线性代数与概率统计
线性代数与概率统计试卷与答案
一、单选( 每题参考分值2.5分)1、设随机变量的分布函数为,则()A.B.C.D.正确答案:【B】2、设总体为参数的动态分布,今测得的样本观测值为0.1,0.2,0.3,0.4,则参数的矩估计值为()A.0.2B.0.25C.1D.4正确答案:【B】3、A.B.C.D.正确答案:【B】4、设均为阶方阵,,且恒成立,当()时,A.秩秩B.C.D.且正确答案:【D】5、设是方程组的基础解系,则下列向量组中也可作为的基础解系的是()A.B.C.D.正确答案:【D】6、盒中放有红、白两种球各若干个,从中任取3个,设事件,,则事件()A.B.C.D.正确答案:【A】7、已知方阵相似于对角阵,则常数()A.B.C.D.正确答案:【A】8、掷一枚骰子,设,则下列说法正确的是()A.B.C.D.正确答案:【B】9、设为二维连续随机变量,则和不相关的充分必要条件是()A.和相互独立B.C.D.正确答案:【C】10、袋中有5个球(3新2旧),每次取1个,无放回的抽取2次,则第2次取到新球的概率为()A.B.C.D.正确答案:【A】11、A.B.C.D.正确答案:【D】12、设和是阶矩阵,则下列命题成立的是()A.和等价则和相似B.和相似则和等价C.和等价则和合同D.和相似则和合同正确答案:【B】13、二次型是()A.正定的B.半正定的C.负定的D.不定的正确答案:【A】14、矩阵与的关系是()A.合同但不相似B.合同且相似C.相似但不合同D.不合同也不相似正确答案:【B】15、随机变量X在下面区间上取值,使函数成为它的概率密度的是()A.B.C.D.正确答案:【A】16、A.全不非负B.不全为零C.全不为零D.全大于零正确答案:【C】17、随机变量的概率密度则常数()A.1B.2C.D.正确答案:【B】18、设二维随机变量的概率密度函数为,则()A.B.C.D.正确答案:【B】19、设随机变量的方差,利用切比雪夫不等式估计的值为()A.B.C.D.正确答案:【B】20、A.每一向量不B.每一向量C.存在一个向量D.仅有一个向量正确答案:【C】21、A.B.C.D.正确答案:【C】22、设,则()A.B.C.D.正确答案:【B】23、设随机变量的数学期望,方差,则由切比雪夫不等式有()A.B.C.D.正确答案:【B】24、以下结论中不正确的是()A.若存在可逆矩阵,使,则是正定矩阵B.二次型是正定二次型C.元实二次型正定的充分必要条件是的正惯性指数为D.阶实对称矩阵正定的充分必要条件是的特征值全为正数正确答案:【B】25、设总体服从两点分布:为其样本,则样本均值的期望()A.B.C.D.正确答案:【A】26、设是二阶矩阵的两个特征,那么它的特征方程是()A.B.C.D.正确答案:【D】27、已知,则()A.必有一特征值B.必有一特征值C.必有一特征值D.必有一特征值正确答案:【D】28、设是来自总体的样本,其中已知,但未知,则下面的随机变量中,不是统计量的是()A.B.C.D.正确答案:【D】29、矩阵的秩为,则()A.的任意一个阶子式都不等于零B.的任意一个阶子式都不等于零C.的任意个列向量必线性无关对于任一维列向量,矩阵的秩都为正确答案:【D】30、设向量组;向量组,则()A.相关相关B.无关无关C.无关无关D.无关相关正确答案:【B】31、A.交换2、3两行的变换B.交换1、2两行的变换C.交换2、3两列的变换D.交换1、2两列的变换正确答案:【A】32、设是矩阵,则下列()正确A.若,则中5阶子式均为0B.若中5阶子式均为0,则C.若,则中4阶子式均非0D.若中有非零的4阶子式,则正确答案:【A】33、分别是二维随机变量的分布函数和边缘分布函数,分别是的联合密度和边缘密度,则()A.B.C.和独立时,D.正确答案:【C】34、A.B.C.D.正确答案:【D】35、设随机变量的概率密度为,则()A.B.C.D.正确答案:【B】36、设是阶正定矩阵,则是()A.实对称矩阵B.正定矩阵C.可逆矩阵D.正交矩阵正确答案:【C】37、某学习小组有10名同学,其中7名男生,3名女生,从中任选3人参加社会活动,则3人全为男生的概率为()A.B.C.D.正确答案:【A】38、从0、1、2、…、9十个数字中随机地有放回的接连抽取四个数字,则“8”至少出现一次的概率为()A.0.1B.0.3439C.0.4D.0.6561正确答案:【B】39、A.B.C.正确答案:【D】40、设矩阵其中均为4维列向量,且已知行列式,则行列式()A.25B.40C.41D.50正确答案:【B】41、若都存在,则下面命题中正确答案的是()A.B.C.D.正确答案:【D】42、与矩阵相似的矩阵是()A.B.C.D.正确答案:【B】43、A.B.C.D.正确答案:【B】44、某种动物活20年的概率为0.8,活25年的概率为0.6,现有一只该动物已经活了20年,它能活到25年的概率是()A.0.48B.0.6C.0.8D.0.75正确答案:【D】45、设4维向量组中的线性相关,则()A.可由线性表出B.是的线性组合C.线性相关D.线性无关正确答案:【C】46、设为阶方阵,且(为正数),则()A.B.的特征值全部为零C.的特征值全部为零D.存在个线性无关的特征向量正确答案:【C】47、若连续型随机变量的分布函数,则常数的取值为()A.B.C.D.正确答案:【B】48、A.B.C.D.正确答案:【C】49、设,则~()A.B.C.D.正确答案:【B】50、设是未知参数的一个估计量,若,则是的()A.极大似然估计B.矩估计C.有效估计D.有偏估计正确答案:【D】一、单选(共计100分,每题2.5分)1、A.B.C.D.正确答案:【D】2、已知线性无关则()A.必线性无关B.若为奇数,则必有线性无关C.若为偶数,则线性无关D.以上都不对正确答案:【C】3、A.B.C.D.正确答案:【D】4、A.B.C.D.正确答案:【D】5、矩阵()是二次型的矩阵A.B.C.D.正确答案:【C】6、设为二维连续随机变量,则和不相关的充分必要条件是()A.和相互独立B.C.D.正确答案:【C】7、设是参数的两个相互独立的无偏估计量,且若也是的无偏估计量,则下面四个估计量中方差最小的是()A.B.C.D.正确答案:【A】8、设二维随机变量,则()A.B.3C.18D.36正确答案:【B】9、已知是非齐次方程组的两个不同解,是的基础解系,为任意常数,则的通解为()A.B.C.D.正确答案:【B】10、下列矩阵中,不是二次型矩阵的是()A.B.C.D.正确答案:【D】11、若总体为正态分布,方差未知,检验,对抽取样本,则拒绝域仅与()有关A.样本值,显著水平B.样本值,显著水平,样本容量C.样本值,样本容量D.显著水平,样本容量正确答案:【D】12、在假设检验中,设服从正态分布,未知,假设检验问题为,则在显著水平下,的拒绝域为()A.B.C.D.正确答案:【B】13、A.B.C.D.正确答案:【C】14、已知4阶行列式中第1行元依次是-4,0,1,3, 第3行元的余子式依次为-2,5,1,x ,则X=A.0B.3C. -3D.2正确答案:【B】15、设是阶正定矩阵,则是()A.实对称矩阵B.正定矩阵C.可逆矩阵D.正交矩阵正确答案:【C】16、设总体服从泊松分布:,其中为未知参数,为样本,记,则下面几种说法正确答案的是()A.是的无偏估计B.是的矩估计C.是的矩估计D.是的矩估计正确答案:【D】17、下列函数中可以作为某个二维随机变量的分布函数的是()A.B.C.D.正确答案:【D】18、A.B.C.D.正确答案:【A】19、若都存在,则下面命题正确答案的是()与独立时,B.与独立时,C.与独立时,D.正确答案:【C】20、设是从正态总体中抽取的一个样本,记则服从()分布A.B.C.D.正确答案:【C】21、设随机变量,则()A.B.C.D.正确答案:【A】22、已知向量,若可由线性表出那么()A.,B.,C.,D.,正确答案:【A】23、设,则()A.A和B不相容B.A和B相互独立C.或D.正确答案:【A】24、设总体,为样本均值,为样本方差,样本容量为,则以下各式服从标准正态分布的是()A.B.C.D.正确答案:【A】25、为三阶矩阵,为其特征值,当()时,A.B.C.D.正确答案:【C】26、某种商品进行有奖销售,每购买一件有的中奖概率。
高等数学包括三部分的教材
高等数学包括三部分的教材高等数学是大学数学的一门重要课程,通常被分为三个核心部分:微积分、线性代数和概率统计。
这三个部分构成了高等数学教材的主体,为学生提供了牢固的数学基础和解决实际问题的能力。
第一部分:微积分微积分是高等数学中最基础和最重要的部分之一。
它主要包括极限、导数和积分三个重要概念,并通过这些概念来研究函数的性质、曲线的特征以及变化率等内容。
微积分不仅是数学的核心,也是物理、工程、经济等学科中不可或缺的工具。
在微积分的学习中,我们需要掌握不同类型函数的极限计算方法,如常用的极限公式、夹逼定理等。
此外,我们还需要理解导数的定义和性质,并学会应用导数求函数的极值、切线以及函数的增减性等问题。
积分部分则是探究曲线下面积、定积分与不定积分等概念,并提供了解决曲线长度、旋转体体积等实际问题的方法。
第二部分:线性代数线性代数是高等数学的第二个重要组成部分。
它研究的是向量、矩阵以及线性方程组等内容。
线性代数的应用范围广泛,不仅在数学领域有着重要地位,还在计算机科学、物理学等众多领域有着广泛的应用。
在线性代数的学习过程中,我们需要理解向量的概念及其性质,并学会向量的加法、数量乘法以及向量的点乘、叉乘等运算方法。
矩阵则是线性代数中的重要概念,通过矩阵的运算,我们可以解决线性方程组、矩阵的转置、矩阵的秩等问题。
行列式是线性代数中的核心内容之一,通过行列式的计算,我们可以求解线性方程组的解以及判断矩阵的可逆性。
第三部分:概率统计概率统计是高等数学的第三个重要组成部分,它主要研究随机事件的概率及其分布规律以及样本数据的统计处理方法。
概率统计在现代科学和社会中有着广泛的应用,无论是研究自然现象还是进行市场调查都离不开概率统计的方法。
在概率统计的学习中,我们需要了解概率的基本概念和性质,并学会计算事件的概率、条件概率以及独立事件的概率等。
概率分布是概率统计中的重点内容,通过掌握常见的离散分布(如二项分布、泊松分布)和连续分布(如正态分布、指数分布)等,我们可以分析随机变量的概率分布特征。
线性代数与概率统计期末考试复习题及参考答案-高起本
《线性代数与概率统计》复习题一、填空题1. 200120122= .2. 设,A B 均为n 阶方阵,当,A B 满足 时,有222()2A B A AB B +=++.3.设,A B 为两个随机事件,且()0.7,()0.6,()0.3P A P B P A B ==-=,则(|)P A B = .4. 袋中有5个白球和3个黑球,从中任取两个球,则取得两球颜色相同的概率为 .5.设随机变量)8.0,1(~B X ,则随机变量X 的分布函数为 .6.已知方程组123123123202400ax x x x x x x x x ++=⎧⎪++=⎨⎪-+=⎩有非零解,则常数a = .7. 矩阵111121242A ⎛⎫ ⎪= ⎪ ⎪⎝⎭的秩为 .8.随机变量X ,Y 的方差分别为25和36,相关系数为0.4,则Cov(X,Y)= . 9. ===)(,)(),()(B P p A P B A P AB P B A 则两个事件满足、 .10.在正态总体X~),(2σμN 中取一样本,容量为n ,样本均值为X ,样本方差为s 2,则统计量sX n )(μ-服从 分布. 二、选择题 1. 设矩阵X 满足⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛63354321X , 则X = ( ).(A) 73260-⎛⎫ ⎪⎝⎭; (B) 73260⎛⎫ ⎪-⎝⎭; (C) 70632-⎛⎫ ⎪⎝⎭; (D) 70632⎛⎫ ⎪-⎝⎭. 2. 设ξξ12,是AX O =的解, ,ηη12是 AX b =的解, 则( ). (A) 12ηη-是AX O =的解; (B) 12ηη+为AX b =的解; (C) 11ξη+是AX O =的解; (D) 12ξξ+是 AX b =的解.3. 若),(~p n B X ,且3E X =(),() 1.2D X =,则( ).(A )5,0.6n p ==; (B )10,0.3n p ==;(C )15,0.2n p ==; (D )20,0.15n p ==.4. 设X 的分布列为)(x F 为其分布函数,则F (2)=( ). (A )0.2 ; (B )0.4 ; (C )0.8 ; (D) 1.5. 设),,,(21n X X X 为总体)1,0(~N X 的一个样本,X 为样本均值,2S 为样本方差,则有( ).(A ))1,0(~N X ; (B ))1,0(~N X n ;(C ))1(~/-n t S X ; (D ))1,1(~/)1(2221--∑=n F X X n ni i . 6. 设有m 维向量组12,,,n ααα, 则( ).(A) 当m n <时,一定线性相关; (B) 当m n >时,一定线性相关;(C) 当m n <时,一定线性无关; (D) 当m n >时,一定线性无关. 7. 设ξξ12,是AX O =的解, ,ηη12是 AX b =的解,则下面不正确的是( ).(A) 12ξξ+是AX O =的解; (B) 12ηη+为AX b =的解;。
《线性代数与概率统计》概率统计答案及评分标准
计算机系《线性代数与概率统计》(概率统计)(A)参考答案及评分标准一、选择题(本大题共 5题,每小题 3 分,共 15 分)1. 一射手向目标射击3 次,i A 表示第i 次射击击中目标这一事件)3,2,1(=i ,则3次射击中至多2次击中目标的事件为( B )321321321321)()()()(A A A D A A A C A A A B A A A A ⋃⋃⋃⋃2. 若x x cos )(=ϕ可以成为随机变量X 的概率密度函数,则X 的可能取值区间为( A )(A )]2,0[π(B) ],2[ππ(C ) ],0[π (D ) ]47,23[ππ 3. 设随机变量X 的概率密度为()p x ,且{}01P x ≥=,则必有( C ) (A ) ()p x 在()0+∞,内大于零(B ) ()p x 在(),0-∞内小于零(C ) 01p(x)dx +∞=⎰(D ) ()p x 在()0+∞,上单调增加4. 下列数列是随机变量的分布律的是( A ).(A ) )5,4,3,2,1,0(15==i ip i(B ) )3,2,1,0(652=-=i i p i(C ) )4,3,2,1(51==i p i (D ) )5,4,3,2,1(251=+=i i p i5. 设X 1,X 2,X 3,X 4是来自总体N (?,?2)的简单随机样本,则四个统计量:μ1=( X 1+X 2+X 3+X 4 )/4, μ2=X 1,μ3=X 1/2+X 2/3+X 3/6,μ4=X 1/2+X 2/3+X 3/4中,是?的无偏估计量的个数为( C ) (A ) 1(B ) 2 (C ) 3 (D ) 4二、填空题(本大题共 5 题,每小题 3 分,共 15 分)1.设()0.4,()0.3,()0.6P A P B P A B ===U ,则()P AB =__0.3___.2.将3个球随机地放入3个盒子中(每个盒子中装多少个球不限),则每盒中各有一球的事件的概率等于____2/9___.3.设离散随机变量X的分布函数为00;1,01;3()=2,12;31, 2.xxF xxx<⎧⎪⎪≤<⎪⎨⎪≤<⎪⎪≥⎩, 则122P X⎧⎫<≤=⎨⎬⎩⎭___2/3______.4.连续型随机变量取任何给定实数值a的概率为 0 .5.设随机变量X与Y服从分布:X~(1,2)N,Y~(100,0.2)B,则(23)-+=E X Y -15 .三、计算题(本大题共 6 题,其中1、2小题每题8分,3、4小题每题10分,5、6小题每题12分,共 60 分)1.设一口袋装有10只球,其中有4只白球,6只红球,从袋中任取一只球后,不放回去,再从中任取一只球。
新编线性代数与概率统计
新编线性代数与概率统计
现代数学中,线性代数与概率统计是重要的分支科学,在工程、科学、经济、管理等
领域的应用越来越广泛。
线性代数主要研究线性方程组的解以及多元函数导数的相关理论,其研究内容涉及矩阵论、向量空间论等内容。
概率统计的本质是数理统计学,是根据现实
生活中的事实,利用理论和方法,研究不确定结果的可能情况。
主要包含概率论、数理统
计学、模型与参数估计、贝叶斯统计分析、统计可靠性分析等内容。
线性代数和概率统计是相辅相成的,它们各自在众多应用中彼此相依存。
线性代数主
要用于解决多元函数(包括概率分布)的数学问题,而概率统计则用于预测实际概率分布
的情况,比如数据的可靠性分析,一般者可以利用概率统计的理论与方法研究实际问题,
此时其首先用到线性代数来描述多元函数和概率分布。
两者还有深刻的结合,比如机器学
习中贝叶斯网络模型则是线性代数与概率统计的有机结合。
深入理解线性代数与概率统计的基础性质,并且能够合理地应用其相关的理论研究数
学实际问题对于现代科技发展无疑是重要的。
近年来随着计算机技术和数据智能的发展,
伴随着大量的研究,线性代数和概率统计的应用范围更加广泛。
在实际问题中,一般综合
使用线性代数和概率统计两阶段处理,首先利用线性代数求解多元函数,定义模型,求解
参数;在比较结果时,利用概率统计子进行比较解释,检验所得结论的可靠性,而目前尤
多于金融领域的风险管理,企业项目的可行性评价等,均需要综合应用线性代数和概率统
计来分析和解决问题。
工程数学(线性代数与概率统计)第三章典型例题分析
第三章例1 设A 为n 阶方阵, 若存在正整数k 和向量, 使, 且.证明: 向量组线性无关.证明: (利用线性无关定义证明) 假设有常数, 使得1120k k A A λαλαλα-++= (1)将(1)两边左乘, 可得122120k k k k A A A λαλαλα--++=由已知条件, 可知上式从第二项全等于零, 所以, 又由条件, 所以. 类似地, 将(1)两边左乘, 可得; 类似地可证得,所以向量组线性无关.例2 设向量组线性相关, 向量组线性无关, 问:(1)能否由线性表示? 证明你的结论; (2)能否由线性表示? 证明你的结论. 解: (1)能由线性表示.证明:由于向量组线性无关, 那么其部分组也线性无关。
又由已知条件有线性相关, 故能由线性表示. (2) 4α不能由123,,ααα线性表示.证明:假设4α能由123,,ααα线性表示,即存在不全为零的常数123,,λλλ,使得4112233ααλαλαλ=++由(1)的结论,我们可以设12233k k ααα=+,代入上式,可得421223133()()k k αλλαλλα=+++即4α可由23,αα线性表示,从而234,,ααα线性相关,与已知条件矛盾.因此假设不成立, 4α不能由123,,ααα线性表示.例3 设两向量组()()()123(1)1,2,3,3,0,1,9,6,7TTTααα=-==- ()()()123(2)0,1,1,,2,1,,1,0TTTa b βββ===已知两向量组的秩相等,且3β能由123,,ααα线性表示,求a,b. 解:令123123(,,),(,,)A B αααβββ==由于矩阵A 已知, 可以先对A 进行初等变换求秩.12231313913913925206061206123331701020000r r A r r r r ⎛⎫⎛⎫⎛⎫-+ ⎪ ⎪ ⎪=--+-- ⎪ ⎪ ⎪+ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭因此()2r A =,且12,αα为(1)的一个极大无关组.由已知条件两向量组的秩相等,所以()2r B =,从而0B =,即0121011a bB a b ==-= 所以a b =.又由条件3β能由123,,ααα线性表示而12,αα为(1)的一个极大无关组.所以3β能由12,αα线性表示,则1230ααβ=,即123132012100310b b ααβ⎛⎫⎪==-= ⎪⎪-⎝⎭,解得 5b =,所以有5a b ==.例4求向量组()11,1,1,3,T α=-()21,3,5,1Tα=-,()32,6,10,Ta α=-,()44,1,6,10Tα=-,()53,2,1,Tc α=-的秩和一个极大无关组.解:对以12345,,,,ααααα为列构成的矩阵A,做初等变换112431124313612024311510610612243110046291124311243024310243100077000110028110203A a c a c Ba c a c ----⎡⎤⎡⎤⎢⎥⎢⎥---⎢⎥⎢⎥=⎢⎥⎢⎥--⎢⎥⎢⎥+--⎣⎦⎣⎦----⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥=⎢⎥⎢⎥--⎢⎥⎢⎥-----⎣⎦⎣⎦当a=2且c=3时, ,B 中第1.2.4列线性无关, 此时向量组的秩为3, 是一个极大无关组;当时, , B 中第1.2.3.4列线性无关, 此时向量组的秩为4, 是一个极大无关组;当, , B 中第1.2、4、5列线性无关此时向量组的秩为4, 是一个极大无关组.例5设向量组(1)的秩为3;向量组(2)的秩为4,证明:向量组的秩为4.证明: (要证明的秩为4, 可通过证明线性无关来得到想要的结论) 由向量组(2)的秩为4, 可知线性无关, 又由向量组(1)的秩为3, 可知线性相关, 从而可由线性表示, 即存在不全为零的常数, 使得, 不妨设, 将代入, 可得14112422343345()()()0k k l k k l k k l k αααα-+-+-+= 由于线性无关, 所以1412421234343400000k k l k k l k k k k k k l k -=⎧⎪-=⎪⇒====⎨-=⎪⎪=⎩故线性无关, 从而该向量组的秩为4.例6 设向量组的秩为r, , , , , 证明向量组12,,,m βββ的秩为r证明:(由推论等价的向量组有相同的秩, 此题只需证明两个向量组等价即可)由已知可由线性表示, 且有下式成立1212(1)()m m m βββααα+++=-+++从而,于是有, 即也可由, 故向量组与向量组等价, 从而他们的秩相等, 从而向量组的秩为r.。
线性代数及概率论与数理统计-多套复习试题压缩打印版(含答案).docx
‘10 0、1. 已知正交矩阵 p 使得P T AP= 0-10 ,则 P / A 2006(A _1+A )P =J ) 0 -2,,人是A 的几个特征根,ffl det ( A T ) =-1 …0 02. 对矩阵A 沁“施行一次列变换相当丁-( )。
A 左乘一个m 阶初等矩阵B 右乘一个m 阶初等知阵C 左乘一个n 阶初等矩阵D 右乘一个n 阶初等矩阵 3. 若 A 为 mXn 矩阵,r (A ) = /*</?, M = {X \ AX = 0, XE R11}。
则()oAM 是加维向最空间B, M 是〃维向量空间c, M 是mr 维向量空间D, M 是nr 维向量空间 4. 若n 阶方阵A 满足,A 2 =E,则以下命题哪一个成立()。
A, r (A ) = n B,广(4) = % C,广(4)'%, D,厂(A )<% 5. 若A 是n 阶正交矩阵,则以下命题那一个不成立( )。
A 矩阵-A r 为正交炬阵B 炬阵-为正交雉阵C 知(阵A 的行列式是实数D 知(阵A 的特征根是实数4、求向量纽q = (1,2丄2)严(1,0丄2),也=(1丄0,0),«4= (1丄2,4)的的秩。
5、向量69在基a = (1,1,1), 0 = (0」」),厂=(1,一1,1)卜的坐标(4, 2, -2),求。
在a + 0,0 + ”y + a2.设A 为n 阶方阵,人,易3. 4.设八是mxn 矩阵,则方程组AX =B 对于任意的m若向量组 5.DMa = (0, 4, 2), B1 5 1 31 X 52 27X 2 5 4 39 X 35 8 3维列向屋B 都冇无数多个解的充分必要条件是: 3)的秩不为3,则恬,则D (x ) = 0的全部根为:1. n 阶行列式-1…-1 0 的值为(川(斤_1))A-l B, (一1)" C, (一1)丁n (”+i ) D ,(-1尸1.若A 为3阶正交矩阵,求det (E-A 2)2.计算行列式a b b bb b b abb b a b b b a<0 2 0、3.设 A =2 0 0 ,.0 \0 1丿AB = A-B 9 求矩阵 A-Bo 卜•的坐标。
大学文科数学之线性代数与概率统计课件
概率是满足 1) 非负性; 2) 归一性; 3) 可列可加性; 的集函数。
概率的性质
P() 0
显然有= .., . P() P(), k 1
由概率非负性即得
由P() 0及完全(可列)可加性 即得
若A1, A2,...An F,且Ai Aj= (i j), 则
n
n
P( Ak ) P(Ak )
练习
• Page 153 3
第三讲 概率的公理化定义
• 柯尔莫哥洛夫 前的一些概率定义方式
• 公理化定义 • 概率的性质 • 概率的计算
1.古典概型
A
P( A)
( A) ()
A中的样本点数目 中的样本点数目
隐含了等可能条件
2.几何概型
P(
A)
A点集的面积 点集的面积
隐含了等可能条件
• 3 统计概率
公理化定义
概率空间(, F, P)
当 AB 时,P(A+B)=P(A)+P(B)
加法公式:对任意两事件A、B,有 P(AB)=P(A)+P(B)-P(AB)
该公式可推广到任意n个事件A1,A2,…,An的情形;
• 例4 某学生凭猜测答两道是非题,求该生答 对一道题的概率。
• 设 E: 答对一道题
• A={对,对} B={对,错} C={错,对} D={错,错}
设E是随机试验, Ω是它的样本空间,对 于 F 中的每一个事件A,赋予一个实数, 记为P(A) ,称为事件A的概率,如果集合 函数 P( . ) 满足下述三条公理:
公理1(非负性 ) 0 P( A) 1
公理2(归一性) P(Ω)=1
(2)
公理3(可列可加性)若事件A1, A2 ,… 两两互不相容,则有 P( A1 A2 ) P( A1) P( A2 ) (3)
线性代数与概率统计作业题答案
《线性代数与概率统计》作业题第一部分 单项选择题 1.计算11221212x x x x ++=++?(A )A .12x x -B .12x x +C .21x x -D .212x x -2.行列式111111111D =-=--(B)A .3B .4C .5D .63.设矩阵231123111,112011011A B -⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦,求AB =?(B) A .-1B .0C .1D .24.齐次线性方程组123123123000x x x x x x x x x λλ++=⎧⎪++=⎨⎪++=⎩有非零解,则λ=?(C )A .-1B .0C .1D .25.设⎪⎪⎭⎫ ⎝⎛=50906791A ,⎪⎪⎪⎪⎪⎭⎫⎝⎛=67356300B ,求AB =?(D ) A .1041106084⎛⎫⎪⎝⎭B .1041116280⎛⎫⎪⎝⎭C .1041116084⎛⎫ ⎪⎝⎭D .1041116284⎛⎫⎪⎝⎭6.设A 为m 阶方阵,B 为n 阶方阵,且A a =,B b =,00A C B⎛⎫=⎪⎝⎭,则C =?( D ) A .(1)mab - B .(1)n ab - C .(1)n m ab +-D .(1)nmab -7.设⎪⎪⎪⎭⎫⎝⎛=343122321A ,求1-A =?(D )A .13235322111⎛⎫ ⎪ ⎪-- ⎪ ⎪-⎝⎭B .132********-⎛⎫⎪ ⎪- ⎪ ⎪-⎝⎭ C .13235322111-⎛⎫ ⎪⎪- ⎪ ⎪-⎝⎭ D .13235322111-⎛⎫⎪ ⎪-- ⎪ ⎪-⎝⎭8.设,A B 均为n 阶可逆矩阵,则下列结论中不正确的是(B )A .111[()]()()T T T AB A B ---=B .111()A B A B ---+=+C .11()()k k A A --=(k 为正整数)D .11()(0)n kA k A k ---=≠ (k 为正整数)9.设矩阵m n A ⨯的秩为r ,则下述结论正确的是(D ) A .A 中有一个r+1阶子式不等于零B .A 中任意一个r 阶子式不等于零C .A 中任意一个r-1阶子式不等于零D .A 中有一个r 阶子式不等于零10.初等变换下求下列矩阵的秩,321321317051A --⎛⎫⎪=- ⎪ ⎪-⎝⎭的秩为?(D )B .1C .2D .311.写出下列随机试验的样本空间及下列事件的集合表示:掷一颗骰子,出现奇数点。
线性代数与概率统计作业答案
《线性代数与概率统计》作业题第一部分 单项选择题 1.计算11221212x x x x ++=++?(A )A .12x x -B .12x x +C .21x x -D .212x x -2.行列式111111111D =-=-- B A .3 B .4 C .5 D .63.设矩阵231123111,112011011A B -⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦,求AB =B A .-1B .0C .1D .24.齐次线性方程组123123123000x x x x x x x x x λλ++=⎧⎪++=⎨⎪++=⎩有非零解,则λ=?( C )A .-1B .0C .1D .25.设⎪⎪⎭⎫ ⎝⎛=50906791A ,⎪⎪⎪⎪⎪⎭⎫⎝⎛=67356300B ,求AB =?( D ) A .1041106084⎛⎫⎪⎝⎭B .1041116280⎛⎫⎪⎝⎭C .1041116084⎛⎫ ⎪⎝⎭D .1041116284⎛⎫⎪⎝⎭6.设A 为m 阶方阵,B 为n 阶方阵,且A a =,B b =,00A C B ⎛⎫=⎪⎝⎭,则C =?( D ) A .(1)mab - B .(1)n ab - C .(1)n m ab +-D .(1)nmab -7.设⎪⎪⎪⎭⎫⎝⎛=343122321A ,求1-A =?(D )A .13235322111⎛⎫ ⎪ ⎪-- ⎪ ⎪-⎝⎭B .132********-⎛⎫⎪ ⎪- ⎪ ⎪-⎝⎭ C .13235322111-⎛⎫ ⎪⎪- ⎪ ⎪-⎝⎭ D .13235322111-⎛⎫⎪ ⎪-- ⎪ ⎪-⎝⎭8.设,A B 均为n 阶可逆矩阵,则下列结论中不正确的是(B )A .111[()]()()T TTAB A B ---= B .111()A B A B ---+=+C .11()()k k A A --=(k 为正整数)D .11()(0)n kA k A k ---=≠ (k 为正整数)9.设矩阵m n A ⨯的秩为r ,则下述结论正确的是(D ) A .A 中有一个r+1阶子式不等于零B .A 中任意一个r 阶子式不等于零C .A 中任意一个r-1阶子式不等于零D .A 中有一个r 阶子式不等于零10.初等变换下求下列矩阵的秩,321321317051A --⎛⎫⎪=- ⎪ ⎪-⎝⎭的秩为?( C )B .1C .2D .311.写出下列随机试验的样本空间及下列事件的集合表示:掷一颗骰子,出现奇数点。
2024考研数学一考试范围
2024考研数学一考试范围2024年考研数学一考试范围主要包括线性代数、概率统计、数学分析三个部分。
下面将从这三个部分分别介绍相关的参考内容。
一、线性代数:线性代数是数学中基础且重要的一个分支,考生需要掌握线性代数的基本概念、性质及相关计算方法。
具体内容包括:1. 向量空间与线性变换:包括向量的线性相关性、基与坐标、子空间、线性变换等内容;2. 线性方程组与矩阵:包括线性方程组的解的判定、矩阵的秩、矩阵的特征值和特征向量等内容;3. 特殊矩阵与对称矩阵:包括对称矩阵的主对角线元素、正定矩阵、正交矩阵等内容;4. 线性空间的同构与相似:包括线性空间的同构、相似矩阵等内容。
参考书目:1. 《线性代数应该这么学》(胡敏等著),高等教育出版社2. 《线性代数及其应用》(Gilbert Strang著),机械工业出版社二、概率统计:概率统计是数学中重要的应用数学分支,考生需要掌握概率论的基本概念、性质和统计学的基本方法。
具体内容包括:1. 概率与随机变量:包括概率的定义、性质,随机变量的分类、分布函数和密度函数等内容;2. 多维随机变量:包括联合分布函数、边缘分布函数和条件分布函数等内容;3. 数理统计:包括概率统计的基本原理、点估计、区间估计、假设检验等内容;4. 统计分布与抽样分布:包括正态分布、t分布、F分布、χ^2分布等内容。
参考书目:1. 《概率论与数理统计》(郭维恕著),高等教育出版社2. 《数理统计学教程》(邓晓芒著),高等教育出版社三、数学分析:数学分析是数学的基础课程,考生需要掌握极限、函数、级数等基本概念和相关的计算方法。
具体内容包括:1. 数列与极限:包括数列极限的定义、性质,收敛数列的性质、极限的计算等内容;2. 一元函数的连续性与导数:包括函数的连续性和间断点的判定、导数的定义、性质和计算、高阶导数等内容;3. 不定积分与定积分:包括不定积分的定义、性质和基本计算法则,定积分的定义、性质和计算方法等内容;4. 级数与函数项级数:包括级数的收敛性和发散性、常见级数的性质和判别法、函数项级数的收敛性和发散性等内容。
线性代数与概率统计模拟题
一.问答题(共4题,每题5分,共计20分)1.什么叫随机试验?什么叫基本事件?什么叫样本空间?什么叫事件?2.试写出随机变量X的定义.3.试写出贝叶斯公式.4.试写出连续型随机变量的数学期望和方差的定义.二.填空题(共6题,每题5分,共计30分)1.设有N件产品,其中有M件次品,若从N件产品中任意抽取n件,则抽到的n件中检有m(m≤M)件次品的概率为2.设P(B)=0.8,P(A|B)=0.75,则由概率的乘法公式知,P(AB)= 0.6.3.(泊松分布定义)若随变量X的分布列为,k=0,1,2…,其中λ为正常数,则称X服从参数为λ的泊松分布,记作X~P( λ )。
4.(正态分布定义)若连续型随机变量X的密度函数为,(-∞<x<+∞),其中μ,σ为常数,且σ>0,则称X服从参数为μ,σ的正态分布(或高斯分布),记作。
5.设(X1,X2,…X n)为总体X的一个容量为n的样本,则称统计量(1)为样本均值;(2)为样本方差;(3)为修正样本方差.6.设P(B)=0.8,P(AB)=0.6,则由条件概率知,P(A|B)=().三.计算题(共6题,每题6分,共计36分)1.一批产品有10件,其中4件为次品,现从中任取3件,求取出的3件产品中有次品的概率。
解:样本点总数. 设A={取出的3件产品中有次品}..2、设A,B为随机事件,P(A)=0.2,P(B)=0.45,P(AB)=0.15,求:P(A|B);P(B|A);。
解:3、一袋中有m个白球,n个黑球,无放回地抽取两次,每次取一球,求:(1)在第一次取到白球的条件下,第二次取到白球的条件概率;(2)在第一次取到黑球的条件下,第二次取到白球的条件概率。
解:用A表示“第一次取到白球”,B表示“第二次取到白球”。
(1)袋中原有m+n个球,其中m个白球。
第一次取到白球后,袋中还有m+n-1球,其中m-1个为白球。
故;(2)袋中原有m+n个球,其中m个白球,第一次取到黑球后,袋中还有m+n-1个球,其中m个为白球。
线性代数与概率统计答案
作业题第一部分 单项选择题1.计算11221212x x x x ++=++( A ) A .12x x - B .12x x + C .21x x - D .212x x -2.行列式111111111D =-=-- BA .3B .4C .5D .63.设矩阵231123111,112011011A B -⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦,求AB = ( B ) A .-1 B .0 C .1 D .24.齐次线性方程组123123123000x x x x x x x x x λλ++=⎧⎪++=⎨⎪++=⎩有非零解,则λ=?( C )A .-1B .0C .1D .25.设⎪⎪⎭⎫ ⎝⎛=50906791A ,⎪⎪⎪⎪⎪⎭⎫⎝⎛=67356300B ,求AB =?( D )A .1041106084⎛⎫⎪⎝⎭ B .1041116280⎛⎫ ⎪⎝⎭ C .1041116084⎛⎫ ⎪⎝⎭D .1041116284⎛⎫ ⎪⎝⎭6.设A 为m 阶方阵,B 为n 阶方阵,且A a =,B b =,0A C B ⎛⎫=⎪⎝⎭,则C =?( D )A .(1)m ab -B .(1)n ab -C .(1)n m ab +-D .(1)nmab -7.设⎪⎪⎪⎭⎫ ⎝⎛=343122321A ,求1-A =?( D )A .13235322111⎛⎫ ⎪ ⎪-- ⎪ ⎪-⎝⎭B .132********-⎛⎫ ⎪ ⎪- ⎪ ⎪-⎝⎭C .13235322111-⎛⎫⎪ ⎪- ⎪ ⎪-⎝⎭D .13235322111-⎛⎫ ⎪ ⎪-- ⎪ ⎪-⎝⎭8.设,A B 均为n 阶可逆矩阵,则下列结论中不正确的是( B )A .111[()]()()T T T AB A B ---= B .111()A B A B ---+=+C .11()()k kA A --=(k 为正整数) D .11()(0)n kA k A k ---=≠ (k 为正整数)9.设矩阵m nA ⨯的秩为r ,则下述结论正确的是( D )A .A 中有一个r+1阶子式不等于零B .A 中任意一个r 阶子式不等于零C .A 中任意一个r-1阶子式不等于零D .A 中有一个r 阶子式不等于零10.初等变换下求下列矩阵的秩,321321317051A --⎛⎫⎪=- ⎪ ⎪-⎝⎭的秩为?( C )A .0B .1C .2D .311.写出下列随机试验的样本空间及下列事件的集合表示:掷一颗骰子,出现奇数点。
数二考研范围大纲2024
数二考研范围大纲2024根据2024年数学二考研的大纲,数学二是考研数学的一门重要科目,分为两个部分:基础数学和专业数学。
下面将详细介绍2024年数学二考研范围大纲。
一、基础数学部分基础数学部分包括线性代数、概率统计、高等数学和离散数学等内容。
1.线性代数线性代数是数学中的基础学科,其考试范围主要包括线性方程组、矩阵与行列式、向量空间、线性变换、特征值与特征向量等内容。
2.概率统计概率统计是数学二考研的另一个重要部分,考试内容包括概率论、数理统计和随机过程等内容。
具体包括概率的基本概念、条件概率与分布、随机变量及其分布、数理统计的基本概念与方法、参数估计与假设检验等。
3.高等数学考研数学中的高等数学部分主要包括极限与连续、一元函数微分学、一元函数积分学、多元函数微分学、向量与矢量场、重积分与曲线积分等内容。
4.离散数学离散数学是数学二考研的最后一个基础数学部分,其内容包括集合论、关系与二元关系、图论、布尔代数、逻辑与命题等。
二、专业数学部分专业数学部分是数学二考研的核心部分,包括数学分析、常微分方程、偏微分方程、数值分析、复变函数与积分变换以及概率论与数理统计等内容。
1.数学分析数学分析是数学二考研的重点内容,主要包括实数与数列、函数与极限、连续与间断、导数与微分、积分与不定积分、一阶微分方程等。
2.常微分方程常微分方程是数学二考研的另一重点内容,考察的是关于常微分方程基本理论、解的存在唯一性、解的连续依赖于初值和参数、线性常微分方程和微分方程的初值问题等内容。
3.偏微分方程偏微分方程是数学二考研中的难点内容,包括一阶线性偏微分方程、二阶线性偏微分方程、特殊类型偏微分方程、边值问题和初值问题等。
4.数值分析数值分析是数学二考研的另一个重要内容,主要包括数值计算的基本概念与方法、插值多项式与插值法、数值微积分与数值解常微分方程等。
5.复变函数与积分变换复变函数与积分变换是数学二考研的一部分,内容包括复变函数的基本性质与分析、全纯函数与解析函数、积分变换及其应用等。
线性代数与概率统计及答案
线性代数部分第一章 行列式一、单项选择题1.=0001001001001000 .A 0B 1-C 1D 22.=0001100000100100 .A 0B 1-C 1D 2 3.若a a a a a =22211211,则=21112212ka a ka a .A kaB ka -C a k 2D a k 2-4. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为x ,1,5,2-, 则=x .A 0B 3-C 3D 25. k 等于下列选项中哪个值时,齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x kx x kx x kx x x 有非零解.A 1-B 2-C 3-D 06.设行列式na a a a =22211211,m a a a a =21231113,则行列式232221131211--a a a a a a 等于A. m n -B.)(-n m +C. n m +D.n m -二、填空题1. 行列式=0100111010100111.2.行列式010...0002...0.........000 (10)0 0n n =-.3.如果M a a a a a a a a a D ==333231232221131211,则=---=323233312222232112121311133333 3a a a a a a a a a a a a D .4.行列式=--+---+---1111111111111111x x x x .5.已知三阶行列式中第二列元素依次为1,2,3, 其对应的余子式依次为3,2,1,则该行列式的值为.6.齐次线性方程组⎪⎩⎪⎨⎧=+-=+=++0020232121321x x x kx x x x kx 仅有零解的充要条件是.7.若齐次线性方程组⎪⎩⎪⎨⎧=+--=+=++0230520232132321kx x x x x x x x 有非零解,则k =.三、计算题2.yxyx x y x y y x y x+++;3.解方程0011011101110=x x xx ;6. 111...1311...1112 (1).........111...(1)b b n b----7. 11111222123111...1..................nb a a a b b a a b b b a ; 8.121212123.....................n nn x a a a a x a a a a x a a a a x;四、证明题1.设1=abcd ,证明:011111111111122222222=++++dddd c c c c b b b b a a a a .2.3332221112333332222211111)1(c b a c b a c b a x c b x a x b a c b x a x b a c b x a xb a -=++++++.3.))()()()()()((111144442222d c b a c d b d b c a d a c a b d c b a dcbad c b a +++------=.第二章 矩阵一、单项选择题1. A 、B 为n 阶方阵,则下列各式中成立的是 ;a 22A A =b ))((22B A B A B A +-=- c AB A A B A -=-2)( d T T T B A AB =)( 2.设方阵A 、B 、C 满足AB=AC,当A 满足 时,B=C;a AB =BAb 0≠Ac 方程组AX=0有非零解d B 、C 可逆 3.若A 为n 阶方阵,k 为非零常数,则=kA ;a A kb A kc A k nd A k n4.设A 为n 阶方阵,且0=A ,则 ;a A 中两行列对应元素成比例b A 中任意一行为其它行的线性组合c A 中至少有一行元素全为零d A 中必有一行为其它行的线性组合 5.设A 为n 阶方阵,*A 为A 的伴随矩阵,则 ; (a) a 1*-=A A b A A =* c 1*+=n AA d 1*-=n AA6. 设A ,B 为n 阶方矩阵,22B A =,则下列各式成立的是 ; a B A = b B A -= c B A = d 22B A = 7.设A 为n 阶可逆矩阵,则下面各式恒正确的是 ; a T A A 22= b 112)2(--=A Ac 111])[(])[(---=T T T A Ad T T T T A A ])[(])[(11--=8.已知⎪⎪⎪⎭⎫ ⎝⎛=113022131A ,则 ;a A A T =b *1A A =-c ⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛113202311010100001Ad ⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛113202311010100001A9.设I C B A ,,,为同阶方阵,I 为单位矩阵,若I ABC =,则 ;a I ACB =b I CAB =c I CBA =d I BAC = 10.n 阶矩阵A 可逆的充要条件是 ; a A 的每个行向量都是非零向量 b A 中任意两个行向量都不成比例c A 的行向量中有一个向量可由其它向量线性表示d 对任何n 维非零向量X ,均有0≠AX 11. 设矩阵A=1,2,B=⎪⎪⎭⎫ ⎝⎛4321,C⎪⎪⎭⎫⎝⎛=654321则下列矩阵运算中有意义的是A .ACB B .ABC C .BACD .CBA 12.设矩阵A,B 均为可逆方阵,则以下结论正确的是DA .⎪⎪⎭⎫ ⎝⎛B A 可逆,且其逆为⎪⎪⎭⎫ ⎝⎛--11B AB .⎪⎪⎭⎫ ⎝⎛B A 不可逆 C .⎪⎪⎭⎫ ⎝⎛B A 可逆,且其逆为⎪⎪⎭⎫ ⎝⎛--11A BD .⎪⎪⎭⎫ ⎝⎛B A 可逆,且其逆为⎪⎪⎭⎫ ⎝⎛--11B A13.已知向量TT )0,3,4,1(23,)1,2,2,1(2--=β+α---=β+α,则β+α=AA .T)1,1,2,0(-- B.T)1,1,0,2(-- C .T)0,2,1,1(-- D .T)1,5,6,2(---14.设A 和B 为n 阶方阵,下列说法正确的是CA. 若AB AC =,则B C =B. 若0AB =,则0A =或0B =C. 若0AB =,则0A =或0B =D. 若0A E -=,则A E =6、设两事件A二、填空题1.设A 为n 阶方阵,I 为n 阶单位阵,且I A =2,则行列式=A _______2.行列式=---000c b c a ba_______3.设A 为5阶方阵,*A 是其伴随矩阵,且3=A ,则=*A _______4.设4阶方阵A 的秩为2,则其伴随矩阵*A 的秩为_______ 三、计算题1.解下列矩阵方程X 为未知矩阵.1 223221103212102X ⎛⎫⎛⎫ ⎪ ⎪-= ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭ ;2 0101320100211100110X ⎛⎫⎛⎫⎛⎫ ⎪ ⎪=- ⎪ ⎪ ⎪-⎝⎭ ⎪ ⎪⎝⎭⎝⎭ ; 3 2AX A X =+,其中423110123A ⎛⎫⎪= ⎪⎪-⎝⎭;2.设A 为n 阶对称阵,且20A =,求A .3.设11201A ⎛⎫= ⎪⎝⎭,23423A ⎛⎫= ⎪⎝⎭,30000A ⎛⎫= ⎪⎝⎭,41201A ⎛⎫= ⎪⎝⎭,求1234A A A A ⎛⎫⎪⎝⎭.4.设211011101,121110110A B ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,求非奇异矩阵C ,使T A C BC =.四、证明题1. 设A 、B 均为n 阶非奇异阵,求证AB 可逆.2. 设0k A =k 为整数, 求证I A -可逆.4. 设n 阶方阵A 与B 中有一个是非奇异的,求证矩阵AB 相似于BA .5. 证明可逆的对称矩阵的逆也是对称矩阵.第三章 向量一、单项选择题1. 321,,ααα, 21,ββ都是四维列向量,且四阶行列式m =1321βααα,n =2321ααβα,则行列式)(21321=+ββαααn m a +)( n m b -)( n m c +-)( n m d --)(2. 设A 为n 阶方阵,且0=A ,则 ;成比例中两行(列)对应元素A a )( 线性组合中任意一行为其它行的A )b ( 零中至少有一行元素全为A c )( 线性组合中必有一行为其它行的A )d (3. 设A 为n 阶方阵,n r A r <=)(,则在A 的n 个行向量中 ;个行向量线性无关必有r a )(个行向量线性无关任意r )b (性无关组个行向量都构成极大线任意r c )(个行向量线性表示其它任意一个行向量都能被r )d (4. n 阶方阵A 可逆的充分必要条件是n r A r a <=)()( n A b 的列秩为)(零向量的每一个行向量都是非)(A c 的伴随矩阵存在)(A d5. n 维向量组12,,...,s ααα线性无关的充分条件是)(a 12,,...,s ααα都不是零向量)(b 12,,...,s ααα中任一向量均不能由其它向量线性表示 )(c 12,,...,s ααα中任意两个向量都不成比例 )(d 12,,...,s ααα中有一个部分组线性无关二、填空题1. 若T )1,1,1(1=α,T )3,2,1(2=α,T t ),3,1(3=α线性相关,则t=▁▁▁▁;2. n 维零向量一定线性▁▁▁▁关;3. 向量α线性无关的充要条件是▁▁▁▁;4. 若321,,ααα线性相关,则12,,...,s ααα)3(>s 线性▁▁▁▁关;5. n 维单位向量组一定线性▁▁▁▁;三、计算题 1. 设T )1,1,1(1λα+=,T )1,1,1(2λα+=,T )1,1,1(3λα+=,T),,0(2λλβ=,问1λ为何值时,β能由321,,ααα唯一地线性表示2λ为何值时,β能由321,,ααα线性表示,但表达式不唯一 3λ为何值时,β不能由321,,ααα线性表示 2. 设T )3,2,0,1(1=α,T )5,3,1,1(2=α,T a )1,2,1,1(3+=α,T a )8,4,2,1(4+=α,T b )5,3,1,1(+=β问: 1b a ,为何值时,β不能表示为4321,,,αααα的线性组合 2b a ,为何值时,β能唯一地表示为4321,,,αααα的线性组合 3. 求向量组T )4,0,1,1(1-=α,T )6,5,1,2(2=α,T )2,5,2,1(3=α,T )0,2,1,1(4--=α,T )14,7,0,3(5=α的一个极大线性无关组,并将其余向量用该极大无关组线性表示; 四、证明题1. 设2131222112,3,ααβααβααβ-=-=+=,试证321,,βββ线性相关;2. 设12,,...,n ααα线性无关,证明12231,,...,n αααααα+++在n 为奇数时线性无关;在n 为偶数时线性相关;第四章 线性方程组一、单项选择题1.设n 元齐次线性方程组0AX =的系数矩阵的秩为r ,则0AX =有非零解的充分必要条件是A r n =B r n <C r n ≥D r n >2.设A 是m n ⨯矩阵,则线性方程组AX b =有无穷解的充要条件是A ()r A m <B ()r A n <C ()()r Ab r A m =<D ()()r Ab r A n =<3.设A 是m n ⨯矩阵,非齐次线性方程组AX b =的导出组为0AX =,若m n <,则A AX b =必有无穷多解B AX b =必有唯一解C 0AX =必有非零解D 0AX =必有唯一解4.方程组1232332422(2)(3)(4)(1)x x x x x x λλλλ+-=⎧⎪+=⎨⎪-=----⎩无解的充分条件是λ=A 1B 2C 3D 45.方程组12323331224(1)(3))(1))x x x x x x x λλλλλλ++=-⎧⎪-=-⎪⎨=-⎪⎪-=---⎩有唯一解的充分条件是λ=A 1B 2C 3D 4 二、填空题1. 设A 为100阶矩阵,且对任意100维的非零列向量X ,均有0AX ≠,则A 的秩为 .2. 线性方程组1231212320200kx x x x kx x x x ++=⎧⎪+=⎨⎪-+=⎩仅有零解的充分必要条件是 .3. 设12,,s X X X 和1122s s c X c X c X +++均为非齐次线性方程组AX b =的解12,,s c c c 为常数,则12s c c c +++= .4. 若线性方程组AX b =的导出组与0(())BX r B r ==有相同的基础解系,则()r A = .5. 若线性方程组m n A X b ⨯=的系数矩阵的秩为m ,则其增广矩阵的秩为 .三、计算题1. 已知123,,ααα是齐次线性方程组0AX =的一个基础解系,问122331,,αααααα+++是否是该方程组的一个基础解系 为什么2. 设54331012263211311111A -⎡⎤⎢⎥⎢⎥=⎢⎥-⎢⎥⎣⎦,12010560011210012320B --⎡⎤⎢⎥-⎢⎥=⎢⎥-⎢⎥--⎣⎦,已知B 的行向量都是线性方程组0AX =的解,试问B 的四个行向量能否构成该方程组的基础解系 为什么3. 设四元齐次线性方程组为 Ι:122400x x x x +=⎧⎨-=⎩1求Ι的一个基础解系2如果12(0,1,1,0)(1,2,2,1)T T k k +-是某齐次线性方程组II 的通解,问方程组Ι和II 是否有非零的公共解 若有,求出其全部非零公共解;若无,说明理由;第五章 特征值与特征向量一、单项选择题1. 设001010100A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则A 的特征值是 ;a -1,1,1b 0,1,1c -1,1,2d 1,1,22. 设110101011A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则A 的特征值是 ;a 0,1,1b 1,1,2c -1,1,2d -1,1,1 3. 设A 为n 阶方阵, 2A I =,则 ;a ||1A =b A 的特征根都是1c ()r A n =d A 一定是对称阵4. 若12,x x 分别是方阵A 的两个不同的特征值对应的特征向量,则1122k x k x +也是A 的特征向量的充分条件是 ;a 1200k k ==且b 1200k k ≠≠且c 120k k =d 1200k k ≠=且 5. 若n 阶方阵,A B 的特征值相同,则 ;a A B =b ||||A B =c A 与B 相似d A 与B 合同二、填空题1. n 阶零矩阵的全部特征值为_______;2. 设A 为n 阶方阵,且I A =2,则A 的全部特征值为_______;3. 设A 为n 阶方阵,且0=m A m 是自然数,则A 的特征值为_______;4. 若A A =2,则A 的全部特征值为_______;5. 若方阵A 与I 4相似,则=A _______;三、计算题1. 若n 阶方阵A 的每一行元素之和都等于a ,试求A 的一个特征值及该特征值对应的一个特征向量.2. 求非奇异矩阵P ,使1P AP -为对角阵.1 2112A ⎛⎫= ⎪⎝⎭2 112131201A -⎛⎫⎪=-- ⎪ ⎪--⎝⎭四、证明题1. 设A 是非奇异阵, λ是A 的任一特征根,求证1λ是1A -的一个特征根,并且A 关于λ的特征向量也是1A -关于1λ的特征向量. 2. 设2A E =,求证A 的特征根只能是1±.3. 设n 阶方阵A 与B 中有一个是非奇异的,求证矩阵AB 相似于BA .4. 证明:相似矩阵具有相同的特征值.5. 设n 阶矩阵A E ≠,如果()()r A E r A E n ++-=,证明:-1是A 的特征值;6. 设A B ,证明kk A B ;7. 设12,αα是n 阶矩阵A 分别属于12,λλ的特征向量,且12λλ≠,证明12αα+不是A 的特征向量;概率论部分一、填空:每题3分,共15分1. 假设,A B 是两独立的事件,()0.7,()0.3P A B P A ⋃==,则()P B =_________; 2. 设A,B 是两事件,(|)1/4,()1/3P A B P B ==,则()P AB =__________; 3. 若二维随机变量(X,Y)满足()()()E XY E X E Y =,则X Y 与________; 4. 随机变量~(0,1),23,~X N Y X Y =+则_________; 5. 设总体)1,0(~N X ,1210,,,X X X 是来自总体X 的样本,则X 服从_________分布;二、选择:每题3分,共15分1. 如果成立,则事件,A B 互为对立事件....()()1A AB B AB C AB A B D P A P B =Φ=Ω=Φ⋃=Ω+=且2. 若X 的概率密度为02()4240x x f x xx ≤≤⎧⎪=-≤≤⎨⎪⎩其它,则{3}P X ≤= .3/2A .5/2B .7/2C .4D3. 设随机变量),(~p n B X ,则方差var()X =.A np .(1)B n p - 2.C np .(1)D np p -4. 下列结论正确的是A .X 与Y 相互独立,则X 与Y 不相关B .X 与Y 不独立,则X 与Y 相关C .X 与Y 不相关,则X 与Y 相互独立D .X 与Y 相关,则X 与Y 相互独立5. 设n X X X ,,,21 为来自正态总体2~(,)X N μσ的一个样本,其中μ已知,2σ未知,则下面不是统计量的是 ()A 1X ()B 221()ni i X μσ=-∑()C 211()n i i X n μ=-∑ ()D 211()1n i i X X n =--∑ 三、计算:共70分1.15分甲乙两袋,甲袋中有两白球一个黑球,乙袋中有一个白球两个黑球;先从甲袋中取一球放到乙袋中,再从乙袋中取一球,1求从乙袋中取出的是白球的概率;2已发现从乙袋中取出的是白球,问从甲袋中取出放入乙袋中的球为白球的概率;2.10分设随机变量X 的密度函数为2,02()0,cx x f x ⎧<<=⎨⎩其它,试求:(1)常数c ;(2){11}P X -<<;3.10分设随机变量X 的密度函数为2,01;()0,x x f x <<⎧=⎨⎩其他,,求 2X Y =的概率密度;4.10分一袋中装有5只球,编码为1,2,3,4,5,在袋中同时取3只,以X 表示取出的3只球中的最小号码,求随机变量X 的分布律与数学期望.5.15分设随机变量X,Y 的概率密度为 6,01(,)0,x y x f x y <<<⎧=⎨⎩其它1试求关于X 及Y 的边缘概率密度;2判断X 与Y 是否相互独立,并说明理由.6.10分总体X 的概率密度函数为220(),00x x f x θθθ⎧<<⎪=>⎨⎪⎩其它是未知参数,求未知参数θ的矩估计量,并验证未知参数θ的矩估计量是θ的有偏还是无偏估计量;线性代数部分参考答案第一章 行列式一、单项选择题1. C .2. C .3.B.4 C .5. A 6.C二.填空题1.0;2.!)1(1n n --;3.M 3-;4.4x ;5.2-;6.3,2-≠k ;7.7=k 三.计算题 1. )(233y x +-; 2. 1,0,2-=x ;3 (2)(1)...((2))b b n b -+---;4 ∏=--nk k kna b1)()1(;5 ∏∑==-+nk k nk k a x a x 11)()(;第二章参考答案一:1. a ;2. b ;3.c ;4.d ; 5.d ; 6.d ; 7.d ; 8.c ;9.b ; 10.d.11.B 12.D13.A14.C二.1. 1或-1;2. 0; 5. 81;6. 0;三、1.1、⎪⎪⎪⎭⎫⎝⎛---016213010;2、⎪⎪⎪⎪⎪⎭⎫⎝⎛-02132121; 3、⎪⎪⎪⎭⎫⎝⎛------9122692683. 2. 0; 3.⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---1000210012100121; 4.⎪⎪⎪⎭⎫⎝⎛100001010;第三章向量参考答案一、 单项选择1.b2.d3.a4.b5.b 二、填空题1. 52.相关3. 0≠α4.相关三、解答题1. 解:设332211αααβx x x ++=则对应方程组为⎪⎩⎪⎨⎧=+++=+++=+++2321321321)1()1(0)1(λλλλλx x x x x x x x x其系数行列式)3(1111111112+=+++=λλλλλA1当3,0-≠≠λλ时,0≠A ,方程组有唯一解,所以β可由3,21,ααα唯一地线性表示;2当0=λ时,方程组的增广阵 ⎪⎪⎪⎭⎫ ⎝⎛=011101110111A ⎪⎪⎪⎭⎫ ⎝⎛→000000000111,31)()(<==A r A r ,方程组有无穷多解,所以β可由3,21,ααα线性表示,但表示式不唯一;3当3-=λ时,方程组的增广阵⎪⎪⎪⎭⎫ ⎝⎛----=921131210112A ⎪⎪⎪⎭⎫⎝⎛-----→18000123303121,)()(A r A r ≠,方程组无解,所以β不能由3,21,ααα线性表示; 2.解:以βαααα,,,,4321为列构造矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+++58153342321211011111a b a →⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--+-b a a 41000041100121101111121时,且当01≠±=b a β不能表示为4321,,,αααα的线性组合; 2任意时,当b a ,1±≠β能唯一地表示为4321,,,αααα的线性组合;3.解:=),,,,(54321ααααα⎪⎪⎪⎪⎪⎭⎫⎝⎛---140264725500121131121⎪⎪⎪⎪⎪⎭⎫⎝⎛--→000110001011020101 421,,ααα为一个极大无关组,且31240αααα=-++, 42152αααα-+=四、证明题1.证:∵0)2(4)(33121=--+ββββ∴0435321=++-βββ ∴321,,βββ线性相关2.证:设0)()()(1322211=++++++ααααααn n k k k则0)()()(122111=+++++-n n n n k k k k k k ααα ∵n ααα,,,21 线性无关∴⎪⎪⎩⎪⎪⎨⎧=+=+=+-0001211n n n k k k k k k 其系数行列式1100001000001100001110001 =⎩⎨⎧=-++为偶数为奇数n n n ,0,2)1(11∴当n 为奇数时,n k k k ,,,21 只能为零,n ααα,,,21 线性无关; 当n 为偶数时,n k k k ,,,21 可以不全为零,n ααα,,,21 线性相关;参考答案一、单项选择题 1.B 2.D 3.C 4.B 5.A二、填空题1.1002.23k k ≠-≠且3.14.r5.m三、计算题 1. 是 2. 不能3. 112(0,0,1,0),(1,1,0,1)T T v v ==- 2(1,1,1,1)()T k k -其中为任意非零常数第五章 参考答案一、单项选择题 1.a 2.c 3.c 4.d 5.b二、填空题1.02.1,-13.04.0,15.4I三、计算题 1.,(1,1,,1)T a2.11111-⎛⎫ ⎪⎝⎭ 2113211122-⎛⎫⎪- ⎪ ⎪⎝⎭四. 证明题 略概率论部分一、填空每题3分共15分1. 4/7;2. 1/12 ;3. 不相关;4. ~(3,4)Y N ;5. (0,1/10)N 二、选择每题3分共15分1.C ; 2. C ; 3. D ; 4. A ; 5. B 三、计算 1. 15分解:设12{}{}A A ==第一次从甲袋中摸的是黑球第一次从甲袋中摸的是白球{}B =从乙袋中摸的是白球(1) 由全概率公式11221212()(|)()(|)()31212(),(),(|)(|)3344P B P B A P A P B A P A P A P A P B A P B A =+====分所以PB=1/12+4/12=5/12 (3)分2要求2(|)P A B ,由贝叶斯公式分分25451232425)()()|()|(222 =⨯⨯==B P A P A B P B A P2. (10)分解:(1)由()1f x dx +∞-∞=⎰,得220813cx dx c ==⎰,所以38c =, ……4分 (2)11231010311{11}()888P X f x dx x dx x --<<====⎰⎰,……6分 3.10分解:1 2Y X =分别在(,0)-∞∞和(0,+)单调,所以''(|(|||,01()0,,X X Y f f y f y ⎧+<<⎪=⎨⎪⎩其他. ……4分,01,01y ⎧+=<<⎪=⎨⎪⎩其他0, ……6分,或利用分布函数法:2(){}{}{{0Y F y P Y y P X y P X P X =≤=≤=≤≤=<≤……4分20,01xdx x y y ===<<,……4分1,01()()0,Y Y y f y F y <<⎧'∴==⎨⎩其他……2分 4. 10分解:X =1,2,3 ………2分22343335556311{1},{2},{3}101010C C P X P X P X C C C ========= ,5分………6分631()123101010E X =⨯+⨯+⨯ =1.5… 12分5.15分解: 1()(,)X f x f x y dy ∞-∞=⎰06,010,x xdy x ⎧<<⎪=⎨⎪⎩⎰其它26,010,x x ⎧<<=⎨⎩其它 ………6分()(,)Y f y f x y dx ∞-∞=⎰16,010,y xdx y ⎧<<⎪=⎨⎪⎩⎰其它23(1),010,y y ⎧-<<=⎨⎩其它 ………6分2X 与Y 不相互独立,因为(,)()()X Y f x y f x f y ≠ ………3分 6.10分解:1222()3xEX xf x dx xdx θθθ+∞-∞===⎰⎰,···3分,X =θ32···2分,__^3,2X θ=所以···2分 由于__^3322E E X E X θθ===, 所以θ的矩估计量为无偏估计;···············3分。
线性代数与概率统计(新)
一、单选( 每题参考分值2.5分)1、设随机变量是的分布函数,则 =()B.C.D.1错误:【B】2、某学习小组有10名同学,其中7名男生,3名女生,从中任选3人参加社会活动,则3人全为男生的概率为()B.C.D.错误:【A】3、设,,,则()B.C.D.错误:【D】4、设A,B表任意二随机事件,则下面错误的是()与互不相容B.C.表示与都不发生D.若,则错误:【C】5、设为两个随机变量,且,则()一定独立B.一定不独立C.不一定独立D.以上结论都不对错误:【C】6、下列向量组中()线性无关.B.C.D.错误:【C】7、袋中有5个球(3新2旧),每次取1个,无放回的抽取2次,则第2次取到新球的概率为()B.C.D.错误:【A】8、下列矩阵中,不是二次型矩阵的是()B.C.D.错误:【D】9、下列二次型中,矩阵为的是()B.C.D.错误:【D】10、设,且与相互独立,则()B.C.D.错误:【B】11、已知,则()必有一特征值B.必有一特征值C.必有一特征值D.必有一特征值错误:【D】12、B.C.D.错误:【B】13、B.C.D.错误:【D】14、若都存在,则下面命题中错误的是()B.C.D.错误:【D】15、已知是非齐次方程组的两个不同解,是的基础解系,为任意常数,则的通解为()B.C.D.错误:【B】16、若可由线性表出则()表示方法唯一B.表示方法不唯一C.不确定D.以上都不对错误:【C】17、B.C.D.错误:【D】18、设随机变量X的分布函数为,下列结论中不一定成立的是()B.C.D.为连续函数错误:【D】19、设,则()A和B不相容B.A和B相互独立C.或D.错误:【A】20、-8B.-4C.4D.8错误:【C】21、设是从正态总体中抽取的一个样本,记则服从()分布B.C.D.错误:【C】22、设总体服从正态分布为取自的容量为3的样本,则的三个估计量,,为()三个都不是的无偏估计B.三个都是的无偏估计,最有效C.三个都是的无偏估计,最有效D.三个都是的无偏估计,最有效错误:【B】23、对于、未知的情况下,对两个正态总体的方差和的检验问题为,对于显著水平,的拒绝域为()B.C.D.错误:【C】24、设随机变量X的概率密度函数为,且,则必有()在内大于零B.在内小于零C.D.在上单调增加错误:【C】25、设随机变量的,用切比雪夫不等式估计()1B.C.D.错误:【D】26、二次型的秩为2,则()B.C.D.错误:【D】27、已知和是线性方程组的两个解,则系数矩阵是()B.C.D.错误:【C】28、B.C.D.错误:【B】29、实二次型的秩为3,符号差为,则标准形可能为()B.C.D.错误:【A】30、设向量组的秩为,且,则以下结论中正确的是()中必有个向量线性无关,且中任意个向量都线性相关B.中任意个向量都线性相关C.中任意个向量都是的最大无关组D.中任意一个向量都可由该组中其他任意个向量线性表示错误:【A】31、B.C.D.错误:【B】32、A,B为两事件,若,,则与比较应满足B.C.D.无确定的大小关系错误:【C】33、设二维随机变量的概率密度函数为,则()B.C.D.错误:【B】34、若存在一可逆阵使得为对角阵,其中,则为()B.C.D.错误:【C】35、设随机变量X和Y相互独立,且()B.2C.3D.4错误:【C】36、设是参数的两个估计量,下面结论中,正确的是()若,则称为比有效的估计量B.若,则称为比有效的估计量C.若是参数的两个无偏估计量,,则称为比有效的估计量D.若是参数的两个无偏估计量,,则称为比有效的估计量错误:【D】37、设为随机变量X的分布函数,则()一定连续B.一定右连续C.一定是不增的D.一定左连续错误:【B】38、二次型的秩为()B.C.D.都不对错误:【C】39、B.C.D.错误:【D】40、B.C.D.错误:【B】41、已知,则()6B.22C.30D.46错误:【B】42、若,则有()B.C.对于相同的特征值,与有相同的特征向量D.与均与同一个对角阵相似错误:【B】43、随机变量X、Y相互独立,且()B.C.D.错误:【A】44、B.C.D.错误:【C】45、设表达式是随机变量的分布,则常数()1B.C.2D.错误:【B】46、设阶可逆矩阵有一个特征值为2,对应的特征向量为,则下列等式中不正确的是()B.C.D.错误:【C】47、称为总体的一个样本,和分别为样本均值和样本方差,则服从参数的分布的统计量是()B.C.D.错误:【D】48、设矩阵的秩为,为阶单位矩阵,下述结论中正确的是()的任意个列向量必线性无关B.的任意一个阶子式不等于零C.若矩阵满足,则D.通过初等行变换,必可以化为的形式错误:【C】49、设总体的概率密度为为来自总体样,为样本均值,则()B.1C.2D.3错误:【A】50、设是随机向量的联合分布函数,则关于的边际分布函数为()B.C.D.错误:【D】。
线性代数与概率统计试题
1-1 线性代数第一单元行列式试题(1)三阶行列式100021234的值是()A.5B.5-C.11D.11-(2)以下哪一种行列式的值不一定为零()A.行列式有某一行元素全为1 B.行列式有两行完全相同C.行列式有两行元素对应成比例D.行列式有某一行元素全为零(3)式子13324-的运算结果等于下面哪个行列式()A.3364-B.33212-C.39612-D.1964-(4)如果111213212223313233a a aD a a aa a a==5,那么111213212223313233222222222a a aa a aa a a=()A.40;B.-10;C.10;D.-40.(5)已知1112223331a b cD a b ca b c==,则111122223333234234234a ab ca ab ca ab c--=-()A.-8;B.-2;C.6;D.-24.(6)三阶行列式231503201298523-=()A.-70;B.70;C.63;D.82.(7)根据行列式的性质,下列等式正确的是()A.123187894296765345=;B.123187894296765345=-;C.123123894765765894=;D.123231894948765657=-.(8)以下哪一个是对角行列式()A.100010002B.100020234C.125020004D.0220(9)行列式 000000000a b cde f =( )A .-abdf ;B .cdf ;C .abdf ;D .abcdef .(10)下列n (n > 2)阶行列式的值必为零的是 ( )A .行列式中非零元素的个数小于n ;B .行列式中有一半的元素等于零;C .行列式主对角线上的元素全为零;D .行列式的元素中每个数都重复出现n 次.(11)设三阶行列式231316124-,角子式23=K ( )A .9B .1C .7D .6(12)计算三阶行列式231326124--,其结果为 ( )A .30B .40C .50D .60(13)已知行列式111112341358141020D =,则代数余子式32A 的值为 ( )A .-11;B .11;C .-17;D .17.(14)设i j D a =是n 阶行列式,且0D ≠,i j A 是元素i j a 的代数余子式,则231ni i i a A ==∑( )A .0;B .D ;C .1D; D .难以确定其值.(15)克莱姆法则中,第i 个未知量的解为 ( )A .=i i D x DB .1=i i x DC .=i i Dx D D .=i i jD x D(16)已知12211a b a b m -=,则方程组111222a xb yc a x b y c +=⎧⎨+=⎩的解是 ( )A .1122c b x m c b =,1122a c y ma c =;B .11221a c x a c m =,11221c b y c b m =;C .1122a c x ma c =,1122c b y m c b =;D .11221c b x c b m =,11221a c y a c m =.(17)设D 是含有n 个变量和n 个方程组的线性方程组的系数行列式,下列说法中正确的是( )A .若0D ≠,则线性方程组有解;B .若0D =,则线性方程组无解;C .若线性方程组有解,则必有0D ≠; D .若线性方程组无解,则必有0D =.(18)已知方程组 302020k x y z x k y z k x y z ++=⎧⎪++=⎨⎪-+=⎩有非零解,则k = ( )A .2;B .1;C .0;D .3.(19)方程组 304050x k y z y z k x y z ++=⎧⎪+=⎨⎪--=⎩只有零解的充分必要条件是 ( ) A .1k ≠且3k ≠; B .3k ≠; C .1k ≠或3k ≠; D .1k ≠.(20)关于齐次线性方程组的解,叙述正确的是 ( )A .齐次线性方程组一定有零解B .齐次线性方程组一定有非零解C .齐次线性方程组可能无解D .齐次线性方程组一定有零解和非零解1-2 线性代数第二单元矩阵试题(1)矩阵的线性运算不包括下列的哪一个运算 ( )A .乘法B .减法C .数乘D .加法(2)以下的矩阵乘法式中,不可以运算的是 ( )A .3232⨯⨯⋅B B B .2222⨯⨯⋅A BC .2222⨯⨯⋅A AD .3223⨯⨯⋅A B(3)已知矩阵等式AX AY =且≠A O ,则 ( )A .不一定有=X YB .A 是对称矩阵时=X YC .一定有=X YD .A 是可逆矩阵时≠X Y(4)计算矩阵的乘积122120************-⎛⎫⎛⎫⎪⎪-= ⎪⎪ ⎪⎪-⎝⎭⎝⎭( )A .1661543117-⎛⎫ ⎪- ⎪ ⎪-⎝⎭B .302156939--⎛⎫ ⎪ ⎪ ⎪⎝⎭C .1136511647---⎛⎫⎪ ⎪⎪⎝⎭D .319053269-⎛⎫ ⎪ ⎪ ⎪⎝⎭(5)已知A ,B 都是n 阶方阵,则必有 ( )A .=AB BA ; B .=AB BA ;C .T T T()=A B AB ;D .222()=AB A B .(6)已知222()2+=++A B A AB B ,则矩阵A ,B 必定满足 ( )A .=AB BA ; B .A=B ;C .AB 是对称矩阵;D .A ,B 都是对角矩阵.(7)设A ,B ,C 是同阶的非零矩阵,则=AB AC 是=B C 的 ( )A .必要非充分条件;B .充分非必要条件;C .充分必要条件;D .非充分非必要条件. (8)设1234⎛⎫=⎪⎝⎭A ,则TA = ( ) A .1324⎛⎫⎪⎝⎭B .1234⎛⎫ ⎪⎝⎭C .4321⎛⎫ ⎪⎝⎭D .2- (9)以下哪一个矩阵是对称矩阵。
学习经济学中的常见数学工具
学习经济学中的常见数学工具经济学作为一门社会科学,旨在研究人类的经济活动和资源配置。
在经济学的研究过程中,数学工具被广泛运用,使得经济学家们能够更好地分析和解释经济现象。
本文将介绍经济学中常见的数学工具,包括微积分、线性代数和概率统计。
一、微积分微积分是经济学中最基础也是最常用的数学工具之一。
微积分的核心思想是研究变化率和积分,通过导数和积分的运算,经济学家可以对经济变量的变化进行量化和分析。
1.导数导数可以用来衡量变量之间的相互影响程度。
在经济学中,我们经常使用导数来计算边际效用、边际成本和边际收益等概念,进而帮助我们做出最优的决策。
2.积分积分在经济学中主要用于计算变量的总量和累积效应。
例如,通过对需求曲线下方的面积进行积分,我们可以计算商品的总需求量;通过对收入曲线下方的面积进行积分,我们可以计算个人或国家的总收入。
二、线性代数线性代数广泛应用于经济学家对矩阵和向量的分析。
经济学中常见的应用包括最小二乘法、回归分析、输入产出分析等。
1.最小二乘法最小二乘法是经济学中常用的估计方法之一,通过线性代数的技巧可以求解最小二乘估计量。
它能够帮助经济学家找到最佳的拟合曲线或拟合平面,从而进行数据拟合和参数估计。
2.回归分析回归分析是经济学中常用的统计方法,通过线性代数的技巧可以对多个自变量与因变量之间的关系进行建模和解释。
经济学家可以通过回归分析来研究变量之间的因果关系,进而做出政策建议或预测未来趋势。
三、概率统计概率统计为经济学家提供了量化经济现象的方法,通过对样本数据的统计分析,经济学家能够得出对总体的推断和结论。
1.概率分布概率分布是概率统计的基础,它描述了随机变量各个取值的概率。
在经济学中,我们经常使用正态分布、均匀分布和泊松分布等来描述经济变量的分布情况。
2.假设检验假设检验是经济学中常用的统计方法,通过设定一个或多个假设,来判断样本数据是否支持这些假设。
通过假设检验,经济学家可以进行变量关系的统计推断,进而得出重要的结论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、设总体,是总容量为2的样本,为未知参数,下列样本函数不是统计量的是()D.2、三个方程四个未知量的线性方程组满足如下条件()时一定有解.C.3、与的相关系数,表示与()B.不线性相关4、,且与相互独立,则()A.5、设连续随机变量X的分布函数为其概率密度,则()B.6、某人打靶的命中率为0.8,现独立地射击5次,那么5次中有2次命中的概率为()D.7、B.8、设相互独立,且则下列结论正确的是()D.9、D.110、假设检验中,一般情况下()C.即可能犯第一类错误,也可能犯第二类错误11、若随机变量的方差存在,由切比雪夫不等式可得()A.12、若方程组仅有零解,则()C.13、设总体的分布中带有未知参数,为样本,和是参数的两个无偏估计,若对任意的样本容量,若为比有效的估计量,则必有()B.14、设总体未知,关于两个正态总体均值的假设检验为,则检验统计量为()C.15、若总体为正态分布,方差未知,检验,对抽取样本,则拒绝域仅与()有关D.显著水平,样本容量16、()时,则方程组有无穷多解C.317、设是阶正定矩阵,则是()C.可逆矩阵18、在相同的条件下,相互独立地进行5次射击,每次射中的概率为0.6,则击中目标的次数的概率分布为()A.二项分布19、B.下三角20、设是来自正态总体的样本,已知统计量是方差的无偏估计量,则常数等于()D.421、设,且未知,对均值作区间估计,置信度为95%置信区间是()A.22、设总体服从参数的分布,即0 1为的样本,记为样本均值,则=()错误:【@】23、已知向量则下列说法正确的是()D.该向量组为正交向量组24、随机变量服从正态分布,则()C.25、设,则()A.A和B不相容26、B.27、若可由线性表出则()C.不确定28、B.29、设4维向量组中的线性相关,则()C.线性相关30、设随机变量X和Y相互独立,且()C.331、来自总体的样本,已知,则有()A.32、C.33、如果函数是某连续型随机变量的概率密度,则区间可以是()C.34、设是可逆矩阵的一个特征值,则的伴随矩阵必有一个特征值为()B.35、已知,且有,则()B.36、设是来自总体的样本,,则服从()B.37、在贝努利试验中,若事件发生的概率为.又设为次独立重复试验中发生的频数,则当充分大时,有()C.近似服从正态分布38、C.39、设是次重复试验中事件出现的次数,是事件在每次试验中出现的概率,则对任意均有()A.=040、已知,则()A.57对掷一粒骰子的试验,概率论中将“出现偶数”称为()D.随机事件3、D.0.64、A,B为两事件,若,,则与比较应满足C.5、C.7、设离散的随机变量X的分布为则()C.8、D.-429、设是来自正态总体的样本,则服从()的分布为()D.10、以下说法正确的是()A.若正交,则的特征根的模为111、设离散随机变量的分布列为2 30.7 0.3则()A.0.2112、A.-413、已知,则()B.2214、下列结论正确的是()C.非奇异等价于单位阵15、设随机变量的期望和方差相等,则不能服从()D.二项分布16、设是一非齐次线性方程组,是其任意2个解,则下列结论错误的是()A.是的一个解17、设方阵相似于方阵,则必相似于()C.18、已知,则()A.5719、已知随机变量与相互独立,且它们分别在区间和上服从均匀分布,则()A.320、A.21、已知是正定矩阵,则()B.22、向量组和向量组等价的定义是向量组()A.和可互相线性表出23、若,且,则()A.下列说法正确的是()D.5、设随机变量是独立同分布的,对于,用切比雪夫不等式可估计()B.6、设个随机变量是独立同分布,,则下列结论中,正确的是()A.是的无偏估计量7、设总体,其中已知,为来自总体的样本,为样本均值,为样本方差,则下列统计量中服从分布的是()D.9、设是矩阵,则下列()正确A.若,则中5阶子式均为010、设、、为任意的三个事件,以下结论中正确的是()A.若、、相互独立,则、、两两独立12、D.13、从0、1、2、…、9十个数字中随机地有放回的接连抽取四个数字,则“8”至少出现一次的概率为()B.0.343914、下列矩阵是正定矩阵的是()C.15、已知,且有,则()B.17、D.18、D.-4219、已知线性方程组有非零解,则()C.或20、设随机事件A与B相互独立,,则()D.121、设是参数的两个估计量,下面结论中,正确的是()D.若是参数的两个无偏估计量,,则称为比有效的估计量22、设二维随机变量,则()B.323、B.24、矩阵()合同于A.26、C.27、以下说法正确的是()C.零向量线性相关,而一个非零向量是线性无关的28、设元齐次线性方程组的通解为则矩阵的秩()B.30、C.31、设方阵相似于方阵,则必相似于()C.32、在假设检验中,关于两个正态总体方差的检验,检验采用的方法为()D.检验法33、设为随机变量X的分布函数,则()B.一定右连续34、设,则服从()分布B.指数35、B.336、若为3阶正定矩阵,,则二次曲面为()A.椭球面37、D.38、设是相互独立且均服从正态分布的随机变量,则()B.39、设随机变量的数学期望,方差,则由切比雪夫不等式有()B.1、D.4、设随机变量与相互独立,且服从区间上的均匀分布,服从参数为3的指数分布,则()D.5、C.6、设是连续型随机变量的分布函数,则下列结论中不正确的是()A.不是不减函数7、设随机事件A与B相互独立,A发生B不发生的概率与B发生A不发生的概率相等,且,则()B.8、随机变量X在下面区间上取值,使函数成为它的概率密度的是()A.9、设总体服从泊松分布:,其中为未知参数,为样本,记,则下面几种说法错误的是()D.是的矩估计11、设,且与相互独立,则()B.12、D.-4214、B.315、张奖券中含有张有奖的,今有个人每人购买1张,则其中至少有1个人中奖的概率为()B.17、设二维随机变量的概率密度为,则常数为()A.18、C.19、B.下三角形矩阵20、实二次型为正定二次型的充要条件是()B.的特征值均大于零22、总体的一个样本为,记则=()C.124、设为两个随机事件,且,则()D.125、盒中有10个木质球,6个玻璃球,玻璃球中有2个红色4个蓝色,木质球中有3个红色7个蓝色,先从盒中任取一球,用表示“取到蓝色球”,用表示“取到玻璃球”,则()D.29、若方阵,则的特征方程为(D.30、若方程组(系数均不为零)的基础解系含有两个解向量,则()A.31、在假设检验中,设服从正态分布,未知,假设检验问题为,则在显著水平下,的拒绝域为()B.32、设函数 在区间 上等于 ,而在此区间外等于0;若 可以作为某连续随机变量的概率密度函数,则区间 为( )A.34、A.35、设 是参数的两个相互独立的无偏估计量,且若也是的无偏估计量,则下面四个估计量中方差最小的是( )A.36、A.-437、A.38、B.39、设 服从参数为的泊松分布,则下列错误的是( )D.40、C.1、C.2、B.下三角3、设是来自正态总体的样本,则统计量服从()D.分布4、,则()D.6、设随机变量,则()A.0.00168、B.9、分别是二维随机变量的分布函数和边缘分布函数,分别是的联合密度和边缘密度,则()C.和独立时,11、D.0.612、B.313、实二次型,则负惯性指数为()B.14、C.15、设随机变量的概率密度为,则()B.18、D.19、A.20、下列二次型中,矩阵为的是()D.21、设,则()D.23、向量空间的维数等于()C.224、设为随机事件,,则必有()A.25、实二次型的矩阵,若此二次型的正惯性指数为3,则()C.30、已知,则为()D.36、B.37、B.38、某种动物活20年的概率为0.8,活25年的概率为0.6,现有一只该动物已经活了20年,它能活到25年的概率是()D.0.7540、一枚硬币投掷两次,令“第次正面朝上”,则“至多有一次正面朝上可表示为()C.1、个未知量的齐次线性方程组有非零解的充分必要条件是()D.3、下列说法错误的是()C.正交则7、设是阶方阵的一个特征根,则()是的特征根D.9、已知均为阶方阵且与相似,若,则为()C.10、设随机变量X的概率密度为,则常数=()B.11、C.413、已知矩阵有特征值,则属于特征值0的线性无关特征向量的个数为()B.214、若是矩阵,是的导出组,则()C.若有无穷多个解,则有非零解15、设与为两个随机事件,且有,则下列结论中正确的是()B.16、设二维随机变量,若,则()A.,一定独立17、设矩阵,假设4维列向量组线性无关,则向量组的秩为()D.19、A.线性相关28、D.29、下列函数中可以作为某个二维随机变量的分布函数的是()D.33、A.-1535、C.36、B.37、若4阶方阵的行列式等于零,则()A.中至少有一行是其余行的线性组合38、设为阶方阵,且(为正数),则()C.的特征值全部为零39、设二维随机变量的概率密度函数为,则()B.1、D.6、每张奖券中尾奖的概率为,某人购买了20张号码杂乱的奖券,则中尾奖的张数服从()分布。
A.二项10、D.11、设分块矩阵,其中为阶可逆矩阵,为矩阵,为矩阵,为实数,则()C.15、实二次型为正定二次型的充要条件是()B.的特征值均大于零16、已知随机变量,则随机变量的概率密度()A.18、B.520、B.21、设总体服从正态分布为取自的容量为3的样本,则的三个估计量,,为()B.三个都是的无偏估计,最有效D.2、若为3阶正定矩阵,,则二次曲面为()A.椭球面3、假设检验中,一般情况下()C.即可能犯第一类错误,也可能犯第二类错误4、下列二次型中,矩阵为的是()D.5、设总体,是总容量为2的样本,为未知参数,下列样本函数不是统计量的是()D.6、每张奖券中尾奖的概率为,某人购买了20张号码杂乱的奖券,则中尾奖的张数服从()分布。
A.二项7、设服从参数为的泊松分布,则下列错误的是()D.8、设随机变量X和Y相互独立,且()C.39、如果函数是某连续型随机变量的概率密度,则区间可以是()C.10、D.11、设分块矩阵,其中为阶可逆矩阵,为矩阵,为矩阵,为实数,则()C.12、从0、1、2、…、9十个数字中随机地有放回的接连抽取四个数字,则“8”至少出现一次的概率为()B.0.3439设随机变量与相互独立,且服从区间上的均匀分布,服从参数为3的指数分布,则()D.14、设是参数的两个相互独立的无偏估计量,且若也是的无偏估计量,则下面四个估计量中方差最小的是()A.15、实二次型为正定二次型的充要条件是()B.的特征值均大于零16、已知随机变量,则随机变量的概率密度()A.17、设是连续型随机变量的分布函数,则下列结论中不正确的是()A.不是不减函数18、B.519、设随机变量的期望和方差相等,则不能服从()D.二项分布20、B.21、设总体服从正态分布为取自的容量为3的样本,则的三个估计量,,为()B.三个都是的无偏估计,最有效22、某人打靶的命中率为0.8,现独立地射击5次,那么5次中有2次命中的概率为()D.23、设总体的分布中带有未知参数,为样本,和是参数的两个无偏估计,若对任意的样本容量,若为比有效的估计量,则必有()B.24、设为随机变量,且则()A.125、设向量组;向量组,则()B.无关无关26、,则()D.27、B.下三角形矩阵29、D.-4231、B.34、设且概率密度,则正确的是()C.35、设,如果方程组无解,则()A.37、盒中放有红、白两种球各若干个,从中任取3个,设事件,,则事件()A.38、C.12、零为矩阵的特征值是为不可逆的()C.充要条件13、B.14、事件,满足,则与一定()D.不互斥15、D.16、已知,其中是任意数,则()B.总无关17、设是来自正态总体的样本,是来自正态总体的样本且与相互独立,则服从的分布为()C.18、若二维随机变量的联合分布函数为,则常数A,B分别为()B.19、C.5、设,则的基础解系含有()个解向量.A.17、C.8、B.17、A.18、D.19、D.-4231、D.33、若都存在,则下面命题中错误的是()D.40、B.4、B.6、B.7、B.12、C.15、设,为分布的上侧分位数()A.17、设随机变量X的期望和方差都存在,则对任意正数,有()A.19、若阶可逆矩阵与相似,且则()C.21、D.23、做假设检验时,在()情况下,采用检验法B.对单个正态总体,未知总体方差,检验假设25、A.-427、设A、B、C是三个事件,且,,,则A、B、C至少有1个发生的概率为()C.31、A.36、称为总体的一个样本,和分别为样本均值和样本方差,则服从参数的分布的统计量是()D.12、独立方程则基础解系为()C.17、对总体的均值做区间估计,得到置信度为95%的置信区间,意义是指这个区间()C.有95%的机会含的值22、极大似然估计必然是()B.似然函数的极值点35、下列命题正确的是()D.10、已知是来自正态总体的样本,其中未知, 为已知,则下列关于的函数不是统计量的为()C.16、是三阶方阵且,则在的行向量组中()D.有一个行向量是其他两个行向量的线性组合25、设是未知参数的一个估计量,若,则是的()D.有偏估计29、若,则有()B.36、设为来自总体的样本,服从正态分布,则的置信度为()(附:)B.3.92。