最新初一几何练习题及答案
初一数学几何图形练习题及答案20题
初一数学几何图形练习题及答案20题1. 填空题:a. 正方形的对角线长度是________(1词)。
b. 两个互相垂直的角的和为________度(1词)。
2. 判断题(正确为T,错误为F):a. 直角三角形的两个直角边可以相等。
()b. 一个平行四边形的对角线相等。
()c. 所有的矩形都是正方形。
()d. 一个凸四边形的内角和为360度。
()3. 简答题:a. 请解释平行四边形的定义及性质。
(至少2句)b. 解释锐角、钝角和直角分别是什么角度范围。
(至少1句)4. 计算题:在下图中,ΔABC是个等边三角形,边长为4cm。
a. 请计算三角形ABC的周长。
(2词)b. 请计算三角形ABC的面积。
(2词)5. 应用题:桌子的形状为长方形,长为120cm,宽为80cm。
在桌子的边上画出一个同样形状的长方形,使得它的宽比原来的桌子短一半,长比原来的桌子长一半。
请计算这个新长方形的面积。
(2词)答案:1. a. 简答题b. 902. a. Fb. Tc. Fd. T3. a. 平行四边形是一个有四个边的四边形,且相对的两边是平行的。
其性质包括:对角线互相平分;相邻角互补;相对角相等。
b. 锐角是指小于90度的角;钝角是指大于90度小于180度的角;直角是指等于90度的角。
4. a. 12cmb. 4√3 cm²5. 1800 cm²通过以上20道初一数学几何图形练习题及答案的训练,可以帮助学生巩固和加深对于几何图形的理解和应用能力。
请同学们认真学习,并通过解答这些问题来提高自己的数学技能。
人教版2024新版七年级数学上册《第6章 几何图形初步》单元测试及答案
…○………………内………………○………………装………………○………………订………………○………………线………………○…………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________人教版2024新版七年级数学上册 《第6章几何图形初步》单元测试及答案(满分:100分 时间:60分钟)题号 一 二 三 总分 分数一、选择题(每小题3分,共30分)1.已知1∠和2∠互为余角,且2∠与3∠互补,160∠=︒,则3∠为( ) A.120︒ B.60︒ C.30︒ D.150︒2.工人师傅在给小明家安装晾衣架时,一般先在阳台天花板上选取两个点,然后再进行安装.这样做的数学原理是( ) A.过一点有且只有一条直线 B.两点之间,线段最短C.连接两点之间的线段叫两点间的距离D.两点确定一条直线3.如图所示,点B 在点O 的北偏东60︒,射线OB 与射线OC 所成的角是110︒,则射线OC 的方向是( )A.北偏西30︒B.北偏西40︒C.北偏西50︒D.西偏北50︒ 4.小军将一个直角三角板(如图)绕它的一条直角边所在的直线旋转一周形成一个几何体,将这个几何体的侧面展开得到的大致图形是( )A. B. C. D.5.11点40分,时钟的时针与分针的夹角为( )A.140︒B.130︒C.120︒D.110︒ 6.如图为一个正方体纸盒的展开图,若在其中的三个正方形,,A B C 内分别填入适当的数,使得它们折成正方体.若相对的面上的两个数互为相反数,则填入正方形,,A B C 内的三个数依次为( )A.1,2,0-B.0,2,1-C.2,0,1-D.2,1,0 7.如图,将一副直角三角尺叠放在一起,使直角顶点重合于点O ,若28DOC ∠=︒,则AOB ∠的度数为()A.62︒B.152︒C.118︒D.无法确定8.某正方体的平面展开图如图所示,这个正方体可能是下面四个选项中的( )……○………………内………………○………………装………………○………………订………………○………………线………………○… 此卷只装订不密封……○………………外………………○………………装………………○………………订………………○………………线………………○…A. B. C. D.9.已知160,3AOB AOC AOB ∠=︒∠=∠,射线OD 平分BOC ∠,则COD ∠的度数为()A.20︒B.40︒C.20︒或30︒D.20︒或40︒ 10.如图,C 为线段AD 上一点,点B 为CD 的中点,且9,2AD BD ==.若点E 在直线AD 上,且1EA =,则BE 的长为( )A.4B.6或8C.6D.8 二、填空题(每小题3分,满分24分)11.为全面实施乡村电气化提升工程,改造升级农村电网,今从A 地到B 地架设电线,为了节省成本,工人师傅总是尽可能的沿着线段AB 架设,这样做的理由是__________.12.我国“神舟”十号载人飞船的成功发射,标志着我国航空航天事业已步入世界的领先水平,如图是“神舟”十号顺利变轨后的飞行示意图,用数学的观点解释图中飞船飞行后留下的弧形彩带现象:__________.13.如图是从不同的方向看一个物体得到的平面图形,该物体的形状是________.14.如图为某几何体的展开图,该几何体的名称是_________.15.一副三角尺按如图方式摆放,且1∠的度数比2∠的度数大50︒,则2∠的大小为________度.16.如图所示,,,A O B三点在同一条直线上,AOC ∠与AOD ∠互余,已知110BOC ∠=︒,则AOD ∠=________°.…○………………内………………○………………装………………○………………订………………○………………线………………○…………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________17.如图是由几个大小相同的小立方块搭成的几何体,搭成这个几何体需要10个小立方块,在保持从正面看和从左面看到的形状图不变的情况下,最多可以拿掉_______个小立方块.18.2021年是中国共产党成立100周年,小花打算设计一个正方体装饰品,她在装饰品的平面展开图的六个面上分别写下了“一百周年党庆”几个字.把展开图折叠成正方体后,与“年”字一面相对的面上的字是_________.三、解答题(共46分)19.(8分)如图,已知四点,,,A B C D .请用尺规作图完成(保留痕迹). (1)画直线AB ; (2)画射线AC ;(3)连接BC 并反向延长BC 到E ,使得2CB CE =; (4)画点P ,使PA PB PC PD +++的值最小.20.(6分)如果一个锐角的补角比这个角的余角的2倍还多40︒,那么这个角的余角是多少度?21.(8分)计算: (1)131********︒'-︒'''; (2)583827474240︒'''+︒'''; (3)342533542︒'⨯+︒'; (4)22533107455︒'⨯+︒'÷.22.(8分)如图,已知O 为直线AD 上一点,AOC ∠与AOB ∠互补,,OM ON 分别是,AOC AOB ∠∠的平分线,72MOC ∠=︒.(1)COD ∠与AOB ∠相等吗?请说明理由; (2)求AON ∠的度数.23.(8分)将一张长方形纸片按如图所示的方式折叠,EF 为折痕,点A 落在点G 处,EH 平分FEB ∠.(1)如图1,若EG 与EH 重合,求FEH ∠的度数; (2)如图2,若34FEG ∠=︒,求GEH ∠的度数;(3)如图3,若()FEG 6090αα∠=︒<<︒,求GEH ∠的度数(用α的式子表示).……○………………内………………○………………装………………○………………订………………○………………线………………○…此卷只装订不密封……○………………外………………○………………装………………○………………订………………○………………线………………○…24.(8分)(2021・广东期中)如图,P是线段AB上任一点,12AB=厘米,,C D 两点分别从,P B同时向A点运动,且C点的运动速度为2厘米/秒,D点的运动速度为3厘米/秒,运动的时间为t秒.(1)若8AP=厘米.①运动1秒后,求CD的长;②当D在线段PB上运动时,试说明2AC CD=;(2)如果2t=秒时,1CD=厘米,直接写出AP的值是_____厘米.参考答案1.答案:D2.答案:D3.答案:C4.答案:D5.答案:D6.答案:A7.答案:B8.答案:A9.答案:D 10.答案:B 11.答案:两点之间,线段最短12.答案:点动成线13.答案:圆锥14.答案:五棱柱15.答案:20 16.答案:20 17.答案:118.答案:党19.答案:见解析解析:(1)如图,直线AB即为所求.(2)如图,射线AC即为所求.(3)如图,线段CE即为所求,(4)如图,点P即为所求.20.答案:见解析解析:设这个角为x︒,则其余角为(90)x-︒,补角为(180)x-︒,所以1802(90)40x x-=-+,所以40x=,所以9050x-=.答:这个角的余角是50度.21.答案:见解析解析:(1)13128513215795545︒'-︒'''=︒''';(2)583827474240106217︒'''+︒'''=︒''';(3)342533542103153542︒'⨯+︒'=︒'+︒'13857=︒';(4)2253310745568392133︒'⨯+︒'÷=︒'+︒'9012=︒'.22.答案:见解析解析:(1)COD AOB∠=∠.理由如下:因为点O在直线AD上,所以180AOC COD∠+∠=︒,又因为AOC∠与AOB∠互补,所以180AOC AOB∠+∠=︒,所以COD AOB∠=∠;(2)因为,OM ON分别是,AOC AOB∠∠的平分线,…○………………内………………○………………装………………○………………订………………○………………线………………○…………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________所以12,2AOC COM AON AOB ∠=∠∠=∠,因为72MOC ∠=︒,所以2144AOC COM ∠=∠=︒, 所以18036AOB COD AOC ∠=∠=︒-∠=︒, 所以136182AON ∠=⨯︒=︒.23.答案:见解析解析:(1)由折叠可知AEF FEH ∠=∠,因为EH 平分FEB ∠,所以FEH BEH ∠=∠, 所以AEF FEH BEH ∠=∠=∠, 因为180AEF FEH BEH ∠+∠+∠=︒, 所以60FEH ∠=︒;(2)由折叠可知AEF FEG ∠=∠, 因为34FEG ∠=︒,所以34,18034146AEF FEB ∠=︒∠=︒-︒=︒, 因为EH 平分FEB ∠,所以1732FEH BEH FEB ∠=∠=∠=︒,所以733439GEH FEH FEG ∠=∠-∠=︒-︒=︒; (3)由折叠可知AEF FEG ∠=∠,因为FEG α∠=, 所以,180AEF FEB αα∠=∠=︒-,因为EH 平分FEB ∠,所以119022FEH BEH FEB α∠=∠=∠=︒-,所以13909022GEH FEG FEH ααα⎛⎫∠=∠-∠=-︒-=-︒⎪⎝⎭. 24.答案:见解析 解析:(1)①由题意可知:212(cm),313(cm)CP DB =⨯==⨯=,因为8cm,12cm AP AB ==, 所以4(cm)PB AB AP =-=,所以2433(cm)CD CP PB DB =+-=+-=, ②因为8,12AP AB ==,所以4,82BP AC t ==-, 所以43DP t =-,所以4324CD DP CP t t t =+=-+=-, 所以2AC CD =;(2)当2t =时,224(cm)CP =⨯=,326(cm)DB =⨯=, 当点D 在C 的右边时,如图所示: 由于1cm CD =,所以CB CD DB 7(cm)=+=, 所以5(cm)AC AB CB =-=, 所以9(cm)AP AC CP =+=,当点D 在C 的左边时,如图所示:所以6(cm)AD AB DB =-=, 所以11(cm)AP AD CD CP =++=, 综上所述,9AP =或11.答案为9或11.。
2024年数学七年级上册立体几何基础练习题(含答案)
2024年数学七年级上册立体几何基础练习题(含答案)试题部分一、选择题:1. 下列哪个图形是正方体?()A. 长方体B. 正六面体C. 圆柱体D. 球体2. 一个长方体的长、宽、高分别为2cm、3cm、4cm,它的对角线长度是多少cm?()A. 5cmB. 6cmC. 7cmD. 9cm3. 下列哪个图形的表面积最小?()A. 正方体B. 长方体C. 球体D. 圆柱体4. 一个正方体的体积是64立方厘米,它的棱长是多少厘米?()A. 2cmB. 4cmC. 6cmD. 8cm5. 下列哪个图形有6个面?()A. 三棱锥B. 四棱锥C. 圆锥D. 球体6. 一个圆柱的底面半径为3cm,高为5cm,它的侧面积是多少平方厘米?()A. 45πcm²B. 54πcm²C. 75πcm²D. 90πcm²7. 下列哪个图形的体积最大?()A. 长方体(长、宽、高分别为2cm、3cm、4cm)B. 正方体(棱长为3cm)C. 球体(半径为2cm)D. 圆柱体(底面半径为2cm,高为3cm)8. 一个圆锥的底面半径为4cm,高为3cm,它的体积是多少立方厘米?()A. 48πcm³B. 64πcm³C. 72πcm³D. 96πcm³9. 下列哪个图形可以展开成一个长方形?()A. 正方体B. 球体C. 圆锥D. 圆柱体10. 一个正方体的棱长为x,它的表面积是多少?()A. 6x²B. 8x²C. 12x²D. 24x²二、判断题:1. 正方体的六个面都是正方形。
()2. 圆柱体的底面和顶面都是圆形。
()3. 球体的表面积和体积相等。
()4. 长方体的对角线长度等于其长、宽、高的和。
()5. 圆锥的体积等于底面积乘以高。
()6. 正方体的体积是棱长的三次方。
()7. 两个相同体积的正方体,它们的表面积也相同。
2024年数学七年级上册几何基础练习题(含答案)
2024年数学七年级上册几何基础练习题(含答案)试题部分一、选择题(每题2分,共20分)1. 下列哪个图形是一个正方形?A. 四条边等长,四个角都是直角的四边形B. 四条边等长,四个角都是锐角的四边形C. 四条边不等长,四个角都是直角的四边形D. 四条边不等长,四个角都是锐角的四边形2. 下列哪个图形是一个矩形?A. 四条边等长,四个角都是直角的四边形B. 四条边等长,四个角都是锐角的四边形C. 四条边不等长,四个角都是直角的四边形D. 四条边不等长,四个角都是锐角的四边形3. 下列哪个图形是一个菱形?A. 四条边等长,四个角都是直角的四边形B. 四条边等长,四个角都是锐角的四边形C. 四条边不等长,四个角都是直角的四边形D. 四条边不等长,四个角都是锐角的四边形4. 下列哪个图形是一个正三角形?A. 三条边等长,三个角都是直角的三角形B. 三条边等长,三个角都是锐角的三角形C. 三条边不等长,三个角都是直角的三角形D. 三条边不等长,三个角都是锐角的三角形5. 下列哪个图形是一个等腰三角形?A. 三条边等长,三个角都是直角的三角形B. 三条边等长,三个角都是锐角的三角形C. 三条边不等长,两个角是直角的三角形D. 三条边不等长,两个角是锐角的三角形6. 下列哪个图形是一个等边三角形?A. 三条边等长,三个角都是直角的三角形B. 三条边等长,三个角都是锐角的三角形C. 三条边不等长,三个角都是直角的三角形D. 三条边不等长,三个角都是锐角的三角形7. 下列哪个图形是一个梯形?A. 四条边等长,四个角都是直角的四边形B. 四条边等长,四个角都是锐角的四边形C. 四条边不等长,两个角是直角的四边形D. 四条边不等长,两个角是锐角的四边形8. 下列哪个图形是一个平行四边形?A. 四条边等长,四个角都是直角的四边形B. 四条边等长,四个角都是锐角的四边形C. 四条边不等长,四个角都是直角的四边形D. 四条边不等长,四个角都是锐角的四边形9. 下列哪个图形是一个圆形?A. 所有边都是直线的图形B. 所有边都是曲线的图形C. 所有边都是直角三角形的图形D. 所有边都是锐角三角形的图形10. 下列哪个图形是一个椭圆?A. 所有边都是直线的图形B. 所有边都是曲线的图形C. 所有边都是直角三角形的图形D. 所有边都是锐角三角形的图形二、判断题(每题2分,共10分)1. 正方形的对角线互相垂直且相等。
七年级数学几何图形练习题及答案
七年级数学几何图形练习题及答案[答案表]以下是七年级数学几何图形练习题的答案。
1. 判断下列说法是否正确,并用对或错来回答:a) 正方形有四个直角。
答案:对。
b) 所有矩形都是正方形。
答案:错。
c) 所有正方形都是矩形。
答案:对。
d) 所有正方形都是长方形。
答案:对。
2. 根据图形的描述,选择正确的图形并填写在括号内:a) 一个有两条等长直角边的三角形是( )。
①直角三角形②等腰三角形③锐角三角形④钝角三角形答案:②等腰三角形b) 一条边为直径的圆叫作( )。
①半圆②椭圆③圆锥④圆答案:④圆c) 具有四条边且都相等的四边形是( )。
①正方形②长方形③梯形④平行四边形答案:①正方形3. 请计算下列图形的周长:a) 边长为4 cm的正方形的周长是多少?答案:正方形的四边相等,所以周长=4cm+4cm+4cm+4cm=16cm。
b) 边长分别为5 cm和8 cm的长方形的周长是多少?答案:长方形的周长=5cm+8cm+5cm+8cm=26cm。
c) 一张和纸短边长7 cm,长边长10 cm的长方形纸片,它的周长是多少?答案:周长=7cm+10cm+7cm+10cm=34cm。
4. 请计算下列图形的面积:a) 边长为6 cm的正方形的面积是多少?答案:正方形的面积=边长 ×边长 = 6cm × 6cm = 36cm²。
b) 边长分别为3 cm和7 cm的长方形的面积是多少?答案:长方形的面积=长 ×宽 = 3cm × 7cm = 21cm²。
c) 一张长边长为12 cm,短边长为5 cm的长方形纸片,它的面积是多少?答案:面积=长 ×宽 = 12cm × 5cm = 60cm²。
5. 请判断图形是否相似,并用是或否来回答:a) 下图中的两个三角形是否相似?答案:是。
(图形描述省略)b) 下图中的两个四边形是否相似?答案:否。
初一几何三角形练习题及答案
初一几何三角形练习题及答案1. 求下列三角形的内角和:a) 直角三角形b) 等边三角形c) 钝角三角形解答:a) 直角三角形的内角和为180度。
其中一个角为90度(直角),剩余两个角之和为90度。
b) 等边三角形的内角和为180度。
由于等边三角形的三条边长度相等,所以三个角也必定相等,每个角为60度,三个角之和为180度。
c) 钝角三角形的内角和为180度。
钝角三角形有一个角大于90度,其它两个角的和小于90度,但三个角之和仍然等于180度。
2. 给定一个三角形,如果已知两个角的度数,如何求出第三个角的度数?解答:三角形的内角和为180度。
已知两个角的度数后,可以用180度减去这两个角的度数,得到第三个角的度数。
例如,如果一个三角形的两个角分别为40度和60度,那么第三个角的度数为180度 - 40度 - 60度 = 80度。
3. 求下列三角形的周长:a) 边长分别为3 cm, 4 cm和 5 cm的三角形b) 边长分别为6 cm, 8 cm和 10 cm的三角形解答:a) 边长分别为3 cm, 4 cm和 5 cm的三角形的周长为3 cm + 4 cm + 5 cm = 12 cm。
b) 边长分别为6 cm, 8 cm和 10 cm的三角形的周长为6 cm + 8 cm +10 cm = 24 cm。
4. 求下列三角形的面积:a) 底边长为4 cm,高为3 cm的三角形b) 边长分别为5 cm, 7 cm和 8 cm的三角形解答:a) 底边长为4 cm,高为3 cm的三角形的面积为(4 cm * 3 cm) / 2 = 6 cm²。
b) 边长分别为5 cm, 7 cm和 8 cm的三角形的面积可以用海伦公式计算。
首先计算半周长:(5 cm + 7 cm + 8 cm) / 2 = 10 cm。
然后使用海伦公式:√(10 cm * (10 cm - 5 cm) * (10 cm - 7 cm) * (10 cm - 8 cm)) ≈ 17.32 cm²。
最新初中数学几何图形初步技巧及练习题附答案
最新初中数学几何图形初步技巧及练习题附答案一、选择题1.如图将两块三角板的直角顶点重叠在一起,DOB ∠与DOA ∠的比是2:11,则BOC ∠的度数为( )A .45︒B .60︒C .70︒D .40︒【答案】C【解析】【分析】 设∠DOB=2x ,则∠DOA=11x ,可推导得到∠AOB=9x=90°,从而得到角度大小【详解】∵∠DOB 与∠DOA 的比是2:11∴设∠DOB=2x ,则∠DOA=11x∴∠AOB=9x∵∠AOB=90°∴x=10°∴∠BOD=20°∴∠COB=70°故选:C【点睛】本题考查角度的推导,解题关键是引入方程思想,将角度推导转化为计算的过程,以便简化推导2.如图,是某个几何体从不同方向看到的形状图(视图),这个几何体的表面能展开成下面的哪个平面图形?( )A .B .C.D.【答案】D【解析】【分析】根据三视图可判断这个几何体的形状;再由平面图形的折叠及立体图形的表面展开图的特点解题.【详解】解:根据三视图可判断这个几何体是圆柱;D选项平面图一个长方形和两个圆折叠后,能围成的几何体是圆柱.A选项平面图折叠后是一个圆锥;B选项平面图折叠后是一个正方体;C选项平面图折叠后是一个三棱柱.故选:D.【点睛】本题考查由三视图判断几何体及展开图折叠成几何体,熟记常见几何体的平面展开图的特征,是解决此类问题的关键.3.如图是由四个正方体组合而成,当从正面看时,则得到的平面视图是()A.B.C.D.【答案】D【解析】【分析】根据从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图.根据图中正方体摆放的位置判定则可.【详解】解:从正面看,下面一行是横放3个正方体,上面一行最左边是一个正方体.故选:D.【点睛】本题主要考查三视图的识别,解决本题的关键是要熟练掌握三视图的识别方法.4.下列立体图形中,侧面展开图是扇形的是()A.B.C.D.【答案】B【解析】根据圆锥的特征可知,侧面展开图是扇形的是圆锥.故选B.5.下列各图经过折叠后不能围成一个正方体的是()A.B.C.D.【答案】D【解析】【分析】由平面图形的折叠及正方体的表面展开图的特点解题.只要有“田”“凹”“一线超过四个正方形”字格的展开图都不是正方体的表面展开图.【详解】解:A、是正方体的展开图,不符合题意;B、是正方体的展开图,不符合题意;C、是正方体的展开图,不符合题意;D、不是正方体的展开图,缺少一个底面,符合题意.故选:D.【点睛】本题考查了正方体的展开图,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.6.如图,如果用剪刀沿直线将一个正方形图片剪掉一部分,发现剩下部分的周长比原正方形图片的周长要小,能正确解释这一现象的数学知识是()A.线段比曲线短B.经过一点有无数条直线C.经过两点,有且仅有一条直线D.两点之间,线段最短【答案】D【解析】【分析】如下图,只需要分析AB+BC<AC即可【详解】∵线段AC是点A和点C之间的连线,AB+BC是点A和点C经过弯折后的路径又∵两点之间线段最短∴AC<AB+BC故选:D【点睛】本题考查两点之间线段最短,在应用的过程中,要弄清楚线段长度表示的是哪两个点之间的距离7.如图,是一个正方体的表面展开图,将其折成正方体后,则“扫”的对面是()A.黑B.除C.恶D.☆【答案】B【解析】【分析】正方体的空间图形,从相对面入手,分析及解答问题.【详解】解:将其折成正方体后,则“扫”的对面是除.故选B.【点睛】本题考查了正方体的相对面的问题.能够根据正方体及其表面展开图的特点,找到相对的面是解题的关键.8.一个立方体的表面展开图如图所示,将其折叠成立方体后,“你”字对面的字是()A.中B.考C.顺D.利【答案】C【解析】试题解析:正方体的表面展开图,相对的面之间一定相隔一个正方形,“祝”与“考”是相对面,“你”与“顺”是相对面,“中”与“立”是相对面.故选C.考点:正方体展开图.9.如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为()A.1 B.2 C.3 D.4【答案】C【解析】试题分析:作F点关于BD的对称点F′,则PF=PF′,连接EF′交BD于点P.∴EP+FP=EP+F′P.由两点之间线段最短可知:当E、P、F′在一条直线上时,EP+FP的值最小,此时EP+FP=EP+F′P=EF′.∵四边形ABCD为菱形,周长为12,∴AB=BC=CD=DA=3,AB∥CD,∵AF=2,AE=1,∴DF=AE=1,∴四边形AEF′D是平行四边形,∴EF′=AD=3.∴EP+FP的最小值为3.故选C.考点:菱形的性质;轴对称-最短路线问题10.下列说法,正确的是( )A.经过一点有且只有一条直线B.两条射线组成的图形叫做角C.两条直线相交至少有两个交点D.两点确定一条直线【答案】D【解析】【分析】根据直线的性质、角的定义、相交线的概念一一判断即可.【详解】A、经过两点有且只有一条直线,故错误;B、有公共顶点的两条射线组成的图形叫做角,故错误;C、两条直线相交有一个交点,故错误;D、两点确定一条直线,故正确,故选D.【点睛】本题考查直线的性质、角的定义、相交线的概念,熟练掌握相关知识是解题的关键. 11.如图,点A、B、C是直线l上的三个点,图中共有线段条数是()A.1条B.2条C.3条D.4条【答案】C【解析】解:图中线段有:线段AB、线段AC、线段BC,共三条.故选C.12.一把直尺和一块三角板ABC(含30°,60°角)的摆放位置如图,直尺一边与三角板的两直角边分别交于点D、点E,另一边与三角板的两直角边分别交于点F、点A,且∠CED =50°,那么∠BAF=()A.10°B.50°C.45°D.40°【答案】A【解析】【分析】先根据∠CED=50°,DE∥AF,即可得到∠CAF=50°,最后根据∠BAC=60°,即可得出∠BAF的大小.【详解】∵DE∥AF,∠CED=50°,∴∠CAF=∠CED=50°,∵∠BAC=60°,∴∠BAF=60°﹣50°=10°,故选:A.【点睛】此题考查平行线的性质,几何图形中角的和差关系,掌握平行线的性质是解题的关键. 13.如图,已知AB∥DC,BF平分∠ABE,且BF∥DE,则∠ABE与∠CDE的关系是()A .∠ABE =2∠CDEB .∠ABE =3∠CDEC .∠ABE =∠CDE +90°D .∠ABE +∠CDE =180°【答案】A【解析】【分析】 延长BF 与CD 相交于M ,根据两直线平行,同位角相等可得∠M =∠CDE ,再根据两直线平行,内错角相等可得∠M =∠ABF ,从而求出∠CDE =∠ABF ,再根据角平分线的定义解答.【详解】解:延长BF 与CD 相交于M ,∵BF ∥DE ,∴∠M =∠CDE ,∵AB ∥CD ,∴∠M =∠ABF ,∴∠CDE =∠ABF ,∵BF 平分∠ABE ,∴∠ABE =2∠ABF ,∴∠ABE =2∠CDE .故选:A .【点睛】本题考查了平行线的性质和角平分线的定义,作辅助线,是利用平行线的性质的关键,也是本题的难点.14.如图,在Rt ABC V 中,90C ∠=︒,以顶点A 为圆心,适当长为半径画弧,分别交AC 、AB 于点M 、N ,再分别以点M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若4CD =,15AB =,则ABD △的面积是( )A .15B .30C .45D .60 【答案】B【解析】【分析】作DE AB ⊥于E ,根据角平分线的性质得4DE DC ==,再根据三角形的面积公式求解即可.【详解】作DE AB ⊥于E由尺规作图可知,AD 是△ABC 的角平分线∵90C ∠=︒,DE AB ⊥∴4DE DC ==∴△ABD 的面积1302AB DE =⨯⨯= 故答案为:B .【点睛】 本题考查了三角形的面积问题,掌握角平分线的性质、三角形面积公式是解题的关键.15.下列图形中,是圆锥的侧面展开图的为( )A .B .C .D .【答案】B【解析】【分析】 根据圆锥的侧面展开图的特点作答.【详解】圆锥的侧面展开图是光滑的曲面,没有棱,只是扇形.故选B .【点睛】考查了几何体的展开图,圆锥的侧面展开图是扇形.16.如图,已知点P (0,3) ,等腰直角△ABC 中,∠BAC=90°,AB=AC ,BC =2,BC 边在x 轴上滑动时,PA +PB 的最小值是 ( )A .102+B .26C .5D .26【答案】B【解析】【分析】 过点P 作PD ∥x 轴,做点A 关于直线PD 的对称点A´,延长A´ A 交x 轴于点E ,则当A´、P 、B 三点共线时,PA +PB 的值最小,根据勾股定理求出A B '的长即可.【详解】如图,过点P 作PD ∥x 轴,做点A 关于直线PD 的对称点A´,延长A´A 交x 轴于点E ,则当A´、P 、B 三点共线时,PA +PB 的值最小,∵等腰直角△ABC 中,∠BAC=90°,AB=AC ,BC =2,∴AE=BE=1,∵P (0,3) ,∴A A´=4, ∴A´E=5, ∴22221526A B BE A E ''+=+ 故选B.【点睛】本题考查了勾股定理,轴对称-最短路线问题的应用,解此题的关键是作出点A 关于直线PD的对称点,找出PA+PB的值最小时三角形ABC的位置.17.如图所示为几何体的平面展开图,则从左到右,其对应的几何体名称分别为()A.圆锥,正方体,三棱锥,圆柱B.圆锥,正方体,四棱锥,圆柱C.圆锥,正方体,四棱柱,圆柱D.正方体,圆锥,圆柱,三棱柱【答案】D【解析】【分析】根据常见的几何体的展开图进行判断,即可得出结果.【详解】根据几何体的平面展开图,则从左到右,其对应的几何体名称分别为:正方体,圆锥,圆柱,三棱柱.故选D.【点睛】本题考查了常见几何体的展开图;熟记常见几何体的平面展开图的特征,是解题的关键.18.如图,DE∥BC,BE平分∠ABC,若∠1=70°,则∠CBE的度数为()A.20°B.35°C.55°D.70°【答案】B【解析】【分析】根据平行线的性质可得∠1=∠ABC=70°,再根据角平分线的定义可得答案.【详解】∵DE∥BC,∴∠1=∠ABC=70°,∵BE平分∠ABC,∴1352CBE ABC∠=∠=︒,故选:B.【点睛】此题主要考查了平行线的性质,以及角平分线的定义,解题的关键是掌握两直线平行,内错角相等.19.下列说法中正确的有()(1)如果互余的两个角的度数之比为1:3,那么这两个角分别是45°和135°(2)如果两个角是同一个角的补角,那么这两个角不一定相等(3)一个锐角的余角比这个锐角的补角小90°(4)如果两个角的度数分别是73°42′与16°18′,那么这两个角互余.A.1个 B.2个 C.3个 D.4个【答案】B【解析】【分析】根据余角和补角的定义依次判断即可求解.【详解】(1)由互余的两个角的和为90°可知(1)错误;(2)由同角的补角相等可知(2)错误;(3)设这个角为x,则其余角为(90°﹣x),补角为(18 0°﹣x),则(180°﹣x)﹣(90°﹣x)=90°,由此可知(3)正确;(4)由73°42+16°18′=90°可知(4)正确.综上,正确的结论为(3)(4),共2个.故选B.【点睛】本题考查了余角和补角的定义,熟练运用余角和补角的定义是解决问题的关键.20.已知:在Rt△ABC中,∠C=90°,BC=1,AC=3,点D是斜边AB的中点,点E是边AC上一点,则DE+BE的最小值为()A.2B31C3D.23【答案】C【解析】【分析】作B关于AC的对称点B',连接B′D,易求∠ABB'=60°,则AB=AB',且△ABB'为等边三角形,BE+DE=DE+EB'为B'与直线AB之间的连接线段,其最小值为B'到AB的距离=AC=3,所以最小值为3.【详解】解:作B关于AC的对称点B',连接B′D,∵∠ACB=90°,∠BAC=30°,∴∠ABC=60°,∵AB=AB',∴△ABB'为等边三角形,∴BE+DE=DE+EB'为B'与直线AB之间的连接线段,∴最小值为B'到AB的距离3故选C.【点睛】本题考查的是最短线路问题及等边三角形的性质,熟知两点之间线段最短的知识是解答此题的关键.。
初中初一几何试题及答案
初中初一几何试题及答案一、选择题(每题3分,共15分)1. 下列哪个选项是平行四边形的性质?A. 对角线互相垂直B. 对边相等C. 对角线相等D. 对角线互相平分答案:B2. 直角三角形中,如果一个锐角为30°,另一个锐角的度数是多少?A. 30°B. 60°C. 90°D. 120°答案:B3. 一个等腰三角形的底边长为6cm,腰长为8cm,那么底边上的高是多少?A. 4cmB. 6cmC. 8cmD. 10cm答案:A4. 一个圆的半径为3cm,那么它的周长是多少?A. 6π cmB. 9π cmC. 12π cmD. 15π cm答案:C5. 下列哪个图形是轴对称图形?A. 平行四边形B. 等边三角形C. 矩形D. 任意四边形答案:B二、填空题(每题2分,共10分)1. 一个矩形的长为10cm,宽为5cm,那么它的面积是________cm²。
答案:502. 一个等腰直角三角形的斜边长为5cm,那么它的直角边长是________cm。
答案:5√2/23. 一个圆的直径为8cm,那么它的半径是________cm。
答案:44. 一个三角形的内角和为________°。
答案:1805. 一个扇形的圆心角为60°,半径为4cm,那么它的面积是________cm²。
答案:4π/3三、解答题(每题5分,共10分)1. 已知一个三角形的三边长分别为3cm、4cm和5cm,求证这个三角形是直角三角形。
答案:根据勾股定理,3² + 4² = 5²,即9 + 16 = 25,因此这个三角形是直角三角形。
2. 已知一个圆的周长为25.12cm,求这个圆的半径。
答案:根据圆的周长公式C = 2πr,可得半径r = C / (2π) = 25.12 / (2 × 3.14) = 4cm。
完整版)初一几何练习题及答案
完整版)初一几何练习题及答案初一几何:三角形一、选择题(本大题共24分)1.以下列各组数为三角形的三条边,其中能构成直角三角形的是()A。
17,15,8B。
1/3,1/4,1/5C。
4,5,6D。
3,7,112.如果三角形的一个角的度数等于另两个角的度数之和,那么这个三角形一定是()A。
锐角三角形B。
直角三角形C。
钝角三角形D。
等腰三角形3.下列给出的各组线段中,能构成三角形的是()A。
5,12,13B。
5,12,7C。
8,18,7D。
3,4,84.如图已知:Rt△ABC中,∠C=90°,AD平分∠BAC,AE=AC,连接DE,则下列结论中,不正确的是()A。
DC=DEB。
∠___∠ADEC。
∠DEB=90°D。
∠___∠DAE5.一个三角形的三边长分别是15,20和25,则它的最大边上的高为()A。
12B。
10C。
8D。
56.下列说法不正确的是()A。
全等三角形的对应角相等B。
全等三角形的对应角的平分线相等C。
角平分线相等的三角形一定全等D。
角平分线是到角的两边距离相等的所有点的集合7.两条边长分别为2和8,第三边长是整数的三角形一共有()A。
3个B。
4个C。
5个D。
无数个8.下列图形中,不是轴对称图形的是()A。
线段MNB。
等边三角形C。
直角三角形D。
钝角∠AOB9.如图已知:△ABC中,AB=AC,BE=CF,AD⊥BC于D,此图中全等的三角形共有()A。
2对B。
3对C。
4对D。
5对10.直角三角形两锐角的平分线相交所夹的钝角为()A。
125°B。
135°C。
145°D。
150°11.直角三角形两锐角的平分线相交所夹的钝角为()A。
125°B。
135°C。
145°D。
150°12.___已知:∠A=∠D,∠C=∠F,如果△ABC≌△DEF,那么还应给出的条件是()A。
AC=DEB。
AB=DFC。
七年级数学几何练习题及答案
七年级数学几何练习题及答案练题一:直线的性质1. 试述直线的定义和特点。
答案:直线是由一连串无限延伸的点组成,它没有弯曲和拐角。
直线上的任意两点可以用唯一一条直线连接。
2. 画出以下直线的标志并写出它们的名称:水平线、垂直线、倾斜线、平行线、相交线。
答案:- 水平线:⎕,两端点的纵坐标相同。
- 垂直线:⎈,两端点的横坐标相同。
- 倾斜线:/,连接两个不同的点。
- 平行线://,在同一平面内永不相交的两条直线。
- 相交线:+,两条直线在同一点相交。
练题二:三角形的性质1. 试述三角形的定义和特点。
答案:三角形是由三条线段组成的图形。
它的特点是三条边相连的三个点不在一条直线上。
2. 根据三角形的边长关系,判断以下三角形的类型:等边三角形、等腰三角形、直角三角形、锐角三角形、钝角三角形。
答案:- 等边三角形:三条边的长度都相等。
- 等腰三角形:两条边的长度相等。
- 直角三角形:有一个角度为90度。
- 锐角三角形:三个角都小于90度。
- 钝角三角形:有一个角度大于90度。
练题三:四边形的性质1. 试述四边形的定义和特点。
答案:四边形是由四条线段组成的图形。
它的特点是四条边相连的四个点不在一条直线上。
2. 根据四边形的边长关系,判断以下四边形的类型:平行四边形、矩形、正方形、菱形、梯形。
答案:- 平行四边形:有两对平行的边。
- 矩形:有四个直角。
- 正方形:既是矩形又是菱形,四个边的长度相等且都是直角。
- 菱形:四个边的长度相等。
- 梯形:有一对平行的边。
练题四:圆的性质1. 试述圆的定义和特点。
答案:圆是平面上所有到中心点距离相等的点的集合。
圆由一个中心点和半径组成。
2. 根据圆的性质,判断以下说法的正误:半径相等的圆周长相等、直径相等的圆周长相等。
答案:半径相等的圆周长相等是正确的,直径相等的圆周长相等也是正确的。
以上是七年级数学几何练习题及答案的简要概述,希望对你的学习有所帮助。
人教版2024新版七年级数学上册《第6章 几何图形初步》单元测试及答案
…○………………内………………○………………装………………○………………订………………○………………线………………○…………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________人教版2024新版七年级数学上册 《第6章几何图形初步》单元测试及答案(满分:120分 时间:60分钟)题号 一 二 三 总分 分数一、选择题(每题3分,共30分)1.下列各组图形中,都是平面图形的是( ) A.三角形、圆、球、圆锥 B.长方体、正方体、圆柱、球 C.长方形、三角形、正方形、圆 D.扇形、长方形、三棱柱、圆锥2.如图所示的正六棱柱的主视图是( )A.B.C.D.3.下列说法中,正确的是( )A.两点确定一条直线B.两条射线组成的图形叫做角C.两点之间直线最短D.若AB=BC ,则点B 为AC 的中点 4.与30︒的角互为余角的角的度数是( )A.30︒B.60︒C.70︒D.90︒ 5.如图,点A 在点B 的( )A.北偏东60°B.南偏东60°C.南偏西60°D.南偏西30° 6.已知线段AB =15cm ,点C 是直线AB 上一点,BC =5cm ,若M 是AC 的中点,N 是BC 的中点,则线段MN 的长度是()A.10cmB.5cmC.10cm 或5cmD.7.5cm7.已知∠1=2824'︒,∠2=28.24︒,∠3=28.4︒,则下列说法中,正确的是( ) A.∠1=∠2<∠3 B.∠1=∠3>∠2 C.∠1<∠2=∠3 D.∠1=∠2>∠3 8.钟表在8:25时,时针与分针夹角的度数是( ) A.101.5︒ B.102.5︒ C.120︒ D.125︒9.如图是一个正方体的表面展开图,则该正方体中与“梦”字所在面相对的面上的字是( )A.大B.伟C.国D.的10.如图,,C D 在线段BE 上,下列说法:直线CD 上以,,,B C D E 为端点的线段共有6条;②图中有2对互补的角;③若∠BAE=100︒,∠DAC=40︒,则以A 为顶点的所有小于平角的角的度数和为360︒;④若BC =2,CD DE ==3,点F 是线段BE 上任意一点,则点F 到点,,,B C D E 的距离之和的最大值为15,最小值为11.其中说法正确的有( ) A.1个 B.2个 C.3个 D.4个 二、填空题(每题3分,共30分)……○………………内………………○………………装………………○………………订………………○………………线………………○…此卷只装订不密封……○………………外………………○………………装………………○………………订………………○………………线………………○…1l.在校园中的一条大路两旁种植树木(树木种在一条直线上),确定了两棵树的位置就能确定一排树的位置,这利用了我们所学过的数学知识是____________.12.一个角的余角比这个角的补角的一半小40︒,则这个角为________.13.三条直线两两相交,最少有_______个交点,最多有_______个交点.14.笔尖在纸上快速滑动写出了一个又一个字,这说明了________;钟表的时针和分针旋转一周,均形成一个圆面,这说明了________.(从点线、面的角度作答)15.如图,点D是线段AB的中点,点C是线段AD的中点,若CD=1,则AB=________.16.如图,点,,A O B在一条直线上,且∠AOC=50°,OD平分∠AOC,则∠BOD=________.17.如图,某海域有,,A B O三个小岛,在小岛O处观测到小岛A在其北偏东62︒的方向上,观测到小岛B在其南偏东3812'︒的方向上,则∠AOB的补角等于________.18.往返于甲、乙两地的客车,中途停靠5个车站(来回票价一样),且任意两站之间的票价都不同,共有_______种不同的票价,需准备________种车票.19.小明将一张正方形纸片按如图所示的顺序折叠成纸飞机,当机翼展开在同一平面时(机翼间无缝隙),∠AOB的度数是________.20.用棱长是1cm的小正方体组成如图所示的几何体,把这个几何体放在桌子上,并把露在外面的面涂上颜色,那么涂颜色的面的面积之和是_______2cm.三、解答题(21,22题每题8分,23,24题每题10分,其余每题12分,共60分)21.计算:(1)324548212514''''''︒+︒;(2)1123363'''︒⨯.22.点,,,A B C D的位置如图,按下列要求画出图形:(1)画直线AB,直线CD,它们相交于点E;(2)连接AC,连接DB,它们相交于点O;(3)画射线AD,射线BC,它们相交于点F.…○………………内………………○………………装………………○………………订………………○………………线………………○…………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________23.如图,已知线段AB =4.8cm ,点M 为AB 的中点,点P 在MB 上,N 为PB 的中点,且NB =0.8cm ,求AP 的长.24.如图,射线OA 的方向是北偏东15︒,射线OB 的方向是北偏西40°,∠AOB=∠AOC ,射线OD 是OB 的反向延长线. (1)射线OC 的方向是_______;(2)若射线OE 平分∠COD ,求∠AOE 的度数.25.如图是某工件从正面、左面、上面看到的图形,判断该工件的形状,并求此工件的体积.(结果保留π)26.如图,OM 是∠AOC 的平分线,ON 是∠BOC 的平分线.(1)如图①,当∠AOB 是直角,∠BOC=60︒时,∠MON 的度数是多少? (2)如图②,当∠AOB=α,∠BOC=60︒时,猜想∠MON 与α的数量关系.(3)如图③,当∠AOB=α,∠BOC=β(0︒<αβ+<180︒)时,猜想∠MON 与,αβ的数量关系,并说明理由.参考答案一、1.答案:C 2.答案:B 3.答案:A 4.答案:B 5.答案:C 6.答案:D 7.答案:B 8.答案:B 9.答案:D 10.答案:B 解析:以,,,B C D E 为端点的线段有,,,,,BC BD BE CE CD ED 共6条,故①正确;图中互补的角就是分别以,C D 为顶点的两对角,即∠BCA 和∠ACD 互补,∠ADE 和∠ADC 互补,故②正确;根据图形,由∠BAE=100︒,∠CAD=40︒,可以求出∠BAC+∠CAE+∠BAE+∠BAD+∠DAE+∠DAC=100︒+100︒+100︒+40︒=340︒,故③错误;当点F 在线段CD 上时,点F 到点,,,B C D E 的距离之和最小,为FB FE FD FC +++=2+3+3+3=11,当点F和点E重合时,点F 到点,,,B C D E的距离之和最大,为803617FB FE FD FC +++=+++=,故④错误.故选B.……○………………内………………○………………装………………○………………订………………○………………线………………○… 此卷只装订不密封……○………………外………………○………………装………………○………………订………………○………………线………………○…二、11.答案:两点确定一条直线 12.答案:80︒ 13.答案:1;3 14.答案:点动成线;线动成面 15.答案:4 16.答案:155︒ 17.答案:10012'︒ 18.答案:21;42 19.答案:45︒ 20.答案:30 三、21.答案:见解析解析:(1)324548212514''''''︒+︒=53706254112''''''︒=︒. (2)1123363'''︒⨯=3369108'''︒=341048'''︒. 22.答案:见解析 解析:如图.23.答案:见解析解析:解法一:因为N 为PB 的中点,所以2PB NB =.又知NB =0.8cm ,所以PB =2×0.8=1.6(cm ).所以 4.8 1.6 3.2AP AB PB =-=-=(cm ). 解法二:因为N是PB的中点,所以2PB NB=.而NB=0.8cm ,所以PB =2×0.8=1.6(cm ).因为M 为AB 的中点,所以12AM MB AB ==. 而AB =4.8cm ,所以AM BM ==2.4cm.又因为MP MB PB =-=2.4-1.6=0.8(cm ),所以AP AM MP =+=2.4+0.8=3.2(cm ).点拨:(1)把一条线段分成两条相等线段的点,叫做这条线段的中点. (2)线段中点的表达形式有三种,若点C 是线段AB 的中点,则①AC =BC ;②AB =2AC =2BC ;③12AC BC AB ==.熟悉它的表达形式对以后学习几何的推理论证有帮助. 24.答案:见解析解析:(1)北偏东70︒(2)因为∠AOB=40︒+15︒=55︒,∠AOB=∠AOC ,所以∠BOC=110︒.又因为射线OD 是OB 的反向延长线,所以∠BOD=180︒. 所以∠COD=180︒-110︒=70︒.又因为OE 平分∠COD ,所以∠COE=35︒. 又因为∠AOC=55︒, 所以∠AOE=55︒+35︒=90︒. 25.答案:见解析解析:由题意得该工件的形状为圆锥,圆锥的底面直径为6cm ,高为4cm ,所以圆锥的体积为()231(62)412cm 3ππ⨯÷⨯=.故此工件的体积为312cm π. 26.答案:见解析解析:(1)∠MON=∠MOC-∠NOC=12∠AOC-12∠BOC=12(∠AOC-∠BOC )=12∠AOB=45°.(2)∠MON=∠MOC-∠NOC=12∠AOC-12∠BOC=12AOC-∠BOC )=12∠AOB=12α.(3)∠MON=12α.理由:∠MON=∠MOC-∠NOC=111()222αββα+-=.…○………………内………………○………………装………………○………………订………………○………………线………………○…………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________人教版2024新版七年级数学上册 《第6章几何图形初步》单元测试及答案(满分:100分 时间:60分钟)题号 一 二 三 总分 分数一、选择题(每小题3分,共30分)1.已知1∠和2∠互为余角,且2∠与3∠互补,160∠=︒,则3∠为( ) A.120︒ B.60︒ C.30︒ D.150︒2.工人师傅在给小明家安装晾衣架时,一般先在阳台天花板上选取两个点,然后再进行安装.这样做的数学原理是( ) A.过一点有且只有一条直线 B.两点之间,线段最短C.连接两点之间的线段叫两点间的距离D.两点确定一条直线3.如图所示,点B 在点O 的北偏东60︒,射线OB 与射线OC 所成的角是110︒,则射线OC 的方向是( )A.北偏西30︒B.北偏西40︒C.北偏西50︒D.西偏北50︒ 4.小军将一个直角三角板(如图)绕它的一条直角边所在的直线旋转一周形成一个几何体,将这个几何体的侧面展开得到的大致图形是( )A. B. C. D.5.11点40分,时钟的时针与分针的夹角为( )A.140︒B.130︒C.120︒D.110︒ 6.如图为一个正方体纸盒的展开图,若在其中的三个正方形,,A B C 内分别填入适当的数,使得它们折成正方体.若相对的面上的两个数互为相反数,则填入正方形,,A B C 内的三个数依次为( )A.1,2,0-B.0,2,1-C.2,0,1-D.2,1,0 7.如图,将一副直角三角尺叠放在一起,使直角顶点重合于点O ,若28DOC ∠=︒,则AOB ∠的度数为()A.62︒B.152︒C.118︒D.无法确定8.某正方体的平面展开图如图所示,这个正方体可能是下面四个选项中的( )……○………………内………………○………………装………………○………………订………………○………………线………………○… 此卷只装订不密封……○………………外………………○………………装………………○………………订………………○………………线………………○…A. B. C. D.9.已知160,3AOB AOC AOB ∠=︒∠=∠,射线OD 平分BOC ∠,则COD ∠的度数为()A.20︒B.40︒C.20︒或30︒D.20︒或40︒ 10.如图,C 为线段AD 上一点,点B 为CD 的中点,且9,2AD BD ==.若点E 在直线AD 上,且1EA =,则BE 的长为( )A.4B.6或8C.6D.8 二、填空题(每小题3分,满分24分)11.为全面实施乡村电气化提升工程,改造升级农村电网,今从A 地到B 地架设电线,为了节省成本,工人师傅总是尽可能的沿着线段AB 架设,这样做的理由是__________.12.我国“神舟”十号载人飞船的成功发射,标志着我国航空航天事业已步入世界的领先水平,如图是“神舟”十号顺利变轨后的飞行示意图,用数学的观点解释图中飞船飞行后留下的弧形彩带现象:__________.13.如图是从不同的方向看一个物体得到的平面图形,该物体的形状是________.14.如图为某几何体的展开图,该几何体的名称是_________.15.一副三角尺按如图方式摆放,且1∠的度数比2∠的度数大50︒,则2∠的大小为________度.16.如图所示,,,A O B三点在同一条直线上,AOC ∠与AOD ∠互余,已知110BOC ∠=︒,则AOD ∠=________°.…○………………内………………○………………装………………○………………订………………○………………线………………○…………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________17.如图是由几个大小相同的小立方块搭成的几何体,搭成这个几何体需要10个小立方块,在保持从正面看和从左面看到的形状图不变的情况下,最多可以拿掉_______个小立方块.18.2021年是中国共产党成立100周年,小花打算设计一个正方体装饰品,她在装饰品的平面展开图的六个面上分别写下了“一百周年党庆”几个字.把展开图折叠成正方体后,与“年”字一面相对的面上的字是_________.三、解答题(共46分)19.(8分)如图,已知四点,,,A B C D .请用尺规作图完成(保留痕迹). (1)画直线AB ; (2)画射线AC ;(3)连接BC 并反向延长BC 到E ,使得2CB CE =; (4)画点P ,使PA PB PC PD +++的值最小.20.(6分)如果一个锐角的补角比这个角的余角的2倍还多40︒,那么这个角的余角是多少度?21.(8分)计算: (1)131********︒'-︒'''; (2)583827474240︒'''+︒'''; (3)342533542︒'⨯+︒'; (4)22533107455︒'⨯+︒'÷.22.(8分)如图,已知O 为直线AD 上一点,AOC ∠与AOB ∠互补,,OM ON 分别是,AOC AOB ∠∠的平分线,72MOC ∠=︒.(1)COD ∠与AOB ∠相等吗?请说明理由; (2)求AON ∠的度数.23.(8分)将一张长方形纸片按如图所示的方式折叠,EF 为折痕,点A 落在点G 处,EH 平分FEB ∠.(1)如图1,若EG 与EH 重合,求FEH ∠的度数; (2)如图2,若34FEG ∠=︒,求GEH ∠的度数;(3)如图3,若()FEG 6090αα∠=︒<<︒,求GEH ∠的度数(用α的式子表示).……○………………内………………○………………装………………○………………订………………○………………线………………○…此卷只装订不密封……○………………外………………○………………装………………○………………订………………○………………线………………○…24.(8分)(2021・广东期中)如图,P是线段AB上任一点,12AB=厘米,,C D 两点分别从,P B同时向A点运动,且C点的运动速度为2厘米/秒,D点的运动速度为3厘米/秒,运动的时间为t秒.(1)若8AP=厘米.①运动1秒后,求CD的长;②当D在线段PB上运动时,试说明2AC CD=;(2)如果2t=秒时,1CD=厘米,直接写出AP的值是_____厘米.参考答案1.答案:D2.答案:D3.答案:C4.答案:D5.答案:D6.答案:A7.答案:B8.答案:A9.答案:D 10.答案:B 11.答案:两点之间,线段最短12.答案:点动成线13.答案:圆锥14.答案:五棱柱15.答案:20 16.答案:20 17.答案:118.答案:党19.答案:见解析解析:(1)如图,直线AB即为所求.(2)如图,射线AC即为所求.(3)如图,线段CE即为所求,(4)如图,点P即为所求.20.答案:见解析解析:设这个角为x︒,则其余角为(90)x-︒,补角为(180)x-︒,所以1802(90)40x x-=-+,所以40x=,所以9050x-=.答:这个角的余角是50度.21.答案:见解析解析:(1)13128513215795545︒'-︒'''=︒''';(2)583827474240106217︒'''+︒'''=︒''';(3)342533542103153542︒'⨯+︒'=︒'+︒'13857=︒';(4)2253310745568392133︒'⨯+︒'÷=︒'+︒'9012=︒'.22.答案:见解析解析:(1)COD AOB∠=∠.理由如下:因为点O在直线AD上,所以180AOC COD∠+∠=︒,又因为AOC∠与AOB∠互补,所以180AOC AOB∠+∠=︒,所以COD AOB∠=∠;(2)因为,OM ON分别是,AOC AOB∠∠的平分线,…○………………内………………○………………装………………○………………订………………○………………线………………○…………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________所以12,2AOC COM AON AOB ∠=∠∠=∠,因为72MOC ∠=︒,所以2144AOC COM ∠=∠=︒, 所以18036AOB COD AOC ∠=∠=︒-∠=︒, 所以136182AON ∠=⨯︒=︒.23.答案:见解析解析:(1)由折叠可知AEF FEH ∠=∠,因为EH 平分FEB ∠,所以FEH BEH ∠=∠, 所以AEF FEH BEH ∠=∠=∠, 因为180AEF FEH BEH ∠+∠+∠=︒, 所以60FEH ∠=︒;(2)由折叠可知AEF FEG ∠=∠, 因为34FEG ∠=︒,所以34,18034146AEF FEB ∠=︒∠=︒-︒=︒, 因为EH 平分FEB ∠,所以1732FEH BEH FEB ∠=∠=∠=︒,所以733439GEH FEH FEG ∠=∠-∠=︒-︒=︒; (3)由折叠可知AEF FEG ∠=∠,因为FEG α∠=, 所以,180AEF FEB αα∠=∠=︒-,因为EH 平分FEB ∠,所以119022FEH BEH FEB α∠=∠=∠=︒-,所以13909022GEH FEG FEH ααα⎛⎫∠=∠-∠=-︒-=-︒⎪⎝⎭. 24.答案:见解析 解析:(1)①由题意可知:212(cm),313(cm)CP DB =⨯==⨯=,因为8cm,12cm AP AB ==, 所以4(cm)PB AB AP =-=,所以2433(cm)CD CP PB DB =+-=+-=, ②因为8,12AP AB ==,所以4,82BP AC t ==-, 所以43DP t =-,所以4324CD DP CP t t t =+=-+=-, 所以2AC CD =;(2)当2t =时,224(cm)CP =⨯=,326(cm)DB =⨯=, 当点D 在C 的右边时,如图所示: 由于1cm CD =,所以CB CD DB 7(cm)=+=, 所以5(cm)AC AB CB =-=, 所以9(cm)AP AC CP =+=,当点D 在C 的左边时,如图所示:所以6(cm)AD AB DB =-=, 所以11(cm)AP AD CD CP =++=, 综上所述,9AP =或11.答案为9或11.。
初一几何考试题及答案
初一几何考试题及答案一、选择题(每题2分,共10分)1. 下列哪个选项是线段的属性?A. 可度量B. 可延伸C. 可弯曲D. 可旋转答案:A2. 一个角的度数是90度,这个角被称为:A. 锐角B. 直角C. 钝角D. 周角答案:B3. 在平面几何中,两条直线相交于一点,这个点被称为:A. 顶点B. 交点C. 端点D. 极点答案:B4. 一个三角形的三个内角之和是:A. 90度B. 180度C. 360度D. 720度答案:B5. 一个圆的直径是10厘米,那么它的半径是:A. 5厘米B. 10厘米C. 15厘米D. 20厘米答案:A二、填空题(每题2分,共10分)1. 一个正方形的对角线长度是边长的______倍。
答案:√22. 一个等腰三角形的两个底角相等,如果一个底角是45度,那么顶角是______度。
答案:903. 一个圆的周长是62.8厘米,那么它的直径是______厘米。
答案:204. 如果一个角是30度,那么它的补角是______度。
答案:1505. 一个长方形的长是10厘米,宽是5厘米,那么它的面积是______平方厘米。
答案:50三、解答题(每题10分,共20分)1. 一个三角形的三个内角分别是x度、y度和z度,已知x度是y度的两倍,z度是x度的三分之一。
求x、y和z的值。
答案:设y度为a,则x度为2a,z度为2/3a。
根据三角形内角和定理,我们有:x + y + z = 1802a + a + 2/3a = 1805/3a = 180a = 108所以,x = 216度,y = 108度,z = 72度。
2. 一个圆的半径是7厘米,求它的周长和面积。
答案:周长= 2πr = 2 × 3.14 × 7 = 43.96厘米面积= πr² = 3.14 × 7² = 153.86平方厘米。
初中初一几何试题及答案
初中初一几何试题及答案
一、选择题
1. 下列哪个图形是轴对称图形?
A. 圆
B. 正方形
C. 等腰三角形
D. 所有选项
答案:D
2. 一个等边三角形的内角和是多少度?
A. 90°
B. 180°
C. 360°
D. 540°
答案:B
3. 如果一个平行四边形的对角线互相垂直,那么这个平行四边形是什么?
A. 矩形
B. 菱形
C. 正方形
D. 梯形
答案:B
二、填空题
4. 一个长方形的长是10厘米,宽是5厘米,那么它的周长是______厘米。
答案:30
5. 一个直角三角形的两条直角边长分别为3厘米和4厘米,那么它的斜边长是______厘米。
答案:5
6. 一个等腰三角形的顶角是30°,那么它的底角是______°。
答案:75
三、解答题
7. 已知一个圆的直径是14厘米,求这个圆的周长和面积。
答案:周长:44π厘米,面积:77π平方厘米。
8. 一个等腰梯形的上底是6厘米,下底是10厘米,高是4厘米,求这个等腰梯形的面积。
答案:24平方厘米。
9. 一个正五边形的每个内角是多少度?
答案:108°。
初一上册几何试题及答案
初一上册几何试题及答案一、选择题(每题3分,共30分)1. 一个角的补角是它的余角的3倍,则这个角的度数为()A. 30°B. 45°C. 60°D. 90°答案:C2. 两条平行线被第三条直线所截,同位角相等,内错角互补,下列说法正确的是()A. 同位角相等B. 内错角互补C. 同旁内角互补D. 以上说法都正确答案:D3. 一个多边形的内角和是外角和的3倍,则这个多边形的边数是()A. 4B. 6C. 8D. 10答案:B4. 一个角的补角比它的余角大90°,则这个角的度数为()A. 45°B. 60°C. 75°D. 90°答案:A5. 两条直线相交,对顶角相等,下列说法正确的是()A. 对顶角相等B. 邻补角相等C. 同位角相等D. 内错角相等答案:A6. 一个多边形的内角和是外角和的4倍,则这个多边形的边数是()A. 5B. 6C. 7D. 8答案:A7. 两条平行线被第三条直线所截,下列说法正确的是()A. 同位角相等B. 内错角相等C. 同旁内角互补D. 以上说法都正确答案:C8. 一个角的补角比它的余角大60°,则这个角的度数为()A. 30°B. 45°C. 60°D. 90°答案:B9. 两条直线相交,下列说法正确的是()A. 对顶角相等B. 邻补角相等C. 同位角相等D. 以上说法都正确答案:A10. 一个多边形的内角和是外角和的5倍,则这个多边形的边数是()A. 6B. 7C. 8D. 9答案:C二、填空题(每题3分,共30分)11. 一个角的补角是它的余角的2倍,则这个角的度数为 60°。
12. 两条平行线被第三条直线所截,同位角相等,内错角互补,同旁内角互补。
13. 一个多边形的内角和是外角和的2倍,则这个多边形的边数是 5 。
初一几何体试题及答案
初一几何体试题及答案一、选择题(每题2分,共10分)1. 下列几何体中,属于多面体的是:A. 球体B. 圆柱C. 圆锥D. 立方体答案:D2. 如果一个几何体有8个顶点和12条棱,那么它可能是:A. 立方体B. 正四面体C. 正八面体D. 正十二面体答案:A3. 正方体的每个面都是:A. 圆形B. 椭圆形C. 长方形D. 正方形答案:D4. 一个长方体的长、宽、高分别是a、b、c,那么它的体积是:A. abcB. a+b+cC. ab+bc+caD. a^2+b^2+c^2答案:A5. 一个正四面体的每个面都是:A. 等边三角形B. 等腰三角形C. 直角三角形D. 等腰直角三角形答案:A二、填空题(每题2分,共10分)6. 一个长方体的长为5厘米,宽为3厘米,高为2厘米,它的表面积是______平方厘米。
答案:627. 一个正方体的棱长为4厘米,它的体积是______立方厘米。
答案:648. 如果一个几何体的底面是一个正方形,且边长为x厘米,高为y厘米,那么它的体积是______立方厘米。
答案:xy^29. 一个圆锥的底面半径为r厘米,高为h厘米,它的体积是______立方厘米。
答案:πrh^2/310. 一个圆柱的底面半径为r厘米,高为h厘米,它的体积是______立方厘米。
答案:πr^2h三、简答题(每题5分,共10分)11. 描述一个正方体的特征。
答案:正方体是一个有6个面,每个面都是正方形的立体图形。
它的12条棱的长度相等,每个顶点连接3条棱。
12. 解释为什么球体不属于多面体。
答案:球体是一个连续的曲面,没有平面的面和棱,因此它不属于多面体。
多面体是由多个平面多边形面、直线棱和顶点组成的立体图形。
结束语:通过本试题的练习,同学们应该对初一几何体的基本概念和计算方法有了更深入的理解。
希望同学们能够继续努力,掌握更多的几何知识,为今后的学习打下坚实的基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精品文档
(1)
相交线与平行线练习题及答案一、填空题_______.=1=28°,则∠21.如图,直线AB、CD相交于点O,若∠
题第2第1题
度.,已知直线,,则 2.20CDE60∠ABE??∠CDAB∥?∠BED
. 度=
______、F,∠1=60°,则∠2、3.如图,已知AB∥CD,EF分别交ABCD于
点E
AM BN P第3题第4题
4.如图,直线MA∥NB,∠A=70°,∠B=40°,则∠P=_____.
5.设、b、c为平面上三条不同直线,a(1)若,则a与c的位置关系是_________;c,b//a//b(2)若,则a与c的位置关系是_________;c?a?b,b(3)若,,则a 与c的位置关系是________.cbb?a//
6.如图,填空:
⑴∵(已知)A??1?∴_____________()
⑵∵(已知)B2???∴_____________()
⑶∵(已知)D??1?∴______________()第6题
二、解答题
7.如图,与是邻补角,OD、OE分别是与的平分线,试判断
ODBOC??AOC??BOCAOC与OE的位置关系,并说明理由.
精品文档.
精品文档
BOC,求∠∠COEO,若∠DOE=3与CD交于点O,OE⊥AB,垂足为8.如图,已知直线AB 的度数.
.如图,直线,求证:9.ba//2??1?
BCE有什么关系.E,试问∠B、∠、∠10.如图,AB∥DE
BCE =∠解:∠B+∠E ,作CF∥AB过点C )____则(?B?? CFAB∥,又∵AB∥DE,)∴____________
(
)(∴∠E=∠____2 1+∠B+∠E=∠∴∠.+∠E=∠BCE 即∠B .AB∥DE、∠10题图,当∠B、∠EBCE有什么关系时,有11.如第
、∠D有什么关系?,那么∠AB∥DEB、∠BCD12如图,
=__+∠5=____。
∠3+∠450b∥,∠1=28°,∠2=°,则∠3913、如图,直线a _。
)14、若两条平行线被第三条直线所截得的八个角中,有一个角的度数已知,则(
只能求出其余5个角的度数个角的度数只能求出其余3B A
个角的度数D只能求出其余7只能求出其余C6个角的度数EGF则∠EFG,若∠=40°,FEBEGCDAB15、如图,已知∥,平分∠E精品文档BADCGF.
精品文档)=(
°°D90B70°C80A60°P,则点3,PC=5上的三点,P为直线a外一点,若PA=2,PB=16、设A、B、C是直线a )到直线a的距离(。
D不大于2小于2C不小于2A等于2 B
17、两条直线被第三条直线所截,则()BA内错角的对顶角相等A同位角的邻补角相等B
周角同位角一定不相等D两对同旁内角的和一定等于一个C DC)CAB互余的角有(如图,AB∥CD,AC⊥BC,图中与∠18、°)4个(提示:三角形内角和为180个C3个D A1个B2(填空并在后面的括号中填理。
求证:CD∥EF19、如图,已知∠AGD=∠ACB,∠1=∠2 由))(证明:∵∠AGD=∠ACB A)∴DG∥____()∴∠3=____(
DG)=∠2(∵∠11E=____(等量代换)∴∠3 )
∴___∥___(23CBF是否平分∠ABC?为什么?,∠2=∠3。
BE20、如图,已知∠1=∠C
A
1ED23CB C∥DE于G,DG∥AC交AB、如图,∠A=60°,DF⊥AB于F,211的度数。
求∠GDFEAB交AC于DE2)解:∵DF⊥AB(
)∴∠DFA=90°(
A)(∵DE∥AB FGB____=∴∠1=_)(
DFA
°-∠EDF=180∠)°90°=90(°-=180 )∥AC(DG∵)
(∴∠2=____=____
=∴∠GDF。
BA+∠=∠=∠=∠2B。
∴∠ACD1+∠2,∠=∠,∴∠∥、阅读:如图①,
22CEAB1A内引一条和边平行的直线,这是一个有用的事实,请用这个事实在
图②的四边形ABCD 的度数。
+∠+∠+∠求出∠ABCD精品文档.
精品文档
D AAE
12BDBCC,BC如图,已知四边形ABCD中,AD∥23、图②图①=∠BA=∠C,
∠∥ABDC,试说明∠。
D DA
BC。
D。
试说明FD∥BC24、如图,已知∠A=∠1,∠C=∠A E1DF2
CB上两点。
D为直线aCA、B为直线b上两点,、b25、如图,直线a∥,)请
写出图中面积相等的三角形;(1
点移动到何处,总有__a上移动,那么无论DB、C为三个定点,点D在(2)
若A、的面积相等。
理由是_______________________
_与△ABC _。
平分∠ADE=∠1,EFD,⊥BC于F,∠BC如图,26、已知AD⊥于说明理由。
BAC吗?若平分,请写出推理过程;若不平分,试E
A1《垂线》练习题) 100分检测时间50分钟满分(BCDF姓名
___________________ 班级____
_______________ 得分) 分分3,共18每小题一、选择题:(( ) ,1 1.如图所示下列说法不正确的是精品文档.
精品文档AC AB的垂线段是线段的垂线段是线段AB; B.点C到 A.点B到AC 的垂线段BD是点B到ADC.线段AD是点D到BC的垂线段;
D.线段AAADDCOCBBCDB
(1) (2) (3)
2.如图1所示,能表示点到直线(线段)的距离的线段有( )
A.2条
B.3条
C.4条
D.5条
3.下列说法正确的有( )
①在平面内,过直线上一点有且只有一条直线垂直于已知直线;
②在平面内,过直线外一点有且只有一条直线垂直于已知直线;
③在平面内,过一点可以任意画一条直线垂直于已知直线;
④在平面内,有且只有一条直线垂直于已知直线.
A.1个
B.2个
C.3个
D.4个
4.如图2所示,AD⊥BD,BC⊥CD,AB=acm,BC=bcm,则BD的范围是( )
A.大于acm
B.小于bcm
C.大于acm或小于bcm
D.大于bcm且小于acm
5.到直线L的距离等于2cm的点有( )
A.0个
B.1个;
C.无数个
D.无法确定
6.点P为直线m外一点,点A,B,C为直线m上三
点,PA=4cm,PB=5cm,PC=2cm,则点P到直线m的距离为( )
A.4cm
B.2cm;
C.小于2cm
D.不大于2cm
精品文档.
精品文档)
12分共:(每小题3分,二、填空题,?_______,此时与直线CD的位置关系是_______,记作 1.如图3所示,直线AB. _______=90°
_______=∠_______=∠∠AO D=∠. 直线与已知直线垂直过一点有且只有 2.________. 的垂线画一条线段或射线的垂线,就是画它们________ 3.. 叫做点到直线的距离 4.直线外一点到这条直线的_________,)
分(共15三、训练平台:,?∠AOE=70°且O,OG平分∠BOF,CD⊥EF,如图所示 ,直线AB,CD,EF交于点.
求∠DOG的度数EDOABCGF
A)
15分四、提高训练:(共, 要从河流村庄AL引水入庄如图所示,l
.
,请你画出修筑水渠的路线图需修筑一水渠
)
:(共20分五、探索发现1. 是∠AOC=AB6如图所示,O为直线上一点,∠∠BOC,OCAOD的平分线3.
,ABOD;(2)COD (1)求∠的度数判断与的位置关系并说明理由DCBAO
精品文档.
精品文档
六、中考题与竞赛题:(共20分)
(2001.杭州)如图7所示,一辆汽车在直线形的公路AB上由A向B行驶,M,N?分别是位于公路AB两侧的村庄,设汽车行驶到P点位置时,离村庄M最近,行驶到Q点位置时,?离村庄N最近,请你在AB上分别画出P,Q两点的位置.
M AB N
答案:
一、1.C 2.D 3.C 4.D 5.C 6.D
二、1.垂直 AB⊥CD DOB BOC COA 2.一条 3.所在直线
4.?垂线段的长度
三、∠DOG=55°
四、解:如图3所示.
精品文档.
精品文档
A l
,
∠AOC+BOC=∠AOB=180°五、解:(1)∵∠
1, BOC+∠BOC=180 ∴°∠3
4, 80°∴∠BOC=?13, °°∴∠BOC=135,∠AOC=45
, OC又∵是∠AOD的平分线
.? COD=°∠AOC=45∴∠
,
°∠(2)∵∠AOD=AOC+∠COD=90
AB.
∴⊥OD
.
: 六、解如图所示4精品文档.精品文档
M
QBAPN
精品文档.。