罐头杀菌时间的计算(重要和难点)

合集下载

罐头杀菌时间的计算(重点和难点)

罐头杀菌时间的计算(重点和难点)

第四章 罐头杀菌时间的计算(重点和难点)先看杀菌锅及操作过程,这是一台立式杀菌锅,拧开柄型螺母,打开锅盖,将装满罐头的杀菌栏吊入锅中,拧紧柄型螺母,开始供应蒸汽。

经过三个阶段:首先经过升温阶段、时间为τ1,达到预定杀菌温度t ;再经过恒温杀菌阶段、时间为τ2;最后进行降温冷却阶段、时间为τ3;对于高温杀菌的罐头,有的需要通入压缩空气反压冷却P 。

以上参数时间、温度、反压即为杀菌的工艺条件。

第一节 罐头杀菌条件的表示方法2040608010012001020304050通常排列成公式的形式,因此也叫杀菌公式,也叫杀菌规程。

τ1—τ2—τ3Pt不是加减乘除的关系。

τ1升温时间min , τ2恒温杀菌时间min ,τ3降温时间min ,t 杀菌(锅)温度℃ 、注意不是指罐头的中心温度。

P 冷却时的反压0.12—0.13MPa 。

τ1一般10 min 左右,τ3一般10min —20min ,快一些为好,即快速升温和快速降温,有利于食品的色香味形、营养价值。

但有时受到条件的限制,如锅炉蒸汽压力不足、延长升温时间;冷却时罐头易胖听、破损等,不允许过快。

目前的主要任务就是要确定τ2、t,最麻烦就是要确定τ2,要求杀菌公式在防止腐败的前提下尽量缩短杀菌时间。

既能防止腐败,又能尽量保护品质。

下面是现有成熟的杀菌公式:午餐肉:10 min—60 min—10 min /121℃,反压力0.12MPa。

蘑菇罐头:10 min—30 min—10 min /121℃图2-6-4立式高压蒸汽杀菌锅1蒸汽管 2水管 3排水管 4溢流管 5排气阀6安全阀 7压缩空气管 8温度计9压力表 10温度记录控制仪桔子罐头:5 min—15 min—5 min /100℃第二节罐头杀菌条件的确定(难点和重点)首先了解几个概念。

1、实际杀菌F值:指某一杀菌条件下的总的杀菌效果。

实际杀菌F值:把不同温度下的杀菌时间折算成121℃的杀菌时间,相当于121℃的杀菌时间,用F实表示。

关于食品杀菌的F值

关于食品杀菌的F值

罐藏食品杀菌F值的探讨摘要:罐藏食品杀菌F值是《食品保藏原理》的重点和难点,尤其对肉类等食品杀菌更为重要。

本文针对该内容出现的新知识点多、不易理解、难于应用的实际情况,提出了杀菌时间折算系数等新的理解概念,对应首次设计了一些关键例题,对实际杀菌F值、安全杀菌F值的理解和计算进行了新的论述,对D值、Z值的理解和应用进行了具体实用的阐释,旨在为相关人员进一步掌握杀菌理论提供参考。

关键词:罐头,杀菌,F值, D值,Z值一、实际杀菌F值指某一杀菌条件下的总的杀菌效果。

通常是把不同温度下的杀菌时间折算成121℃的杀菌时间,即相当于121℃的杀菌时间,用F实表示。

特别注意:它不是指工人实际操作所花时间,它是一个理论上折算过的时间。

为了帮助大家理解和记忆,请看下面的例题。

例:蘑菇罐头110℃杀菌10 min,115℃杀菌20 min,121℃杀菌30 min。

工人实际杀菌操作时间等于(或大于)60 min,实际杀菌F值并不等于60 min。

F实=10×L1+20×L2+30×L3,L我们把它理解为不同温度下的时间折算系数。

L1 肯定小于L2,二者均小于1。

由于121℃就不存在折算问题,因此, L3就是1,F实肯定小于60min。

由此可见,实际杀菌F值不是工厂杀菌过程的总时间之和。

再例:蘑菇罐头100℃杀菌90分钟,120℃杀菌10分钟,哪个杀菌强度大?折算成相当于121℃的杀菌时间,再比较!即:90×L100和10×L120比较,只要找到折算系数就好比较了。

二、安全杀菌F值在某一恒定温度(12l℃)下杀灭一定数量的微生物或者芽孢所需的加热时间。

它被作为判别某一杀菌条件合理性的标准值,也称标准F值,用F安表示。

F安表示满足罐头腐败率要求所需的杀菌时间(121℃),例如,某罐头F安=30 min,通常表示罐头要求在121℃杀菌30min。

每种罐头要求的标准杀菌时间(通常121℃为标准温度),就象其它食品标准一样,拿来作为参照,判断是否合格、是否满足要求。

罐头杀菌时间的计算(重要和难点)

罐头杀菌时间的计算(重要和难点)

第四章罐头杀菌时间的计算(重点和难点)先看杀菌锅及操作过程,这是一台立式杀菌锅,拧开柄型螺母,打开锅盖,将装满罐头的杀菌栏吊入锅中,拧紧柄型螺母,开始供应蒸汽。

经过三个阶段:首先经过升温阶段、时间为T1,达到预定杀菌温度t ;再经过恒温杀菌阶段、时间为T2;最后进行降温冷却阶段、时间为T3;对于高温杀菌的罐头,有的需要通入压缩空气反压冷却P。

以上参数时间、温度、反压即为杀菌的工艺条件。

第一节罐头杀菌条件的表示方法通常排列成公式的形式,因此也叫杀菌公式,也叫杀菌规程1——T2——T3~~tP不是加减乘除的关系。

T升温时间min,T恒温杀菌时间min ,T降温时间min,t杀菌(锅)温度C、注意不是指罐头的中心温度。

P冷却时的反压0.12 —0.13MPa o T I一般10 min 左右,T一般10min —20min,快一些为好,即快速升温和快速降温,有利于食品的色香味形、营养价值。

但有时受到条件的限制, 如锅炉蒸汽压力不足、延长升温时间;冷却时罐头易胖听、破损等,不允许过快。

目前的主要任务就是要确定T 2、t,最麻烦就是要确定T 2,要求杀菌公式在防止腐败的前提下尽量缩短杀菌时间。

既能防止腐败,又能尽量保护品质。

下面是现有成熟的杀菌公式:午餐肉:10 min —60 min —10 min /121 °C,反压力0.12MPa。

蘑菇罐头:10 min —30 min —10 min /121 C图2 —6-4立式高压蒸汽杀菌锅1蒸汽管2水管3排水管4溢流管5排气阀6安全阀7压缩空气管8温度计9压力表10温度记录控制仪桔子罐头:5 min —15 min — 5 min /100 C第二节罐头杀菌条件的确定(难点和重点)首先了解几个概念1、实际杀菌F值:指某一杀菌条件下的总的杀菌效果。

实际杀菌F值:把不同温度下的杀菌时间折算成121 C的杀菌时间,相当于121 r的杀菌时间,用F实表示。

罐头食品的热杀菌公式

罐头食品的热杀菌公式

罐头食品的热杀菌公式
罐头食品的热杀菌公式主要是指实现罐头食品的有效杀菌的一种特定加热方法———热处理公式.这一杀菌方法是根据食品中存在的不同类型有害微生物种类和数量、量而制定的,其目的是使得罐头食品得到充分的消毒,从而保证其质量及其安全性。

热处理公式(热杀菌公式)主要由处理时间和处理温度两部分组成,根据食品有害物质的种类、量及其耐受热量等的不同,热杀菌公式作出一定的调整,例如,有些食品的热处理公式要求增大热处理时间和温度,以便更彻底地消毒。

例如,罐头金针菇的热杀菌公式要求时间为45分钟,温度为105度;罐头苹果的热处理公式要求时间为30分钟,温度为100度;罐头小米的热处理公式要求时间为90分钟,温度为95度。

上述热杀菌公式的设定都是为了使锅内的食物达到适宜的杀菌效果,以保证食品的安全性,保证其好的质量。

有害的微生物在热处理的时候会被消灭,这样就能有效的减少食品中存在的有害物质,保证其食品安全及健康。

【精选】罐头杀菌时间的计算

【精选】罐头杀菌时间的计算

罐头杀菌时间的计算(重点和难点)先看杀菌锅及操作过程,这是一台立式杀菌锅,拧开柄型螺母,打开锅盖,将装满罐头的杀菌栏吊入锅中,拧紧柄型螺母,开始供应蒸汽。

经过三个阶段:首先经过升温阶段、时间为τ1,达到预定杀菌温度t ;再经过恒温杀菌阶段、时间为τ2;最后进行降温冷却阶段、时间为τ3;对于高温杀菌的罐头,有的需要通入压缩空气反压冷却P 。

以上参数时间、温度、反压即为杀菌的工艺条件。

第一节 罐头杀菌条件的表示方法2040608010012001020304050通常排列成公式的形式,因此也叫杀菌公式,也叫杀菌规程。

τ1—τ2—τ3Pt不是加减乘除的关系。

τ1升温时间min , τ2恒温杀菌时间min ,τ3降温时间min ,t 杀菌(锅)温度℃ 、注意不是指罐头的中心温度。

P 冷却时的反压0.12—0.13MPa 。

τ1一般10 min 左右,τ3一般10min —20min ,快一些为好,即快速升温和快速降温,有利于食品的色香味形、营养价值。

但有时受到条件的限制,如锅炉蒸汽压力不足、延长升温时间;冷却时罐头易胖听、破损等,不允许过快。

目前的主要任务就是要确定τ2、t ,最麻烦就是要确定τ2,要求杀菌公式在防止腐败的前提下尽量缩短杀菌时间。

既能防止腐败,又能尽量保护品质。

下面是现有成熟的杀菌公式:午餐肉:10 min —60 min —10 min /121℃,反压力0.12MPa 。

蘑菇罐头:10 min —30 min —10 min /121℃ 桔子罐头:5 min —15 min —5 min /100℃第二节罐头杀菌条件的确定(难点和重点)首先了解几个概念。

1、实际杀菌F值:指某一杀菌条件下的总的杀菌效果。

实际杀菌F值:把不同温度下的杀菌时间折算成121℃的杀菌时间,相当于121℃的杀菌时间,用F实表示。

特别注意:它不是指工人实际操作所花时间,它是一个理论上折算过的时间。

为了帮助同学们理解和记忆,请看我为大家设计的例题。

罐头食品的热杀菌公式

罐头食品的热杀菌公式

罐头食品的热杀菌公式
罐头食品的热杀菌公式是指在工业生产中,将食品装入罐中并封口后,通过加热将其中的微生物杀死,使食品长时间保持不变质的一种方法。

一般来说,罐头食品的热杀菌公式可以分为两种方法:高温短时间法和低温长时间法。

高温短时间法是指在较短的时间内将罐头食品加热到高温,使其中的微生物被杀死。

其公式为:F= t × log (N0/Nt),其中F为热杀菌值,t为加热时间,N0为开始时微生物数量,Nt为结束时微生物数量。

一般来说,高温短时间法的加热温度为121℃,加热时间为15-30分钟。

低温长时间法是指在较长的时间内将罐头食品加热到较低的温度,使其中的微生物被杀死。

其公式为:F= t × log [(N0/Nt) + 1]/2,其中F为热杀菌值,t为加热时间,N0为开始时微生物数量,Nt为结束时微生物数量。

一般来说,低温长时间法的加热温度为100℃,加热时间为60-90分钟。

罐头食品的热杀菌公式是食品工业中非常重要的一环,它可以保证罐头食品的卫生安全和长时间保存。

- 1 -。

食品罐头杀菌强度的研究和计算---文本资料

食品罐头杀菌强度的研究和计算---文本资料

一、微生物的耐热性(一)影响微生物耐热性的因素1、污染微生物的种类和数量。

(1)种类。

各种微生物的耐热性各有不同,一般而言,霉菌和酵母的耐热性都比较低,在50-60℃条件下就可以杀灭;而有一部分的细菌却很耐热,尤其是有些细菌可以在不适宜生长的条件下形成非常耐热的芽孢。

显然,食品在杀菌前,其中可能污染有各种各类的微生物。

微生物的种类及数量取决于原料的状况(来源及储运过程)、工厂的环境卫生、车间卫生、机器设备和工器具的卫生、生产操作工艺条件、操作人员个人卫生等因素。

(2)污染量。

微生物的耐热性,与一定容积中所存在的微生物的数量有关。

微生物量越多,全部杀灭所需的时间就越长。

2、热处理温度。

在微生物生长温度以上的温度,就可以导致微生物的死亡。

显然,微生物的种类不同,其最低热致死温度也不同。

对于规定种类、规定数量的微生物,选择了某一个温度后,微生物的死亡就取决于在这个温度下维持的时间。

3、罐内食品成分。

(1)pH值。

研究证明,许多高耐热性的微生物,在中性时的耐热性最强,随着pH 值偏离中性的程度越大,耐热性越低,也就意味着死亡率越大。

(2)脂肪。

脂肪含量高则细菌的耐热性会增强。

(3)糖。

糖的浓度越高,越难以杀死食品中的微生物。

(4)蛋白质。

食品中蛋白质含量在5%左右时,对微生物有保护作用。

(5)盐。

低浓度食盐对微生物有保护作用,而高浓度食盐则对微生物的抵抗力有削弱作用。

(6)植物杀菌素。

有些植物(如葱、姜、蒜、辣椒、萝卜、胡萝卜、番茄、芥末、丁香和胡椒等)的汁液以及它们分泌的挥发性物质对微生物有抑制或杀灭作用,这类物质就被称为植物杀菌素。

(二)对热杀菌食品的pH值分类大量试验证明,较高的酸度可以抑制乃至杀灭许多种类的嗜热菌或嗜温微生物;而在较酸的环境中还能存活或生长的微生物往往不耐热。

这样,就可以对不同pH值的食品物料采用不同强度的热杀菌处理,既可达到热杀菌的要求,又不致因过度加热而影响食品的质量。

各种书籍资料中对热处理食品按pH值分类的方法有多种不尽相同的方式,如分为高酸性(≤3.7)、酸性(>3.7-4.6)、中酸性(>4.6-5.0)和低酸性(>5.0)这四类,也有分为高酸性(<4.0)、酸性(4.0-4.6)和低酸性(>4.6)这三类的,还有其它一些划分法。

杀菌强度

杀菌强度

第四章 罐头杀菌时间的计算(重点和难点)先看杀菌锅及操作过程,这是一台立式杀菌锅,拧开柄型螺母,打开锅盖,将装满罐头的杀菌栏吊入锅中,拧紧柄型螺母,开始供应蒸汽。

经过三个阶段:首先经过升温阶段、时间为τ1,达到预定杀菌温度t ;再经过恒温杀菌阶段、时间为τ2;最后进行降温冷却阶段、时间为τ3;对于高温杀菌的罐头,有的需要通入压缩空气反压冷却P 。

以上参数时间、温度、反压即为杀菌的工艺条件。

第一节 罐头杀菌条件的表示方法2040608010012001020304050通常排列成公式的形式,因此也叫杀菌公式,也叫杀菌规程。

τ1—τ2—τ3Pt不是加减乘除的关系。

τ1升温时间min , τ2恒温杀菌时间min ,τ3降温时间min ,t 杀菌(锅)温度℃ 、注意不是指罐头的中心温度。

P 冷却时的反压0.12—0.13MPa 。

τ1一般10 min 左右,τ3一般10min —20min ,快一些为好,即快速升温和快速降温,有利于食品的色香味形、营养价值。

但有时受到条件的限制,如锅炉蒸汽压力不足、延长升温时间;冷却时罐头易胖听、破损等,不允许过快。

目前的主要任务就是要确定τ2、t ,最麻烦就是要确定τ2,要求杀菌公式在防止腐败的前提下尽量缩短杀菌时间。

既能防止腐败,又能尽量保护品质。

下面是现有成熟的杀菌公式:午餐肉:10 min —60 min —10 min /121℃,反压力0.12MPa 。

蘑菇罐头:10 min —30 min —10 min /121℃ 桔子罐头:5 min —15 min —5 min /100℃第二节罐头杀菌条件的确定(难点和重点)首先了解几个概念。

1、实际杀菌F值:指某一杀菌条件下的总的杀菌效果。

实际杀菌F值:把不同温度下的杀菌时间折算成121℃的杀菌时间,相当于121℃的杀菌时间,用F实表示。

特别注意:它不是指工人实际操作所花时间,它是一个理论上折算过的时间。

为了帮助同学们理解和记忆,请看我为大家设计的例题。

罐头热力杀菌原理及杀菌公式的确定

罐头热力杀菌原理及杀菌公式的确定

影响传热速度的因素
罐头食品的传热方式由食品的性质决定,影响罐头 食品传热速度的因素很多,如食品的形状、大小、 密度、粘稠度、内容物固液之比、食品的初温、容 器的材料(或热阻)的导热系数,容器的几何形状及 大小、罐内顶隙、罐内真空度、杀菌设备的型式(回 转式肯定比静目式传热效果好)、罐头在杀菌锅内的 位置,杀菌操作等等。
曲线时参考。测温时要记录初温,至少一分钟记录 一次罐内温度。
3、传热曲线
传热曲线是以测得的罐内冷点温度变化的数据画在半对数坐 标纸上所作的曲线,即以实际温度与加热或冷却温度之差的 对数值为纵坐标,时间为横坐标,为了避免在坐标轴上用温 差来表示,可将用于标出加热曲线的坐标纸上下倒转180度, 而对数坐标上最高线标出的温度应比加热温度低1℃,第一 个对数周期坐标为每格1℃,第二个对数周期为每格10℃, 这样依次标出其余温度值,这样对数轴就直接可作为所测温 度的标度,不用再标成杀菌温度和食品温度的差值,这样就 可按加热时间测得的罐内冷点温度直接在坐标纸上点出,将 各点連起来,但不得偏离各点0.56℃,这就画出了传热曲线 一般都呈一条直线。
罐头食品热力杀菌原理 及 杀菌工艺条件的确定
一、热力杀菌的原理
所谓热力杀菌就是把罐头食品加热到一定温度 并保持一段时间,使罐内不含有致病的微生物, 在正常室温条件下,贮藏和销售过程中,罐内 也不含有能繁殖的非致病性微生物,即达到商 业无菌要求,并尽可能地保持食品内容物原有 的风味、色泽、组织形态及营养成分。
1、传热方式:
(1)、传导:内容物在罐内处于不流动状态时,加热 和冷却过程中,由于受热的程度不同,在分子间相 互碰撞下,热量从高能量分子向邻近的低能量分子 依次传递的方式称作传导。简单地说加热时热量由 罐壁四周向罐中心传递,罐头中心是温度变化最缓 慢之点,即其冷点在几何中心,冷却则相反。罐内 食品呈固态、粘度或稠度高的食品如午餐肉罐头、 豆沙、枣泥、八宝饭罐头等均属于这一类。

(1)浅谈罐头杀菌实操技术

(1)浅谈罐头杀菌实操技术

(1)浅谈罐头杀菌实操技术虽然罐藏技术是⾷品保鲜技术中最有效的⽅法之⼀,并且⽬前市场上罐头⾷品也琳琅满⽬、种类繁多,但罐头产品有效杀菌的问题却是个棘⼿的事情,很让⾁制品⾏业内的技术⼈员束⼿⽆策。

因为很多⼈缺乏系统解决此类问题的⽅法,全凭⼀知半解的、不可靠的经验操作,产品安全得不到保障,同时给企业带来极⼤的质量风险,甚⾄造成⽆法弥补的损失,这种情况时有发⽣。

作者以多年的罐头杀菌经验和对罐头杀菌理论的理解,总结出⼀套⾏之有效的操作⽅法,很⽅便地解决了这些问题。

以下就罐头杀菌的⼀系列问题,从操作⾓度做⼀些通俗的阐释,以期抛砖引⽟,能给⼴⼤罐头⾏业客户⼀点帮助。

⼀、罐头的分类(以包装划分)罐头从包装形式上可分为:软包装和硬包装。

软包装品种很多,⽐如多层塑塑复合包装、多层塑铝复合包装、PVC肠⾐(或袋)包装、多层共挤塑料包装等。

硬包装分为⾦属罐和玻璃罐。

⾦属罐⼜分为铁罐和铝罐。

⼆、不同包装形式杀菌操作的特点及反压冷却注意事项不同包装形式的产品对杀菌的要求是不同的。

玻璃罐包装的产品最主要是防⽌产品在加热和冷却时,急速的温度变化造成玻璃瓶的破裂;软包装产品主要防⽌的是产品冷却时,压⼒的瞬间变化造成包装的撕裂;⾦属罐产品要防⽌低温时压⼒过⼤,造成产品瘪罐.1、软包装罐头的杀菌操作要点(关注压⼒变化)⑴杀菌开始:为避免产品变形,软包装产品达到90℃以上应有压⼒。

因此,为防⽌产品局部过热,⽆论汽杀菌,还是⽔杀菌,在加热前均应先加压再加热。

⼀般来说压⼒0.1atm(1atm=0.1Mpa)即可。

⑵杀菌压⼒:⼀般⽆需过⾼,控制在1.6-2.0atm为好。

⑶反压冷却:冷却开始前应先将压⼒提⾼0.3atm,这样便于降压缓冲,对防⽌包装袋破损、变形、产品出⽔尤为重要。

⼀定要在⾼于蒸煮压⼒下冷却,不允许在100℃以上冷却过程中出现压⼒低于蒸煮压⼒,特别是刚开始冷却的⼏秒钟时间。

产品冷却到40℃以下,⽅可放⽔出锅。

2、玻璃瓶罐头的杀菌操作要点(关注冷却⽔温度)玻璃瓶包装必须防⽌温度骤升、骤降,造成的破裂。

罐头食品的杀菌

罐头食品的杀菌
第三阶段:超高温瞬时杀菌(UHT):将牛奶加热至137℃,仅
保持4S便迅速降至常温,然后在无菌条件下,用六层纸铝塑复 合无菌材料灌装、封盒而成,可以长时间保存。
杀菌工艺条件得确定:
1、温度升高,微生物得死亡速率大大加快,需要得加 热时间相应大大缩短;
2、温度升高,酶得活性钝化速率大大加快,需要得加 热时间短;
解:已知:D121℃=4、0(min) a=425×2=850(个/罐) b=5/10000=5×10-4
根据式 F安=D121℃(lga – lgb) =4×(lg850-lg5×10-4) =4 ×(2、9294-0、699+4) = 24、92(min)
实际杀菌得F值计算 根据罐头得杀菌公式
总杀菌量(总杀菌效率值): A=A1+A2+…+An=∑Ai
A>1,杀菌强度太大,浪费能源,降低食品品质与设
备利用率;
A=1,杀菌强度刚好合适;
A<1,杀菌强度不足。
由A=1
合理得杀菌时间
图解法:
确定罐头得杀菌对象菌;
测定罐头得中心温度传热曲线
由热力致死时间曲线查定各致死时间,计算
致死率(1/τ);
10′-23′-10′ 121℃
时间(min) 0 3 6 9 12 15
罐内中心温度(℃) 47、9 84、5 104、7 119 120 121
致死率L 0 0
0、023 0、6309 0、784
1、0
时间(min) 18 21 24 27 30 33 36 39 42 45
罐内中心温度(℃) 121
导热传热型罐头食品、玻璃容器包装得罐头食品不适宜采 用高温短时杀菌工艺。
5、7罐头食品常用得杀菌方法

食品罐头杀菌强度的研究和计算

食品罐头杀菌强度的研究和计算

一、微生物的耐热性(一)影响微生物耐热性的因素1、污染微生物的种类和数量。

(1)种类。

各种微生物的耐热性各有不同,一般而言,霉菌和酵母的耐热性都比较低,在50-60℃条件下就可以杀灭;而有一部分的细菌却很耐热,尤其是有些细菌可以在不适宜生长的条件下形成非常耐热的芽孢。

显然,食品在杀菌前,其中可能污染有各种各类的微生物。

微生物的种类及数量取决于原料的状况(来源及储运过程)、工厂的环境卫生、车间卫生、机器设备和工器具的卫生、生产操作工艺条件、操作人员个人卫生等因素。

(2)污染量。

微生物的耐热性,与一定容积中所存在的微生物的数量有关。

微生物量越多,全部杀灭所需的时间就越长。

2、热处理温度。

在微生物生长温度以上的温度,就可以导致微生物的死亡。

显然,微生物的种类不同,其最低热致死温度也不同。

对于规定种类、规定数量的微生物,选择了某一个温度后,微生物的死亡就取决于在这个温度下维持的时间。

3、罐内食品成分。

(1)pH值。

研究证明,许多高耐热性的微生物,在中性时的耐热性最强,随着pH 值偏离中性的程度越大,耐热性越低,也就意味着死亡率越大。

(2)脂肪。

脂肪含量高则细菌的耐热性会增强。

(3)糖。

糖的浓度越高,越难以杀死食品中的微生物。

(4)蛋白质。

食品中蛋白质含量在5%左右时,对微生物有保护作用。

(5)盐。

低浓度食盐对微生物有保护作用,而高浓度食盐则对微生物的抵抗力有削弱作用。

(6)植物杀菌素。

有些植物(如葱、姜、蒜、辣椒、萝卜、胡萝卜、番茄、芥末、丁香和胡椒等)的汁液以及它们分泌的挥发性物质对微生物有抑制或杀灭作用,这类物质就被称为植物杀菌素。

(二)对热杀菌食品的pH值分类大量试验证明,较高的酸度可以抑制乃至杀灭许多种类的嗜热菌或嗜温微生物;而在较酸的环境中还能存活或生长的微生物往往不耐热。

这样,就可以对不同pH值的食品物料采用不同强度的热杀菌处理,既可达到热杀菌的要求,又不致因过度加热而影响食品的质量。

各种书籍资料中对热处理食品按pH值分类的方法有多种不尽相同的方式,如分为高酸性(≤3.7)、酸性(>3.7-4.6)、中酸性(>4.6-5.0)和低酸性(>5.0)这四类,也有分为高酸性(<4.0)、酸性(4.0-4.6)和低酸性(>4.6)这三类的,还有其它一些划分法。

罐头杀菌时间的计算

罐头杀菌时间的计算

罐头杀菌时间‎的计算(重点和难点)先看杀菌锅及‎操作过程,这是一台立式‎杀菌锅,拧开柄型螺母‎,打开锅盖,将装满罐头的‎杀菌栏吊入锅‎中,拧紧柄型螺母‎,开始供应蒸汽‎。

经过三个阶段‎:首先经过升温‎阶段、时间为τ1,达到预定杀菌‎温度t ;再经过恒温杀‎菌阶段、时间为τ2;最后进行降温‎冷却阶段、时间为τ3;对于高温杀菌‎的罐头,有的需要通入‎压缩空气反压‎冷却P 。

以上参数时间‎、温度、反压即为杀菌‎的工艺条件。

第一节 罐头杀菌条件‎的表示方法2040608010012001020304050通常排列成公‎式的形式,因此也叫杀菌‎公式,也叫杀菌规程‎。

τ1—τ2—τ3Pt不是加减乘除‎的关系。

τ1升温时间‎m in , τ2恒温杀菌‎时间min ,τ3降温时间‎m in ,t 杀菌(锅)温度℃ 、注意不是指罐‎头的中心温度‎。

P 冷却时的反‎压0.12—0.13MPa 。

τ1一般10‎ min 左右,τ3一般10‎m in —20min ,快一些为好,即快速升温和‎快速降温,有利于食品的‎色香味形、营养价值。

但有时受到条‎件的限制,如锅炉蒸汽压‎力不足、延长升温时间‎;冷却时罐头易‎胖听、破损等,不允许过快。

目前的主要任‎务就是要确定‎τ2、t ,最麻烦就是要‎确定τ2,要求杀菌公式‎在防止腐败的‎前提下尽量缩‎短杀菌时间。

既能防止腐败‎,又能尽量保护‎品质。

下面是现有成‎熟的杀菌公式‎:午餐肉:10 min —60 min —10 min /121℃,反压力0.12MPa 。

蘑菇罐头:10 min —30 min —10 min /121℃ 桔子罐头:5 min —15 min —5 min /100℃图2-6-4立式高压蒸‎汽杀菌锅1蒸汽管 2水管 3排水管 4溢流管 5排气阀6安全阀 7压缩空气管‎ 8温度计9压力表 10温度记录‎控制仪第二节罐头杀菌条件‎的确定(难点和重点)首先了解几个‎概念。

罐头杀菌时间的计算重点和难点

罐头杀菌时间的计算重点和难点

罐头杀菌时间的计算重点和难点SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#第四章罐头杀菌时间的计算(重点和难点)先看杀菌锅及操作过程,这是一台立式杀菌锅,拧开柄型螺母,打开锅盖,将装满罐头的杀菌栏吊入锅中,拧紧柄型螺母,开始供应蒸汽。

经过三个阶段:首先经过升温阶段、时间为τ1,达到预定杀菌温度t;再经过恒温杀菌阶段、时间为τ2;最后进行降温冷却阶段、时间为τ3;对于高温杀菌的罐头,有的需要通入压缩空气反压冷却P。

以上参数时间、温度、反压即为杀菌的工艺条件。

第一节罐头杀菌条件的表示方法通常排列成公式的形式,因此也叫杀菌公式,也叫杀菌规程。

τ1—τ2—τ3Pt不是加减乘除的关系。

τ1升温时间min,τ2恒温杀菌时间min,τ3降温时间min,t杀菌(锅)温度℃、注意不是指罐头的中心温度。

P冷却时的反压0.12—0.13MPa。

τ1一般10min左右,τ3一般10min—20min,快一些为好,即快速升温和快速降温,有利于食品的色香味形、营养价值。

但有时受到条件的限制,如锅炉蒸汽压力不足、延长升温时间;冷却时罐头易胖听、破损等,不允许过快。

目前的主要任务就是要确定τ2、t,最麻烦就是要确定τ2,要求杀菌公式在防止腐败的前提下尽量缩短杀菌时间。

既能防止腐败,又能尽量保护品质。

下面是现有成熟的杀菌公式:午餐肉:10min—60min—10min/121℃,反压力0.12MPa。

蘑菇罐头:10min—30min—10min/121℃桔子罐头:5min—15min—5min/100℃第二节罐头杀菌条件的确定(难点和重点)首先了解几个概念。

1、实际杀菌F值:指某一杀菌条件下的总的杀菌效果。

实际杀菌F值:把不同温度下的杀菌时间折算成121℃的杀菌时间,相当于121℃的杀菌时间,用F实表示。

特别注意:它不是指工人实际操作所花时间,它是一个理论上折算过的时间。

为了帮助同学们理解和记忆,请看我为大家设计的例题。

关于食品杀菌的F值

关于食品杀菌的F值

关于⾷品杀菌的F值罐藏⾷品杀菌F值的探讨摘要:罐藏⾷品杀菌F值是《⾷品保藏原理》的重点和难点,尤其对⾁类等⾷品杀菌更为重要。

本⽂针对该内容出现的新知识点多、不易理解、难于应⽤的实际情况,提出了杀菌时间折算系数等新的理解概念,对应⾸次设计了⼀些关键例题,对实际杀菌F值、安全杀菌F值的理解和计算进⾏了新的论述,对D值、Z值的理解和应⽤进⾏了具体实⽤的阐释,旨在为相关⼈员进⼀步掌握杀菌理论提供参考。

关键词:罐头,杀菌,F值, D值,Z值⼀、实际杀菌F值指某⼀杀菌条件下的总的杀菌效果。

通常是把不同温度下的杀菌时间折算成121℃的杀菌时间,即相当于121℃的杀菌时间,⽤F实表⽰。

特别注意:它不是指⼯⼈实际操作所花时间,它是⼀个理论上折算过的时间。

为了帮助⼤家理解和记忆,请看下⾯的例题。

例:蘑菇罐头110℃杀菌10 min,115℃杀菌20 min,121℃杀菌30 min。

⼯⼈实际杀菌操作时间等于(或⼤于)60 min,实际杀菌F值并不等于60 min。

F实=10×L1+20×L2+30×L3,L我们把它理解为不同温度下的时间折算系数。

L1 肯定⼩于L2,⼆者均⼩于1。

由于121℃就不存在折算问题,因此, L3就是1,F实肯定⼩于60min。

由此可见,实际杀菌F值不是⼯⼚杀菌过程的总时间之和。

再例:蘑菇罐头100℃杀菌90分钟,120℃杀菌10分钟,哪个杀菌强度⼤?折算成相当于121℃的杀菌时间,再⽐较!即:90×L100和10×L120⽐较,只要找到折算系数就好⽐较了。

⼆、安全杀菌F值在某⼀恒定温度(12l℃)下杀灭⼀定数量的微⽣物或者芽孢所需的加热时间。

它被作为判别某⼀杀菌条件合理性的标准值,也称标准F值,⽤F安表⽰。

F安表⽰满⾜罐头腐败率要求所需的杀菌时间(121℃),例如,某罐头F安=30 min,通常表⽰罐头要求在121℃杀菌30min。

每种罐头要求的标准杀菌时间(通常121℃为标准温度),就象其它⾷品标准⼀样,拿来作为参照,判断是否合格、是否满⾜要求。

罐头热力杀菌原理及杀菌公式的确定

罐头热力杀菌原理及杀菌公式的确定

冷却曲线
四、罐头杀菌值(F0)和杀菌时间的计算(鲍尔公式法)
杀菌时间的计算有比奇洛的基本推算法、鲍尔公式 计算法、列线图计算法等,而鲍尔公式计算法是 FDA认可的杀菌时间及F值的最简单实用的方法,它 根据罐头在杀菌过程中罐头内容物温度的变化,在 半对数坐标纸上画出的加热曲线和冷却的曲线,进 行推算杀菌时间和F值,它的优点是可以在杀菌温度 变更时计算出杀菌时间,但其缺点是计算较繁,费 时间。公式法计算基本步骤如下:
(5)、Z值 Z倍值变表化示时加相热对致应死的时加间热或温致度死(℃率)(的D值变)化按,照如110将某或一10
细菌芽孢的D值的对数为纵坐标,加热温度为横坐 标,画出的曲线(耐热曲线)上的斜率的负倒数就是Z
值,其定义就是热力致死时间和仿热力致死时间曲
线上横过一个对数循环时所需要的温度(℃)。Z值越
1、绘制加热曲线
由实测罐内冷点位置温度变化数据在半对数坐 标纸上绘制,并求得传热速率fh值和滞后因子j 值。如其传热曲线呈一条直线为简单型加热曲 线,如呈二条直线则为转折型加热曲线,除求 得fh值和j值外,还需求得fz、x和fc,为了进行 公式法计算,还必须有fi值表和f/u:log g图
杀菌F0值和杀菌时间计算
F值与D值的关系
F值与D值的关系可用F= nD 来表示,n数是不固定的, 随工厂卫生条件、食品污染微生物的种类及程度而变化, 一般用6D值来表示杀死嗜热性芽孢杆菌,用12D值杀死 肉毒梭状芽孢杆菌,以保证食品卫生性。F值与Z值
T 121
的关系可用F =t×10 Z 来表示。 式中t:在恒定致死温度T下的加热时间。
1、传热方式:
(1)、传导:内容物在罐内处于不流动状态时,加热 和冷却过程中,由于受热的程度不同,在分子间相 互碰撞下,热量从高能量分子向邻近的低能量分子 依次传递的方式称作传导。简单地说加热时热量由 罐壁四周向罐中心传递,罐头中心是温度变化最缓 慢之点,即其冷点在几何中心,冷却则相反。罐内 食品呈固态、粘度或稠度高的食品如午餐肉罐头、 豆沙、枣泥、八宝饭罐头等均属于这一类。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章 罐头杀菌时间的计算(重点和难点)先看杀菌锅及操作过程,这是一台立式杀菌锅,拧开柄型螺母,打开锅盖,将装满罐头的杀菌栏吊入锅中,拧紧柄型螺母,开始供应蒸汽。

经过三个阶段:首先经过升温阶段、时间为τ1,达到预定杀菌温度t ;再经过恒温杀菌阶段、时间为τ2;最后进行降温冷却阶段、时间为τ3;对于高温杀菌的罐头,有的需要通入压缩空气反压冷却P 。

以上参数时间、温度、反压即为杀菌的工艺条件。

第一节 罐头杀菌条件的表示方法2040608010012001020304050通常排列成公式的形式,因此也叫杀菌公式,也叫杀菌规程。

τ1—τ2—τ3Pt不是加减乘除的关系。

τ1升温时间min , τ2恒温杀菌时间min ,τ3降温时间min ,t 杀菌(锅)温度℃ 、注意不是指罐头的中心温度。

P 冷却时的反压0.12—0.13MPa 。

τ1一般10 min 左右,τ3一般10min —20min ,快一些为好,即快速升温和快速降温,有利于食品的色香味形、营养价值。

但有时受到条件的限制,如锅炉蒸汽压力不足、延长升温时间;冷却时罐头易胖听、破损等,不允许过快。

目前的主要任务就是要确定τ2、t,最麻烦就是要确定τ2,要求杀菌公式在防止腐败的前提下尽量缩短杀菌时间。

既能防止腐败,又能尽量保护品质。

下面是现有成熟的杀菌公式:午餐肉:10 min—60 min—10 min /121℃,反压力0.12MPa。

蘑菇罐头:10 min—30 min—10 min /121℃桔子罐头:5 min—15 min—5 min /100℃第二节罐头杀菌条件的确定(难点和重点)首先了解几个概念。

图2-6-4立式高压蒸汽杀菌锅1蒸汽管 2水管 3排水管 4溢流管 5排气阀6安全阀 7压缩空气管 8温度计9压力表 10温度记录控制仪1、实际杀菌F值:指某一杀菌条件下的总的杀菌效果。

实际杀菌F值:把不同温度下的杀菌时间折算成121℃的杀菌时间,相当于121℃的杀菌时间,用F实表示。

特别注意:它不是指工人实际操作所花时间,它是一个理论上折算过的时间。

为了帮助同学们理解和记忆,请看我为大家设计的例题。

例:某罐头110℃杀菌10 min,115℃杀菌20 min,121℃杀菌30 min。

工人实际杀菌操作时间等于50 min,实际杀菌F值并不等于50 min。

F实=10×L1+15×L2+30×L3,L我把它叫做折算系数。

L1肯定小于L2,二者均小于1。

请问同学们L3=?F实肯定小于50 min,由此可见,实际杀菌F值不是工厂杀菌过程的总时间之和。

例:100℃杀菌90分钟,120℃杀菌10分钟,哪个杀菌强度大?折算成相当于121℃的杀菌时间,再比较!90×L100和10×L120比较!只要找到折算系数就好比较。

2、安全杀菌F值在某一恒定温度(121℃)下杀灭一定数量的微生物或者芽孢所需的加热时间。

它被作为判别某一杀菌条件合理性的标准值,也称标准F值,用F安表示。

“杀灭”具有商业杀菌的含义,允许活菌存在。

F安表示满足罐头腐败率要求所需的杀菌时间(121℃),每种罐头要求的标准杀菌时间(通常121℃为标准温度),就象其它食品标准一样,拿来作为参照,判断是否合格、是否满足要求。

同时也是确定杀菌公式中恒温时间τ2的主要依据。

例如:某罐头F安=30 min,表示罐头要求在121℃杀菌30 min。

F实和F安的应用举例应用举例:F实等于或略大于F安,杀菌合理F实小于F安,杀菌不足,未达到标标准,要腐败。

必须延长杀菌时间。

F实远大于F安,杀菌过度,超标准杀菌,影响色香味形、营养价值。

要求缩短杀菌时间。

由于这种比较和反复的调整,就可找到合适的τ2。

3、安全杀菌F值的计算A确定杀菌温度t:罐头PH大于4.6,一般121℃杀菌,极少数低于115℃杀菌。

罐头PH小于4.6,一般100℃杀菌,极少数低于85℃杀菌。

实践中可用PH计检测,根据生活经验也可以粗略地估计。

比如:B首先选择对象菌:腐败的微生物头目,杀菌的重点对象。

耐热性强、不易杀灭,罐头中经常出现、危害最大。

只要杀灭它,其它腐败菌、致病菌、酶肯定杀灭。

根据微生物基础实验可知:F安=D(lga-lgb)下面以121℃标准温度讲解,因为高温杀菌情况更为复杂、人们更为关注。

F安通常指t温度(121℃)下标准杀菌时间、要求的杀菌时间。

D通常指t温度(121℃)下杀灭90%的微生物所需杀菌时间。

是微生物耐热的特征参数,D值越大耐热性越强。

由微生物实验获取D值,常见的D值可查阅相关手册。

见P149表中D值。

为了帮助同学们理解和记忆,请看例题。

例:已知蘑菇罐头对象菌D121=4 min,欲在121℃下把对象菌杀灭99.9%,问需多长杀菌时间?如果使活菌数减少为原来的0.01%,问需多长杀菌时间?第一个D值,杀灭90%,第二个D值,杀灭9%,第三个D值,杀灭0.9%,第四个D值,杀灭0.09%。

答案:12 min,16 mina单位体积原始活菌数/每罐对象菌数。

b残存活菌数/罐头的允许腐败率。

P158页例题:蘑菇罐头——同学们翻到158页F安= D(lga-lgb)= 4(lg850-lg5×10-4)=24.92 min,由此得到了蘑菇罐头在121℃需要杀菌的标准时间——24.92 min。

解决了蘑菇罐头F安这个杀菌标准的问题。

4、实际杀菌F值的计算F实=?(1)求和法根据罐头的中心温度计算F实,把不同温度下的杀菌时间折算成121℃的杀菌时间,然后相加起来。

F实=t1×L1+t2×L2+t3×L3+t4×L4+ ……L致死率值,某温度下的实际杀菌时间转换为121℃杀菌时间的折算系数,下面我们来解决L致死率、折算系数的问题。

由公式L=10t-121/Z计算得到,嫌麻烦可由P159表中查阅。

t是罐头杀菌过程中某一段时间的中心温度,Z是对象菌的另一耐热性特征参数。

还有一个是什么?热力致死时间变化10倍所需要的温度变化即为Z值。

F表示热力致死时间,凡不是注明F实、F安,均指热力致死时间。

请看例题:对象菌Z=10℃,F121=10 min,求F131 = ?min,F141 = ?min,F111 =?min,F101= ?min。

热力致死时间变化10倍所需要的温度变化即为Z值。

反过来理解:温度变化1个Z值热力致死时间变化将变化10倍。

请看例题:对象菌Z=10℃,F121=10 min,F131 =1min,F141 =0.1 min,F111 =100 min,F101=1000 min。

解决L致死率、折算系数的取值问题。

刚才的例题例:某罐头110℃杀菌10 min,115℃杀菌20 min,121℃杀菌30 min。

工人实际杀菌操作时间等于60 min,实际杀菌F值并不等于50 min。

F实=10×L1+20×L2+30×L3=10×0.079+20×0.251+30×1 =38.32min由此可见,实际杀菌F值不是工厂杀菌过程的总时间之和。

例:100℃杀菌90分钟,120℃杀菌10分钟,哪个杀菌强度大?折算成相当于121℃的杀菌时间,再比较!90×L100和10×L120比较,90×L100=90×0.008=0.72 min10×L120=10×0.794=7.94 min由此可见,该高温杀菌的罐头,100℃杀菌基本没有效果,生产上一定要注意。

讲解内江鹌鹑蛋罐头实例。

例蘑菇罐头F安=24.92 min,例蘑菇罐头F安=24.92 min,杀菌公式1: F实等于或略大于F安,杀菌合理。

恒温杀菌时间只有23 min,但整个杀菌过程相当于121℃实际杀菌时间25.5 min,多2.5 min由升温和降温折算得到。

工厂实际杀菌过程时间近50 min,加上罐头进锅出锅时间,工人完成一个轮回的操作至少要1个小时。

杀菌公式2: F实大于F安,杀菌过度,超标准杀菌,影响色香味形。

要求缩短杀菌时间。

通过这种方式来调整恒温杀菌时间,由此找到了τ2,今天讲课的目的就达到了。

目前,一些工厂采用计算机控制杀菌,中心温度的记录、F实的计算全由计算机完成,当F实等于或略大于F安时,自动停止杀菌工序,不需要我们来计算。

罐头杀菌的工艺条件的确定:τ1—τ2—τ3tP杀菌釜的反压力:一般A玻璃瓶、B大罐、C软罐头需要反压杀菌或反压冷却,冷却时采用压缩空气保持压力表读数0.12—0.13Mpa。

以上所讲内容,都是在理论上确定罐头杀菌的工艺条件的方法。

第三节新产品开发实际问题举例某人工养蛇场欲开发清炖蛇肉罐头,请你拟订杀菌工艺条件?按照以上所讲内容:通过微生物检测,找到对象菌,求出F安,再与F实比较并不断调整,最后得出合理的杀菌公式。

同学们走到工作岗位,此方案在实践中很难实施,建议同学们:很多罐头杀菌条件资料已经存在,查阅类似罐头杀菌条件作为资料作为参考。

对于新品种,可以大胆估计。

估计的经验原则如下:A含酸食品:85—100℃、10—30 min,酸性饮料采用85℃、15 min,B植物/蔬菜罐头:115—121℃、15—30 min,蛋白饮料采用121℃、15 min,C动物性罐头:115—121℃、50—90 min,说明:①大罐取上限,难煮的取上限,固体的取上限,酸度大取下限。

②121℃、100℃是两个标准的杀菌温度,普遍采用。

某人工养蛇场欲开发清炖蛇肉罐头,请你拟订杀菌工艺条件?按照以上经验原则,清炖蛇肉罐头杀菌条件拟订如下:清炖蛇肉罐头多半采用小罐包装,可以不要反压杀菌。

τ1—τ2—τ3tP↓杀菌公式一10 min—50 min—10min118℃杀菌公式二10 min—55 min—10min116℃实践中做一些杀菌保温实验对恒温时间进行微调。

10 min—τ2 min—10min116℃45 min、50 min、55 min、60 min、65 min↓52 min、54 min、55 min、57 min↓54 min课堂作业:写出下列罐头的杀菌公式:5分钟。

糖水橘子P190/192,草莓酱P198,青豆P203,香心菜P205,番茄酱P206,红烧扣肉P226。

5分钟后,学生翻到下学期待讲的内容对照。

同时结合排气、装罐、加汁、反压冷却,加以点评。

相关文档
最新文档