线性代数与概率统计及答案
线性代数与概率统计试卷与答案
一、单选( 每题参考分值2.5分)1、设随机变量的分布函数为,则()A.B.C.D.正确答案:【B】2、设总体为参数的动态分布,今测得的样本观测值为0.1,0.2,0.3,0.4,则参数的矩估计值为()A.0.2B.0.25C.1D.4正确答案:【B】3、A.B.C.D.正确答案:【B】4、设均为阶方阵,,且恒成立,当()时,A.秩秩B.C.D.且正确答案:【D】5、设是方程组的基础解系,则下列向量组中也可作为的基础解系的是()A.B.C.D.正确答案:【D】6、盒中放有红、白两种球各若干个,从中任取3个,设事件,,则事件()A.B.C.D.正确答案:【A】7、已知方阵相似于对角阵,则常数()A.B.C.D.正确答案:【A】8、掷一枚骰子,设,则下列说法正确的是()A.B.C.D.正确答案:【B】9、设为二维连续随机变量,则和不相关的充分必要条件是()A.和相互独立B.C.D.正确答案:【C】10、袋中有5个球(3新2旧),每次取1个,无放回的抽取2次,则第2次取到新球的概率为()A.B.C.D.正确答案:【A】11、A.B.C.D.正确答案:【D】12、设和是阶矩阵,则下列命题成立的是()A.和等价则和相似B.和相似则和等价C.和等价则和合同D.和相似则和合同正确答案:【B】13、二次型是()A.正定的B.半正定的C.负定的D.不定的正确答案:【A】14、矩阵与的关系是()A.合同但不相似B.合同且相似C.相似但不合同D.不合同也不相似正确答案:【B】15、随机变量X在下面区间上取值,使函数成为它的概率密度的是()A.B.C.D.正确答案:【A】16、A.全不非负B.不全为零C.全不为零D.全大于零正确答案:【C】17、随机变量的概率密度则常数()A.1B.2C.D.正确答案:【B】18、设二维随机变量的概率密度函数为,则()A.B.C.D.正确答案:【B】19、设随机变量的方差,利用切比雪夫不等式估计的值为()A.B.C.D.正确答案:【B】20、A.每一向量不B.每一向量C.存在一个向量D.仅有一个向量正确答案:【C】21、A.B.C.D.正确答案:【C】22、设,则()A.B.C.D.正确答案:【B】23、设随机变量的数学期望,方差,则由切比雪夫不等式有()A.B.C.D.正确答案:【B】24、以下结论中不正确的是()A.若存在可逆矩阵,使,则是正定矩阵B.二次型是正定二次型C.元实二次型正定的充分必要条件是的正惯性指数为D.阶实对称矩阵正定的充分必要条件是的特征值全为正数正确答案:【B】25、设总体服从两点分布:为其样本,则样本均值的期望()A.B.C.D.正确答案:【A】26、设是二阶矩阵的两个特征,那么它的特征方程是()A.B.C.D.正确答案:【D】27、已知,则()A.必有一特征值B.必有一特征值C.必有一特征值D.必有一特征值正确答案:【D】28、设是来自总体的样本,其中已知,但未知,则下面的随机变量中,不是统计量的是()A.B.C.D.正确答案:【D】29、矩阵的秩为,则()A.的任意一个阶子式都不等于零B.的任意一个阶子式都不等于零C.的任意个列向量必线性无关对于任一维列向量,矩阵的秩都为正确答案:【D】30、设向量组;向量组,则()A.相关相关B.无关无关C.无关无关D.无关相关正确答案:【B】31、A.交换2、3两行的变换B.交换1、2两行的变换C.交换2、3两列的变换D.交换1、2两列的变换正确答案:【A】32、设是矩阵,则下列()正确A.若,则中5阶子式均为0B.若中5阶子式均为0,则C.若,则中4阶子式均非0D.若中有非零的4阶子式,则正确答案:【A】33、分别是二维随机变量的分布函数和边缘分布函数,分别是的联合密度和边缘密度,则()A.B.C.和独立时,D.正确答案:【C】34、A.B.C.D.正确答案:【D】35、设随机变量的概率密度为,则()A.B.C.D.正确答案:【B】36、设是阶正定矩阵,则是()A.实对称矩阵B.正定矩阵C.可逆矩阵D.正交矩阵正确答案:【C】37、某学习小组有10名同学,其中7名男生,3名女生,从中任选3人参加社会活动,则3人全为男生的概率为()A.B.C.D.正确答案:【A】38、从0、1、2、…、9十个数字中随机地有放回的接连抽取四个数字,则“8”至少出现一次的概率为()A.0.1B.0.3439C.0.4D.0.6561正确答案:【B】39、A.B.C.正确答案:【D】40、设矩阵其中均为4维列向量,且已知行列式,则行列式()A.25B.40C.41D.50正确答案:【B】41、若都存在,则下面命题中正确答案的是()A.B.C.D.正确答案:【D】42、与矩阵相似的矩阵是()A.B.C.D.正确答案:【B】43、A.B.C.D.正确答案:【B】44、某种动物活20年的概率为0.8,活25年的概率为0.6,现有一只该动物已经活了20年,它能活到25年的概率是()A.0.48B.0.6C.0.8D.0.75正确答案:【D】45、设4维向量组中的线性相关,则()A.可由线性表出B.是的线性组合C.线性相关D.线性无关正确答案:【C】46、设为阶方阵,且(为正数),则()A.B.的特征值全部为零C.的特征值全部为零D.存在个线性无关的特征向量正确答案:【C】47、若连续型随机变量的分布函数,则常数的取值为()A.B.C.D.正确答案:【B】48、A.B.C.D.正确答案:【C】49、设,则~()A.B.C.D.正确答案:【B】50、设是未知参数的一个估计量,若,则是的()A.极大似然估计B.矩估计C.有效估计D.有偏估计正确答案:【D】一、单选(共计100分,每题2.5分)1、A.B.C.D.正确答案:【D】2、已知线性无关则()A.必线性无关B.若为奇数,则必有线性无关C.若为偶数,则线性无关D.以上都不对正确答案:【C】3、A.B.C.D.正确答案:【D】4、A.B.C.D.正确答案:【D】5、矩阵()是二次型的矩阵A.B.C.D.正确答案:【C】6、设为二维连续随机变量,则和不相关的充分必要条件是()A.和相互独立B.C.D.正确答案:【C】7、设是参数的两个相互独立的无偏估计量,且若也是的无偏估计量,则下面四个估计量中方差最小的是()A.B.C.D.正确答案:【A】8、设二维随机变量,则()A.B.3C.18D.36正确答案:【B】9、已知是非齐次方程组的两个不同解,是的基础解系,为任意常数,则的通解为()A.B.C.D.正确答案:【B】10、下列矩阵中,不是二次型矩阵的是()A.B.C.D.正确答案:【D】11、若总体为正态分布,方差未知,检验,对抽取样本,则拒绝域仅与()有关A.样本值,显著水平B.样本值,显著水平,样本容量C.样本值,样本容量D.显著水平,样本容量正确答案:【D】12、在假设检验中,设服从正态分布,未知,假设检验问题为,则在显著水平下,的拒绝域为()A.B.C.D.正确答案:【B】13、A.B.C.D.正确答案:【C】14、已知4阶行列式中第1行元依次是-4,0,1,3, 第3行元的余子式依次为-2,5,1,x ,则X=A.0B.3C. -3D.2正确答案:【B】15、设是阶正定矩阵,则是()A.实对称矩阵B.正定矩阵C.可逆矩阵D.正交矩阵正确答案:【C】16、设总体服从泊松分布:,其中为未知参数,为样本,记,则下面几种说法正确答案的是()A.是的无偏估计B.是的矩估计C.是的矩估计D.是的矩估计正确答案:【D】17、下列函数中可以作为某个二维随机变量的分布函数的是()A.B.C.D.正确答案:【D】18、A.B.C.D.正确答案:【A】19、若都存在,则下面命题正确答案的是()与独立时,B.与独立时,C.与独立时,D.正确答案:【C】20、设是从正态总体中抽取的一个样本,记则服从()分布A.B.C.D.正确答案:【C】21、设随机变量,则()A.B.C.D.正确答案:【A】22、已知向量,若可由线性表出那么()A.,B.,C.,D.,正确答案:【A】23、设,则()A.A和B不相容B.A和B相互独立C.或D.正确答案:【A】24、设总体,为样本均值,为样本方差,样本容量为,则以下各式服从标准正态分布的是()A.B.C.D.正确答案:【A】25、为三阶矩阵,为其特征值,当()时,A.B.C.D.正确答案:【C】26、某种商品进行有奖销售,每购买一件有的中奖概率。
工程数学(线性代数与概率统计)答案(1章)
工程数学(线性代数与概率统计)习题一一、 1.5)1(1222112=-⨯-⨯=-;2.1)1)(1(111232222--=-++-=++-x x x x x x x x x x ;3.b a ab bab a 2222-=4.53615827325598413111=---++=5.比例)第一行与第三行对应成(,000000=dc ba6.186662781132213321=---++=。
二.求逆序数 1. 551243122=↓↓↓↓↓τ即 2. 5213423=↓↓↓↓τ即3. 2)1(12)2()1(12)1(01)2()1(-=+++-+-=-↓↓-↓-↓n n n n n nn n ΛΛτ即 4.2)1(*2]12)2()1[()]1(21[24)22()2()12(31012111-=+++-+-+-+++=--↓↓-↓-↓-↓↓↓n n n n n n n n n n n ΛΛΛΛτ三.四阶行列式中含有2311a a 的项为4234231144322311a a a a a a a a +- 四.计算行列式值1.07110851700202145900157711202150202142701047110025102021421443412321=++------r r r r r r r r2.310010000101111301111011110111113011310131103111301111011110111104321-=---⋅=⋅=+++c c c c3.abcdef adfbce ef cf bf de cd bdae ac ab4111111111=---=--- 4.dcdcba dcb a1010111011110110011001--------按第一行展开 ad cd ab dc dadc ab+++=-+---=)1)(1(1111115.ba c cbc a b a a c b a c c b c a b a a b b a c c c b c a b b a a a ba c c cbc a b b a a c b a --------------=------202022202022222222222222 其中)3)(()(3522)(22)(12221222122)(2202022202022222220222200222202222222222222ac ab a c a b a ab abc ba c c aa c ab b a a b a abc ba c c aa c a bc c b b a aa cc b b a ac cc b b b aa ab ac c b c b aa b a c c b a b a a b a c c c b b b a a a b a c c c b c a b b a a a ++++++=--+-+-=--+---=--------=----其余同法可求。
线性代数与概率论统计试卷模拟题及参考答案
《线性代数与概率论统计》一、填空题(每小题4分,共20分。
)1.若,A B 都是3阶方阵,且A =2,B = 3E ,则T A B = .2. 设3阶方阵11124133A -⎛⎫ ⎪=- ⎪ ⎪--⎝⎭x 相似于矩阵1101220003-⎛⎫⎪= ⎪ ⎪⎝⎭B .则常数=x .3.设A ,B 为互不相容的两个事件,()0.2P A =,()0.3P B =,则()P A B = .4. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0.5,则目标被命中的概率为 .5.设~()X P λ,则()D X = . 二、选择题(每小题4分,共20分。
)1. 设, A B 为n 阶方阵,E 为n 阶单位矩阵,则下列等式成立的是( ).(A) ()()22A B A B A B -+=-; (B) ()()2A E A E A E -+=-; (C) AB BA =; (D) ()A B E A B E +=++. 2. 若方阵A 满足230A E -=,则A 必有一个特征值为( ). (A) 2; (B) 3; (C) 3/2; (D) 2/3.3. 设A ,B 为两个随机事件,且A B ⊂,则下列各式中正确的是( ).(A) ()()P A B P A =; (B) ()()P AB P B =; (C) (|)()P B A P B =; (D) ()()()P B A P B P A -=-. 4. 设随机变量Y X ,独立,且)1,1(~),1,0(~N Y N X ,则( ).(A) 21}0{=≤+Y X P ; (B) 21}1{=≤+Y X P ;(C) 21}0{=≤-Y X P ; (D) 21}1{=≤-Y X P ;5. 设12,,,n X X X 是来自正态总体X2(,)N μσ的一个样本,则下列各式中正确的是( ).(A) 2~X μσ⎛⎫- ⎪⎝⎭2(1)χ; (B) 2~X n ⎛⎫- ⎪⎝⎭μσ2(1)χ;(C) 2~X μσ⎛⎫- ⎪⎝⎭(1)t ; (D) 2~X n ⎛⎫- ⎪⎝⎭μσ(1)t .三、线代计算题(每小题10分,共30分。
线性代数与概率统计期末考试复习题及参考答案-高起本
《线性代数与概率统计》复习题一、填空题1. 200120122= .2. 设,A B 均为n 阶方阵,当,A B 满足 时,有222()2A B A AB B +=++.3.设,A B 为两个随机事件,且()0.7,()0.6,()0.3P A P B P A B ==-=,则(|)P A B = .4. 袋中有5个白球和3个黑球,从中任取两个球,则取得两球颜色相同的概率为 .5.设随机变量)8.0,1(~B X ,则随机变量X 的分布函数为 .6.已知方程组123123123202400ax x x x x x x x x ++=⎧⎪++=⎨⎪-+=⎩有非零解,则常数a = .7. 矩阵111121242A ⎛⎫ ⎪= ⎪ ⎪⎝⎭的秩为 .8.随机变量X ,Y 的方差分别为25和36,相关系数为0.4,则Cov(X,Y)= . 9. ===)(,)(),()(B P p A P B A P AB P B A 则两个事件满足、 .10.在正态总体X~),(2σμN 中取一样本,容量为n ,样本均值为X ,样本方差为s 2,则统计量sX n )(μ-服从 分布. 二、选择题 1. 设矩阵X 满足⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛63354321X , 则X = ( ).(A) 73260-⎛⎫ ⎪⎝⎭; (B) 73260⎛⎫ ⎪-⎝⎭; (C) 70632-⎛⎫ ⎪⎝⎭; (D) 70632⎛⎫ ⎪-⎝⎭. 2. 设ξξ12,是AX O =的解, ,ηη12是 AX b =的解, 则( ). (A) 12ηη-是AX O =的解; (B) 12ηη+为AX b =的解; (C) 11ξη+是AX O =的解; (D) 12ξξ+是 AX b =的解.3. 若),(~p n B X ,且3E X =(),() 1.2D X =,则( ).(A )5,0.6n p ==; (B )10,0.3n p ==;(C )15,0.2n p ==; (D )20,0.15n p ==.4. 设X 的分布列为)(x F 为其分布函数,则F (2)=( ). (A )0.2 ; (B )0.4 ; (C )0.8 ; (D) 1.5. 设),,,(21n X X X 为总体)1,0(~N X 的一个样本,X 为样本均值,2S 为样本方差,则有( ).(A ))1,0(~N X ; (B ))1,0(~N X n ;(C ))1(~/-n t S X ; (D ))1,1(~/)1(2221--∑=n F X X n ni i . 6. 设有m 维向量组12,,,n ααα, 则( ).(A) 当m n <时,一定线性相关; (B) 当m n >时,一定线性相关;(C) 当m n <时,一定线性无关; (D) 当m n >时,一定线性无关. 7. 设ξξ12,是AX O =的解, ,ηη12是 AX b =的解,则下面不正确的是( ).(A) 12ξξ+是AX O =的解; (B) 12ηη+为AX b =的解;。
线性代数与概率统计和答案
线性代数部分第一章 行列式一、单项选择题1.=0001001001001000( ).(A) 0 (B)1- (C) 1 (D) 22. =0001100000100100( ).(A) 0 (B)1- (C) 1 (D) 2 3.若a a a a a =22211211.则=21112212ka a ka a ( ).(A)ka (B)ka - (C)a k 2 (D)a k 2-4. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为x ,1,5,2-, 则=x ( ).(A) 0 (B)3- (C) 3 (D) 25. k 等于下列选项中哪个值时.齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x kx x kx x kx x x 有非零解.( )(A)1- (B)2- (C)3- (D)06.设行列式na a a a =22211211.m a a a a =21231113.则行列式232221131211--a a a a a a 等于()A. m n -B.)(-n m +C. n m +D.n m -二、填空题1. 行列式=0100111010100111.2.行列式010 (00)02...0.........000 (10)0 0n n =-.3.如果M a a a a a a a a a D ==333231232221131211.则=---=323233312222232112121311133333 3a a a a a a a a a a a a D .4.行列式=--+---+---1111111111111111x x x x .5.已知三阶行列式中第二列元素依次为1,2,3, 其对应的余子式依次为3,2,1.则该行列式的值为.6.齐次线性方程组⎪⎩⎪⎨⎧=+-=+=++0020232121321x x x kx x x x kx 仅有零解的充要条件是.7.若齐次线性方程组⎪⎩⎪⎨⎧=+--=+=++0230520232132321kx x x x x x x x 有非零解.则k =.三、计算题2.y x yx x y x y y x y x+++;3.解方程0011011101110=x x xx ;6. 111...1311...1112...1.........111...(1)b b n b----7. 11111222123111...1..................nb a a a b b a a b b b a ; 8.121212123.....................n nn x a a a a x a a a a x a a a a x;四、证明题1.设1=abcd .证明:011111111111122222222=++++dddd c c c c b b b b a a a a .2.3332221112333332222211111)1(c b a c b a c b a x c b x a x b a c b x a x b a c b x a xb a -=++++++.3.))()()()()()((111144442222d c b a c d b d b c a d a c a b d c b a dcbad c b a +++------=.第二章 矩阵一、单项选择题1. A 、B 为n 阶方阵.则下列各式中成立的是( )。
线性代数与概率统计
1、每张奖券中尾奖的概率为,某人购买了20张号码杂乱的奖券,则中尾奖的张数服从( )分布。
A. 二项正确:【A】2、设随机变量的方差,利用切比雪夫不等式估计()A.B.C.D.正确:【A】3、下列矩阵中,不是二次型矩阵的是()A.B.C.D.正确:【D】4、实二次型的矩阵,若此二次型的正惯性指数为3,则()A.B.C.D.正确:【C】5、在假设检验中,设服从正态分布,未知,假设检验问题为,则在显著水平下,的拒绝域为()A.B.C.D.正确:【B】6、矩阵()合同于A.B.C.D.正确:【A】7、设总体,是总容量为2的样本,为未知参数,下列样本函数不是统计量的是()A.B.C.D.正确:【D】8、设随机变量的,用切比雪夫不等式估计()A. 1B.C.D.正确:【D】9、A. 0B.C.D.正确:【C】10、A.B.C.D.正确:【D】11、某人打靶的命中率为0.4,现独立的射击5次,那么5次中有2次命中的概率为()A.B.C.D.正确:【C】12、A.B.C.D.正确:【D】13、设服从参数为的泊松分布,则下列正确的是()A.B.C.D.正确:【D】14、已知和是线性方程组的两个解,则系数矩阵是()A.B.C.D.正确:【C】15、A.B.C.D.正确:【B】16、若都存在,则下面命题正确的是()A. 与独立时,B. 与独立时,C. 与独立时,D.正确:【C】17、下列各函数中是随机变量分布函的为()A.B.C.D.正确:【B】18、设为二维连续随机变量,则和不相关的充分必要条件是()A. 和相互独立B.C.D.正确:【C】19、设是三阶方阵的三个特征值,对应特征向量分别为,且存在可逆矩阵,使得,则()A.B.C.D.正确:【B】20、设是的两个不同的特征值,又与是属于的特征向量,则与()正确:【B】21、设是从正态总体中抽取的一个样本,记则服从()分布A.B.C.D.正确:【C】22、设总体服从两点分布:为其样本,则样本均值的期望()A.B.C.D.正确:【A】23、设随机变量和的密度函数分别为若与相互独立,则()B.C.D.正确:【D】24、设总体,其中已知,为来自总体的样本,为样本均值,为样本方差,则下列统计量中服从分布的是()A.B.C.D.正确:【D】25、设二维随机变量,则()A.B. 3C. 18D. 36正确:【B】26、A. 2B.C.D.正确:【D】27、已知是阶方阵,且,则的个行向量中()A. 任意个行向量线性无关B. 必有个行向量线性无关C. 任一行向量都可由其余个行向量线性表出D. 任意个行向量都为极大无关组正确:【B】28、齐次线性方程组的自由未知量为()A.B.C.D.正确:【C】29、对于正态分布,抽取容量为10的样本,算得样本均值,样本方差,给定显著水平,检验假设 .则正确的方法和结论是()A. 用检验法,查临界值表知,拒绝B. 用检验法,查临界值表知,拒绝C. 用检验法,查临界值表知,拒绝D. 用检验法,查临界值表知,拒绝正确:【C】30、A.B.C.D.正确:【B】31、设随机事件A与B相互独立,A发生B不发生的概率与B发生A不发生的概率相等,且,则()A. 0.5B.C.D.正确:【B】32、A.B.C.D.正确:【A】33、设随机事件A与B相互独立,,则()A. 0.6正确:【D】34、为任意两事件,若之积为不可能事件,则称与()A. 相互独立B. 互不相容C. 互为独立事件D. 为样本空间的一个部分正确:【B】35、设总体服从泊松分布:,其中为未知参数,为样本,记,则下面几种说法正确的是()A. 是的无偏估计B. 是的矩估计C. 是的矩估计D. 是的矩估计正确:【D】36、已知为阶方阵,以下说法正确的是()A.B. 的全部特征向量为的全部解C. 若有个互不相同的特征值,则必有个线性无关的特征向量D. 若可逆,而矩阵的属于特征值的特征向量也是矩阵属于特征值的特征向量正确:【B】37、设总体,为样本均值,为样本方差,样本容量为,则以下各式服从标准正态分布的是()A.B.C.D.正确:【A】38、A.B.C.D.正确:【A】39、A.B.C.D.正确:【A】40、设,则()A.B.C.D.正确:【D】1、下列矩阵是正定矩阵的是()A.B.C.D.正确:【C】2、从一批产品中随机抽两次,每次抽1件。
工程数学(线性代数与概率统计)答案(2章)
工程数学(线性代数与概率统计)习题二1、设⎪⎪⎪⎭⎫ ⎝⎛--=111111111A ,⎪⎪⎪⎭⎫ ⎝⎛--=150421321B ,有⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--=-2294201722213222222222209265085031111111112150421321111111111323A AB⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T2、求下列矩阵的乘积AB(1)()()7201321=⎪⎪⎪⎭⎫⎝⎛(2)⎪⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--121125147103121012132 (3)⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛-119912943110231101420121301 (4)⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛--000021211111 (5)⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---0000002412122412(6)⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎪⎭⎫⎝⎛n n n nnc b c b c b c b a c b a c b a 2020202000100002211222111 3、求下列矩阵的乘积(1)()⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛∑=ni i i n n b a b b b a a a 12121(2)()⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛n n n n n n n b a b a b a b a b a b a b a b a b a b b b a a a 22122212121112121(3)())222(322331132112233322222111321332313232212131211321x x a x x a x x a x a x a x a x x x a a a a a a a a a x x x +++++=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛6、设⎪⎪⎪⎭⎫ ⎝⎛=100110011A ,求与A 可交换的矩阵⎪⎪⎪⎭⎫⎝⎛=333231232221131211b b b b b b b b b B ;即BA AB = BA b b b b b b b b b b b b b b b b b bb b b b b b b b b b b b AB =⎪⎪⎪⎭⎫⎝⎛++++++=⎪⎪⎪⎭⎫⎝⎛++++++=333232313123222221211312121111333231332332223121231322122111 得 为任意数13121133223221312312221121,,00b b b b b b b b b b b b b ====== ⎪⎪⎪⎭⎫⎝⎛=111211131211000b b b b b b B 7、略8、计算矩阵幂(1)⎪⎪⎭⎫⎝⎛--=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛--2221141343214321432143213(2)⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎪⎪⎪⎪⎪⎬⎫⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧+=⎪⎪⎭⎫⎝⎛-+=⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛-+=⎪⎪⎭⎫⎝⎛--=⎪⎪⎭⎫⎝⎛-2cos2sin2sin2cos 1401104410013401102410010110ππππn n n n k n k n k n k n n(3)n⎪⎪⎭⎫ ⎝⎛--2312,2,1,0122312210012312231223121001100123122312=⎪⎪⎩⎪⎪⎨⎧+=⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛--⇒⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--k k n kn n ==因(4)⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛k n k k kn λλλλλλ2121(5)⎪⎪⎪⎭⎫⎝⎛+=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛+1000101011000101011000101011000101011000100110001010110001030110001010110001020110001010110001020110001010110001010113k k kk k(6)⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛---kk kk k k kk k k k λλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλ0002)1(00100100303300100100201200100100201200100100100100100112132323222322229、设()4321=α,()4/13/12/11=β,()()⎪⎪⎪⎪⎪⎭⎫⎝⎛====⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==--13/4244/312/332/13/2124/13/12/114)()()4(43214/13/12/1113/4244/312/332/13/2124/13/12/114/13/12/11432111n n T T n T n T T A A ββααβαβαβα10、分块计算(略),11、12、13、14(略)15、求逆矩阵(1)⎪⎪⎭⎫⎝⎛---=⎪⎪⎭⎫ ⎝⎛-a c b d bc ad d c b a 11(2)⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫⎝⎛--θθθθθθθθcos sin sin cos cos sin sin cos 1(3)02145243121≠=---,32,13,4131211-=-=-=A A A ,2,1,0,14,6,2333231232221-=-=====A A A A A A⎪⎪⎪⎭⎫ ⎝⎛-----==*-2143216130242111A A A(4)⎪⎪⎪⎪⎪⎭⎫⎝⎛=----112111n a a a A16.解矩阵方程(1)⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=-321195532/12/312955343211X (2)⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=--861222215768211091614351211187651091614251311X (3)⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛---=-98765432112523113501520950381X (4)B A E X B X A E B AX X 1)()(--=⇒=-⇒+=⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--=-1102133502113/13/103/13/213/13/203502112011010111X17、1111)(66)(6-----=⇒=-⇒+=E A B A BA E A BA A BA A⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=-=⎪⎪⎪⎭⎫⎝⎛=-⎪⎪⎪⎭⎫ ⎝⎛=-⎪⎪⎪⎭⎫ ⎝⎛=------1236/13/12/16)(66/13/12/1)(,632,743111111E A B E A E A A18、⎪⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎪⎭⎫⎝⎛--=--=⇒=-⇒+=---9122692683321011324461351341321011324121011322)2()2()2(2111A E A A E A B A B E A B A AB19、A 为3阶方阵,a A =0≠m ,有a m mA 3-=-;20、A 为3阶方阵,2,2/11=⇒=-A A ;1-*⋅=A A A ,41311112222323===-=-----*-A A A A A A A21、略22、112)(212)(02---=⇒=-⇒=--E A AE E A A E A A A A E E A A E E A A 21)(2)(0212-=-⇒-=-⇒=---因020))(2(=+-⇒=+-E A E A E A E A 23、)2(51)4(05)2)(4(03212E A E A E E A E A E A A --=+⇒=+-+⇒=-+- 24、因0=mA 有1221)((----++++-=-==m m m m m m m A EA A E E A E A E EE所以121)(--++++=-m A A A E A E25、 C A C AC C B m mm11)(--==26、199991--=⇒=⇒=P PB A PBP A PB AP27、28、略29、⎪⎪⎭⎫⎝⎛=⇒⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=22112121,B A O O B A AB B O O B B A OO A A ; 30、(1)设⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛214321E OO E A A A A O C B O有⎪⎪⎩⎪⎪⎨⎧====⇒⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛--1214132121430C A A A B A E OO E CA CA BA BA 即逆矩阵为⎪⎪⎭⎫⎝⎛--O B C O11 (2)设⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛++=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛214231214321E OO E CA AA CA AA BA BA A A A A C A O B 得逆阵为⎪⎪⎭⎫⎝⎛-----1111C AB C O B31、32、略33、求迭(1)200001140432122801140432121101542143211312=⇒⎪⎪⎪⎭⎫ ⎝⎛-→⎪⎪⎪⎭⎫ ⎝⎛---−−→−⎪⎪⎪⎭⎫ ⎝⎛---r r r r r (2)4211103000044000100112111011110022201001110011111100222021110=⇒⎪⎪⎪⎪⎪⎭⎫⎝⎛---→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----→⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----r34、求逆阵(用软件算的与书后答案有些不同,请大家验证) (1)A =3 2 1 3 1 5 3 2 3det(A)= -6 >> inv(A) ans =1.1667 0.6667 -1.5000 -1.0000 -1.00002.0000 -0.5000 0 0.5000(2)B =2 3 11 2 0-1 2 -2det(B)=2>> inv(B)ans =-2.0000 4.0000 -1.00001.0000 -1.5000 0.50002.0000 -3.5000 0.5000(3)C =3 -2 0 -10 2 2 11 -2 -3 -20 1 2 1det(C)=1>> inv(C)ans =1.0000 1.0000 -2.0000 -4.00000 1.0000 0 -1.0000-1.0000 -1.0000 3.0000 6.00002.0000 1.0000 -6.0000 -10.0000(4)D =2 1 0 03 2 0 05 7 1 8-1 -3 -1 -1det(D)=7>> inv(D)ans =2.0000 -1.0000 0.0000 0-3.0000 2.0000 0 -0.00006.4286 -4.4286 -0.1429 -1.14290.5714 -0.5714 0.1429 0.1429。
《线性代数与概率统计》(线性代数)试卷A 答案
装订计算机系《线性代数与概率统计》(线性代数)课程试卷 (A)参考答案及评分标准一、单项选择题(本大题共 5 题,每小题 3 分,共 15 分)1. 行列式x 010x4x13 的展开式中,2x 的系数为( B )A. -1B. 2C. 3D. 42. n 阶方阵A 可逆的充分必要条件是( B )。
A.n r A r <=)(B.A 的列秩为nC.A 的每一个行向量都是非零向量D. 伴随矩阵存在3.n 维向量组)2(,,,21≥s s ααα 线性相关的充要条件是( D ) A. s ααα,,,21 中至少有一个零向量 B. s ααα,,,21 中至少有两个向量成比例 C. s ααα,,,21 中任意两个向量不成比例D.s ααα,,,21 中至少有一向量可由其它向量线性表示4. n 阶对称阵A 为正定矩阵的充分必要条件是( C )A. 0A >B. A 等价于单位矩阵EC. A 的特征值都大于0D. 存在n 阶矩阵C ,使TA C C =5. 当r (A )=r (A ,B ) < n 时,则n 元线性方程组AX = B ( A ) A .有无穷多解B. 无解C. 有唯一解D. 无法确定解的个数二、填空题(本大题共 5 题,每小题 3 分,共 15 分)1. 设A 为三阶矩阵,且2=A ,则=A 3 54装订线 内 不 准 答 题2. n 维零向量一定线性___相___关。
3. 设向量T )1,0,1(1=α与T a ),1,1(2=α正交,则=a -1 。
4. 设A 为正交矩阵,则=A A T15. 设三阶矩阵A 的特征值为-2、1、4,则=A -8三、计算题(本大题共6 题,每小题10分,共 60 分)1. 计算4阶行列式2123100023126231解: 2123100023126231=(4分) =-1*(1+8+27-6-6-6) (8分)=-18 (10分)2. 求矩阵⎪⎪⎭⎫⎝⎛---145243121的逆矩阵。
线性代数与概率统计作业题答案
《线性代数与概率统计》作业题第一部分 单项选择题 1.计算11221212x x x x ++=++?(A )A .12x x -B .12x x +C .21x x -D .212x x -2.行列式111111111D =-=--(B)A .3B .4C .5D .63.设矩阵231123111,112011011A B -⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦,求AB =?(B) A .-1B .0C .1D .24.齐次线性方程组123123123000x x x x x x x x x λλ++=⎧⎪++=⎨⎪++=⎩有非零解,则λ=?(C )A .-1B .0C .1D .25.设⎪⎪⎭⎫ ⎝⎛=50906791A ,⎪⎪⎪⎪⎪⎭⎫⎝⎛=67356300B ,求AB =?(D ) A .1041106084⎛⎫⎪⎝⎭B .1041116280⎛⎫⎪⎝⎭C .1041116084⎛⎫ ⎪⎝⎭D .1041116284⎛⎫⎪⎝⎭6.设A 为m 阶方阵,B 为n 阶方阵,且A a =,B b =,00A C B⎛⎫=⎪⎝⎭,则C =?( D ) A .(1)mab - B .(1)n ab - C .(1)n m ab +-D .(1)nmab -7.设⎪⎪⎪⎭⎫⎝⎛=343122321A ,求1-A =?(D )A .13235322111⎛⎫ ⎪ ⎪-- ⎪ ⎪-⎝⎭B .132********-⎛⎫⎪ ⎪- ⎪ ⎪-⎝⎭ C .13235322111-⎛⎫ ⎪⎪- ⎪ ⎪-⎝⎭ D .13235322111-⎛⎫⎪ ⎪-- ⎪ ⎪-⎝⎭8.设,A B 均为n 阶可逆矩阵,则下列结论中不正确的是(B )A .111[()]()()T T T AB A B ---=B .111()A B A B ---+=+C .11()()k k A A --=(k 为正整数)D .11()(0)n kA k A k ---=≠ (k 为正整数)9.设矩阵m n A ⨯的秩为r ,则下述结论正确的是(D ) A .A 中有一个r+1阶子式不等于零B .A 中任意一个r 阶子式不等于零C .A 中任意一个r-1阶子式不等于零D .A 中有一个r 阶子式不等于零10.初等变换下求下列矩阵的秩,321321317051A --⎛⎫⎪=- ⎪ ⎪-⎝⎭的秩为?(D )B .1C .2D .311.写出下列随机试验的样本空间及下列事件的集合表示:掷一颗骰子,出现奇数点。
线性代数及概率论与数理统计试题(含答案)
1.已知正交矩阵P 使得100010002T P AP ⎛⎫ ⎪=- ⎪⎪-⎝⎭,则20061()T P A A A P -+= 2.设A 为n 阶方阵,12,,n λλλ⋅⋅⋅⋅⋅⋅是A 的n 个特征根,则det( T A )=3.设A 是n m ⨯矩阵,则方程组B AX =对于任意的m 维列向量B 都有无数多个解的充分必要条件是:4.若向量组α=(0,4,2),β=(2,3,1),γ=(t ,2,3)的秩不为3,则t=5.23151315227()5439583x D x x x =,则0)(=x D 的全部根为:1.n 阶行列式111110100⋅⋅⋅-⋅⋅⋅-⋅⋅⋅⋅⋅⋅-⋅⋅⋅的值为( )A 1- B ,(1)n- C ,(1)2(1)n n -- D ,(1)2(1)n n +-2.对矩阵n m A ⨯施行一次列变换相当于( )。
A 左乘一个m 阶初等矩阵 B 右乘一个m 阶初等矩阵 C 左乘一个n 阶初等矩阵 D 右乘一个n 阶初等矩阵 3.若A 为m ×n 矩阵,()r A rn =<,{|0,}n M X AX X R ==∈。
则( )。
A M 是m 维向量空间B , M 是n 维向量空间 C ,M 是m-r 维向量空间 D ,M 是n-r 维向量空间 4.若n 阶方阵A 满足,2A =E ,则以下命题哪一个成立( )。
A , ()r A n = B , ()2nr A = C , ()2nr A ≥, D ,()2nr A ≤5.若A 是n 阶正交矩阵,则以下命题那一个不成立( )。
A 矩阵-A T 为正交矩阵 B 矩阵-1A -为正交矩阵C 矩阵A 的行列式是实数D 矩阵A 的特征根是实数1.若A 为3阶正交矩阵, 求det (E-2A )2.计算行列式abb b b a b b b b a b bb b a。
3.设020200,001A AB A B ⎛⎫ ⎪==- ⎪⎪⎝⎭,求矩阵A-B 。
福师1203考试批次《线性代数与概率统计》复习题及参考答案
福师1203考试批次《线性代数与概率统计》复习题及参考答案福师1203考试批次《线性代数与概率统计》复习题及参考答案说明:本课程复习题所提供的答案仅供学员在复习过程中参考之用,有问题请到课程论坛提问。
福师1203考试批次《线性代数与概率统计》复习题及参考答案一一、选择题:(每小题3分,共30分)1、设B A ,为n 阶方阵,O A ≠,且O AB =,则 [ B ]。
(A )O B = (B )0=B 或0=A (C )O BA = (D )()222B A B A +=- 2、设矩阵A,B 满足AB BA =,则A 与B 必为[ D ]。
(A )同阶矩阵(B )A 可逆(C )B 可逆(D )''''A B B A =3、设A ,B ,C 均为n 阶矩阵,下列等式成立的是[ C ]。
(A )(A+B)C=CA+CB (B )(AB)C=(AC)B(C )C(A+B)=CA+CB (D )若AC=BC ,则A = B4、设A 为n 阶方阵,且()R A r n =<,则A 中[ A ]。
(A )必有r 个行向量线性无关(B )任意r 个行向量线性无关(C )任意r 个行向量构成一个极大无关组(D )任意一个行向量都能被其他r 个行向量线性表示5、与可逆矩阵A 必有相同特征值的矩阵是 [ C ]。
(A )1-A (B )2A (C )T A (D )*A6、两个互不相容事件A 与B 之和的概率为 [ A ](A ) P(A)+P(B) (B ) P(A)+P(B)-P(AB)(C ) P(A)-P(B) (D ) P(A)+P(B)+P(AB)7、设随机变量的数学期望E (ξ)=μ,均方差为σ,则由切比雪夫不等式,有{P (|ξ-μ|≥3σ)}≤[ A ](A ) 1/9 (B ) 1/8 (C ) 8/9 (D ) 7/88、设随机事件A ,B 及其和事件A ∪B 的概率分别是0.4,0.3和0.6,则B 的对立事件与A 的积的概率是 [ D ](A )0.2 (B )0.5 (C )0.6 (D )0.39、设随机变量X 和Y 独立,如果D (X )=4,D (Y )=5,则离散型随机变量Z=2X+3Y 的方差是[ A ](A) 61 (B)43 (C)33 (D)5110、把一枚硬币连接三次,以X 表示在三次中出现正面的次数,Y 表示在三次中出现正面的次数与出现反面的次数的差的绝对值,则{X =3,Y =3}的概率为[ B ](A)2/5 (B)1/8 (C)4/9 (D)3/7二、计算下列行列式:(每题5分,共10分)12(1)38 123(2)21210181参考答案:(1) 2 (2)61三、设12112312211111,256,1131002117322100A BC ?????? ? ? ?=== ? ? ? ? ? ???????,求BC A +2,,,T T T A B C 。
(完整word版)线性代数与概率统计及答案
线性代数部分第一章 行列式一、单项选择题1.=001001001001000( ). (A) 0 (B)1- (C) 1 (D) 22.=001100000100100( ). (A) 0 (B)1- (C) 1 (D) 2 3.若a a a a a =22211211,则=21112212ka a ka a ( ).(A)ka (B)ka - (C)a k 2 (D)a k 2-4. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为x ,1,5,2-, 则=x ( ).(A) 0 (B)3- (C) 3 (D) 25. k 等于下列选项中哪个值时,齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x kx x kx x kx x x 有非零解. ( )(A)1- (B)2- (C)3- (D)06.设行列式na a a a =22211211,ma a a a =21231113,则行列式232221131211--a a a a a a 等于()A. m n -B.)(-n m +C. n m +D.n m -二、填空题1. 行列式=010111010100111.2.行列式010...0002 0.........000...100...0n n=-.3.如果M a a a a a a a a a D ==333231232221131211,则=---=323233312222232112121311133333 3a a a a a a a a a a a a D .4.行列式=--+---+---1111111111111111x x x x .5.已知三阶行列式中第二列元素依次为1,2,3, 其对应的余子式依次为3,2,1,则该行列式的值为.6.齐次线性方程组⎪⎩⎪⎨⎧=+-=+=++0020232121321x x x kx x x x kx 仅有零解的充要条件是.7.若齐次线性方程组⎪⎩⎪⎨⎧=+--=+=++0230520232132321kx x x x x x x x 有非零解,则k =.三、计算题2.yxyx x yx y y x y x+++;3.解方程0011011101110=x x xx ;6. 111...1311...1112...1.........111...(1)b b n b----7. 11111222123111...1..................nb a a a b b a a b b b a ; 8.121212123.....................n n n x a a a a x a a a a xa a a a x;四、证明题1.设1=abcd ,证明:011111111111122222222=++++d ddd c c c c b b b b a a a a .2.3332221112333332222211111)1(c b a c b a c b a x c b x a xb ac b x a x b a c b x a x b a -=++++++.3.))()()()()()((111144442222d c b a c d b d b c a d a c a b d c b a d c b a dc b a +++------=.第二章 矩阵一、单项选择题1. A 、B 为n 阶方阵,则下列各式中成立的是( )。
《线性代数与概率统计》课后答案
方程组对应的导出组为 ,分别取 ,得导出组的一组基础解系 ,所以方程组的通解为
三、计算题(本大题共两小题,每题8分,共16分)
1.λ取何值时,非齐次线性方程组 ,
⑴有惟一解;⑵无解;⑶有无穷多个解?
解:系数矩阵行列式 。
⑴ 当 时, ,方程组有惟一解;
⑵ 当 时,增广矩阵
,方程组无解。
3、已知A、B为n阶非零矩阵,则下列公式成立的是(A )
(A) ; (B) ;
(C) 则 ; (D) ;
4、已知A为3阶矩阵,且 =2,则 =(B)
(A)2; (B)4; (C)0; (D)8;
5、下列命题正确的是( C )
(A)若向量组 是线性相关的,则 可由 线性表示;
(B)若有不全为零的数 ,使 成立,则 线性相关, 线性相关;
五、证明题(本大题满分9分)
设 元齐次线性方程组 的基础解系为: ,令 ,证明:对于任意可逆的 阶矩阵 , 的列向量组构成 的基础解系
证明:因为C为 阶可逆矩阵,所以 ,且 的列向量组中共有 个向量,故 的列向量组线性无关且含有 个向量,又因为 为 元齐次线性方程组 的基础解系,所以 ,故 ,所以 的列向量组是齐次线性方程组 的解,综合以上有 的列向量组构成 的基础解系。
也即 能由 线性表示,故 (2)
由(1),(2)得 ,也即 与 有相同的线性相关性,故向量组 线性无关的充分必要条件是向量组 , 线性无关。
2.证明:如果 维单位坐标向量组 可以由 维向量组 线性表示,则向量组 线性无关。
证明:因为 维单位坐标向量组 可以由 维向量组 线性表示,所以 ,又因为 线性无关,所以 ,故 ,所以 线性无关。
解:令 ,
考研数学三-线性代数、概率论与数理统计(一)
考研数学三-线性代数、概率论与数理统计(一)(总分:106.00,做题时间:90分钟)一、填空题(总题数:53,分数:106.00).(分数:2.00)填空项1:__________________ (正确答案:24)解析:[解析] 在用按行(列)展开公式计算行列式的值时,应先用行列式的性质作恒等变形.以期减少计算量.逐行(列)相加(减)的技巧应当熟悉..(分数:2.00)填空项1:__________________ (正确答案:b3i))解析:[解析] 每行元素都是a1,a2,a3,a4,b.把每列均加至第一列,则第1列有公因数可提出.把各行(列)均加至某一行(列)是计算行列式值时的一个重要的构思..(分数:2.00)填空项1:__________________ (正确答案:(a1c2-a2c1)(b1d2-b2d1))解析:[解析] 本题有较多的0,并有较好的规律性,应当有用拉普拉斯展开式的设想.拉普拉斯展开式的两种特殊情况应当会用.(分数:2.00)填空项1:__________________ (正确答案:120)解析:[解析] 将行列式第四行加到第一行上,可提出公因子10再将第四行逐行相换至第二行得:要熟悉范德蒙行列式范德蒙行列式可以直接使用,但要注意是下标大的数减下标小的数。
例如:.(分数:2.00)填空项1:__________________ (正确答案:4!3!2!(或288))解析:[解析] 第2、3、4行提出公因子2、3、4,再转置,得范德蒙行列式,直接代入范德蒙行列式的结果得答案4!3!2!均正确,这个答案体现了范德蒙行列式的特点,若能具体计算出4!3!2!=288填入288当然也是满分,注意若计算错则是零分.______.(分数:2.00)填空项1:__________________ (正确答案:a,b,-(a+b))解析:[解析] 行列式的展开后是一元三次方程,应有三个根,由观察,当x=a时,一、二行相等,行列式为零,x=a是方程的根.同理x=b也是.(理由?)又行列式每行元素和为相等,且等于x+a+b,将第二、三列加到第一列,并提公因子,得得x=-(a+b)故方程的三个根是a,b,-(a+b).也可直接计算如下f(x+1)-f(x)=______.(分数:2.00)填空项1:__________________ (正确答案:6x2)解析:[解析]*处右端第一个行列式的第3列拆成了四个数之和,从而拆开四个行列式.行列式的性质从左至右是拆项,将一个行列式分解成二个行列式之和,从右至左是两个行列式相加.注意这不是全部对应元素相加的矩阵的和,两个行列式相加的条件是其余各列(或行)全部对应相同,只有一列(或行)不同地,可以相加,相加时,其余各列(或行)不变,不同的列对应元素相加即可.8.在xoy x轴的交点的坐标是 1.(分数:2.00)填空项1:__________________ (正确答案:,(3,0))解析:[解析] 曲线与x轴即y=0的交点为方程右端为范德蒙行列式,x=2,x=3,故曲线与x轴的交点坐标为(2,0)(3,0).9.设A=[α1,α2,α3]是3阶矩阵,且|A|=4,若B=[α1-3α2+2α3,α2-2α3,2α2+α3],则|B|=______.(分数:2.00)填空项1:__________________ (正确答案:20)解析:[解析] 由行列式性质|B|=|α1-3α2+2α3,α2-2α3,2α2+α3|=|α1-2α2,α2-2α3,5α3|=5|α1-2α2,α2,α3|=5|α1,α2,α3|=20或者,利用分块矩阵乘法B=[α1-3α2+2α3,α2-2α3,2α2+α3]10.设四阶方阵A=[α,γ2,γ3,γ4],B=[β,γ2,γ3,γ4],其中α,β,γ2,γ3,γ4均为四维列向量,且|A|=4,|B|=-1,则|A-3B|=______.(分数:2.00)填空项1:__________________ (正确答案:-56)解析:[解析] 因为A-3B=[α,γ2,γ3,γ4]-[3β,3γ2,3γ3,3γ4]=[α-3β,-2γ2,-2γ3,-2γ4]故有|A-3B|=|α-3β,-2γ2,-2γ3,-2γ4|=-8|α-3β,γ2,γ3,γ4|=-8(|α,γ2,γ3,γ4|-3|β,γ2,γ3,γ4|)=-8(|A|-3|B|)=-56矩阵行列式在考研中多次出现,当A,B均为n阶矩阵时,有|AB|=|A|·|B|,但|A+B|≠|A|+|B|,而|α+β,γ,δ|=|α,γ,δ|+|β,γ,δ|,两者不要混;又若三阶矩阵A=[α,β,γ]则kA=[kα,kβ,kγ]那么|kA|=k3|A||kα,β,γ|=k|A|两者也不要混淆.11.若三阶矩阵A与B相似,矩阵A的特征值为1,3,-2.B*是矩阵B的伴随矩阵,.(分数:2.00)填空项1:__________________ (正确答案:-27)解析:[解析] 由|A|=|A T|及|A|=Ⅱλi知|A T|=-6,再根据相似矩阵有相同的特征值,知矩阵B的特征值为1,3,-2,又知|B|=-6.从而12.A11+2A21+A31+2A41=______.(分数:2.00)填空项1:__________________ (正确答案:-12)解析:[解析] 因为代数余子式A ij的值与元素a ij的值无关.本题求第一列元素的代数余子式,故可构造一个新的行列式.把|A|中第1列换为所求和的代数余子式的系数,即则|A|与|B|的A11,A21,A31,A41是一样的,而对|B|按第1列展开就是|B|=A11+2A21+A31+2A41那么只要计算出行列式|B|的值也就求出本题代数余子式的和.易计算出|B|=-12.在计算代数余子式的和时,不要忘记两个公式a i1Aa j1+a i2A j2+…+a in A jn=0 (i≠j)a ij A1k+a2j A2k+…+a nj A nk=0 (j≠k)若要计算A11+A12+A13+A14呢?注意到A11+A12+A13+A14=(2A11+2A12+2A13+2A14)(a41A11+a42A12+a43A13+a44A14)=013.设α=(1,3,-2)T,β=(2,0,0)T,A=αβT,则A3=______.(分数:2.00)填空项1:__________________解析:[解析] 因为又因所以A3=(αβT)(αβT)(αβT)=α(βTα)(βTα)βT=4αβT=4A.矩阵的运算要正确熟练.注意,若α=[α1,α2,α3]T,β=[b1,b2,b3]T,则前者αβT是秩为1的三阶矩阵,而βTα是一个数.当秩r(A)=1时,A2=lA其中l=βTα=αTβ=∑a ii.进而A m=l m-1A14.A99=______.(分数:2.00)填空项1:__________________解析:[解析]从而有A5=A3A2=2A·A2=2A3=22A…………A的伴随矩阵A*=______.(分数:2.00)填空项1:__________________解析:[解析] 按定义,求出行列式|A|的代数余子式,有所以或者,由A*=|A|A-1,现在|A|=-10,用定义法求伴随矩阵时,要防止两种错误:求代数余子式不要丢掉正负号(-1)i+j;组装伴随矩阵时不要排错位置.本题A-1,|A|均好计算,所以用A*=|A|A-1求A*是方便的。
《线性代数、概率统计》期末考试试卷及详细答案 二
《线性代数、概率论》期末考试试卷答案一、选择题(每小题后均有代号分别为A, B, C, D的被选项, 其中只有一项是正确的, 将正确一项的代号填在横线上,每小题2分,共40分):1.行列式G的某一行中所有元素都乘以同一个数k得行列式H,则------------C-------------;(A) G=H ;(B) G= 0 ;(C) H=kG ;(D) G=kH 。
2.在行列式G中,A ij是元素a ij的代数余子式,则a1j A1k+ a2j A2k+…+a nj A nk--------D------;(A) ≠G (j=k=1,2,…,n时) ;(B) =G(j, k=1,2,…,n; j≠k时) ;(C) =0 (j=k=1,2,…,n时) ;(D) =0(j, k=1,2,…,n ;j≠k时) 。
3.若G,H都是n⨯ n可逆矩阵,则----------B------------;(A) (G+H)-1=H-1+G-1;(B) (GH)-1=H-1G-1;(C) (G+H)-1=G-1+H-1;(D) (GH)-1=G-1H-1。
4.若A是n⨯ n可逆矩阵,A*是A的伴随矩阵, 则--------A----------;(A) |A*|=|A|n-1;(B) |A*|=|A|n ;(C) |A*|=|A|n+1;(D) |A*|=|A|。
5.设向量组α1, α2,…,αr (r>2)线性相关, 向量β与α1维数相同,则------------C----------- (A) α1, α2,…,αr-1 线性相关;(B) α1, α2,…,αr-1 线性无关;(C) α1, α2,…,αr ,β线性相关;(D) α1, α2,…,αr ,β线性无关。
6.设η1, η2, η3是5元齐次线性方程组AX=0的一组基础解系, 则在下列中错误的是D-------------------(A) η1, η2, η3线性无关;(B) X=η1+η2+ η3是AX=0的解向量;(C) A的秩R(A)=2;(D) η1, η2, η3是正交向量组。
华工《线性代数与概率统计》(工程数学)随堂练习参考答案
《线性代数与概率统计》随堂练习参考答案?(....行列式?....用行列式地定义计算行列式中展开式,地系数=计算行列式=....行列式=....,=,,计算行列式=?有非零解齐次线性方程组有非零解地条件是=总有设, ,求=....,,设, 满足, 求=....,,,,设,n则=...对任意地为对称矩阵..若则设为,为且,,,则=......设,求=....=设均为....均为,都可逆,,,....设,则=?(. B.. D.,=阶矩阵可逆且,则=. B.. D.阶行列式地代数余子式之间地关系是....设矩阵地秩为.中有一个.中任意一个.中任意一个.中有一个地秩为?(求地秩为?(,=地秩,..用消元法解线性方程组,....有非零解....已知线性方程组:无解则=中未知量个数为设是矩阵齐次线性方程组仅有零解地充分条件是(.地列向量组线性相关.地列向量组线性无关.地行向量组线性无关.地行向量组线性无关=..求齐次线性方程组地基础解系是(....求齐次线性方程组地基础解系为()....元非齐次方程组地导出组仅有零解则()设为矩阵线性方程组地对应导出组为,.若仅有零解则有唯一解有非零解则有无穷多解.若有无穷多解则有非零解有无穷多解则仅有零解.样本空间为,事件“出现奇数点”为.样本空间为,事件“出现奇数点”为.样本空间为,事件“出现奇数点”为.样本空间为,事件“出现奇数点”为.用表示“第一次取到数字,第二次取到数字”则样本空间..事件可以表示为.事件可以表示为.事件可以表示为用表示“第次射中目标”试用表示...用表示“第次射中目标”试用表示....用表示“第次射中目标”试用表示........................,,,,=....,,,,=?( ) ................甲厂地产品占,乙厂地产品占,品占,甲厂产品地合格率为,乙厂产品地合格率为,格率为,............地分布函数为,用分别表示下列各概率:....令地分布函数.. B.. D.可以得为多少?........地分布列为,?()....,........则分别为(地密度函数为则常数....地密度函数为,...试求地概率为(........由某机器生产地螺栓长度服从,规定长度在内...地密度函数,说法正确地是(.=0...位移函数地多项式形式表示为已知标准正态分布地分布函数为,则有.设~,求概率分别为.X~,则.( )设行列式,则中元素地代数余子式=m n设,,则=.。
工程数学(线性代数与概率统计)答案(3章)
工程数学(线性代数与概率统计)习题三1、2、3、略4、)1,0,1()1,1,0()0,1,1(21-=-=-αα)2,1,0()0,4,3()1,1,0(2)0,1,1(323321=-+=-+ααα5、)523(61)(5)(2)(3321321αααααααααα-+=→+=++-6、设存在一组数r k k k ,,,21 使得 0)()()()(02212121212112211=++++++++=+++++++==+++r r r r r r r r k k k k k k k k k k k k αααααααααβββ因r ααα ,,21线性无关,有⎪⎪⎩⎪⎪⎨⎧==++=+++000221rr r k k k k k k 即021====r k k k ,所以r βββ ,,21线性无关。
7、设存在一组数4321,,,k k k k 使得044332211=+++ββββk k k k 有0)()()()(443332221141=+++++++ααααk k k k k k k k 因0000000043322141=k k k k k k k k ,且不全为0,所以4321,,,ββββ线性相关。
8、讨论向量组相关性。
(本题的特点是向量组的个数等于向量的维数, 其判断法是求向量组成的行列式值是否为0)(1)052520111631520111321===ααα,相关 (2)02102011321≠==ααα,无关 9、由向量组组成的行列式为 1221011131321111321-==t tααα(1)如果,5,41=→=-t t 行列式等于0,向量组线性相关, (2)如果,5,41≠→≠-t t 行列式不等于0,向量组线性无关, (3)当5=t 时,向量组相关,设22113αααk k += 即⎩⎨⎧=-=⇒⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛213211115312121k k k k 10、用矩阵的秩判别向量组的相关性(方法是求由向量组构成的矩阵的秩r 与向量组个数关系) (1)()⎪⎪⎪⎪⎪⎭⎫⎝⎛---→⎪⎪⎪⎪⎪⎭⎫⎝⎛----−−→−⎪⎪⎪⎪⎪⎭⎫⎝⎛---==--01502601401051562641401041242031111323213321c c c c A ααα所以 2)(=A R ,相关。
线性代数与概率统计全部答案(随堂_作业_模拟)
1.行列式?B.42.用行列式的定义计算行列式中展开式,的系数。
B.1,-43.设矩阵,求=?B.04.齐次线性方程组有非零解,则=?()C.15.设,,求=?()D.6.设,求=?()D.7.初等变换下求下列矩阵的秩,的秩为?()C.21.求齐次线性方程组的基础解系为()A.2.袋中装有4个黑球和1个白球,每次从袋中随机的摸出一个球,并换入一个黑球,继续进行,求第三次摸到黑球的概率是()D.3.设A,B为随机事件,,,,=?( )A.4.设随机变量X的分布列中含有一个未知常数C,已知X的分布列为,则C=?( )B.5. 44.,且,则=?()B.-3一.问答题1.叙述三阶行列式的定义。
1.三阶行列式的定义:对于三元线性方程组使用加减消元法.得到2.非齐次线性方程组的解的结构是什么?2.非齐次线性方程组的解的结构:有三种情况,无解.有唯一解.有无穷个解3.什么叫随机试验?什么叫事件?3.一般而言,试验是指为了察看某事的结果或某物的性能而从事的某种活动。
一个试验具有可重复性、可观察性和不确定性这3个特别就称这样的试验是一个随机试验。
每次试验的每一个结果称为基本事件。
由基本事件复合而成的事件称为随机事件(简称事件)。
4.试写出随机变量X的分布函数的定义。
4.设X是随机变量,对任意市属x,事件{X<x}的概率P{X<x}}称为随机变量X的分布函数。
记为F(X),即F(X)=P{X<x}5.试写出离散型随机变量的数学期望和方差的定义。
5.离散型随机变量的数学期望:设X是离散型随机变量,分布律为P(X=xi)=pi, i=1.2.3…….如果xipi绝对收敛,则称级数xipi为X的数学期望.记为E(X)(图中n为正无穷..)方差:设X为一随机变量,若E[X-E(X)]^2存在,则称其为X的方差,记为D(X)二.填空题1.n阶行列式D n中元素a u的代数余子式A ij与余子式M u之间的关系是1.Aij=(-1)^(i+j)*Mij2.设________________2.18A3.若A是对称矩阵,则A T-A=_____________3.04.在抛掷骰子的随机试验中,记事件A={点数为偶数}={2,4,6},事件B={点数≥3}={3,4,5,6},C={点数为奇数}={1,3,5},D={2,4},则(1)包含D的事件有;(2)与C互不相容的事件有;(3)C的对立事件(逆事件)是。
华南理工大学《线性代数与概率统计》随堂练习及答案
第一章行列式·1.1 行列式概念1.(单选题)答题: A. B. C. D. (已提交)参考答案:A2.(单选题)答题: A. B. C. D. (已提交)参考答案:B3.(单选题)答题: A. B. C. D. (已提交)参考答案:B4.(单选题)答题: A. B. C. D. (已提交)参考答案:C5.(单选题)答题: A. B. C. D. (已提交)参考答案:C6.(单选题)答题: A. B. C. D. (已提交)参考答案:D7.(单选题)答题: A. B. C. D. (已提交)参考答案:C8.(单选题)答题: A. B. C. D. (已提交)参考答案:B第一章行列式·1.2 行列式的性质与计算1.(单选题)答题: A. B. C. D. (已提交)参考答案:B2.(单选题)答题: A. B. C. D. (已提交)参考答案:D3.(单选题)答题: A. B. C. D. (已提交)参考答案:C4.(单选题)答题: A. B. C. D. (已提交)参考答案:D5.(单选题)答题: A. B. C. D. (已提交)参考答案:D6.(单选题)答题: A. B. C. D. (已提交)参考答案:B7.(单选题)答题: A. B. C. D. (已提交)参考答案:A8.(单选题)答题: A. B. C. D. (已提交)参考答案:D9.(单选题)答题: A. B. C. D. (已提交)参考答案:B10.(单选题)答题: A. B. C. D. (已提交)参考答案:C第一章行列式·1.3 克拉姆法则1.(单选题)答题: A. B. C. D. (已提交)参考答案:C2.(单选题)答题: A. B. C. D. (已提交)参考答案:A3.(单选题)答题: A. B. C. D. (已提交)参考答案:B4.(单选题)答题: A. B. C. D. (已提交)参考答案:A5.(单选题)答题: A. B. C. D. (已提交)参考答案:B.(单选题)答题: A. B. C. D. (已提交)参考答案:D2.(单选题)答题: A. B. C. D. (已提交)参考答案:A3.(单选题)答题: A. B. C. D. (已提交)参考答案:C第二章矩阵·2.2 矩阵的基本运算1.(单选题)答题: A. B. C. D. (已提交)参考答案:C2.(单选题)答题: A. B. C. D. (已提交)参考答案:D3.(单选题)答题: A. B. C. D. (已提交)参考答案:B4.(单选题)答题: A. B. C. D. (已提交)参考答案:B5.(单选题)答题: A. B. C. D. (已提交)参考答案:D6.(单选题)答题: A. B. C. D. (已提交)参考答案:C7.(单选题)答题: A. B. C. D. (已提交)参考答案:D第二章矩阵·2.3 逆矩阵1.(单选题)答题: A. B. C. D. (已提交)参考答案:C2.(单选题)答题: A. B. C. D. (已提交)参考答案:B3.(单选题)答题: A. B. C. D. (已提交)参考答案:D4.(单选题)答题: A. B. C. D. (已提交)参考答案:C5.(单选题)答题: A. B. C. D. (已提交)参考答案:C6.(单选题)答题: A. B. C. D. (已提交)参考答案:D7.(单选题)答题: A. B. C. D. (已提交)参考答案:B8.(单选题)答题: A. B. C. D. (已提交)参考答案:C9.(单选题)答题: A. B. C. D. (已提交)参考答案:D10.(单选题)答题: A. B. C. D. (已提交)参考答案:B第二章矩阵·2.4 矩阵的初等变换与矩阵的秩1.(单选题)答题: A. B. C. D. (已提交)参考答案:C2.(单选题)答题: A. B. C. D. (已提交)参考答案:D3.(单选题)答题: A. B. C. D. (已提交)参考答案:B4.(单选题)答题: A. B. C. D. (已提交)参考答案:A5.(单选题)答题: A. B. C. D. (已提交)参考答案:A6.(单选题)答题: A. B. C. D. (已提交)参考答案:D7.(单选题)答题: A. B. C. D. (已提交)参考答案:C8.(单选题)答题: A. B. C. D. (已提交)参考答案:C9.(单选题)答题: A. B. C. D. (已提交)参考答案:C10.(单选题)答题: A. B. C. D. (已提交)参考答案:D11.(单选题)答题: A. B. C. D. (已提交)参考答案:B12.(单选题)答题: A. B. C. D. (已提交)参考答案:A13.(单选题)答题: A. B. C. D. (已提交)参考答案:B第三章线性方程组·3.1 线性方程组的解1.(单选题)答题: A. B. C. D. (已提交)参考答案:D2.(单选题)答题: A. B. C. D. (已提交)参考答案:A第三章线性方程组·3.2 线性方程组解的结构1.(单选题)答题: A. B. C. D. (已提交)参考答案:D2.(单选题)答题: A. B. C. D. (已提交)参考答案:A3.(单选题)答题: A. B. C. D. (已提交)参考答案:A4.(单选题)答题: A. B. C. D. (已提交)参考答案:B5.(单选题)答题: A. B. C. D. (已提交)参考答案:A6.(单选题)答题: A. B. C. D. (已提交)参考答案:C7.(单选题)答题: A. B. C. D. (已提交)参考答案:A8.(单选题)答题: A. B. C. D. (已提交)参考答案:D9.(单选题)答题: A. B. C. D. (已提交)参考答案:C第四章随机事件及其概率·4.1 随机事件1.(单选题)答题: A. B. C. D. (已提交)参考答案:D2.(单选题)答题: A. B. C. D. (已提交)参考答案:B第四章随机事件及其概率·4.2 随机事件的运算1.(单选题)答题: A. B. C. D. (已提交)参考答案:C2.(单选题)答题: A. B. C. D. (已提交)参考答案:A3.(单选题)答题: A. B. C. D. (已提交)参考答案:B1.(单选题)答题: A. B. C. D. (已提交)参考答案:B2.(单选题)答题: A. B. C. D. (已提交)参考答案:C3.(单选题)答题: A. B. C. D. (已提交)参考答案:B4.(单选题)甲乙两人同时向目标射击,甲射中目标的概率为0.8,乙射中目标的概率是0.85,两人同时射中目标的概率为0.68,则目标被射中的概率为()A.0.8 ;B.0.85;C.0.97;D.0.96.答题: A. B. C. D. (已提交)参考答案:C5.(单选题)答题: A. B. C. D. (已提交)参考答案:D第四章随机事件及其概率·4.4 条件概率与事件的独立性1.(单选题)答题: A. B. C. D. (已提交)参考答案:D2.(单选题)答题: A. B. C. D. (已提交)参考答案:B3.(单选题)答题: A. B. C. D. (已提交)参考答案:AA4.(单选题)设有甲、乙两批种子,发芽率分别为0.9和0.8,在两批种子中各随机取一粒,则两粒都发芽的概率为()A.0.8 ; B.0.72 ; C.0.9 ; D.0.27 .答题: A. B. C. D. (已提交)参考答案:B5.(单选题)设有甲、乙两批种子,发芽率分别为0.9和0.8,在两批种子中各随机取一粒,则至少有一粒发芽的概率为()A.0.9 ; B.0.72 ; C.0.98 ; D.0.7答题: A. B. C. D. (已提交)参考答案:C6.(单选题)设有甲、乙两批种子,发芽率分别为0.9和0.8,在两批种子中各随机取一粒,则恰有一粒发芽的概率为()A.0.1 ; B.0.3 ; C.0.27 ; D.0.26答题: A. B. C. D. (已提交)参考答案:D第四章随机事件及其概率·4.5 全概率公式与贝叶斯公式1.(单选题)答题: A. B. C. D. (已提交)参考答案:C2.(单选题)答题: A. B. C. D. (已提交)参考答案:D3.(单选题)答题: A. B. C. D. (已提交)参考答案:A4.(单选题)答题: A. B. C. D. (已提交)参考答案:B5.(单选题)答题: A. B. C. D. (已提交)参考答案:C1.(单选题)答题: A. B. C. D. (已提交)参考答案:A2.(单选题)答题: A. B. C. D. (已提交)参考答案:C3.(单选题)答题: A. B. C. D. (已提交)参考答案:B第五章随机变量及其分布·5.2 离散型随机变量1.(单选题)答题: A. B. C. D. (已提交)参考答案:C2.(单选题)答题: A. B. C. D. (已提交)参考答案:C3.(单选答题: A. B. C. D. (已提交)参考答案:B4.(单选题)答题: A. B. C. D. (已提交)参考答案:A5.(单选题)从一副扑克牌(52张)中任意取出5张,求抽到2张红桃的概率?A 0.1743;B 0.2743;C 0.3743;D 0.4743答题: A. B. C. D. (已提交)参考答案:B第五章随机变量及其分布·5.3 连续型随机变量1.(单选题)答题: A. B. C. D. (已提交)参考答案:C2.(单选题)答题: A. B. C. D. (已提交)参考答案:C3.(单选题)答题: A. B. C. D. (已提交)参考答案:A4.(单选题)答题: A. B. C. D. (已提交)参考答案:B5.(单选题)答题: A. B. C. D. (已提交)参考答案:A第五章随机变量及其分布·5.4 正态分布1.(单选题)答题: A. B. C. D. (已提交)参考答案:B2.(单选题)答题: A. B. C. D. (已提交)参考答案:C3.(单选题)答题: A. B. C. D. (已提交)参考答案:B4.(单选题)答题: A. B. C. D. (已提交)参考答案:C5.(单选题)答题: A. B. C. D. (已提交)参考答案:C。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性代数部分第一章 行列式一、单项选择题1.=0001001001001000( ).(A) 0 (B)1- (C) 1 (D) 22. =0001100000100100( ).(A) 0 (B)1- (C) 1 (D) 2 3.若a a a a a =22211211,则=21112212ka a ka a ( ).(A)ka (B)ka - (C)a k 2 (D)a k 2-4. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为x ,1,5,2-, 则=x ( ).(A) 0 (B)3- (C) 3 (D) 25. k 等于下列选项中哪个值时,齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x kx x kx x kx x x 有非零解. ( )(A)1- (B)2- (C)3- (D)06.设行列式na a a a =22211211,m a a a a =21231113,则行列式232221131211--a a a a a a 等于()A. m n -B.)(-n m +C. n m +D.n m -二、填空题1. 行列式=0100111010100111.2.行列式010...0002...0.........000 (10)0 0n n =-.3.如果M a a a a a a a a a D ==333231232221131211,则=---=323233312222232112121311133333 3a a a a a a a a a a a a D .4.行列式=--+---+---1111111111111111x x x x .5.已知三阶行列式中第二列元素依次为1,2,3, 其对应的余子式依次为3,2,1,则该行列式的值为.6.齐次线性方程组⎪⎩⎪⎨⎧=+-=+=++0020232121321x x x kx x x x kx 仅有零解的充要条件是.7.若齐次线性方程组⎪⎩⎪⎨⎧=+--=+=++0230520232132321kx x x x x x x x 有非零解,则k =.三、计算题2.y x yx x y x y y x y x+++;3.解方程0011011101110=x x xx ;6. 111...1311...1112...1.........111...(1)b b n b----7. 11111222123111...1..................n b a a a b b a a b b b a ; 8.121212123.....................n nn x a a a a x a a a a x a a a a x; 四、证明题1.设1=abcd ,证明:011111111111122222222=++++dddd c c c c b b b b a a a a . 2.3332221112333332222211111)1(c b a c b a c b a x c b x a x b a c b x a x b a c b x a xb a -=++++++. 3.))()()()()()((111144442222d c b a c d b d b c a d a c a b d c b a dcbad c b a +++------=.第二章 矩阵一、单项选择题1. A 、B 为n 阶方阵,则下列各式中成立的是( )。
(a)22A A =(b)))((22B A B A B A +-=- (c)AB A A B A -=-2)( (d)T T T B A AB =)( 2.设方阵A 、B 、C 满足AB=AC,当A 满足( )时,B=C 。
(a) AB =BA (b) 0≠A (c) 方程组AX=0有非零解 (d) B 、C 可逆 3.若A 为n 阶方阵,k 为非零常数,则=kA ( )。
(a) A k (b) A k (c) A k n (d) A k n4.设A 为n 阶方阵,且0=A ,则( )。
(a) A 中两行(列)对应元素成比例 (b) A 中任意一行为其它行的线性组合 (c) A 中至少有一行元素全为零 (d) A 中必有一行为其它行的线性组合 5.设A 为n 阶方阵,*A 为A 的伴随矩阵,则( )。
(a)(a) 1*-=A A (b) A A =* (c) 1*+=n AA (d) 1*-=n AA6. 设A ,B 为n 阶方矩阵,22B A =,则下列各式成立的是( )。
(a) B A = (b) B A -= (c) B A = (d) 22B A = 7.设A 为n 阶可逆矩阵,则下面各式恒正确的是( )。
(a )T A A 22= (b) 112)2(--=A A(c) 111])[(])[(---=T T T A A (d) T T T T A A ])[(])[(11--=8.已知⎪⎪⎪⎭⎫ ⎝⎛=113022131A ,则( )。
(a )A A T = (b) *1A A =-(c )⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛113202311010100001A (d )⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛113202311010100001A9.设I C B A ,,,为同阶方阵,I 为单位矩阵,若I ABC =,则( )。
(a )I ACB = (b )I CAB = (c )I CBA = (d )I BAC = 阶矩阵A 可逆的充要条件是( )。
(a) A 的每个行向量都是非零向量 (b) A 中任意两个行向量都不成比例(c) A 的行向量中有一个向量可由其它向量线性表示(d)对任何n 维非零向量X ,均有0≠AX 11. 设矩阵A=(1,2),B=⎪⎪⎭⎫ ⎝⎛4321,C⎪⎪⎭⎫⎝⎛=654321则下列矩阵运算中有意义的是( )A .ACB B .ABC C .BACD .CBA 12.设矩阵A ,B 均为可逆方阵,则以下结论正确的是(D )A .⎪⎪⎭⎫ ⎝⎛B A 可逆,且其逆为⎪⎪⎭⎫ ⎝⎛--11B AB .⎪⎪⎭⎫ ⎝⎛B A 不可逆C .⎪⎪⎭⎫ ⎝⎛B A 可逆,且其逆为⎪⎪⎭⎫ ⎝⎛--11A BD .⎪⎪⎭⎫ ⎝⎛B A 可逆,且其逆为⎪⎪⎭⎫ ⎝⎛--11B A13.已知向量TT )0,3,4,1(23,)1,2,2,1(2--=β+α---=β+α,则β+α=(A )A .T)1,1,2,0(-- B.T)1,1,0,2(--C .T)0,2,1,1(-- D .T)1,5,6,2(---14.设A 和B 为n 阶方阵,下列说法正确的是(C )A. 若AB AC =,则B C =B. 若0AB =,则0A =或0B =C. 若0AB =,则0A =或0B =D. 若0A E -=,则A E =6、设两事件A二、填空题1.设A 为n 阶方阵,I 为n 阶单位阵,且I A =2,则行列式=A _______2.行列式=---000c b c a ba_______ 3.设A 为5阶方阵,*A 是其伴随矩阵,且3=A ,则=*A _______ 4.设4阶方阵A 的秩为2,则其伴随矩阵*A 的秩为_______ 三、计算题1.解下列矩阵方程(X 为未知矩阵).1) 223221103212102X ⎛⎫⎛⎫ ⎪ ⎪-= ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭ ; 2) 0101320100211100110X ⎛⎫⎛⎫⎛⎫ ⎪ ⎪=- ⎪ ⎪ ⎪-⎝⎭ ⎪ ⎪⎝⎭⎝⎭ ; 3) 2AX A X =+,其中423110123A ⎛⎫⎪= ⎪⎪-⎝⎭;2.设A 为n 阶对称阵,且20A =,求A .3.设11201A ⎛⎫= ⎪⎝⎭,23423A ⎛⎫= ⎪⎝⎭,30000A ⎛⎫= ⎪⎝⎭,41201A ⎛⎫= ⎪⎝⎭,求1234A A AA ⎛⎫⎪⎝⎭.4.设211011101,121110110A B ⎛⎫⎛⎫⎪ ⎪== ⎪ ⎪⎪ ⎪⎝⎭⎝⎭,求非奇异矩阵C ,使T A C BC =. 四、证明题1. 设A 、B 均为n 阶非奇异阵,求证AB 可逆.2. 设0k A =(k 为整数), 求证I A -可逆.4. 设n 阶方阵A 与B 中有一个是非奇异的,求证矩阵AB 相似于BA .5. 证明可逆的对称矩阵的逆也是对称矩阵.第三章 向量一、单项选择题1. 321,,ααα, 21,ββ都是四维列向量,且四阶行列式m =1321βααα,n =2321ααβα,则行列式)(21321=+ββααα2. 设A 为n 阶方阵,且0=A ,则( )。
3. 设A 为n 阶方阵,n r A r <=)(,则在A 的n 个行向量中( )。
个行向量线性无关必有r a )(4. n 阶方阵A 可逆的充分必要条件是( )5. n 维向量组12,,...,s ααα线性无关的充分条件是( ))(a 12,,...,s ααα都不是零向量)(b 12,,...,s ααα中任一向量均不能由其它向量线性表示 )(c 12,,...,s ααα中任意两个向量都不成比例 )(d 12,,...,s ααα中有一个部分组线性无关二、填空题1. 若T )1,1,1(1=α,T )3,2,1(2=α,T t ),3,1(3=α线性相关,则t=▁▁▁▁。
2. n 维零向量一定线性▁▁▁▁关。
3. 向量α线性无关的充要条件是▁▁▁▁。
4. 若321,,ααα线性相关,则12,,...,s ααα)3(>s 线性▁▁▁▁关。
5. n 维单位向量组一定线性▁▁▁▁。
三、计算题1. 设T )1,1,1(1λα+=,T )1,1,1(2λα+=,T )1,1,1(3λα+=,T),,0(2λλβ=,问(1)λ为何值时,β能由321,,ααα唯一地线性表示?(2)λ为何值时,β能由321,,ααα线性表示,但表达式不唯一? (3)λ为何值时,β不能由321,,ααα线性表示?2. 设T )3,2,0,1(1=α,T )5,3,1,1(2=α,T a )1,2,1,1(3+=α,T a )8,4,2,1(4+=α,T b )5,3,1,1(+=β问:(1)b a ,为何值时,β不能表示为4321,,,αααα的线性组合? (2)b a ,为何值时,β能唯一地表示为4321,,,αααα的线性组合?3. 求向量组T )4,0,1,1(1-=α,T )6,5,1,2(2=α,T )2,5,2,1(3=α,T )0,2,1,1(4--=α,T )14,7,0,3(5=α的一个极大线性无关组,并将其余向量用该极大无关组线性表示。