人工智能[第一章绪论]山东大学期末考试知识点复习.

合集下载

人工智能期末考试重点

人工智能期末考试重点

人工智能:Artificial Intelligence,简称AI,主要研究如何使用人工的方法和技术,使用各种自动化机器或智能化机器模仿、延伸和扩展人的智能,实现某些机器的智能行为。

传统划分①符号主义学派②联结主义学派③行为主义学派现代1.符号智能流派2.计算智能流派3.群体智能流派人工智能的基本技术:1知识表示技术2知识推理、计算和搜索技术3系统实现技术。

符号智能的表示是知识的表示,运算是基于知识表示的推理或符号操作,采用搜索方法进行问题求解,一般在问题空间上进行,计算智能的表示是对象表示,运算时给予对象的表示的操作或计算,采用搜索方法进行问题求解,一般是在解空间上进行。

人工智能的研究领域:定理证明、专家系统、模式识别、机器学习、计算智能、自然语言处理、组合调度问题。

应用领域:难题求解、自动定理证明、自动翻译、智能管理、智能通信、智能仿真等。

人工智能的主要研究途径与方法:1功能模拟。

符号推演2结构模拟。

神经计算3行为模拟。

控制进化人工智能的研究目标及其意义:1目标:远期目标是要制造智能机器,即探索智能的基本机理,最终制造出和人有相似或相近智力和行为能力的综合智能系统;近期目标是实现机器智能,即研究如何使用现有的计算机具备更高的智能,在一定领域或在一定程度上去完成需要人的复杂脑力劳动才能完成的工作。

2意义:普遍的计算机智能低下,无法满足社会需求;研究AI是当前信息化社会的迫切需求;智能化是自动化发展的必然趋势;研究AI,对人类自身的智能的奥秘也提供有益的帮助。

人工智能的基本内容:1从人工智能的定义出发包括(感知与交流的模拟,记忆,联想,计算,思维的模拟,输出效率或行为模拟2从知识工程的角度出发包括(知识的获取,知识的处理以及知识的运用)人工智能诞生1956年夏,达特莫斯大学的研究会,麦卡锡提议正式采用了“AI”术语。

发展:推理期,知识期,学习期AI的现状与发展趋势:1多种途径齐头并进,多种方法协作互补2新思想、新技术不断涌现,新领域新方向不断开拓3理论研究更加深入,应用研究愈加广泛4研究队伍日益壮大,社会影响越来越大。

【2024版】人工智能导论复习

【2024版】人工智能导论复习

可编辑修改精选全文完整版《人工智能导论》期末复习一、题型:填空题、简答题、计算题、论述题二、复习重点:第一章:1.什么是人工智能?人工智能的三种观点分别是什么?2.实现人工智能的技术路线是哪四种?3.人工智能要研究的三个主要问题是什么?4.人工智能有哪些主要研究领域?第二章:1.什么是知识?何谓知识表示?2.用谓词逻辑表示法表示猴子摘香蕉问题。

3.产生式系统推理机的推理形式有哪三种?4.产生式系统一般由哪三个基本部分组成?5.用语义网络表示:“苹果树枝繁叶茂,上结了很多苹果,有大的,也有小的,有红的,也有绿的” 。

6.用与 / 或树方法表示三阶Hanoi 塔问题。

第三章:1.推理的含义是什么?2.应用归结原理求解下列问题:任何兄弟都有同一个父亲, John 和Peter 是兄弟,且 John 的父亲是 David ,问 Peter 的父亲是谁?第四章:1.可信度方法:例 4.1 ,例 4.22.主观 Bayes 方法:例 4.8 ,例 4.93.证据理论中描述证据和结论的不确定性采用哪两个函数度量?第五章:1.什么叫搜索?搜索的两层含义是什么?2.用全局最佳优先搜索方法求解以下八数码问题。

3.用代价树的深度优先搜索求解下面的推销员旅行问题。

第六章:1.什么是机器学习?机器学习研究的目标是什么?研究机器学习的意义何在?2.机器学习有哪些主要学习策略?3.机器学习系统的基本模型包含哪四个基本环节?4.实例学习的含义是什么?它包含哪两个空间模型?对规则空间进行搜索的方法有几种?第七章:1.什么是自然语言理解?自然语言理解过程有哪些层次?各层次的功能如何?2.对汉语语料库加工的方法是什么?汉语自动分词的方法有哪些?其难点何在?第八章:1.什么是专家系统?它有哪些基本特点?一般专家系统由哪些基本部分构成?2.知识获取的主要任务是什么?3.有哪几类专家系统开发工具?各有什么特点?第九章:1.解答 B-P 学习算法的流程图,并说明其优缺点。

《人工智能导论》期末复习知识点

《人工智能导论》期末复习知识点

《人工智能导论》期末复习知识点
人工智能导论知识点总结
一、定义:
人工智能(Artificial Intelligence,AI)是指研究如何实现机器的智能,即使用计算机来模拟或提高人类的智能表现和能力。

基于此,人工智能的主要任务是解决一些超出传统计算能力的问题,其中包括学习、推理和解决一些挑战。

二、技术:
人工智能技术可分为三个主要技术领域:
1、机器学习:机器学习是一种研究机器如何学习,并从这些学习中学习及其反馈环境的解决实际问题的学科。

包括规则学习、支持向量机以及深度学习。

2、自然语言处理:自然语言处理是指人工智能技术在处理人类自然语言的理解和翻译方面的应用研究。

它将注重语言应用的学习、理解、表达和使用,以及语言识别、概念识别和分析。

3、计算机视觉:计算机视觉是指使用计算机的视觉系统来处理可视化的图像、图片、视频信息,以及关于图像的相关内容的研究。

它是一种智能系统,包括图像处理、识别和分析等功能。

三、应用:
人工智能在各行各业都有广泛的应用,有助于改善工作效率,提高工作质量,提升企业竞争力,节省成本。

1、机器人:工业机器人、服务机器人等用于工厂生产线和服务行业,可以大大提高工作效率。

人工智能 考试复习提纲

人工智能 考试复习提纲

第一章绪论●人工智能的诞生:1965年夏季,在达特茅斯大学●人工智能的学派:符号主义,联结主义,行为主义第二章知识表示方法●知识的特性:1.相对正确性;2.不确定性;3.可表示性;4.可利用性●★用谓词公式表示知识的步骤:1.定义谓词及个体,确定每个谓词及个体的确切含义。

2.根据所要表达的事物或概念,为每个谓词中的变元赋以特定的值。

3.根据所要表达的知识的语义,用适当的联接符号将各个谓词联接起来,形成谓词公式。

●★★机器人搬弄积木块问题表示P19●★一阶谓词逻辑表示法的特点:1.自然性;2.适宜于精确性知识的表示;3.易实现;4.与谓词逻辑表示法相对应的推理方法。

●产生式系统的组成:1.规则库;2.综合数据库;3.推理机●★产生式系统的推理方式:1.正向推理:①规则库中的规则与综合数据库中的事实进行匹配,得到匹配的规则集合;②使用冲突解决算法,从匹配规则集合中选择一条规则作为启用规则;③执行启动规则的后件。

将该启用规则的后件送入综合数据库或对综合数据库进行必要的修改。

重复这个过程直至达到目标。

2.反向推理:①规则库中的规划后件与目标事实进行匹配,得到匹配的规则集合;②使用冲突解决算法,从匹配规则集合中选择一条规则作为启用规则;③将启用规则的前件作为子目标。

重复这个过程直至各子目标均为已知事实,则反向推理的过程成功结束。

●★★语义网络表示知识举例:P36 例2.5、2.6、2.7;P71 作业18●框架的定义及组成:一个框架由若干个“槽”组成,每个“槽”又可划分为若干个“侧面”。

一个槽用于描述所论及对象的某一方面的属性,一个侧面用于描述相应属性的一个方面。

框架名<槽名><侧面><值>●脚本表示法:美国耶鲁大学的R.C.Schank及其同事们根据概念从属理论提出了一种知识表示方法——脚本表示法。

●问题状态空间的构成:1.状态;(2).算符;3.状态空间。

●★用状态空间表示问题的步骤1.定义状态的描述形式;2.用所定义的状态描述形式把问题的所有可能的状态都表示出来,并确定出问题的初始状态集合描述和目标状态集合描述;3.定义一组算符。

人工智能期末复习概要

人工智能期末复习概要
当MD(H,E)>0时,应该有P(H/E)< P(H),那么有 MB(H,E)=0
当MB(H,E)>0时,则为P(H/E)> P(H),那么有 MD(H,E)=0
如果P(H/E)= P(H),则MD(H,E)= MD(H,E)=0表 示,E与H无关
第四章 不确定性推理
不确定性的传递问题
– 单条知识
第四章 不确定性推理
可信度方法 组合证据不确定性表示
– 当多个证据以合取得方式构成一个组合证 据的时候,组合证据的可信度为这些单一 证据的可信度最小值;
– 当多个证据以析取得方式构成一个组合证 据的时候,组合证据的可信度为这些单一 证据的可信度最大值;
第四章 不确定性推理
– MB(H,E):信任增长度 – MD(H,E):不信任增长度 – MB(H,E)与MD(H,E)是互斥的 – 解释
学习目标
– 了解不确定性推理的含义、思路和讨论的 主要问题。
– 掌握可信度方法、主观Bayes方法和证据 理论不确定性推理方法
第四章 不确定性推理
计算问题
– 不确定性的传递问题 – 证据不确定性的合成问题 – 结论不确定性的合成问题
第四章 不确定性推理
可信度方法 知识不确定性的表示
– 在基于可信度的不确定性推理模型中,知 识是以产生式规则来表示的,而只是的不 确定性则是以可信度CF(H,E)来表示的, 其一般的形式为:
第一章 绪论
课程研究的主要内容
– 知识表示 – 推理方式
确定性推理(主要归结原理) 不确定性推理
– 搜索技术研究
普通图搜索 超图搜索(与或图搜索)
第一章 绪论
需要解决的问题:
– 万能的人工智能的知识体系结构从根本上 就不可能有,最根本的原因是缺乏知识。 人是根据知识行事的,而不是根据抽象原 则上进行推理。

山东大学网络教育-人工智能-期末考试试题答案

山东大学网络教育-人工智能-期末考试试题答案

⼭东⼤学⽹络教育-⼈⼯智能-期末考试试题答案⼭⼤⽹络教育《⼈⼯智能》1.⾸次提出“⼈⼯智能”是在(D )年A.1946B.1960C.1916D.19562. ⼈⼯智能应⽤研究的两个最重要最⼴泛领域为:BA.专家系统、⾃动规划B. 专家系统、机器学习C. 机器学习、智能控制D. 机器学习、⾃然语⾔理解3. 下列不是知识表⽰法的是 A 。

A:计算机表⽰法B:“与/或”图表⽰法C:状态空间表⽰法D:产⽣式规则表⽰法4. 下列关于不确定性知识描述错误的是 C 。

A:不确定性知识是不可以精确表⽰的B:专家知识通常属于不确定性知识C:不确定性知识是经过处理过的知识D:不确定性知识的事实与结论的关系不是简单的“是”或“不是”。

⼀、填空题1、在删除策路归结的过程中,删除以下⼦句:含有的⼦句;含有的⼦句;⼦句集中被别的⼦句的⼦句。

正确答案:纯⽂字#永真#类含2、⼀般公认⼈⼯智能学科诞⽣于年。

正确答案:19563、在启发式搜索当中,通常⽤来表⽰启发性信息。

正确答案:启发函数4、⽤谓词、量词(存在量词,全称量词、联接词(⼀蕴涵,个合取,V析取连接⽽成的复杂的符号表达式称为。

正确答案:谓词公式。

⼆、简答与应⽤题5、何谓“图灵测试”?简单描述之,请您设计⼀个图灵测试问题来测试您⾯对的是⼀台机器还是⼀个⼈?正确答案:图灵实验是为了判断⼀台机器是否具有智能的实验,试验由三个封闭的房间组成,分别放置主持⼈、参与⼈和机器。

主持⼈向参与⼈和机器提问,通过提问的结果判断哪是⼈,哪是机器,如果⽆法判断,则这台机器具有智能,即所谓的“智能机器”6、⼀个产⽣式系统是以整数的集合作为综合数据库,新的数据库可通过把其中任意⼀对元素的乘积添加到原数据库的操作来产⽣。

设以某⼀个整数⼦集的出现作为⽬标条件,试说明该产⽣式系统是可交换的。

正确答案:说明⼀个产⽣式系统是可交换的,就是要证明该产⽣式系统满⾜可交换产⽣式系统的三条性质。

(1)该产⽣式系统以整数的集合为综合数据库,其规则是将集合中的两个整数相乘后加⼊到数据库中。

人工智能考试复习资料

人工智能考试复习资料

人工智能第一章1、智能(intelligence )人的智能是他们理解和学习事物的能力,或者说,智能是思考和理解能力而不是本能做事能力。

2、人工智能(学科)人工智能研究者们认为:人工智能(学科)是计算机科学中涉及研究、设计和应用智能机器的一个分支。

它的近期主要目标在于研究用机器来模仿和执行人脑的某些智力功能,并开发相关理论和技术。

3、人工智能(能力)人工智能(能力)是智能机器所执行的通常与人类智能有关的智能行为,这些智能行为涉及学习、感知、思考、理解、识别、判断、推理、证明、通信、设计、规划、行动和问题求解等活动。

4、人工智能:就是用人工的方法在机器上实现的智能,或者说,是人们使用机器模拟人类的智能。

5、人工智能的主要学派:符号主义:又称逻辑主义、心理学派或计算机学派,其原理主要为物理符号系统(即符号操作系统)假设和有限合理性原理。

代表人物有纽厄尔、肖、西蒙和尼尔逊等。

连接主义:又称仿生学派或生理学派,其原理主要为神经网络及神经网络间的连接机制与学习算法。

行为主义:又称进化主义或控制论学派,其原理为控制论及感知—动作模式控制系统。

6、人类认知活动具有不同的层次,它可以与计算机的层次相比较,见图人类 计算机认知活动的最高层级是思维策略,中间一层是初级信息处理,最低层级是生理过程,即中枢神经系统、神经元和大脑的活动,与此相对应的是计算机程序、语言和硬件。

研究认知过程的主要任务是探求高层次思维决策与初级信息处理的关系,并用计算机程序来模拟人的思维策略水平,而用计算机语言模拟人的初级信息处理过程。

7、人工智能研究目标为:1、更好的理解人类智能,通过编写程序来模仿和检验的关人类智能的理论。

2、创造有用和程序,该程序能够执行一般需要人类专家才能实现的任务。

一般来说,人工智能的研究目标又可分为近期研究目标和远期研究目标两种。

两者具有不可分割的关系,一方面,近期目标的实现为远期目标研究做好理论和技术准备,打下了必要的基础,并增强人们实现远期目标的信心。

人工智能期末复习

人工智能期末复习

人工智能原理期末考试复习1. 什么是人工智能?发展经历了几个阶段?人工智能指的是能够感知或推断信息,并将其作为知识而拥有,以应用于环境或语境中适合的行为;机器的智能称为人工智能,通常在运用程序、间或适当硬件的计算机系统中得以实现.2. 人工智能研究的内容有哪些?机器学习、知识表示方法、搜索求解策略、进化算法及其应用、确定性及不确定性推理方法、群体智能算法及其应用。

3. 人工智能有哪些研究领域?安全防范、医疗诊断、语音识别、工业制造、计算机游戏、机器翻译。

4. 什么是知识?有哪些特性?有几种分类方法?知识是人们在长期的生活及社会实践中、在科学研究及实验中积累起来的对客观世界的认识与经验。

相对正确性、不确定性、可表示性与可利用性。

分类方法:(1)按知识的作用范围分为∶常识性知识和领域性知识﹔(2)按知识的作用及表示分为∶事实性知识、规则性知识、控制性知识和元知识;(3 )按知识的确定性分为:确定知识和不确定知识;(4) 按人类思维及认识方法分为:逻辑性知识和形象性知识。

5. 什么是知识表示、命题、谓词,一阶谓词逻辑、产生式、框架、语义网络?知识表示就是将人类知识形式化或者模型化;命题是一个非真即假的陈述句;谓词的一般形式: ),...,,(21n x x x P );n x x x ,...,,21是个体,某个独立存在的事物或者某个抽象的概念, P 是谓词名,用来刻画个体的性质、状态或个体间的关系。

一阶谓词逻辑表示:谓词不但可表示一些简单的事实,而且可以表示带有变量的“知识”,有时称为“事实的函数”。

进而可用谓词演算中的逻辑联接词“与()”、“或(v)"、“非(┐)”和“蕴含(→)”等来组合已有知识,从而表示出更复杂的知识。

产生式通常用于表示事实、规则以及它们的不确定性度量,适合于表示事实性知识和规则性知识。

框架是一种描述所论对象(一个事物、事件或概念)属性的数据结构。

语义网络:从图论的观点看,它其实就是“一个带标识的有向图”,由结点和弧(也称“边”)所组成。

人工智能期末复习重点

人工智能期末复习重点

人工智能复习重点1绪论1.1人工智能-理论基础。

从理论基础上讲,它是信息论、控制论、系统工程论、计算机科学、心理学、神经学、认知科学、数学和哲学等多学科相互渗透的结果。

1.2 什么是人工智能?从思维基础上讲,它是人们长期以来探索研制能够进行计算、推理和其它思维活动的智能机器的必然结果;• 从理论基础上讲,它是信息论、控制论、系统工程论、计算机科学、心理学、神经学、认知科学、数学和哲学等多学科相互渗透的结果;• 从物质和技术基础上讲,它是电子计算机和电子技术得到广泛应用的结果。

1.3 人工智能的研究途径和方法1.利用搜索采用尝试-检验(try-and-test)的方法,对问题进行试探性的求解,直到成功。

这就是AI问题求解的基本策略中的生成-测试法。

2.利用知识知识有几大难以处理的属性:①非常庞大②难于精确表达③经常变化所以,对于知识的处理必须做到:①抓住一般性,以免浪费大量时间,空间;②要能够被提供和接受知识的人所理解;③易于修改;④能够通过搜索技术来减少知识的巨大容量。

3.利用抽象抽象用以区分重要与非重要的特征,借助于抽象可将处理问题中的重要特征和变式与大量非重要特征和变式区分开来,使对知识的处理变得更有效、更灵活。

4.利用推理目前,AI 工作者以研究出各种逻辑推理、概率推理、定性推理、模糊推理、非单调推理和次协调推理等各种推理技术和各种控制策略,它为人工智能的应用开辟了广阔的应用前景。

5.遵循有限合理性原则西蒙在20世纪50年代在研究人的决策制定中总结出一条关于智能行为的基本原则,因此而获得诺贝尔奖。

爆炸性的搜索量,仍要做好决策,而不是放弃,这时,人将在一定的约束条件下作机遇性的搜索,以制定尽可能好的决策。

这样的决策的制定具有一定的机遇性,往往不是最优的。

1.4 人工智能三大学派1. 符号主义认为人工智能源于数理逻辑。

2. 联结主义(Connetionism)认为人工智能源于仿生学,特别是人脑模型的研究,神经元与神经元之间的连接。

人工智能知识点总复习(附答案)

人工智能知识点总复习(附答案)

知识点1.什么是人工智能?它的研究目标是什么?人工智能的研究目标远期目标揭示人类智能的根本机理,用智能机器去模拟、延伸和扩展人类的智能涉及到脑科学、认知科学、计算机科学、系统科学、控制论等多种学科,并依赖于它们的共同发展近期目标研究如何使现有的计算机更聪明,即使它能够运用知识去处理问题,能够模拟人类的智能行为。

相互关系远期目标为近期目标指明了方向近期目标则为远期目标奠定了理论和技术基础2.人工智能有哪几个主要学派?各自的特点是什么?人工智能研究的三大学派:随着人工神经网络的再度兴起和布鲁克(R.A.Brooks)的机器虫的出现,人工智能研究形成了符号主义、联结主义和行为主义三大学派。

符号主义学派是指基于符号运算的人工智能学派,他们认为知识可以用符号来表示,认知可以通过符号运算来实现。

例如,专家系统等。

联结主义学派是指神经网络学派,在神经网络方面,继鲁梅尔哈特研制出BP网络之后,人工神经网络研究掀起了第二次高潮。

之后,随着模糊逻辑和进化计算的逐步成熟,又形成了“计算智能”这个统一的学科范畴。

行为主义学派是指进化主义学派,在行为模拟方面,麻省理工学院的布鲁克教授1991年研制成功了能在未知的动态环境中漫游的有6条腿的机器虫。

智能科学技术学科研究的主要特征(1)由对人工智能的单一研究走向以自然智能、人工智能、集成智能为一体的协同研究;(2)由人工智能学科的独立研究走向重视与脑科学、认知科学、等学科的交叉研究;(3)由多个不同学派的独立研究走向多学派的综合研究;(4)由对个体、集中智能的研究走向对群体、分布智能的研究;(5)智能技术应用已渗透到人类社会的各个领域。

知识表示的类型按知识的不同存储方式:陈述性知识:知识用某种数据结构来表示;知识本身和使用知识的过程相分离。

过程性知识:知识和使用知识的过程结合在一起。

知识表示的基本方法非结构化方法:一阶谓词逻辑产生式规则结构化方法:语义网络框架知识表示的其它方法状态空间法和问题归约法。

人工智能期末复习资料

人工智能期末复习资料

⼈⼯智能期末复习资料⼈⼯智能技术期末复习纲要⼀、填空(20分)+判断(10分)1、⼈⼯智能:Artificial Intelligence,简称AI2、计算智能就是计算⼈⼯智能, 它是模拟(群智能)的⼈⼯智能。

计算智能以(数值数据)为基础, 主要通过数值计算,运⽤算法进⾏问题求解。

3、(判断)⼈⼯智能作为⼀门学科, 其研究⽬标就是制造智能机器和智能系统, 实现智能化社会4、(判断)⼈⼯智能学科的研究策略则是先部分地或某种程度地实现机器的智能,并运⽤智能技术解决各种实际问题特别是⼯程问题, 从⽽逐步扩展和不断延伸⼈的智能, 逐步实现智能化。

5、(判断)符号智能采⽤搜索⽅法进⾏问题求解,⼀般是在(问题空间)搜索;计算智能也采⽤搜索⽅法进⾏问题求解,⼀般是在(解空间)搜索。

6、(填空)表⽰、运算和搜索是⼈⼯智能的三个最基本、最核⼼的技术。

7、PROLOG语⾔只有三种语句,分别称为(事实)、(规则)和(问题)。

8、(填空)PROLOG程序的执⾏过程是⼀个(归结)演绎推理过程9、(填空)⼀个完整的Turbo PROLOG(2.0版)程序⼀般包括常量段、领域段、数据库段、(谓词段)、(⽬标段)和(⼦句段)等六个部分。

10、(填空)按连接同⼀节点的各边间的逻辑关系划分,图可分为(或图)或(与或图)两⼤类,图搜索也就可分为(或图搜索)和(与或图搜索)两⼤类。

或图通常称为(状态图)。

11、(填空)⽤计算机来实现状态图的搜索, 有两种最基本的⽅式:(树式搜索)和(线式搜索)。

12、(填空)按搜索范围的扩展顺序的不同, 搜索⼜可分为(⼴度优先)和(深度优先)两种类型。

13、(填空)与或图搜索也分为(盲⽬搜索)和(启发式搜索)两⼤类。

前者⼜分为穷举搜索和盲⽬碰撞搜索。

14、(填空)遗传算法中有三种关于染⾊体的运算: (选择-复制)、(交叉)和(变异)。

15、(判断、填空)遗传算法是⼀种随机搜索算法,遗传算法⼜是⼀种优化搜索算法。

《人工智能》--课后习题答案

《人工智能》--课后习题答案

《人工智能》课后习题答案第一章绪论1.1答:人工智能就是让机器完成那些如果由人来做则需要智能的事情的科学。

人工智能是相对于人的自然智能而言,即用人工的方法和技术,研制智能机器或智能系统来模仿延伸和扩展人的智能,实现智能行为和“机器思维”,解决需要人类专家才能处理的问题。

1.2答:“智能”一词源于拉丁“Legere”,意思是收集、汇集,智能通常用来表示从中进行选择、理解和感觉。

所谓自然智能就是人类和一些动物所具有的智力和行为能力。

智力是针对具体情况的,根据不同的情况有不同的含义。

“智力”是指学会某种技能的能力,而不是指技能本身。

1.3答:专家系统是一个智能的计算机程序,他运用知识和推理步骤来解决只有专家才能解决的复杂问题。

即任何解题能力达到了同领域人类专家水平的计算机程序度可以称为专家系统。

1.4答:自然语言处理—语言翻译系统,金山词霸系列机器人—足球机器人模式识别—Microsoft Cartoon Maker博弈—围棋和跳棋第二章知识表达技术2.1解答:(1)状态空间(State Space)是利用状态变量和操作符号,表示系统或问题的有关知识的符号体系,状态空间是一个四元组(S,O,S0,G):S—状态集合;O—操作算子集合;S0—初始状态,S0⊂S;G—目的状态,G⊂S,(G可若干具体状态,也可满足某些性质的路径信息描述)从S0结点到G结点的路径被称为求解路径。

状态空间一解是一有限操作算子序列,它使初始状态转换为目标状态:O1 O2 O3 OkS0→−−−S1→−−−S2→−−−……→−−−G其中O1,…,Ok即为状态空间的一个解(解往往不是唯一的)(2)谓词逻辑是命题逻辑的扩充和发展,它将原子命题分解成客体和谓词两个部分。

与命题逻辑中命题公式相对应,谓词逻辑中也有谓词(命题函数)公式、原子谓词公式、复合谓词公式等概念。

一阶谓词逻辑是谓词逻辑中最直观的一种逻辑。

(3)语义网络是一种采用网络形式表示人类知识的方法。

(完整word版)人工智能复习参考(山东大学2015)

(完整word版)人工智能复习参考(山东大学2015)

一、填空题01.构成产生式系统的基本元素有(综合数据库)(产生式规则)(控制系统),控制策略按执行规则的方式分为(正向推理)(反向推理)(双向推理)三类。

02.归结过程中控制策略的作用是给出控制策略,以使仅对选择合适的子句间方可做归结,避免(多余的不必要的归结式)。

常见的控制策略有(采用支撑集)(线性归结)(单元归结)(输入归结).03.公式G和公式的子句集并不等值,但在(不可满足)的意义下是一致的。

04.与或图的启发式搜索算法(AO*算法)的两个过程分别是(图生成过程即扩展节点)和(计算耗散值的过程)。

05.人工智能的研究途径主要有两种不同的观点,一种观点称为(符号主义),认为智能的基本单元是(符号)。

另一种观点称为(连接主义),认为智能的基本单元是(神经元).06.集合{P(a,x,f(g(y)),P(z,f(z),f(u)))}的mgu(最一般合一置换)为({z/a, f(x)/x, u/g(y)})。

07.语义网络是对知识的(有向图)表示方法,一个最简单的语义网络是一个形如(节点1、弧、节点2)的三元组,语义网络可以描述事物间多种复杂的语义关系、常用ISA、AKO弧表示节点间具有(类属)的分类关系.语义网络下的推理是通过(继承和匹配)实现的。

08.按综合属性分类,机器学习可分为(连接学习)(归纳学习)(分析学习)和遗传算法与分类器系统。

一个机器学习系统应有(环境)(知识库)(学习环节)(执行环节)四个基本部分组成.09.常用的知识表示法有逻辑表示法和(产生式规则表示法)(语义网络表示法)(框架理论表示法)(过程表示法)等。

10.有两个A*算法A1和A2,若A1比A2有较多启发信息,则h1(n) (大于)h2(n)。

11.关于A算法与A*算法,若规定h(n)≥0,并且定义启发函数:f*(n)=g*(n)+h*(n)表示初始状态S0经点n到目标状态Sg最优路径的费用。

其中g*(n)为S0到n的最小费用,h *(n)为n到Sg的实际最小费用。

大学计算机人工智能知识点,人工智能期末考试知识点(考点)总结

大学计算机人工智能知识点,人工智能期末考试知识点(考点)总结

点)总结1、智能所包含的能⼒(1)感知能⼒(2)记忆与思维能⼒(3)学习和⼒适应能⼒(4)⼒为能⼒2、⼒⼒智能分为五个阶段:(1)孕育期(2)形成期(3)知识应⼒期(4)从学派分⼒⼒向综合(5)智能科学技术学科的兴起3、⼒⼒智能研究的基本内容(1)与脑科学和认知科学的交叉研究(2)智能模拟的⼒法和技术研究4、⼒⼒智能研究中的不同学派(三⼒学派)(1)符号主义(2)联结主义(3)⼒为主义5、机器学习机器学习是机器获取知识的根本途径,同时也是机器具有智能的重要标志。

有⼒认为,⼒个计算机系统如果不具备学习功能,就不能称其为智能系统。

机器学习有多种不同的分类⼒法,如果按照对⼒类学习的模拟⼒式,机器学习可分为符号学习、联结学习、知识发现和数据挖掘等。

6、演绎推理与归纳推理的区别演绎推理与归纳推理是两种完全不同的推理。

演绎推理是在已知领域内的⼒般性知识的前提下,通过演绎求解⼒个具体问题或证明⼒个给定的结论。

这个结论实际上早已蕴涵在⼒般性知识的前提中,演绎推理只不过是将其揭⼒出来,因此它不能增殖新知识。

⼒在归纳推理中,所推出的结论是没有包含在前提内容中的。

这种由个别事物或现象推出⼒般性知识的过程,是增殖新知识的过程。

7、确定性知识确定性知识是指其真假可以明确给出的知识,其表⼒⼒法主要包含谓语逻辑表⼒法、产⼒式表⼒法、语义⼒络表⼒法、框架表⼒法等。

8、谓语逻辑表⼒⼒法P299、语义⼒络表⼒法P3410、框架表⼒法(鸟框架)P4111、产⼒式推理的基本结构产⼒式推理的基本结构如图所⼒,它包括综合数据库、规则库和控制系统三个重要组成部分。

12、谓语公式P6913、状态空间的盲⼒搜索树搜索算法包括⼒般树和代价树的盲⼒搜索算法。

人工智能总复习

人工智能总复习

②选择下一个被考察结点的标准。有三种不同的标准:

d(N)——搜索树中从S0到N的路径长度;
● g(N)——代价树中从S0到N的路径的代价;
● f(N)——代价树中从 S0出发,经过N结点再到 Sg 的路径的最小代价。它既考虑了已经付出的代价g(N), 又对将要付出的代价给出了估计h(N),所以比d(N)和 g(N)都要准确。
2.5.2 “二人零和、全信息、非偶然”博

诸如下棋、打牌、竞技、战争等一类竞争性智 能活动称为博弈。其中最简单的一种称为“二人零 和、全信息、非偶然”博弈。所谓“二人零和、全 信息、非偶然”博弈是指: (1)对垒的A,B双方轮流采取行动,博弈的结 果只有三种情况:A方胜,B方败;B方胜,A方败; 双方战成平局。 (2)在对垒过程中,任何一方都了解当前的格局

1. 广度优先搜索 广度优先搜索就是始终先在同一级节点 中考查,只有当同一级节点考查完之后,才考查 下一级节点。或者说,是以初始节点为根节点, 向下逐级扩展搜索树。所以,广度优先策略的搜 索树是自顶向下一层一层逐渐生成的。又称宽度 优先或横向搜索。

广度优先:扩展当前节点后生成的子节点总是置于 OPEN表的尾端,即OPEN表作为FIFO的队列使用, 使搜索优先向横广方向发展。CLOSED表是一个顺 序表,正被考察的节点在表中编号最大。 广度优先搜索的优点:能确保找到最短解路径。如 果问题的解存在,用此搜索法一定能找到解,且找 到的解还是最优解(即最短的路径)。 缺点是搜索效率低。


2.深度优先搜索 深度优先搜索就是在搜索树的每一层始终 先只扩展一个子节点,不断地向纵深前进,直 到不能再前进(到达叶子节点或受到深度限制) 时,才从当前节点返回到上一级节点,沿另一 方向又继续前进。这种方法的搜索树是从树根 开始一枝一枝逐渐形成的。

人工智能期末复习资料

人工智能期末复习资料

一、智能化智能体1.什么是智能体?什么是理性智能体?智能体的特性有哪些?智能体的分类有哪些?智能体定义:通过传感器感知所处环境并通过执行器对该环境产生作用的计算机程序及其控制的硬件。

理性智能体定义:给定感知序列(percept sequence)和内在知识(built—in knowledge),理性智能体能够选择使得性能度量的期望值(expected value)最大的行动。

智能体的特性:自主性(自主感知学习环境等先验知识)、反应性(Agent为实现自身目标做出的行为)、社会性(多Agent及外在环境之间的协作协商)、进化性(Agent自主学习,逐步适应环境变化)智能体的分类:简单反射型智能体:智能体寻找一条规则,其条件满足当前的状态(感知),然后执行该规则的行动。

基于模型的反射型智能体:智能体根据内部状态和当前感知更新当前状态的描述,选择符合当前状态的规则,然后执行对应规则的行动。

基于目标的智能体:为了达到目标选择合适的行动,可能会考虑一个很长的可能行动序列,比反射型智能体更灵活。

基于效用的智能体:决定最好的选择达到自身的满足。

学习型智能体:自主学习,不断适应环境与修正原来的先验知识.2.描述几种智能体类型实例的任务环境PFAS,并说明各任务环境的属性。

答题举例:练习:给出如下智能体的任务环境描述及其属性刻画。

o机器人足球运动员o因特网购书智能体o自主的火星漫游者o数学家的定理证明助手二、用搜索法对问题求解1。

简述有信息搜索(启发式搜索)与无信息搜索(盲目搜索、非启发式搜索)的区别。

非启发式搜索:按已经付出的代价决定下一步要搜索的节点。

具有较大的盲目性,产生较多的无用节点,搜索空间大,效率不高。

启发式搜索:要用到问题自身的某些信息,以指导搜索朝着最有希望的方向前进.由于这种搜索针对性较强,因而原则上只需搜索问题的部份状态空间,搜索效率较高。

2.如何评价一个算法的性能?(度量问题求解的性能)▪完备性:当问题有解时,算法是否能保证找到一个解;▪最优性:找到的解是最优解;▪时间复杂度:找到一个解需要花多长时间▪搜索中产生的节点数▪空间复杂度:在执行搜索过程中需要多少内存▪在内存中存储的最大节点数3。

人工智能及其应用知识点整理

人工智能及其应用知识点整理

人工智能及其应用知识点整理第一章绪论人工智能的定义人类的自然智能(人类智能)伴随着人类活动时时处处存在。

人类的许多活动,如下棋、竞技、解算题、猜谜语、进行讨论、编制计划和编写计算机程序,甚至驾驶汽车和骑自行车等,都需要“智能”。

如果机器能够执行这种任务,就可以认为机器已具有某种性质的“人工智能”不同科学或学科背景的学者对人工智能有不同的理解,提出不同的观点,人们称这些观点为符号主义,连接主义和行为主义等,或者叫做逻辑学派,仿生学派,和生理学派。

哲学家们对人类思维和非人类思维的研究工作已经进行了两千多年,然而,至今还没有获得满意的解答。

智能,人的智能是人类理解和学习事物的能力,或者说,智能是思考和理解的能力而不是本能做事的能力。

另一种定义为:智能是一种应用知识处理环境的能力或由目标准则衡量的抽象思考能力。

智能机器,智能机器是一种能够呈现出人类智能行为的机器,而这种智能行为是人类用大脑考虑问题或创造思想。

另一种定义为:智能机器是一种能够在不确定环境中执行各种拟人任务达到预期目标的机器。

人工智能(学科),长期以来,人工智能研究者们认为:人工智能(学科)是计算机科学中涉及研究、设计和应用智能机器的一个分支,它的近期主要目标在于研究用机摇来模仿和执行人脑的某些智力功能,并开发相关理论和技术。

近年来,许多人工智能和智能系统研究者认为:人工智能(学科)是智能科学中涉及研究、设计及应用智能机器和智能系统的一个分支,而智能科学是一门与计算机科学并行的学科。

人工智能到底属于计算机科学还是智能科学,可能还需要一段时间的探讨与实践,而实践是检验真理的标准,实践将做出权威的回答。

人工智能(能力),是智能机器所执行的通常与人类智能有关的智能行为,这些智能行为涉及学习、感知、思考、理解、识别、判断、推理、证明、通信、设计、规划、行动和问题求解等活动。

什么是人工智能,试从学科和能力两方面加以说明从学科角度来看:人工智能是计算机科学中涉及研究、设计和应用智能机器的一个分支。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

些从事数学、心理学、计算机科学、信息论和神经学研究的年轻学者们,汇聚在Dartmouth大学,举办了一次长达两个月的学术讨论会,认真、热烈地讨论了用机器模拟人类智能的问题。

在这次会议上,第一次使用了“人工智能”(Artificial Intelligence,AI这一术语,以代表有关机器智能这一研究方向。

这是人类历史上第一次人工智能研讨会,标志着人工智能学科的诞生,具有十分重要的意义。

自从人工智能学科诞生到现在已有50多年的历史,50多年来人工智能的发展经历了不少的曲折。

20世纪50年代,以游戏、博弈为对象开始了人工智能的研究工作,其间以电子线路模拟神经元及人脑的研究均告失败。

20世纪60年代前期,人工智能以研究搜索方法和一般问题的求解为主。

1 960年,美国的麦卡锡(John McCarthy 发明了人工智能程序设计语言(LISt Processing Language,LISP,它是一种函数式语言(Functional Language,适合对符号进行处理,其处理的唯一对象就是符号表达式。

1963年A.Newell发表了问题求解程序,走上了以计算机程序来模拟人类思维的道路,第一次把问题的领域知识与求解方法分离开来。

20世纪60年代后期,在机器定理证明方面取得了重大进展,并在规划问题方面开展了相应的研究。

1 965年R0binson提出了归结原理,实现了自动定理证明的重大突破。

1 968年,uillian在研究人类联想记忆时,认为记忆是由概念间的联系实现的。

相关文档
最新文档