第一章质点运动学_习题及答案
大学物理二习题答案与详解第01章 质点运动学习题详解.
习题一一、选择题1. 质点沿轨道AB 作曲线运动,速率逐渐减小,图中哪一种情况正确地表示了质点在C[ ]错误!(A) (B) (C) (D) 答案:C解:加速度方向只能在运动轨迹内侧,只有[B]、[C]符合;又由于是减速运动,所以加速度的切向分量与速度方向相反,故选(C )。
2. 一质点沿x 轴运动的规律是245x t t =-+(SI 制)。
则前三秒内它的 [ ] (A )位移和路程都是3m ;(B )位移和路程都是-3m ; (C )位移是-3m ,路程是3m ; (D )位移是-3m ,路程是5m 。
答案:D 解:3253t t x xx==∆=-=-=-24dx t dt =-,令0dxdt=,得2t =。
即2t =时x 取极值而返回。
所以: 022*********|||||||||15||21|5t t t t S S S x x x x x x ----=====+=+=-+-=-+-=3. 一质点的运动方程是cos sin r R ti R tj ωω=+,R 、ω为正常数。
从t =/πω到t =2/πω时间内(1)该质点的位移是 [ ](A ) -2R i ; (B )2R i; (C ) -2j ; (D )0。
(2)该质点经过的路程是 [ ](A )2R ; (B )R π; (C )0; (D )R πω。
答案:B ;B 。
解:(1)122,t t ππωω==,21()()2r r t r t Ri ∆=-=; (2)∆t 内质点沿圆周运动了半周,故所走路程为πR 。
或者:,x y dx dy v v dt dt==,21,t t v R S vdt R ωπ====⎰4. 一细直杆AB ,竖直靠在墙壁上,B 端沿水平方向以速度v滑离墙壁,则当细杆运动到图示位置时,细杆中点C 的速度 [ ](A )大小为/2v ,方向与B 端运动方向相同;(B)大小为/2v ,方向与A 端运动方向相同; (C )大小为/2v , 方向沿杆身方向;(D )大小为/(2cos )v θ ,方向与水平方向成θ角。
大学物理第一章质点运动学习题解(详细、完整)
第一章 质点运动学1–1 描写质点运动状态的物理量是 。
解:加速度是描写质点状态变化的物理量,速度是描写质点运动状态的物理量,故填“速度”。
1–2 任意时刻a t =0的运动是 运动;任意时刻a n =0的运动是 运动;任意时刻a =0的运动是 运动;任意时刻a t =0,a n =常量的运动是 运动。
解:匀速率;直线;匀速直线;匀速圆周。
1–3 一人骑摩托车跳越一条大沟,他能以与水平成30°角,其值为30m/s 的初速从一边起跳,刚好到达另一边,则可知此沟的宽度为 ()m/s 102=g 。
解:此沟的宽度为m 345m 1060sin 302sin 220=︒⨯==g R θv1–4 一质点在xoy 平面内运动,运动方程为t x 2=,229t y -=,位移的单位为m ,试写出s t 1=时质点的位置矢量__________;s t 2=时该质点的瞬时速度为__________,此时的瞬时加速度为__________。
解:将s t 1=代入t x 2=,229t y -=得2=x m ,7=y ms t 1=故时质点的位置矢量为j i r 72+=(m )由质点的运动方程为t x 2=,229t y -=得质点在任意时刻的速度为m/s 2d d ==t x x v ,m/s 4d d t tx y -==v s t 2=时该质点的瞬时速度为j i 82-=v (m/s )质点在任意时刻的加速度为0d d ==ta x x v ,2m/s 4d d -==t a y y v s t 2=时该质点的瞬时加速度为j 4-m/s 2。
1–5 一质点沿x 轴正向运动,其加速度与位置的关系为x a 23+=,若在x =0处,其速度m/s 50=v ,则质点运动到x =3m 处时所具有的速度为__________。
解:由x a 23+=得x xt x x t 23d d d d d d d d +===v v v v 故x x d )23(d +=v v积分得⎰⎰+=305d )23(d x x v v v则质点运动到x =3m 处时所具有的速度大小为 61=v m/s=7.81m/s ;1–6 一质点作半径R =1.0m 的圆周运动,其运动方程为t t 323+=θ,θ以rad 计,t 以s 计。
《大学物理》各章练习题及答案解析
《大学物理》各章练习题及答案解析第1章 质点运动学一、选择题:1.以下五种运动中,加速度a保持不变的运动是 ( D ) (A) 单摆的运动。
(B) 匀速率圆周运动。
(C) 行星的椭圆轨道运动。
(D) 抛体运动。
(E) 圆锥摆运动。
2.下面表述正确的是( B )(A)质点作圆周运动,加速度一定与速度垂直; (B) 物体作直线运动,法向加速度必为零; (C)轨道最弯处法向加速度最大; (D)某时刻的速率为零,切向加速度必为零。
3.某质点做匀速率圆周运动,则下列说法正确的是( C )(A)质点的速度不变; (B)质点的加速度不变 (C)质点的角速度不变; (D)质点的法向加速度不变4.一运动质点在某瞬时位于矢径()y x r , 的端点处,其速度大小为( D )()()(()22⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛dt dy dt dx D C dtrd B dt drA5. 一质点在平面上运动,运动方程为:j t i t r222+=,则该质点作( B )(A)匀速直线运动 (B)匀加速直线运动(C)抛物线运动 (D)一般曲线运动6.一质点做曲线运动,r 表示位置矢量,v 表示速度,a表示加速度,s 表示路程,a t 表示切向加速度,对下列表达式,正确的是( B )(A)dt dr v = (B) dt ds v = (C) dtdv a = (D) dt vd a t=7. 某质点的运动方程为 3723+-=t t X (SI ),则该质点作 [ D ](A)匀加速直线运动,加速度沿 x 轴正方向; (B)匀加速直线运动,加速度沿 x 轴负方向; (C)变加速直线运动.加速度沿 x 轴正方向; (D)变加速直线运动,加速度沿 x 轴负方向8.一质点沿x 轴运动,其运动方程为()SI t t x 3235-=,当t=2s 时,该质点正在( A )(A)加速 (B)减速 (C)匀速 (D)静止1.D2. B3. C4.D5.B ,6B ,7A 8 A二 、填空题1. 一质点的运动方程为x =2t ,y =4t 2-6t ,写出质点的运动方程(位置矢量)j t t i t r)64(22-+=,t =1s 时的速度j i v22+=,加速度j a 8=,轨迹方程为x x y 32-=。
大学物理-质点运动学(答案)
第一章 力和运动(质点运动学)一. 选择题:[ B ]1、一质点沿x 轴作直线运动,其v t 曲线如图所示,如t =0时,质点位于坐标原点,则t = s 时,质点在x 轴上的位置为(A) 5m . (B) 2m .(C) 0. (D) 2 m .(E) 5 m.(1 2.5)22(21)122()x m =+⨯÷-+⨯÷=提示:[ C ]2、如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动.设该人以匀速率0v 收绳,绳不伸长、湖水静止,则小船的运动是 (A) 匀加速运动. (B) 匀减速运动.(C) 变加速运动. (D) 变减速运动. (E) 匀速直线运动. 提示:如图建坐标系,设船离岸边x 米,222l h x =+22dl dxlxdt dt= 22dx l dl x h dldt x dt x dt+==0dlv dt=- 220dx h x v i v i dt x +==-rr r2203v h dv dv dxa i dt dx dt x==⋅=-r rr r[ D ]3、一运动质点在某瞬时位于矢径()y x r ,ϖ的端点处, 其速度大小为1 4.5432.52-112t (s)v (m/s)v ϖxo(A) t r d d (B) tr d d ϖ(C) t rd d ϖ (D) 22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x提示:22, dx dy dx dy v i j v dt dt dt dt ⎛⎫⎛⎫⎛⎫=+∴=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭r r v[ B ]4、质点沿半径为R 的圆周作匀速率运动,每T 秒转一圈.在2T 时间间隔中,其平均速度大小与平均速率大小分别为(A) 2R /T , 2R/T . (B) 0 , 2R /T(C) 0 , 0. (D) 2R /T , 0.提示:平均速度大小:0rv t∆==∆v r 平均速率:2s R v t T∆==∆π [ B ]5、在相对地面静止的坐标系内,A 、B 二船都以2 m/s 速率匀速行驶,A 船沿x 轴正向,B 船沿y 轴正向.今在A 船上设置与静止坐标系方向相同的坐标系(x 、y 方向单位矢用i ϖ、j ϖ表示),那么在A 船上的坐标系中,B 船的速度(以m/s 为单位)为(A) 2i ϖ+2j ϖ. (B) 2i ϖ+2j ϖ. (C) -2i ϖ-2j ϖ. (D) 2i ϖ-2j ϖ.提示:2(2)B A B A v v v j i →→→=+=+-r r r r r地地[ D ]6、某人骑自行车以速率v 向西行驶,今有风以相同速率从北偏东30o方向吹来,人感到风从哪个方向吹来(A)北偏东30 (B)北偏西60 (C) 北偏东60 (D) 北偏西30提示:根据v r 风对人=v r 风对地+v r地对人,三者的关系如图所示:这是个等边三角形,∴人感到风从北偏西300方向吹来。
大学物理(上册)课后习题及答案
因此有: ,∴
⑵由 得: ,两边积分得:
∴
⑶质点停止运动时速度为零, ,即t→∞,
故有:
⑷ 时,其速度为: ,
即速度减至 的 .
2.13作用在质量为10 kg的物体上的力为 N,式中 的单位是s,⑴求4s后,这物体的动量和速度的变化,以及力给予物体的冲量。⑵为了使这力的冲量为200 N·s,该力应在这物体上作用多久,试就一原来静止的物体和一个具有初速度 m/s的物体,回答这两个问题。
将 ,及 代入上式,即得: 。
6.9沿绳子传播的平面简谐波的波动方程为 =0.05cos(10 ),式中 , 以米计, 以秒计。求:
⑴设 =100 N,问可使飞轮在多长时间内停止转动?在这段时间里飞轮转了几转?⑵如果在2s内飞轮转速减少一半,需加多大的力 ?
解:⑴先作闸杆和飞轮的受力分析图(如图(b))。图中 、 是正压力, 、 是摩擦力, 和 是杆在 点转轴处所受支承力, 是轮的重力, 是轮在 轴处所受支承力。
杆处于静止状态,所以对 点的合力矩应为零,设闸瓦厚度不计,则有:
解:因为
将以上初值条件代入上式,使两式同时成立之值即为该条件下的初位相。故有: ,
,
5.9一质量为 的物体作谐振动,振幅为 ,周期为 ,当 时位移为 。求:
⑴ 时,物体所在的位置及此时所受力的大小和方向;
⑵由起始位置运动到 处所需的最短时间;
⑶在 处物体的总能量。
解:由题已知 ,∴
又, 时,
故振动方程为:
⑴将 代入得:
方向指向坐标原点,即沿 轴负向。
⑵由题知, 时, ; 时,
∴
⑶由于谐振动中能量守恒,故在任一位置处或任一时刻的系统的总能量均为:
(完整版)大学物理01质点运动学习题解答
第一章质点运动学一选择题1.以下说法中,正确的选项是:()A.一物体若拥有恒定的速率,则没有变化的速度;B.一物体拥有恒定的速度,但仍有变化的速率;C.一物体拥有恒定的加快度,则其速度不行能为零;D. 一物体拥有沿x 轴正方向的加快度而有沿x 轴负方向的速度。
解:答案是 D。
2.长度不变的杆 AB,其端点 A 以 v0匀速沿 y 轴向下滑动, B 点沿 x 轴挪动,则 B 点的速率为:()A . v0 sinB .v0 cos C.v0 tan D.v0 / cos解:答案是 C。
简要提示:设 B 点的坐标为 x, A 点的坐标为 y,杆的长度为l,则x2y2l 2对上式两边关于时间求导:dx dy0,因dxv,dyv0,所以2 x 2 ydtdt dt dt2xv2yv0 = 0即v=v0 y/x =v0tan所以答案是 C。
3.如图示,路灯距地面高为 H,行人身高为 h,若人以匀速 v 背向路灯行走,灯y人头A H vv0hθvx影sB选择题 3图选择题 2图则人头影子挪动的速度u 为()H h Hv h HA.vB.H H h H h 解:答案是 B 。
简要提示:设人头影子到灯杆的距离为 x ,则x s h , x Hs , x H H hdx H ds HvuH h dt Hdt h所以答案是 B 。
4. 某质点作直线运动的运动学方程为x = 3t-5t 3 + 6 (SI),则该质点作A. 匀加快直线运动,加快度沿 x 轴正方向.B. 匀加快直线运动,加快度沿 x 轴负方向.C. 变加快直线运动,加快度沿 x 轴正方向.D. 变加快直线运动,加快度沿x 轴负方向.()解: 答案是 D5. 一物体从某一确立高度以v 0 的初速度水平抛出,已知它落地时的速度为v t ,那么它的运动时间是: ()v t - v 0v t v 0v t2 22v v 0 v t A.B.C.gD.2 gg2 g解:答案是 C 。
(完整版)大学物理课后习题答案详解
第一章质点运动学1、(习题1.1):一质点在xOy 平面内运动,运动函数为2x =2t,y =4t 8-。
(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。
解:(1)由x=2t 得,y=4t 2-8 可得: y=x 2-8 即轨道曲线 (2)质点的位置 : 22(48)r ti t j =+- 由d /d v r t =则速度: 28v i tj =+ 由d /d a v t =则加速度: 8a j =则当t=1s 时,有 24,28,8r i j v i j a j =-=+= 当t=2s 时,有 48,216,8ri j v i j a j =+=+=2、(习题1.2): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时速度为0v ,求运动方程)(t x x =.解:kv dt dv-= ⎰⎰-=t vv kdt dv v 001 tk e v v -=0t k e v dtdx-=0 dt ev dx tk tx-⎰⎰=000)1(0t k e kv x --=3、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速度v 0 = 0.试求其位置和时间的关系式. 解: =a d v /d t 4=t d v 4=t d t ⎰⎰=vv 0d 4d tt t v 2=t 2v d =x /d t 2=t 2t t x txx d 2d 020⎰⎰= x 2= t 3 /3+10 (SI)4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求:(1)小球的运动方程;(2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的d d r t ,d d v t ,tv d d . 解:(1) t v x 0= 式(1)2gt 21h y -= 式(2) 201()(h -)2r t v t i gt j =+(2)联立式(1)、式(2)得 22v 2gx h y -=(3)0d -gt d rv i j t = 而落地所用时间 gh2t = 所以 0d -2gh d r v i j t =d d v g j t=- 2202y 2x )gt (v v v v -+=+= 2120212202)2(2])([gh v gh g gt v t g dt dv +=+=5、 已知质点位矢随时间变化的函数形式为22r t i tj =+,式中r 的单位为m ,t 的单位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。
第01章(质点运动学)习题答案
思 考 题1-1 什么是矢径?矢径和对初始位置的位移矢量之间有何关系?怎样选取坐标原点才能够 使两者一致?答:矢径即位置矢量,是从坐标原点O 指向质点所在处P 的有向线段。
位移 r vD 和矢径r v不同,矢径确定某一时刻质点的位置,位移则描述某段时间内始未质点位置的变化。
矢径是相对坐标原点的,位移矢量是相对初始位置的。
对于相对静止的不同坐标系来说,位矢依 赖于坐标系的选择,而位移则与所选取的坐标系无关。
若取初始位置为坐标原点才能够使两 者一致。
1-2 在下列各图中质点 M 作曲线运动,指出哪些运动是不可能的?答:(A) 质点只要作曲线运动,肯定有法向加速度,不可能加速度为零。
(C) 在质点作曲线运动时,加速度的方向总是指向轨迹曲线凹的一侧。
(D) 质点只要作曲线运动,肯定有法向加速度,不可能只有切向加速度。
1-3 下列说法哪一条是正确的?(A) 加速度恒定不变时,物体运动方向也不变. (B) 平均速率等于平均速度的大小.(C) 不管加速度如何,平均速率表达式总可以写成 ( ) 2 / 2 1 v v v += ,其中 v 1、v 2 分 别为初、末速率.(D) 运动物体速率不变时,速度可以变化.答:加速度恒定不变时,意味着速度的大小和方向的变化是恒定的。
不是物体运动方向 不变。
平均速率不等于平均速度的大小。
若速率的变化是线性的(加速度恒定)平均速率表 达式才可以写成 ( ) 2 / 2 1 v v v + = , 否则不可以。
只有运动物体速率不变时, 速度可以变化. 才 是正确的。
1-4 如图所示,质点作曲线运动,质点的加速度 a 是恒矢量(a 1=a 2=a 3=a ).试问质点是否能作匀变速率运动? 答:质点作匀变速率运动要求切向加速度是恒量,如图 所示, 质点作曲线运动, 质点的加速度 a 是恒矢量(a 1=a 2=a 3=a) 则切向分量不一样,质点不能作匀变速率运动。
1-5 以下五种运动形式中,加速度 a 保持不变的运动是哪一a 3M 1M 2M 3a 3a 3思考题 1-4图aMMMvva =0 (A)(B)(C)(D)a vM av思考题 1-2图种或哪几种?(A) 单摆的运动. (B) 匀速率圆周运动.(C) 行星的椭圆轨道运动. (D) 抛体运动. (E) 圆锥摆运动.答:加速度a 保持不变(意味加速度 a 的大小和方向都保持不变)的运动是抛体运动。
大学物理上册第一章 质点运动学 习题及答案
第一章 质点运动学一、简答题1、运动质点的路程和位移有何区别?答:路程是标量,位移是矢量;路程表示质点实际运动轨迹的长度,而位移表示始点指向终点的有向线段。
2、质点运动方程为()()()()k t z j t y i t x t r ++=,其位置矢量的大小、速度及加速度如何表示? 答:()()()t z t y t x r 222r ++==()()()k t z j t y i t xv ++= ()()()k t z j t y i t x a ++=3、质点做曲线运动在t t t ∆+→时间内速度从1v 变为到2v ,则平均加速度和t时刻的瞬时加速度各为多少? 答:平均加速度 t v v a ∆-=12 ,瞬时加速度()()dt v d t v v a t t lim t 120 =∆-=→∆4、画出示意图说明什么是伽利略速度变换公式? 其适用条件是什么?答:牵连相对绝对U V +=V ,适用条件宏观低速5、什么质点? 一个物体具备哪些条件时才可以被看作质点?答:质点是一个理想化的模型,它是实际物体在一定条件下的科学抽象。
条件:只要物体的形状和大小在所研究的问题中属于无关因素或次要因素,物体就能被看作质点。
二、选择题1、关于运动和静止的说法中正确的是 ( C )A 、我们看到的物体的位置没有变化,物体一定处于静止状态B 、两物体间的距离没有变化,两物体就一定都静止C 、自然界中找不到不运动的物体,运动是绝对的,静止是相对的D 、为了研究物体的运动,必须先选参考系,平时说的运动和静止是相对地球而言的2、下列说法中正确的是 ( D )A 、物体运动的速度越大,加速度也一定越大B 、物体的加速度越大,它的速度一定越大C 、加速度就是“加出来的速度”D 、加速度反映速度变化的快慢,与速度大小无关3、质点沿x 轴作直线运动,其t v-曲线如图所示,如s t 0=时,质点位于坐标原点,则s .t 54=时,质点在x 轴的位置为 ( B )A 、5 mB 、2 mC 、0 mD 、-2 m4、质点作匀速率圆周运动,则 ( B )A 、线速度不变B 、角速度不变C 、法向加速度不变D 、加速度不变5、质点作直线运动,某时刻的瞬时速度为s /m v 2=,瞬时加速度为22s /m a -=,则一秒钟后质点的速度 ( D )A 、等于0B 、等于s /m 2-C 、等于s /m 2D 、不能确定6、质点作曲线运动,r 表示位置矢量的大小,s 表示路程,z a 表示切向加速度的大小,v 表示速度的大小。
大学物理B习题及答案
(A) 67 J. (B) 17 J. (C) 67 J. (D) 91 J. 4、速度为 v 的子弹,打穿一块不动的木板后速度变为零,设木板对子弹的阻力是恒定的.那么,
当子弹射入木板的深度等于其厚度的一半时,子弹的速度是[ ]
(A) 1 v . 4
(B) 1v . (C) 1 v .
3
2
(D) 1 v . 2
。
2、一质点沿半径为 R 的圆周运动,运动方程为 3 2t2 (SI),则 t 时刻质点的法向加速度大小
为 an =____________;切向加速度 at =______________。
-1-
3、质点沿 x 轴方向运动,速度与时间的关系为 v 3 t(m / s) ,如果初始时刻质点在 x 4m 处,
(D) 变加速直线运动,加速度沿 x 轴负方向.
3、已知质点的位矢与时间的变化关系为
r
(2t
3)i
t2
j
(SI),当
t=1s
时,速度与加速度的大
小分别为[ ]
(A) 2 2m / s , 2m / s2
(B) 2 2m / s ,0
(C) 2 2m / s ,1m / s2
(D) 2m / s , 2m / s2
1 2
kx 2
1 2
(m1
m2 )2 2
(1) (3)
联立(1) (2) (3),可解得 m1 与 m2 碰后速度
2
m1 m1
2gh m2
弹簧所受的最大压力: F kx m1
2 ghk m1 m2
第三章 刚体的转动
一、选择题 1、一轻绳跨过一具有水平光滑轴质量为 M 的定滑轮,绳的两端分别悬 m1 , m2 的物体( m1 m2 ),轻绳不可伸缩且与滑轮间无相对滑动,若
大学物理第一章 质点运动学-习题及答案
第一章 质点运动学1-1 一质点在平面上运动,已知质点位置矢量的表示式为j i r 22bt at += (其中b a ,为常量) 则该质点作(A )匀速直线运动 (B )变速直线运动(C )抛物线运动 (D )一般曲线运动 [B]解:由j i rv bt at t 22d d +==知 v 随t 变化,质点作变速运动。
又由x aby bt y at x =⎪⎭⎪⎬⎫==22 知质点轨迹为一直线。
故该质点作变速直线运动。
1-2 质点作曲线运动,r 表示位置矢量,s 表示路程,t a 表示切向加速度,下列表达式中,① a t v =d ② v t r =d ③ v t s =d d ④ t a t =d d v (A )只有(1)、(4)是对的。
(B )只有(2)、(4)是对的。
(C )只有(2)是对的。
(D )只有(3)是对的。
[D]解:由定义:t vt a d d d d ≠=v ; t r t s t v d d d d d d ≠==r ; t t v a d d d d v ≠=τ只有③正确。
1-3 在相对地面静止的坐标系内,A 、B 二船都以21s m -⋅的速率匀速行驶,A 船沿x 轴正向,B 船沿y 轴正向。
今在A 船上设置与静止坐标系方向相同的坐标系(x ,y 方向单位矢用j i ,表示),那么在A 船上的坐标系中,B 船的速度(以1s m -⋅为单位)为(A )j i 22+ (B )j i 22+-(C )j i 22-- (D )j i 22- [B]解:由i v 2=对地A ,j v 2=对地B 可得 A B A B 地对对地对v v v +=⎰对地对地A B v v -=i j 22-=j i 22+-= (1s m -⋅)1-4 一质点沿x 方向运动,其加速度随时间变化关系为)SI (23t a +=如果初始时质点的速度0v 为51s m -⋅,则当t 为3s 时,质点的速度1s m 23-⋅=v解:⎰+=tta v v 00d13s m 23d )23(5-⋅=++=⎰tt1-5 一质点的运动方程为SI)(62t t x -=,则在t 由0至4s 的时间间隔内,质点的位移大小为 8m ,在t 由0到4s 的时间间隔内质点走过的路程为 10m 。
第一章 质点运动学习题答案
第一章 质点运动学习题答案 1-1 质点做直线运动,运动方程为2126x t t =-其中t 以s 为单位,x 以m 为单位,求:(1)t =4s 时,质点的位置、速度和加速度;(2)质点通过原点时的速度;(3)质点速度为零时的位置;(4) 做出x -t 图、v -t 图、a -t 图.解:(1) 根据直线运动情况下的定义,可得质点的位置、速度和加速度分别为 2126x t t =- (1) 1212dxv t dt==- (2) 2212d xa dt==- (3)当t =4s 时,代入数字得:48x =-m 36v =-m/s 12a =-m/s 2 (2)当质点通过原点时,x =0,代入运动方程得:2126t t -=0 解得:120,2t t ==,代入(2)式得: 112v =m/s 2v =-12m/s(3) 将0v =代入(2)式,得12120t -= 解得:1t =s 代入(1)式得:x =12m -6m=6m 1.2一质点在xOy 平面上运动,运动方程为x =3t +5, y =21t 2+3t -4. 式中t 以 s 计,x ,y 以m 计.(1)以时间t 为变量,写出质点位置矢量的表示式;(2)求出t =1 s 时刻和t =2s 时刻的位置矢量,计算这1秒内质点的位移;(3)计算t =0s 时刻到t =4s 时刻内的平均速度;(4)求出质点速度矢量表示式,计算t =4s 时质点的速度;(5)计算t =0s 到t =4s 内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算t =4s 时质点的加速度.解:(1) j t t i t r)4321()53(2-+++=m(2)将1=t ,2=t 代入上式即有j i r5.081-= mj j r4112+=m j j r r r5.4312+=-=∆m(3)∵ j i r j j r1617,4540+=-=∴ 104s m 534201204-⋅+=+=--=∆∆=j i ji r r t r v(4) 1s m )3(3d d -⋅++==j t i trv则 j i v 734+= 1s m -⋅(5)∵ j i v j i v73,3340+=+=204s m 1444-⋅==-=∆∆=j v v t v a(6) 2s m 1d d -⋅==j tva这说明该点只有y 方向的加速度,且为恒量.1-4 一质点沿一直线运动,其加速度为2a x =-,式中x 的单位为m ,a 的单位为m/s 2,试求该质点的速度v 与位置坐标x 之间的关系.设0x =时,0v =4m/s 解:依题意2dv dv dx dv a v x dt dx dt dx====- 02xv v xdx vdv -=⎰⎰积分得 22201()2x v v -=-v ==1-5质点沿直线运动,加速度24a t =-,如果当t =3时,9x =,2v =,求质点的运动方程. (其中a 以m/s 2为单位,t 以s 为单位,x 以m 为单位,v 以m/s 为单位) 解:加速度表示式对t 积分,得30143v adt t t v ==-++⎰42001212x vdt t t v t x ==-+++⎰ 将t =3s ,x =9m ,2v =m/s 代入以上二式,得积分常数01v =-m/s ,0x =0.75m ,则3421413120.7512v t t x t t t =-+-=-+-+1-6 当物体以非常高的速度穿过空气时,由空气阻力产生的反向加速度大小与物体速度的平方成反比,即2a kv =-,其中k 为常量. 若物体不受其他力作用沿x 方向运动,通过原点时的速度为0v ,试证明在此后的任意位置x 处其速度为0kxv v e -=.解:根据加速度定义得:2dv a kv dt ==-,因dv dv dx dv a v dt dx dt dx===,代入上式,分离变量,整理后得:1dv kdx v=-,应用初始条件00,x v v ==,两边积分得001vx v dv kdx v =-⎰⎰ 得 0ln v v kx =- 即 有:0kxv v e -= 1-7试写出以矢量形式表示的质点做匀速圆周运动的运动学方程,并证明做匀速圆周运动质点的速度矢量v 和加速度a 矢量的标积等于零,即0v a = 解:以直角坐标表示的质点运动学方程为cos ,sin x R t y R t ωω==以矢量形式表示的指点运动学方程为cos sin R t R t ωω=+r i j速度和加速度分别为sin cos drR t R t dtωωωω==-+v i j 22cos sin R t R t ωωωω=--a i j所以 0v a =1-8一质点在xoy 平面内运动,其运动方程为cos sin a t b t ωω=+r i j ,其中,,a b ω均为大于零的常量.解:(1)质点在任意时刻的速度sin cos d a t b t dtωωωω==-+rv i j (2)由cos ,sin x a t y b t ωω==消去t ,可得轨道方程22221x y a b+= 可见是椭圆方程,表明质点作椭圆运动 (3)加速度22(cos sin )=d a t b t dtωωωω==-+-va i j r 因为2ω>0,所以a 的方向恒与r 反向,即a 恒指向椭圆中心.1-9路灯离地面高度为H ,一个身高为h 的人,在灯下水平路面上以匀速度0v 步行. 如图所示,求当人与灯的水平距离为x 时,他的头顶在地面上的影子移动的速度的大小.解:建立如图所示的坐标,t 时刻头顶影子的坐标为'x x +,设头顶影子的移动速度为v ,则 '''0()d x x dx dx dx v v dt dt dt dt+==+=+ 由图中可看出有''H hx x x=+, 则有'hxx H h=- '0hv dx dt H h =- 所以有 000hv H v v v H h H h=+=-- 1-10 质点沿半径为R 的圆周按s =2021bt t v -的规律运动,式中s 为质点离圆周上某点的弧长,0v ,b 都是常量,求:(1)t 时刻质点的加速度;(2) t 为何值时,加速度在数值上等于b . 解:(1) bt v tsv -==0d d Rbt v R v a b tva n 202)(d d -==-==τ则 240222)(Rbt v b a a a n-+=+=τ 加速度与半径的夹角为20)(arctanbt v Rb a a n --==τϕ (2)由题意应有2402)(R bt v b b a -+== 即 0)(,)(4024022=-⇒-+=bt v Rbt v b b∴当bv t 0=时,b a = 1-11质点做半径为20cm 的圆周运动,其切向加速度恒为5cm/s 2,若该质点由静止开始运动,需要多少时间:(1)它的法向加速度等于切向加速度;(2)法向加速度等于切向加速度的二倍.解:质点圆周运动半径r =20cm ,切向加速度a τ=5cm/s 2,t 时刻速度为v a t τ=,法向加速度为2/n a v r =,因此有 2//nn a t v a a r a r a τττ===(1) 当n a a τ=时,22045n a r t r a a ττ====s (2) 当12n a a τ=时,2240 2.835n a r t r a a ττ====s 1-12 (1)地球的半径为6.37610⨯m ,求地球赤道表面上一点相对于地球中心的向心加速度. (2)地球绕太阳运行的轨道半径为1.51110⨯m ,求地球相对于太阳的向心加速度. (3)天文测量表明,太阳系以近似圆形的轨道绕银河系中心运动,半径为 2.82010⨯m ,速率为2.5510⨯m/s ,求太阳系相对于银河系的向心加速度. 解:(1)地球赤道表面一点相对于地球中心的向心角速度为 126221126.3710() 3.3610246060n a R πω-==⨯⨯=⨯⨯⨯ m/s 2(2)地球相对太阳的向心加速度为 2211232221.510() 5.9510365246060n a R πω-==⨯⨯=⨯⨯⨯⨯ m/s 2(3)太阳系相对银河系的向心加速度3252103203(2.510) 2.23102.810n v a R -⨯===⨯⨯ m/s 21-13 以初速度0v =201s m -⋅抛出一小球,抛出方向与水平面成60°的夹角,求:(1)球轨道最高点的曲率半径1R ;(2)落地处的曲率半径2R .解:设小球所作抛物线轨道如题1-13图所示.题1-13图 (1)在最高点,o 0160cos v v v x == 21s m 10-⋅==g a n又∵ 1211ρv a n =∴ m1010)60cos 20(22111=︒⨯==n a v ρ(2)在落地点,2002==v v 1s m -⋅,而 o60cos 2⨯=g a n∴ m 8060cos 10)20(22222=︒⨯==n a v ρ1-14一架飞机在水平地面的上方,以174m/s 的速率垂直俯冲,假定飞机以圆形路径脱离俯冲,而飞机可以承受的最大加速度为78.4m/s 2,为了避免飞机撞到地面,求飞机开始脱离俯冲的最低高度. 假定整个运动中速率恒定. 解:设飞机以半径为R 圆形路径俯冲,其加速度为2/n a v R =当n a 为飞机所能承受的最大加速度时,R 即为最小,所以22min min 78.4174/,174/78.4386.2R R ===m1-15一飞轮以速度1500n =rev/min 转动,受制动而均匀减速,经50t =s 静止,求 (1) 角加速度β和从制动开始到静止飞轮转过的转数N ;(2) 求制动开始后,25t =s 时飞轮的角速度ω;(3) 设飞轮半径R =1m ,求25t =s 时,飞轮边缘上一点的速度和加速度.解:(1)飞轮的初角速度01500225060n ωπππ==⨯=,当50t =s 时,0ω=;代入0t ωωβ=+得 0tωωβπ-==-从开始到静止,飞轮转过的角度及其转数为:220115050(50)125022t t θωβπππ=+=⨯-= rad6252N θπ== rev (2)25t =s 时,飞轮的角速度为 0502525t ωωβπππ=+=-= rad/s (3)25t =s 时,飞轮边缘上一点的速度为12525v R ωππ==⨯= m/s 相应的切线和法线加速度为1t a R βππ==-⨯=-m/s 2222(25)1625n a R ωππ==⨯= m/s 21-16一质点沿半径为1m 的圆周运动,运动方程为223t θ=+,式中θ以弧度计,t 以秒计,求:(1)t =2s 时,质点的切向和法向加速度;(2)当加速度的方向和半径成45︒角时,其角位移是多少?解: t tt t 18d d ,9d d 2====ωβθω (1)s 2=t 时, 2s m 362181-⋅=⨯⨯==βτR a2222s m 1296)29(1-⋅=⨯⨯==ωR a n(2)当加速度方向与半径成45︒角时,有即 βωR R =2亦即 t t 18)9(22= 则解得 923=t 于是角位移为rad 67.29232323=⨯+=+=t θ 1-17一圆盘半径为3m ,它的角速度在t =0时为3.33πrad/s ,以后均匀地减小,到t =4s 时角速度变为零. 试计算圆盘边缘上一点在t =2s 时的切向加速度和法向加速度的大小.解:角速度均匀减小,因此,角加速度为tan 451na a τ︒==(4)(0)0 3.330.83404ωωπβπ--===-- rad/s 2 圆盘做匀角加速度,故有0 3.330.83t t ωωβππ=+=-当2t =s 时, 3.330.83216.7ωπππ=-⨯=rad/s 法向和切向加速度分别为282.4n a R ω==m/s 2 a R τβ==-7.8 m/s 21-18某雷达站对一个飞行中的炮弹进行观测,发现炮弹达最高点时,正好位于雷达站的上方,且速率为v ,高度为h ,求在炮弹此后的飞行过程中,在t (以s 为单位)时刻雷达的观测方向与铅垂直方向之间的夹角θ及其变化率d dtθω=(雷达的转动角速度)解:以雷达位置为坐标原点,取坐标系xoy 如图所示 ,根据题意,炮弹的运动方程为 21,2x vt y h gt ==-可解得: 212cot h gt y x vt θ-== (1) 则212arccoth gt vtθ-= 将(1)式两边对t 求导数,得222212csc gt h gt d dt vtθθ--+-= 则有22222222222111()2221csc (cot 1)()2h gt h gt v h gt d dt vt vt h gt v t θωθθ+++====+-+1-19 汽车在大雨中行驶,车速为80km/h ,车中乘客看见侧面的玻璃上雨滴和铅垂线成60︒角,当车停下来时,他发现雨滴是垂直下落的,求雨滴下落的速度.解:取车为运动参考系'S ,雨滴相对于车的速度为ps 'v ,雨滴对地速度为ps v ,车对地的速度为's s v ,相对运动速度合成定理为'psps s s '=+v v v 见如图所示的速度合成图,则有'ps ps 1000cot 60800.57712.83600v v ︒==⨯⨯=m/s1-20一升降机以加速度1.22m/s 2上升,当上升速度为2.44 m/s 2时,有一螺帽自升降机的天花板松落,天花板与升降机底面相距2.74m ,计算:(1)螺帽从天花板落到底面所需的时间;(2)螺帽相对于升降机外固定柱子的下降距离.解:以升降机外固定柱子为参考系,竖直向上为y 坐标轴正向,螺帽松落时升降机底面位置为原点. 螺帽从0y =2.74m 处松落,以初速度0v =2.44m/s 做竖直上抛运动,升降机底面则从原点以同样的初速度做向上的加速运动,加速度a =1.22m/s 2,它们的运动方程分别为 螺帽:210012y y v t gt =+-底面:22012y v t at =+ 螺帽落到底面上时,12y y =,由以上两式得 t =0.705s (2)螺帽相对于升降机外固定柱子的下降距离为 201010.7152s y y v t gt =-=-+=m1-21某人骑自行车以速率v 向西行使,北风以速率v 吹来(对地面),问骑车者遇到风速及风向如何?解:地为静系E ,人为动系M 。
力学习题-第1章质点运动学(含答案)
第一章质点运动学单元测验题一、选择题1.一质点沿x 轴运动,加速度与位置的关系为a (x )=2x +4x 2(SI 单位).已知质点在x =0处的速度为2m/s ,则质点在x =3m 处的速度为A.42m/s; B.26m/s ; C.94m/s ; D.34m/s .答案:C 解:根据题意:224dv a x x dt ==+,两边同乘dx 有:2(24)dv dx x x dx dt ⋅=+⋅由dx v dt=,上式化为:2(24)v dv x x dx ⋅=+对上式两边积分得到:223423v x x c =++由x =0,v =2m/s ,确定c =2.则当x =3m 时,解得:v =94m/s.2.一质点沿x 轴做直线运动,其速度v 随时间t 的变化关系如图所示.则下列哪个图可表示质点加速度a 随时间t 变化关系?2-•/s m a 2-•/s m a AB C答案:B 解:依据质点在一维运动时,速度-时间曲线的斜率对应加速度可知B 为加速度曲线.3.质点的运动学方程为33(21)t t =++r i j (SI 单位).则t =1s 时质点的速度为(SI单位)A.ji 6+3; B.j i 3+3; C.j i 6+6; D.j i 3+6.答案:A解:根据题意:33(21)t t =++r i j ,微分得:236d t dt ==+r v i j ,()136=+v i j 4.质点运动学方程为:kbt j t a i t a r +sin +cos =ωω,其中a 、b 、ω均为正的常数.问质点作什么运动?A.平面圆周运动;B.平面椭圆运动;C.螺旋运动;D.三维空间的直线运动.答案:C解:把质点的运动分解到三个方向上:cos sin x a t y a t z bt ωω===,,整理可知:222x y a z bt+==,则质点是以z 5.如图所示,在桌面的一边,—小球作斜抛运动,初速度v 0=4.7m/s.已知桌面宽a =2.0m.欲使小球能从桌面的另—边切过,小球的抛射角θ为A.30°;B.38°;C.50°;D.58°.答案:D 解:根据题意,小球沿x 和y 方向的运动方程为:t v x ⋅=θcos 0,201sin 2y v t gt θ=⋅-由x =2.0m 时,y =0,解得:o 58θ=.6.如图,有一半径为R 的定滑轮,沿轮周绕着一根绳子,悬在绳子一端的物体按s =(1/2)bt 2的规律向下运动.若绳子与轮周间没有相对滑动,轮周上一点A 在任一时刻t 的总加速度大为A.2t b a ;B.222/=R t b a ;C.b a =;D.R t b b a /+=22.答案:A 解:已知221bt s =,微分可得速度大小:t b dtds v ⋅==切向加速度大小:b dt dv a ==τ;法向加速度大小:Rt b R v a n 222==总加速度大小:a ==.7.当蒸汽船以15km/h 的速度向正北方向航行时,船上的人观察到船上的烟囱里冒出的烟飘向正东方向.过一会儿,船以24km/h 的速度向正东方向航行,船上的人则观察到烟飘向正西北方向.若在这两次航行期间风速不变,则风速的大小为A.9km/h; B.17.5km/h ; C.26.9km/h ; D.41km/h.答案:B解:地面为静系,船为动系,风为研究对象,则风对地的速度为绝对速度:风v v =船对地的速度为牵连速度:船牵连v v =风对船的速度为相对速度:风对船牵连v v =由绝对速度、牵连速度和相对速度的关系可得v v v =+船风对船,其矢量几何关系如图所示由此几何关系可得:1cos v v θ=船风,o 2145sin v v ctg v θ-=风船船联立解得:o 31θ=,5.17=v km /h .8.一个自由落体在它运动的最后一秒内所通过的路程等于全程的1/3.则物体通过全程所需的时间为A.3s ;B.6-3s ;C.6+3s ;D.6s答案:C解:设自由落体的全程下落时间和下落的高度分别为t 、S t 。
大学物理习题集(上,含解答)
大学物理习题集(上册,含解答)第一章 质点运动学1.1 一质点沿直线运动,运动方程为x (t ) = 6t 2 - 2t 3.试求: (1)第2s 内的位移和平均速度;(2)1s 末及2s 末的瞬时速度,第2s 内的路程; (3)1s 末的瞬时加速度和第2s 内的平均加速度.[解答](1)质点在第1s 末的位置为:x (1) = 6×12 - 2×13 = 4(m).在第2s 末的位置为:x (2) = 6×22 - 2×23 = 8(m). 在第2s 内的位移大小为:Δx = x (2) – x (1) = 4(m),经过的时间为Δt = 1s ,所以平均速度大小为:v =Δx /Δt = 4(m·s -1). (2)质点的瞬时速度大小为:v (t ) = d x /d t = 12t - 6t 2,因此v (1) = 12×1 - 6×12 = 6(m·s -1),v (2) = 12×2 - 6×22 = 0质点在第2s 内的路程等于其位移的大小,即Δs = Δx = 4m . (3)质点的瞬时加速度大小为:a (t ) = d v /d t = 12 - 12t ,因此1s 末的瞬时加速度为:a (1) = 12 - 12×1 = 0,第2s 内的平均加速度为:a = [v (2) - v (1)]/Δt = [0 – 6]/1 = -6(m·s -2).[注意] 第几秒内的平均速度和平均加速度的时间间隔都是1秒.1.2 一质点作匀加速直线运动,在t = 10s 内走过路程s = 30m ,而其速度增为n = 5倍.试证加速度为22(1)(1)n sa n t-=+,并由上述数据求出量值. [证明]依题意得v t = nv o ,根据速度公式v t = v o + at ,得a = (n – 1)v o /t , (1)根据速度与位移的关系式v t 2 = v o 2 + 2as ,得 a = (n 2 – 1)v o 2/2s ,(2) (1)平方之后除以(2)式证得:22(1)(1)n sa n t-=+. 计算得加速度为:22(51)30(51)10a -=+= 0.4(m·s -2).1.3 一人乘摩托车跳越一个大矿坑,他以与水平成22.5°的夹角的初速度65m·s -1从西边起跳,准确地落在坑的东边.已知东边比西边低70m ,忽略空气阻力,且取g = 10m·s -2.问:(1)矿坑有多宽?他飞越的时间多长?(2)他在东边落地时的速度?速度与水平面的夹角? [解答]方法一:分步法.(1)夹角用θ表示,人和车(人)在竖直方向首先做竖直上抛运动,初速度的大小为v y 0 = v 0sin θ = 24.87(m·s -1).取向上的方向为正,根据匀变速直线运动的速度公式v t - v 0 = at ,这里的v 0就是v y 0,a = -g ;当人达到最高点时,v t = 0,所以上升到最高点的时间为t 1 = v y 0/g = 2.49(s).再根据匀变速直线运动的速度和位移的关系式:v t 2 - v 02 = 2a s , 可得上升的最大高度为:h 1 = v y 02/2g = 30.94(m).人从最高点开始再做自由落体运动,下落的高度为;h 2 = h 1 + h = 100.94(m).根据自由落体运动公式s = gt 2/2,得下落的时间为:2t =.图1.3因此人飞越的时间为:t = t 1 + t 2 = 6.98(s). 人飞越的水平速度为;v x 0 = v 0cos θ = 60.05(m·s -1), 所以矿坑的宽度为:x = v x 0t = 419.19(m).(2)根据自由落体速度公式可得人落地的竖直速度大小为:v y = gt = 69.8(m·s -1), 落地速度为:v = (v x 2 + v y 2)1/2 = 92.08(m·s -1), 与水平方向的夹角为:φ = arctan(v y /v x ) = 49.30º,方向斜向下.方法二:一步法.取向上为正,人在竖直方向的位移为y = v y 0t - gt 2/2,移项得时间的一元二次方程201sin 02gt v t y θ-+=,解得:0(sin t v g θ=.这里y = -70m ,根号项就是人落地时在竖直方向的速度大小,由于时间应该取正值,所以公式取正根,计算时间为:t = 6.98(s).由此可以求解其他问题.1.4 一个正在沿直线行驶的汽船,关闭发动机后,由于阻力得到一个与速度反向、大小与船速平方成正比例的加速度,即d v /d t = -kv 2,k 为常数.(1)试证在关闭发动机后,船在t 时刻的速度大小为011kt v v =+; (2)试证在时间t 内,船行驶的距离为01ln(1)x v kt k =+. [证明](1)分离变量得2d d vk t v =-, 故 020d d v t v v k t v =-⎰⎰,可得:011kt v v =+. (2)公式可化为001v v v kt=+,由于v = d x/d t ,所以:00001d d d(1)1(1)v x t v kt v kt k v kt ==+++ 积分00001d d(1)(1)x tx v kt k v kt =++⎰⎰.因此 01ln(1)x v kt k=+. 证毕.[讨论]当力是速度的函数时,即f = f (v ),根据牛顿第二定律得f = ma . 由于a = d 2x /d t 2, 而 d x /d t = v , a = d v /d t , 分离变量得方程:d d ()m vt f v =, 解方程即可求解.在本题中,k 已经包括了质点的质量.如果阻力与速度反向、大小与船速的n 次方成正比,则 d v /d t = -kv n . (1)如果n = 1,则得d d vk t v=-, 积分得ln v = -kt + C .当t = 0时,v = v 0,所以C = ln v 0, 因此ln v/v 0 = -kt ,得速度为 :v = v 0e -kt .而d v = v 0e -kt d t ,积分得:0e `ktv x C k-=+-. 当t = 0时,x = 0,所以C` = v 0/k ,因此0(1-e )kt vx k -=.(2)如果n ≠1,则得d d n vk t v=-,积分得11n v kt C n -=-+-. 当t = 0时,v = v 0,所以101n v C n-=-,因此11011(1)n n n kt v v --=+-. 如果n = 2,就是本题的结果.如果n ≠2,可得1(2)/(1)020{[1(1)]1}(2)n n n n n v kt x n v k----+--=-,读者不妨自证.1.5 一质点沿半径为0.10m 的圆周运动,其角位置(以弧度表示)可用公式表示:θ = 2 + 4t 3.求: (1)t = 2s 时,它的法向加速度和切向加速度;(2)当切向加速度恰为总加速度大小的一半时,θ为何值? (3)在哪一时刻,切向加速度和法向加速度恰有相等的值? [解答](1)角速度为ω = d θ/d t = 12t 2 = 48(rad·s -1),法向加速度为 a n = rω2 = 230.4(m·s -2); 角加速度为 β = d ω/d t = 24t = 48(rad·s -2), 切向加速度为 a t = rβ = 4.8(m·s -2). (2)总加速度为a = (a t 2 + a n 2)1/2,当a t = a /2时,有4a t 2 = a t 2 + a n 2,即n a a =由此得2r r ω=22(12)24t =解得36t =.所以3242(13)t θ=+=+=3.154(rad).(3)当a t = a n 时,可得rβ = rω2, 即: 24t = (12t 2)2,解得 : t = (1/6)1/3 = 0.55(s).1.6 一飞机在铅直面内飞行,某时刻飞机的速度为v = 300m·s -1,方向与水平线夹角为30°而斜向下,此后飞机的加速度为am·s -2,方向与水平前进方向夹角为30°而斜向上,问多长时间后,飞机又回到原来的高度?在此期间飞机在水平方向飞行的距离为多少?[解答]建立水平和垂直坐标系,飞机的初速度的大小为v 0x = v 0cos θ, v 0y = v 0sin θ. 加速度的大小为a x = a cos α, a y = a sin α. 运动方程为2012x x x v t a t =+, 2012y y y v t a t =-+.即 201cos cos 2x v t a t θα=⋅+⋅, 201sin sin 2y v t a t θα=-⋅+⋅.令y = 0,解得飞机回到原来高度时的时间为:t = 0(舍去);02sin sin v t a θα==.将t 代入x 的方程求得x = 9000m .[注意]选择不同的坐标系,如x 方向沿着a 的方向或者沿着v 0的方向,也能求出相同的结果.1.7 一个半径为R = 1.0m 的轻圆盘,可以绕一水平轴自由转动.一根轻绳绕在盘子的边缘,其自v 图1.7由端拴一物体A .在重力作用下,物体A 从静止开始匀加速地下降,在Δt = 2.0s 内下降的距离h = 0.4m .求物体开始下降后3s 末,圆盘边缘上任一点的切向加速度与法向加速度.[解答]圆盘边缘的切向加速度大小等于物体A 下落加速度.由于212t h a t =∆, 所以a t = 2h /Δt 2 = 0.2(m·s -2).物体下降3s 末的速度为v = a t t = 0.6(m·s -1),这也是边缘的线速度,因此法向加速度为2n v a R== 0.36(m·s -2).1.8 一升降机以加速度1.22m·s -2上升,当上升速度为2.44m·s -1时,有一螺帽自升降机的天花板上松落,天花板与升降机的底面相距2.74m .计算:(1)螺帽从天花板落到底面所需的时间;(2)螺帽相对于升降机外固定柱子的下降距离.[解答]在螺帽从天花板落到底面时,升降机上升的高度为21012h v t at =+;螺帽做竖直上抛运动,位移为22012h v t gt =-. 由题意得h = h 1 - h 2,所以21()2h a g t =+,解得时间为t .算得h 2 = -0.716m ,即螺帽相对于升降机外固定柱子的下降距离为0.716m .[注意]以升降机为参考系,钉子下落时相对加速度为a + g ,而初速度为零,可列方程h = (a + g )t 2/2,由此可计算钉子落下的时间,进而计算下降距离.1.9 有一架飞机从A 处向东飞到B 处,然后又向西飞回到A 处.已知气流相对于地面的速度为u ,AB 之间的距离为l ,飞机相对于空气的速率v 保持不变.(1)如果u = 0(空气静止),试证来回飞行的时间为02l t v =; (2)如果气流的速度向东,证明来回飞行的总时间为01221/t t u v =-;(3)如果气流的速度向北,证明来回飞行的总时间为2t =.[证明](1)飞机飞行来回的速率为v ,路程为2l ,所以飞行时间为t 0 = 2l /v . (2)飞机向东飞行顺风的速率为v + u ,向西飞行逆风的速率为v - u , 所以飞行时间为1222l l vl t v u v u v u =+=+-- 022222/1/1/t l v u v u v==--. (3)飞机相对地的速度等于相对风的速度加风相对地的速度.为了使飞机沿着AB 之间的直线飞行,就要使其相对地的速度偏向北方,可作矢量三角形,其中沿AB方向的速度大小为V =,所以飞行时间为22l t V ==== 证毕.1.10 如图所示,一汽车在雨中沿直线行驶,其速度为v 1,下落雨的速度方向与铅直方向的夹角为θ,偏向于汽车前进方向,速度为v 2.今在车后放一长方形物体,问车速v 1为多大时此物体刚好不会被雨水淋湿?AB AB vv + uv - uABvuuvv[解答]雨对地的速度2v 等于雨对车的速度3v 加车对地的速度1v ,由此可作矢量三角形.根据题意得tan α = l/h .方法一:利用直角三角形.根据直角三角形得v 1 = v 2sin θ + v 3sin α,其中v 3 = v ⊥/cos α,而v ⊥ = v 2cos θ, 因此v 1 = v 2sin θ + v 2cos θsin α/cos α, 即 12(sin cos )lv v hθθ=+. 证毕. 方法二:利用正弦定理.根据正弦定理可得12sin()sin(90)v v θαα=+︒-,所以:12sin()cos v v θαα+=2sin cos cos sin cos v θαθαα+=2(sin cos tan )v θθα=+,即 12(sin cos )lv v hθθ=+. 方法三:利用位移关系.将雨滴的速度分解为竖直和水平两个分量,在t 时间内,雨滴的位移为 l = (v 1 – v 2sin θ)t , h = v 2cos θ∙t .两式消去时间t 即得所求. 证毕.第二章 运动定律与力学中的守恒定律(一) 牛顿运动定律2.1 一个重量为P 的质点,在光滑的固定斜面(倾角为α)上以初速度0v 运动,0v 的方向与斜面底边的水平约AB 平行,如图所示,求这质点的运动轨道.[解答]质点在斜上运动的加速度为a = g sin α,方向与初速度方向垂直.其运动方程为 x = v 0t ,2211sin 22y at g t α==⋅.将t = x/v 0,代入后一方程得质点的轨道方程为22sin g y x v α=,这是抛物线方程.2.2 桌上有一质量M = 1kg 的平板,板上放一质量m = 2kg 的另一物体,设物体与板、板与桌面之间的滑动摩擦因素均为μk = 0.25,静摩擦因素为μs = 0.30.求:(1)今以水平力F 拉板,使两者一起以a = 1m·s -2的加速度运动,试计算物体与板、与桌面间的相互作用力;(2)要将板从物体下面抽出,至少需要多大的力?[解答](1)物体与板之间有正压力和摩擦力的作用.板对物体的支持大小等于物体的重力:N m = mg = 19.6(N), 这也是板受物体的压力的大小,但压力方向相反.物体受板摩擦力做加速运动,摩擦力的大小为:f m = ma = 2(N),这也是板受到的摩擦力的大小,摩擦力方向也相反.板受桌子的支持力大小等于其重力:N M = (m + M )g = 29.4(N),图1.101h lα图2.1这也是桌子受板的压力的大小,但方向相反.板在桌子上滑动,所受摩擦力的大小为:f M = μk N M = 7.35(N). 这也是桌子受到的摩擦力的大小,方向也相反.(2)设物体在最大静摩擦力作用下和板一起做加速度为a`的运动,物体的运动方程为 f =μs mg = ma`,可得 a` =μs g .板的运动方程为F – f – μk (m + M )g = Ma`, 即 F = f + Ma` + μk (m + M )g= (μs + μk )(m + M )g ,算得 F = 16.17(N).因此要将板从物体下面抽出,至少需要16.17N 的力.2.3 如图所示:已知F = 4N ,m 1 = 0.3kg ,m 2 = 0.2kg ,两物体与水平面的的摩擦因素匀为0.2.求质量为m 2的物体的加速度及绳子对它的拉力.(绳子和滑轮质量均不计)[解答]利用几何关系得两物体的加速度之间的关系为a 2 = 2a 1,而力的关系为T 1 = 2T 2. 对两物体列运动方程得T 2 - μm 2g = m 2a 2, F – T 1 – μm 1g = m 1a 1. 可以解得m 2的加速度为 12212(2)/22F m m g a m m μ-+=+= 4.78(m·s -2),绳对它的拉力为2112(/2)/22m T F m g m m μ=-+= 1.35(N).2.4 两根弹簧的倔强系数分别为k 1和k 2.求证:(1)它们串联起来时,总倔强系数k 与k 1和k 2.满足关系关系式12111k k k =+; (2)它们并联起来时,总倔强系数k = k 1 + k 2.[解答]当力F 将弹簧共拉长x 时,有F = kx ,其中k 为总倔强系数.两个弹簧分别拉长x 1和x 2,产生的弹力分别为 F 1 = k 1x 1,F 2 = k 2x 2. (1)由于弹簧串联,所以F = F 1 = F 2,x = x 1 + x 2, 因此 1212F F F kk k =+,即:12111k k k =+. (2)由于弹簧并联,所以F = F 1 + F 2,x = x 1 = x 2,因此 kx = k 1x 1 + k 2x 2, 即:k = k 1 + k 2.2.5 如图所示,质量为m 的摆悬于架上,架固定于小车上,在下述各种情况中,求摆线的方向(即摆线与竖直线的夹角θ)及线中的张力T .(1)小车沿水平线作匀速运动;(2)小车以加速度1a 沿水平方向运动;(3)小车自由地从倾斜平面上滑下,斜面与水平面成φ角; (4)用与斜面平行的加速度1b 把小车沿斜面往上推(设b 1 = b ); (5)以同样大小的加速度2b (b 2 = b ),将小车从斜面上推下来.[解答](1)小车沿水平方向做匀速直线运动时,摆在水平方向没有受到力12图2.32 图2.4的作用,摆线偏角为零,线中张力为T = mg .(2)小车在水平方向做加速运动时,重力和拉力的合力就是合外力.由于tan θ = ma/mg , 所以 θ = arctan(a/g );绳子张力等于摆所受的拉力:T ==(3)小车沿斜面自由滑下时,摆仍然受到重力和拉力, 合力沿斜面向下,所以θ = φ; T = mg cos φ.(4)根据题意作力的矢量图,将竖直虚线延长, 与水平辅助线相交,可得一直角三角形,θ角的对边 是mb cos φ,邻边是mg + mb sin φ,由此可得:cos tan sin mb mg mb ϕθϕ=+,因此角度为cos arctansin b g b ϕθϕ=+;而张力为T=.(5)与上一问相比,加速度的方向反向,只要将上一结果中的b 改为-b 就行了.2.6 如图所示:质量为m =0.10kg 的小球,拴在长度l =0.5m 的轻绳子的一端,构成一个摆.摆动时,与竖直线的最大夹角为60°.求: (1)小球通过竖直位置时的速度为多少?此时绳的张力多大? (2)在θ < 60°的任一位置时,求小球速度v 与θ的关系式.这时小球的加速度为多大?绳中的张力多大?(3)在θ = 60°时,小球的加速度多大?绳的张力有多大?[解答](1)小球在运动中受到重力和绳子的拉力,由于小球沿圆弧运动,所以合力方向沿着圆弧的切线方向,即F = -mg sin θ,负号表示角度θ增加的方向为正方向.小球的运动方程为 22d d s F ma m t ==,其中s 表示弧长.由于s = Rθ = lθ,所以速度为d d d d s v l t t θ==,因此d d d d d d d d v v m v F mm v t t l θθθ===,即 v d v = -gl sin θd θ, (1) 取积分60d sin d Bv v v gl θθ︒=-⎰⎰,(2)图2.6得2601cos 2B v gl θ︒=,解得:B v =s -1).由于:22B BB v v T mg m m mgR l -===,所以T B = 2mg = 1.96(N).(2)由(1)式积分得21cos 2C v gl C θ=+,当 θ = 60º时,v C = 0,所以C = -lg /2,因此速度为C v =切向加速度为a t = g sin θ;法向加速度为2(2cos 1)Cn v a g R θ==-.由于T C – mg cos θ = ma n ,所以张力为T C = mg cos θ + ma n = mg (3cos θ – 1). (3)当 θ = 60º时,切向加速度为2t a g== 8.49(m·s -2),法向加速度为 a n = 0,绳子的拉力T = mg /2 = 0.49(N).[注意]在学过机械能守恒定律之后,求解速率更方便.2.7 小石块沿一弯曲光滑轨道上由静止滑下h 高度时,它的速率多大?(要求用牛顿第二定律积分求解)[解答]小石块在运动中受到重力和轨道的支持力,合力方向沿着曲线方向.设切线与竖直方向的夹角为θ,则F = mg cos θ.小球的运动方程为22d d sF ma m t ==,s 表示弧长.由于d d s v t =,所以 22d d d d d d d ()d d d d d d d s s v v s v v t t t t s t s ====,因此 v d v = g cos θd s = g d h ,h 表示石下落的高度.积分得 212v gh C =+,当h = 0时,v = 0,所以C = 0,因此速率为v =2.8 质量为m 的物体,最初静止于x 0,在力2kf x =-(k 为常数)作用下沿直线运动.证明物体在x处的速度大小v = [2k (1/x – 1/x 0)/m ]1/2.[证明]当物体在直线上运动时,根据牛顿第二定律得方程图2.7222d d k x f ma m x t =-==利用v = d x/d t ,可得22d d d d d d d d d d x v x v v v t t t x x ===,因此方程变为2d d k xmv v x =-,积分得212k mv C x =+.利用初始条件,当x = x 0时,v = 0,所以C = -k /x 0,因此2012k k mv x x =-,即v =证毕.[讨论]此题中,力是位置的函数:f = f (x ),利用变换可得方程:mv d v = f (x )d x ,积分即可求解.如果f (x ) = -k/x n ,则得21d 2nx mv k x =-⎰. (1)当n = 1时,可得21ln 2mv k x C =-+利用初始条件x = x 0时,v = 0,所以C = ln x 0,因此 21ln 2x mv k x =, 即v =(2)如果n ≠1,可得21121n k mv x C n -=-+-.利用初始条件x = x 0时,v = 0,所以101n k C x n -=--,因此 2110111()21n n k mv n x x --=--, 即v =当n = 2时,即证明了本题的结果.2.9 一质量为m 的小球以速率v 0从地面开始竖直向上运动.在运动过程中,小球所受空气阻力大小与速率成正比,比例系数为k .求:(1)小球速率随时间的变化关系v (t ); (2)小球上升到最大高度所花的时间T .[解答](1)小球竖直上升时受到重力和空气阻力,两者方向向下,取向上的方向为下,根据牛顿第二定律得方程d d vf mg kv mt =--=,分离变量得d d()d v m mg kv t m mg kv k mg kv +=-=-++,积分得ln ()mt mg kv C k =-++.当t = 0时,v = v 0,所以0ln ()mC mg kv k =+,因此00/ln ln/m mg kv m mg k v t k mg kv k mg k v ++=-=-++, 小球速率随时间的变化关系为0()exp()mg kt mgv v k m k =+--.(2)当小球运动到最高点时v = 0,所需要的时间为00/ln ln(1)/mg k v kv m m T k mg k k mg +==+.[讨论](1)如果还要求位置与时间的关系,可用如下步骤: 由于v = d x/d t ,所以0d [()exp()]d mg kt mg x v t k m k =+--,即0(/)d d exp()d m v mg k kt mgx tk m k +=---,积分得0(/)exp()`m v mg k kt mgx t C k m k +=---+, 当t = 0时,x = 0,所以0(/)`m v mg k C k +=,因此0(/)[1exp()]m v mg k kt mg x tk m k +=---.(2)如果小球以v 0的初速度向下做直线运动,取向下的方向为正,则微分方程变为d d vf mg kv mt =-=,用同样的步骤可以解得小球速率随时间的变化关系为0()exp()mg mg ktv v k k m =---.这个公式可将上面公式中的g 改为-g 得出.由此可见:不论小球初速度如何,其最终速率趋于常数v m =mg/k .2.10 如图所示:光滑的水平桌面上放置一固定的圆环带,半径为R .一物体帖着环带内侧运动,物体与环带间的滑动摩擦因数为μk .设物体在某时刻经A 点时速率为v 0,求此后时刻t 物体的速率以及从A 点开始所经过的路程.[解答]物体做圆周运动的向心力是由圆环带对物体的压力,即 N = mv 2/R .物体所受的摩擦力为f = -μk N ,负号表示力的方向与速度的方向相反.根据牛顿第二定律得2d d k v v f m m R t μ=-=, 即 : 2d d k vt R v μ=-.积分得:1k t C R v μ=+.当t = 0时,v = v 0,所以01C v =-, 因此 011kt Rv v μ=-.解得 001/k v v v t R μ=+.由于0000d d(1/)d 1/1/k k k k v t v t R R x v t R v t R μμμμ+==++, 积分得0ln (1)`k kv tR x C Rμμ=++,当t = 0时,x = x 0,所以C = 0,因此0ln (1)k kv tRx Rμμ=+.2.11 如图所示,一半径为R 的金属光滑圆环可绕其竖直直径转动.在环上套有一珠子.今逐渐增大圆环的转动角速度ω,试求在不同转动速度下珠子能静止在环上的位置.以珠子所停处的半径与竖直直径的夹角θ表示.[解答]珠子受到重力和环的压力,其合力指向竖直直径,作为珠子做圆周运动的向心力,其大小为:F = mg tg θ.珠子做圆周运动的半径为r = R sin θ. 根据向心力公式得F = mg tg θ = mω2R sin θ,可得2cos mgR ωθ=,解得2arccosg R θω=±.(二)力学中的守恒定律2.12 如图所示,一小球在弹簧的弹力作用下振动.弹力F = -kx ,而位移x = A cos ωt ,其中k ,A 和ω都是常数.求在t = 0到t = π/2ω的时间间隔内弹力予小球的冲量.[解答]方法一:利用冲量公式.根据冲量的定义得d I = F d t = -kA cos ωt d t , 积分得冲量为 /20(cos )d I kA t tωω=-⎰π,/20sin kAkAtωωωω=-=-π方法二:利用动量定理.小球的速度为v = d x/d t = -ωA sin ωt ,设小球的质量为m ,其初动量为p 1 = mv 1 = 0, 末动量为p 2 = mv 2 = -mωA ,mg图2.11小球获得的冲量为I = p 2 – p 1 = -mωA , 可以证明k =mω2,因此I = -kA /ω.2.13一个质量m = 50g ,以速率的v = 20m·s -1作匀速圆周运动的小球,在1/4周期内向心力给予小球的冲量等于多少?[解答]小球动量的大小为p = mv ,但是末动量与初动量互相垂直,根据动量的增量的定义21p p p ∆=- 得:21p p p =+∆,由此可作矢量三角形,可得:p ∆==. 因此向心力给予小球的的冲量大小为I p =∆= 1.41(N·s).[注意]质点向心力大小为F = mv 2/R ,方向是指向圆心的,其方向在 不断地发生改变,所以不能直接用下式计算冲量24v TI Ft mR ==2/42R T T mv mvR ππ==.假设小球被轻绳拉着以角速度ω = v/R 运动,拉力的大小就是向心力F = mv 2/R = mωv , 其分量大小分别为 F x = F cos θ = F cos ωt ,F y = F sin θ = F sin ωt ,给小球的冲量大小为 d I x = F x d t = F cos ωt d t ,d I y = F y d t = F sin ωt d t , 积分得 /4/4cos d sin T T x FI F t t tωωω==⎰Fmvω==,/4/4sin d cos T T y FI F t t tωωω==-⎰Fmvω==,合冲量为I ==,与前面计算结果相同,但过程要复杂一些.2.14 用棒打击质量0.3kg ,速率等于20m·s -1的水平飞来的球,球飞到竖直上方10m 的高度.求棒给予球的冲量多大?设球与棒的接触时间为0.02s ,求球受到的平均冲力?[解答]球上升初速度为y v =s -1),其速度的增量为v ∆== 24.4(m·s -1). 棒给球冲量为I = m Δv = 7.3(N·s), 对球的作用力为(不计重力):F = I/t = 366.2(N).v xΔvv y2.15 如图所示,三个物体A 、B 、C ,每个质量都为M ,B 和C 靠在一起,放在光滑水平桌面上,两者连有一段长度为0.4m 的细绳,首先放松.B 的另一侧则连有另一细绳跨过桌边的定滑轮而与A 相连.已知滑轮轴上的摩擦也可忽略,绳子长度一定.问A 和B 起动后,经多长时间C 也开始运动?C 开始运动时的速度是多少?(取g = 10m·s -2)[解答]物体A 受到重力和细绳的拉力,可列方程Mg – T = Ma ,物体B 在没有拉物体C 之前在拉力T 作用下做加速运动, 加速度大小为a ,可列方程:T = Ma ,联立方程可得:a = g/2 = 5(m·s -2).根据运动学公式:s = v 0t + at 2/2, 可得B 拉C之前的运动时间;t =. 此时B 的速度大小为:v = at = 2(m·s -1).物体A 跨过动滑轮向下运动,如同以相同的加速度和速度向右运动.A 和B 拉动C 运动是一个碰撞过程,它们的动量守恒,可得:2Mv = 3Mv`, 因此C 开始运动的速度为:v` = 2v /3 = 1.33(m·s -1).2.16 一炮弹以速率v 0沿仰角θ的方向发射出去后,在轨道的最高点爆炸为质量相等的两块,一块沿此45°仰角上飞,一块沿45°俯角下冲,求刚爆炸的这两块碎片的速率各为多少?[解答] 炮弹在最高点的速度大小为v = v 0cos θ,方向沿水平方向. 根据动量守恒定律,可知碎片的总动量等于炮弹爆炸前的 总动量,可作矢量三角形,列方程得 /2`cos 452mmv v =︒,所以 v` = v /cos45°= 0cos θ.2.17 如图所示,一匹马拉着雪撬沿着冰雪覆盖的弧形路面极缓慢地匀速移动,这圆弧路面的半径为R .设马对雪橇的拉力总是平行于路面.雪橇的质量为m ,它与路面的滑动摩擦因数为μk .当把雪橇由底端拉上45°圆弧时,马对雪橇做了多少功?重力和摩擦力各做了多少功?[解答]取弧长增加的方向为正方向,弧位移d s 的大小为d s = R d θ. 重力G 的大小为:G = mg ,方向竖直向下,与位移元的夹角为π + θ,所做的功元为1d d cos(/2)d W G s G s θ=⋅=+π sin d mgR θθ=-,积分得重力所做的功为454510(sin )d cos W mgR mgR θθθ︒︒=-=⎰(1mgR =-.摩擦力f 的大小为:f = μk N = μk mg cos θ,方向与弧位移的方向相反,所做的功元为2d d cos d W f s f s =⋅=πcos d k u mg R θθ=-,积分得摩擦力所做的功为图2.174520(cos )d k W mgR μθθ︒=-⎰450sin k k mgR mgR μθ︒=-=.要使雪橇缓慢地匀速移动,雪橇受的重力G 、摩擦力f 和马的拉力F 就是平衡力,即0F G f ++=,或者 ()F G f =-+.拉力的功元为:d d (d d )W F s G s f s =⋅=-⋅+⋅12(d d )W W =-+,拉力所做的功为12()W W W =-+(1)k mgR μ=.由此可见,重力和摩擦力都做负功,拉力做正功.2.18 一质量为m 的质点拴在细绳的一端,绳的另一端固定,此质点在粗糙水平面上作半径为r 的圆周运动.设质点最初的速率是v 0,当它运动1周时,其速率变为v 0/2,求:(1)摩擦力所做的功; (2)滑动摩擦因数;(3)在静止以前质点运动了多少圈?[解答] (1)质点的初动能为:E 1 = mv 02/2, 末动能为:E 2 = mv 2/2 = mv 02/8,动能的增量为:ΔE k = E 2 – E 1 = -3mv 02/8, 这就是摩擦力所做的功W .(2)由于d W = -f d s = -μk N d s = -μk mgr d θ,积分得:20()d 2k k W mgr mgrπμθπμ=-=-⎰.由于W = ΔE ,可得滑动摩擦因数为20316k v gr μ=π.(3)在自然坐标中,质点的切向加速度为:a t = f/m = -μk g , 根据公式v t 2 – v o 2 = 2a t s ,可得质点运动的弧长为22008223k v v r s a g πμ===,圈数为 n = s/2πr = 4/3.[注意]根据用动能定理,摩擦力所做的功等于质点动能的增量:-fs = ΔE k , 可得 s = -ΔE k /f ,由此也能计算弧长和圈数。
大学物理习题册及解答_第二版_第一章_质点的运动
( A ) 3i 3 j (C) - 3i 3 j
(B) - 3i 3 j ( D) 3i 3 j
二、填空题
1.一质点沿x轴运动,其加速度a与位置坐标的关系为 a 3 6 x 2 (SI), 如果质点在原点处的速度为零,试求其在任意位置的速度 为 .
d d dx d a dt dx dt dx
8. 半径为R的圆盘在固定支撑面上向右滚动,圆盘质心C的运动速 度为 ,圆盘绕质心转动的角速度为 ,如图所示.则圆盘边 缘上A点的线速度为 ;B点的线速度为 ;O点的 线速度为 . A
分析:刚体上某质点的运动可看为随质心的 平动和绕质心转动的合成
B
C O
A C R
B R
1
消去t得轨道方程为 y M
o
o dr (2) A sinωt i A cosωt j d t d a A cosωt i A sinωt j r dt
x y 2 1 2 A1 A2
2
(椭圆)
1 2
x
2
2
2
1
2
上式表明:加速度恒指向椭圆中心。
质点在通过图中M点时,其速率是增大还是减小?
x A cos t y A sin t
1 2
at
M
y
Q
a
o
V an
P
o
x
(3)当t=0时,x=A1,y=0,质点位于图中P点
质点位于
t 2
时, x A1 cos
y A sin
2
解:(1)从运动方程中消去时间就得到轨道方程
第1章质点运动学(部分答案)
一、选择题:1. 某质点沿半径为R 的圆周运动一周,它的位移和路程分别为(B) A. πR ,0; B. 0,2πR ;C. 0,0;D. 2πR ,2πR 。
2. 质点作直线运动,运动方程为242x t t =--(SI 制),则质点在最初2秒内的位移为(C)A. -6 m ;B. 4 m ;C. -4 m ;D. 6 m 。
3.一质点在平面上作一般曲线运动,其瞬时速度为v ,瞬时速率为v ,某一时间内的平均速度为v ,平均速率为v ,它们之间的关系必定有( D ) A. v v =,v v =;B. v v ≠,v v =;C. v v ≠,v v ≠;D. v v =,v v ≠。
4.质点作曲线运动,r 表示位置矢量,v 表示速度,a表示加速度,S 表示路程,a t 表示切向加速度,下列表达式中( D ) (1) a t = d /d v , (2) v =t r d /d ,(3) v =t S d /d , (4) t a t =d /d v。
A. 只有(1)、(4)是对的; B. 只有(2)、(4)是对的; C. 只有(2)是对的;D.只有(3)是对的。
5. 一运动质点在某瞬时位于矢径()y x r ,的端点处,其速度大小为( D )A.d d rt ; B.d d r t ;C.d d r t;6. 一质点作直线运动,某时刻的瞬时速度v =2m/s ,瞬时加速度a =-2m/s 2,则一秒钟后质点的速度(D)A.等于零;B.等于-2 m/s ;C.等于2 m/s ;D.不能确定。
7. 沿直线运动的物体,其速度大小与时间成反比,则其加速度的大小与速度大小有如下关系( B )A.与速度大小成正比;B.与速度大小的平方成正比;C.与速度大小成反比;D.与速度大小的平方成反比。
8. 下列说法中,正确的是( D )A. 物体走过的路程越长,它的位移也越大;B. 质点在时刻t 和t +Δt 的速度分别为1v 和2v ,则在时间Δt 内的平均速度为()122v v +;C. 如物体的加速度为常量,则它一定做匀变速直线运动;D. 在质点的曲线运动中,加速度的方向与速度的方向总是不一致的。
大学物理第一章质点运动学-习题及答案
(C ) 只有(2)是对的。
(D ) 只有(3)是对的。
dr _ d$工d 厂 dr dt dt .只有③正确。
1-3在相对地面静止的坐标系内,A 、B 二船都以2m s-1的速率匀速行驶,A 船沿x 轴正向,B 船沿),轴正向。
今在A 船上设置与静止坐标系方向相同的坐标系(%, y 方向单 位矢用'〃表示),那么在A 船上的坐标系中,B 船的速度(以m s^为单位)为(A ) 2i + 2j(B ) - 2i + 2j (C ) —2i — 2j (D )2i — 2j 第一章质点运动学1-1 一质点在平面上运动,已知质点位置矢量的表示式为 r = at 2i + bt 2j (其中。
上为常量) 则该质点作 (A )匀速直线运动 (E )变速直线运动 (C )抛物线运动 (D ) —般曲线运动 v = — = 2citi + 2btj 解:由 缶 知卩随/变化,质点作变速运动。
x = at 2 又由y=bfl -b y = —x a 知质点轨迹为一直线。
故该质点作变速直线运动。
1-2质点作曲线运动,「表示位置矢量,s 表示路程,①表示切向加速度,下列表达式中, 1 dv/dt = a ③ d5/d/ = v (2)dr /dz = v④ |dv/d/| = (A )只有(1)、 (4)是对的。
(B) 只有(2). (4)是对的。
[D] 解:由定义: dv a =— dr dv 丰— dr . ■[B]解:由"A 对地=2d,叫对地=2f 可得 "B 对A = "g 对地+ "地对A=%对地一对地= 2j-2i=一2i + 2/ ( m. S _1)1-4 一质点沿x 方向运动,其加速度随时间变化关系为 a = 3 + 2/ (SI)如果初始时质点的速度%为5H1-S-1,则当/为3S 时,质点的速度 W m s tv= v 0 + J adt 解: o3=5 + J (3 + 2t)dto=23 m-s'11-5 一质点的运动方程为"'-/-(SI),则在/由o 至4s 的时间间隔内,质点的位 移大小为 8m ,在/由0到4s 的时间间隔内质点走过的路程为10m 。
质点运动学 习题分析与解答
第1章 质点运动学 习题解答(一). 选择题1.一运动质点在某瞬时位于矢径()y x r , 的端点处, 其速度大小为A. t r d dB. d d t rC. d d t rD.22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x [ ] 【分析与解答】t r d d 表示质点到坐标原点的距离随时间的变化率,d d t r表示速度矢量,d d t r 与t rd d 意义相同,在直角坐标系中,速度大小即速率可由2222d d d d ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=+=t y t x v v v yx求解,在自然坐标系中,速率可用公式t s v d d =计算。
正确答案是D 。
2. 一质点在平面上运动,已知质点位置矢量的表示式为22at bt =+r i j (其中a 、b 为常量), 则该质点作 A. 匀速直线运动. B. 变速直线运动. C. 抛物线运动. D.一般曲线运动. [ ] 【分析与解答】22at bt =+v i j 是变速运动,22,,ax at y bt x yb ===为直线方程正确答案是B 。
3. 某质点的速度为,已知,时它过点(3,-7),则该质点的运动方程为:A. B.C. D.不能确定 [ ]【分析与解答】22d 24(23)(47)t t t t t ==-+=+-+⎰r v i j c i j正确答案是B 。
4. 以初速将一物体斜向上抛,抛射角为,不计空气阻力,则物体在轨道最高点处的曲率半径为:A. B. C. D.不能确定。
[ ] 【分析与解答】v 0θv 0sin θg g v 02v 02cos 2θg v =2i -8t j t =02t i -4t 2j (2t +3)i -(4t 2+7)j -8j轨道最高点22220,(cos ),x xn v v v v v a g θρ=====v i ,故曲率半径2v g ρ=正确答案是C 。
5. 质点沿半径为R 的圆周作匀速率运动,每T 秒转一圈.在2T 时间间隔中,其平均速度大小与平均速率大小分别为..[ ] 【分析与解答】平均速度为位移除以时间间隔,平均速率为路程除以时间, 质点沿半径为R 的圆周转动一周,位移为零,路程等于。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1章 质点运动学 习题及答案
一、填空题
1.一质点沿Ox 轴运动,其运动方程为335x t t =-+,则质点在任一时刻的速度
为 ,加速度为 。
2.一质点沿Ox 轴运动,其运动方程为335x t t =+-,则质点在2t s =时的加速度大小
为 ,方向为 。
3. 一质点沿Ox 轴运动,其速度为22t υ=,初始时刻位于原点,则质点在2t s =时的位
置坐标x = ,加速度大小为 。
4.一质点做直线运动,其瞬时加速度的变化规律为t A a ωωcos 2-=,在t=0 时,
,,0A x x ==υ其中ω,A 均为正常数,则此质点的运动方程是 。
5.一质点的运动学方程为cos sin R t R t =+r i j ,在任意时刻,切向加速度和法向加速度
的大小分别为 , 。
6.质点作圆周运动的法向加速度反映了 的变化快慢,切线加速度反映了 的变化快慢。
7.一质点沿半径为R 的圆周按规律22
1bt t s o -=υ而运动, o υ,b 都是常数. t 时刻质点的总加速度为 ; t 为 时总加速度在数值上等于b ,当加速
度达到b 时,质点已沿圆周运行了 圈。
二、回答问题
1.|r ∆|与r ∆ 有无不同?t d d r 和dr dt 有无不同? t
d d v 和dv dt 有无不同?其不同在哪里?试举例说明. 解: |r ∆|与r ∆ 不同. |r ∆|表示质点运动位移的大小,而r ∆则表示质点运动时其径向长度
的增量;t d d r 和dr dt 不同. t
d d r 表示质点运动速度的大小,而dr dt 则表示质点运动速度的径向分量;t d d v 和dv dt 不同. t
d d v 表示质点运动加速度的大小, 而dv dt 则表示质点运动加速度的切向分量. 2.质点沿直线运动,其位置矢量是否一定方向不变?质点位置矢量方向不变,质点是否一定做直线
运动?
解: 质点沿直线运动,其位置矢量方向可以改变;质点位置矢量方向不变,质点一定做直线运动.
3.匀速圆周运动的速度和加速度是否都恒定不变?圆周运动的加速度是否总是指向圆心,为什么? 解: 由于匀速圆周运动的速度和加速度的方向总是随时间发生变化的,因此,其速度和加速度不是
恒定不变的;只有匀速圆周运动的加速度总是指向圆心,故一般来讲,圆周运动的加速度不一定指向圆心.
三、计算题
1.一物体做直线运动,运动方程为23
62x t t =-,式中各量均采用国际单位制,求:(1)第二秒内的平均速度(2)第三秒末的速度;(3)第一秒末的加速度;(4)物体运动的类型。
解: 由于: 23
2621261212x(t )t t dx v(t )t t dt
dv a(t )t dt
=-==-==- 所以:(1)第二秒内的平均速度: 1(2)(1)4()21
x x v ms --==- (2)第三秒末的速度:
21(3)1236318()v ms -=⨯-⨯=-
(3)第一秒末的加速度:
2(1)121210()a ms -=-⨯=
(4)物体运动的类型为变速直线运动。
2.一质点运动方程的表达式为2105(t t t =+r i j ),式中的,t r 分别以m,s 为单位,试求;(1)质点的速度和加速度;(2)质点的轨迹方程。
解: (1)质点的速度: 205dr v ti j dt
==+ 质点的加速度: 20dv a i dt
== (2)质点的轨迹方程: 由210,5x t y t ==联立消去参数t 得质点的轨迹方程: 252
y x = 3.一人自坐标原点出发,经过20s 向东走了25m ,又用15s 向北走了20m ,再经过10s 向西南方向走了15m ,求:(1)全过程的位移和路程;(2)整个过程的平均速度和平均速率。
解: 取由西向东为x 轴正向, 由南向北为y 轴正向建立坐标系.则人初始时的位置坐标为(0,0), 经过20s 向东走了25m 后的位置坐标为(25,0), 又用15s 向北走了20m 后的位置坐标为(25,20), 再经过10s 向西南方向走了15m 后的位置坐标为
(25--于是:
(1)全过程的位移和路程:
[(25(20]()
25201560()r i j m s m ∆=-+-∆=++=
(2)整个过程的平均速度和平均速率:
54/[(25(20]/[((](/)994/60/45(/)3
v r t i j t i j m s v s t m s =∆∆=-+-∆=-+-=∆∆== 4.一质点在xOy 平面上运动,运动方程为
x =3t +5, y =
2
1t 2+3t -4. 式中t 以 s 计,x ,y 以m 计. (1)以时间t 为变量,写出质点位置矢量的表示式,分别求出第一秒和第二秒内质点的位移;
(2)求出质点速度矢量的表示式,计算t =4 s 时质点的瞬时速度;
(3) 求出质点加速度矢量的表示式,并计算t =0s 到t =4s 内质点的平均加速度。
解: (1) j t t i t r
)4321()53(2-+++=(m )
将0t =,1=t ,2=t 分别代入上式即有 054t s r i j ==- (m )
180.5t s r i j ==- (m )
2114t s r i j ==+ (m )
第一秒内质点的位移:
103 3.5t s t s r r r i j ==∆=-=+ (m )
第二秒内质点的位移
213 4.5t s t s r r r i j ==∆=-=+ (m ) (2) d 3(3)m/s d r v i t j t
==++ 437m/s t s v i j ==+ (3) 2d 1m/s d v a j t
== 240(37)(33)1/404
t s
t s v v i j i j a jm s ==-+-+===- 5.质点的运动方程为8282(t )cos(t )sin(t )(m )=+r i j ,求:(1)质点在任意时刻的速度和加速度的大小;(2)质点的切向加速度和运动轨迹。
解: (1)质点在任意时刻的速度和加速度的大小: 122212212122221621623223221632x y x y dr v sin(t )cos(t )(ms )dt d r a cos(t )sin(t )(ms )dt v (v v )(ms )
a (a a )(ms )
----==-+==--=+==+=i j i j
(2)质点的切向加速度: 20()dv a ms dt
τ-== 运动轨迹:
由 8282x cos(t )y sin(t )
==消去t 得2228x y += 6.一质点沿半径为1 m 的圆周运动,运动方程为 θ=2+33t ,θ式中以弧度计,t 以秒计,求:(1)
t =2 s 时,质点的切向和法向加速度;(2)当加速度的方向和半径成45°角时,其角位移是多少? 解: (1) t =2 s 时,质点的切向和法向加速度 2
2
2222222
2229181836(9)1296t s t s t s n t s t s t s d t dt
d t dt
a R t ms a R t ms τθωωββω-===-============= (2)当加速度的方向和半径成45°角时的角位移: 令 /451n a a tg τ== 得到:329t =
因此 223 6.679
Rad θ=+⨯= 故 0 2.6720.67Rad θθθ∆=-=-=
7、一质点沿X 轴运动,其加速度32a t =+,如果初始时刻1
053v ms ,t s -==时,则质点的速度大小为多少?
解:
305132(32)23()
v
dv t dt
dv t dt v ms -=+=
+=⎰⎰
8.已知一质点作直线运动,其加速度为 a =4+3t 2s m -⋅,开始运动时,x =5 m , v =0,求该质点在t =10s 时的速度和位置.
解:∵ t t
v a 34d d +== 分离变量,得 t t v d )34(d +=
积分,得 122
34c t t v ++= 由题知,0=t ,00=v ,∴01=c
故 22
34t t v +
= 又因为 22
34d d t t t x v +== 分离变量, t t t x d )2
34(d 2+= 积分得 232212c t t x ++= 由题知 0=t ,50=x ,∴52=c
故 52
1232++
=t t x 所以s 10=t 时 21102310341010190(m s )21210105705(m)2
v x -=⨯+⨯=⋅=⨯+⨯+= 9.一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速度v 0 = 0.试求其位置和时间的关系式.
解:
00212
20103442()
22210()3
v
t
x
t dv t dt
dv tdt
v t ms dx t dt
dx t dt x t m -======+⎰⎰⎰⎰
10.在一个无风的雨天,一火车以1
20m s -⋅的速度前进,车内旅客看见玻璃上雨滴的下落方向与竖直方向成75 ,求雨滴下落的速度(设雨滴做匀速运动)。
解:由题意,牵连速度1020v ms -=,相对速度与竖直方向成75 ,绝对速度竖直向下.于是: 00
75v tg v = 由此得到: 01075 5.36()v v tg ms -==。