《线性代数A》教学大纲
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《线性代数A》教学大纲
课程中文名称:线性代数A 课程性质: 必修
课程英文名称:Linear Algebra A
总学时:48学时,其中课堂教学48学时
先修课程:初等数学
面向对象:全校理工科学生(包括财经类等文科专业)
开课系(室):数学科学系
一.课程性质、目的和要求
线性代数是理工科及财经管理类本科生必需掌握的一门基础课,通过本课程的学习使学生掌握行列式的计算、矩阵理论、向量组和向量空间基本概念,用矩阵理论求解线性方程组、及用线性方程组解的结构理论讨论矩阵的对角化并进一步研究二次型,使学生掌握本课程的基本理论和方法,培养和提高逻辑思维和分析问题解决问题的能力,并为学习相关课程与进一步扩大知识面奠定必要的、必需的基础。
二、课程内容及学时分配
1. 行列式(6学时)
教学要求:了解行列式的定义、掌握行列式的基本性质。会应用行列式性质和行列式按行(列)展开定理进行行列式计算。
重点:行列式性质
难点:行列式性质和行列式按行(列)展开定理的应用
2.矩阵(12学时)
教学要求:理解矩阵的概念、掌握单位矩阵、对角矩阵与对称矩阵的性质。掌握矩阵的线性运算、乘法、方阵行列式、转置的定义及其运算规律。理解逆矩阵的概念及其性质,熟练掌握逆矩阵的求法。熟练掌握矩阵的初等变换及其应用。理解矩阵秩的概念并掌握其求法。了解满秩矩阵的定义及其性质。了解分块矩阵及其运算。
重点:矩阵的线性运算、矩阵的乘法、逆矩阵的求法、矩阵的初等变换
难点:矩阵的秩,矩阵的分块
3.向量组和向量空间(10学时)
教学要求:理解n维向量的概念及其运算。理解向量组的线性相关、线性无关与线性表示等概念,了解并会用向量组线性相关、线性无关的有关性质及判别法。了解向量组的极大线性无关组和秩的概念,并会求向量组的秩。了解n维向量空间及其子空间、基、维数与坐标等概念。了解向量的内积、长度与正交等概念,会用施米特正交化方法把向量组正交规范化。了解规范正交基、正交矩阵的概念、以及它们的性质。
重点:n维向量的概念、线性相关、线性无关、极大线性无关组、向量组秩的概念难点:线性无关的相关证明、向量组秩的概念、向量空间
4. 线性方程组(8学时)
教学要求:掌握克莱姆法则。理解非齐次(齐次)线性方程组有解(有非零解)的充分必要条件。理解非齐次(齐次)线性方程组解的结构与通解(基础解系与通解)等概念。熟练掌握用初等变换法解线性方程组。
重点:初等变换法解线性方程组、解结构理论
难点:解结构理论及应用
5. 相似矩阵与二次型(12学时)
教学要求:理解矩阵的特征值与特征向量的概念,会求矩阵的特征值和特征向量;理解相似矩阵的概念、性质与矩阵可对角化的条件。了解实对称矩阵的特征值和特征向量的性质,掌握用相似变换化矩阵为对角矩阵的方法。了解正交变换的概念及其性质。掌握二次型的矩阵表示,掌握用正交变换化二次型为标准型的求法。了解惯性定律及二次型为正定的判别法。
重点:矩阵的特征值、特征向量,方阵的对角化,二次型化为标准型的方法
难点:方阵的对角化及相关应用
三、说明
本大纲参照原国家教委颁发的高等学校线性代数课程教学要求编制,还参考2002年全国硕士研究生入学统一考试线性代数课程考试大纲。根据不同专业的特点和需要,内容和侧重点可有所不同。教学方法以课堂教学为主,如果时间允许,可介绍用Matlab求解线性代数中某些问题的方法。课程考试以闭卷考试形式;考查课可选用其它方式。行列式、矩阵、特征值、特征向量都是非常重要的知识,在学时有限的情况下,对这些内容应该重点讲解,务使学生理解和掌握。
四、推荐教材及参考书
教材:
《线性代数简明教程》(第二版)陈维新编著科学出版社
参考书:
《线性代数》(第一版)苏德矿裘哲勇主编高等教育出版社
《线性代数》(第四版)同济大学数学教研室编高等教育出版社
《线性代数》清华大学编高等教育出版社
《高等代数》北京大学编高等教育出版社
执笔:周永华审稿:胡觉亮审定:浙江理工大学理学院教学委员会
2008.10