎都得到了回报,数据背后蕴含的知识让人倍感充实。
通过这次实验,我们不仅仅测量了空气的比热容,更深入地理解了自然界的奥妙。
总的来说,这次实验不止是对空气比热容的测量,它是一次探索之旅。
每一次的温度变化,每一次的记录,都是在为科学的天空增添一抹亮丽的色彩。
空气在我们的生活中无处不在,而它的比热容则是这幅画卷中不可或缺的部分。
空气比热容比的测量
南昌大学物理实验报告
课程名称:普通物理实验(2)
实验名称:空气比热容比的测量
学院:理学院专业班级:应用物理学152班学生姓名:学号:
实验地点:理生楼B615 座位号:23 实验时间:第七周星期五下午16点开始
,瓶内充满与周围空气同温同压得气体。
向瓶内打气,充入一定量的气体,然后关闭进气活塞1。
此时瓶内空气被压缩,压强增大,温度升高。
等待内部气体温度稳定,即可达到与周围温度平衡,此时气体处于状态I(p,V,T)。
,然后用调零电位器调节零点,把三位半数字电压表示值调。
打开进气活塞,用充气球5向瓶内打气,使瓶内
待瓶中气体温度降到与室温相同且压强稳定时。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大物实验报告撰写模板2空气比热容比的测定在热学中比热容比是一个基本物理量。
过去,由于实验测量手段的原因使得对它的测量误差较大。
现在通过先进的传感器技术使得测量便得简单而准确。
本实验通过压力传感器和温度传感器来测量空气的比热容比。
一、实验目的1. 用绝热膨胀法测定空气的比热容。
2. 观察热力学过程中状态变化及基本物理规律。
3. 学习气体压力传感器和电流型集成温度传感器的原理及使用方法。
二、实验原理理想气体定压摩尔热容量和定体摩尔热容量之间的关系由下式表示R C C v p =- (4-6-1)其中, R 为普适气体常数。
气体的比热容比γ定义为vp C C =γ(4-6-2)气体的比热容比也称气体的绝热系数,它是一个重要的物理量,其值经常出现在热力学方程中。
测量仪器如图4-6-1所示。
1为进气活塞C 1,2 为放气活塞C 2,3为电流型集成温度传感器,4为气体压力传感器探头。
实验时先关闭活塞C 2,将原处于环境大气压强为P 0、室温为T 0的空气经活塞C 1送入贮气瓶B 内,这时瓶内空气压强增大,温度升高。
关闭活塞C 1,待瓶内空气稳定后,瓶内空气达到状态Ⅰ(101,,V T P ),V 1为贮气瓶容积。
然后突然打开阀门C 2,使瓶内空气与周围大气相通,到达状态Ⅱ(),,220V T P 后,迅速关闭活塞C 2。
由于放气过程很短,可认为气体经历了一个绝热膨胀过程,瓶内气体压强减小,温度降低。
绝热膨胀过程应满足下述方程γγ2011V P V P =(4-6-3)在关闭活塞C 2之后,贮气瓶内气体温度将升高,当升到温度T 0时,原气体的状态为Ⅰ(101,,V T P )改变为状态Ⅲ(202,,V T P ),两个状态应满足如下关系:2211V P V P =(4-6-4)由(4-6-3)式和(4-6-4)式,可得)lg /(lg )lg (lg 1210P P P P --=γ (4-6-5)利用(4-6-5)式可以通过测量P 0、P 1和P 2值,求得空气的比热容比γ值。
图4-6-1 测量仪器示意图 图4-6-2 系统连接图三、实验仪器NCD-I 型空气比热容比测量仪由如下几个部分组成:贮气瓶(由玻璃瓶、进气活塞、橡皮塞组成)、两只传感器(扩散硅压力传感器和电流型集成温度传感器AD590各一只)、测空气压强的三位半数字电压表、测空气温度的四位半数字电压表。
测空气压强的数字电压表用于测量超过环境气压的那部分压强,测量范围0~10000Pa ,灵敏度为20mv/Kpa (表示1000Pa 的压强变化将产生20mv 的电压变化,或者50Pa/mv ,单位电压变化对应50Pa 的压强变化)。
实验时,贮气瓶内空气压强变化范围为6000Pa 。
图4-6-1实验装置中,温度传感器3是新型半导体温度传感器,其测量灵敏度高,线性好,测温范围为-50~150℃,接6V 直流电源后组成一个稳流源。
它的测温灵敏度单位为1μA/℃,若串接5K Ω电阻后,可产生5mv/℃的信号电压,接0~2V 量程四位半数字电压表,可检测到最小0.02℃温度变化。
气体压力传感器探头4由同轴电缆线输出信号,与仪器内的放大器及三位半数字电压表相接。
当待测气体压强为环境大气压P 0时,数字电压表显示为0,当待测气体压强为P 0+10000Pa 时,数字电压表显示为200mv ,仪器测量气体压强灵敏度为20mv/ 1000Pa 。
四、实验步骤1. 按图4-6-2接好仪器的电路,注意AD590的正负极不要接错。
用Forton 式气压计测定大气压强P 0,用水银温度计测量环境温度。
开启电源,将电子仪器部分预热20分钟,然后用调零电位器调节零点,把三位半数字电压表示值调到0。
2. 将活塞C 2关闭,活塞C 1打开,用打气球把空气稳定地徐徐进入贮气瓶B 内,用压力传感器和AD590温度传感器测量空气的压强和温度,记录瓶内压强均匀稳定时压强P 1和温度T 0(室温为T 0)(P 1取值范围控制在130mV~150mV 之间。
由于仪器只显示大于大气压强的部分,实际计算时式(4-6-5)中的压强P 1应加上周围大气压强值)。
3. 突然打开活塞C2,当贮气瓶的空气压强降低至环境大气压强P0时(这时放气声消失),迅速关闭活塞C2.4. 当贮气瓶内空气的温度上升至室温T0时,记下贮气瓶内气体的压强P2(由于仪器只显示大于大气压强的部分,实际计算时式(4-6-5)中的压强P2应加上周围大气压强值)。
5. 用公式(4-6-5)进行计算,求得空气比热容比值。
五、注意事项1. 在实验步骤3打开活塞C2放气时,当听到放气声结束应迅速关闭活塞,提早或推迟关闭活塞C2,都将影响实验结果,引入误差。
2. 实验要求环境温度基本不变,如发现环境温度不断下降,可在远离实验仪器处适当加温,以保证实验正常进行。
六、数据记录与处理1.参考表4-6-1记录实验数据。
2.计算空气比热容比的平均值和标准偏差,给出测量结果。
表4-6-1 数据纪录参考用表七、思考题1.打开活塞C2放气时, 提早或推迟关闭如何影响测量结果?2.环境温度的逐渐升高或下降会对实验结果产生什么影响?实验4-7 万用表和惠斯登电桥的使用万用表即万用电表,它是电学最常用的一种测量仪器,它不仅可以测量交流和直流电压,还可以测量直流电流和电阻,一表多能,掌握万用表的使用方法是电学实验的基本要求之一。
电桥也是一种常用的电学测量仪器,其原理是比较法,因而具有灵敏度高和使用方便的特点。
利用电桥不仅可以测量电阻、电容和电感等电学量,还可以将温度、压力等非电量以电量的形式测量出来,因此应用十分广泛。
在各种电桥中,惠斯登电桥是一种最基本的电桥,本实验以惠斯登电桥为基础,采用交换法和代替法精密测量电阻,同时学习万用表的使用方法。
一、实验目的1. 掌握万用表的正确使用方法。
2. 掌握惠斯登电桥的原理和测量方法。
3. 了解代替法和交换法的测量原理。
二、实验仪器标准电阻箱两个、滑线变阻器两个、电流表、灵敏度达到10-9A 的数字式检流计、数字式万用表、直流稳压电源。
三、实验原理万用表的原理和使用方法见第二章的相关章节.惠斯登电桥的原理如图4-7-1所示,它是由四个电阻R 1、R 2、R 0和R x 连接而成的四边形,每一边称为电桥的一个桥臂,四边形的两个AB 、CD 对角分别与电源E 和电流表G 相连。
所谓桥的意思是指电流表G 跨接CD ,其作用是将桥的两个端点C 和D 的电位进行比较。
当C 、D 的电位相等时称为电桥平衡,此时,电流表G 中无电流通过。
图4-7-1 惠斯登电桥示意图 图4-7-2 实际电桥测量回路示意图本实验的两臂R 1、R 2由滑线变阻器H 1以滑动头为分界点的两边电阻构成,R x 、R 0分别代表未知电阻和标准电阻箱的标称阻值。
为了限制电路的电流,电源要通过另一个滑线变阻器H 2再与电桥相连。
当电阻箱的阻值R 0为一定时,通过滑动H 1的滑动头使电桥平衡,这时电路满足如下关系D B CB AD AC U U U U ==,(4-7-1)根据欧姆定律可得220011,,,R I U R I U R I U R I U D B CB AD x x AC ====(4-7-2)将(4-7-2)式各式代入(4-7-1)式得:220011,R I R I R I R I x x ==(4-7-3)比较上面两式并考虑电桥平衡时,210,I I I I x ==,得021R R R R x = (4-7-4)由式(4-7-4)可知,如果知道R 1、R 2和R 0的阻值,未知电阻R x 便可计算出来。
由于R 1、R 2阻值的精确性影响未知电阻阻值的精确性,本实验不是直接将R 1、R 2、R 0的阻值代入式(4-7-4)计算未知电阻R x ,而是采用代替法和交换法获得未知电阻的阻值,这样可以不考虑R 1、R 2阻值的精确性对未知电阻阻值的影响,也可以避免测量电路的系统误差对未知电阻阻值的影响。
1.代替法在上述电桥平衡的基础上,如果移去未知电阻R x ,而用另一个阻值可调的电阻箱R d 代替未知电阻,改变电阻箱R d 的阻值而其他部分保持不变,当电桥重新恢复到平衡状态时,电路满足如下关系021R R R R d =(4-7-5 )由于R 1、R 2、R x 不变,所以R d = R x ,即电阻箱R d 此时的读数等于未知电阻的阻值,这种方法即为代替法.2.交换法在电桥平衡的基础上,如果交换未知电阻R x 和已知电阻R 0,这时电路将不平衡。
保持其他部分不变而仅仅改变R 0的阻值,使电路重新恢复平衡状态。
如果这时电阻箱的阻值变为R 02.则电路满足如下关系x R R R R 2102= (4-7-6 )由于R 1、R 2、R x 不变,比较(4-7-4)和(4-7-6)式,得 020R R R x =(4-7-7)其中0R 为第一次电路平衡时的电阻箱的阻值,02R 为第二次电路平衡时的电阻箱的阻值,这种方法即为交换法。
四、实验步骤与数据记录1.数字式万用表的使用(1)将万用表档位拨到欧姆档。
根据电阻的标称值,确定适当的档位(电阻值的数量级),测量电阻R x 的阻值。
(2)将测量结果记录在表4-7-1。
2.惠斯登电桥的使用(1)分别设定已知电阻箱的阻值为100Ω、150Ω、200Ω、250Ω、300Ω,按代替法的原理测量未知电阻的5个值,将测量结果记录在表4-6-1中,求出未知电阻的平均值和标准差。
注意有效数字的运算规则。
(2)分别设定已知电阻箱的阻值为100Ω、150Ω、200Ω、250Ω、300Ω,按交换法的原理计算未知电阻的5个值,将测量结果记录在表4-7-2中。
求出未知电阻的平均值和标准差,注意有效数字的运算规则。
表4-7-1 代替法测量数据Ω=____________xR ;_______%100||=⨯∆=xx R R E ; 表4-7-2 交换法测量数据Ω=____________x R ;_______%100||=⨯∆=xx R R E五、思考题1.电桥法测量电阻的原理是什么?2.调节电桥平衡时,假如发现电桥根本找不到平衡,可能原因是什么?3.影响电桥灵敏度有那些因素,什么措施可以提高电桥灵敏度?空气比热容比的测量一、 实验目的:测量室温下的空气比热容比;学习用绝热膨胀法测定空气的比热容比;观测热力学过程中状态变化及基本物理规律。
三、实验器材:储气瓶一套(包括玻璃瓶、活塞两只、橡皮塞、打气球)、两只传感器(扩散硅压力传感器和电流型集成温度传感器AD590各一只)、测空气压强的三位半数字电压表、测空气温度的四位半数字电压表、连接电缆及电阻。
四、实验原理:遵循两条基本原则:其一是保持系统为孤立系统;其二是测量一个系统的状态参量时,应保证系统处于平衡态。