清华版线性代数课件线性代数§

合集下载

大学课程大一数学线性代数上册18.线性子空间课件

大学课程大一数学线性代数上册18.线性子空间课件
线性代数(1)
第十八讲 清华大学数学科学系
1
第十八讲 线性子空间
一、线性子空间 定义1 设 V 是 F 上的线性空间, W 为 V 的非空子集, 如果 W 对于 V 和 F 上的 +, ·仍为线性空间, 则称 W 是 V 的子空 间. {0} 和 V 称为平凡子空间.
例1 若AX = 0 有非零解, 则这些解的任意线性组合仍是解, 因此这个解集合满足子空间的定义, 也就是说齐次线性方程 组 AX = 0 的全体解向量构成 Rn 的一个子空间, 记为 N(A), 称为 AX = 0 的解空间(维数与基?). 例2 V = {(x, -x, 0)T | xR} 是R3 的子空间. 例3 V = {(1, 0, -z)T | zR} 不是R3的子空间.
W1 + W2 的一组基. 设
11 L tt t1 t1 L r r t1 t1 L s s 0 (1)
W1
W2
W1 I W2 , 故存在 1,L , t F , 使
t1 t1L s s 11 L tt
11 L tt t1 t1 L s s 0
6
Q 1,L ,t , t1,L , s 为 W2 的一组基, i 0, i 1L s. 代入(1)式得 11 L tt t1t1 L r r 0, Q 1,L ,t , t1,L , r 为 W1 的一组基, i 0, i 1,L r.
= 1+2, 1W1, 2W2,
(1 1) (2 2 ) W1 W2.
k k1 k2 W1 W2.
W
5
定理4 设 W1, W2 为 V 的两个子空间,则
dimW1+dimW2 = dim(W1+W2)+dim(W1∩W2).

《线性代数》课件-第3章 矩阵

《线性代数》课件-第3章 矩阵

§3.1 矩阵的运算(1)第三章矩阵矩阵的加法定义1111112121121212222221122n n n n m m m m mn mn a b a b a b a b a b a b a b a b a b +++⎡⎤⎢⎥+++⎢⎥+=⎢⎥⎢⎥+++⎣⎦A B 设有两个 矩阵 和 n m ⨯[]ij a =A [],ij b =B 那么矩阵与 的和 A B 记作 规定为,+A B 只有当两个矩阵是同型矩阵时,才能进行加法运算.(可加的条件)注矩阵的加法235178190, 645, 368321-⎡⎤⎡⎤⎢⎥⎢⎥=-=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦设矩阵矩阵则A B 213758169405336281+-++⎡⎤⎢⎥=+-++⎢⎥⎢⎥+++⎣⎦3413755.689⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦对应元相加例1+A B矩阵的加法;+=+A B B A ()()++=++A B C A B C ;+=+=;A OO A A 矩阵加法的运算律 [],ij a =A 设矩阵 (交换律)(结合律)(加法单位元)(1)(2) (3) (4) 规定 [],ija -=-A 称之为 的负矩阵.A ()(),+-=-+=A A A A O ().-=+-A B A B (加法逆元)规定矩阵的减法为:+=+⇒=.A B A C B C (5) 加法消去律成立,即数量乘法111212122211[].n nij m n m m mn ka ka ka kaka ka k ka ka ka ka ⨯⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦A 规定数 k 与矩阵 A 的数量乘积为定义2数量乘法()();k l kl =A A ()k l k l +=+A A A ;()k k k +=+.A B A B 数量乘法的运算规律(1) (2)(3)矩阵的加法和数量乘法统称为矩阵的线性运算 .设为A , B 为矩阵,k, l 为数: m n ⨯矩阵的乘法(矩阵与矩阵相乘)定义3设 是一个 矩阵, m n ⨯[]ij a =A 记作 C =AB.[]ij b =B 是一个 矩阵, n s ⨯规定矩阵 与 的乘积是一个 的矩阵 A Bm s ⨯[],ij c =C 其中 11221nij i j i j in nj ikkjk c a b a b a b ab ==+++=∑()1,2,;1,2,,,i m j s ==矩阵的乘法1212[,,,]j j i i in nj b b a a a b ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦1122i j i j in nj a b a b a b =+++1n ik kj ij k a b c ===∑行乘列法则可乘条件:左矩阵的列数=右矩阵的行数11211300514-⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦设,A 034121.311121⎡⎤⎢⎥⎢⎥=⎢⎥-⎢⎥-⎣⎦B 例20311212113031051412⎡⎤-⎡⎤⎢⎥⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦-⎣⎦C AB .⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦5-61022-17乘积矩阵的“型” ? A m n ⨯B n s ⨯C m s⨯=1111⎡⎤=⎢⎥--⎣⎦设,A 例300,00⎡⎤=⎢⎥⎣⎦AB 22,22⎡⎤=⎢⎥--⎣⎦BA .BA AB ≠故1111-⎡⎤=⎢⎥-⎣⎦,B 则矩阵的乘法(1)矩阵乘法一般不满足交换律; 若 ,则称矩阵 与是乘法可交换的. =AB BA A B 定义3=AB O ⇒;==或A O B O (2) ()≠-=若而A O A B C O,⇒=B C.注意:(),+=+A B C AB AC ();+=+B C A BA CA ()()()k k k ==AB A B A B (其中 k 为数);n m ;m n m n m n ⨯⨯⨯==A E E A A 矩阵的乘法()();=AB C A BC 矩阵乘法的运算规律 (1) (2) (3) (4) (结合律) (左分配律)(右分配律)(乘法单位元)11112211211222221122n n n n m m mn n ma x a x a xb a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩,,,11121121222212n n m m mn n a a a x a a a x a a a x ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦111122121122221122n n n n m m mn n a x a x a x a x a x a x a x a x a x ⎡⎤+++⎢⎥+++⎢⎥⎢⎥⎢⎥+++⎢⎥⎣⎦12m b b b ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦=AX =β⇔=(矩阵形式)AX β ==00(齐次线性方程当时组的矩阵形式),AX β .例4cos sin ,,sin cos OP ϕϕϕϕ-⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦设矩阵平面向量x A y cos ,sin ,x r y r θθ=⎧⎨=⎩于是x y ⎡⎤⎢⎥⎣⎦A cos sin sin cos x y ϕϕϕϕ-⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦cos()sin()r r θϕθϕ+⎡⎤=⎢⎥+⎣⎦例5cos cos sin sin cos sin sin cos r r r r θϕθϕθϕθϕ-⎡⎤=⎢⎥+⎣⎦,,OP r θ设的长度为幅角为则cos sin sin cos x y x y ϕϕϕϕ-⎡⎤=⎢⎥+⎣⎦111x OP y ⎡⎤==⎢⎥⎣⎦.OP ϕ这是把向量按逆(或顺)时针旋转角的旋转变换xyopp 1θϕ11cos sin ,sin cos .x x y y x y ϕϕϕϕ=-⎧⎨=+⎩(线性变换)小结(1)只有当两个矩阵是同型矩阵时,才能进行加法运算;(2) ≠=若而A O AB AC ,⇒;=B C 且矩阵相乘一般不满足交换律;(3)只有当左矩阵的列数等于右矩阵的行数时,两个矩阵才能相乘,矩阵的数乘运算与行列式的数乘运算不同; 可交换的典型例子:同阶对角阵;数量阵与任何同阶方阵. k n E ≠=若而A O BA CA ,⇒=B C.( 4 )§3.1 矩阵的运算(2)方阵的幂·矩阵多项式·迹第三章矩阵定义1注1A 设为阶方阵,为正整数n k ,A A AA∆=kk 个.A 为的次幂k 01,.A E A A ==规定n 称,AA A km k m +=m k mkA A =(),其中m , k 为非负整数.定义1注1A 设为阶方阵,为正整数n k ,A A AA∆=kk 个.A 为的次幂k 01,.A E A A ==规定n 称,AA A km k m +=m k mkA A =(),其中m , k 为非负整数.一般地, (),,.AB A B A B ⨯≠∈k k k n n注2 注3时,以下结论成立:AB BA =当 (1)();AB A B =kkk222(2)()2;A B A AB B +=++22(3)()();A B A B A B +-=-,,A B ⨯∈n n11(4)()C C .A B A AB AB B --+=+++++mmm k m kkmmm例1解 ,A ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦2121214=01010112.01A A ⎡⎤=⎢⎥⎣⎦设求其中为正整数mm ,()32141216,010101A A A ⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦()122.01A ⎡⎤=≥⎢⎥⎣⎦mm m 由此归纳出方阵的幂112(1)1212,010101A A A --⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦k k k k ()122.01A ⎡⎤=≥⎢⎥⎣⎦m m m 用数学归纳法证明当 时,显然成立.2=m 假设 时成立, 1=-m k 所以对于任意的m 都有=m k 则时,方阵的幂解法二 利用二项式定理122()m m m mA EB EC B=+=+202,.00⎡⎤=⎢⎥⎣⎦B B O 其中=且这种方法适用于主对角元全相同的三角形矩阵求幂 2,=+A E B ,E B 显然与乘法可交换由二项式定理有2E B=+m 100212.010001m ⎡⎤⎡⎤⎡⎤=+=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦m1110()A A A A E --=++++m m m m n f a a a a 为方阵 A 的矩阵多项式.例如 2()524,f x x x =--12,11⎡⎤=⎢⎥-⎣⎦A 22524A A E --1412101116524211101811--⎡⎤⎡⎤⎡⎤⎡⎤=--=⎢⎥⎢⎥⎢⎥⎢⎥-----⎣⎦⎣⎦⎣⎦⎣⎦定义2A ⨯∈设n n ,称()A =f:注f g g fA A A A()()()()运算性质 定义3设A 是n 阶方阵,称A 的主对角线上所有元素之和为方阵的迹(trace ),记为11221tr .A ==+++=∑nnn ii i a a a a (1) tr()tr tr ;A B A B ⨯⨯⨯⨯+=+n n n n n n n n (2) tr()tr();A A ⨯⨯=n n n n k k (3) tr()tr().A B B A ⨯⨯⨯⨯=m n n m n m m ntr()tr().A B B A ⨯⨯⨯⨯=m n n m n m m n设A , B 为 n 阶方阵, 求证.AB BA E -≠n tr()tr()tr()0,--AB BA =AB BA = 证明: tr()0,n n =≠E 故 . n -≠AB BA E 例2§3.1 矩阵的运算(3)矩阵的转置·方阵的行列式第三章矩阵例 123,458A ⎡⎤=⎢⎥⎣⎦T ;A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦142538叫做 的转置矩阵, m n A ⨯m n A ⨯把矩阵的行依次变为同序数的列得到的新矩阵, 定义1T A 记作. 思考 T A A 与的关系?⨯→⨯的变化型m n n m(1) : '(,)=元的变化ij ji i j a a (2) :TA A 与的关系?矩阵的转置()()T T 1;=A A ()()T T T 2;+=+A B A B ()()T T 3;A A =k k 注 性质(2)和(4)可推广到有限个矩阵的情形()()T T T T12122;s s '+=+A A ++A A A ++A ()()T T T T 12114.s s s -'=A A A A A A ()()T T T 4.=AB B A (倒序)矩阵的转置与其它矩阵运算的关系若矩阵A 满足 A A =T ,()n ,,,j ,i a a ji ij 21==201035.157A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦例为对称阵如注:对称矩阵为方阵,元素以主对角线为对称轴 对应相等 .例1 (对称矩阵)则称 A 为对称矩阵 .注 对任意矩阵 A,和 均是对称矩阵. T A A T AA对称矩阵的数乘、和、乘积是否为对称矩阵?思考:练习1 对任意实矩阵 A, 若 则 . T A A =O ,A =O练习2 若实对称矩阵 A 满足 则 . 2A =O ,A =O 设A ,B 为同阶实对称矩阵,则AB 为实对称矩阵当且仅当AB =BA .若矩阵A 满足 A A =-T ,013105.350A ⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦例为反对称阵如注:反对称矩阵为方阵,且例2 (反对称矩阵)则称 A 为反对称矩阵 . 0-≠⎧=⎨=⎩ji ij a i j a i j证明任一 n 阶方阵 A 都可表示成一个对称矩阵与一个反对称矩阵之和. 证明: ()T T A A +T A A =+()T T A A -T A A =-22T T A A A A A -++=证毕.例3所以 为对称矩阵.T A A +T ,A A =+T ()A A =-- 所以 为反对称矩阵. T A A -方阵的行列式设 A 与 B 都是数域 上的 n 阶方阵, 则()T1;A A =()3;AB A B =()2,;A A =∀∈n k k k 矩阵的运算与行列式的关系方阵的行列式n n n n n A O E B ⨯⨯-A B =n n nO AB E B ⨯=-2(1)n n E AB =--2(1)n n AB +=-.AB =证明: 22222A O E B ⨯⨯-111221221112212200001001a a a a b b b b =--12111111122122111221220001001a a b a b a a b b b b =--111112211112122221221112212200001001a b a b a b a b a a b b b b ++=--111112211112122221112221211222221112212200001001a b a b a b a b a b a b a b a b b b b b ++++=--222O AB E B ⨯=-设 A 与 B 都是数域 上的 n 阶方阵, 则 ()T 1;A A =()3;AB A B =(可推广到有限个) 一般的, +.A B A B ≠+特别地 ,A A =mm ()2,;A A =∀∈n k k k 矩阵的运算与行列式的关系 其中m 为非负整数.24000200,00430034A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥-⎣⎦设2.A 求k 22A A =k k2242443()(4(25))10.0234=⋅=⋅-=-k k k 解 例4证明奇数阶反对称矩阵的行列式为零.例5§3.2 初等矩阵第三章矩阵定义1elementary matrix 阶单位矩阵经过一次矩阵的初等变换所得到的矩阵称为阶即初等矩阵n n (),E B −−−−−→一次初等变换行或列为一个初等矩阵n 1,23100010010100.001001E B ⎡⎤⎡⎤⎢⎥⎢⎥=−−−−→=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦对换行为一个初等矩阵例如初等矩阵的类型及表示方法1[()],0E ≠初等倍乘矩阵n i k k ) .0E ≠即以数乘单位矩阵的第行(或第列).n k i i i i r c 11[()]11E E ⨯⨯⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥−−−→=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦kn n ki k k 或i ←第行初等矩阵的类型及表示方法2[()],0E +≠初等倍加矩阵n i j k k ) .0E ≠即将的某行元素的倍加到另一行(或列)上去.n k 11[())]11E E ++⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥−−−−→=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦i jj ir kr n n c kc k i j k 或←i 第行←j 第行[()]E >+n i j k i j 当时,为下三角 .初等矩阵的类型及表示方法3[,],E 初等对换矩阵n i j ) E n 即对调的某两行或某两列.11011[,]11011E E ↔↔⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥−−−−→=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦i ji jr r n n c c i j 或i ←第行j ←第行11[()]11E ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦n i k k i ←第行1[()],0E ≠初等倍乘矩阵n i k k ) .2[()],0E +≠初等倍加矩阵n i j k k ) .11[())]11E ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥+=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦n k i j k ←i 第行←j 第行()i j <3[,],E 初等对换矩阵n i j ) 11011[,]11011E E ↔↔⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥−−−−→=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦i ji jr r n n c c i j 或i ←第行j ←第行注初等矩阵的转置矩阵仍为同类型的初等阵.Ti k i k=1)[()][()];E En nT+=+i j k j i kE E2)[()][()];n nTi j i j=3)[,][,].E En n初等矩阵的应用揭示: 初等矩阵与矩阵的初等变换的关系.11121314212223243132333411⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦a a a a a a a a k a a a a 111213142122232313233434⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦k a a a a a a a a a ka ka ka 111213142122232431323334111a a a a a a a a k a a a a ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦111214212221323343133234a a a a a a a a a ka ka a k ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦()i k A i r k ⨯相当于以数乘的第行;111211212[()]E A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦n m m m m i i in n a a a i k a ka ka a a a k i ←第行[()]E A 左以矩阵乘m i k ,[()]n E i k A 右乘而以矩阵,其结果结论: 相当于以数k 乘A 的第i 列 .()i c k ⨯。

《线性代数》课件-第二章 矩阵及其运算

《线性代数》课件-第二章 矩阵及其运算

a11
A
A
a21
am1
a12 a22
am1
a1n
a2n
amn
数乘矩阵的运算规律
a, b, c R 结 合 (ab)c a(bc) 律 分 (a b) c ac bc 配 律 c (a b) ca cb
设 A、B是同型矩阵, , m 是数 (m)A (m A)
a11
a12
a13
a14
4
c11 a1kbk1
b11
b21
b31
b41
k 1
4
c12 a11b12 a12b22 a13b32 a14b42 a1k bk 2 k 1
一般地,
4
cij ai1b1 j ai 2b2 j ai 3b3 j ai4b4 j aikbkj k 1
行列式
矩阵
a11 a12
a1n
a21 a22
a2n
an1 an2
ann
(1) a a t( p1 p2 pn ) 1 p1 2 p2
p1 p2 pn
行数等于列数
共有n2个元素
a11 a12
a21
a22
am1 am1
anpn
a1n
a2n
amn
行数不等于列数 共有m×n个元素 本质上就是一个数表
第二章 矩阵及其运算
§1 矩阵
一、矩阵概念的引入 二、矩阵的定义 三、特殊的矩阵 四、矩阵与线性变换
B
一、矩阵概念的引入
例 某航空公司在 A、B、C、D 四座 A
城市之间开辟了若干航线,四座城市 之间的航班图如图所示,箭头从始发 地指向目的地.
城市间的航班图情况常用表格来表示:

《线性代数第1讲》课件

《线性代数第1讲》课件

03
线性代数是数学的一个重要分支,广泛应用于 科学、工程和经济学等领域。
线性代数的基本性质
线性代数的运算具有结合律和交换律,例如矩阵乘法满足结合律和交换律 。
线性代数中的向量和矩阵具有加法、数乘和矩阵乘法的封闭性,即这些运 算的结果仍属于向量空间或矩阵集合。
线性代数中的一些基本概念,如向量空间的基底、向量的维数、矩阵的秩 等,具有明确的数学定义和性质。
04
线性变换在几何、物理和工程等领域有广泛应性方程组的解法
1 2
3
高斯-约当消元法
通过行变换将系数矩阵化为行最简形式,从而求解线性方程 组。
克拉默法则
适用于线性方程组系数行列式不为0的情况,通过求解方程 组得到未知数的值。
矩阵分解法
将系数矩阵分解为几个简单的矩阵,简化计算过程,如LU分 解、QR分解等。
THANKS
特征值与特征向量的应用
判断矩阵的稳定性
通过计算矩阵的特征值,可以判 断矩阵的稳定性,从而了解系统 的动态行为。
信号处理
在信号处理中,可以通过特征值 和特征向量的方法进行信号的滤 波、降噪等处理。
数据压缩
在数据压缩中,可以使用特征值 和特征向量的方法进行数据的压 缩和重构,提高数据的存储和传 输效率。
03
向量与向量空间
向量的定义与性质
01
基础定义
03
向量具有加法、数乘和向量的模等基本性质。
02
向量是有大小和方向的量,通常用实数和字母 表示。
04
向量的模是衡量其大小的标准,计算公式为 $sqrt{a^2 + b^2}$。
向量空间的概念
01
抽象空间
02
向量空间是一个由向量构成的集合,满足加法和数乘封闭性、

线性代数第一章ppt

线性代数第一章ppt
线性代数第一章
目录
CONTENTS
• 绪论 • 线性方程组 • 向量与向量空间 • 矩阵 • 特征值与特征向量
01
绪论
线性代数的定义与重要性
线性代数是数学的一个重要分支,主要研究线性方程组、向量空间、矩阵 等线性结构。它在科学、工程、技术等领域有着广泛的应用。
线性代数的重要性在于其提供了一种有效的数学工具,用于解决各种实际 问题中的线性关系问题,如物理、化学、生物、经济等。
向量空间中的零向量是唯一确定的,且对于任意 向量a,存在唯一的负向量-a。
向量空间的运算与性质
向量空间中的加法满足交换律和结合 律,即对于任意向量a和b,存在唯一 的和向量a+b;且对于任意三个向量a、 b和c,(a+b)+c=a+(b+c)。
向量空间中的数乘满足结合律和分配 律,即对于任意标量k和l,任意向量a 和b,存在唯一的结果k*(l*a)=(kl)*a 和(k+l)*a=k*a+l*a。
圆等。
经济学问题
线性方程组可以用来描述经济现象和 规律,例如供需关系、生产成本、利
润最大化等。
物理问题
线性方程组可以用来描述物理现象和 规律,例如力学、电磁学、热力学等。
计算机科学
线性方程组在计算机科学中有广泛的 应用,例如机器学习、图像处理、数 据挖掘等。
03
向量与向量空间
向量的定义与性质
01 向量是具有大小和方向的量,通常用有向线 段表示。 02 向量具有模长,即从起点到终点的距离。
特征值与特征向量的计算方法
定义法
幂法
谱分解法
根据特征值和特征向量的定义, 通过解方程组Ax=λx来计算特征 值和特征向量。这种方法适用于 较小的矩阵,但对于大规模矩阵 来说效率较低。

线性代数第-章1.4PPT课件

线性代数第-章1.4PPT课件

向量空间的性质
总结词
向量空间具有一些重要的性质,如加法的结合律、交换律和分配律,数乘的结合律和分配律等。
详细描述
向量空间的加法满足结合律和交换律,即对任意向量u、v、w∈V,有u+(v+w)=(u+v)+w和u+v=v+u;数乘也 满足结合律和分配律,即对任意标量k、l∈F和任意向量u∈V,有k(l(u))=(kl)(u)和k(u+v)=ku+kv。
线性组合的应用
向量表示
线性组合可以用来表示向量,使得向量的运算更加简洁明了。
线性方程组
线性组合可以用来求解线性方程组,通过将方程组中的未知数表示 为已知向量的线性组合,简化方程组的求解过程。
向量空间
线性组合是向量空间中向量运算的基本形式之一,可以用来研究向 量空间的性质和结构。
04
向量的线性相关性
中任意向量可以由这组基线性表示。
基的个数
02 一个向量空间的一组基的个数是有限的,且等于该向
量空间的维数。
基的特性
03
基中的向量是线性无关的,且可以作为该向量空间的
坐标系。
基的性质
唯一性
一个向量空间的一组基是唯一的,即如果存在另一组基也可 以表示向量空间中的任意向量,则这两组基之间存在一一对 应的关系。
05
向量组的秩
秩的定义
01
秩的定义
向量组的秩是指该向量组构成的 矩阵的秩,即该矩阵的最高阶非 零子式的阶数。
02
03
秩的符号表示
秩的性质
用符号“秩”表示,常用大写英 文字母表示,如A的秩记作r(A) 。
向量组的秩是该向量组线性无关 的向量的个数,与向量组的维数 有关。

《线性代数》课件-第2章方阵的行列式

《线性代数》课件-第2章方阵的行列式
教学重点:方阵行列式的性质及展开定理,计算典型 的行列式的各种方法.
教学难点:n阶行列式的计算,拉普拉斯定理的应用.
教学时间:6学时.
§1 n 阶行列式的定义
设n阶方阵A=(aij),称
a11 a12
a1n
a21 a22
a2n
an1 an2
ann
为方阵A 的行列式,记为| A |或det A .
1.1 n 阶行列式的引出
于是D中可能不为0的均布项可以记为
a a a b b . 1p1 1p2
mpm 1q1
nqn
这里,pi=ri,qi=rm+i-m,设l为排列p1p2 …pm(m+q1) …(m+qn)的 逆序数。以t,s分别表示排列p1p2 …pm及q1q2 …qn的逆序数,
应有l= t+s,于是
D
(1)l a1p1 a2 p2 a b b mpm 1q1 2q2 bnqn
b2
a2n , j 1, 2, , n.
an1
bn
ann
提出三个问题
(1)D=?(怎么算)?
(2)当D≠0时,方程组是否有唯一解?
(3)若D≠0时,方程组有唯一解,解的形式 是否是
xj
Dj D
,
j 1,2,
, n.
1.2 全排列及其逆序数
1、全排列 用1,2,3三个数字可以排6个不重复三位数即:
第二章 方阵的行列式
行列式是一种常用的数学工具,也是代数学中必不可 少的基本概念,在数学和其他应用科学以及工程技术中有 着广泛的应用。本章主要介绍行列式的概念、性质和计 算方法。
教学目的:通过本章的教学使学生了解行列式的概念, 掌握行列式的性质,会计算各种类型的行列式.

《线性代数》课件第3章

《线性代数》课件第3章
2.加法交换律 : A + B = B + A; 3. A + 0m×n = A; 4. A + (−A) = 0m×n; 5. a(A + B) = aA + bB; 6. (a + b)A = aA + bA; 7. (ab)A = a(bA).
定义1.4对于一组m × n矩阵A1,..., At和数c1,...,ct , 矩阵 c1A1 + + ctAt
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
a11 a 21
am1
a12 a 22
am 2
a 1n a 2n
amn
⎞⎠⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
称为S
上一个m
×
n矩阵,通常简记为
(aij
) m
×n

(aij
).
一个n × n矩阵称为n阶矩阵或n阶方阵.在一个n阶矩阵中,从
左上角至右下角的一串元素a11, a22 ,..., ann称为矩阵的对角线.
+
a2
⎛⎝⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
0 1 0
0
⎞⎠⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
+
+
an
⎛⎝⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
0 0
0 1
⎞⎠⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
= a 1ε1 + a 2ε2 +
+ anen .
§3.2 矩阵的乘法
( ) ( ) 定义2.1(矩阵的乘法)设A = aij 是一个m×n矩阵, B = bij 是一个
1. 把A整个分成一块,此时A就是一个1×1的分快矩阵;
2. 把A的每一行(列)或若干行(列)看成一块.比如,把A按列分

《线性代数》课件第4章

《线性代数》课件第4章

此时A的第j列元素恰为αj表示成β1, β2,…, βt的线性组合时的
系数.
证明:若向量组a1,a2,…,as可由β1, β2,…, βt线性表示,即每个ai
均可由β1, β2,…, βt线性表示,则有
α1 = a11β1 + a21β2 + + at1βt = (β1, β2,
, βt )⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝aaa12t111 ⎞⎠⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟,
我们有下面的定理: 定理 1.1 矩阵的秩数=行秩数=列秩数.
例1.3 设
α1 = (1, 2, 0,1)T , α2 = (0,1,1,1)T , α3 = (1, 3,1, 2)T , α4 = (1,1,−1, 0)T
求此向量组的秩数及一个极大无关组.
解 考虑向量组构成的矩阵
A=(α1,
α2,
我们有下面的命题:
命题1.
1. α1, α2,…, αs线性无关; 2.方程x1α1 + x2α2 + … + xxαs只有零解 3. 对于任意一组不全为零的数c1,c2,…,cs均有
c1α1 + c2α2 + + csαs ≠ 0, 4. 对于任意一组数c1,c2,…,cs, 若c1α1 + c2α2 +
定义1.4 两个可以互相表示的向量组称为等价向量组.
容易看出: 1. 向量组的等价是一个等价关系; 2. 等价向量组的秩数相同; 3. 任何向量组等价于其极大无关组; 4. 两个向量组等价当且仅当它们的极大无关组等价.
最后我们给出化简向量组的一种技巧 为此先给出一个定义
定义1.5 设α1, α2,…, αs和β1, β2,…, βs是两个向量组, 若对于任意一组数c1,c2,…,cs均有

线性代数第一章课件

线性代数第一章课件

(五)性质5:把行列式的某一列(行) 的各元素乘以同一数,然后加到另一列 (行)对应的元素上去,行列式不变.
(以数 k 乘第 j 列加到第 i 列上,记作:ci kc j 以数 k 乘第


j 行加到第 i 行上,记作: ri krj )
a11 a21 an1
a1i a2i ani
a11
aij
的第一个下标i称为行标,表明该元
素位于第i行,第二个下标j称为列标,表明 该元素位于第j列,位于第i行第j列的元素称
为行列式的 i, j 元


a11 到 a22 的实联线称为主对角

线, a12
a21
的虚联线称为副对
角线 。
3、二元线性方程组的解
a11 x1 a12 x2 b1 的解为 a21 x1 a22 x2 b2
第一章 行列式 § 1-1 n阶行列式的定义
一、二阶与三阶行列式 ㈠ 二阶行列式与二元线性方程组 1、二阶行列式计算式:
D
a11
a12
a21 a22
a11a22 a12 a21
2、相关名称 a11 a12 在二阶行列式 中,把数 a21 a22
aij i 1.2; j 1.2 称为行列式的元素,元素
注意不要与绝对值记号相混淆。
a a
2、n阶行列式展开式的特点 (1)行列式由n!项求和而成 (2)每项是取自不同行、不同列的n个 元素乘积,每项各元素行标按自然顺序 排列后就是行列式的一般形式,
1
j1 j2
jn
a1 j1 a2 j2
anjn
(3)若行列式每项各元素的行标按自然 数的顺序排列,列标构成n级排列 j1 j2 jn j1 j2 jn 则该项的符号为 1

最新清华版线性代数课件线性代数§电子教案

最新清华版线性代数课件线性代数§电子教案

例2计算 n 阶行列式副对角线以上的元素全为0 其中表示元素为任意数解由定义有递推关系递推公式由以上结论容易得到四n 阶行列式的性质行列式 DT 称为行列式 D 的转置行列式记性质1 行列式的行与列互换其值不变即 DT D 性质1说明行列式对行成立的性质都适用于列下面仅对行讨论由性质 1 和前面关于下三角行列式的结果马上可以得到上三角行列式主对角线以下的元素全为0 的值等于主对角元的积即性质2 行列式按任一行展开其值相等即其中是 D 中去掉第 i 行第 j 列的全部元素后剩下的元素按原来的顺序排成的 n-1 阶行列式称为的余子式称为的代数余子式即性质3 线性性质 1行列式的某一行列中所有的元素都乘以同一数k 等于用数 k 乘此行列式 2 若行列式的某一行列的元素都是两数之和那么该行列式可以写成两个行列式的和例如 1 若行列式的某一行列的元素都是 n 个数之和那么该行列式可以写成 n 个行列式的和例如说明 2 若行列式的某 m 行列的元素都是两例如说明个数之和那么该行列式可以写成个行列式的和由性质3马上得到推论1 某行元素全为零的行列式其值为零性质4 行列式中两行对应元素全相等其值为零对行列式的阶数用数学归纳法证明证明当D为二阶行列式时结论显然成立假设当 D 为 n-1 阶行列式时结论成立设行列式 D 的第 i 行和第 j 行元素对应相等则当D为 n 阶行列式时将 D 按第k 行展开得其中为 k-1 阶行列式且有两行元素对应相等故由归纳假设知推论2 行列式中两行对应元素成比例其值为零由性质 3 和性质 4 马上得到性质5 在行列式中把某行各元素分别乘以数 k再加到另一行的对应元素上行列式的值不变对行列式做倍加行变换其值不变即在行列式的计算中性质35以及下面的性质6经常用到为书写方便我们先引入几个记号用表示第 i 行表示第 i 列交换行列式的第 i j 两行列记作把行列式的第 j 行列的各元素乘以同一数 k 然后加到第 i 行列对应的元素上去记作行列式的第 i 行列乘以数k 记作注意和含义不同性质6 反对称性质行列式的两行对换行列式的值反号证明课程简介线性代数是代数学的一个分支主要处理线性关系问题线性关系是指数学对象之间的关系是以一次形式来表达的最简单的线性问题就是解线性方程组行列式和矩阵为处理线性问题提供了有力的工具也推动了线性代数的发展向量概念的引入形成了向量空间的概念而线性问题都可以用向量空间的观点加以讨论因此向量空间及其线性变换以及与此相联系的矩阵理论构成了线性代数的中心内容它的特点是研究的变量数量较多关系复杂方法上既有严谨的逻辑推证又有巧妙的归纳综合也有繁琐和技巧性很强的数字计算在学习中需要特别加强这些方面的训练第一章行列式第二章矩阵第三章线性方程组第四章向量空间与线性变换基础基本内容用向量的观点讨论基本问题并介绍向量空间的有关内容第五章特征值与特征向量第六章二次型矩阵理论中心内容参考及辅导书目 1《线性代数学习指南》居余马林翠琴编著清华大学出版社 2《线性代数》第四版同济大学应用数学系编高等教育出版社一二阶行列式的引入用消元法解二元一次线性方程组§11 n阶行列式的定义与性质 1 2 1 a22 a11a22x1a12a22x2 b1a22 2 a12 a12a21x1 a12a22x2 b2a12 两式相减消去x2 得a11a22 – a12a21 x1 b1a22 – b2a12 当 a11a22 – a12a21 0时方程组的解为由方程组的四个系数确定 3 类似地消去x1 得 a11a22 –a12a21 x2 b2a11 – b1a21 若记 4 则方程组的解3可以表示为称主对角线副对角线二阶行列式的计算对角线法则 ad – bc 为二阶行列式对于二元线性方程组 D称为线性方程组 1 的系数行列式若记 1 注意分母都为原方程组的系数行列式则该二元线性方程组的解 3 式 3 可表示为例1 解二元线性方程组解 3 ––4 7 0 并称它为三阶行列式横为行竖为列二三阶行列式定义列标行标对于由9 33 个元素排成3行3列的式子 i为行标j为列标 1 沙路法三阶行列式的计算即 2 对角线法则注意红线上三元素的乘积冠以正号蓝线上三元素的乘积冠以负号.例2 计算三阶行列式解按对角线法则有 D 12 –2 21 –3 –4 –2 4 ––4 2 –3 – 2 –2 –2 – 114 –4 – 6 32 – 24 –8 – 4 –14 对于三元线性方程组如果其系数行列式那么可求得方程组的解为其中是用常数项替换 D 中的第 j 列所得到的三阶行列式即说明2 二阶行列式包括2项每一项都是位于不同行不同列的两个元素的乘积其中一项为正一项为负三阶行列式包括3项每一项都是位于不同行不同列的三个元素的乘积其中三项为正三项为负说明1 对角线法则沙路法只适用于二阶与三阶行列式.说明3 对于nn 3阶行列式不能用沙路法定义例3 求解方程解方程左端为一个三阶行列式其值为 D 3x2 4x 18 – 12 – 2x2 – 9x x2 – 5x 6 由D x2 – 5x 6 0 解得 x 2 或 x 3 对于一阶行列式我们规定这里是行列式符号不是绝对值符号问题如何定义一般的 n 阶行列式 n 阶行列式一般有三种定义方式第一种是抽象定义方法可以查阅同济大学线性代数教材第二种是公理化定义方法第三种就是本教材所采用归纳定义法方法首先对于三阶行列式我们可以用二阶行列式来表示它这里分别称为元素的余子式并分别称为元素的代数余子式于是余子式的余子式就是在 D 中去掉所在的行与列后由剩下的元素按原来的次序排列成的低一阶的行列式代数余子式的代数余子式就是在的余子式前加上符号例如对于二阶行列式同样也有从上面的分析可以看到如果分别把看作二阶行列式和三阶行列式的定义那么这种定义方式是统一的即用低阶行列式定义高一阶的行列式下面我们就用这种方法给出行列式的归纳定义和三n 阶行列式的定义定义由个数组成的 n 阶行列式是一个算式当n=1 时定义当时定义其中称为元素的余子式为元素的代数余子式说明所在的对角线称为行列式的主对角线称为主对角元项且带正号的项和带负号的项各占一半每一项都是不同行不同列的 n 个元素的积 2n 阶行列式由个元素构成其展开式中共有例1证明 n 阶下三角行列式的值为 n 个主对角元的乘积即主对角线以上的元素全为0即当 i j 时证明对 n 用数学归纳法下三角行列式 1 当 n 2 时结论成立 2 假设结论对 n-1 阶下三角行列式成立那么对于 n 阶下三角行列式由定义有故所证结论成立 n 阶对角线行列式主对角线以外的元素全为0即当对角线行列式是下三角行列式的特例故也有i j 时。

线性代数第一章第一节PPT课件

线性代数第一章第一节PPT课件

01递Biblioteka 公式法02递推公式法是根据行列式的性质和结构特点,利用递推公式来
计算行列式的方法。
递推公式法可以大大简化高阶行列式的计算过程,提高计算效
03
率。
行列式的计算方法
分块法
1
2
分块法是将高阶行列式分成若干个小块,然后利 用小块来计算整个行列式的方法。
3
分块法可以简化高阶行列式的计算过程,特别是 当行列式具有特定的结构特点时,分块法可以大 大提高计算效率。
01
向量空间
02
向量空间是线性代数中的一个重要概念,而行列式在向量 空间的定义和性质中也有着重要的应用。例如,通过行列 式可以判断一个向量集合是否构成向量空间,以及向量空 间的一些基本性质。
03
行列式在向量空间中的应用可以帮助我们更好地理解线性 代数的本质和结构特点。
05
特征值与特征向量
特征值与特征向量的定义
转置等特殊运算。
向量与矩阵的关系
关联性
04
向量可以用矩阵来表示,矩 阵中的每一行可以看作是一 个向量。
01 03
•·
02
向量和矩阵在数学中是密切 相关的概念,矩阵可以看作 是向量的扩展。
04
行列式
行列式的定义与性质
基本概念
行列式是由数字组成的方阵,按照一定的规则计 算出的一个数。
行列式具有一些基本的性质,如交换律、结合律、 分配律等。
向量可以用有向线段、坐 标系中的点或有序数对来 表示。
向量有大小和方向两个基 本属性,大小表示向量的 长度,方向表示向量的指 向。
矩阵的定义与运算
•·
02
基础运算
01
03
矩阵是一个由数字组成的矩 形阵列,表示二维数组。

线性代数课本PPT课件

线性代数课本PPT课件
是对应于l1 2的全部特征向量
1 1 0

求矩阵
A
4 1
3 0
0 2
的特征值和特征向量.
解 特征值为 l1 2,l2 l3 1
当l2 l3 1时,齐次线性方程组为 A I x O
系数矩阵
2 1 0 1 0 1
A
I
4 1
2 0
0 1
0 0
1 0
2 0
1
得基础解系
1
l
A . 且x仍然是矩阵
kA, Am , A1 , A
分别对应于
kl , l m ,l 1, 1 A 的特征向量. l
证 (3) 当A可逆时, l 0, 由Ax l x可得
A1 Ax A1 l x l A1x A1 x l 1 x
故l 1是矩阵A1的特征值,且x是A1对应于l 1的特征向量.
1
1
1 1
x1 x2
0 0
x1 x
x2 1 x
0 0
2
解得 x1 x2 ,
所以对应的特征向量可取为
p 1
1 1
.
当l1 =4时,
34
1
1 34
x1 x2
0 0

1
1
1 1
x1 x2
0 0
解得 x1 x2 ,
所以对应的特征向量可取为
n
(2) li l1l2 ln= A i 1
性质2 若A的特征值是l, X是A的对应于l的特征向量,
(1) kA的特征值是kl; (k是任意常数)
(2) Am的特征值是l m;(m是正整数)
证 2因为Ax l x 所以 A Ax Al x l Ax l l x

《线性代数》PPT课件幻灯片PPT

《线性代数》PPT课件幻灯片PPT

特别当矩阵A与对角阵=diag(1, 2,···, n )相似时,
那么
Am = PmP-1; (A)= P()P-1.
而对于对角阵, 有
1k
k =
k2
;
kn
()=
(1)
(2)
(n).
利用上述结论可以很方便地计算矩阵A的多项式
(A). 结论: 假设f( )为矩阵A的特征多项式, 那么矩阵
A的多项式 f(A)=O. 此结论的一般性证明较困难, 但当矩阵A与对角
因此, 当a = –1时矩阵A能对角化.
三、小 结
1. 相似矩阵 相似是矩阵之间的一种关系, 它具有很多良好的 性质, 除了课堂内介绍的以外, 还有: (1) 假设A与B相似, 那么det(A)=det(B); (2) 假设A与B相似, f(x)为多项式, 那么f(A)与f(B) 相似; (3) 假设A与B相似, 且A可逆, 那么B也可逆, 且A1与B2-1. 相相似似.变换与相似变换矩阵 相似变换是对方阵进展的一种运算, 它把A变成 P-1AP, 可逆矩阵P称为进展这一变换的相似变换矩阵.
-2
P1AP
1 1.
矩阵P的列向量和对角矩阵中特征值的位置要相
互对应.
例3:设A= 110
0 1 0
a10,当a为何值时, 矩阵A能对角化?
0 1 解: | A –E | = 1 1 a = –(–1)2(+1).
1 0
得矩阵A的特征值 1 = –1, 2 = 3 = 1. 对应单根1 = –1, 恰好可求得一个线性无关的特
阵 相似时很容易证明即.
f(A)=Pf()P=POP-1=O.
二、利用相似变换将方阵对角化
n阶方阵A是否与对角阵 =diag( 1, 2,···, n ) 相似, 那么我们需要解决如下两个问题:

清华大学 线性代数第1讲

清华大学 线性代数第1讲
a11 a12 ai1 ai 2 D a j1 a j 2 an1 an 2 a1n a11 a12 ain ai1 ai 2 a jn kai1 a j1 kai 2 a j 2 ann an1 an 2 a1n ain kain a jn ann
a11 ai1 D a j1 an1 a12 a1n ai 2 ain 0 a j 2 a jn an 2 ann
27 2013-6-27
性质5 行列式中某各元素乘常数k加到另 一行对应元素上, 行列式的值不变(简称: 对行列式做倍加行变换, 其值不变), 即
a23 a21 a23 a21 a22 - a12 a13 (1.7) a33 a31 a33 a31 a32
余子式 代数余子式
13
9 2013-6-27
a11M 11 - a12 M 12 a13 M 13 a11 A11 a12 A12 a13 A13
11 1 2
A11 (-1) M11 , A12 (-1) M12 , A13 (-1) M13
线性代数第1讲
行列式
1 2013-6-27
介绍
线性代数的重要目标是解线性方程
组 而解线性方程组经常要用到行列式 的概念
1.1 n阶行列式的定义和性质
2 2013-6-27
对于一个二元一次方程组
a11 x1 a12 x2 b1 a21 x1 a22 x2 b2
(1.1)
(1.2)式可以表示为
b1 a12 a11 b1 b2 a22 a21 b2 x1 , x2 a11 a12 a11 a12 a21 a22 a21 a22
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例2计算 n 阶行列式副对角线以上的元素全为0 其中表示元素为任意数解由定义有递推关系递推公式由以上结论容易得到四n 阶行列式的性质行列式 DT 称为行列式 D 的转置行列式记性质1 行列式的行与列互换其值不变即 DT D 性质1说明行列式对行成立的性质都适用于列下面仅对行讨论由性质 1 和前面关于下三角行列式的结果马上可以得到上三角行列式主对角线以下的元素全为0 的值等于主对角元的积即性质2 行列式按任一行展开其值相等即其中是 D 中去掉第 i 行第 j 列的全部元素后剩下的元素按原来的顺序排成的 n-1 阶行列式称为的余子式称为的代数余子式即性质3 线性性质 1行列式的某一行列中所有的元素都乘以同一数k 等于用数 k 乘此行列式 2 若行列式的某一行列的元素都是两数之和那么该行列式可以写成两个行列式的和例如 1 若行列式的某一行列的元素都是 n 个数之和那么该行列式可以写成 n 个行列式的和例如说明 2 若行列式的某 m 行列的元素都是两例如说明个数之和那么该行列式可以写成个行列式的和由性质3马上得到推论1 某行元素全为零的行列式其值为零性质4 行列式中两行对应元素全相等其值为零对行列式的阶数用数学归纳法证明证明当D为二阶行列式时结论显然成立假设当 D 为 n-1 阶行列式时结论成立设行列式 D 的第 i 行和第 j 行元素对应相等则当D为 n 阶行列式时将D 按第k 行展开得其中为 k-1 阶行列式且有两行元素对应相等故由归纳假设知推论2 行列式中两行对应元素成比例其值为零由性质 3 和性质 4 马上得到性质5 在行列式中把某行各元素分别乘以数 k再加
到另一行的对应元素上行列式的值不变对行列式做倍加行变换其值不变即在行列式的计算中性质35以及下面的性质6经常用到为书写方便我们先引入几个记号用表示第 i 行表示第 i 列交换行列式的第 i j 两行列记作把行列式的第 j 行列的各元素乘以同一数 k 然后加到第 i 行列对应的元素上去记作行列式的第 i 行列乘以数k 记作注意和含义不同性质6 反对称性质行列式的两行对换行列式的值反号证明课程简介线性代数是代数学的一个分支主要处理线性关系问题线性关系是指数学对象之间的关系是以一次形式来表达的最简单的线性问题就是解线性方程组行列式和矩阵为处理线性问题提供了有力的工具也推动了线性代数的发展向量概念的引入形成了向量空间的概念而线性问题都可以用向量空间的观点加以讨论因此向量空间及其线性变换以及与此相联系的矩阵理论构成了线性代数的中心内容它的特点是研究的变量数量较多关系复杂方法上既有严谨的逻辑推证又有巧妙的归纳综合也有繁琐和技巧性很强的数字计算在学习中需要特别加强这些方面的训练第一章行列式第二章矩阵第三章线性方程组第四章向量空间与线性变换基础基本内容用向量的观点讨论基本问题并介绍向量空间的有关内容第五章特征值与特征向量第六章二次型矩阵理论中心内容参考及辅导书目 1《线性代数学习指南》居余马林翠琴编著清华大学出版社 2《线性代数》第四版同济大学应用数学系编高等教育出版社一二阶行列式的引入用消元法解二元一次线性方程组§11 n阶行列式的定义与性质 1 2 1 a22 a11a22x1 a12a22x2 b1a22 2 a12 a12a21x1 a12a22x2 b2a12 两式相减消去x2 得a11a22 – a12a21 x1 b1a22 – b2a12 当 a11a22 – a12a21 0时方程
组的解为由方程组的四个系数确定 3 类似地消去x1 得 a11a22 –
a12a21 x2 b2a11 – b1a21 若记 4 则方程组的解3可以表示为称主对角线副对角线二阶行列式的计算对角线法则 ad – bc 为二阶行列式对于二元线性方程组 D称为线性方程组 1 的系数行列式若记 1 注意分母都
为原方程组的系数行列式则该二元线性方程组的解 3 式 3 可表示为例1 解二元线性方程组解 3 ––4 7 0 并称它为三阶行列式横为行竖为列二三阶行列式定义列标行标对于由9 33 个元素
排成3行3列的式子 i为行标j为列标 1 沙路法三阶行列式的计算即 2 对角线法则注意红线上三元素的乘积冠以正号蓝线上三元素的乘积冠以负号.例2 计算三阶行列式解按对角线法则有 D 12 –2 21 –3 –4 –2 4 ––4 2 –3 – 2 –2 –2 – 114 –4 – 6 32 – 24 –8 – 4 –14 对于三元线性方程组如果其系数行列式那么可求得方程组的
解为其中是用常数项替换 D 中的
第 j 列所得到的三阶行列式即说明2 二阶行列式包括2项每一项都是位于不同行不同列的两个元素的乘积其中一项为正一项为负三阶行列式包括3项每一项都是位于不同行不同列的三个元素的乘积其中三项为正三项为负说明1 对角线法则沙路法只适用于二阶与三阶行列式.说明3 对于nn 3阶行列式不能用沙路法定义例3 求解方程解方程左端为一个三阶行列式其值为 D 3x2 4x 18 – 12 – 2x2 – 9x x2 – 5x 6 由D x2 – 5x 6 0 解得 x 2 或 x 3 对于一阶行列式我们规定
这里是行列式符号不是绝对值符号问题如何定义一般的 n 阶行列式 n 阶行
列式一般有三种定义方式第一种是抽象定义方法可以查阅同济大学线性代数教
材第二种是公理化定义方法第三种就是本教材所采用归纳定义法方法首先对于三阶行列式我们可以用二阶行列式来表示它这里分别称为元素的余子式并分别称为元素的代数余子式于是余子式的余子式就是在 D 中去掉所在的行与列后由剩下的元素按原来的次序排列成的低一阶的行列式代数余子式的代数余子式就是在的余子式前加上符号例如对于二阶行列式同样也有从上面的分析可以看到如果分别把看作二阶行列式和三阶行列式的定义那么这种定义方式是统一的即用低阶行列式定义高一阶的行列式下面我们就用这种方法给出行列式的归纳定义和三n 阶行列式的定义定义由个数组成的 n 阶行列式是一个算式当n=1 时定义当时定义其中称为元素的余子式为元素的代数余子式说明所在的对角线称为行列式的主对角线称为主对角元项且带正号的项和带负号的项各占一半每一项都是不同行不同列的 n 个元素的积 2n 阶行列式由个元素构成其展开式中共有例1证明 n 阶下三角行列式的值为 n 个主对角元的乘积即主对角线以上的元素全为0即当 i j 时证明对 n 用数学归纳法下三角行列式 1 当 n 2 时结论成立 2 假设结论对 n-1 阶下三角行列式成立那么对于 n 阶下三角行列式由定义有故所证结论成立 n 阶对角线行列式主对角线以外的元素全为0即当对角线行列式是下三角行列式的特例故也有
i j 时。

相关文档
最新文档