高中数学必修三期末考试模拟试题
【北师大版】高中数学必修三期末模拟试卷带答案
一、选择题1.甲、乙两人约定某天晚上6:00~7:00之间在某处会面,并约定甲早到应等乙半小时,而乙早到无需等待即可离去,那么两人能会面的概率是( ) A .58B .13C .18D .382.口袋里装有大小相同的5个小球,其中2个白球,3个红球,现一次性从中任意取出3个,则其中至少有1个白球的概率为( ) A .910B .710C .310D .1103.底面是正多边形,顶点在底面的射影是底面中心的棱锥叫正棱锥.如图,半球内有一内接正四棱锥S ABCD -,该四棱锥的体积为423,现在半球内任取一点,则该点在正四棱锥内的概率为( )A .1πB .2C .3D .2π4.已知三棱锥P ﹣ABC 的6条棱中,有2条长为1,有4条长为2,则从中任意取出的两条,这两条棱长度相等的概率为( )A .815 B .715 C .45 D .35 5.当4n =时,执行如图所示的程序框图,则输出的S 值为 ( )A .9B .15C .31D .636.执行如图所示的程序框图,输出S 的值等于( )A .1111238+++⋅⋅⋅+ B .1111237+++⋅⋅⋅+ C .11111237+++++ D .11111238++++⋅⋅⋅+ 7.如图的程序框图,当输出15y =后,程序结束,则判断框内应该填( )A .1x ≤B .2x ≤C .3x ≤D .4x ≤8.执行如图所示的程序框图,输出的结果为( )A.2019-D.2020-2221 21-C.2020-B.2019229.某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量之间的关系,随机抽查52名中学生,得到统计数据如表1至表4,这与性别有关联的可能性最大的变量是()A.成绩B.视力C.智商D.阅读量10.学校为了解新课程标准提升阅读要求对学生阅读兴趣的影响情况,随机抽取了100名学生进行调查.根据调查结果绘制学生周末阅读时间的频率分布直方图如图所示:将阅读时间不低于30分钟的观众称为“阅读霸”,则下列命题正确的是( ) A .抽样表明,该校有一半学生为阅读霸 B .该校只有50名学生不喜欢阅读 C .该校只有50名学生喜欢阅读 D .抽样表明,该校有50名学生为阅读霸11.已知变量,x y 之间的线性回归方程为0.47.6=-+y x ,且变量,x y 之间的一组相关数据如表所示,则下列说法错误的是( )A .变量,x y 之间呈现负相关关系B .m 的值等于5C .变量,x y 之间的相关系数0.4=-rD .由表格数据知,该回归直线必过点()9,4 12.下列说法正确的是( )①设某大学的女生体重(kg)y 与身高(cm)x 具有线性相关关系,根据一组样本数据(,)(1,2,3,,)i i x y i n =,用最小二乘法建立的线性回归方程为0.8585.71y x =- ,则若该大学某女生身高增加1cm ,则其体重约增加0.85kg ;②关于x 的方程210(2)x mx m -+=>的两根可分别作为椭圆和双曲线的离心率; ③过定圆C 上一定点A 作圆的动弦AB ,O 为原点,若1()2OP OA OB =+,则动点P 的轨迹为椭圆;④已知F 是椭圆22143x y +=的左焦点,设动点P 在椭圆上,若直线FP 的斜率大于3,则直线OP (O 为原点)的斜率的取值范围是3333(,)(,)22-∞-. A .①②③B .①③④C .①②④D .②③④二、填空题13.某种饮料每箱装6听,若其中有2听不合格,质检员从中随机抽出2听,则含有不合格品的概率为________.14.甲、乙两位同学玩游戏,对于给定的实数1a ,按下列方法操作一次产生一个新的实数:由甲、乙同时各掷一枚均匀的硬币,如果出现两个正面朝上或两个反面朝上,则把1a 乘以2后再减去12,;如果出现一个正面朝上,一个反面朝上,则把1a 除以2后再加上12,这样就得到一个新的实数2a ,对实数2a 仍按上述方法进行一次操作,又得到一个新的实数3a ,当31a a >时,甲获胜,否则乙获胜,若甲获胜的概率为34,则1a 的取值范围是________15.在区间[]0,2中随机地取出一个数x ,则sin 6x π>的概率是__________.16.执行如图所示的程序框图,若1ln 2a =,22b e =,ln 22c =(其中e 是自然对数的底),则输出的结果是__________.17.如图所示的程序框图,输出S 的结果是__________.18.已知下列程序 INPUTt IFt≤3THEN C=0.2 ELSEC=0.2+0.1*(t-3) ENDIF PRINTC END当输入t=5时,输出结果是____.19.下列说法正确的是__________(填序号)(1)已知相关变量(),x y 满足回归方程ˆ24yx =-,若变量x 增加一个单位,则y 平均增加4个单位(2)若,p q 为两个命题,则“p q ∨”为假命题是“p q ∧”为假命题的充分不必要条件(3)若命题0:p x R ∃∈,20010x x -+<,则:p x R ⌝∀∉,210x x -+≥(4)已知随机变量()22X N σ~,,若()0.32P X a <=,则()40.68P X a >-=20.为调查某高校学生对“一带一路”政策的了解情况,现采用分层抽样的方法抽取一个容量为500的样本.其中大一年级抽取200人,大二年级抽取100人.若其他年级共有学生2000人,则该校学生总人数是_______..三、解答题21.某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验. (1)求选取的2组数据恰好是相邻两个月的概率;(2)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出y 关于x 的线性回归方程y bx a =+;(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?22.某校从高一年级期末考试的学生中抽出60名学生,其成绩(均为整数)的频率分布直方图如图所示.(1)估计这次考试的平均分;(2)假设分数在[90,100]的学生的成绩都不相同,且都在94分以上,现用简单随机抽样方法,从95,76,97,88,69,100这6个数中任取2个数,求这2个数恰好是两个学生的成绩的概率.23.运行如下图的程序框图:(1)若输入3x =,求输出的k 的值; (2)若输出4k =,求输人的实数x 的取值范围.24.某快递公司规定甲、乙两地之间物品的托运费用根据下列方法计算:()()()0.5350=500.53+-500.8550f ωωωω⎧≤⎪⎨⨯⨯>⎪⎩.其中f (单位:元)为托运费,ω为托运物品的重量(单位:千克),试写出一个计算费用f 的算法,并画出相应的程序框图.25.2019年2月13日《西安市全民阅读促进条例》全文发布,旨在保障全民阅读权利,培养全民阅读习惯,提高全民阅读能力,推动文明城市和文化强市建设.某高校为了解条例发布以来全校学生的阅读情况,随机调查了200名学生每周阅读时间X (单位:小时)并绘制如图所示的频率分布直方图.(1)求这200名学生每周阅读时间的样本平均数;(2)为查找影响学生阅读时间的因素,学校团委决定从每周阅读时间为[6.5,7.5),[7.5,8.5)的学生中抽取9名参加座谈会.(i )你认为9个名额应该怎么分配?并说明理由;(ii )座谈中发现9名学生中理工类专业的较多.请根据200名学生的调研数据,填写下面的22⨯列联表,并判断是否有95%的把握认为学生阅读时间不足(每周阅读时间不足8.5小时)与“是否理工类专业”有关?(精确到0.1)阅读时间不足8.5小时 阅读时间超过8.5小时 理工类专业 4060非理工类专业附:22()()()()()n ad bc K a b c d a c b d -=++++(n a b c d =+++).临界值表:20()P K k ≥ 0.1500.100 0.050 0.025 0.010 0.005 0.001 0k2.0722.7063.8415.0246.6357.87910.82826.某企业广告费支出与销售额(单位:百万元)数据如表所示: 广告费x 6 4 8 2 5 销售额y5040703060(1)求销售额y 关于广告费x 的线性回归方程;(2)预测当销售额为76百万元时,广告费支出为多少百万元. 回归方程y bx a =+中斜率和截距的最小二乘估计公式分别为:()()()1122211n niii ii i nniii i x x y y x y nx yb x x xnx====---==--∑∑∑∑,a y bx =-.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】由题意知本题是一个几何概型,试验包含的所有事件是{(,)|01x y x Ω=,01}y ,写出满足条件的事件是{(,)|01A x y x =,01y ,12y x -≤,}x y ≤,算出事件对应的集合表示的面积,根据几何概型概率公式得到结果. 【详解】解:由题意知本题是一个几何概型,设甲到的时间为x ,乙到的时间为y ,则试验包含的所有事件是{(,)|01x y x Ω=,01}y , 事件对应的集合表示的面积是1S =,满足条件的事件是{(,)|01A x y x =,01y ,12y x -≤,}x y ≤, 则()1,1B ,1,12C ⎛⎫ ⎪⎝⎭,10,2D ⎛⎫ ⎪⎝⎭, 则事件A 对应的集合表示的面积是111131122228⨯⨯-⨯⨯=,根据几何概型概率公式得到33818P ==; 所以甲、乙两人能见面的概率38P =. 故选:D .【点睛】本题主要考查几何概型的概率计算,要解决此问题,一般要通过把试验发生包含的事件所对应的区域求出,根据集合对应的图形面积,用面积的比值得到结果.2.A解析:A 【分析】根据题意,求出总的基本事件数和至少有1个白球包含的基本事件数,然后利用古典概型的概率计算公式求解即可. 【详解】由题意可知,从5个大小相同的小球中,一次性任意取出3个小球包含的总的基本事件数为n =35C 10=,一次性任意取出的3个小球中,至少有1个白球包含的基本事件数为122123239m C C C C =+=,由古典概型的概率计算公式得,一次性任意取出的3个小球中,至少有1个白球的概率为910m P n ==. 故选:A 【点睛】 本题考查利用组合数公式和古典概型的概率计算公式求随机事件的概率;正确求出总的基本事件数和至少有1个白球包含的基本事件数是求解本题的关键;属于中档题、常考题型.3.A解析:A 【分析】先根据四棱锥的体积求出球的半径,再根据几何概型概率公式求结果. 【详解】因为四棱锥的体积为423,设球半径为R ,则4211222332R R R R =⨯⨯⨯⨯∴=因此所求概率为3131423ππ=⨯,故选:A 【点睛】本题考查四棱锥体积、球体积以及几何概型概率公式,考查综合分析求解能力,属中档题.4.B解析:B 【分析】从中任意取出的两条,基本事件总数2615n C ==,这两条棱长度相等包含的基本事件个数22247m C C =+=,由此能求出这两条棱长度相等的概率. 【详解】解:三棱锥P ABC -的6条棱中,有2条长为1,有4条长为2,从中任意取出的两条,基本事件总数2615n C ==,这两条棱长度相等包含的基本事件个数22247m C C =+=, ∴这两条棱长度相等的概率715m p n ==. 故选:B . 【点睛】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.5.C解析:C 【解析】由程序框图可知,1,3,2,7,3,15k s k s k s ======,4,31,54k s k ===>,退出循环,输出s 的值为31,故选C.【方法点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.6.C解析:C 【解析】 【分析】模拟执行程序框图,依次写出每次循环得到的,k S 的值,当8k时不满足条件8k <,退出循环,输出S 的值为11111237S +++=++,即可得解. 【详解】模拟执行程序框图,可得1,1k S ==, 执行循环体,11,2S k =+=, 满足条件18,11,32k S k <=++=; 满足条件118,11,423k S k <=+++=; …观察规律可知,当7k =时,满足条件,11111,8237S k ++++=+=; 此时,不满足条件8k <,退出循环,输出11111237S +++=++. 故选C . 【点睛】本题主要考查了循环结构的程序框图,解题时应模拟程序框图的运行过程,即可得出正确的结论,着重考查了推理与运算能力,属于基础题.7.C解析:C 【分析】计算出输出15y =时,3x =;继续运行程序可知继续赋值得:4x =,此时不满足判断框条件,结束程序,从而可得判断框条件. 【详解】解析 当x =-3时,y =3;当x =-2时,y =0; 当x =-1时,y =-1;当x =0时,y =0; 当x =1时,y =3;当x =2时,y =8; 当x =3时,y =15,x =4,结束. 所以y 的最大值为15,可知x ≤3符合题意. 判断框应填:3x ≤ 故选C 【点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.8.C解析:C【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量2320192222S=+++⋯+的值,利用等比数列的求和公式即可计算得解.【详解】模拟程序的运行,可得该程序的功能是利用循环结构计算并输出变量2320192222S=+++⋯+的值,由于()2019232019202021222222212S-=+++⋯+==--.故选C.【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.9.D解析:D【解析】试题分析:由表中数据可得表1:()25262210140.00916362032K⨯⨯-⨯=≈⨯⨯⨯;表2:()25242012161.76916362032K⨯⨯-⨯=≈⨯⨯⨯;表3:()2528241281.316362032K⨯⨯-⨯=≈⨯⨯⨯;表4:()25214302623.4816362032K⨯⨯-⨯=≈⨯⨯⨯.其中23.48最大,所以阅读量与性别有关联的可能性最大.故D正确.考点:独立性检验.10.A解析:A【分析】根据频率分布直方图得到各个时间段的人数,进而得到结果.【详解】根据频率分布直方图可列下表:故选A.【点睛】这个题目考查了频率分布直方图的实际应用,以及样本体现整体的特征的应用,属于基础题.11.C解析:C 【解析】分析:根据线性回归方程的性质依次判断各选项即可.详解:对于A :根据b 的正负即可判断正负相关关系.线性回归方程为0.47.6y x =-+,b=﹣0.7<0,负相关.对于B :根据表中数据:x =9.可得y =4.即()16+3244m ++=,解得:m=5. 对于C :相关系数和斜率不是一回事,只有当样本点都落在直线上是才满足两者相等,这个题目显然不满足,故不正确.对于D :由线性回归方程一定过(x ,y ),即(9,4). 故选:C .点睛:本题考查了线性回归方程的求法及应用,属于基础题,对于回归方程,一定要注意隐含条件,样本中心满足回归方程,再者计算精准,正确理解题意,应用回归方程对总体进行估计.12.C解析:C 【分析】利用线性回归方程系数的几何意义,圆锥曲线离心率的范围,椭圆的性质,逐一判断即可. 【详解】①设某大学的女生体重y (kg )与身高x (cm )具有线性相关关系,根据一组样本数据(x i ,y i )(i =1,2,…,n ),用最小二乘法建立的线性回归方程为y ∧=0.85x ﹣85.71,则若该大学某女生身高增加1cm ,则其体重约增加0.85kg ,正确;②关于x 的方程x 2﹣mx +1=0(m >2)的两根之和大于2,两根之积等于1,故两根中,一根大于1,一根大于0小于1,故可分别作为椭圆和双曲线的离心率.正确; ③设定圆C 的方程为(x ﹣a )2+(x ﹣b )2=r 2,其上定点A (x 0,y 0),设B (a +r cosθ,b +r sinθ),P (x ,y ),由12OP =(OA OB +)得0022x a rcos x y b rsin y θθ++⎧=⎪⎪⎨++⎪=⎪⎩,消掉参数θ,得:(2x ﹣x 0﹣a )2+(2y﹣y 0﹣b )2=r 2,即动点P 的轨迹为圆, ∴故③不正确;④由22143x y +=,得a 2=4,b 2=3,∴1c ==.则F (﹣1,0),如图:过F 作垂直于x 轴的直线,交椭圆于A (x 轴上方),则x A =﹣1,代入椭圆方程可得32A y =.当P 为椭圆上顶点时,P (0FP k =32OA k =-, ∴当直线FP 时,直线OP 的斜率的取值范围是32⎛⎫-∞- ⎪⎝⎭,.当P 为椭圆下顶点时,P (0,∴当直线FP 时,直线OP 的斜率的取值范围是(8,32),综上,直线OP (O 为原点)的斜率的取值范围是32⎛⎫-∞- ⎪⎝⎭,∪,32). 故选C 【点睛】本题以命题真假的判断为载体,着重考查了相关系数、离心率、椭圆简单的几何性质等知识点,属于中档题.二、填空题13.【分析】含有不合格品分为两类:一件不合格和两件不合格分别利用组合公式即可得到答案【详解】质检员从中随机抽出2听共有种可能而其中含有不合格品共有种可能于是概率为:【点睛】本题主要考查超几何分布的相关计解析:35【分析】含有不合格品分为两类:一件不合格和两件不合格,分别利用组合公式即可得到答案. 【详解】质检员从中随机抽出2听共有2615C =种可能,而其中含有不合格品共有1122429C C C +=种可能,于是概率为:93155=. 【点睛】本题主要考查超几何分布的相关计算,难度不大.14.【分析】按要求操作一次产生一个新的实数列举得到新的实数的途径列出不等式根据所给的甲获胜的概率为解出a1的结果【详解】a3的结果有四种每一个结果出现的概率都是1a1→2a1﹣12→2(2a1﹣12)﹣ 解析:(][),1224,-∞⋃+∞【分析】按要求操作一次产生一个新的实数,列举得到新的实数的途径,列出不等式,根据所给的甲获胜的概率为34,解出a 1的结果. 【详解】a 3的结果有四种,每一个结果出现的概率都是14, 1.a 1→2a 1﹣12→2(2a 1﹣12)﹣12=4a 1﹣36=a 3, 2.a 1→2a 1﹣12→12122a -+12=a 1+6=a 3, 3.a 1→12a +12→11222a ++1214a =+18=a 3,4.a 1→12a +12→2(12a+12)﹣12=a 1+12=a 3, ∵a 1+18>a 1,a 1+36>a 1,∴要使甲获胜的概率为34, 即a 3>a 1的概率为34, ∴4a 1﹣36>a 1,14a +18≤a 1, 或4a 1﹣36≤a 1,14a +18>a 1, 解得a 1≤12或a 1≥24. 故选:D . 【点睛】本题考查新定义问题,考查概率综合,意在考查学生的读题审题能力,考查转化能力,是中档题15.【解析】分析:根据几何概型的概率公式即可得到结论详解:区间的两端点间距离是2在区间内任取一点该点表示的数都大于故在区间中随机地取出一个数这个数大于的概率为故答案为:点睛:本题主要考查概率的计算根据几解析:34【解析】分析:根据几何概型的概率公式即可得到结论. 详解:区间[]0,2的两端点间距离是2,在区间1,22⎛⎤ ⎥⎝⎦内任取一点,该点表示的数都大于1sin62π=, 故在区间中随机地取出一个数,这个数大于12的概率为1232.204-=- , 故答案为:34.点睛:本题主要考查概率的计算,根据几何概型的概率公式是解决本题的关键.16.(注:填也得分)【解析】分析:执行如图所示的程序框图可知该程序的功能是输出三个数的大小之中位于中间的数的数值再根据指数函数与对数函数的性质得到即可得到输出结果详解:由题意执行如图所示的程序框图可知该解析:ln 22(注:填c 也得分). 【解析】分析:执行如图所示的程序框图可知,该程序的功能是输出,,a b c 三个数的大小之中,位于中间的数的数值,再根据指数函数与对数函数的性质,得到b c a <<,即可得到输出结果.详解:由题意,执行如图所示的程序框图可知,该程序的功能是输出,,a b c 三个数的大小之中,位于中间的数的数值, 因为212ln 2,,ln 22a b c e ===,则221ln 21132ln 2e <<<<,即b c a <<, 所以此时输出ln 22c =. 点睛:识别算法框图和完善算法框图是近年高考的重点和热点.解决这类问题:首先,要明确算法框图中的顺序结构、条件结构和循环结构;第二,要识别运行算法框图,理解框图解决的问题;第三,按照框图的要求一步一步进行循环,直到跳出循环体输出结果,完成解答.近年框图问题考查很活,常把框图的考查与函数和数列等知识考查相结合.17.【解析】阅读流程图可得该流程图计算的数值为: 解析:【解析】阅读流程图可得,该流程图计算的数值为:13sin 0sin 1sin 5262626S ππππππ+⎛⎫⎛⎫⎛⎫=⨯++⨯+++⨯+=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 18.4【分析】由已知中的程序语句可知该程序的功能是计算分段函数 的值将t=5代入即可得到答案【详解】由已知中程序语句可知该程序的功能是: 计算分段函数 的值 故答案为04【点睛】算法是新课标高考的一大解析:4 【分析】由已知中的程序语句可知该程序的功能是计算分段函数 0.2,30.20.1(3),3t C t t ≤⎧=⎨+->⎩的值,将t =5代入即可得到答案. 【详解】由已知中程序语句可知该程序的功能是: 计算分段函数 0.2,30.20.1(3),3t C t t ≤⎧=⎨+->⎩的值 50.20.1(53)0.4t C =∴=+-=,故答案为0.4. 【点睛】算法是新课标高考的一大热点,其中算法的交汇性问题已成为高考的一大亮,这类问题常常与函数、数列、不等式等交汇自然,很好地考查考生的信息处理能力及综合运用知识解决问題的能力,解决算法的交汇性问题的方:(1)读懂程序框图、明确交汇知识,(2)根据给出问题与程序框图处理问题即可.19.【分析】(1)由回归方程知相关变量与成负相关(2)为假命题则同时为假命题为假命题则中至少有一假命题(3)全称命题与特称命题转换条件不变结论变相反(4)由正态曲线的对称性可解【详解】(1)由回归方程知 解析:(2)【分析】(1)由回归方程ˆ24yx =-知相关变量y 与x 成负相关,(2) “p q ∨”为假命题则,p q 同时为假命题,“p q ∧”为假命题则,p q 中至少有一假命题(3)全称命题与特称命题转换条件不变,结论变相反 (4)由正态曲线的对称性可解. 【详解】(1)由回归方程ˆ24yx =-知相关变量y 与x 成负相关,若变量x 增加一个单位,则y 平均增加4-个单位,故(1)错误(2) “p q ∨”为假命题则,p q 同时为假命题,“p q ∧”为假命题则,p q 中至少有一假命题,所以“p q ∨”为假命题是“p q ∧”为假命题的充分不必要条件是正确的.故(2)正确 (3)全称命题与特称命题转换条件不变,结论变相反,故(3)错误 (4)由正态曲线的对称性知,随机变量()22X N σ~,,若()0.32P X a <=,对称轴是2x = ,则()40.32P X a >-=,故(4)错误. 故答案为; (2) 【点睛】利用正态曲线的对称性求概率是常见的正态分布应用问题.解题的关键是利用对称轴=x μ确定所求概率对应的随机变量的区间与已知概率对应的随机变量的区间的关系,必要时可借助图形判断.对于正态分布2()N μσ,,由=x μ是正态曲线的对称轴知: (1)对任意的a ,有()()P X a P X a μμ<->+=; (2)()001;()P X x P X x -≥=<;(3)()()=()P a X b P X b P X a <<<≤-.20.5000【分析】由题意其他年级抽取200人其他年级共有学生2000人根据题意列出等式即可求出该校学生总人数【详解】由题意其他年级抽取200人其他年级共有学生2000人则该校学生总人数为人故答案是:5解析:5000 【分析】由题意,其他年级抽取200人,其他年级共有学生2000人,根据题意列出等式,即可求出该校学生总人数. 【详解】由题意,其他年级抽取200人,其他年级共有学生2000人, 则该校学生总人数为20005005000200⨯=人,故答案是:5000. 【点睛】该题考查的是有关分层抽样的问题,涉及到的知识点有分层抽样要求每个个体被抽到的概率是相等的,属于简单题目.三、解答题21.(1)13(2)1830ˆ77yx =-(3)该小组所得线性回归方程是理想的 【详解】(1)设抽到相邻两个月的数据为事件.因为从6组数据中选取2组数据共有15种情况,每种情况都是等可能出现的, 其中抽到相邻两个月的数据的情况有5种, ∴.(2)由数据求得,由公式,得,所以关于的线性回归方程为1830ˆ77yx =-. (3)当时,,有; 同样,当时,,有;所以,该小组所得线性回归方程是理想的. 22.(1)72;(2)15. 【分析】(1)利用频率分布直方图各组的中值估计平均分.(2)这是一个古典概型,先求得从95,76,97,88,69,100这6个数中任取2个数基本事件的总数,再根据在[90,100]的人数是600.053⨯=,求得从95,97,100这3个数中任取2个数基本事件数,然后代入公式求解. 【详解】(1)平均分为:450.05+550.15+650.2+750.3+850.25+950.05=72⨯⨯⨯⨯⨯⨯;(2)从95,76,97,88,69,100这6个数中任取2个数,共有2615C =种,在[90,100]的人数是600.053⨯=,从95,97,100这3个数中任取2个数,共有233C =种,所以这2个数恰好是两个学生的成绩的概率是. 31155p ==. 【点睛】本题主要考查平均数的求法,古典概型的概率,还考查了运算求解的能力,属于中档题. 23.(1)5;(2)2527(,]42. 【分析】(1)按照程序框图直接执行即可求出k 的值;(2)按照程序框图观察执行的结果x 与k 的关系,解不等式即可. 【详解】(1)按照程序框图依次执行得:3,0,7,1x k x k ====; 15,2x k ==;31,3x k ==; 63,4x k ==;123,5x k ==;此时,123115x =>,跳出循环,此时5k =, 所以输出的k 的值为5; (2)按照程序框图依次执行得:21,1x x k =+=;2(21)143,2x x x k =++=+=;2(43)187,3x x x k =++=+=;2(87)11615,4x x x k =++=+=;此时跳出循环,所以有871151615115x x +≤⎧⎨+>⎩,解得252742x <≤, 所以输人的实数x 的取值范围为2527(,]42. 【点睛】该题考查的是有关程序框图的问题,涉及到的知识点有计算程序框图的输出结果,根据框图输出结果求参数的取值范围,属于简单题目.24.见解析【解析】【分析】根据分段函数的解析式,设置判断框并设置出判断条件,确定好判断框的“是”与“否”,由此可得出程序框图,即可求解.【详解】解算法如下:第一步:输入物品重量ω;第二步:如果50ω≤,那么0.53f ω=,否则,(500.535)500.8f ω⨯⨯=+-;第三步:输出物品重量ω和托运费f .程序框图如下:【点睛】本题主要考查了算法与程序框图的实际应用,解答中根据分段函数的解析式,设置出判断框,并设置出判断条件是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.25.(1)9, (2)(i )每周阅读时间为[6.5,7.5)的学生中抽取3名,每周阅读时间为[7.5,8.5)的学生中抽取6名.理由见解析, (ii )有95%的把握认为学生阅读时间不足与“是否理工类专业”有关.【分析】(1)取各区间中点值乘以频率再相加即得;(2)(i )两组差异明显,用分层抽样计算.(ii )求出两组的人数,填写列联表,计算2K 可得.【详解】(1)60.0370.180.290.35100.19110.09120.049⨯+⨯+⨯+⨯+⨯+⨯+⨯=(2)(i )每周阅读时间为[6.5,7.5)的学生中抽取3名,每周阅读时间为[7.5,8.5)的学生中抽取6名.理由:每周阅读时间为[6.5,7.5)与每周阅读时间为[7.5,8.5)是差异明显的两层,为保持样本结构与总体结构的一致性,提高样本的代表性,宜采用分层抽样的方法抽取样本;因为两者频率分别为0.1,0.2,所以按照1:2进行名额分配(ii )22⨯列联表为:2K 200(40742660) 4.4 3.84166134100100⨯⨯-⨯=≈>⨯⨯⨯, 所以有95%的把握认为学生阅读时间不足与“是否理工类专业”有关.【点睛】本题考查频率分布直方图,分层抽样,考查独立性检验.属于基础题.26.(1)17.5 6.5y x =+;(2)9百万元.【分析】 (1)由已知求得ˆb 与ˆa 的值,可得销售额y 关于广告费x 的线性回归方程; (2)在(1)中求得的线性回归方程中,取76y =求得x 值即可.【详解】(1)6482555x ++++==,5040703060505y ++++==. 61621()()10(1)(10)320(3)(20)010130ˆ 6.51199020()ii i ii x x y y b x x ==--⨯+-⨯-+⨯+-⨯-+⨯====++++-∑∑, 50 6.5517.5ˆˆay bx =-=-⨯=. ∴销售额y 关于广告费x 的线性回归方程为ˆ17.5 6.5yx =+; (2)当ˆ76y=时,代入回归方程ˆ17.5 6.5y x =+,求得9x =. 故预测当销售额为76百万元时,广告费支出为9百万元.【点睛】本题考查线性回归方程的求法,考查回归方程的应用,考查了计算能力,是中档题.。
2021-2022高中数学必修三期末第一次模拟试卷(附答案)
一、选择题1.已知边长为2的正方形ABCD,在正方形ABCD内随机取一点,则取到的点到正方形四个顶点A B C D,,,的距离都大于1的概率为()A.16πB.4πC.3224π-D.14π-2.某校从高一(1)班和(2)班的某次数学考试(试卷满分为100分)的成绩中各随机抽取了6份数学成绩组成一个样本,如茎叶图所示.若分别从(1)班、(2)班的样本中各取一份,则(2)班成绩更好的概率为( )A.1636B.1736C.12D.19363.七巧板是我国古代劳动人民发明的一种智力玩具,由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成. 如图是一个用七巧板拼成的正方形,若在此正方形中任取一点,则此点取自黑色部分的概率为()A.14B.316C.38D.7164.在二项式42nxx的展开式,前三项的系数成等差数列,把展开式中所有的项重新排成一列,有理项都互不相邻的概率为()A.16B.14C.512D.135.被称为宋元数学四大家的南宋数学家秦九韶在《数书九章》一书中记载了求解三角形面积的公式,如图是利用该公式设计的程序框图,则输出的k的值为()A .4B .5C .6D .76.读下面的程序:上面的程序在执行时如果输入6,那么输出的结果为() A .6B .720C .120D .50407.若执行如图所示的程序框图,则输出S 的值为( )A .9-B .16-C .25-D .36-8.若执行如图所示的程序框图,则输出S 的值为( )A .10072015B .10082017C .10092019D .101020219.某商场为了了解毛衣的月销售量y (件)与月平均气温x (C ︒)之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如下表: 月平均气温x C ︒171382月销售量y (件)24334055由表中数据算出线性回归方程y bx a =+中的2b =-,气象部门预测下个月的平均气温为6C ︒,据此估计该商场下个月毛衣销售量约为( )A .58件B .40件C .38件D .46件10.为了了解某同学的数学学习情况,对他的6次数学测试成绩进行统计,作出的茎叶图如图所示,则下列关于该同学数学成绩的说法正确的是( )A .中位数为83B .众数为85C .平均数为85D .方差为1911.在一段时间内,某种商品的价格x (元)和销售量y (件)之间的一组数据如下表:价格x (元) 4 6 8 10 12 销售量y (件)358910若y 与x 呈线性相关关系,且解得回归直线ˆˆˆybx a =+的斜率0.9b ∧=,则a ∧的值为( ) A .0.2 B .-0.7 C .-0.2 D .0.712.已知一组数据的茎叶图如图所示,则该组数据的平均数为( )A .85B .84C .83D .81二、填空题13.住在同一城市的甲、乙两位合伙人,约定在当天下午4.00-5:00间在某个咖啡馆相见商谈合作事宜,他们约好当其中一人先到后最多等对方10分钟,若等不到则可以离去,则这两人能相见的概率为__________.14.在棱长为2 的正方体内任取一点,则此点到正方体中心的距离不大于1的概率为_____.15.已知下列命题:①ˆ856yx =+意味着每增加一个单位,y 平均增加8个单位 ②投掷一颗骰子实验,有掷出的点数为奇数和掷出的点数为偶数两个基本事件 ③互斥事件不一定是对立事件,但对立事件一定是互斥事件④在适宜的条件下种下一颗种子,观察它是否发芽,这个实验为古典概型 其中正确的命题有__________________.16.某程序框图如图所示,则该程序运行后输出的S 的值为________.17.如图是某算法流程图,则程序运行后输出S 的值为____.18.程序如下:以上程序输出的结果是_________________19.已知一组数据:5.7,5.8,6.1,6.4,6.5,则该数据的方差是__________.20.为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,,第五组,如图是根据试验数据制成的频率分布直方图,已知第一组与第二组共有20人,第三组没有疗效的有6人,则第三组中有疗效的人数为__________.三、解答题21.某校从高一年级期末考试的学生中抽出60名学生,其成绩(均为整数)的频率分布直方图如图所示.(1)估计这次考试的平均分;(2)假设分数在[90,100]的学生的成绩都不相同,且都在94分以上,现用简单随机抽样方法,从95,76,97,88,69,100这6个数中任取2个数,求这2个数恰好是两个学生的成绩的概率.22.某校高三课外兴趣小组为了解高三同学高考结束后是否打算观看2019年足球世界杯比赛的情况,从全校高三年级1500名男生、1000名女生中按分层抽样的方式抽取125名学生进行问卷调查,情况如下表:打算观看 不打算观看女生 20b男生c25(1)求出表中数据b ,c ;(2)判断是否有99%的把握认为观看2019年足球世界杯比赛与性别有关;(3)为了计算“从10人中选出9人参加比赛”的情况有多少种,我们可以发现它与“从10人中选出1人不参加比赛”的情况有多少种是一致的.现有问题:在打算观看2019年足球世界杯比赛的同学中有5名男生、2名女生来自高三(5)班,现从中推选5人接受校园电视台采访,请根据上述方法,求被推选出的5人中恰有四名男生、一名女生的概率.()20P K k ≥0.10 0.05 0.025 0.01 0.005 0K2.7063.8415.0246.6357.879附:()()()()()22n ad bc K a b c d a c b d -=++++. 23.某中学男子体育组的百米赛跑的成绩(单位:秒)如下:12.1,13.2,12.7,12.8,12.5,12.4,12.7,11.5,11.6,11.7.设计一个算法从这些成绩中搜索出小于12.1秒的成绩,画出程序框图,并编写相应程序. 24.古希腊杰出的数学家丢番图的墓碑上有这样一首诗:这是一座古墓,里面安葬着丢番图. 请你告诉我,丢番图的寿数几何? 他的童年占去了一生的六分之一, 接着十二分之一是少年时期,又过了七分之一的时光,他找到了自己的终身伴侣. 五年之后,婚姻之神赐给他一个儿子,可是儿子不济,只活到父亲寿数的一半,就匆匆离去. 这对父亲是一个沉重的打击, 整整四年,为失去爱子而悲伤, 终于告别了数学,离开了人世.试用循环结构,写出算法分析和算法程序.25.“湖广熟,天下足”,鱼米之乡的湖北是全国重要的农产品生产地.而受疫情影响,像莲藕、小龙虾等湖北很多优质农副产品近期都面临销售难题.为了让淜北尽快恢复正常,央视主持人朱广权化身直播带货官,和网红们一起为湖北产品做公益直播.在为湖北某地区的小龙虾进行带货时,需大致了解该地区小龙虾的产量,通过调查发现湖北某地区近几年的小龙虾产量统计如下表:(1)根据表中数据,建立关于t 的线性回归方程y bt a =+; (2)请你根据线性回归方程预测今年(2020年)该地区小龙虾的年产量.附:对于一组数据()11,t y ,()22,t y ,…,(),n n t y ,其回归直线y bt a =+的斜率和截距的最小二乘估计分别为:()()()121ˆniii ni i t t y y bt t ==--=-∑∑,a y bt =-.(参考数据:()()616.3ii i tty y =--=∑)26.现有某高新技术企业年研发费用投入x (百万元)与企业年利润y (百万元)之间具有线性相关关系,近5年的年科研费用和年利润具体数据如下表:(1)画出散点图;(2)求y 对x 的回归直线方程;(3)如果该企业某年研发费用投入8百万元,预测该企业获得年利润为多少?参考公式:用最小二乘法求回归方程ˆˆˆybx a =+的系数ˆˆ,a b 计算公式: 1221ˆˆˆ·,ni ii nii x y nx y bay bx xnx ==-==--∑∑【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据题意,作出满足题意的图像,利用面积测度的几何概型,即得解. 【详解】分别以A ,B ,C ,D 四点为圆心,1为半径作圆,由题意满足条件的点在图中的阴影部分224ABCD S =⨯=,214144ABCD S S ππ=-⨯⨯=-阴影由几何测度的古典概型,14ABCD S P S π==-阴影 故选:D 【点睛】本题考查了面积测度的几何概型,考查了学生综合分析,数形结合,数学运算的能力,属于中档题.2.C解析:C 【分析】由题意从(1)班、(2)班的样本中各取一份,(2)班成绩更好即(2)班成绩比(1)班成绩高,用列举法列出所有可能结果,由此计算出概率.根据题意,两次取出的成绩一共有36种情况;分别为()67,68、()67,72、()67,73、()67,85、()67,89、()67,93 ()76,68、()76,72、()76,73、()76,85、()76,89、()76,93 ()78,68、()78,72、()78,73、()78,85、()78,89、()78,93 ()82,68、()82,72、()82,73、()82,85、()82,89、()82,93 ()85,68、()85,72、()85,73、()85,85、()85,89、()85,93 ()92,68、()92,72、()92,73、()92,85、()92,89、()92,93满足条件的有18种,故183126p ==, 故选C 【点睛】本题考查概率的求法,考查古典概型、列举法等基础知识,考查运算求解能力,是基础题.3.B解析:B 【分析】设正方形的边长为2,计算出阴影部分区域的面积和正方形区域的面积,然后利用几何概型的概率公式计算出所求事件的概率. 【详解】设正方形的边长为2,则阴影部分由三个小等腰直角三角形构成,则正方形的对角线长为=,对应每个小等腰三角形的面积1124S ==, 则阴影部分的面积之和为13344⨯=,正方形的面积为4, 若在此正方形中任取一点,则此点取自黑色部分的概率为344631=,故选:B . 【点睛】本题考查面积型几何概型概率公式计算事件的概率,解题的关键在于计算出所求事件对应区域的面积和总区域的面积,考查计算能力,属于中等题.4.C解析:C 【分析】先根据前三项的系数成等差数列求n ,再根据古典概型概率公式求结果因为n前三项的系数为1212111(1)1,,112448n n n n n n C C C C n -⋅⋅∴=+⋅∴-= 163418118,0,1,2,82rr r r n n T C x r -+>∴=∴=⋅=,当0,4,8r =时,为有理项,从而概率为636799512A A A =,选C. 【点睛】本题考查二项式定理以及古典概型概率,考查综合分析求解能力,属中档题.5.B解析:B 【分析】模拟程序运行,依次计算可得所求结果 【详解】当4a =,3b =,2c =时,12S =<,2k =; 当5a =,4b =,3c =时,612S =<,3k =; 当6a =,5b =,4c =时,27124S =<,4k =; 当7a =,6b =,5c =时,12S =>,5k =; 故选B 【点睛】本题考查程序运算的结果,考查运算能力,需注意1k k =+所在位置6.B解析:B 【解析】 【分析】执行程序,逐次计算,根据判断条件终止循环,即可求解输出的结果,得到答案. 【详解】由题意,执行程序,可得:第1次循环:满足判断条件,1,2S i ==; 第2次循环:满足判断条件,2,3S i ==; 第3次循环:满足判断条件,6,4S i ==; 第4次循环:满足判断条件,24,5S i ==; 第5次循环:满足判断条件,120,6S i ==; 第6次循环:满足判断条件,720,7S i ==; 不满足判断条件,终止循环,输出720S =,故选B.【点睛】本题主要考查了循环结构的程序框图的计算输出,其中解答中正确理解循环结构的程序框图的计算功能,逐次计算是解答的关键,着重考查了推理与运算能力,属于基础题.7.D解析:D 【分析】执行循环结构的程序框图,逐次运算,根据判断条件终止循环,即可得到运算结果,得到答案. 【详解】由题意,执行循环结构的程序框图,可知:第一次运行时,1(1)11,0(1)1,3T S n =-=-=+-=-=•; 第二次运行时,3(1)33,1(3)4,5T S n =-=-=-+-=-=•; 第三次运行时,5(1)55,4(5)9,7T S n =-=-=-+-=-=•; 第四次运行时,7(1)77,9(7)16,9T S n =-=-=-+-=-=•; 第五次运行时,9(1)99,16(9)25,11T S n =-=-=-+-=-=•; 第六次运行时,11(1)1111,25(11)36T S =-=-=-+-=-•, 此时刚好满足9n >,所以输出S 的值为36-.故选D. 【点睛】本题主要考查了循环结构的程序框图的计算与输出问题,其中解答中熟练应用给定的程序框图,逐次运算,根据判断条件,终止循环得到结果是解答的关键,着重考查了推理与运算能力,属于基础题.8.C解析:C 【解析】 【分析】首先确定流程图的功能为计数111113355720172019S =++++⨯⨯⨯⨯的值,然后利用裂项求和的方法即可求得最终结果. 【详解】由题意结合流程图可知流程图输出结果为111113355720172019S =++++⨯⨯⨯⨯,11(2)111(2)2(2)22n n n n n n n n +-⎛⎫=⨯=- ⎪+++⎝⎭,111113355720172019S ∴=++++⨯⨯⨯⨯11111111123355720172019⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦1110091220192019⎛⎫=-=⎪⎝⎭. 本题选择C 选项. 【点睛】识别、运行程序框图和完善程序框图的思路: (1)要明确程序框图的顺序结构、条件结构和循环结构. (2)要识别、运行程序框图,理解框图所解决的实际问题. (3)按照题目的要求完成解答并验证.9.D解析:D 【解析】试题分析:由表格得(),x y 为:()10,38,因为(),x y 在回归方程y bx a =+上且2b =-,()38102a ∴=⨯-+,解得58a =∴2ˆ58yx =-+,当6x =时,26ˆ5846y=-⨯+=,故选D. 考点:1、线性回归方程的性质;2、回归方程的应用.10.C解析:C 【解析】试题分析:A 选项,中位数是84;B 选项,众数是出现最多的数,故是83;C 选项,平均数是85,正确;D 选项,方差是,错误.考点:•茎叶图的识别 相关量的定义11.C解析:C 【解析】 【分析】由题意利用线性回归方程的性质计算可得a 的值. 【详解】 由于468101285x ++++==,35891075y ++++==,由于线性回归方程过样本中心点(),x y ,故:70.98a =⨯+, 据此可得:0.2a =-. 故选C . 【点睛】本题主要考查线性回归方程的性质及其应用,属于中等题.12.A解析:A 【解析】 【分析】利用茎叶图、平均数的性质直接求解. 【详解】由一组数据的茎叶图得: 该组数据的平均数为:1(7581858995)855++++=. 故选:A . 【点睛】本题考查平均数的求法,考查茎叶图、平均数的性质等基础知识,考查运算求解能力,是基础题.二、填空题13.【分析】将甲乙到达时间设为(以为0时刻单位为分钟)则相见需要满足:画出图像根据几何概型公式得到答案【详解】根据题意:将甲乙到达时间设为(以为0时刻单位为分钟)则相见需要满足:画出图像:根据几何概型公解析:1136【分析】将甲、乙到达时间设为,x y (以4:00为0时刻,单位为分钟).则相见需要满足:10y x -≤ 画出图像,根据几何概型公式得到答案.【详解】根据题意:将甲、乙到达时间设为,x y (以4:00为0时刻,单位为分钟) 则相见需要满足:10y x -≤ 画出图像:根据几何概型公式:2500111360036P =-= 【点睛】 本题考查了几何概型的应用,意在考查学生解决问题的能力.14.【解析】【分析】以正方体的中心为球心1为半径做球若点在球上或球内时符合要求求其体积根据几何概型求概率即可【详解】当正方体内的点落在以正方体中心为球心1为半径的球上或球内时此点到正方体中心的距离不大于解析:6π 【解析】 【分析】以正方体的中心为球心,1为半径做球,若点在球上或球内时,符合要求,求其体积,根据几何概型求概率即可. 【详解】当正方体内的点落在以正方体中心为球心,1为半径的球上或球内时,此点到正方体中心的距离不大于1, 因为344133V ππ=⨯⨯=球,2228V =⨯⨯=正方体 因此正方体内点到正方体中心的距离不大于1的概率24132226V P V 球正方体ππ⨯⨯===⨯⨯, 故填6π. 【点睛】本题主要考查了几何概型,球的体积,正方体的体积,属于中档题.15.①③【分析】由回归直线的方程的意义可判断①;由基本事件的定义可判断②;由互斥事件与对立事件的定义可判断③;由古典概型的定义可判断④【详解】①由回归直线的方程的意义可知意味着每增加一个单位平均增加8个解析:①③. 【分析】由回归直线的方程的意义可判断①;由基本事件的定义可判断②;由互斥事件与对立事件的定义可判断③;由古典概型的定义可判断④. 【详解】①,由回归直线的方程的意义可知ˆ856yx =+意味着x 每增加一个单位,y 平均增加8个单位,正确;②,由于基本事件是每一个出现的基本实验结果,是不能再分的,而投掷一颗骰子实验,有掷出的点数为奇数还有1,3,5三个基本事件,故掷出的点数为奇数不是基本事件,同理掷出的点数为偶数也不是基本事件,故②是错误的;③,互斥事件不一定是对立事件,但对立事件一定是互斥事件,正确;④,古典概型要求每个基本事件出现的可能性相等,故在适宜的条件下种下一颗种子,观察它是否发芽,不是古典概型.故正确答案为:①③ 【点睛】本题主要考查回归直线的方程的意义、基本事件的定义、互斥事件与对立事件的定义、古典概型的定义,意在考查对基本定义掌握的熟练程度,属于中档题..16.【分析】根据程序框图依次计算运行结果发现输出的S 值周期变化利用终止运行的条件判断即可求解【详解】由程序框图得:;第一次运行第二次运行第三次运行故周期为4当程序运行了2019次故的值为故答案为【点睛】 解析:12【分析】根据程序框图,依次计算运行结果,发现输出的S 值周期变化,利用终止运行的条件判断即可求解 【详解】由程序框图得:1,1S k ==; 第一次运行1,2;8S k == 第二次运行1212,3;842S k =⨯=== 第三次运行121,4;2S k =⨯==故周期为4, 当2020k =,程序运行了2019次,201945043=⨯+,故S 的值为12故答案为12【点睛】本题考查程序框图,根据程序的运行功能判断输出值的周期变化是关键,是基础题17.41【分析】根据给定的程序框图计算逐次循环的结果即可得到输出的值得到答案【详解】由题意运行程序框图可得第一次循环不满足判断框的条件;第二次循环不满足判断框的条件;第三次循环不满足判断框的条件;第四次解析:41 【分析】根据给定的程序框图,计算逐次循环的结果,即可得到输出的值,得到答案. 【详解】由题意,运行程序框图,可得第一次循环,1n =,不满足判断框的条件,1415S =+⨯=;第二次循环,2n =,不满足判断框的条件,54213S =+⨯=; 第三次循环,3n =,不满足判断框的条件,134325S =+⨯=; 第四次循环,4n =,不满足判断框的条件,254441S =+⨯=; 第五次循环,5n =,满足判断框的条件,输出41S =, 故答案为41. 【点睛】本题主要考查了循环结构的程序框图的计算与输出问题,其中利用循环结构表示算法,一定要先确定是用当型循环结构,还是用直到型循环结构;当型循环结构的特点是先判断再循环,直到型循环结构的特点是先执行一次循环体,再判断;注意输入框、处理框、判断框的功能,不可混用,着重考查了分析问题和解答问题的能力,属于基础题.18.24【解析】考点:程序框图专题:图表型分析:由程序中循环的条件为i≤4我们易得到最后一次循环时i=4又由循环变量i 的初值为2故我们从2开始逐步模拟循环的过程即可得到结论解答:解:模拟程序的运行结果:解析:24 【解析】 考点:程序框图. 专题:图表型.分析:由程序中循环的条件为i≤4,我们易得到最后一次循环时i=4,又由循环变量i 的初值为2,故我们从2开始逐步模拟循环的过程,即可得到结论. 解答:解:模拟程序的运行结果: i=2时,t=2, i=3时,t=6, i=4时,t=24, 故答案为24点评:本题考查的知识点是程序框图及程序代码,在写程序运行结果时,模拟程序的运行过程是解答此类问题最常用的方法,模拟时要分析循环变量的初值,步长和终值19.1【解析】分析:先利用平均数公式求出平均数再利用方差公式即可得结果详解:的平均数为的方差为故答案为点睛:本题考查主要考查平均数公式与方差公式属于基础题样本数据的算术平均数公式;样本方差公式标准差解析:1 【解析】分析:先利用平均数公式求出平均数,再利用方差公式即可得结果. 详解:5.7,5.8,6.1,6.4,6.5的平均数为5.7+5.8+6.1+6.4+6.56.15=,5.7,5.8,6.1,6.4,6.5∴的方差为()()()()()222225.76.1+5.8 6.1+6.1 6.1+6.4 6.1+6.5 6.10.15-----=,故答案为0.1.点睛:本题考查主要考查平均数公式与方差公式,属于基础题. 样本数据的算术平均数公式12n 1(x +x +...+x )x n =;样本方差公式2222121[()()...()]n s x x x x x x n=-+-++-,标准差s =20.12【解析】分析:由频率=以及直方图可得分布在区间第一组与第二组共有20人的频率即可求出第三组中有疗效的人数得到答案详解:由直方图可得分布在区间第一组和第二组共有20人分布唉区间第一组与第二组的频率解析:12 【解析】 分析:由频率=频数样本容量,以及直方图可得分布在区间第一组与第二组共有20人的频率,即可求出第三组中有疗效的人数得到答案.详解:由直方图可得分布在区间第一组和第二组共有20人,分布唉区间第一组与第二组的频率分别为0.24,0.16,所以第一组有12人,第二组8人第三组的频率为0.36,所以第三组的人数为18人,第三组中没有疗效的有6人,第三组由疗效的有12人.点睛:1、用样本估计总体是统计的基本思想,而利用频率分布表和频率分布直方图来估计总体则是用样本的频率分布去估计总体分布的两种主要方法,分布表在数量表示上比较准确,直方图比较直观.2、频率分布表中的频数之和等于样本容量,各组中的频率之和等于1;在频率分布直方图中,各小长方形的面积表示相应各组的频率,所以,所有小长方形的面积的和等于1.三、解答题21.(1)72;(2)15. 【分析】(1)利用频率分布直方图各组的中值估计平均分.(2)这是一个古典概型,先求得从95,76,97,88,69,100这6个数中任取2个数基本事件的总数,再根据在[90,100]的人数是600.053⨯=,求得从95,97,100这3个数中任取2个数基本事件数,然后代入公式求解. 【详解】(1)平均分为:450.05+550.15+650.2+750.3+850.25+950.05=72⨯⨯⨯⨯⨯⨯;(2)从95,76,97,88,69,100这6个数中任取2个数,共有2615C =种,在[90,100]的人数是600.053⨯=,从95,97,100这3个数中任取2个数,共有233C =种,所以这2个数恰好是两个学生的成绩的概率是.31155 p==.【点睛】本题主要考查平均数的求法,古典概型的概率,还考查了运算求解的能力,属于中档题.22.(1)b=30,c=50(2)有99%的把握,(3)1021 P=【解析】试题分析:(1)由分层抽样的概念得到参数值;(2)根据公式计算得到28.66 6.635K≈>,再下结论;(3)根据古典概型的计算公式,列出事件的所有可能性,再得到4男一女的事件数目,做商即可.(1)根据分层抽样方法抽得女生50人,男生75人,所以b=50-20=30(人),c=75-25=50(人)(2)因为()()()()()22125202530508.66 6.6352030502520503025K⨯-⨯=≈>++++,所以有99%的把握认为观看2018年足球世界杯比赛与性别有关.(3)设5名男生分别为A、B、C、D、E,2名女生分别为a、b,由题意可知从7人中选出5人接受电视台采访,相当于从7人中挑选2人不接受采访,其中一男一女,所有可能的结果有A,B}A,C}A,D}A,E}A,a}A,b}B,C}B,D}B,E}B,a}B,b}C,D}C,E}C,a}C,b}D,E}D,a}D,b}E,a}E,b}a,b},共21种,其中恰为一男一女的包括,A,a}A,b}B,a}B,b}C,a}C,b}D,a}D,b}E,a}E,b},共10种.因此所求概率为1021 P=23.答案见解析【解析】试题分析:由题意,可知本题是要输出成绩小于12.1秒时的所有值,所以需要采用条件结构来画程序框图;再利用程序框图,编写出相应的程序即可.试题程序框图如图所示:程序:i=1while i <=10 Gi =input (“Gi =”); if Gi <12.1 print (%io (2),Gi ); end i =i +1; end点睛:本题考查的是算法与流程图.对算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项. 24.答案见解析 【解析】试题分析:先设丢番图的寿数为x , x 为正整数,列出方程,再用验证的方法找到方程的解,即得到丢番图的寿数.再根据算法写出算法程序. 试题设丢番图的寿数为x ,则x 为正整数,根据题意可知16x+112x+17x+5+12x+4=x ,我们可以从x=1,依次验证是不是方程的解.算法如下: S1 x=1;S2 判断16x+112x+17x+5+12x+4=x 是否成立,如果成立,则输出x ;否则,转至S3; S3 x=x+1,转至S2. 算法程序如下: x=1;while 16x+112x+17x+5+12x+4< >xx=x+1; wend x=x-1 print x end点睛:本题的难点在于写出找丢番图的寿数的算法,这里只能采取验证的方法. 25.(1)0.36 6.24y x =+;(2)8.76万吨. 【分析】(1)由题意求得知 3.5t =,7.5=y ,()62117.5i i t t =-=∑,运用公式求得b ,代入可求得y 关于t 的线性回归方程.(2)由(1)得的线性回归方程,代入年份代码7t =计算,可预测2020年该地区小龙虾的年产量.【详解】(1)由题知 3.5t =,7.5=y ,()62117.5i i t t =-=∑,()()()616216.30.3617.5ˆiii i i t t y y bt t ==--===-∑∑, 又 6.24=-=a y bt .所以,y 关于t 的线性回归方程为0.36 6.24y x =+.(2)由(1)得,当年份为2020年时,年份代码7t =,此时0.367 6.248.76=⨯+=y .所以,可预测,2020年该地区小龙虾的年产量为8.76万吨. 【点睛】本题考查线性回归方程的求解,利用线性回归方程对总体进行估计,属于中档题.26.(1)见解析(2) 1.1.7ˆ0yx =+(3)9.5百万元 【解析】试题分析:(1)根据表格中的数据,在坐标系中描出点,将点连起来,就画出了散点图;(2)根据题目中的数据计算出 1.1,0.ˆˆ7ba ==,代入平均值3,4x y ==,即可得到回归方程;(3)将8x =,代入回归方程即可得到预测值. (1)散点图(2)由题意可知,12345234473,455x y ++++++++====,51122334445771i i i x y ==⨯+⨯+⨯+⨯+⨯=∑,522222211234555i i x ==++++=∑, 根据公式,可求得2715341.1,4 1.130.ˆˆ75553ba -⨯⨯===-⨯=-⨯, 故所求回归直线的方程为 1.1.7ˆ0y x =+; (3)令8x =,得到预测值 1.1809.5ˆ.7y=⨯+=(百万元)答:如果该企业某年研发费用投入8百万元,预测该企业获得年利润为9.5百万元.。
【人教版】高中数学必修三期末模拟试卷(带答案)
一、选择题1.袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为( )A.521B.1021C.1121D.12.若即时起10分钟内,甲乙两同学等可能到达某咖啡厅,则这两同学到达咖啡厅的时间间隔不超过3分钟的概率为( )A.0.3B.0.36C.0.49D.0.513.在二项式42nxx⎛+⎪⎝⎭的展开式,前三项的系数成等差数列,把展开式中所有的项重新排成一列,有理项都互不相邻的概率为()A.16B.14C.512D.134.从2017年到2019年的3年高考中,针对地区差异,理科数学全国卷每年都命了3套卷,即:全国I卷,全国II卷,全国III卷.小明同学马上进入高三了,打算从这9套题中选出3套体验一下,则选出的3套题年份和编号都各不相同的概率为()A.184B.142C.128D.1145.程大位是明代著名数学家,他的《新编直指算法统宗》是中国历史上一部影响巨大的著作.它问世后不久便风行宇内,成为明清之际研习数学者必读的教材,而且传到朝鲜、日本及东南亚地区,对推动汉字文化圈的数学发展起了重要的作用.卷八中第33问是:“今有三角果一垛,底阔每面七个,问该若干?”如图是解决该问题的程序框图.执行该程序框图,求得该垛果子的总数S为( )A.84 B.56 C.35 D.286.执行如图所示的程序框图,如果输入n=3,输出的S=()A.67B.37C.89D.497.执行如图所示的程序框图,若输入x=9,则循环体执行的次数为()A.1次B.2次C.3次D.4次8.明代数学家程大位(1533~1606年),有感于当时筹算方法的不便,用其毕生心血写出《算法统宗》,可谓集成计算的鼻祖.如图所示的程序框图的算法思路源于其著作中的“李白沽酒”问题.执行该程序框图,若输出的y的值为2,则输入的x的值为()A .74B .5627C .2D .164819.图1是某学习小组学生数学考试成绩的茎叶图,1号到16号的同学的成绩依次为1A ,216,,A A ⋯,图2是统计茎叶图中成绩在一定范围内的学生情况的程序框图,那么该程序框图输出的结果是( )A .10B .6C .7D .1610.如图是两组各7名同学体重(单位:kg )数据的茎叶图,设1、2两组数据的平均数依次为1x 和2x ,标准差依次为12s s 、,那么( )(注:标准差222121[()()...()]n s x x x x x x n=-+-++-A .1212,x x s s >>B .1212,x x s s ><C .1212,x xs s << D .1212,x x s s11.为了解某社区居民的家庭年收入所年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表: 收入x (万元)8.28.610.011.311.9支出y (万元)6.27.58.0 8.59.8根据上表可得回归直线方程ˆˆˆybx a =+,其中ˆˆˆ0.76,b a y bx ==-,据此估计,该社区一户收入为15万元家庭年支出为( ) A .11.4万元B .11.8万元C .12.0万元D .12.2万元12.已知一组数据12,,,n x x x 的平均数3x =,则数据1232,32,,32n x x x +++的平均数为( ) A .3B .5C .9D .11二、填空题13.设每门高射炮命中飞机的概率为0.06,且每一门高射炮是否命中飞机是独立的,若有一敌机来犯,则需要______门高射炮射击,才能以至少99%的概率命中它.14.北京市某银行营业点在银行大厅悬挂着不同营业时间段服务窗口个数的提示牌,如图所示. 设某人到达银行的时间是随机的,记其到达银行时服务窗口的个数为X ,则()E X =______________.15.在区间[0,2]上随机取两个数,a b ,则事件“函数()1f x bx a =+-在[0,1]内有零点”的概率为_______.16.图中的程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入,,a b i 的值分别为6,8,0,则输出的i =________.17.将二进制数110 101(2)转为七进制数,结果为________.18.程序框图如下图所示,其输出的结果是__________________________.19.某天有10名工人生产同一零部件,生产的件数分别是:15、17、14、10、15、17、17、16、14、12,设其平均数为a,中位数为b,众数为c,则a、b、c从小到大的关系依次是________20.已知某人连续5次射击的环数分别是8,9,10,x,8,若这组数据的平均数是9,则这组数据的方差为.三、解答题21.从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:(1)求频率分布直方图中的a ,b 的值;(2)从阅读时间在[14,18)的学生中任选2人,求恰好有1人阅读时间在[14,16),另1人阅读时间在[16,18)的概率.22.在一个盒子中装有6支圆珠笔,其中3支一等品,2支二等品和1支三等品,从中任取3支.求(1)恰有1支一等品的概率; (2)恰有两支一等品的概率; (3)没有三等品的概率.23.如图,已知单位圆221x y +=与x 轴正半轴交于点P ,当圆上一动点Q 从P 出发沿逆时针旋转一周回到P 点后停止运动.设OQ 扫过的扇形对应的圆心角为xrad ,当02x π<<时,设圆心O 到直线PQ 的距离为y ,y 与x 的函数关系式()y f x =是如图所示的程序框图中的①②两个关系式.(1)写出程序框图中①②处的函数关系式; (2)若输出的y 值为12,求点Q 的坐标. 24.设计一个算法,已知函数2x y =的图象上,任意给定两点的横坐标1x 和212()x x x ≠,求过这两点的直线的斜率,并画出程序框图.25.有一个同学家开了一个小卖部,他为了研究气温对热饮销售的影响,经过统计,得到一个卖出的热饮杯数与当天气温的对比表: 摄氏温度C x ︒ 5-0 5 10 15 热饮杯数y1571271077237(1)求y 关于x 的线性回归直线方程;(2)如果某天的气温是–10C ︒,预测这天卖出的热饮杯数(四舍五入,取整数).附:对于线性回归直线方程ˆˆˆybx a =+,其中1122211()()ˆ()nnii i ii i nniii i xx y y x ynx yb xx xnx ====---==--∑∑∑∑,ˆˆay bx =-, 26.某城市100户居民的月平均用水量(单位:吨),以[0,2)[2,4)[4,6)[6,8)[8,10)[10,12)[12,14)分组的频率分布直方图如图.(1)求直方图中x的值;并估计出月平均用水量的众数.(2)求月平均用水量的中位数及平均数;(3)在月平均用水量为[6,8),[8,10),[10,12),[12,14)的四组用户中,用分层抽样的方法抽取22户居民,则应在[10,12)这一组的用户中抽取多少户?(4)在第(3)问抽取的样本中,从[10,12)[12,14)这两组中再随机抽取2户,深入调查,则所抽取的两户不是来自同一个组的概率是多少?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】由从共有15个球中任取2个球,共有215C种不同的取法,其中所取的2个球中恰有1个白球,1个红球,共有11510C C种不同的取法,再利用古典概型及其概率的计算公式,即可求解.【详解】由题意,从共有15个除了颜色外完全相同的球,任取2个球,共有215C种不同的取法,其中所取的2个球中恰有1个白球,1个红球,共有11510C C种不同的取法,所以概率为11510215501010521C CC==,故选B.【点睛】本题主要考查了排列、组合的应用,以及古典概型及其概率的应用,其中解答中认真审题,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.2.D解析:D 【分析】由几何概型中的面积型得:1277210.511010S P S ⨯⨯⨯==-=⨯阴正,即可得解.【详解】设甲、乙两同学等可能到达某咖啡厅的时间为(),x y ,则010x <≤,010y <≤,其基本事件可用正方形区域表示,如图,则甲、乙两同学等可能到达某咖啡厅的时间间隔不超过3分钟的事件为A , 则事件A 为:3x y -≤,其基本事件可用阴影部分区域表示,由几何概型中的面积型可得:1277210.511010S P S ⨯⨯⨯==-=⨯阴正.故选:D. 【点睛】本题考查了几何概型中的面积型,属于基础题.3.C解析:C 【分析】先根据前三项的系数成等差数列求n ,再根据古典概型概率公式求结果 【详解】因为42nx x 前三项的系数为1212111(1)1,,112448n n n n n n C C C C n -⋅⋅∴=+⋅∴-=163418118,0,1,2,82rr r r n n T C x r -+>∴=∴=⋅=,当0,4,8r =时,为有理项,从而概率为636799512A A A =,选C. 【点睛】本题考查二项式定理以及古典概型概率,考查综合分析求解能力,属中档题.4.D解析:D 【分析】先计算出9套题中选出3套试卷的可能,再计算3套题年份和编号都各不相同的可能,通过古典概型公式可得答案. 【详解】通过题意,可知从这9套题中选出3套试卷共有39=84C 种可能,而3套题年份和编号都各不相同共有336A =种可能,于是所求概率为61=8414.选D. 【点睛】本题主要考查古典概型,意在考查学生的分析能力,计算能力,难度不大.5.A解析:A 【分析】按照程序框图运行程序,直到满足7i ≥时输出结果即可. 【详解】按照程序框图运行程序,输入0i =,0n =,0S =, 则1i =,1n =,1S =,不满足7i ≥,循环;2i =,3n =,4S =,不满足7i ≥,循环; 3i =,6n =,10S =,不满足7i ≥,循环; 4i =,10n =,20S =,不满足7i ≥,循环;5i =,15n =,35S =,不满足7i ≥,循环; 6i =,21n =,56S =,不满足7i ≥,循环;7i =,28n =,84S =,满足7i ≥,输出84S =. 故选:A . 【点睛】本题考查根据程序框图循环结构计算输出结果的问题,属于基础题.6.B解析:B 【详解】试题分析:由题意得,输出的为数列的前三项和,而,∴,故选B.考点:1程序框图;2.裂项相消法求数列的和. 【名师点睛】本题主要考查了数列求和背景下的程序框图问题,属于容易题,解题过程中首先要弄清程序框图所表达的含义,解决循环结构的程序框图问题关键是列出每次循环后的变量取值情况,循环次数较多时,需总结规律,若循环次数较少可以全部列出.7.C解析:C 【分析】根据程序框图依次计算得到答案. 【详解】9,5x y ==,41y x -=>;115,3x y ==,413y x -=>; 1129,39x y ==,419y x -=<;结束. 故选:C . 【点睛】本题考查了程序框图的循环次数,意在考查学生的理解能力和计算能力.8.C解析:C 【分析】根据程序框图依次计算得到答案. 【详解】34y x =-,1i =;34916y y x =-=-,2i =;342752y y x =-=-,3i =;3481160y y x =-=-,4i =;34243484y y x =-=-,此时不满足3i ≤,跳出循环,输出结果为243484x -,由题意2434842y x =-=,得2x =. 故选:C 【点睛】本题考查了程序框图的计算,意在考查学生的理解能力和计算能力.9.A解析:A 【分析】先弄清楚程序框图中是统计成绩不低于90分的学生人数,然后从茎叶图中将不低于90分的个数数出来,即为输出的结果. 【详解】176A =,1i =,16i ≤成立,190A ≥不成立,112i =+=; 279A =,2i =,16i ≤成立,290A ≥不成立,112i =+=;792A =,7i =,16i ≤成立,790A ≥成立,011n =+=,718i =+=;依此类推,上述程序框图是统计成绩不低于90分的学生人数,从茎叶图中可知,不低于90分的学生数为10,故选A . 【点睛】本题考查茎叶图与程序框图的综合应用,理解程序框图的意义,是解本题的关键,考查理解能力,属于中等题.10.C解析:C 【分析】由茎叶图分别计算出两组数的平均数和标准差,然后比较大小 【详解】读取茎叶图得到两组数据分别为: (1)53565758617072,,,,,, (2)54565860617273,,,,,,()()11503678112022617x kg =+⨯++++++=,()()215046810112223627x kg =+⨯++++++=,()()()2221131653615661...726177s ⎡⎤=-+-++-=⎣⎦, ()()()2222134254625662 (736277)s ⎡⎤=-+-++-=⎣⎦, 则1212,x x s s << 故选C 【点睛】本题给出茎叶图,需要求出数据的平均数和方差,着重考查了茎叶图的认识,样本特征数的计算等知识,属于基础题.11.B解析:B 【解析】 试题分析:由题,,所以.试题 由已知,又因为ˆˆˆybx a =+,ˆˆˆ0.76,b a y bx ==- 所以,即该家庭支出为万元.考点:线性回归与变量间的关系.12.D解析:D 【解析】分析:一组数据中的每一个数加或减一个数,它的平均数也加或减这个数;;依此规律求解即可.详解::∵一组数据12,,,n x x x 的平均数为3, ∴另一组数据1232,32,,32n x x x +++的平均数121211323232[32]33211n n x x x x x x n n n=++++⋯++=++⋯++=⨯+=()(), 故选D.点睛:本题考查了平均数,平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.二、填空题13.【分析】设需要门高射炮由题意得出解出的取值范围可得出正整数的最小值【详解】设需要门高射炮则命不中的概率为由题意得出得解得而因此至少需要门高射炮故答案为:【点睛】本题考查独立事件概率乘法公式的应用在涉 解析:75【分析】设需要n 门高射炮,由题意得出()110.060.99n--≥,解出n 的取值范围,可得出正整数n 的最小值.【详解】设需要n 门高射炮,则命不中的概率为()10.06n-,由题意得出10.940.99n-≥,得0.940.01n≤,解得0.942log 0.01lg 0.94n ≥=-, 而274.43lg 0.94-≈,因此,至少需要75门高射炮.故答案为:75. 【点睛】本题考查独立事件概率乘法公式的应用,在涉及“至少”问题时,可以利用对立事件的概率公式来进行计算,考查运算求解能力,属于中等题.14.【解析】【分析】列出随机变量的分布列求解【详解】由题意知某人到达银行的概率为几何概型所以:其到达银行时服务窗口的个数为的分布列为: 5 4 3 4 2 则【点睛】本题考查几何概型及随 解析:3.5625【解析】 【分析】列出随机变量的分布列求解. 【详解】由题意知某人到达银行的概率为几何概型,所以: 其到达银行时服务窗口的个数为的分布列为:则()54342 3.56258161648E X =⨯+⨯+⨯+⨯+⨯=. 【点睛】本题考查几何概型及随机变量的分布列.15.【解析】【分析】在上任取两个数在以2为棱长的正方形内在内有零点等价于即求出可行域的面积利用几何概型概率公式求解即可【详解】在上任取两个数则在以2为棱长的正方形内因为在内有零点所以即表示如图所示的梯形 解析:38【解析】 【分析】在[]0,2上任取两个数,a b , (),a b 在以2为棱长的正方形内,()f x 在[]0,1内有零点, 等价于()()010f f ≤,即()()110a b a -+-≤,求出可行域的面积,利用几何概型概率公式求解即可. 【详解】在[]0,2上任取两个数,a b , 则(),a b 在以2为棱长的正方形内, 因为()f x 在[]0,1内有零点, 所以()()010f f ≤, 即()()110a b a -+-≤,(),a b 表示如图所示的梯形区域,由几何概型概率公式可得“函数()1f x bx a =+-在[]0,1内有零点”的概率为()112132228⨯+⨯=⨯,故答案为38. 【点睛】本题主要考查“面积型”的几何概型,属于中档题. 解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与面积有关的几何概型问题关鍵是计算问题的总面积以及事件的面积;几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本事件对应的区域测度把握不准导致错误 ;(3)利用几何概型的概率公式时 , 忽视验证事件是否等可能性导致错误.16.4【解析】当输入时运算程序继续此时进而有这时输出应填答案解析:4 【解析】当输入6,8,0a b i ===时,1,,2i a b b b a =<=-=,运算程序继续,此时6,2a b ==,2,,4i a b a a b =>=-=,进而有3,,2i a b a a b =>=-=,这时2,314a b i ===+=,输出2,314a b i ===+=,应填答案4.17.【解析】试题分析:把十进制的化为七进制则所以结果为考点:进位制 解析:7104()【解析】试题分析:245(2)110101112121253=+⨯+⨯+⨯=,把十进制的53化为七进制,则53774÷=,7710÷=,1701÷=,所以结果为(7)104.考点:进位制.18.127【分析】根据题意按照程序框图的顺序进行执行然后输出结果即可【详解】解:由程序框图知循环体被执行后a的值依次为37153163127故输出的结果是127故答案为127【点睛】本题考查程序框图的识解析:127【分析】根据题意,按照程序框图的顺序进行执行,然后输出结果即可【详解】解:由程序框图知,循环体被执行后a的值依次为3、7、15、31、63、127,故输出的结果是127.故答案为127.【点睛】本题考查程序框图的识别,通过对已知框图的分析与执行,写出运算结果,属于基础题.19.【详解】分析:将数据由小到大排列好根据众数中位数平均数的概念得到相应的数据即可详解:根据提干得到中位数为b=15众数为c=17平均数为=a故故答案为点睛:这个题目考查了中位数众数平均数的概念和计算较解析:a b c<<.【详解】分析:将数据由小到大排列好,根据众数,中位数,平均数的概念得到相应的数据即可.详解:根据提干得到中位数为b=15,众数为c=17,平均数为10+12+28+30+16+51=14.710=a.故a b c<<.故答案为a b c<<.点睛:这个题目考查了中位数,众数,平均数的概念和计算,较为基础,众数即出现次数最多的数据,中位数即最中间的数据,平均数即将所有数据加到一起,除以数据个数. 20.【解析】分析:先根据平均数求x的值再求数据的方差详解:由题得所以数据的方差为故答案为点睛:(1)本题主要考查平均数和方差的计算意在考查学生对这些基础知识的掌握水平(2)方差公式为解析:4 5【解析】分析:先根据平均数求x的值,再求数据的方差.详解:由题得8+9+8109,10.5xx++=∴=所以数据的方差为22222214[(89)(99)(109)(109)(89)]55S =-+-+-+-+-=.故答案为45. 点睛:(1)本题主要考查平均数和方差的计算,意在考查学生对这些基础知识的掌握水平.(2) 方差公式为222121[()()()]n S x x x x x x n=-+-+⋅⋅⋅+-. 三、解答题21.(1)a=0.11,b=0.04;(2)23. 【分析】(1)课外阅读时间落在[6,8)的有22人,频率为0.22,由此能求出a ,课外阅读时间落在[2,4)的有8人,频率为0.08,由此能求出b ;(2)课外阅读时间落在[14,16)的有2人,设为m ,n ;课外阅读时间落在[16,18)的有2人为x ,y ,由此利用列举法能求出从课外阅读时间落在[14,18)的学生中任选2人,其中恰好有1人阅读时间在[14,16),另1人阅读时间在[16,18)的概率. 【详解】(1)课外阅读时间落在[6,8)的有22人,频率为0.22,所以0.220.112a == 课外阅读时间落在[2,4)的有8人,频率为0.08, 所以0.080.042b == (2)课外阅读时间落在[14,16)的有2人,设为m ,n ;课外阅读时间落在[16,18)的有2人为x ,y ,则从课外阅读时间落在[14,18)的学生中任选2人包含:(,)m n ,(,)m x ,(,)m y ,(,)n x ,(,)n y ,(,)x y 共6种,其中恰好有1人阅读时间在[14,16),另1人阅读时间在[16,18)的有(,)m x ,(,)m y ,(,)n x ,(,)n y 共4种, 所以所求概率为:4263p ==. 【点睛】本题考查频率直方图的求法,考查概率的求法,考查古典概型、列举法等基础知识,是基础题. 22.(1)920;(2)920;(3)12.【分析】(1)恰有一支一等品,从3支一等品中任取一支,从二、三等品种任取两支利用分布乘法原理计算后除以基本事件总数;(2)恰有两枝一等品,从3支一等品中任取两支,从二、三等品种任取一支利用分布乘法原理计算后除以基本事件总数;(3)从5支非三等品中任取三支除以基本事件总数. 【详解】(1)恰有一枝一等品的概率123336920C C P C ⋅==; (2)恰有两枝一等品的概率123336920C C P C ⋅==; (3)没有三等品的概率353612C P C ==.【点睛】本题考查古典概型及其概率计算公式,考查逻辑思维能力和运算能力,属于常考题. 23.(1)cos 2x y =,cos 2x y =-.(2) 1(,2-. 【详解】分析:(1)利用三角函数的定义与性质求出两种情况下y 与x 的函数关系式,即可得结果;(2)0x π<≤时,1cos 22x =,得23x π=,此时点Q的坐标为1,22⎛⎫- ⎪ ⎪⎝⎭;当2x ππ<<时,1cos 22x -=,得43x π=,此时点Q的坐标为1,22⎛-- ⎝⎭. 详解:(1)当0x π<≤时,cos2x y =;当2x ππ<<时,cos cos 22x x y π⎛⎫=-=- ⎪⎝⎭; 综上可知,函数解析式为()(](),0,2,,22x cos x f x x cos x πππ⎧∈⎪⎪=⎨⎪-∈⎪⎩所以框图中①②处应填充的式子分别为cos 2x y =,cos 2xy =-. (2)若输出的y 值为12,则 0x π<≤时,1cos 22x =,得23x π=,此时点Q的坐标为1,22⎛⎫- ⎪ ⎪⎝⎭;当2x ππ<<时,1cos22x -=,得43x π=,此时点Q 的坐标为13,2⎛⎫-- ⎪ ⎪⎝⎭. 点睛:本题主要考查条件语句以及算法的应用,属于中档题 .算法是新课标高考的一大热点,其中算法的交汇性问题已成为高考的一大亮,这类问题常常与函数、数列、不等式等交汇自然,很好地考查考生的信息处理能力及综合运用知识解决问題的能力,解决算法的交汇性问题的方:(1)读懂程序框图、明确交汇知识,(2)根据给出问题与程序框图处理问题即可. 24.见解析 【解析】试题分析:输入12,x x ,然后计算112x y =,222xy =和1212y y k x x -=-,最后输出,利用顺序结构的程序框图表示即可. 试题 算法如下:第一步:输入12,x x .第二步:计算112xy =. 第三步:计算222xy =.第四步:计算1212y y k x x -=-. 第五步,输出k . 程序框图下:25.(1)ˆ 5.9129.5yx =-+;(2)189杯. 【分析】(1)根据表中数据计算可得所需数据,利用最小二乘法可求得回归直线方程;(2)代入10x =-即可求得预测值. 【详解】(1)由表中数据得:505101555x -++++==,15712710772371005y ++++==,517855357205551025i ii x y==-+++=∑,5212525100225375i i x ==+++=∑,102555100ˆ 5.9375525b-⨯⨯∴==--⨯,ˆ100 5.95129.5a ∴=+⨯=,y ∴关于x 的线性回归直线方程为:ˆ 5.9129.5y x =-+.(2)令10x =-,解得:188.5189y =≈,∴如果某天的气温是–10C ︒,预测这天卖出的热饮杯数为189杯.【点睛】本题考查利用最小二乘法求解回归直线、利用回归直线求解预测值的问题;关键是熟练掌握最小二乘法,考查学生的计算能力. 26.(1) x =0.075,7;(2) 6.4,5.36;(3) 2;(4)23. 【分析】(1)根据频率和为1,列方程求出x 的值;(2)根据频率分布直方图中,每个矩形的中点横坐标与该矩形的纵坐标、组距相乘后求和可得平均值,由最高矩形的数据组中点为众数;中位数两边的频率相等,由此求出中位数;(3)求出抽取比例数,计算应抽取的户数; (4)利用列举法,由古典概型概率公式可得结果. 【详解】(1)根据频率和为1,得2×(0.02+0.095+0.11+0.125+x +0.05+0.025)=1, 解得x =0.075;由图可知,最高矩形的数据组为[6,8),所以众数为()16872+=; (2) [2,6)内的频率之和为 (0.02+0.095+0.11)×2=0.45;设中位数为y ,则0.45+(y −6)×0.125=0.5, 解得y =6.4,∴中位数为6.4;平均数为()210.0230.09550.1170.12590.075110.025 5.36⨯+⨯+⨯+⨯+⨯+⨯= (3)月平均用电量为[10,12)的用户在四组用户中所占的比例为0.0520.1250.0750.050.02511=+++,∴月平均用电量在[10,12)的用户中应抽取11×211=2(户).(4)月平均用电量在[12,14)的用户中应抽取11×111=1(户),月平均用电量在[10,12)的用户设为A、B, 月平均用电量在[12,14)的用户设为C,从[10,12),[12,14)这两组中随机抽取2户共有,,AB AC BC,3种情况,其中,抽取的两户不是来自同一个组的有,,AC BC,2种情况,所以,抽取的两户不是来自同一个组的概率为2 3 .【点睛】本题主要考查频率分布直方图的应用,属于中档题. 直方图的主要性质有:(1)直方图中各矩形的面积之和为1;(2)组距与直方图纵坐标的乘积为该组数据的频率;(3)每个矩形的中点横坐标与该矩形的纵坐标、组距相乘后求和可得平均值;(4)直方图左右两边面积相等处横坐标表示中位数.。
【人教版】高中数学必修三期末模拟试卷带答案(1)
一、选择题1.“二进制”来源于我国古代的《易经》,该书中有两类最基本的符号:“─”和“﹣﹣”,其中“─”在二进制中记作“1”,“﹣﹣”在二进制中记作“0”.如符号“☱”对应的二进制数011(2)化为十进制的计算如下:011(2)=0×22+1×21+1×20=3(10).若从两类符号中任取2个符号进行排列,则得到的二进制数所对应的十进制数大于2的概率为( ) A .12B .13C .23D .142.若函数()201)((1)x lnx e x f x e x e ⎧+<<=⎨≤<⎩在区间()0,e 上随机取一个实数x ,则()f x 的值小于常数2e 的概率是( ) A .1eB .11e-C .2eD .21e-3.类比“赵爽弦图”,可类似地构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设2AD BD =,若在大等边三角形中随机取一点,则此点取自小等边三角形的概率是( )A .14B .13C .17D .4134.太极图是以黑白两个鱼形纹组成的图案,它形象化地表达了阴阳轮转、相反相成是万物生成变化根源的哲理,展现了一种相互转化,相对统一的形式美.按照太极图的构图方法,在平面直角坐标系中,圆O 被函数2sin8y x π=的图象分割为两个对称的鱼形图案(如图),其中阴影部分小圆的周长均为4π,现从大圆内随机取一点,则此点取自阴影部分的概率为( )A.136B.118C.116D.185.程大位是明代著名数学家,他的《新编直指算法统宗》是中国历史上一部影响巨大的著作.它问世后不久便风行宇内,成为明清之际研习数学者必读的教材,而且传到朝鲜、日本及东南亚地区,对推动汉字文化圈的数学发展起了重要的作用.卷八中第33问是:“今有三角果一垛,底阔每面七个,问该若干?”如图是解决该问题的程序框图.执行该程序框图,求得该垛果子的总数S为( )A.84 B.56 C.35 D.286.执行如图所示的程序框图,则输出的S=()A.1-B.2-C.2D.1 27.执行如图所示的程序框图,若输出的结果为126,则判断框内的条件可以为()A .5n ≤B .6n ≤C .7n ≤D .8n ≤8.执行如图所示的程序框图,若输出的结果为48,则输入k 的值可以为A .6B .10C .8D .49.为了了解某同学的数学学习情况,对他的6次数学测试成绩进行统计,作出的茎叶图如图所示,则下列关于该同学数学成绩的说法正确的是( )A .中位数为83B .众数为85C .平均数为85D .方差为1910.为了解一片经济树林的生长情况,随机测量了其中100株树木的底部周长(单位:cm ),根据所得数据画出样本的频率分布直方图如图所示.那么在这100株树木中,底部周长小于110cm 的株数n 是 ( )A .30B .60C .70D .8011.若某校高一年级8个班参加合唱比赛的得分如茎叶图所示,则这组数据的中位数和平均数分别是( )A .91.5和91.5B .91.5和92C .91和91.5D .92和9212.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响.对近8年的年宣传费i x 和年销售量()1,2,...8i y i =数据作了初步处理,得到下面的散点图及一些统计量的值.有下列5个曲线类型:①ˆˆy bxa =+;②y x d =+;③ln y p q x =+;④21k xy k e =+;⑤212y c x c =+,则较适宜作为年销售量y 关于年宣传费x 的回归方程的是( ) A .①②B .②③C .②④D .③⑤二、填空题13.如图,在长方形OABC 内任取一点(,)P x y ,则点P 落在阴影部分BCD 内的概率为________.14.乒乓球赛规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换,每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,甲发球得1分的概率为35,乙发球得1分的概率为23,各次发球的胜负结果相互独立,甲、乙的一局比赛中,甲先发球.则开始第4次发球时,甲、乙的比分为1比2的概率为________.15.如图,在平放的边长为1的正方形中随机撒1000粒豆子,有380粒落到红心阴影部分上,据此估计红心阴影部分的面积为____.16.执行下面的程序框图,若输入的a,b,k分别为1,2,3,则输出的M _____17.已知某程序框图如图所示,则该程序运行后输出S的值为__________.18.如图,程序框图中,语句1被执行的次数为__________.19.下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;②设有一个回归方程ˆ35yx =-,若变量x 增加一个单位时,则y 平均增加5个单位; ③线性回归方程^^^y b x a =+所在直线必过(),x y ; ④曲线上的点与该点的坐标之间具有相关关系;⑤在一个22⨯列联表中,由计算得213.079K =,则其两个变量之间有关系的可能性是0090.其中错误的是________.20.对具有线性相关关系的变量x ,y ,有一组观察数据(,)(1,2,9)i i x y i =⋅⋅⋅,其回归直线方程是:2y x a =+,且919ii x==∑,9118i i y ==∑,则实数a 的值是__________.三、解答题21.袋中有9个大小相同颜色不全相同的小球,分别为黑球、黄球、绿球,从中任意取一球,得到黑球或黄球的概率是59,得到黄球或绿球的概率是23,试求: (1)从中任取一球,得到黑球、黄球、绿球的概率各是多少? (2)从中任取两个球,得到的两个球颜色不相同的概率是多少?22.“绿水青山就是金山银山”,为了响应国家政策,我市环保部门对市民进行了一次环境保护知识的网络问卷调查,每位市民仅有一次参加机会,通过随机抽样,得到参与问卷调查的50人的得分(满分:100分)数据,统计结果如表所示: 组别 [40,50)[50,60)[60,70)[70,80)[80,90)[90,100)男 1 2 2 10 9 6 女55532若规定问卷得分不低于70分的市民称为“环境保护关注者”,则上图中表格可得22⨯列联表如下:(1)请完成上述22⨯列联表,并判断能否在犯错误的概率不超过0.05的前提下认为“环境保护关注者”与性别有关?(2)若问卷得分不低于80分的人称为“环境保护达人”,现在从本次调查的“环境保护达人”中利用分层抽样的方法抽取4名市民参与环保知识问答,再从这4名市民中随机抽取2人参与座谈会,求抽取的2名市民中,既有男“环境保护达人”又有女“环境保护达人”的概率.附表及公式:22()()()()()n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.2.07223.下面程序的功能是输出1~100之间的所有偶数.程序:i=1DOm=iMOD2IF①THENPRINTiENDIF②LOOPUNTILi>100END(1)试将上面的程序补充完整;(2)改写为WHILE型循环结构程序.24.一队士兵来到一条有鳄鱼的深河的左岸.只有一条小船和两个小孩,这条船只能承载两个小孩或一个士兵.试设计一个算法,将这队士兵渡到对岸.25.零部件生产水平是评判一个国家高端装备制造能力的重要标准之一,其中切割加工技术是一项重要技术某精密仪器制造商研发了一种切割设备,用来生产高精度的机械零件,经过长期生产检验,可以认为该设备生产的零件尺寸服从正态分布N(μ,σ2).某机械加工厂购买了该切割设备,在正式投入生产前进行了试生产,从试生产的零件中任意抽取10件作为样本,下面是样本的尺寸x i(i=1,2,3,…,10,单位:mm):100.03100.499.92100.5299.98100.3599.92100.44100.66100.78用样本的平均数x作为μ的估计值,用样本的标准差s作为σ的估计值.(1)按照技术标准的要求,若样本尺寸均在(μ﹣3σ,μ+3σ)范围内,则认定该设备质量合格,根据数据判断该切割设备的质量是否合格.(2)该机械加工厂将该切割设备投入生产,对生产的零件制定了两种销售方案(假设每种方案对销售量没有影响):方案1:每个零件均按70元定价销售;方案2:若零件的实际尺寸在(99.7,100.3)范围内,则该零件为A级零件,每个零件定价100元,否则为B级零件,每个零件定价60元.哪种销售方案的利润更大?请根据数据计算说明.附:1021iix=∑≈100601.8,样本方差()22221111n ni ii is x x x nxn n==⎛⎫=-=-⎪⎝⎭∑∑.若X~N(μ,σ2),则P(μ﹣σ<X<μ+σ)=0.6827,P(μ﹣2σ<X<μ+2σ)=0.9545 26.为培养学生在高中阶段的数学能力,某校将举行数学建模竞赛.已知该竞赛共有60名学生参加,他们成绩的频率分布直方图如图所示.(1)估计这60名参赛学生成绩的中位数;(2)为了对数据进行分析,将60分以下的成绩定为不合格.60分以上(含60分)的成绩定为合格,某评估专家决定利用分层抽样的方法从这60名学生中选取10人,然后从这10人中抽取4人参加座谈会,记ξ为抽取的4人中,成绩不合格的人数,求ξ的分布列与数学期望;(3)已知这60名学生的数学建模竞赛成绩Z服从正态分布()2,Nμσ,其中μ可用样本平均数近似代替,2σ可用样本方差近似代替(同一组数据用该区间的中点值作代表),若成绩在46分以上的学生均能得到奖励,本次数学建模竞赛满分为100分,估计此次竞赛受到奖励的人数(结果根据四舍五人保留整数).参考数据:()0.6827P Z μσμσ-<≤+≈,()220.9545P Z μσμσ-<≤+≈,()330.9973P Z μσμσ-<≤+≈.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】分类计算得到从两类符合中任取2个符号排列,则组成不同的十进制数为0,1,2,3,即可计算得到概率. 【详解】根据题意,不同符号可分为三类:第一类:由两个“─”组成,其二进制为:11(2)=3(10); 第二类:由两个“﹣﹣“组成,其二进制为:00(2)=0(10);第三类:由一个“─”和一个“﹣﹣”组成,其二进制为:10(2)=2(10),01(2)=1(10), 所以从两类符号中任取2个符号排列,则组成不同的十进制数为0,1,2,3, 则得到的二进制数所对应的十进制数大于2的概率P 14=. 故选:D . 【点睛】本题主要考查了古典概型及其概率的计算,以及转化的应用,意在考查学生的计算能力和应用能力,属于中档试题.2.C解析:C 【分析】首先求出分段函数在各区间段的值域,然后利用几何概型求其概率. 【详解】 由题意得,当01x <<时,2()ln f x x e =+,则恒有2()f x e <,满足题意; 当1x e ≤<时,()xf x e =,若满足2()xf x e e =<,可得12x ≤<; 所以()f x 的值小于常数2e 的概率是2e.故选:C. 【点睛】本题主要考查长度比值类型的几何概型,同时考查了分段函数值域的求解,属于基础题.3.C解析:C 【分析】由题意求出AB =,所求概率即为DEF ABCS P S=,即可得解.【详解】由题意易知120ADB ∠=,AF FD BD ==,由余弦定理得22222cos1207AB AD BD AD BD BD =+-⋅⋅=即AB =,所以AB =,则所求概率为217DEF ABCSFD P SAB ⎛⎫=== ⎪⎝⎭. 故选:C. 【点睛】本题考查了几何概型概率的求法和余弦定理的应用,属于中档题.4.D解析:D 【分析】根据几何概型的概率公式,求出大圆的面积和小圆的面积,计算面积比即可. 【详解】由已知,可得大圆的直径为y =3sin 8πx 的周期,由T 2168ππ==,可知大圆半径为8, 则面积为S =64π,一个小圆的周长242l r r π==∴= 故小圆的面积S ′=π•22=4π, 在大圆内随机取一点,此点取自阴影部分的概率为: P 2'81648S S ππ===, 故选:D . 【点睛】本题考查了几何概型的概率计算问题,关键是明确测度比为面积比,是基础题.5.A解析:A 【分析】按照程序框图运行程序,直到满足7i ≥时输出结果即可. 【详解】按照程序框图运行程序,输入0i =,0n =,0S =,则1i =,1n =,1S =,不满足7i ≥,循环;2i =,3n =,4S =,不满足7i ≥,循环;3i =,6n =,10S =,不满足7i ≥,循环;4i =,10n =,20S =,不满足7i ≥,循环;5i =,15n =,35S =,不满足7i ≥,循环;6i =,21n =,56S =,不满足7i ≥,循环;7i =,28n =,84S =,满足7i ≥,输出84S =.故选:A .【点睛】本题考查根据程序框图循环结构计算输出结果的问题,属于基础题.6.D解析:D【分析】列举出前四次循环,可知,该算法循环是以3为周期的周期循环,利用周期性可得出输出的S 的值.【详解】第一次循环,02020k =≤成立,1112S ==--,011k =+=; 第二次循环,12020k =≤成立,()11112S ==--,112k =+=; 第三次循环,22020k =≤成立,12112S ==-,213k =+=;第四次循环,32020k =≤成立,1112S ==--,314k =+=; 由上可知,该算法循环是周期循环,且周期为3,依次类推,执行最后一次循环,20202020k =≤成立,且202036731=⨯+,此时12S =, 202012021k =+=,20212020k =≤不成立,跳出循环体,输出S 的值为12. 故选:D.【点睛】本题考查利用程序框图计算输出结果,推导出循环的周期性是解题的关键,考查计算能力,属于中等题.7.B解析:B【分析】根据框图,模拟程序运行即可求解.【详解】根据框图,执行程序,12,2S n ==;1222,3S n =+=;⋯12222,1i S n i =++⋯+=+,令12222126i S =++⋯+=,解得6i =,即7n =时结束程序,所以6n ≤,故选 :B【点睛】本题主要考查了程序框图,循环结构,条件分支结构,等比数列求和,属于中档题.genju 8.C解析:C【分析】执行如图所示的程序框图,逐次循环,计算其运算的结果,根据选项即可得到答案.【详解】由题意可知,执行如图所示的程序框图,可知:第一循环:134,2146n S =+==⨯+=;第二循环:437,26719n S =+==⨯+=;第三循环:7310,2191048n S =+==⨯+=,要使的输出的结果为48,根据选项可知8k,故选C. 【点睛】本题主要考查了循环结构的计算与输出问题,其中解答中正确理解循环结构的程序框图的计算功能,逐次准确计算是解答的关键,着重考查了运算与求解能力,属于基础题. 9.C解析:C【解析】试题分析:A 选项,中位数是84;B 选项,众数是出现最多的数,故是83;C 选项,平均数是85,正确;D 选项,方差是,错误.考点:•茎叶图的识别 相关量的定义10.C解析:C【解析】解:由图可知:则底部周长小于110cm 段的频率为(0.01+0.02+0.04)×10=0.7, 则频数为100×0.7=70人.故选C .11.A解析:A【解析】8个班参加合唱比赛的得分从小到大排列分别是87,89,90,91,92,93,94,96,中位数是91,92,的平均数91.5,平均数是87+89+90+91+92+93+94+968=91.5 12.B解析:B【解析】分析:先根据散点图确定函数趋势,再结合五个选择项函数图像,进行判断选择.详解:从散点图知,样本点分布在开口向右的抛物线(上支)附近或对数曲线(上部分)的附近,所以y=d 或y =p +q ln x 较适宜,故选B .点睛:本题考查散点图以及函数图像,考查识别能力.二、填空题13.【分析】利用微积分基本定理先计算出阴影部分的面积根据几何概型的知识可知:阴影部分的面积与长方形面积比等于对应的概率即可计算出概率值【详解】由几何概型的知识可知:阴影部分的面积与长方形的面积之比等于所 解析:1e【分析】利用微积分基本定理先计算出阴影部分的面积,根据几何概型的知识可知:阴影部分的面积与长方形面积比等于对应的概率,即可计算出概率值.【详解】由几何概型的知识可知:阴影部分的面积与长方形OABC 的面积之比等于所求概率, 记阴影部分面积为1S ,长方形面积为2S , 所以()11100111x xS e e dx e e e e =⨯-=-=--=⎰,21S e e =⨯=, 所以所求概率为121S P S e ==. 故答案为:1e. 【点睛】 本题考查几何概型中的面积模型以及利用微积分基本定理求解定积分的值,属于综合型问题,难度一般.几何概型中的面积模型的计算公式:()A A P =构成事件的区域面积全部试验结果所构成的区域面积. 14.【分析】先确定比分为1比2时甲乙在三次发球比赛中得分情况再分别求对应概率最后根据互斥事件概率公式求结果【详解】比分为1比2时有三种情况:(1)甲第一次发球得分甲第二次发球失分乙第一次发球得分(2)甲 解析:2875【分析】先确定比分为1比2时甲乙在三次发球比赛中得分情况,再分别求对应概率,最后根据互斥事件概率公式求结果【详解】比分为1比2时有三种情况:(1)甲第一次发球得分,甲第二次发球失分,乙第一次发球得分(2)甲第一次发球失分,甲第二次发球得分,乙第一次发球得分(3)甲第一次发球失分,甲第二次发球失分,乙第一次发球失分 所以概率为3222322212855355355375⨯⨯+⨯⨯+⨯⨯= 【点睛】本题考查根据互斥事件概率公式求概率,考查基本分析求解能力,属中档题. 15.38【解析】【分析】根据几何槪型的概率意义即可得到结论【详解】正方形的面积S =1设阴影部分的面积为S ∵随机撒1000粒豆子有380粒落到阴影部分∴由几何槪型的概率公式进行估计得即S =038故答案为:解析:38【解析】【分析】根据几何槪型的概率意义,即可得到结论.【详解】正方形的面积S =1,设阴影部分的面积为S ,∵随机撒1000粒豆子,有380粒落到阴影部分,∴由几何槪型的概率公式进行估计得38011000S =, 即S =0.38,故答案为:0.38.【点睛】本题主要考查几何槪型的概率的计算,利用豆子之间的关系建立比例关系是解决本题的关键,比较基础. 16.12【分析】由题意可知从开始判断框条件成立执行第一次循环得到一组新的的值再从开始判断框条件成立执行第一次循环得到一组新的的值当时判断条件框不成立输出此时的值即可得出答案【详解】当时执行程序框图得;当【分析】由题意可知,从1n =开始,判断框条件成立,执行第一次循环,得到一组新的,,M a b 的值,再从2n =开始,判断框条件成立,执行第一次循环,得到一组新的,,M a b 的值,当3n =时,判断条件框不成立,输出此时M 的值,即可得出答案.【详解】当1n =时,执行程序框图得,1225,2,5M a b =+⨯===;当2n =时,执行程序框图得,22512,5,12M a b =+⨯===;当3n =时,不满足判断条件框,直接输出 12M =.故答案为12.【点睛】本题主要考查了根据程序框图写出执行结果的问题,对于这类题目,首先要弄清框图的结构和执行过程,本题为循环结构的程序框图.17.【分析】执行程序框图依次写出每次循环得到的Si 的值当i =2019时不满足条件退出循环输出S 的值为【详解】执行程序框图有S =2i =1满足条件执行循环Si =2满足条件执行循环Si =3满足条件执行循环Si 解析:12- 【分析】执行程序框图,依次写出每次循环得到的S ,i 的值,当i =2019时,不满足条件2018i ≤退出循环,输出S 的值为12-. 【详解】执行程序框图,有S =2,i =1满足条件2018i ≤ ,执行循环,S 3=-,i =2满足条件2018i ≤ ,执行循环,S 12=-,i =3 满足条件2018i ≤ ,执行循环,S 13=,i =4 满足条件2018i ≤ ,执行循环, S =2,i =5…观察规律可知,S 的取值以4为周期,由于2018=504*4+2,故有: S 12=-, i =2019, 不满足条件2018i ≤退出循环,输出S 的值为12-, 故答案为12-.本题主要考查了程序框图和算法,其中判断S 的取值规律是解题的关键,属于基本知识的考查.18.34【解析】循环次数=(循环终值-循环初值)/步长+1又循环的初值为退出循环时终值为步长为故循环次数次故答案为解析:34【解析】循环次数=(循环终值-循环初值)/步长+1,又循环的初值为1,退出循环时终值为100,步长为3,故循环次数10011343-=+=次,故答案为34. 19.②④⑤【解析】分析:根据方程性质回归方程性质及其含义卡方含义确定命题真假详解:由方差的性质知①正确;由线性回归方程的特点知③正确;回归方程若变量增加一个单位时则平均减少5个单位;曲线上的点与该点的坐解析:②④⑤【解析】分析:根据方程性质、回归方程性质及其含义、卡方含义确定命题真假.详解:由方差的性质知①正确;由线性回归方程的特点知③正确;回归方程ˆ35yx =-中若变量x 增加一个单位时,则y 平均减少5个单位; 曲线上的点与该点的坐标之间不一定具有相关关系;在一个22⨯列联表中,由计算得213.079K =,只能确定两个变量之间有相关关系的可能性,所以②④⑤均错误.点睛:本题考查方程性质、回归方程性质及其含义、卡方含义,考查对基本概念理解与简单应用能力.20.0【解析】分析:根据回归直线方程过样本中心点计算平均数代入方程求出的值详解:根据回归直线方程过样本中心点即答案为0点睛:本题考查了线性回归方程过样本中心点的应用问题是基础题解析:0【解析】 分析:根据回归直线方程过样本中心点x y (,), 计算平均数代入方程求出a 的值. 详解:根据回归直线方程ˆ2y x a =+过样本中心点x y (,),191191,99i i x x ==∑=⨯= 191118299i i y y ==∑=⨯=, 22210a y x ∴=-=-⨯=;即答案为0.点睛:本题考查了线性回归方程过样本中心点的应用问题,是基础题.三、解答题21.(1)黑球、黄球、绿球的概率分别是13,29,49;(2)1318.【分析】(1)从中任取一球,分别记得到黑球、黄球、绿球为事件A,B,C,由已知列出()()()P A P B P C、、的方程组可得答案;(2)求出从9个球中取出2个球的样本空间中共有的样本点,再求出两个球同色的样本点可得答案.【详解】(1)从中任取一球,分别记得到黑球、黄球、绿球为事件A,B,C,由于A,B,C为互斥事件,根据已知,得()()()()()()()()()()59231 P A B P A P BP B C P B P CP A B C P A P B P C⎧+=+=⎪⎪⎪+=+=⎨⎪++=++=⎪⎪⎩,解得() () ()132949P AP BP C⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩,所以,任取一球,得到黑球、黄球、绿球的概率分别是13,29,49.(2)由(1)知黑球、黄球、绿球个数分别为3,2,4,从9个球中取出2个球的样本空间中共有36个样本点,其中两个是黑球的样本点是3个,两个黄球的是1个,两个绿球的是6个,于是,两个球同色的概率为3165 3618 ++=,则两个球颜色不相同的概率是513 11818 -=.【点睛】本题考查互斥事件和对立事件的概率,一般地,如果事件A1、A2、…、A n彼此互斥,那么事件A1+A2+…+A n发生(即A1、A2、…、A n中有一个发生)的概率,等于这n个事件分别发生的概率的和,即P(A1+A2+…+A n)=P(A1)+P(A2)+…+P(A n).22.()122⨯列联表见解析,在犯错误的概率不超过0.05的前提下认为“环境保护关注者”与性别有关;()21 2【分析】()1根据表中的数据重新整合,完成22⨯列联表,然后将列联表中的数据代入2K的公式计算求解,结合临界值表进行判断即可;()2列举出所有可能的情况和既有男“环境保护达人”又有女“环境保护达人”包含的情况,再利用古典概型的概率计算公式求解即可.【详解】()1由表中数据可得22⨯列联表如下,2K的观测值()25051025106.349 3.84115353020k⨯⨯-⨯=≈>⨯⨯⨯,所以在犯错误的概率不超过0.05的前提下认为“环境保护关注者”与性别有关; ()2由题可知,利用分层抽样的方法可得,抽取4名市民中男环保达人3人,女环保达人1人,设男环保达人为,,A B C,女环保达人为a,从中抽取两人参与座谈会所有的情况为()()()()()(),,,,,,,,,,,A B A C A a B C B a C a共6种情况,既有男“环境保护达人”又有女“环境保护达人”包含的情况为()()(),,,,,A aB aC a共3种情况,由古典概型的概率计算公式可得,所求概率3162 P==.【点睛】本题考查独立性检验和古典概型概率计算公式;考查运算求解能力;注意所给数表的使用方法和题目设为方式和熟练掌握2K公式是求解本题的关键;属于基础题、常考题型. 23.(1)①m=0②i=i+1;(2)见解析【分析】(1)如果除以2的余数为零,则为偶数,故填0m =.i 每次增加1,故填1i i =+.(2)根据WHILE 型循环的结构,对原有程序进行改写.【详解】(1)①m=0②i=i+1(2)改写为WHILE 型循环程序如下:i=1WHILE i<=100m=I MOD 2IF m=0 THENPRINT iEND IFi=i+1WENDEND【点睛】本小题主要考查循环结构的两种编写程序的方法,属于基础题.24.见解析【解析】试题分析:根据算法的概念和算法的流程为一个循环结构的算法,可把该算法分为五步,即可写出算法.试题第一步,两个小孩将船划到右岸.第二步,他们中一个上岸,另一个划回来.第三步,小孩上岸,一个士兵划过去.第四步,士兵上岸,让小孩划回来.第五步,如果左岸没有士兵,那么结束,否则转第一步点睛:本题考查了算法的一个实际应用问题,解题时要主语熟练掌握循环结构算法的性质和应用是解答的关键,算法时新课标中新增内容,也一直是命题的一个热点,试题比较基础,属于基础题.25.(1)合格,理由见解析;(2)方案2,理由见详解.【分析】(1)求得10个数据的平均数和标准差,根据题意,即可判断;(2)设出方案2中零件价格的随机变量,结合正态分布求得零件价格的分布列和数学期望,即可比较大小,则问题得解.【详解】(1)由表格中数据可得: x 1011100.310i i x ===∑, ()101022221111(10)0.091010i i i i s x x x x ===-=-=∑∑.故可得:100.3μ=,0.3σ=.因为所有样本都在区间()99.4,101.2,故该切割设备质量合格.(2)对方案2,设零件价格的随机变量为X ,故X 可取60,100,根据(1)中所求,可得()()()10099.7100.320.47725P X P x P x μσμ==<<=-<<=;()()6011000.52275P X P X ==-==.故()600.522751000.47725600.51000.477770E X =⨯+⨯>⨯+⨯=>.又方案1中,每个零件售价均为70,故可得方案2的利润更大.【点睛】本题考查平均数和方差标准差的计算,涉及正态分布,随即变量数学期望的求解,属综合中档题.26.(1)中位数为65;(2)分布列见解析;期望为5635;(3)50. 【分析】(1)由图中的数据可判断中位数在60分到80分之间,若设中位数为x ,则()0.005200.01520600.020.5x ⨯+⨯+-⨯=,从而可求得中位数;(2)结合频率分布直方图和分层抽样的方法可知,抽取的10人中合格的人数为6人,不合格的人数为4人,则ξ的可能取值为0,1,2,3,4,求出各自的概率,从而可得ξ的分布列与数学期望;(3)由已知求出=64=18μσ,,从而可得()()6418641846820.6827P Z P Z -<≤+=<≤≈,再利用正态分布的对称性可求得结果【详解】(1)设中位数为x ,则()0.005200.01520600.020.5x ⨯+⨯+-⨯=,解得65x =,所以这60名参赛学生成绩的中位数为65.(2)结合频率分布直方图和分层抽样的方法可知,抽取的10人中合格的人数为()0.010.0220106+⨯⨯=,不合格的人数为1064-=.由题意可知ξ的可能取值为0,1,2,3,4.则()464101014C P C ξ===,()134********C C P C ξ===,()2246410327C C P C ξ===,()31464103435C C C P ξ===,()4441014210C P C ξ===. 所以ξ的分布列为所以ξ的数学期望01234142173521035E ξ=⨯+⨯+⨯+⨯+⨯=. (3)由题意可得,()300.005500.015700.02900.012064μ=⨯+⨯+⨯+⨯⨯=,()()()222230640.150640.370640.4σ=-⨯+-⨯+-⨯()290640.2324+-⨯=,则18σ=,由Z 服从正态分布()2,N μσ,得()()6418641846820.6827P Z P Z -<≤+=<≤≈,则()()18210.68270.158652P Z >≈-=,()460.68270.158650.84135P Z >≈+=,所以此次竞赛受到奖励的人数为600.8413550⨯≈.【点睛】此题考查频率分布直方图、分层抽样、离散型随机变量的分布列、正态分布等知识,考查分析问题的能力和计算能力,属于中档题。
2021-2022高中数学必修三期末第一次模拟试卷带答案
一、选择题1.如图所示,已知圆1C 和2C 的半径都为2,且1223C C =,若在圆1C 或2C 中任取一点,则该点取自阴影部分的概率为( )A 33533π+B 33533π+C 331033π+D 331033π+2.若即时起10分钟内,甲乙两同学等可能到达某咖啡厅,则这两同学到达咖啡厅的时间间隔不超过3分钟的概率为( ) A .0.3 B .0.36C .0.49D .0.513.某研究机构在对具有线性相关的两个变量x 和y 进行统计分析时,得到如下数据:x 4 6 8 10 12 y12356由表中数据求得y 关于的回归方程为落在回归直线下方的概率为( ) A .25B .35C .34D .124.设向量()()1,,a x y x y R =-∈,若1a ≤,则y x ≥的概率为( ) A .14B .1142π- C .114π-D .3142π+ 5.计算11111212312310++++⨯⨯⨯⨯⨯⨯⨯,执行如图所示的程序根图,若输入的10N =,则图中①②应分别填入( )A .1T k=,k N > B .1T k=,k N ≥ C .TT k=,k N > D .TT k=,k N ≥ 6.运行如图所示的程序框图,若输出S 的值为129,则判断框内可填入的条件是( )A .4?k <B .5?k <C .6?k <D .7?k <7.执行如图的程序框图,若输出的6n =,则输入整数p 的最大值是( )A .15B .16C .31D .328.执行如下图的程序框图,如果输入的N 的值是7,那么输出的p 的值是( )A .3B .15C .105D .9459.为了了解某同学的数学学习情况,对他的6次数学测试成绩进行统计,作出的茎叶图如图所示,则下列关于该同学数学成绩的说法正确的是( )A .中位数为83B .众数为85C .平均数为85D .方差为1910.某班统计一次数学测验的平均分与方差,计算完毕才发现有位同学的分数还未录入,只好重算一次.已知原平均分和原方差分别为x ,2s ,新平均分和新方差分别为1x ,21s ,若此同学的得分恰好为x ,则( )A .1x x =,221s s = B .1x x =,221s s < C .1x x =,221s s >D .1x x <,221s s =11.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号1,2,⋯,960,分组后在第一组采用简单随机抽样的方法抽到的号码为29,则抽到的32人中,编号落入区间[]200,480的人数为 A .7B .9C .10D .1212.高二某班共有学生60名,座位号分别为01, 02, 03,···, 60.现根据座位号,用系统抽样的方法,抽取一个容量为4的样本.已知03号、18号、48号同学在样本中,则样本中还有一个同学的座位号是( )A.31号B.32号C.33号D.34号二、填空题13.某同学同时掷两颗骰子,得到点数分别为a,b,则双曲线2222x y1a b-=的离心率e5>的概率是______.14.若从甲、乙、丙、丁4位同学中选出2名代表参加学校会议,则甲、乙两人至少有一人被选中的概率为____.15.甲、乙二人约定某日早上在某处会面,甲在7:00~7:20内某一时刻随机到达,乙在7:05~7:20内某一时刻随机到达,则甲至少需等待乙5分钟的概率是________. 16.若下面程序中输入的n值为2017,则输出的值为__________.17.已知某程序框图如图所示,则执行该程序后输出的结果是_____18.已知下列程序INPUTtIFt≤3THENC=0.2ELSEC=0.2+0.1*(t-3)ENDIFPRINTCEND当输入t=5时,输出结果是____.19.水痘是一种传染性很强的病毒性疾病,容易在春天爆发,武汉疾控中心为了调查某高校高一年级学生注射水痘疫苗的人数,在高一年级随机抽取了5个班级,每个班级的人数互不相同,若把每个班抽取的人数作为样本数据,已知样本平均数为5,样本方差为4,则样本数据中最大值为__________.20.抽样统计甲、乙两位同学5次数学成绩绘制成如下图所示的茎叶图,则成绩较稳定的那位同学成绩的方差为__________.三、解答题21.口袋里装有编号为1,2,3,4的四个小球,有放回...的抽取两次,记录两次取到小球的编号分别为x,y.奖励规则如下:xy≤,则奖励玩具一个;①若3xy≥,则奖励水杯一个;②若8③其余情况奖励饮料一瓶. 小亮准备参加此项活动. (Ⅰ)求小亮获得玩具的概率;(Ⅱ)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.22.某商场有奖销售中,购满100元商品得1张奖券,多购多得,100张奖券为一个开奖单位,每个开奖单位设特等奖1个,一等奖10个,二等奖50个,设一张奖券中特等奖、一等奖、二等奖的事件分别为A ,B ,C ,可知其概率平分别为1(),1000P A =101(),1000100P B ==501()100020P C ==. (1)求1张奖券中奖的概率;(2)求1张奖券不中特等奖且不中一等奖的概率. 23.给出某班45名同学的数学测试成绩,60分及以上为及格,要求统计及格人数,及格同学的平均分,全班同学的平均分,画出程序框图,并写出程序语句.24.设计程序求π的近似值可以用公式:2222π1116123=+++…+21n ,用此公式求2π6,即逐项进行累加,直到21n <0.000 01为止(该项不累加),然后求出π的近似值. 25.某企业投资两个新型项目,投资新型项目A 的投资额m (单位:十万元)与纯利润n(单位:万元)的关系式为 1.70.5n m =-,投资新型项目B 的投资额x (单位:十万元)与纯利润y (单位:万元)的散点图如图所示.(1)求y 关于x 的线性回归方程;(2)根据(1)中的回归方程,若A ,B 两个项目都投资60万元,试预测哪个项目的收益更好.附:回归直线y bx a =+的斜率和截距的最小二乘估计分别为1221ni ii nii x y nx yb xnx==-=-∑∑,a y bx =-.26.我国北方广大农村地区、一些城镇以及部分大中城市的周边区域,还在大量采用分散燃煤和散烧煤取暖,既影响了居民基本生活的改善,也加重了北方地区冬季的雾霾天气.推进北方地区冬季清洁取暖,是重大民生工程、民心工程,关系北方地区广大群众温暖过冬,关系雾霾天能不能减少,是能源生产和消费革命、农村生活方式革命的重要内容.2017年9月国家发改委制定了煤改气、煤改电价格扶植新政策,从而使得煤改气、煤改电用户大幅度增加,下面条形图反映了某省2018年1~7月份煤改气、煤改电的用户数量.(1)在给定坐标系中作出煤改气、煤改电用户数量y随月份t变化的散点图,并用散点图和相关系数说明y与t之间具有线性相关性;(2)建立y关于t的回归方程(系数精确到0.01),预测11月份该省煤改气、煤改电的用户数量.参考数据:7772111y9.24,t7 2.646i i ii i iiy=====⋅≈≈∑∑∑(y-y).参考公式:相关系数()()()()111niinn ni i i i i i i i t t y y r t ty y t y t y ===⋅--=⋅--=-∑∑∑∑.回归方程ˆy a bt=+中斜率和截距的最小二乘估计公式分别为:()()()121ˆˆˆ,nii i nii tty y bay bt tt==⋅--==-⋅-∑∑.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】设两圆交于点,A B ,连接11,AC BC ,12,AB C C ,设12,AB C C 交于点D ,由已知的数据可得1AC B △为等边三角形,从而可求出阴影部分的面积,进而求出总面积,即可求出概率. 【详解】设两圆交于点,A B ,连接11,AC BC ,12,AB C C ,设12,AB CC 交于点D , 则11212C D C C ==190ADC ∠=︒, 所以111cos 2C D AC D AC ∠==,所以130AC D ∠=︒,则160AC B ∠=︒, 所以1ACB △为等边三角形,所以60442(4)36043S ππ⨯=-⨯=-阴,图形的总面积42024(33S πππ=⨯--=+总所以求概率为43203ππ-=+,故选:D【点睛】此题考查几何概型概率的求法,关键是求阴影部分的面积,属于中档题.2.D解析:D 【分析】由几何概型中的面积型得:1277210.511010S P S ⨯⨯⨯==-=⨯阴正,即可得解.【详解】设甲、乙两同学等可能到达某咖啡厅的时间为(),x y ,则010x <≤,010y <≤,其基本事件可用正方形区域表示,如图,则甲、乙两同学等可能到达某咖啡厅的时间间隔不超过3分钟的事件为A , 则事件A 为:3x y -≤,其基本事件可用阴影部分区域表示,由几何概型中的面积型可得:1277210.511010S P S ⨯⨯⨯==-=⨯阴正.故选:D. 【点睛】本题考查了几何概型中的面积型,属于基础题.3.A解析:A 【分析】求出样本点的中心,求出ˆa的值,得到回归方程得到5个点中落在回归直线下方的有(6,2),(8,3),共2个,求出概率即可.【详解】8x=, 3.4y=,故3.40.658ˆa=⨯+,解得: 1.8a=-,则0.65.8ˆ1y x=-,故5个点中落在回归直线下方的有(6,2),(8,3),共2个,故所求概率是25p=,故选:A.【点睛】本题考查回归方程概念、概率的计算以及样本点的中心,考查数据处理能力,是一道基础题.4.B解析:B【分析】利用复数模的公式可得点(),x y在以()1,0为圆心,以1为半径的圆上及圆的内部,结合y x≥表示的是图中直线上方且在圆内的弓形,求出圆的面积与弓形的面积利用几何概型可得结果.【详解】因为()()1,,a x y x y R=-∈,且1a≤,所以()2211x y-+≤,∴点(),x y在以()1,0为圆心,以1为半径的圆上及圆的内部,y x≥表示的是图中直线上方且在圆内的弓形,而圆的面积为Sπ=,11=42Sπ-弓,y x∴≥的概率为111142=42SPSπππ-==-弓,故选:B. 【点睛】本题主要考查几何概型中的面积类型,基本方法是:分别求得构成事件A 的区域面积和试验的全部结果所构成的区域面积,两者求比值,即为概率.5.C解析:C 【分析】根据题意计算结果直接判断即可解题. 【详解】 当①②分别是TT k=,k N >时, 首先初始化数据;10N =,1k =,0S =,1T =. 第一次循环,1TT k==,1S S T =+=,12k k =+=,此时不满足k N >; 第二次循环,112T T k ==⨯,1112S S T =+=+⨯,13k k =+=,此时不满足k N >; 第三次循环,1123T T k ==⨯⨯,11112123S S T =+=++⨯⨯⨯,14k k =+=,此时不满足k N >;一直循环下去,第十次循环,112310T T k ==⨯⨯⨯⨯,11111212312310S S T =+=++++⨯⨯⨯⨯⨯⨯⨯,111k k =+=,此时满足k N >,跳出循环. 故输出的11111212312310S =++++⨯⨯⨯⨯⨯⨯⨯.故选:C. 【点睛】本题考查根据计算补全程序框图,是基础题.6.C解析:C 【分析】最常用的方法是列举法,即依次执行循环体中的每一步,直到循环终止,但在执行循环体时要明确循环终止的条件是什么,什么时候要终止执行循环体. 【详解】0S =,1k =;110121S -=+⨯=,2k =;211225S -=+⨯=, 3k =;3153217S -=+⨯=,4k =;41174249S -=+⨯=,5k =;514952129S -=+⨯=,6k =,此时输出S ,即判断框内可填入的条件是“6?k <”. 故选:C . 【点睛】本题考查循环结构程序框图. 解决程序框图填充问题的思路(1)要明确程序框图的顺序结构、条件结构和循环结构. (2)要识别、执行程序框图,理解框图所解决的实际问题. (3)按照题目的要求完成解答并验证. 7.C解析:C 【分析】根据程序框图的循环结构,依次运行,算出输出值为6n =时S 的值,使得S p <不成立时p 的值即可. 【详解】根据程序框图可知,1,0n S == 则11021,2S n -=+==21123,3S n -=+== 31327,4S n -=+== 417215,5S n -=+== 5115231,6S n -=+==此时应输出6n =,需31p <不成立.因而整数p 的最大值为31 故选:C 【点睛】本题考查了程序框图的简单应用,根据输出结果确定判读框,属于中档题.8.C解析:C 【分析】由已知中的程序框图,得到该程序的功能是利用循环结构计算并输出变量p 的值,模拟程序的运行过程,分析循环中各变量的变化情况,可得答案. 【详解】模拟程序的运行,可得:7,1,1N k p ===, 满足条件7k <,执行循环体,3,3k p ==; 满足条件7k <,执行循环体,5,15k p ==; 满足条件7k <,执行循环体,7,105k p ==; 此时,不满足条件7k <,推出循环,输出p 的值为105,故选C . 【点睛】本题主要考查了程序框图的应用问题,解答中应模拟程序框图的运行过程,逐次计算是解答的关键,着重考查了推理与运算能力,属于基础题.9.C解析:C 【解析】试题分析:A 选项,中位数是84;B 选项,众数是出现最多的数,故是83;C 选项,平均数是85,正确;D 选项,方差是,错误.考点:•茎叶图的识别 相关量的定义10.C解析:C 【分析】根据平均数和方差公式计算比较即可. 【详解】设这个班有n 个同学,分数分别是123,,,,n a a a a ⋅⋅⋅,假设第i 个同学的成绩没录入,这一次计算时,总分是()1n x -,方差为()()()()()222222121111i i n s a x a x a x a x a x n -+⎡⎤=-+-+⋅⋅⋅+-+-+⋅⋅⋅+-⎣⎦-; 第二次计算时,()11n nxx x -+=x =,方差为()()()()()()222222221121111++i i i n n s a x a x a x a x a x a x s n n-+-⎡⎤=-+-⋅⋅⋅-+-+-+⋅⋅⋅+-=⎣⎦故有1x x =,221s s >.故选:C 【点睛】本题主要考查样本的平均数和方差公式;属于中档题.11.C解析:C 【分析】根据系统抽样的定义,可知抽到的号码数可组成一个以301=-n a n 为通项公式的等差数列,令*200301480,≤-≤∈n n N ,解不等式可得结果. 【详解】每组人数=9603230÷=人,即抽到号码数的间隔为30,因为第一组抽到的号码为29,根据系统抽样的定义,抽到的号码数可组成一个等差数列,且*2930(1)301,=+-=-∈n n n n N a ,令200301480≤-≤n ,得2014813030≤≤n ,可得n 的取值可以从7取到16,共10个,故选C . 【点睛】本题主要考查系统抽样的定义及应用,转化为等差数列是解决本题的关键.12.C解析:C 【解析】 【分析】根据系统抽样知,组距为604=15÷,即可根据第一组所求编号,求出各组所抽编号. 【详解】学生60名,用系统抽样的方法,抽取一个容量为4的样本,所以组距为604=15÷, 已知03号,18号被抽取,所以应该抽取181533+=号, 故选C. 【点睛】本题主要考查了抽样,系统抽样,属于中档题.二、填空题13.【分析】基本事件总数由双曲线的离心率得利用列举法求出双曲线的离心率包含的基本事件有6个由此能求出双曲线的离心率的概率【详解】某同学同时掷两颗骰子得到点数分别为ab 基本事件总数双曲线的离心率解得双曲线解析:16【分析】基本事件总数n 6636=⨯=,由双曲线2222x y 1a b -=的离心率e >,得b 2a >,利用列举法求出双曲线2222x y 1a b -=的离心率e >()a,b 有6个,由此能求出双曲线2222x y 1a b -=的离心率e >【详解】某同学同时掷两颗骰子,得到点数分别为a ,b , 基本事件总数n 6636=⨯=,双曲线2222x y 1a b-=的离心率e >ca ∴=>,解得b 2a >,∴双曲线2222x y 1a b-=的离心率e >()a,b 有:()1,3,()1,4,()1,5,()2,5,(1,6),()2,6,共6个,则双曲线2222x y 1a b-=的离心率e >61p 366==. 故答案为16. 【点睛】本题考查概率的求法,考查古典概型、列举法、双曲线性质等基础知识,考查运算求解能力,是基础题.对于古典概型,要求事件总数是可数的,满足条件的事件个数可数,使得满足条件的事件个数除以总的事件个数即可.14.【分析】由题意从甲乙丙丁4位同学中选出2名代表参加学校的会议求得基本事件的总数再由甲乙两人至少有一人被选中的对立事件是甲乙两人都没有选中求得其包含的基本事件的个数即可求解【详解】由题意从甲乙丙丁4位解析:56【分析】由题意,从甲乙丙丁4位同学中选出2名代表参加学校的会议,求得基本事件的总数,再由甲乙两人至少有一人被选中的对立事件是甲乙两人都没有选中,求得其包含的基本事件的个数,即可求解. 【详解】由题意,从甲乙丙丁4位同学中选出2名代表参加学校的会议,则基本事件的总数为246n C ==,又由甲乙两人至少有一人被选中的对立事件是甲乙两人都没有选中,其包含的基本事件的个数为221m C ==,所以甲乙两人至少有一人被选中的概率为151166m p n =-=-=. 故答案为56. 【点睛】本题主要考查了古典概型及其概率的计算公式,以及对立事件的应用,其中解答中认真审题,合理选择方法,分别求得基本事件的总数和事件所包含的基本事件的个数是解答的关键,着重考查了推理与计算能力,属于基础题.15.【分析】由题意知本题是一个几何概型试验包含的所有事件是Ω={(xy )|0≤x≤205≤y≤20}作出事件对应的集合表示的面积写出满足条件的事件是A ={(xy )|0≤x≤205≤y≤20y ﹣x≥5}算解析:38【分析】由题意知本题是一个几何概型,试验包含的所有事件是Ω={(x,y)|0≤x≤20,5≤y≤20},作出事件对应的集合表示的面积,写出满足条件的事件是A={(x,y)|0≤x≤20,5≤y≤20,y﹣x≥5 },算出事件对应的集合表示的面积,根据几何概型概率公式得答案.【详解】由题意知本题是一个几何概型,设甲和乙到达的分别为7时x分、7时y分,则10≤x≤20,5≤y≤20,甲至少需等待乙5分钟,即y﹣x≥5,则试验包含的所有区域是Ω={(x,y)|0≤x≤20,5≤y≤20},甲至少需等待乙5分钟所表示的区域为A={(x,y)|0≤x≤20,5≤y≤20,y﹣x≥5},如图:正方形的面积为20×15=300,阴影部分的面积为12⨯15×152252=,∴甲至少需等待乙5分钟的概率是225323008=,故答案为3 8【点睛】本题主要考查“面积型”的几何概型,属于中档题. 解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与面积有关的几何概型问题关鍵是计算问题的总面积以及事件的面积;几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本事件对应的区域测度把握不准导致错误;(3)利用几何概型的概率公式时 , 忽视验证事件是否等可能性导致错误. 16.【分析】根据程序框图的算法功能可知该程序是计算的值再根据裂项相消法即可求出【详解】根据程序框图的算法功能可知该程序是计算的值所以故答案为:【点睛】本题主要考查程序框图的算法功能的理解以及数列求和属于解析:2017 2018【分析】根据程序框图的算法功能可知,该程序是计算111112233420172018++++⨯⨯⨯⨯的值,再根据裂项相消法即可求出. 【详解】根据程序框图的算法功能可知,该程序是计算111112233420172018++++⨯⨯⨯⨯的值. 所以111112233420172018++++⨯⨯⨯⨯111111112017122334201720182018⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 故答案为:20172018. 【点睛】本题主要考查程序框图的算法功能的理解以及数列求和,属于基础题.常见的数列求和方法有:公式法,裂项相消法,分组求和法,倒序相加求和法,并项求和法,错位相减法等,根据数列的特征选择对应的方法是解题的关键.17.-1【分析】计算的值找出周期根据余数得到答案【详解】依次计算得:…周期为32019除以3余数为0故答案为-1【点睛】本题考查了程序框图的相关知识计算数据找到周期规律是解题的关键解析:-1 【分析】计算a 的值,找出周期,根据余数得到答案. 【详解】 依次计算得:2,1a i ==1,22a i ==1,3a i =-= 2,4a i == ….周期为32019除以3余数为0,1a =- 故答案为-1 【点睛】本题考查了程序框图的相关知识,计算数据找到周期规律是解题的关键.18.4【分析】由已知中的程序语句可知该程序的功能是计算分段函数 的值将t=5代入即可得到答案【详解】由已知中程序语句可知该程序的功能是: 计算分段函数 的值 故答案为04【点睛】算法是新课标高考的一大解析:4 【分析】由已知中的程序语句可知该程序的功能是计算分段函数 0.2,30.20.1(3),3t C t t ≤⎧=⎨+->⎩ 的值,将t =5代入即可得到答案. 【详解】由已知中程序语句可知该程序的功能是: 计算分段函数 0.2,30.20.1(3),3t C t t ≤⎧=⎨+->⎩的值50.20.1(53)0.4t C =∴=+-=,故答案为0.4. 【点睛】算法是新课标高考的一大热点,其中算法的交汇性问题已成为高考的一大亮,这类问题常常与函数、数列、不等式等交汇自然,很好地考查考生的信息处理能力及综合运用知识解决问題的能力,解决算法的交汇性问题的方:(1)读懂程序框图、明确交汇知识,(2)根据给出问题与程序框图处理问题即可.19.8【分析】先设五个班的人数分别为样本平均数为5又因样本方差为4则代入大于且不相等的整数可得的值依次为24568即可得最大值【详解】解:设五个班的人数分别为则则所以的值依次为24568即有最大值为8故解析:8 【分析】先设五个班的人数分别为1a ,2a ,3a ,4a ,5a ,样本平均数为5,1234525a a a a a ++++=,又因样本方差为4,则()()()()()22222123455555520a a a a a -+-+-+-+-=,代入大于0且不相等的整数,可得1a ,2a ,3a ,4a ,5a 的值依次为2,4,5,6,8,即可得最大值. 【详解】解:设五个班的人数分别为1a ,2a ,3a ,4a ,5a , 则()12345155a a a a a ++++=, 15()()()()()2222212345555554a a a a a ⎡⎤-+-+-+-+-=⎣⎦, 则1234525a a a a a ++++=,()()()()()22222123455555520a a a a a -+-+-+-+-=,所以1a ,2a ,3a ,4a ,5a 的值依次为2,4,5,6,8, 即有最大值为8.故答案为: 8 【点睛】本题考查利用平均数公式和方差公式求样本数据中的最大值,是基础题.合理应用公式是关键.20.2【解析】分析:由茎叶图的分布可知乙同学的成绩会比较稳定先求出乙同学的平均成绩利用求方差的公式即可求得方差值详解:由茎叶图中成绩的分布情况可知乙同学的最低成绩比甲高乙同学的最高成绩比甲低所以成绩分布解析:2 【解析】分析:由茎叶图的分布可知,乙同学的成绩会比较稳定.先求出乙同学的平均成绩,利用求方差的公式即可求得方差值.详解:由茎叶图中成绩的分布情况可知,乙同学的最低成绩比甲高,乙同学的最高成绩比甲低,所以成绩分布相对较为集中,所以乙同学成绩的方差小,成绩较稳定. 设乙同学的平均成绩为x ,则8889909192905x ++++==所以乙同学成绩的方差()()()()()2222221889089909090919092905s ⎡⎤=-+-+-+-+-⎣⎦()14101425=++++= 所以乙同学成绩的方差为2点睛:方差体现了数据的离散程度,茎叶图中都保留了原始数据,因此可以从茎叶图中直接观察来比较方差的大小.要熟练掌握方差的计算公式.本题主要考查了简单的概念和计算,属于简单题.三、解答题21.(Ⅰ)516;(Ⅱ)获得饮料的概率大于获得水杯的概率,理由见解析. 【分析】有放回抽取,每次抽取都有4种可能.可计算出总可能数,(Ⅰ)用列举法列出事件“小亮获得玩具”的所有基本事件后可计算概率; (Ⅱ)同理计算出小亮获得水杯的概率以及获得饮料的概率,两者比较即得. 【详解】有放回抽取,每次抽取都有4种可能,因此总的基本事件数为4416⨯=, (Ⅰ)事件“小亮获得玩具”包含基本事件为:11,12,13,21,31共5种,概率为1516P =; (Ⅱ)事件“小亮获得水杯”包含基本事件为:24,34,44,42,43共5种,概率为2516P =.所以获得饮料的概率为325561161616P P =--=>∴获得饮料的概率大于获得水杯的概率. 【点睛】本题考查古典概型,解题关键是求出基本事件数.本题是用列举法求解. 22.(1)611000(2)9891000【分析】(1)1张奖券中奖包括中特等奖、一等奖、二等奖,且A 、B 、C 两两互斥,利用互斥事件的概率加法公式求解即可;(2)“1张奖券不中特等奖且不中一等奖”的对立事件为“1张奖券中特等奖或中一等奖”,则利用互斥事件的概率公式求解即可 【详解】(1)1张奖券中奖包括中特等奖、一等奖、二等奖, 设“1张奖券中奖”为事件M ,则M A B C =∪∪,因为A 、B 、C 两两互斥,所以()()()()611000P M P A P B P C =++= 故1张奖券中奖的概率为611000(2)设“1张奖券不中特等奖且不中一等奖”为事件N ,则事件N 与“1张奖券中特等奖或中一等奖”为对立事件,所以()()()()()989111000P N P A B P A P B =-⋃=-+=, 故1张奖券不中特等奖且不中一等奖的概率为9891000【点睛】本题考查互斥事件的概率加法公式的应用,考查古典概型,考查利用对立事件求概率 23.程序图见解析. 【解析】 【分析】因为只统计及格人数,所以设计一个条件语句,对于求和设计一个计数变量,一个累加变量,根据结束条件设置成直到型或当型. 最后对应改成基本语句. 【详解】用M 表示及格人数,S 表示及格同学的总分。
【鲁教版】高中数学必修三期末模拟试卷(及答案)(2)
一、选择题1.某市委积极响应十九大报告提出的“到2020年全面建成小康社会”的目标,鼓励各县积极脱贫,计划表彰在农村脱贫攻坚战中的杰出村代表,已知A ,B 两个贫困县各有15名村代表,最终A 县有5人表现突出,B 县有3人表现突出,现分别从A ,B 两个县的15人中各选1人,已知有人表现突出,则B 县选取的人表现不突出的概率是( ) A .13B .47C .23D .562.如图所示,在一个边长为2.的正方形AOBC 内,曲2y x =和曲线y x =围成一个叶形图(阴影部分),向正方形AOBC 内随机投一点(该点落在正方形AOBC 内任何一点是等可能的),则所投的点落在叶形图内部的概率是( )A .12B .14C .13D .163.七巧板是古代中国劳动人民的发明,到了明代基本定型.清陆以湉在《冷庐杂识》中写道:近又有七巧图,其式五,其数七,其变化之式多至千余.如图,在七巧板拼成的正方形内任取一点,则该点取自图中阴影部分的概率是( )A .116B .18 C .38D .3164.斐波那契螺旋线,也称“黄金螺旋线”,是根据斐波那契数列(1,1,2,3,5,8…)画出来的螺旋曲线,由中世纪意大利数学家列奥纳多•斐波那契最先提出.如图,矩形ABCD 是以斐波那契数为边长的正方形拼接而成的,在每个正方形中作一个圆心角为90°的圆弧,这些圆弧所连成的弧线就是斐波那契螺旋线的一部分.在矩形ABCD 内任取一点,该点取自阴影部分的概率为( )A.14B.8πC.34D.4π5.数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.下图是源于其思想的一个程序框图,若输入的a,b分别为6,3,则输出的n=()A.2 B.3 C.4 D.56.执行如图所示的程序框图,若输入10n=,则输出的结果是()A .11114135717P ⎛⎫=-+-++⎪⎝⎭B .11114135719P ⎛⎫=-+-+- ⎪⎝⎭ C .11114135721P ⎛⎫=-+-+⋯+ ⎪⎝⎭D .11114135721P ⎛⎫=-+-+-⎪⎝⎭7.在如图算法框图中,若6a =,程序运行的结果S 为二项式5(2)x +的展开式中3x 的系数的3倍,那么判断框中应填入的关于k 的判断条件是( )A .3k <B .3k >C .4k <D .4k >8.执行如图所示的程序框图,输出的S 值为( )A .1B .-1C .0D .-29.为了解一片经济树林的生长情况,随机测量了其中100株树木的底部周长(单位:cm ),根据所得数据画出样本的频率分布直方图如图所示.那么在这100株树木中,底部周长小于110cm 的株数n 是 ( )A .30B .60C .70D .8010.某农业科学研究所分别抽取了试验田中的海水稻以及对照田中的普通水稻各10株,测量了它们的根系深度(单位:cm ),得到了如图所示的茎叶图,其中两竖线之间表示根系深度的十位数,两边分别是海水稻和普通水稻根系深度的个位数,则下列结论中不正确的是( )A .海水稻根系深度的中位数是45.5B .普通水稻根系深度的众数是32C .海水稻根系深度的平均数大于普通水稻根系深度的平均数D .普通水稻根系深度的方差小于海水稻根系深度的方差 11.有线性相关关系的变量有观测数据,已知它们之间的线性回归方程是,若,则( ) A .B .C .D .12.为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验,得到5组数据:11(,)x y ,22(,)x y ,33(,)x y ,44(,)x y ,55(,)x y .根据收集到的数据可知12345150x x x x x ++++=,由最小二乘法求得回归直线方程为0.6754.9y x =+,则12345y y y y y ++++的值为( )A .75B .155.4C .375D .466.2二、填空题13.如图所示,分别以,,A B C 为圆心,在ABC 内作半径为2的三个扇形,在ABC 内任取一点P ,如果点P 落在这三个扇形内的概率为13,那么图中阴影部分的面积是____________.⨯⨯的长方体框架,一个建筑工14.如图,某建筑工地搭建的脚手架局部类似于一个223人欲从A处沿脚手架攀登至B处,则其最近的行走路线中不连续向上攀登的概率为______________.15.从一堆产品(正品与次品都多于2件)中任取2件,观察正品件数和次品件数,则下列说法:①“恰好有1件次品”和“恰好2件都是次品”是互斥事件②“至少有1件正品”和“全是次品”是对立事件③“至少有1件正品”和“至少有1件次品”是互斥事件但不是对立事件④“至少有1件次品”和“全是正品”是互斥事件也是对立事件其中正确的有______(填序号).16.若下面程序中输入的n值为2017,则输出的值为__________.17.下图程序运行结果是________.18.某程序框图如图所示,该程序运行后输出的S为____________.19.上海市普通高中学业水平等级考成绩共分为五等十一级,各等级换算成分数如表所示: 等级A + AB + BB -C + CC -D + DE 分数 7067646158555249464340上海某高中2018届高三()1班选考物理学业水平等级考的学生中,有5人取得A +成绩,其他人的成绩至少是B 级及以上,平均分是64分,这个班级选考物理学业水平等级考的人数至少为______人.20.已知一组数据为2,3,4,5,6,则这组数据的方差为______.三、解答题21.某中学刚搬迁到新校区,学校考虑,若非住校生上学路上单程所需时间人均超过20分钟,则学校推迟5分钟上课.为此,校方随机抽取100个非住校生,调查其上学路上单程所需时间(单位:分钟),根据所得数据绘制成如下频率分布直方图,其中时间分组为[)0,10,[)10,20,[)20,30,[)30,40,[]40,50.(1)求频率分布直方图中a 的值;(2)从统计学的角度说明学校是否需要推迟5分钟上课;(3)若从样本单程时间不小于30分钟的学生中,随机抽取2人,求这两个学生的单程时间均落在[)30,40上的概率.22.“绿水青山就是金山银山”,为了响应国家政策,我市环保部门对市民进行了一次环境保护知识的网络问卷调查,每位市民仅有一次参加机会,通过随机抽样,得到参与问卷调查的50人的得分(满分:100分)数据,统计结果如表所示:若规定问卷得分不低于70分的市民称为“环境保护关注者”,则上图中表格可得22⨯列联表如下:(1)请完成上述22⨯列联表,并判断能否在犯错误的概率不超过0.05的前提下认为“环境保护关注者”与性别有关?(2)若问卷得分不低于80分的人称为“环境保护达人”,现在从本次调查的“环境保护达人”中利用分层抽样的方法抽取4名市民参与环保知识问答,再从这4名市民中随机抽取2人参与座谈会,求抽取的2名市民中,既有男“环境保护达人”又有女“环境保护达人”的概率.附表及公式:22()()()()()n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.2.07223.已知程序框图如图所示,用“直到型循环”写出程序框图所对应的算法语句24.某批发部出售袜子,当购买少于300双时,每双批发价为2.5元;不少于300双时,每双批发价为2.2元.试分别画出程序框图和用程序语言编写计算批发金额.25.为了解某市家庭用电量的情况,该市统计局调查了100户居民去年一年的月均用电量,发现他们的用电量都在50kW·h至350kW·h之间,进行适当分组后,画出频率分布直方图如图所示.(I)求a的值;(Ⅱ)求被调查用户中,用电量大于250kW·h的户数;(III)为了既满足居民的基本用电需求,又提高能源的利用效率,市政府计划采用阶梯定价,希望使80%的居民缴费在第一档(费用最低),请给出第一档用电标准(单位:kW·h)的建议,并简要说明理由.26.画糖人是一种以糖为材料在石板上进行造型的民间艺术.某糖人师傅在公园内画糖人,每天卖出某种糖人的个数与价格相关,其相关数据统计如下表:每个糖人的价格x910111213(元)卖出糖人的个数y5450464339(1)根据表中数据求y关于x的回归直线方程;(2)若该种造型的糖人的成本为2元/个,为使糖人师傅每天获得最大利润,则该种糖人应定价多少元?(精确到1元)参考公式:回归直线方程^^^y b x a=+,其中^121()()()ni iiniix x y ybx x==--=-∑∑,^^^a yb x=-.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】由古典概型及其概率计算公式得:有人表现突出,则B县选取的人表现不突出的概率是6041057=,得解.【详解】由已知有分别从A,B两个县的15人中各选1人,已知有人表现突出,则共有1111 151********C C C C⋅-⋅=种不同的选法,又已知有人表现突出,且B县选取的人表现不突出,则共有1151260C C⋅=种不同的选法,已知有人表现突出,则B县选取的人表现不突出的概率是604 1057=.故选:B.【点睛】本题考查条件概率的计算,考查运算求解能力,求解时注意与古典概率模型的联系. 2.C解析:C【分析】欲求所投的点落在叶形图内部的概率,须结合定积分计算叶形图(阴影部分)平面区域的面积,再根据几何概型概率计算公式求解.【详解】联立2y y x⎧=⎪⎨=⎪⎩(1,1)C . 由图可知基本事件空间所对应的几何度量1OBCA S =正方形, 满足所投的点落在叶形图内部所对应的几何度量:S (A)3123120021)()|33x dx x x ==-⎰13=. 所以P (A )1()1313OBCAS A S ===正方形. 故选:C . 【点睛】本题综合考查了几何概型及定积分在求面积中的应用,考查定积分的计算,意在考查学生对这些知识的理解掌握水平.3.B解析:B 【分析】设阴影部分正方形的边长为a ,计算出七巧板所在正方形的边长,并计算出两个正方形的面积,利用几何概型概率公式可计算出所求事件的概率. 【详解】如图所示,设阴影部分正方形的边长为a,则七巧板所在正方形的边长为, 由几何概型的概率公式可知,在七巧板拼成的正方形内任取一点,则该点取自图中阴影部分的概率()2218a =,故选:B.【点睛】本题考查几何概型概率公式计算事件的概率,解题的关键在于弄清楚两个正方形边长之间的等量关系,考查分析问题和计算能力,属于中等题.4.D解析:D 【解析】 【分析】利用圆的面积公式及几何概型中的面积型直接得解. 【详解】由已知可得:矩形ABCD 的面积为(3+5)×(2+3+8)=104, 又阴影部分的面积为14π(12+12+22+32+52+82)=26π, 即点取自阴影部分的概率为261044ππ=, 故选D .【点睛】本题考查了圆的面积公式及几何概型中的面积型,属于中档题.5.B解析:B 【分析】模拟程序运行,观察变量值的变化,判断循环条件得出结论. 【详解】程序运行中变量值变化如下:6,3a b ==,1n =,9,6a b ==,不满足a b ≤;2n =,13.5a =,12b =,不满足a b ≤;3n =,20.25a =,24b =,满足a b ≤,输出3n =. 故选:B . 【点睛】本题考查程序框图,考查循环结构.解题方法是模拟程序运行,观察变量值的变化,判断循环条件得出结论.6.B解析:B 【分析】按照程序框图运行程序,寻找规律,直到i n >输出结果即可. 【详解】按照程序框图运行程序,输入10n =,0S =,1i =,则1S =,2i =,不满足i n >,循环;113S =-,3i =,不满足i n >,循环;11135S =-+,4i =,不满足i n >,循环;以此类推,1111135719S =-+--⋅⋅⋅-,11=i ,满足i n >,则4P S =, 11114135719P ⎛⎫∴=-+--⋅⋅⋅- ⎪⎝⎭.故选:B . 【点睛】本题考查根据程序框图循环结构计算输出结果的问题,属于常考题型.7.C解析:C 【分析】根据二项式(2+x )5展开式的通项公式,求出x 3的系数,模拟程序的运行,可得判断框内的条件. 【详解】∵二项式5(2)x +展开式的通项公式是5152r r r r T C x -+=⋅⋅,令3r =,3233152T C x +∴=⋅⋅,332356(4)21408x x C x∴⨯⋅⋅=,∴程序运行的结果S 为120, 模拟程序的运行,由题意可得 k=6,S=1不满足判断框内的条件,执行循环体,S=6,k=5 不满足判断框内的条件,执行循环体,S=30,k=4 不满足判断框内的条件,执行循环体,S=120,k=3此时,应该满足判断框内的条件,退出循环,输出S 的值为120. 故判断框中应填入的关于k 的判断条件是k <4? 故选:C 【点睛】本题考查了二项式展开式的通项公式的应用问题,考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,属于中档题.8.B解析:B 【分析】由题意结合流程图运行程序,考查5i >是否成立来决定输出的数值即可. 【详解】结合流程图可知程序运行过程如下: 首先初始化数据:1,2i S ==, 此时不满足5i >,执行循环:111,122S i i S =-==+=; 此时不满足5i >,执行循环:111,13S i i S=-=-=+=; 此时不满足5i >,执行循环:112,14S i i S=-==+=; 此时不满足5i >,执行循环:111,152S i i S =-==+=; 此时不满足5i >,执行循环:111,16S i i S=-=-=+=; 此时满足5i >,输出1S =-. 本题选择B 选项. 【点睛】本题主要考查循环结构流程图的识别与运行过程,属于中等题.9.C解析:C【解析】解:由图可知:则底部周长小于110cm 段的频率为(0.01+0.02+0.04)×10=0.7, 则频数为100×0.7=70人. 故选C .10.D解析:D 【分析】选项A 求出海水稻根系深度的中位数是444745.52+=,判断选项A 正确;选项B 写出普通水稻根系深度的众数是32,判断选项B 正确;选项C 先求出海水稻根系深度的平均数,再求出普通水稻根系深度的平均数,判断选项C 正确;选项D 先求出普通水稻根系深度的方差,再求出海水稻根系深度的方差,判断选项D 错误. 【详解】解:选项A :海水稻根系深度的中位数是444745.52+=,故选项A 正确; 选项B :普通水稻根系深度的众数是32,故选项B 正确;选项C :海水稻根系深度的平均数393938434447495050514510+++++++++=,普通水稻根系深度的平均数252732323436384041453510+++++++++=,故选项C 正确;选项D :普通水稻根系深度的方差2222222211[(3845)(3945)(3945)(4345)(4445)(4745)(4945)(5045)10S =-+-+-+-+-+-+-+-+, 海水稻根系深度的方差2222222221[(2535)(2735)(3235)(3235)(3435)(3635)(3835)(4035)(10S =-+-+-+-+-+-+-+-+,故选项D 错误 故选:D. 【点睛】本题考查根据茎叶图求中位数、众数、平均数、方差,是基础题. 11.D解析:D 【解析】 【分析】 先计算,代入回归直线方程,可得,从而可求得结果.【详解】 因为,所以,代入回归直线方程可求得,所以,故选D. 【点睛】该题考查的是有关回归直线的问题,涉及到的知识点有回归直线一定会过样本中心点,利用相关公式求得结果,属于简单题目.12.C解析:C 【分析】首先求得x 的值,然后利用线性回归方程过样本中心点的性质求解12345y y y y y ++++的值即可. 【详解】由题意可得:12345305x x x x x x ++++==,线性回归方程过样本中心点,则:0.6754.975y x =⨯+=,据此可知:12345y y y y y ++++5375y ==. 本题选择C 选项. 【点睛】本题主要考查线性回归方程的性质及其应用等知识,意在考查学生的转化能力和计算求解能力.二、填空题13.【分析】先求出三块扇形的面积再由概率计算公式求出的面积进而求出阴影部分的面积【详解】∵∴三块扇形的面积为:设的面积为∵在内任取一点点落在这三个扇形内的概率为∴图中阴影部分的面积为:故答案为:【点睛】 解析:4π【分析】先求出三块扇形的面积,再由概率计算公式求出ABC ∆的面积,进而求出阴影部分的面积. 【详解】∵180A B C ︒++=, ∴三块扇形的面积为:21222ππ⨯⨯=, 设ABC 的面积为S ,∵在ABC 内任取一点P ,点P 落在这三个扇形内的概率为13, 2163S S ππ∴=⇒=,∴图中阴影部分的面积为:624πππ-=, 故答案为:4π. 【点睛】本题主要考查几何概型的应用,属于几何概型中的面积问题,难度不大.14.【解析】【分析】先求出最近路线的所有走法共有种再求出不连续向上攀登的次数然后可得概率【详解】最近的行走路线就是不走回头路不重复所以共有种向上攀登共需要3步向右向前共需要4步因为不连续向上攀登所以向解析:27 【解析】 【分析】先求出最近路线的所有走法共有77A 种,再求出不连续向上攀登的次数,然后可得概率. 【详解】最近的行走路线就是不走回头路,不重复,所以共有77A 种,向上攀登共需要3步,向右向前共需要4步,因为不连续向上攀登,所以向上攀登的3步,要进行插空,共有4345A A 种,故所求概率为43457727A A P A ==. 【点睛】本题主要考查古典概率的求解,明确事件包含的基本事件种数是求解关键,侧重考查数学建模和数学运算的核心素养.15.【分析】运用不能同时发生的两个事件为互斥事件如果两个事件为互斥事件且其中必有一个发生即为对立事件对选项一一判断即可得到正确结论【详解】恰好有1件次品和恰好2件都是次品不能同时发生是互斥事件故正确;至 解析:①②④【分析】运用不能同时发生的两个事件为互斥事件,如果两个事件为互斥事件,且其中必有一个发生,即为对立事件,对选项一一判断,即可得到正确结论. 【详解】①“恰好有1件次品”和“恰好2件都是次品”不能同时发生,是互斥事件,故①正确;②“至少有1件正品”和“全是次品”,不能同时发生,是互斥事件也是对立事件,故②正确;③“至少有1件正品”和“至少有1件次品”存在恰有一件正品和一件次品,不是互斥事件但不是对立事件,故③不正确;④“至少有1件次品”和“全是正品”不能同时发生,是互斥事件也是对立事件,④正确.故答案为①②④. 【点睛】本题考查命题的真假判断,主要是互斥事件和对立事件的判断,考查判断和分析能力,属于基础题.16.【分析】根据程序框图的算法功能可知该程序是计算的值再根据裂项相消法即可求出【详解】根据程序框图的算法功能可知该程序是计算的值所以故答案为:【点睛】本题主要考查程序框图的算法功能的理解以及数列求和属于 解析:20172018【分析】根据程序框图的算法功能可知,该程序是计算111112233420172018++++⨯⨯⨯⨯的值,再根据裂项相消法即可求出. 【详解】根据程序框图的算法功能可知,该程序是计算111112233420172018++++⨯⨯⨯⨯的值. 所以111112233420172018++++⨯⨯⨯⨯111111112017122334201720182018⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 故答案为:20172018. 【点睛】本题主要考查程序框图的算法功能的理解以及数列求和,属于基础题.常见的数列求和方法有:公式法,裂项相消法,分组求和法,倒序相加求和法,并项求和法,错位相减法等,根据数列的特征选择对应的方法是解题的关键.17.34【解析】由题设循环体要执行四次图知第一次循环结束后第二次循环结束后第三次循环结束后第四次循环结束后故答案为34解析:34 【解析】由题设循环体要执行四次,图知第一次循环结束后2a a b =+=,3b a b =+=, 第二次循环结束后5a a b =+=,8b a b =+=,第三次循环结束后13a a b =+=,21b a b =+=,第四次循环结束后34a a b =+=,55b a b =+=,故答案为 34. 18.【分析】列出前几次循环找出该算法循环的周期性然后利用周期性求出输出结果的值【详解】成立执行第一次循环;成立执行第二次循环;成立执行第三次循环;成立执行第四次循环;成立执行第五次循环由上可知该算法循环解析:13. 【分析】列出前几次循环,找出该算法循环的周期性,然后利用周期性求出输出结果S 的值. 【详解】12011i =≤成立,执行第一次循环,12312S +==--,112i =+=; 22011i =≤成立,执行第二次循环,()()131132S +-==---,213i =+=;32011i =≤成立,执行第三次循环,11121312S ⎛⎫+- ⎪⎝⎭==⎛⎫-- ⎪⎝⎭,314i =+=; 42011i =≤成立,执行第四次循环,1132113S +==-,415i =+=;52011i =≤成立,执行第五次循环,12312S +==--,516i =+=. 由上可知,该算法循环是以4次为一个循环周期,执行完最后一次循环,2012i =,201255024=⨯+,因此,输出的结果S 的值为13,故答案为13.【点睛】本题考查算法的周期性,解题时要结合算法程序框图得出算法循环的周期性,考查推理能力与计算能力,属于中等题.19.15【解析】【分析】设取得A 成绩的x 人取得成绩的y 人取得B 成绩的z 人由题意可得:解得:结合xy 可求的最【详解】设取得A 成绩的x 人取得成绩的y 人取得B 成绩的z 人则即又xy 即当且仅当时取得最小值15取得解析:15 【解析】 【分析】设取得A 成绩的x 人,取得B +成绩的y 人,取得B 成绩的z 人,由题意可得:()70567x 64y 61z 645x y z ⨯+++=⨯+++,解得:z x 10-=,结合x ,y ,z N ∈,可求5x y z +++的最. 【详解】设取得A 成绩的x 人,取得B +成绩的y 人,取得B 成绩的z 人, 则()70567x 64y 61z 645x y z ⨯+++=⨯+++, 即z x 10-=, 又x ,y ,z N ∈,即当且仅当x 0=,y 0=,z 10=时,5x y z +++取得最小值15, 取得A 成绩的0人,取得B +成绩的0人,取得B 成绩的10人,这个班级选考物理学业水平等级考的人数至少为15人, 故答案为15 【点睛】本题考查了实际问题通过数学问题解决,考查了阅读理解及数学建模的能力,属中档题.20.2【解析】分析:根据方差的计算公式先算出数据的平均数然后代入公式计算即可得到结果详解:平均数为:即答案为2点睛:本题考查了方差的计算解题的关键是方差的计算公式的识记它反映了一组数据的波动大小方差越大解析:2 【解析】分析:根据方差的计算公式,先算出数据的平均数,然后代入公式计算即可得到结果. 详解:平均数为:2345645+++++=,()22222211[2434445464]4114255s =⨯-+-+-+-+-=⨯+++=()()()()().即答案为2.点睛:本题考查了方差的计算,解题的关键是方差的计算公式的识记.它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.三、解答题21.(1)0.015a =;(2)该校不需要推迟钟上课;(3)310. 【分析】(1)根据频率和为1求a ;(2)根据频率分布直方图计算平均数,与20比较大小,再判断;(3)由条件可知[)30,40的有3人,[)40,50的有2人,利用古典概型求概率. 【详解】(1)时间分组为[)0,10的频率为()1100.060.020.0030.0020.15-+++=∴0.150.01510a ==. (2)100个非住校生上学路上单程所需时间的平均数:0.1550.6150.2250.03350.024516.7x =⨯+⨯+⨯+⨯+⨯=. 因为16.720<,所以该校不需要推迟钟上课.(3)从单程所需时间不小于30分钟的5名学生中,随机抽取2人共有以下10种情况:()12,a a ,()13,a a ,()11,a b ,()12,a b ,()23,a a ,()21,a b ,()22,a b ,()31,a b ,()32,a b ,()12,b b ;其中恰有一个学生的单程所需时间落在[)30,40中的有以下3种:()12,a a ,()13,a a ,()23,a a ;两个学生的单程时间均落在[)30,40上的概率为310P =. 【点睛】方法点睛:本题考查频率分布直方图与古典概型的综合应用,一般求古典概型常用一些方法:(1)将所求事件的概率分解为一些彼此互斥的事件的概率的和,运用互斥事件的概率加法公式计算;(2)利用对立事件的概率,运用公式()()1P A P A =-求解.22.()122⨯列联表见解析,在犯错误的概率不超过0.05的前提下认为“环境保护关注者”与性别有关;()212【分析】()1根据表中的数据重新整合,完成22⨯列联表,然后将列联表中的数据代入2K 的公式计算求解,结合临界值表进行判断即可;()2列举出所有可能的情况和既有男“环境保护达人”又有女“环境保护达人”包含的情况,再利用古典概型的概率计算公式求解即可. 【详解】()1 由表中数据可得22⨯列联表如下,2K 的观测值()2505102510 6.349 3.84115353020k ⨯⨯-⨯=≈>⨯⨯⨯,所以在犯错误的概率不超过0.05的前提下认为“环境保护关注者”与性别有关;()2由题可知,利用分层抽样的方法可得,抽取4名市民中男环保达人3人,女环保达人1人, 设男环保达人为,,A B C ,女环保达人为a , 从中抽取两人参与座谈会所有的情况为()()()()()(),,,,,,,,,,,A B A C A a B C B a C a 共6种情况,既有男“环境保护达人”又有女“环境保护达人”包含的情况为()()(),,,,,A a B a C a 共3种情况,由古典概型的概率计算公式可得,所求概率3162 P==.【点睛】本题考查独立性检验和古典概型概率计算公式;考查运算求解能力;注意所给数表的使用方法和题目设为方式和熟练掌握2K公式是求解本题的关键;属于基础题、常考题型.23.见解析【分析】根据程序框图直接写出直到型循环的算法语句得到答案.【详解】算法语句如下:【点睛】本题考查了将程序框图转化为算法语句,意在考查学生对于程序框图和算法语句的理解和掌握.24.见解析【解析】试题分析:在两个不同的条件下批发金额公式不同,只需编写一个条件语句即可实现.试题程序框图如下图所示.程序如下:i=input(“批发双数i=”);if i<300T=2.5* i;elseT=2.2* i;endprint(%io(2),T);25.(I )0.006;(Ⅱ)18;(III )245.5 kW·h.【分析】(1)根据频率和为1计算出a 的值;(2)根据频率分布直方图计算出“用电量大于250kW·h”的频率,再将该频率乘以对应的总户数即可得到结果;(3)根据频率分布直方图计算出频率刚好为0.8时对应的月用电量,由此可得到第一档用电标准.【详解】(1)因为()0.00240.00360.00440.00240.0012501a +++++⨯=,所以0.006a =; (2)根据频率分布直方图可知:“用电量大于250kW·h”的频率为()0.00240.0012500.18+⨯=,所以用电量大于250kW·h 的户数为:1000.1818⨯=, 故用电量大于250kW·h 有18户; (3)因为前三组的频率和为:()0.00240.00360.006500.60.8++⨯=<,前四组的频率之和为()0.00240.00360.0060.0044500.820.8+++⨯=>,所以频率为0.8时对应的数据在第四组, 所以第一档用电标准为:0.80.620050245.50.22-+⨯≈kW·h. 故第一档用电标准为245.5 kW·h. 【点睛】本题考查频率分布直方图的综合应用,主要考查利用频率分布直方图进行相关计算,对学生读取图表信息和计算能力有一定要求,难度一般.26.(1) 3.787.ˆ1yx =-+(2)13 【分析】(1)根据公式得到平均数,以及ˆb,ˆa ,可得到方程;(2)根据题意得到师傅每天获得的利润为Q 元,则23.794.5174.2Q x x =-+-,根据二次函数的性质得到获得最大利润时的定价.【详解】(1)11x =,46.4y =,()52110i i x x =-=∑,()()5137i i i x x y y =--=-∑, ∴()()()515213730ˆ.71i ii ii x x y y b x x ==---===--∑∑,则46.4 3.ˆ71187.ˆ1a y bx =-=+⨯=,∴y 关于x 的回归直线方程为 3.787.ˆ1yx =-+. (2)设糖人师傅每天获得的利润为Q 元,则()()23.787.12 3.794.5174.2Q x x x x =-+-=-+-,∴当94.5132 3.7x =≈⨯时,糖人师傅每天获得最大利润. 故为使糖人师傅每天获得最大利润,每个糖人应定价13元.【点睛】本题考查回归分析,考查线性回归直线过样本中心点,在一组具有相关关系的变量的数据间,这样的直线可以画出许多条,而其中的一条能最好地反映x 与y 之间的关系,这条直线过样本中心点.。
高中数学必修三期末试题(附答案)
一、选择题1.第24届国际数学大会会标是以我国古代数学家赵爽的弦图为基础进行设计的.如图,会标是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形的一个锐角为θ,且πsin 2sin 52θθ⎛⎫++= ⎪⎝⎭.若在大正方形内随机取一点,则该点取自小正方形区域的概率为( ).A .14B .15C .25D .352.从单词“book ”的四个字母中任取2个,则取到的2个字母不相同的概率为( ) A .13B .12C .23D .343.算盘是中国传统的计算工具,其形长方,周为木框,内贯直柱,俗称“档”,档中横以梁,梁上两珠,每珠作数五,梁下五珠,每珠作数一.算珠梁上部分叫上珠,梁下部分叫下珠.例如:在十位档拨上一颗上珠和一颗下珠,个位档拨上一颗上珠,则表示数字65.若在个、十、百位档中随机选择一档拨一颗上珠,再随机选择两个档位各拨一颗下珠,则所拨数字为奇数的概率为( )A .13B .49C .59D .234.设向量()()1,,a x y x y R =-∈,若1a ≤,则y x ≥的概率为( ) A .14B .1142π- C .114π-D .3142π+ 5.执行如图所示的程序框图,结果是( )A.11 B.12 C.13 D.14 6.下列赋值语句正确的是 ()A.S=S+i2B.A=-AC.x=2x+1 D.P=7.执行如图所示的程序框图,若输出的结果为48,则输入k的值可以为A.6B.10C.8D.4) 8.执行如图所示程序框图,当输入的x为2019时,输出的y(A .28B .10C .4D .29.某农业科学研究所分别抽取了试验田中的海水稻以及对照田中的普通水稻各10株,测量了它们的根系深度(单位:cm ),得到了如图所示的茎叶图,其中两竖线之间表示根系深度的十位数,两边分别是海水稻和普通水稻根系深度的个位数,则下列结论中不正确的是( )A .海水稻根系深度的中位数是45.5B .普通水稻根系深度的众数是32C .海水稻根系深度的平均数大于普通水稻根系深度的平均数D .普通水稻根系深度的方差小于海水稻根系深度的方差10.已知变量,x y 之间的线性回归方程为0.47.6=-+y x ,且变量,x y 之间的一组相关数据如表所示,则下列说法错误的是( )A .变量,x y 之间呈现负相关关系B .m 的值等于5C .变量,x y 之间的相关系数0.4=-rD .由表格数据知,该回归直线必过点()9,411.PM2.5是指空气中直径小于或等于2.5微米的颗粒物(也称可入肺颗粒物),为了探究车流量与PM2.5的浓度是否相关,现采集到某城市周一至周五某时间段车流量与PM2.5浓度的数据如下表:根据上表数据,用最小二乘法求出y 与x 的线性回归方程是( )参考公式:121()()()niii ni i x x y y b x x ==--=-∑∑,a y b x =-⋅;参考数据:108x =,84y =;A .0.6274ˆ.2yx =+ B .0.7264ˆ.2y x =+ C .0.7164ˆ.1y x =+ D .0.6264ˆ.2y x =+ 12.有一个同学家开了一个小卖部,他为了研究气温对热饮销售的影响,经统计,得到一个卖出的热饮杯数与当天气温的对比表:根据上表数据确定的线性回归方程应该是( )A .ˆ 2.352147.767yx =-+ B .ˆ 2.352127.765yx =-+ C .ˆ 2.35275.501yx =+D .ˆ 2.35263.674yx =+ 二、填空题13.甲、乙两人进行象棋比赛,采取五局三胜制(不考虑平局,先赢得三场的人为获胜者,比赛结束).根据前期的统计分析,得到甲在和乙的第一场比赛中,取胜的概率为0.5,受心理方面的影响,前一场比赛结果会对甲的下一场比赛产生影响,如果甲在某一场比赛中取胜,则下一场取胜率提高0.1,反之,降低0.1,则甲以3:1取得胜利的概率为______________.14.如图所示,分别以,,A B C 为圆心,在ABC 内作半径为2的三个扇形,在ABC内任取一点P ,如果点P 落在这三个扇形内的概率为13,那么图中阴影部分的面积是____________.15.从1,2,3,4中任取两个不同的数,则取出的2个数之差的绝对值小于或等于2的概率为__________.16.执行如图所示的程序框图,输出S 的值为___________.17.用秦九韶算法求多项式()5432357911f x x x x x x =+-+-+当4x =时的值为____________.18.如图是一个算法的流程图,则输出的a 的值是___________.19.为了了解2100名学生早晨到校时间,计划采用系统抽样的方法从全体学生中抽取容量为100栋样本,则分段间隔为__________.20.已知一组数据:5.7,5.8,6.1,6.4,6.5,则该数据的方差是__________.三、解答题21.从广安市某中学校的800名男生中随机抽取50名测量身高,被测学生身高全部介于155cm 和195cm 之间,将测量结果按如下方式分成八组:第一组[)155160,,第二组[)160165,,...,第八组[)190,195,如图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组的人数为4人.(1)求第七组的频率;(2)估计该校800名男生的身高的中位数。
【浙教版】高中数学必修三期末模拟试卷带答案(2)
一、选择题1.中国古代十进制的算筹计数法,在数学史上是一个伟大的创造,算筹实际上是一根根同长短的小木棍.如图,是利用算筹表示数1-9的一种方法.例如:3可表示为“≡”,26可表示为“=⊥”,现有6根算筹,据此表示方法,若算筹不能剩余,则可以用1-9这9个数字表示两位数中,能被3整除的概率是()A.518B.718C.716D.5162.抛掷一枚质地均匀的骰子,记事件A为“向上的点数是偶数”,事件B为“向上的点数不超过3”,则概率()P A B=()A.12B.13C.23D.563.素数指整数在一个大于1的自然数中,除了1和此整数自身外,不能被其他自然数整除的数。
我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果。
哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如1037=+。
在不超过15的素数中,随机选取两个不同的数,其和小于18的概率是()A.15B.1115C.35D.134.七巧板是我国古代劳动人民发明的一种智力玩具,由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成. 如图是一个用七巧板拼成的正方形,若在此正方形中任取一点,则此点取自黑色部分的概率为()A.14B.316C.38D.7165.我国南宋时期数学家秦九韶在其著作(数术九章》中提出了解决多项式求值的秦九韶算法,其程序框图如图所示,若输入3x=,则输出v的值为()A .1131-B .11312-C .12312-D .10312-6.执行如图所示的程序框图,若输入10n =,则输出的结果是( )A .11114135717P ⎛⎫=-+-++⎪⎝⎭B .11114135719P ⎛⎫=-+-+- ⎪⎝⎭ C .11114135721P ⎛⎫=-+-+⋯+ ⎪⎝⎭D .11114135721P ⎛⎫=-+-+-⎪⎝⎭7.如图所给的程序运行结果为41S =,那么判断框中应填入的关于k 的条件是( )A .7k ≥?B .6k ≥?C .5k ≥?D .6k >?8.如图给出的是计算1111246102+++⋅⋅⋅+的值的一个程序框图,其中判断框中应填入的是( )A .102i >B .102i ≤C .100i >D .100i ≤9.甲、乙两名同学在五次数学考试中的成绩统计如下面的茎叶图所示,若甲、乙两人的平均成绩分别是1x ,2x ,观察茎叶图,下列结论正确的是( )A .12x x <,乙比甲成绩稳定B .12x x >,乙比甲成绩稳定C .12x x <,甲比乙成绩稳定D .12x x >,甲比乙成绩稳定10.某林场有树苗30000棵,其中松树苗4000棵.为调查树苗的生长情况,采用分层抽样的方法抽取一个容量为150的样本,则样本中松树苗的数量为( ) A .30B .25C .20D .1511.某校高中三个年级共有学生1050人,其中高一年级300人,高二年级350人,高三年级400人.现要从全体高中学生中通过分层抽样抽取一个容量为42的样本,那么应从高三年级学生中抽取的人数为 A .12B .14C .16D .1812.从8名女生4名男生中,选出3名学生组成课外小组,如果按性别比例分层抽样,则不同的抽取方法数为( ) A .112种B .100种C .90种D .80种二、填空题13.现有编号为1,2,3,…,100的100把锁,利用中国剩余定理的原理设置开锁密码,规则为:将锁的编号依次除以3,5,7所得的三个余数作为该锁的开锁密码,这样,每把锁都有一个三位数字的开锁密码.例如,编号为52的锁所对应的开锁密码是123,开锁密码为232所对应的锁的编号是23.若一把锁的开锁密码为203,则这把锁的编号是__________.14.在棱长为2 的正方体内任取一点,则此点到正方体中心的距离不大于1的概率为_____.15.已知7个实数1,2,4,,,,a b c d 依次构成等比数列,若从这7个数中任取2个,则它们的和为正数的概率为___________.16.若下面程序中输入的n 值为2017,则输出的值为__________.17.根据如图所示的伪代码,可知输出的结果S 为________.18.程序如下:以上程序输出的结果是_________________19.为了了解某学校男生的身体发育情况,随机抽查了该校100名男生的体重情况,整理所得数据并画出样本的频率分布直方图.根据此图估计该校2000名男生中体重在7078()kg ~的人数为__________.20.能够说明“若甲班人数为m ,平均分为a ;乙班人数为n n m ≠(),平均分为b ,则甲乙两班的数学平均分为2a b+”是假命题的一组正整数a ,b 的值依次为_____. 三、解答题21.党的十九大明确把精准脱贫作为决胜全面建成小康社会必须打好的三大攻坚战之一.为坚决打赢脱贫攻坚战,某帮扶单位为帮助定点扶贫村脱贫,坚持扶贫同扶智相结合,此帮扶单位考察了甲、乙两种不同的农产品加工生产方式,现对两种生产方式的产品质量进行对比,其质量按测试指标可划分为:指标在区间[80,100]的为优等品;指标在区间[60,80)的为合格品,现分别从甲、乙两种不同加工方式生产的农产品中,各自随机抽取100件作为样本进行检测,测试指标结果的频数分布表如下: 甲种生产方式:乙种生产方式:(1)在用甲种方式生产的产品中,按合格品与优等品用分层抽样方式,随机抽出5件产品,①求这5件产品中,优等品和合格品各多少件;②再从这5件产品中,随机抽出2件,求这2件中恰有1件是优等品的概率;(2)所加工生产的农产品,若是优等品每件可售55元,若是合格品每件可售25元.甲种生产方式每生产一件产品的成本为15元,乙种生产方式每生产一件产品的成本为20元.用样本估计总体比较在甲、乙两种不同生产方式下,该扶贫单位要选择哪种生产方式来帮助该扶贫村来脱贫?22.某校高三课外兴趣小组为了解高三同学高考结束后是否打算观看2019年足球世界杯比赛的情况,从全校高三年级1500名男生、1000名女生中按分层抽样的方式抽取125名学生进行问卷调查,情况如下表:(1)求出表中数据b,c;(2)判断是否有99%的把握认为观看2019年足球世界杯比赛与性别有关;(3)为了计算“从10人中选出9人参加比赛”的情况有多少种,我们可以发现它与“从10人中选出1人不参加比赛”的情况有多少种是一致的.现有问题:在打算观看2019年足球世界杯比赛的同学中有5名男生、2名女生来自高三(5)班,现从中推选5人接受校园电视台采访,请根据上述方法,求被推选出的5人中恰有四名男生、一名女生的概率.附:()()()()()22n ad bcKa b c d a c b d-=++++.23.现有一个算法框图如图所示。
【人教版】高中数学必修三期末模拟试题附答案
一、选择题1.七巧板是我们祖先的一项创造,被誉为“东方魔板”,它是由五块等腰直角三角形(两块全等的小三角形、一块中三角形和两块全等的大三角形)、一块正方形和一块平行四边形组成的.如图是一个用七巧板拼成的正方形,现从该正方形中任取一点,则此点取自黑色部分的概率是A.316B.38C.14D.182.袋中有白球2个,红球3个,从中任取两个,则互斥且不对立的两个事件是()A.至少有一个白球;都是白球B.两个白球;至少有一个红球C.红球、白球各一个;都是白球D.红球、白球各一个;至少有一个白球3.设袋中有80个红球,20个白球,若从袋中任取10个球,则其中恰好有6个白球的概率为()A.46801010100C CC⋅B.642081010C CC⋅C.462081010C CC⋅D.64801010100C CC⋅4.在编号分别为(0,1,2,,1)i i n=⋅⋅⋅-的n名同学中挑选一人参加某项活动,挑选方法如下:抛掷两枚骰子,将两枚骰子的点数之和除以n所得的余数如果恰好为i,则选编号为i 的同学.下列哪种情况是不公平的挑选方法()A.2n=B.3n=C.4n=D.6n=5.执行如图所示的程序框图,则输出的S=()A.1-B.2-C .2D .126.执行如图所示的程序框图,则输出的k 的值为( )A .3B .4C .5D .67.执行如下的程序框图,则输出的S 是( )A .36B .45C .36-D .45-8.执行如图的程序框图,如果输出a 的值大于100,那么判断框内的条件为( )A .5k <?B .5k ≥?C .6k <?D .6k ≥?9.2020年,一场突如其来的“新型冠状肺炎”使得全国学生无法在春季正常开学,不得不在家“停课不停学”.为了解高三学生居家学习时长,从某校的调查问卷中,随机抽取n 个学生的调查问卷进行分析,得到学生可接受的学习时长频率分布直方图(如下图所示),已知学习时长在[)9,11的学生人数为25,则n 的值为( )A .40B .50C .80D .10010.总体由编号为01,02,,29,30的30个个体组成,利用下面的随机数表选取4个个体.选取的方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出的第4个个体的编号为( ).7806 6572 0802 6314 2947 1821 98003204 9234 4935 3623 4869 6938 7481A .02B .14C .18D .2911.为了了解某社区居民是否准备收看电视台直播的“龙舟大赛”,某记者分别从社区60~70岁,40~50岁,20~30岁的三个年龄段中的128,192,x 人中,采用分层抽样的方法共抽出了30人进行调查,若60~70岁这个年龄段中抽查了8人,那么x 为( ) A .64B .96C .144D .16012.预测人口的变化趋势有多种方法,“直接推算法”使用的公式是()0 1nn P P k =+(1k >-),n P 为预测人口数,0P 为初期人口数,k 为预测期内年增长率,n 为预测期间隔年数.如果在某一时期有10k -<<,那么在这期间人口数 A .呈下降趋势B .呈上升趋势C .摆动变化D .不变二、填空题13.乒乓球赛规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换,每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,甲发球得1分的概率为35,乙发球得1分的概率为23,各次发球的胜负结果相互独立,甲、乙的一局比赛中,甲先发球.则开始第4次发球时,甲、乙的比分为1比2的概率为________.14.在区间[2,4]-上随机地取一个实数x ,若实数x 满足||x m ≤的概率为23,则m =_______.15.设每门高射炮命中飞机的概率为0.06,且每一门高射炮是否命中飞机是独立的,若有一敌机来犯,则需要______门高射炮射击,才能以至少99%的概率命中它. 16.已知某程序框图如图所示,则该程序运行后输出S 的值为__________.17.执行如图所示的程序框图,若输入的1,7S K ==则输出的k 的值为_______.18.如果执行如图的程序框图,那么输出的S =__________.19.已知某市A社区35岁至45岁的居民有450人,46岁至55岁的居民有750人,56岁至65岁的居民有900人.为了解该社区35岁至65岁居民的身体健康状况,社区负责人采用分层抽样技术抽取若干人进行体检调查,若从46岁至55岁的居民中随机抽取了50人,试问这次抽样调查抽取的人数是________人.20.目前北方空气污染越来越严重,某大学组织学生参加环保知识竞赛,从参加学生中抽取40名,将其成绩(均为整数)整理后画出的频率分布直方图如图,若从成绩是80分以上(包括80分)的学生中选两人,则他们在同一分数段的概率为_______.三、解答题21.党的十九大报告指出,要以创新理念提升农业发展新动力,引领经济发展走向更高形态.为进一步推进农村经济结构调整,某村举办水果观光采摘节,并推出配套乡村游项目现统计了4月份200名游客购买水果的情况,得到如图所示的频率分布直方图:(1)若将购买金额不低于80元的游客称为“水果达人”,现用分层抽样的方法从样本的“水果达人”中抽取5人,求这5人中消费金额不低于100元的人数;(2)从(1)中的5人中抽取2人作为幸运客户免费参加山村旅游项目,请列出所有的基本事件,并求2人中至少有1人购买金额不低于100元的概率; (3)为吸引顾客,该村特推出两种促销方案, 方案一:每满80元可立减8元;方案二:金额超过50元但又不超过80元的部分打9折,金额超过80元但又不超过100元的部分打8折,金额超过100元的部分打7折.若水果的价格为11元/千克,某游客要购买10千克,应该选择哪种方案更优惠.22.某学校为了了解高中生的艺术素养,从学校随机选取男,女同学各50人进行研究,对这100名学生在音乐、美术、戏剧、舞蹈等多个艺术项目进行多方位的素质测评,并把调查结果转化为个人的素养指标x 和y ,制成下图,其中“*”表示男同学,“+”表示女同学. 若00.6x <<,则认定该同学为“初级水平”,若0.60.8x ≤≤,则认定该同学为“中级水平”,若0.81x <≤,则认定该同学为“高级水平”;若100y ≥,则认定该同学为“具备一定艺术发展潜质”,否则为“不具备明显艺术发展潜质”.(1)从50名女同学的中随机选出一名,求该同学为“初级水平”的概率;(2)从男同学所有“不具备明显艺术发展潜质的中级或高级水平”中任选2名,求选出的2名均为“高级水平”的概率;(3)试比较这100名同学中,男、女生指标y 的方差的大小(只需写出结论). 23.编写程序计算98246++⋅⋅⋅++的值.24.已知某算法的程序框图如图所示,若将输出的(x ,y )值依次记为(x 1,y 1),(x 2,y 2),…,(x n ,y n ),… (1)若程序运行中输出的一个数组是(9,t ),求t 的值.(2)程序结束时,共输出(x ,y )的组数为多少? (3)写出程序框图的程序语句.25.某同学在生物研究性学习中,对春季昼夜温差大小与黄豆种子发芽多少之间的关系进行研究,于是他在4月份的30天中随机挑选了5天进行研究,且分别记录了每天昼夜温差与每天每100颗种子浸泡后的发芽数,得到如下资料: 日期 4月1日 4月7日 4月15日 4月21日 4月30日 温差x C ︒ 10 11 13 12 8 发芽数y 颗2325302616(1)从这5天中任选2天,若选取的是4月1日与4月30日的两组数据,请根据这5天中的另三天的数据,求出y 关于x 的线性回归方程y bx a =+;(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠? 附:回归直线的斜率和截距的最小二乘估计公式分别为:()()()1122211nniii ii i nniii i x x y y x y nx yb x x xnx====---==--∑∑∑∑,a y bx =-.26.在社会实践活动中,“求知”小组为了研究某种商品的价格x (元)和需求量y (件)之间的关系,随机统计了11月1日至11月5日该商品价格和需求量的情况,得到如下资料: 日期 11月1日 11月2日 11月3日 11月4日 11月5日 x (元) 14 16 18 20 22 y (件)1210743该小组所确定的研究方案是:先从这五天中选取2天数据,用剩下的3天数据求线性回归方程,再对被选取的2天数据进行检验.(1)若选取的是11月1日与11月5日两天数据,请根据11月2日至11月4日的数据,求出y 关于x 的线性回归方程y bx a =+;(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2件,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠?参考公式:()()()1122211nniii ii i nniii i x x y y x y nx yb x x xnx====---==--∑∑∑∑,ay bx =-.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】设2AB =,则1BC CD DE EF ====. ∴1124BCI S ∆==,112242BCI EFGHS S ∆==⨯=平行四边形 ∴所求的概率为113422216P +==⨯ 故选A. 2.C解析:C 【分析】从装有3个红球和2个白球的红袋内任取两个球,所有的情况有3种:“2个白球”、“一个白球和一个红球”、“2个红球”.由于对立事件一定是互斥事件,且它们之中必然有一个发生而另一个不发生,结合所给的选项,逐一进行判断,从而得出结论. 【详解】从装有3个红球和2个白球的红袋内任取两个球,所有的情况有3种:“2个白球”、“一个白球和一个红球”、“2个红球”.由于对立事件一定是互斥事件,且它们之中必然有一个发生而另一个不发生, 对于A ,至少有1个白球;都是白球,不是互斥事件.故不符合.对于B 两个白球;至少有一个红球,是互斥事件,但也是对立事件,故不符合. 对于C 红球、白球各一个;都是白球是互斥事件,但不是对立事件,故符合. 对于D 红球、白球各一个;至少有一个白,不是互斥事件.故不符合. 故选:C .【点睛】本题主要考查互斥事件与对立事件的定义,意在考查学生对这些知识的理解掌握水平.3.C解析:C 【分析】根据古典概型的概率公式求解即可. 【详解】从袋中任取10个球,共有10100C 种,其中恰好有6个白球的有468020C C ⋅种即其中恰好有6个白球的概率为46208001010C C C ⋅ 故选:C 【点睛】本题主要考查了计算古典概型的概率,属于中档题.4.C解析:C 【分析】首先求出两枚骰子的点数之和可能的取值对应的概率,再分别讨论四个选项中n 的取值对应的余数的概率,若每一个余数的概率都相等则是公平的,若不相等则不公平,即可得正确选项. 【详解】由题意知两枚骰子的点数之和为X ,则X 可能为2,3,4,5,6,7,8,9,10,11,12,()1236P X ==, ()2336P X ==,()3436P X ==,()4536P X ==,()5636P X ==()6736P X ==,()5836P X ==,()4936P X ==,()31036P X ==,()21136P X ==,()11236P X ==, 对于选项A :2n =时,0,1,i = ()1351023636362P i ⎛⎫==++⨯= ⎪⎝⎭,()246421136363636362P i ==++++=,所以2n =是公平的,故选项A 不正确; 对于选项B :3n =时,0,1,2i =,()254110363636363P i ==+++=,()363113636363P i ==++=, ()145212363636363P i ==+++=,所以3n =是公平的,故选项B 不正确;对于选项C :4n =时,0,1,2,3i =()351103636364P i ==++=,()442136369P i ==+=, ()153123636364P i ==++=,()2625336363618P i ==++= 因为概率不相等,所以4n =不公平,故选项C 正确; 对于选项D :6n =时,0,1,2,3,4,5i =()511036366P i ==+=,()611366P i ===,()151236366P i ==+=, ()241336366P i ==+=,()331436366P i ==+=,()421536366P i ==+=,所以6n =是公平的,故选项D 不正确, 故选:C 【点睛】关键点点睛:本题解题的关键点是理解题意,对于所给n 的值的每一个余数出现的概率相等即为公平,不相等即为不公平.5.D解析:D 【分析】列举出前四次循环,可知,该算法循环是以3为周期的周期循环,利用周期性可得出输出的S 的值. 【详解】第一次循环,02020k =≤成立,1112S ==--,011k =+=; 第二次循环,12020k =≤成立,()11112S ==--,112k =+=;第三次循环,22020k =≤成立,12112S ==-,213k =+=;第四次循环,32020k =≤成立,1112S ==--,314k =+=; 由上可知,该算法循环是周期循环,且周期为3,依次类推,执行最后一次循环,20202020k =≤成立,且202036731=⨯+,此时12S =, 202012021k =+=,20212020k =≤不成立,跳出循环体,输出S 的值为12. 故选:D. 【点睛】本题考查利用程序框图计算输出结果,推导出循环的周期性是解题的关键,考查计算能力,属于中等题.6.C解析:C 【分析】根据框图模拟程序运算即可. 【详解】第一次执行程序,2111S =⨯-=,25S >-,继续循环,第二次执行程序,2k =,2121S =⨯-=-,25S >-,继续循环, 第三次执行程序,3k =,2(1)35S =⨯--=-,25S >-,继续循环, 第四次执行程序,4k =,2(5)414S =⨯--=-,25S >-,继续循环,第五次执行程序,5k =,2(14)532S =⨯--=-,25S <-,跳出循环,输出5k =,结束.故选C. 【点睛】本题主要考查了程序框图,涉及循环结构,解题关键注意何时跳出循环,属于中档题.7.A解析:A 【分析】列出每一步算法循环,可得出输出结果S 的值. 【详解】18i =≤满足,执行第一次循环,()120111S =+-⨯=-,112i =+=; 28i =≤成立,执行第二次循环,()221123S =-+-⨯=,213i =+=; 38i =≤成立,执行第三次循环,()323136S =+-⨯=-,314i =+=; 48i =≤成立,执行第四次循环,()4261410S =-+-⨯=,415i =+=; 58i =≤成立,执行第五次循环,()52101515S =+-⨯=-,516i =+=; 68i =≤成立,执行第六次循环,()62151621S =-+-⨯=,617i =+=; 78i =≤成立,执行第七次循环,()72211728S =+-⨯=-,718i =+=;88i =≤成立,执行第八次循环,()82281836S =-+-⨯=,819i =+=; 98i =≤不成立,跳出循环体,输出S 的值为36,故选A. 【点睛】本题考查算法与程序框图的计算,解题时要根据算法框图计算出算法的每一步,考查分析问题和计算能力,属于中等题.8.C解析:C 【解析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量a 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案. 【详解】由题意,模拟程序的运算,可得k 1=,a 1=满足判断框内的条件,执行循环体,a 6=,k 3= 满足判断框内的条件,执行循环体,a 33=,k 5= 满足判断框内的条件,执行循环体,a 170=,k 7= 此时,不满足判断框内的条件,退出循环,输出a 的值为170. 则分析各个选项可得程序中判断框内的“条件”应为k 6<? 故选:C . 【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.9.B解析:B 【分析】由频率分布直方图的性质,求得0.25x =,再结合频率分布直方图的频率的计算方法,即可求解. 【详解】由频率分布直方图的性质,可得()20.050.150.051x +++=,解得0.25x =, 所以学习时长在[)9,11的频率2520.5x n==,解得50n =. 故选:B . 【点睛】本题主要考查了频率分布直方图性质及其应用,其中解答中熟记频率分布直方图的性质是解答的关键,着重考查了数据分析能力,以及计算能力.10.D解析:D 【解析】分析:根据随机数表法则取数:取两个数,不小于30的舍去,前面已取的舍去. 详解:从表第1行5列,6列数字开始由左到右依次选取两个数字中小于30的编号为:08,02,14,29.∴第四个个体为29. 选D .点睛:本题考查随机数表,考查对概念基本运用能力.11.D【解析】 【分析】根据60~70岁这个年龄段中128人中抽查了8人,可知分层抽样的抽样比为81=12816,因为共抽出30人,所以总人数为3016=480⨯人,即可求出20~30岁年龄段的人数. 【详解】根据60~70岁这个年龄段中128人中抽查了8人,可知分层抽样的抽样比为81=12816, 因为共抽出30人,所以总人数为3016=480⨯人,所以,20~30岁龄段的人有480128192160--=,故选D. 【点睛】本题主要考查了分层抽样,抽样,样本容量,属于中档题12.A解析:A 【分析】可以通过n P 与0P 之间的大小关系进行判断. 【详解】当10k -<<时,()011011nk k <+<<+<,, 所以()001nn P P k P =+<,呈下降趋势. 【点睛】判断变化率可以通过比较初始值与变化之后的数值之间的大小来判断.二、填空题13.【分析】先确定比分为1比2时甲乙在三次发球比赛中得分情况再分别求对应概率最后根据互斥事件概率公式求结果【详解】比分为1比2时有三种情况:(1)甲第一次发球得分甲第二次发球失分乙第一次发球得分(2)甲 解析:2875【分析】先确定比分为1比2时甲乙在三次发球比赛中得分情况,再分别求对应概率,最后根据互斥事件概率公式求结果 【详解】比分为1比2时有三种情况:(1)甲第一次发球得分,甲第二次发球失分,乙第一次发球得分(2)甲第一次发球失分,甲第二次发球得分,乙第一次发球得分(3)甲第一次发球失分,甲第二次发球失分,乙第一次发球失分所以概率为3222322212855355355375⨯⨯+⨯⨯+⨯⨯= 【点睛】本题考查根据互斥事件概率公式求概率,考查基本分析求解能力,属中档题.14.2【分析】画出数轴利用满足的概率可以求出的值即可【详解】如图所示区间的长度是6在区间上随机地取一个数若满足的概率为则有解得故答案是:2【点睛】该题考查的是有关长度型几何概型的问题涉及到的知识点有长度解析:2 【分析】画出数轴,利用x 满足||x m ≤的概率,可以求出m 的值即可. 【详解】 如图所示,区间[2,4]-的长度是6,在区间[2,4]-上随机地取一个数x , 若x 满足||x m ≤的概率为23, 则有2263m =,解得2m =, 故答案是:2. 【点睛】该题考查的是有关长度型几何概型的问题,涉及到的知识点有长度型几何概型的概率公式,属于简单题目.15.【分析】设需要门高射炮由题意得出解出的取值范围可得出正整数的最小值【详解】设需要门高射炮则命不中的概率为由题意得出得解得而因此至少需要门高射炮故答案为:【点睛】本题考查独立事件概率乘法公式的应用在涉 解析:75【分析】设需要n 门高射炮,由题意得出()110.060.99n--≥,解出n 的取值范围,可得出正整数n 的最小值.【详解】设需要n 门高射炮,则命不中的概率为()10.06n-,由题意得出10.940.99n -≥,得0.940.01n ≤,解得0.942log 0.01lg 0.94n ≥=-,而274.43lg 0.94-≈,因此,至少需要75门高射炮. 故答案为:75. 【点睛】本题考查独立事件概率乘法公式的应用,在涉及“至少”问题时,可以利用对立事件的概率公式来进行计算,考查运算求解能力,属于中等题.16.【分析】执行程序框图依次写出每次循环得到的Si 的值当i =2019时不满足条件退出循环输出S 的值为【详解】执行程序框图有S =2i =1满足条件执行循环Si =2满足条件执行循环Si =3满足条件执行循环Si解析:12-【分析】执行程序框图,依次写出每次循环得到的S ,i 的值,当i =2019时,不满足条件2018i ≤退出循环,输出S 的值为12-. 【详解】 执行程序框图,有 S =2,i =1满足条件2018i ≤ ,执行循环,S 3=-,i =2 满足条件2018i ≤ ,执行循环,S 12=-,i =3 满足条件2018i ≤ ,执行循环,S 13=,i =4 满足条件2018i ≤ ,执行循环, S =2,i =5 …观察规律可知,S 的取值以4为周期,由于2018=504*4+2,故有: S 12=-, i =2019, 不满足条件2018i ≤退出循环,输出S 的值为12-, 故答案为12-. 【点睛】本题主要考查了程序框图和算法,其中判断S 的取值规律是解题的关键,属于基本知识的考查.17.5【分析】模拟执行程序框图依次写出每次循环得到的的值当时根据题意退出循环输出结果【详解】模拟执行程序框图可得;;;;此时退出循环输出结果故答案为5【点睛】该题考查的是有关程序框图的问题涉及到的知识点解析:5 【分析】模拟执行程序框图,依次写出每次循环得到的,S K 的值,当5,58S K ==时,根据题意,退出循环,输出结果. 【详解】模拟执行程序框图,可得1,7S K ==;771,688S K =⋅==;763,5874S K =⋅==;355,5468S K =⋅==; 此时,57810<,退出循环,输出结果, 故答案为5. 【点睛】该题考查的是有关程序框图的问题,涉及到的知识点有计算循环结构程序框图输出结果的问题,属于简单题目.18.42【分析】输入由循环语句依次执行即可计算出结果【详解】当时当时当时当时当时当时故答案为42【点睛】本题主要考查了程序框图中的循环语句的运算求出输出值较为基础解析:42 【分析】输入1k =,由循环语句,依次执行,即可计算出结果 【详解】当1k =时,0212S =+⨯= 当2k =时,021226S =+⨯+⨯= 当3k =时,021222312S =+⨯+⨯+⨯= 当4k =时,021********S =+⨯+⨯+⨯+⨯= 当5k =时,0212223242530S =+⨯+⨯+⨯+⨯+⨯= 当6k =时,021222324252642S =+⨯+⨯+⨯+⨯+⨯+⨯= 故答案为42 【点睛】本题主要考查了程序框图中的循环语句的运算,求出输出值,较为基础19.【解析】根据题意可得抽样比为则这次抽样调查抽取的人数是即答案为140 解析:140【解析】根据题意可得抽样比为501,75015= 则这次抽样调查抽取的人数是()114507509002100140,1515++=⨯= 即答案为140.20.【解析】设第二组及第五组数据对应矩形的高为a 则10×(a+0015+0025+0035+a+0005)=1解得a=0010故各组的频率依次为:010015025035010005∵前三组的累积频率为 解析:715【解析】设第二组及第五组数据对应矩形的高为a , 则10×(a+0.015+0.025+0.035+a+0.005)=1, 解得a=0.010,故各组的频率依次为:0.10,0.15,0.25,0.35,0.10,0.05, ∵前三组的累积频率为:0.10+0.15+0.25=0.50, 故这次环保知识竞赛成绩的中位数为70; 成绩在[80,90)段的人数有10×0.010×40=4人, 成绩在[90,100]段的人数有10×0.005×40=2人,从成绩是80分以上(包括80分)的学生中任选两人共有15种不同的基本事件, 其中他们在同一分数段的基本事件有:7, 故他们在同一分数段的概率为7.15故答案为:7 15.三、解答题21.(1)2;(2)710;(3)应该选择方案二更优惠. 【分析】(1)由题意可求出金额在[)80,100“水果达人”的人数30人和消费金额在[]100,120“水果达人”的人数20人,然后利用分层抽样的比求出5人中消费金额不低于100元的人数为20523020⨯=+人;(2)由(1)可知抽取的5人中消费金额在[)80,100的有3人,分别记为A ,B ,C ,消费金额在[]100,120的有2人,记为a ,b ,即可列出所有的基本事件共有10种,其中满足条件的有7种,从而可求出概率;(3)由题意可得该游客要购买110元水果,分别计算两种方案所需支付金额,即可得解. 【详解】解:(1)由图可知,消费金额在[)80,100“水果达人”的人数为:200200.007530⨯⨯=人, 消费金额在[]100,120“水果达人”的人数为:200200.00520⨯⨯=人,分层抽样的方法从样本的“水果达人”中抽取5人,这5人中消费金额不低于100元的人数为:20523020⨯=+人;(2)由(1)得,消费金额在[)80,100的3个“水果达人”记为A ,B ,C , 消费金额在[]100,120的2个“水果达人”记为a ,b , 所有基本事件有:(),A B ,(),A C ,(),B C ,(),A a ,(),A b ,(),B a ,(),B b ,(),C a ,(),C b ,(),a b 共10N =种,2人中至少有1人购买金额不低于100元的有7n =种, 所求概率为710n N ==. (3)依题可知该游客要购买110元的水果, 若选择方案一,则需支付()80830102-+=元,若选择方案二,则需支付50300.9200.8100.7100+⨯+⨯+⨯=元, 所以应该选择方案二更优惠. 【点睛】此题考查了频率分布直方图,古典概型,函数等基础知识,考查了数据分析能力,运算求解能力,考查了化归与转化思想,属于中档题. 22.(I ) 310P =.(Ⅱ)15P =.(Ⅲ)这100名同学中男同学指标y 的方差大于女同学指标y 的方差. 【分析】(I )由图知,在50名参加测试的女同学中,指标x <0.6的有15人,由此能求出该同学为“初级水平”的概率;(Ⅱ)利用古典概型概率公式即可得到结果;(Ⅲ)由图可知,这100名同学中男同学指标y 的方差大于女同学指标y 的方差. 【详解】(I )由图知,在50名参加测试的女同学中,指标0.6x <的有15人, 所以,从50名女同学中随机选出一名,该名同学为“初级水平”的概率为1535010P ==. (Ⅱ)男同学“不具备明显艺术发展潜质的中级或高级水平”共有6人,其中“中级水平”有3人,分别记为1A ,2A ,3A .“高级水平”有3人,分别记为1B ,2B ,3B ,所有可能的结果组成的基本事件有:{}12,A A ,{}13,A A ,{}11,A B ,{}12,A B ,{}13,A B ,{}23,A A ,{}21,A B ,{}22,A B ,{}23,A B ,{}31,A B ,{}32,A B ,{}33,A B ,{}12,B B ,{}13,B B ,{}23,B B ,共15个,其中两人均为“高级水平”的共有3个,所以,所选2人均为“高级水平”的概率31155P ==. (Ⅲ)由图可知,这100名同学中男同学指标y 的方差大于女同学指标y 的方差. 【点睛】本题考查概率的求法,考查列举法等基础知识,考查运算求解能力,考查函数与方程思想,是基础题. 23.答案详见解析. 【解析】 【分析】根据题干要求写出循环结构的程序即可. 【详解】 程序如下: i=2 sum=0 DO sum=sum+i i=i+2LOOP UNTIL i>98 PRINT sum END 【点睛】应用循环语句编写程序时需注意: ①循环语句中的循环变量一般要设初始值.②在循环过程中需要有“结束”的语句,程序中最忌“死循环”. 24.(1)-4;(2)1009;(3)答案见解析. 【解析】 试题分析:(1)利用所给的程序框图运行程序可得当x=9时,y=-4,则t 的值为-4. (2)结合程序的算法和循环结构的特点可知共输出(x ,y )的组数为1009;(3)将所给的程序框图翻译为算法语句,利用循环语句设计相应的程序即可,注意循环语句应设计为DO 语句的形式. 试题(1)由程序框图知,当x=1时,y=0; 当x=3时,y=-2; 当x=9时,y=-4,所以t=-4.(2)当n=1时,输出一对,当n=3时,又输出一对,…,当n=2 017时,输出最后一对,共输出(x ,y )的组数为20182=1 009.(3)程序框图的程序语句如下: x =1 y =0 n =1 DOPRINT (x ,y ) n =n +2 x =3*x y =y -2LOOP UNTIL n >2 017 END点睛:程序框图的条件结构和循环结构分别对应算法语句的条件语句和循环语句,两种语句的阅读理解是复习重点.输入、输出和赋值语句是任何一个算法必不可少的语句,一个语句可以输出多个表达式.在赋值语句中,一定要注意其格式的要求,如“=”的右侧必须是表达式,左侧必须是变量;一个语句只能给一个变量赋值;变量的值始终等于最近一次赋给它的值,先前的值将被替换. 25.(1)532y x =-;(2)线性回归方程是可靠的. 【分析】(1)根据最小二乘法公式,分别将数据代入计算,即可得答案;(2)选取的是4月1日与4月30日的两组数据,即10x =和8x =代入判断即可; 【详解】解:(1)由数据得12x =,27y =,3972x y =,23432x =; 又31977i i i x y ==∑,321434i i x ==∑;97797254344322b -==-,5271232a =-⨯=-;所以y 关于x 的线性回归方程为:532y x =-. (2)当10x =时,5103222y =⨯-=,22232-<; 当8x =时,583222y =⨯-=,17162-<, 所得到的线性回归方程是可靠的. 【点睛】本题考查最小二乘法求回归直线方程及利用回归方程进行判断拟合效果,考查数据处理能力,求解时注意回归直线必过样本点中心的应用. 26.(1) 1.534y x =-+;(2)详见解析. 【分析】(1)利用表中数据,分别求得:,x y ,再利用公式求得,b a ,然后写出回归直线方程即可. (2)根据(1)中的回归直线方程,令14x =, 22x =求得相应的y 值,再与实际值结合误差要求比较即可.【详解】由表中数据得: ()()1116182018,10747,33x y =++==++= 311610187204366ii i x y ==⨯+⨯+⨯=∑, 322221161820980i i x==++=∑,313222133663187 1.59803183i ii i i x y x y b x x==--⨯⨯===--⨯-∑∑, ()7 1.51834a y bx =-=--⨯=,所以y 关于x 的线性回归方程是 1.534y x =-+.(2)当14x =时, 1.5143413y =-⨯+=,131212-=<, 当22x =时, 1.522341y =-⨯+=,1322-=≤, 所以(1)中所得到的线性回归方程是可靠的.【点睛】本题主要考查回归直线方程的求法以及应用,还考查了运算求解的能力,属于中档题.。
【人教版】高中数学必修三期末一模试卷及答案
一、选择题1.如图,,,A B C 表示三个开关,设在某段时间内它们正常工作的概率分别是0.9、0.8、0.7,那么该系统正常工作的概率是( ).A .0.994B .0.686C .0.504D .0.4962.口袋里装有大小相同的5个小球,其中2个白球,3个红球,现一次性从中任意取出3个,则其中至少有1个白球的概率为( ) A .910B .710C .310D .1103.如图,在圆心角为2π,半径为1的扇形中,在弦AB 上任取一点,则38AOC π∠≤的概率为( )A .14B .222C .34D .2 4.赵爽是三国时期吴国的数学家,他创制了一幅“勾股圆方图”,也称“赵爽弦图”,如图,若在大正方形内随机取-点,这一点落在小正方形内的概率为15,则勾与股的比为( )A .13B .12C 3D 2 5.执行如图所示的程序框图,则输出的a=( )A.-9 B.60 C.71 D.81 6.执行如图所示的程序框图,若输入10n=,则输出的结果是()A.11114135717P⎛⎫=-+-++⎪⎝⎭B.11114135719P⎛⎫=-+-+-⎪⎝⎭C.11114135721P⎛⎫=-+-+⋯+⎪⎝⎭D.11114135721P⎛⎫=-+-+-⎪⎝⎭7.《张丘建算经》中如下问题:“今有马行转迟,次日减半,疾五日,行四百六十五里,问日行几何?”根据此问题写出如下程序框图,若输出465S=,则输入m的值为()A.240 B.220 C.280 D.2608.执行如图的程序框图,则输出x的值是 ()A.2018B.2019C.12D.29.某赛季甲、乙两名篮球运动员每场比赛得分用茎叶图表示,茎叶图中甲得分的部分数据丢失(如图),但甲得分的折线图完好,则下列结论正确的是()A.甲得分的极差是11B.乙得分的中位数是18.5C.甲运动员得分有一半在区间[]20,30上D.甲运动员得分的平均值比乙运动员得分的平均值高10.总体由编号为01,02,,29,30的30个个体组成,利用下面的随机数表选取4个个体.选取的方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出的第4个个体的编号为().7806657208026314294718219800 3204923449353623486969387481A.02B.14C.18D.2911.甲、乙两名同学在五次数学考试中的成绩统计如下面的茎叶图所示,若甲、乙两人的平均成绩分别是1x,2x,观察茎叶图,下列结论正确的是()A .12x x <,乙比甲成绩稳定B .12x x >,乙比甲成绩稳定C .12x x <,甲比乙成绩稳定D .12x x >,甲比乙成绩稳定12.某校高一年级有学生1800人,高二年级有学生1500人,高三年级有1200人,为了调查学生的视力状况,采用分层抽样的方法抽取学生,若在抽取的样本中,高一年级的学生有60人,则该样本中高三年级的学生人数为( ) A .60B .50C .40D .30二、填空题13.疫情防控期间,口罩的需求量很大,某地区有A .B 两家小型口罩加工厂,A 厂每天生产口罩4万到6万只,B 厂每天生产口罩3万到5万只.某药店预计购进至少10万只口罩,那么,他可以去该地区购买到所需口罩的概率是________.14.某种产品每箱装6个,其中有4个合格,2个不合格,现质检人员从中随机抽取2个进行检测,则检测出至少有一个不合格产品的概率是_______.15.袋中有2个白球,1个红球,这些球除颜色外完全相同.现从袋中往外取球,每次任取1个记下颜色后放回,直到红球出现2次时停止,设停止时共取了X 次球,则(4)P X ==_______.16.执行如图所示的程序框图,若输入n 的值为8,则输出的s 的值为_____.17.右图程序框图的运行结果是____________________18.程序如下:以上程序输出的结果是_________________19.水痘是一种传染性很强的病毒性疾病,容易在春天爆发,武汉疾控中心为了调查某高校高一年级学生注射水痘疫苗的人数,在高一年级随机抽取了5个班级,每个班级的人数互不相同,若把每个班抽取的人数作为样本数据,已知样本平均数为5,样本方差为4,则样本数据中最大值为__________.20.某校对全校1200名男女学生进行健康调查,采用分层抽样法抽取一个容量为200的样本,已知女生抽了95人,则该校的男生数是__________.三、解答题21.2020年寒假,因为“新冠”疫情全体学生只能在家进行网上学习,为了研究学生网上学习的情况,某学校随机抽取100名学生对线上教学进行调查,其中男生与女生的人数之比为9:11,抽取的学生中男生有30人对线上教学满意,女生中有10名表示对线上教学不满意.(1)完成22列联表,并回答能否有90%的把握认为“对线上教学是否满意与性别有关”;满意不满意合计男生女生合计100(2)从被调查的对线上教学满意的学生中,利用分层抽样抽取5名学生,再在这5名学生中抽取2名学生,作线上学习的经验介绍,求其中抽取一名男生与一名女生的概率.附:22()()()()()n ad bcKa b c d a c b d-=++++.()2P K k≥0.150.100.050.0250.0100.0050.001 k 2.072 2.706 3.841 5.024 6.6357.87910.82 22.一个盒子里装有m个均匀的红球和n个均匀的白球,每个球被取到的概率相等,已知从盒子里一次随机取出1个球,取到的球是红球的概率为13,从盒子里一次随机取出2个球,取到的球至少有1个是白球的概率为10 11.(1)求m,n的值;(2)若一次从盒子里随机取出3个球,求取到的白球个数不小于红球个数的概率. 23.给出30个数:1,2,4,7,,其规律是:第1个数是1,第2个数比第1个数大1,第3个数比第2个数大2,第4个数比第3个数大3,以此类推,要计算这30个数的和,现已给出了解决该问题的算法框图(如图所示).(1)请在图中处理框内①处和判断框中的②处填上合适的语句,使之能完成该题算法功能;(2)根据算法框图写出算法语句.24.读下列程序,写出此程序表示的函数,并求当输出的6y=时,输入的x的值.25.某学校因为今年寒假延期开学,根据教育部的停课不停学指示,该学校组织学生线上教学,高一年级在线上教学一个月后,为了了解线上教学的效果,在线上组织了学生数学学科考试,随机抽取50名学生的成绩并制成频率分布直方图如图.(1)求m 的值并估计这50名学生的平均成绩;(2)估计高一年级所有学生数学成绩在[90,100)分与[)70,100分的学生所占的百分比. 26.全世界越来越关注环境保护问题,某监测站点于2016年8月某日起连续n 天监测空气质量指数(AQI ),数据统计如下: 空气质量指数(3/g m μ) 0-50 51-100 101-150 151-200 201-250 空气质量等级 空气优 空气良 轻度污染中度污染 重度污染 天数2040m105(1)根据所给统计表和频率分布直方图中的信息求出,n m 的值,并完成频率分布直方图;(2)在空气质量指数分别为51-100和151-200的监测数据中,用分层抽样的方法抽取5天,从中任意选取2天,求事件A “两天空气都为良”发生的概率.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】由题中意思可知,当A 、B 元件至少有一个在工作,且C 元件在工作时,该系统正常公式,再利用独立事件的概率乘法公式可得出所求事件的概率. 【详解】由题意可知,该系统正常工作时,A 、B 元件至少有一个在工作,且C 元件在元件, 当A 、B 元件至少有一个在工作时,其概率为()()110.910.80.98--⨯-=, 由独立事件的概率乘法公式可知,该系统正常工作的概率为0.980.70.686⨯=, 故选B . 【点睛】本题考查独立事件的概率乘法公式,解题时要弄清楚各事件之间的关系,在处理至少等问题时,可利用对立事件的概率来计算,考查计算能力,属于中等题.2.A解析:A 【分析】根据题意,求出总的基本事件数和至少有1个白球包含的基本事件数,然后利用古典概型的概率计算公式求解即可. 【详解】由题意可知,从5个大小相同的小球中,一次性任意取出3个小球包含的总的基本事件数为n =35C 10=,一次性任意取出的3个小球中,至少有1个白球包含的基本事件数为122123239m C C C C =+=,由古典概型的概率计算公式得,一次性任意取出的3个小球中,至少有1个白球的概率为910m P n ==. 故选:A 【点睛】 本题考查利用组合数公式和古典概型的概率计算公式求随机事件的概率;正确求出总的基本事件数和至少有1个白球包含的基本事件数是求解本题的关键;属于中档题、常考题型.3.D解析:D 【分析】由题意可知,38AOCπ∠的概率为AC AB,由题意结合平面几何知识求得1AC =,2AB =,则答案可求.【详解】 如图,4OAB π∠=,若38AOC π∠=,则33488ACO ππππ∠=--=, OAC ∴∆为等腰三角形,即1AC OA ==.在Rt AOB ∆中, 1OA OB ==,2AB ∴=.由测度比为长度比可得38AOC π∠的概率为222AC AB ==. 故选:D . 【点睛】本题考查几何概型,考查灵活变形能力,是中档题.4.B解析:B 【分析】分别求解出小正方形和大正方形的面积,可知面积比为15,从而构造方程可求得结果. 【详解】由图形可知,小正方形边长为b a -∴小正方形面积为:()2b a -,又大正方形面积为:2c()()2222222221115b a b a ab a b c a b a b b a--∴==-=-=+++,即:25a b b a ⎛⎫+= ⎪⎝⎭ 解得:12a b = 本题正确选项:B 【点睛】本题考查几何概型中的面积型的应用,关键是能够利用概率构造出关于所求量的方程.5.C解析:C 【分析】根据程序框图,模拟运算即可求解. 【详解】第一次执行程序后,1a =-,i=2; 第二次执行程序后,9a =-,i=3;第三次执行程序后,a=71,i=4>3,跳出循环,输出a=71. 故选:C 【点睛】本题主要考查了程序框图,循环结构,条件分支结构,属于中档题.6.B解析:B 【分析】按照程序框图运行程序,寻找规律,直到i n >输出结果即可. 【详解】按照程序框图运行程序,输入10n =,0S =,1i =,则1S =,2i =,不满足i n >,循环;113S =-,3i =,不满足i n >,循环;11135S =-+,4i =,不满足i n >,循环;以此类推,1111135719S =-+--⋅⋅⋅-,11=i ,满足i n >,则4P S =, 11114135719P ⎛⎫∴=-+--⋅⋅⋅- ⎪⎝⎭.故选:B . 【点睛】本题考查根据程序框图循环结构计算输出结果的问题,属于常考题型.7.A解析:A 【分析】根据程序框图,依次循环计算,可得输出的S 表达式.结合465S =,由等比数列求和公式,即可求得m 的值. 【详解】由程序框图可知,0,0S i ==,1S m i ==,22mS m i =+= ,324m mS m i =++= ,4248m m mS m i =+++= ,524816m m m mS m i =++++= 此时输出S .所以46524816m m m mm ++++= 即1111146524816m ⎛⎫++++= ⎪⎝⎭由等比数列前n 项和公式可得5112465112m ⎛⎫- ⎪⎝⎭⨯=- 解得240m = 故选:A 【点睛】本题考查了循环结构程序框图的应用,等比数列求和的应用,属于中档题.8.D解析:D 【分析】模拟执行程序框图,依次写出每次循环得到的x ,y 的值,当2019y = 时,不满足条件退出循环,输出x 的值即可得解. 【详解】解:模拟执行程序框图,可得2,0x y ==.满足条件2019y <,执行循环体,1,1x y =-=;满足条件2019y <,执行循环体,1,22x y == ; 满足条件2019y <,执行循环体,2,3x y ==;满足条件2019y <,执行循环体,1,4x y =-= ; …观察规律可知,x 的取值周期为3,由于20196733⨯=,可得: 满足条件2019y <,执行循环体,当2,2019x y == ,不满足条件2019y <,退出循环,输出x 的值为2. 故选D . 【点睛】本题主要考查了循环结构的程序框图,依次写出每次循环得到的x ,y 的值,根据循环的周期,得到跳出循环时x 的值是解题的关键.9.D解析:D 【分析】根据茎叶图和折线图依次判断每个选项得到答案. 【详解】A. 甲得分的极差是28919-=,A 错误;B. 乙得分的中位数是161716.52+=,B 错误; C. 甲运动员得分在区间[]20,30上有3个,C 错误; D. 甲运动员得分的平均值为:912131315202628178+++++++=,乙运动员得分的平均值为:914151617181920168+++++++=,故D 正确.故选:D . 【点睛】本题考查了茎叶图和折线图,意在考查学生的计算能力和理解能力.10.D解析:D 【解析】分析:根据随机数表法则取数:取两个数,不小于30的舍去,前面已取的舍去. 详解:从表第1行5列,6列数字开始由左到右依次选取两个数字中小于30的编号为:08,02,14,29.∴第四个个体为29. 选D .点睛:本题考查随机数表,考查对概念基本运用能力.11.A解析:A 【解析】 【分析】根据茎叶图中的数据,即可计算出两人平均分,再根据茎叶图的分布情况可知乙成绩稳定. 【详解】由茎叶图知, 甲的平均数是110210410511413391.65x ++++==,乙的平均数是2108115116122123116.85x ++++==,所以12x x <,从茎叶图上可以看出乙的数据比甲的数据集中,乙比甲成绩稳定 故选:A . 【点睛】本题考查茎叶图中两组数据的平均数和稳定程度,平均数要进行计算,稳定程度可通过计算方差或通过数据排布形状作出比较.12.C解析:C 【分析】设该样本中高三年级的学生人数为x ,则1800601200x=,解之即可 【详解】设该样本中高三年级的学生人数为x ,则1800601200x =,解得40x =, 故选C . 【点睛】本题考查了分层抽样方法的应用问题,属基础题.二、填空题13.【分析】设A 厂每天生产口罩x 万只B 厂每天生产口罩y 万只则画出可行域计算正方形与三角形面积利用几何概型求即可【详解】设A 厂每天生产口罩x 万只B 厂每天生产口罩y 万只则可行域面积为因为药店预计购进至少10解析:18【分析】设A 厂每天生产口罩x 万只, B 厂每天生产口罩y 万只,则4635x y ≤≤⎧⎨≤≤⎩,画出可行域,计算正方形与三角形面积,利用几何概型求即可. 【详解】设A 厂每天生产口罩x 万只, B 厂每天生产口罩y 万只,则4635x y ≤≤⎧⎨≤≤⎩,可行域面积为224⨯=,因为药店预计购进至少10万只,所以10x y +≥,满足条件的阴影部分面积为111122⨯⨯=, 所以可以去该地区购买到所需口罩的概率是11248=,故答案为:18.【点睛】本题主要考查几何概型求概率,考查了线性规划的应用,属于中档题.14.【分析】首先明确试验发生包含的事件是从6个产品中抽2个共有种结果满足条件的事件是检测出至少有一个不合格产品共有种结果根据古典概型概率公式得到结果【详解】由题意知本题是一个等可能事件的概率因为试验发生解析:35【分析】首先明确试验发生包含的事件是从6个产品中抽2个,共有26C 种结果,满足条件的事件是检测出至少有一个不合格产品,共有112242C C C +种结果,根据古典概型概率公式得到结果.【详解】由题意知本题是一个等可能事件的概率,因为试验发生包含的事件是6个产品中抽取2个,共有2615C =种结果, 满足条件的事件是检测出至少有一个不合格产品,共有1122429C C C +=种结果,所以检测出至少有一个不合格产品的概率是93155=, 故答案是:35. 【点睛】该题考查的是有关等可能事件的概率的求解问题,在解题的过程中,注意对试验所包含的基本事件数以及满足条件的基本事件数,以及概率公式,属于简单题目.15.【解析】【分析】由题意可知最后一次取到的是红球前3次有1次取到红球由古典概型求得概率【详解】由题意可知最后一次取到的是红球前3次有1次取到红球所以填【点睛】求古典概型的概率关键是正确求出基本事件总数解析:427 【解析】 【分析】由题意可知最后一次取到的是红球,前3次有1次取到红球,由古典概型求得概率。
【人教版】高中数学必修三期末模拟试卷(及答案)
一、选择题1.从单词“book ”的四个字母中任取2个,则取到的2个字母不相同的概率为( )A .13B .12C .23D .342.如图,在圆心角为2π,半径为1的扇形中,在弦AB 上任取一点,则38AOC π∠≤的概率为( )A .14B .222C .34D .223.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如40337=+.(注:如果一个大于1的整数除1和自身外无其他正因数,则称这个整数为素数.)在不超过11的素数中,随机选取2个不同的数,其和小于等于10的概率是( ) A .12B .13C .14D .154.素数指整数在一个大于1的自然数中,除了1和此整数自身外,不能被其他自然数整除的数。
我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果。
哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如1037=+。
在不超过15的素数中,随机选取两个不同的数,其和小于18的概率是( ) A .15B .1115C .35D .135.执行如图所示的程序框图,若输入10n =,则输出的结果是( )A.11114135717P⎛⎫=-+-++⎪⎝⎭B.11114135719P⎛⎫=-+-+-⎪⎝⎭C.11114135721P⎛⎫=-+-+⋯+⎪⎝⎭D.11114135721P⎛⎫=-+-+-⎪⎝⎭6.如图所示的程序框图输出的结果是()A.34 B.55 C.78 D.89 7.某程序框图如图所示,该程序运行后输出S的值是()A .910B .1011C .1112D .1118.执行如图所示的程序框图,若输人的n 值为2019,则S =A .B .C .D .9.一组数据的平均数为m ,方差为n ,将这组数据的每个数都加上(0)a a >得到一组新数据,则下列说法正确的是( ) A .这组新数据的平均不变 B .这组新数据的平均数为am C .这组新数据的方差为2a n D .这组新数据的方差不变10.已知某8个数的平均数为3,方差为2,现加入一个新数据3,此时这9个数的平均数为x ,方差为2s ,则( ) A .3x =,22s < B .3x =,22s > C .3x >,22s <D .3x >,22s >11.某产品的广告费用x 与销售额y 的统计数据如下表:根据上表可得回归方程ˆˆˆybx a =+中的ˆb 为9.4,据此模型预报广告费用为6万元时销售额为( ) A .61.5万元B .62.5万元C .63.5万元D .65.0万元12.有一个同学家开了一个小卖部,他为了研究气温对热饮销售的影响,经统计,得到一个卖出的热饮杯数与当天气温的对比表:根据上表数据确定的线性回归方程应该是( )A .ˆ 2.352147.767yx =-+ B .ˆ 2.352127.765yx =-+ C .ˆ 2.35275.501yx =+D .ˆ 2.35263.674yx =+ 二、填空题13.古代“五行”学说认为:“物质分金、木、水、火、土五种属性,金克木,木克土,土克水,水克火,火克金”,从五种不同属性的物质中随机抽取两种,则抽取的两种物质不相克的概率为_________14.天气预报说,在今后的三天中,每一天下雨的概率均为40%.现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0到9之间取整数值的随机数,用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每三个随机数作为一组,代表这三天的下雨情况.经随机模拟试验产生了如下20组随机数: 488 932 812 458 989 431 257 390 024 556 734 113 537 569 683 907 966 191 925 271据此估计,这三天中恰有两天下雨的概率近似为__________.15.甲、乙两人玩猜数字游戏,先由甲心中任想一个数字,记为a ,再由乙猜甲刚才想的数字,把乙猜的数字记为b ,且,{0,1,2,,9}a b ∈.若||1a b -,则称甲乙“心有灵犀”.现任意找两人玩这个游戏,则这两人“心有灵犀”的概率为______. 16.某程序框图如图所示,则执行该程序后输出的结果是_______.17.执行下面的程序框图,若输入的a ,b ,k 分别为1,2,3,则输出的M =_____18.根据如图所示算法流程图,则输出S 的值是__.19.设一个回归方程为0.4 1.8y x =-,则当25x =时,y 的估计值是_______. 20.能够说明“若甲班人数为m ,平均分为a ;乙班人数为n n m ≠(),平均分为b ,则甲乙两班的数学平均分为2a b+”是假命题的一组正整数a ,b 的值依次为_____. 三、解答题21.为了解中学生课余观看热门综艺节目“爸爸去哪儿”是否与性别有关,某中学一研究性学习小组从该校学生中随机抽取了n 人进行问卷调查.调查结果表明:女生中喜欢观看该节目的占女生总人数的34,男生喜欢看该节目的占男生总人数的13.随后,该小组采用分层抽样的方法从这n 份问卷中继续抽取了5份进行重点分析,知道其中喜欢看该节目的有3人.(1) 现从重点分析的5人中随机抽取了2人进行现场调查,求这两人都喜欢看该节目的概率;(2) 若有99%的把握认为“爱看该节目与性别有关”,则参与调查的总人数n 至少为多少? 参考数据:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.22.为响应国家“精准扶贫、精准脱贫”的号召,某贫困县在精准推进上下功夫,在精准扶贫上见实效.根据当地气候特点大力发展中医药产业,药用昆虫的使用相应愈来愈多,每年春暖以后到寒冬前,昆虫大量活动与繁殖,易于采取各种药用昆虫.已知一只药用昆虫的产卵数y (单位:个)与一定范围内的温度x (单位:℃)有关,于是科研人员在3月份的31天中随机选取了5天进行研究,现收集了该种药物昆虫的5组观察数据如表:(1)从这5天中任选2天,记这2天药用昆虫的产卵数分别为m ,n ,求“事件m ,n 均不小于24”的概率?(2)科研人员确定的研究方案是:先从这5组数据中任选2组,用剩下的3组数据建立线性回归方程,再对被选取的2组数据进行检验.①若选取的是3月2日与3月30日这2组数据,请根据3月7日、15日和22日这三组数据,求出y 关于x 的线性回归方程?②若由线性回归方程得到的估计数据与所选出的检验数据的差的绝对值均不超过2个,则认为得到的线性回归方程是可靠的,试问①中所得的线性回归方程是否可靠?附公式:ˆybx a =+,()()()121niii nii x x y y b x x ==--=-∑∑23.给出求满足不等式122010n ++⋅⋅⋅+>的最小正整数n 的一种算法,并作出程序框图.24.设计程序求π的近似值可以用公式:2222π1116123=+++…+21n ,用此公式求2π6,即逐项进行累加,直到21n<0.000 01为止(该项不累加),然后求出π的近似值.25.为了解某市家庭用电量的情况,该市统计局调查了100户居民去年一年的月均用电量,发现他们的用电量都在50kW·h至350kW·h之间,进行适当分组后,画出频率分布直方图如图所示.(I)求a的值;(Ⅱ)求被调查用户中,用电量大于250kW·h的户数;(III)为了既满足居民的基本用电需求,又提高能源的利用效率,市政府计划采用阶梯定价,希望使80%的居民缴费在第一档(费用最低),请给出第一档用电标准(单位:kW·h)的建议,并简要说明理由.26.某学校进行体验,现得到所有男生的身高数据,从中随机抽取50人进行统计(已知这50个身高介于155cm到195cm之间),现将抽取结果按如下方式分成八组:第一组[155,160),第二组[160,165),...,第八组[190,195],并按此分组绘制如图所示的频率分布直方图,其中第六组[180,185)和第七组[185,190)还没有绘制完成,已知第一组与第八组人数相同,第六组和第七组人数的比为5:2.(1)补全频率分布直方图;(2)根据频率分布直方图估计这50位男生身高的中位数;(3)用分层抽样的方法在身高为[170,180]内抽取一个容量为5的样本,从样本中任意抽取2位男生,求这两位男生身高都在[175,180]内的概率.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】从四个字母中取2个,列举出所有的基本事件,即得所求的概率. 【详解】从四个字母中取2个,所有的基本事件为:,,,bo bk oo ok ,共有4个; 其中“取到的2个字母不相同”含有,,bo bk ok 3个, 故所求概率为34. 故选:D. 【点睛】本题考查古典概型,属于基础题.2.D解析:D 【分析】由题意可知,38AOCπ∠的概率为AC AB,由题意结合平面几何知识求得1AC =,2AB =,则答案可求.【详解】 如图,4OAB π∠=,若38AOC π∠=,则33488ACO ππππ∠=--=, OAC ∴∆为等腰三角形,即1AC OA ==.在Rt AOB ∆中, 1OA OB ==,2AB ∴=.由测度比为长度比可得38AOC π∠的概率为2AC AB ==. 故选:D . 【点睛】本题考查几何概型,考查灵活变形能力,是中档题.3.A解析:A 【分析】先列出不超过11的素数,再列举出随机选取2个不同的数的情况,进而找到和小于等于10的情况,即可求解 【详解】不超过11的素数有:2,3,5,7,11,共有5个, 随机选取2个不同的数可能为:()2,3,()2,5,()2,7,()2,11,()3,5,()3,7,()3,11,()5,7,()5,11,()7,11,共有10种情况, 其中和小于等于10的有:()2,3,()2,5,()2,7,()3,5,()3,7,共有5种情况, 则概率为51102P , 故选:A 【点睛】本题考查列举法求古典概型的概率,属于基础题4.B解析:B 【分析】找出不超过15的素数,从其中任取2个共有多少种取法,找到取出的两个和小于18的个数,根据古典概型求解即可. 【详解】不超过15的素数为2,3,5,7,11,13,共6个,任取2个分别为2,3(),2,5(),2,7(),2,11(),2,13(),3,5(),3,7(),3,11(),3,13(),5,7(),5,11(),5,13(),7,11(),7,13(),11,13(),共15个基本事件,其中两个和小于18的共有11个基本事件,根据古典概型概率公式知1115P=. 【点睛】本题主要考查了古典概型,基本事件,属于中档题.5.B解析:B 【分析】按照程序框图运行程序,寻找规律,直到i n >输出结果即可.【详解】按照程序框图运行程序,输入10n =,0S =,1i =,则1S =,2i =,不满足i n >,循环;113S =-,3i =,不满足i n >,循环;11135S =-+,4i =,不满足i n >,循环;以此类推,1111135719S =-+--⋅⋅⋅-,11=i ,满足i n >,则4P S =, 11114135719P ⎛⎫∴=-+--⋅⋅⋅- ⎪⎝⎭.故选:B . 【点睛】本题考查根据程序框图循环结构计算输出结果的问题,属于常考题型.6.B解析:B 【分析】通过不断的循环赋值,得到临界值,即可得解. 【详解】1,1,21,2,32,3,53,5,85,8,138,13,2113,21,3421,34,55x y z x y z x y z x y z x y z x y z x y z x y z ========================不满足50z ≤,输出即可, 故选:B. 【点睛】本题考查了程序框图循环结构求输出结果,考查了计算能力,属于中当题.7.B解析:B 【分析】模拟程序运行后,可得到输出结果,利用裂项相消法即可求出答案. 【详解】模拟程序运行过程如下: 0)1,0kS,判断为否,进入循环结构,1)110,2122S k =+==⨯,判断为否,进入循环结构,2)11,3223S k =+=⨯,判断为否,进入循环结构, 3)111,422334S k =++=⨯⨯,判断为否,进入循环结构, …… 9)111,10223910S k =+++=⨯⨯,判断为否,进入循环结构, 10)1111,112239101011S k =++++=⨯⨯⨯,判断为是, 故输出1112231011S =+++⨯⨯111111101122310111111=-+-++-=-=, 故选:B. 【点睛】本题主要考查程序框图,考查裂项相消法,难度不大.一般遇见程序框图求输出结果时,常模拟程序运行以得到结论.8.B解析:B 【分析】根据程序框图可知,当时结束计算,此时.【详解】计算过程如下表所示:周期为6 n 2019k 1 2 (2018)2019S…k<n 是是是是否【点睛】本题考查程序框图,选用表格计算更加直观,此题关键在于判断何时循环结束.9.D解析:D 【分析】考查平均数和方差的性质,基础题. 【详解】设这一组数据为()1,n X a a =,由()()E X a E X a +=+,()()D X a D X +=,故选:D .【点睛】本题主要考查方差的性质,考查了运算能力,属于容易题.10.A解析:A 【分析】由题意计算出加入新数据后的平均数,然后比较方差 【详解】()18138x x +⋯+=, ()181339x x +⋯++=, 3x ∴=,由方差的定义可知加入新数据3,样本数据会变得更加稳定 故22s < 故选A 【点睛】本题主要考查了加入数据后平均数和方差的变化,代入公式计算出结果,较为基础11.C解析:C 【分析】先求出所给数据的平均数,得到样本中心点,根据回归直线经过样本中心点,求出ˆa,得到线性回归方程,把6x =代入即可求出答案. 【详解】 由题意知4235 3.54x +++==,44253754404y +++==, 则40ˆˆ9.4 3.57.1ay bx =-=-⨯=, 所以回归方程为9.4.1ˆ7yx =+, 则广告费用为6万元时销售额为9.467.163.5⨯+=, 故答案为C. 【点睛】本题考查了线性回归方程的求法与应用,属于基础题.12.A解析:A 【解析】分析:先观察表中数据的规律,确定回归系数b 的符号,再计算x 和y ,代入选项确定正确答案.详解:由表中数据规律发现:热饮杯数y 随当天气温x 升高而减少,则0b <,排除C 、D.计算1169=(504712151923273136)1111x-++++++++++=11228=(15615013212813011610489937654)111.64 1111y++++++++++=≈将x代入选项A,得1692.352147.767111.6311ˆy=-⨯+=将x代入选项B,得1692.352127.76591.6311ˆy=-⨯+=所以选项A正确.故选A.点睛:本题考查线性回归方程的求法与应用,一次项系数b符号的判断和回归直线过样本中心点(,)x y是解题关键.二、填空题13.【解析】五种抽出两种的抽法有种相克的种数有5种故不相克的种数有5种故五种不同属性的物质中随机抽取两种则抽取的两种物质不相克的概率是故答案为解析:1 2【解析】五种抽出两种的抽法有2510C=种,相克的种数有5种,故不相克的种数有5种,故五种不同属性的物质中随机抽取两种,则抽取的两种物质不相克的概率是12,故答案为12.14.3【分析】在20组随机数中表示三天中恰有两天下雨的可以通过列举得到共6组随机数根据概率公式得到结果【详解】由题意知模拟三天的下雨情况经随机模拟产生了20组随机数在20组随机数中表示三天中恰有两天下雨解析:3【分析】在20组随机数中表示三天中恰有两天下雨的可以通过列举得到共6组随机数,根据概率公式,得到结果.【详解】由题意知模拟三天的下雨情况,经随机模拟产生了20组随机数,在20组随机数中表示三天中恰有两天下雨的有:932、812、024、734、191、271,共6组随机数,∴所求概率为60.320P==.故答案为:0.3【点睛】本题主要考查了模拟方法估计概率,解题主要依据是等可能事件的概率,注意列举法在本题的应用,属于中档题.15.【分析】由题意知本题是一个古典概型从0~9中任意取两个数(可重复)共有100种取法列出满足所有可能情况代入公式得到结果【详解】从0~9中任意取两个数(可重复)共有100种取法则的情况有:共有28种所 解析:725【分析】由题意知本题是一个古典概型,从0~9中任意取两个数(可重复)共有100种取法,列出满足||1a b -所有可能情况,代入公式得到结果。
【浙教版】高中数学必修三期末模拟试卷带答案
一、选择题1.圆周率π是一个在数学及物理学中普遍存在的数学常数,它既常用又神秘,古今中外很多数学家曾研究它的计算方法.下面做一个游戏:让大家各自随意写下两个小于1的正数然后请他们各自检查一下,所得的两数与1是否能构成一个锐角三角形的三边,最后把结论告诉你,只需将每个人的结论记录下来就能算出圆周率的近似值.假设有n 个人说“能”,而有m 个人说“不能”,那么应用你学过的知识可算得圆周率π的近似值为() A .mm n+ B .nm n+ C .4mm n+ D .4nm n+ 2.先后抛掷两枚均匀的正方体骰子,骰子朝上的面的点数分别为x ,y ,则满足()()22lg 2lg 3lg x y x y +=+的概率为( )A .18B .14C .13D .123.七巧板是我国古代劳动人民发明的一种智力玩具,由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成. 如图是一个用七巧板拼成的正方形,若在此正方形中任取一点,则此点取自黑色部分的概率为( )A .14B .316C .38D .7164.勒洛三角形是具有类似圆的“定宽性”的面积最小的曲线,它由德国机械工程专家,机构运动学家勒洛首先发现,其作法是:以等边三角形每个顶点为圆心,以边长为半径,在另两个顶点间作一段弧,三段弧围成的曲边三角形就是勒洛三角形,现在勒洛三角形中随机取一点,则此点取自正三角形外的概率为( )A ()23323ππ-- B ()323π-C ()323π+ D ()3323π+5.该程序中k 的值是( )A .9B .10C .11D .126.执行如图所示的程序框图,如果输入n=3,输出的S=( )A .67B .37C .89D .497.对任意非零实数a 、b ,若a b ⊗的运算原理如图所示,则121log 43-⎛⎫⊗ ⎪⎝⎭的值为( )A.13B.1 C.43D.28.执行如图所示程序框图,当输入的x为2019时,输出的y()A.28B.10C.4D.29.为了了解我校今年准备报考飞行员的学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1:2:3,第2小组的频数为12,则抽取的学生总人数是()A .24B .48C .56D .6410.有一个容量为200的样本,样本数据分组为[50,70),[70,90),[90,110),[110,130),[130,150),其频率分布直方图如图所示.根据样本的频率分布直方图估计样本数据落在区间[90,110)内的频数为( )A .48B .60C .64D .7211. 2.5PM 是衡量空气质量的重要指标,我国采用世卫组织的最宽值限定值,即 2.5PM 日均值在335/g m μ以下空气质量为一级,在335~75/g m μ空气量为二级,超过375/g m μ为超标.如图是某地12月1日至10日的 2.5PM (单位:3/g m μ)的日均值,则下列说法不正确...的是( )A .这10天中有3天空气质量为一级B .从6日到9日 2.5PM 日均值逐渐降低C .这10天中 2.5PM 日均值的中位数是55D .这10天中 2.5PM 日均值最高的是12月6日12.某宠物商店对30只宠物狗的体重(单位:千克)作了测量,并根据所得数据画出了频率分布直方图如下图所示,则这30只宠物狗体重(单位:千克)的平均值大约为( )A .15.5B .15.6C .15.7D .16二、填空题13.古代“五行”学说认为:“物质分金、木、水、火、土五种属性,金克木,木克土,土克水,水克火,火克金”,从五种不同属性的物质中随机抽取两种,则抽取的两种物质不相克的概率为_________14.有五条线段,长度分别为2,3,5,7,9,从这五条线段中任取三条,则所取三条线段能构成一个三角形的概率为___________.15.在区间[0,2]上随机取两个数,a b ,则事件“函数()1f x bx a =+-在[0,1]内有零点”的概率为_______.16.如图是一个算法流程图,若输入x 的值为2,则输出y 的值为_______. .17.执行如图所示的程序框图,若输入的255a =,68b =,则输出的a 是__________.18.运行如图所示的程序,输出结果为___________.19.已知样本数据为40,42,40,a,43,44,且这个样本的平均数为43,则该样本的标准差为_________.20.某班运动队由足球运动员18人、篮球运动员12人、乒乓球运动员6人组成(每人只参加一项),现从这些运动员中抽取一个容量为n的样本,若分别采用系统抽样法和分层抽样法,则都不用剔除个体;当样本容量为n+1时,若采用系统抽样法,则需要剔除1个个体,那么样本容量n为________.三、解答题21.在一次跳绳活动中,某学校从高二年级抽取了100位同学一分钟内跳绳,由测量结果得到如图所示的频率分布直方图,落在区间[140,150),[150,160),[160,170]内的频率之比为4:2:1.(1)求跳绳次数落在区间[150,160)内的频率;(2)用分层抽样的方法在区间[130,160)内抽取6位同学,将该样本看成一个总体,从中任意抽取2位同学,求这2位同学跳绳次数都在区间[130,150)内的概率.22.为降低汽车尾气的排放量,某厂生产甲乙两种不同型号的节排器,分别从甲乙两种节排器中各自抽取100件进行性能质量评估检测,综合得分情况的频率分布直方图如图所示.节排器等级及利润如表格表示,其中11107a << 综合得分k 的范围节排器等级 节排器利润率85k ≥ 一级品 a 7585k ≤< 二级品 25a7075k ≤<三级品2a(1)若从这100件甲型号节排器按节排器等级分层抽样的方法抽取10件,再从这10件节排器中随机抽取3件,求至少有2件一级品的概率; (2)视频率分布直方图中的频率为概率,用样本估计总体,则①若从乙型号节排器中随机抽取3件,求二级品数ξ的分布列及数学期望()E ξ; ②从长期来看,骰子哪种型号的节排器平均利润较大? 23.某函数的解析式由如图所示的程序框图给出.(1)写出该函数的解析式;(2)执行该程序框图,若输出的结果为4,求输入的实数x 的值.24.某商场第一年销售计算机5 000台,如果平均每年销售量比上一年增加10%,那么从第一年起,大约几年可使总销量达到40 000台?画出解决此问题的程序框图,并写出程序. 25.现有某高新技术企业年研发费用投入x (百万元)与企业年利润y (百万元)之间具有线性相关关系,近5年的年科研费用和年利润具体数据如下表: 年科研费用x (百万元)12345(1)画出散点图;(2)求y 对x 的回归直线方程;(3)如果该企业某年研发费用投入8百万元,预测该企业获得年利润为多少?参考公式:用最小二乘法求回归方程ˆˆˆybx a =+的系数ˆˆ,a b 计算公式: 1221ˆˆˆ·,ni ii nii x y nx y bay bx xnx ==-==--∑∑ 26.在社会实践活动中,“求知”小组为了研究某种商品的价格x (元)和需求量y (件)之间的关系,随机统计了11月1日至11月5日该商品价格和需求量的情况,得到如下资料:该小组所确定的研究方案是:先从这五天中选取2天数据,用剩下的3天数据求线性回归方程,再对被选取的2天数据进行检验.(1)若选取的是11月1日与11月5日两天数据,请根据11月2日至11月4日的数据,求出y 关于x 的线性回归方程y bx a =+;(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2件,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠?参考公式:()()()1122211nniii ii i nniii i x x y y x y nx yb x x xnx====---==--∑∑∑∑,a y bx =-.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C【分析】把每一个所写两数作为一个点的坐标,由题意可得与1不能构成一个锐角三角形是指两个数构成点的坐标在圆221x y +=内,进一步得到211411+m m nπ⨯=⨯,则答案可求。
2021-2022高中数学必修三期末第一次模拟试卷(及答案)
一、选择题1.古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:将一线段MN分为两线段MG,GN,使得其中较长的一段MG是全长MN与另一段GN GN的比例中项,即满足512MG NGMN MG-==,后人把这个数称为“黄金分割”数,把点G称为线段MN的“黄金分割”点.在矩形ABCD中,E,F是线段AB的两个“黄金分割”点.在矩形ABCD内任取一点M,则该点落在DEF内的概率为()A.52-B.51-C.52-D.51-2.从单词“book”的四个字母中任取2个,则取到的2个字母不相同的概率为()A.13B.12C.23D.343.民间有一种五巧板拼图游戏.这种五巧板(图1)可以说是七巧板的变形,它是由一个正方形分割而成(图2),若在图2所示的正方形中任取一点,则该点取自标号为③和④的巧板的概率为()A.518B.13C.718D.494.七巧板是古代中国劳动人民的发明,到了明代基本定型.清陆以湉在《冷庐杂识》中写道:近又有七巧图,其式五,其数七,其变化之式多至千余.如图,在七巧板拼成的正方形内任取一点,则该点取自图中阴影部分的概率是()A.116B.18C.38D.3165.执行如图所示的程序框图,结果是()A.11 B.12 C.13 D.14 6.执行下面的程序框图,如果输入的a=4,b=6,那么输出的n=()A.3 B.4 C.5 D.6 7.某程序框图如图所示,该程序运行后输出S的值是()A.910B.1011C.1112D.1118.阅读如图所示的程序框图,当输入5n=时,输出的S=()A.6 B.4615C.7 D.47159.为了了解某同学的数学学习情况,对他的6次数学测试成绩进行统计,作出的茎叶图如图所示,则下列关于该同学数学成绩的说法正确的是( )A .中位数为83B .众数为85C .平均数为85D .方差为1910.为了了解高三学生的数学成绩,抽取了某班60名学生,将所得数据整理后,画出其频率分布直方图(如下图),已知从左到右各长方形高的比为2:3:5:6:3:1,则该班学生数学成绩在(80,100)之间的学生人数是( )A .32B .27C .24D .3311.我校高中生共有2700人,其中高一年级900人,高二年级1200人,高三年级600人,现采取分层抽样法抽取容量为135的样本,那么高一、高二、高三各年级抽取的人数分别为 ( ) A .45,75,15B .45,45,45C .45,60,30D .30,90,1512.统计某校n 名学生的某次数学同步练习成绩,根据成绩分数依次分成六组:[)[)[)[)[)[]90,100,100,110,110,120,120,130,130,140,140,150,得到频率分布直方图如图所示,若不低于140分的人数为110.①0.031m =;②800n =;③100分以下的人数为60;④分数在区间[)120,140的人数占大半.则说法正确的是( )A .①②B .①③C .②③D .②④二、填空题13.辛普森悖论(Simpson’sParadox)有人译为辛普森诡论,在统计学中亦有人称为“逆论”,甚至有人视之为“魔术”.辛普森悖论为英国统计学家E .H .辛普森(E.H.Simpson)于1951年提出的,辛普森悖论的内容大意是“在某个条件下的两组数据,分别讨论时都会满足某种性质,可是一旦合并考虑,却可能导致相反的结论.”下面这个案例可以让我们感受到这个悖论:关于某高校法学院和商学院新学期已完成的招生情况,现有如下数据: 某高校申请人数性别录取率法学院200人男50% 女 70% 商学院300人男60% 女90%①法学院的录取率小于商学院的录取率;②这两个学院所有男生的录取率小于这两个学院所有女生的录取率;③这两个学院所有男生的录取率不一定小于这两个学院所有女生的录取率; ④法学院的录取率不一定小于这两个学院所有学生的录取率. 其中,所有正确结论的序号是___________.14.某部队在训练之余,由同一场地训练的甲、乙、丙三队各出三人,组成33⨯小方阵开展游戏,则来自同一队的战士既不在同一行,也不在同一列的概率为______.15.设{}{}1,3,5,7,2,4,6a b ∈∈,则函数()log a bf x x =是增函数的概率为__________.16.执行如图所示的程序框图,若输入n 的值为8,则输出的s 的值为_____.17.执行如图所示的流程图,则输出的的值为___________.18.运行如图所示的程序框图,若输入4n ,则输出S的值为_____.19.福利彩票“双色球”中红色球由编号为01,02,…,33的33个个体组成,某彩民利用下面的随机数表(下表是随机数表的第一行和第二行)选取6个红色球,选取方法是从随机数表中第1行的第6列和第7列数字开始,由左到右依次选取两个数字,则选出来的第3个红色球的编号为______.49 54 43 54 82 17 37 93 23 28 87 35 20 56 43 84 26 34 91 6457 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 7620.某校高三年级共有800名学生,现采用系统抽样的方法,抽取25名学生做问卷调查,将这800名学生按1,2,...,800随机编号,按编号顺序平均分组.若从第5组抽取的编号为136,则从第2组中抽取的编号为__________.三、解答题21.互联网正在改变着人们的生活方式,在日常消费中手机支付正逐渐取代现金支付成为人们首选的支付方式. 某学生在暑期社会活动中针对人们生活中的支付方式进行了调查研究. 采用调查问卷的方式对100名18岁以上的成年人进行了研究,发现共有60人以手机支付作为自己的首选支付方式,在这60人中,45岁以下的占23,在仍以现金作为首选支付方式的人中,45岁及以上的有30人.(1)从以现金作为首选支付方式的40人中,任意选取3人,求这3人至少有1人的年龄低于45岁的概率;(2)某商家为了鼓励人们使用手机支付,做出以下促销活动:凡是用手机支付的消费者,商品一律打八折. 已知某商品原价50元,以上述调查的支付方式的频率作为消费者购买该商品的支付方式的概率,设销售每件商品的消费者的支付方式都是相互独立的,求销售10件该商品的销售额的数学期望.22.2020年寒假,因为“新冠”疫情全体学生只能在家进行网上学习,为了研究学生网上学习的情况,某学校随机抽取100名学生对线上教学进行调查,其中男生与女生的人数之比为9:11,抽取的学生中男生有30人对线上教学满意,女生中有10名表示对线上教学不满意.(1)完成22⨯列联表,并回答能否有90%的把握认为“对线上教学是否满意与性别有关”;(2)从被调查的对线上教学满意的学生中,利用分层抽样抽取5名学生,再在这5名学生中抽取2名学生,作线上学习的经验介绍,求其中抽取一名男生与一名女生的概率.附:()()()()()22n ad bc K a b c d a c b d ⋅=++++.23.已知直线1:240l x y +-=,阅读如图所示的程序框图,若输入的x 的值为612+,输出的()f x 的值恰为直线2l 在x 轴上的截距,且12l l ⊥.(1)求直线1l与2l的交点坐标;(2)若直线3l过直线1l与2l的交点,且在y轴上的截距是在x轴上的截距的2倍,求3l的方程.24.乘坐火车时,可以托运货物.从甲地到乙地,规定每张火车票托运费用计算方法是:当行李质量不超过50kg时按0.25元/kg;超过50kg而不超过100kg时,其超过部分按0.35元/kg;超过100kg时,其超过部分按0.45元/kg.请设计一个输入行李质量()0ωω≥,计算出托运的费用x元的算法,画出算法框图并用基本语句描述该算法.kg25.某学校进行体验,现得到所有男生的身高数据,从中随机抽取50人进行统计(已知这50个身高介于155cm到195cm之间),现将抽取结果按如下方式分成八组:第一组[155,160),第二组[160,165),...,第八组[190,195],并按此分组绘制如图所示的频率分布直方图,其中第六组[180,185)和第七组[185,190)还没有绘制完成,已知第一组与第八组人数相同,第六组和第七组人数的比为5:2.(1)补全频率分布直方图;(2)根据频率分布直方图估计这50位男生身高的中位数;(3)用分层抽样的方法在身高为[170,180]内抽取一个容量为5的样本,从样本中任意抽取2位男生,求这两位男生身高都在[175,180]内的概率.26.全世界越来越关注环境保护问题,某监测站点于2016年8月某日起连续n天监测空气质量指数(AQI),数据统计如下:空气质量指数(3/g mμ)0-5051-100101-150151-200201-250空气质量等级空气优空气良轻度污染中度污染重度污染天数2040m105(1)根据所给统计表和频率分布直方图中的信息求出,n m的值,并完成频率分布直方图;(2)在空气质量指数分别为51-100和151-200的监测数据中,用分层抽样的方法抽取5天,从中任意选取2天,求事件A“两天空气都为良”发生的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】分别求出对应的面积,进而求得结论.【详解】解:设正方形ABCD的边长为1,则51AF BE-==,∴2152EF AF=-=,∴所求的概率为21522DEFABCDEF ADSPS AD⨯⨯-===正方形故选:C.【点睛】本题主要考查几何概型,几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关.解决的步骤均为:求出满足条件A 的基本事件对应的“几何度量” ()N A ,再求出总的基本事件对应的“几何度量” N ,最后根据()N A PN求解,属于中档题. 2.D解析:D 【分析】从四个字母中取2个,列举出所有的基本事件,即得所求的概率. 【详解】从四个字母中取2个,所有的基本事件为:,,,bo bk oo ok ,共有4个; 其中“取到的2个字母不相同”含有,,bo bk ok 3个, 故所求概率为34. 故选:D. 【点睛】本题考查古典概型,属于基础题.3.C解析:C 【分析】分别求出③和④的巧板的面积,根据几何概型的概率关系转化为面积比. 【详解】设巧板①的边长为1,则结合图2可知大正方形的边长为3, 其面积239S ==.其中巧板③是底边长为2的等腰直角三角形,其面积为112112S =⨯⨯=,巧板④的正方形 与腰长为1的等腰直角三角形的组合图形,其面积为22151122S ⨯⨯+==, 故所求的概率12718S S P S +==. 故选:C . 【点睛】本题考查几何概型的概率求法,转化为面积比,属于中档题 .4.B解析:B 【分析】设阴影部分正方形的边长为a ,计算出七巧板所在正方形的边长,并计算出两个正方形的面积,利用几何概型概率公式可计算出所求事件的概率.【详解】如图所示,设阴影部分正方形的边长为a,则七巧板所在正方形的边长为,由几何概型的概率公式可知,在七巧板拼成的正方形内任取一点,则该点取自图中阴影部分的概率()2218a =,故选:B.【点睛】本题考查几何概型概率公式计算事件的概率,解题的关键在于弄清楚两个正方形边长之间的等量关系,考查分析问题和计算能力,属于中等题.5.B解析:B【分析】根据已知的程序语句可得,该程序的功能是利用循环结构计算并输出k 的值,模拟程序的运行过程,可得答案.【详解】根据题意,模拟程序框图的运行过程,如下:17,0n k ==17不是偶数,3171=52n =⨯+,011k =+=,521≠;52是偶数,52262n ==,112k =+=,261≠; 26是偶数,26132n ==,213k =+=,131≠; 13不是偶数,3131=40n =⨯+,314k =+=,401≠;40是偶数,40202n ==,415k =+=,201≠; 20是偶数,20102n ==,516k =+=,101≠; 10是偶数,1052n ==,617k =+=,51≠; 5不是偶数,351=16n =⨯+,718k =+=,161≠; 16是偶数,1682n ==,819k =+=,81≠; 8是偶数,842n ==,9110k =+=,41≠; 4是偶数,422n ==,10111k =+=,21≠;2是偶数,212n ==,11112k =+=,11=; 故选:B【点睛】关键点睛: 解题的关键是要读懂程序框图,模拟程序框图的运行过程,即突破难点.6.B解析:B【解析】试题分析:模拟执行程序, 可得4,6,0,0a b n s ====,执行循环体,2,4,6,6,1a b a s n =====,不满足条件16s >,执行循环体,2,6,4,10,2a b a s n =-====, 不满足条件16s >,执行循环体,2,4,6,16,3a b a s n =====, 不满足条件16s >,执行循环体,2,6,4,20,4a b a s n =-====,不满足条件16s >,退出循环, 输出n 的值为4,故选B. 考点:1、程序框图;2、循环结构.7.B解析:B【分析】模拟程序运行后,可得到输出结果,利用裂项相消法即可求出答案.【详解】模拟程序运行过程如下:0)1,0k S ,判断为否,进入循环结构, 1)110,2122S k =+==⨯,判断为否,进入循环结构, 2)11,3223S k =+=⨯,判断为否,进入循环结构, 3)111,422334S k =++=⨯⨯,判断为否,进入循环结构, …… 9)111,10223910S k =+++=⨯⨯,判断为否,进入循环结构, 10)1111,112239101011S k =++++=⨯⨯⨯,判断为是, 故输出1112231011S =+++⨯⨯111111101122310111111=-+-++-=-=, 故选:B.【点睛】 本题主要考查程序框图,考查裂项相消法,难度不大.一般遇见程序框图求输出结果时,常模拟程序运行以得到结论.8.D解析:D【分析】根据程序框图,依次运行程序即可得出输出值.【详解】输入5n =时,1,1,1,5S i a i ===≤,2,3,2a S i ===,5i ≤ 222,5,32a S i =⨯===,5i ≤ 2442,5,4333a S i =⨯==+=,5i ≤ 42242,5,534333a S i =⨯==++=,5i ≤ 224424,5,635153315a S i =⨯==+++=, 输出424457331515S =+++= 故选:D【点睛】此题考查程序框图,关键在于读懂框图,根据结构依次运算,求出输出值,尤其注意判断框中的条件. 9.C解析:C【解析】试题分析:A 选项,中位数是84;B 选项,众数是出现最多的数,故是83;C 选项,平均数是85,正确;D 选项,方差是,错误.考点:•茎叶图的识别 相关量的定义10.D解析:D【详解】高的比就是频率的比,所以各区间上的频率可依次设为2x,3x,5x,6x,3x,x,,同它们的和为1235631,20x x x x x x x +++++=∴=,所以该班学生数学成绩在[80,100)之间的学生人数是1(56)6011603320x +⨯⨯=⨯⨯=,故选D 11.C解析:C【解析】因为共有学生2700,抽取135,所以抽样比为1352700,故各年级分别应抽取135900452700⨯=,1351200602700⨯=,135600302700⨯=,故选C. 12.B解析:B【分析】根据频率分布直方图的性质和频率分布直方图中样本估计总体,准确运算,即可求解.【详解】由题意,根据频率分布直方图的性质得10(0.0200.0160.0160.0110.006)1m +++++=,解得0.031m =.故①正确;因为不低于140分的频率为0.011100.11⨯=,所以11010000.11n ==,故②错误; 由100分以下的频率为0.00610=0.06⨯,所以100分以下的人数为10000.06=60⨯, 故③正确;分数在区间[120,140)的人数占0.031100.016100.47⨯+⨯=,占小半.故④错误. 所以说法正确的是①③.故选B.【点睛】本题主要考查了频率分布直方图的应用,其中解答熟记频率分布直方图的性质,以及在频率分布直方图中,各小长方形的面积表示相应各组的频率,所有小长方形的面积的和等于1,着重考查了分析问题和解答问题的能力,属于基础题.二、填空题13.②④【分析】根据题意结合古典概型的概率计算公式逐项进行判定即可求解【详解】设申请法学院的男生人数为女生人数为则法学院的录取率为设申请商学院的男生人数为女生人数为则商学院的录取率为由该值的正负不确定所 解析:②④【分析】根据题意,结合古典概型的概率计算公式,逐项进行判定,即可求解.【详解】设申请法学院的男生人数为x ,女生人数为y ,则200x y +=, 法学院的录取率为0.50.70.50.7(200)0.70.001200200x y x x x ++⨯-==-, 设申请商学院的男生人数为m ,女生人数为n ,则300m n +=,商学院的录取率为0.60.90.60.9(300)0.90.001200200m n m m m ++⨯-==-, 由()()0.90.0010.70.0010.20.001()0.001(200)m x m x m x ---=--=-+, 该值的正负不确定,所以①错误,④正确; 这两个学院所有男生的录取率为0.50.6x m x m ++, 这两个学院所有女生的录取率为0.70.9y n y n++, 因为0.50.60.70.90.20.40.10.30()()x m y n xy xn my nm x m y n x m y n +++++-=<++++, 所以②正确;③错误.故答案为:②④.【点睛】本题主要考查了古典概型的概率公式的应用,其中解答中正确理解题意,结合古典概型的概率计算公式求得相应的概率是解答的关键,着重考查数学阅读能力,属于基础题. 14.【分析】分两步进行:首先先排第一行再排第二行最后排第三行;其次对每一行选人;最后利用计算出概率即可【详解】首先第一行队伍的排法有种;第二行队伍的排法有2种;第三行队伍的排法有1种;然后第一行的每个位 解析:1140【分析】分两步进行:首先,先排第一行,再排第二行,最后排第三行;其次,对每一行选人;最后,利用计算出概率即可.【详解】首先,第一行队伍的排法有33A 种;第二行队伍的排法有2种;第三行队伍的排法有1种;然后,第一行的每个位置的人员安排有111333C C C 种;第二行的每个位置的人员安排有111222C C C 种;第三行的每个位置的人员安排有111⨯⨯种.所以来自同一队的战士既不在同一行,也不在同一列的概率311111133332229921140A C C C C C C P A ⋅⋅⋅==. 故答案为:1140. 【点睛】 本题考查了分步计数原理,排列与组合知识,考查了转化能力,属于中档题.15.【解析】【分析】列举出所有的结果选出的所有的结果根据古典概型概率公式可求出函数是增函数的概率【详解】所有取值有:共12个值当时为增函数有共有6个所以函数是增函数的概率为故答案为【点睛】本题主要考查古解析:12【解析】【分析】 列举出a b 所有的结果,选出1a b >的所有的结果,根据古典概型概率公式可求出函数()log a b f x x =是增函数的概率.【详解】a b 所有取值有:135713571157,,,,,,,,,,,222244446266共12个值, 当1a b >时,()f x 为增函数,有357577,,,,,222446共有6个, 所以函数()log a b f x x =是增函数的概率为61122=,故答案为12. 【点睛】本题主要考查古典概型概率公式的应用以及对数函数的性质,属于中档题. 在求解有关古典概型概率的问题时,首先求出样本空间中基本事件的总数n ,其次求出概率事件中含有多少个基本事件m ,然后根据公式m P n=求得概率. 16.8【分析】根据程序框图知该程序的功能是计算并输出变量的值模拟程序的运行过程即可求解【详解】当时满足循环条件当时满足循环条件当时满足循环条件;当时不满足循环条件跳出循环输出故填【点睛】本题主要考查了程 解析:8【分析】根据程序框图知,该程序的功能是计算并输出变量s 的值,模拟程序的运行过程即可求解.【详解】当2i =时,满足循环条件,2,4,2s i k ===,当4i =时,满足循环条件,4,6,3s i k === ,当6i =时,满足循环条件,8,8,4s i k ===;当8i =时,不满足循环条件,跳出循环,输出8s =.故填8.【点睛】本题主要考查了程序框图,循环结构,属于中档题.17.【解析】试题分析:由程序框图第一次循环时第二次循环时第三次循环时第四次循环时退出循环输出考点:程序框图解析:4【解析】试题分析:由程序框图,第一次循环时,1,1k S ==,第二次循环时,22,112k S ==+=,第三次循环时,23,226k S ==+=,第四次循环时,24,63156k S ==+=>,退出循环,输出4k =.考点:程序框图.18.11【解析】试题分析:根据程序框图可知该程序执行的是所以输出的值为11考点:本题考查程序框图容易题点评:程序框图的题目离不开循环结构和条件结构要仔细辨别循环条件弄清楚循环次数避免多执行或少执行一次 解析:11【解析】试题分析:根据程序框图可知该程序执行的是1123411S =++++=,所以输出的值为11.考点:本题考查程序框图,容易题.点评:程序框图的题目离不开循环结构和条件结构,要仔细辨别循环条件,弄清楚循环次数,避免多执行或少执行一次.19.05【分析】根据给定的随机数表的读取规则从第一行第67列开始两个数字一组从左向右读取重复的或超出编号范围的跳过即可【详解】根据随机数表排除超过33及重复的编号第一个编号为21第二个编号为32第三个编解析:05【分析】根据给定的随机数表的读取规则,从第一行第6、7列开始,两个数字一组,从左向右读取,重复的或超出编号范围的跳过,即可.【详解】根据随机数表,排除超过33及重复的编号,第一个编号为21,第二个编号为32,第三个编号05,故选出来的第3个红色球的编号为05.【点睛】本题主要考查了简单随机抽样中的随机数表法,属于容易题.20.8【解析】由题意得从名学生中采用系统抽样的方法抽取名学生需要把名学生平均分成组每组人设第一组抽取的号码为则第组抽取的号码为解得点睛:本题考查了抽样方法中的系统抽样问题对于系统抽样的抽法是先对总体编号 解析:8【解析】由题意得,从800名学生中采用系统抽样的方法抽取25名学生,需要把800名学生平均分成25组,每组8003225=人, 设第一组抽取的号码为x ,则第5组抽取的号码为432136x +⨯=,解得8x =. 点睛:本题考查了抽样方法中的系统抽样问题,对于系统抽样的抽法是先对总体编号,根据样本平均分组,确定组距,再在第一组中抽取一个编号,依次等距抽取,其中把握系统抽样的原则是解答此类问题的关键.三、解答题21.(1)291494;(2)440 【分析】(1)先计算出选取的3人中,全都是高于45岁的概率,然后用1减去这个概率,求得至少有1人的年龄低于45岁的概率.(2)首先确定“销售的10件商品中以手机支付为首选支付的商品件数”满足二项分布,求得销售额的表达式,然后利用期望计算公式,计算出销售额的期望.【详解】(1)设事件A 表示至少有1人的年龄低于45岁,则()3303402911494C P A C =-=. (2)由题意知,以手机支付作为首选支付方式的概率为6031005=. 设X 表示销售的10件商品中以手机支付为首选支付的商品件数,则3~10,5X B ⎛⎫ ⎪⎝⎭,设Y 表示销售额,则()40501050010Y X X X =+-=-,所以销售额Y 的数学期望35001050010104405EY EX =-=-⨯⨯=(元). 【点睛】本小题主要考查利用对立事件来计算古典概型概率问题,考查二项分布的识别和期望的计算,考查随机变量线性运算后的数学期望的计算.22.(1)填表见解析;有90%的把握认为“对线上教学是否满意与性别有关”;(2)35. 【分析】(1)根据题目所给出的数据填写22⨯列联表,计算K 的观测值,对照题目中的表格,得出统计结论.(2)由题可知,从被调查中对线上教学满意的学生中,利用分层抽样抽取5名学生,其中男生2名,女生3人,分别标号,列出所有的基本事件,再利用古典概型的概率公式即可得出结果.【详解】解:(1)22⨯列联表如下:又()210030104515 3.03 2.70675254555K ⨯-⨯=≈>⨯⨯⨯, 这说明有90%的把握认为“对线上教学是否满意与性别有关”.(2)方法一:由题可知,从被调查中对线上教学满意的学生中,利用分层抽样抽取5名学生,其中男生2名,设为A 、B ;女生3人设为,,a b c ,则从这5名学生中抽取2名学生的基本事件有:(),A B ,(),A a ,(),A b ,(),A c ,(),B a ,(),B b ,(),B c ,(),a b ,(),a c ,(),b c ,共10个基本事件,其中抽取一名男生与一名女生的事件有(),A a ,(),A b ,(),A c ,(),B a ,(),B b ,(),B c ,共6个基本事件,根据古典概型,从这5名学生中抽取一名男生与一名女生的概率为63105=. 方法二:由题可知,从被调查中对线上教学满意的学生中,利用分层抽样抽取5名学生, 其中男生2名,设为;女生3人,根据古典概型,从这5名学生中抽取一名男生与一名女生的概率为11222563105C C C == 【点睛】本题考查了独立性检验的应用问题,考查了古典概型的概率公式,也考查了计算能力的应用问题,是基础题.23.(1)(2,1);(2)20x y -=或250x y +-=【分析】(1)根据程序框图,可得输出的函数()f x ,由输入x 的值为1+可得直线2l 在x 轴上的截距.由12l l ⊥,可得直线2l 的斜率.根据点斜式可得直线2l 的方程,联立两直线方程,即可求得交点坐标.(2)讨论截距是否为0:当截距为0时,易得直线方程;当截距不为0时,根据在y 轴上的截距是在x 轴上的截距的2倍,设出直线方程,代入所过的点,即可求解.【详解】(1)由程序框图,若输入x 的值为1+,由10+> 所以输出()221f x x x =-+代入可得21112232122f ⎛⎫⎛⎛⎫=-⨯+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭+++ 所以2l 在x 轴上的截距为32, ∵12l l ⊥,∴121l l k k =-⋅所以22l k =∴直线2l 的方程为3022y x ⎛⎫-=- ⎪⎝⎭,即23y x =-. 联立240230x y x y +-=⎧⎨--=⎩,解得21x y =⎧⎨=⎩. ∴直线1l 和2l 的交点坐标为(2,1).(2)当直线3l 经过原点时,可得方程为12y x =. 当直线3l 不经过原点时,设在x 轴上截距为0a ≠,则在y 轴上的截距为2a , 其方程为12x y a a +=,将交点坐标(2,1)代入可得2112a a +=,解得52a =, ∴方程为25x y +=. 综上可得直线3l 方程为20x y -=或250x y +-=.【点睛】本题考查了程序框图的简单应用,垂直直线的斜率关系,直线交点的求法,截距式方程的用法,注意讨论截距是否为0,属于中档题.24.见解析【解析】试题分析:分三类列出托运的费用关于行李质量的函数关系,设行李质量为kg ω,应付运费为x 元,,则得到其运费公式,要计算托运的费用必须对行李质量分类讨论,因此要用条件语句来实现.试题设行李重量为kg ω,应付托运费为x 元,则()()0.25,500.25500.3550,501000.25500.35500.45100,100x ωωωωωω⎧≤⎪=⨯+-<≤⎨⎪⨯+⨯+->⎩则0.25,500.355,501000.4515,100x ωωωωωω≤⎧⎪=-<≤⎨⎪->⎩程序框图如图所示:程序如下:25.(1)见解析;(2)174.5cm;(3)0.3.【详解】试题分析:(1)先分别算出第六组和第七组的人数,进而算出其频率与组距的比,补全直方图;(2)利用中位数两边频率相等,求出中位数的值;(3)先借助分层抽样的特征求出第四、第五组的人数,再运用列举法列举出所有可能数及满足题设的条件的数,运用古典概型的计算公式求解:解:(1)第六组与第七组频率的和为:∵第六组和第七组人数的比为5:2.∴第六组的频率为0.1,纵坐标为0.02;第七组频率为0.04,纵坐标为0.008.(2)设身高的中位数为,则∴估计这50位男生身高的中位数为174.5(3)由于第4,5组频率之比为2:3,按照分层抽样,故第4组中应抽取2人记为1,2,第5组应抽取3人记为3,4,5则所有可能的情况有:{1,2},{1,3},{1,4},{1,5},{2,3},{2,4},{2,5}, {3,4},{3,5},{4,5}共10种满足两位男生身高都在[175,180]内的情况有{3,4},{3,5},{4,5}共3种, 因此所求事件的概率为. 26.(1)答案见解析;(2)35. 【解析】【试题分析】(1)借助题设中提供的频率分布直方图,算出0-50的频率为0.004500.2⨯=,进而求出样本容量200.2100n =÷=,从而求出25m =,最后完成频率分布直方图;(2)先运用分层抽样的方法求出空气质量指数为51-100和151200-的监测天数中分别抽取4天和1天,即将空气质量指数为51-100的4天分别记为,,,a b c d ;将空气质量指数为151-200的1天记为e ,算出从中任取2天的基本事件数为10种和其中事件A “两天空气都为良”包含的基本事件数为6种,进而算得事件A “两天都为良”发生的概率是()63105P A ==: (1)由频率分布直方图可知0-50的频率为0.004500.2⨯=,所以200.2100n =÷=,从而25m =,频率分布直方图补充如下图所示.。
【人教版】高中数学必修三期末一模试卷含答案
一、选择题1.已知点(,)P x y 满足||||2x y +≤,则到坐标原点O 的距离1d ≤的点P 的概率为( ) A .16π B .8π C .4π D .2π 2.据《孙子算经》中记载,中国古代诸侯的等级从低到高分为:男、子、伯、侯、公,共五级,若给获得巨大贡献的7人进行封爵,要求每个等级至少有一人,至多有两人,则伯爵恰有两人的概率为( ) A .310B .25C .825D .353.如图,一个边长为2的正方形里有一个月牙形的图案,为了估算这个月牙形图案的面积,向这个正方形里随机投入500粒芝麻,经过统计,落在月牙形图案内的芝麻有150粒,则这个月牙图案的面积约为( )A .35B .45C .1D .654.甲乙两艘轮船都要在某个泊位停靠,甲停靠的时间为4小时,乙停靠的时间为6小时,假定他们在一昼夜的时间段中随机到达,则这两艘船停靠泊位时都不需要等待的概率为( ) A .916B .58C .181288D .5125.阅读下面的框图,运行相应的程序,输出S 的值为________.A.2 B.4 C.-4 D.-8 6.执行如图所示的程序框图,则输出S的值为()A.-1010 B.-1009 C.1009 D.1010 7.若执行如图所示的程序框图,则输出S的值为()A .9-B .16-C .25-D .36-8.执行如图所示的程序框图,若输入的,a b 的值分别为1,2,则输出的S 是( )A .70B .29C .12D .59.某商场为了了解毛衣的月销售量y (件)与月平均气温x (C ︒)之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如下表: 月平均气温x C ︒171382月销售量y (件)24334055由表中数据算出线性回归方程y bx a =+中的2b =-,气象部门预测下个月的平均气温为6C ︒,据此估计该商场下个月毛衣销售量约为( )A .58件B .40件C .38件D .46件10.某农业科学研究所分别抽取了试验田中的海水稻以及对照田中的普通水稻各10株,测量了它们的根系深度(单位:cm ),得到了如图所示的茎叶图,其中两竖线之间表示根系深度的十位数,两边分别是海水稻和普通水稻根系深度的个位数,则下列结论中不正确的是( )A .海水稻根系深度的中位数是45.5B .普通水稻根系深度的众数是32C .海水稻根系深度的平均数大于普通水稻根系深度的平均数D .普通水稻根系深度的方差小于海水稻根系深度的方差11.下表是某两个相关变量x ,y 的几组对应数据,根据表中提供的数据,求出y 关于x 的线性回归方程ˆ0.70.35yx =+,那么表中t 的值为( ) x 3 4 5 6 y2.5t44.5A .3B .3.15C .3.5D .4.512.为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下: 父亲身高x (cm )174176176176178儿子身高y (cm )175175176177177则y 对x 的线性回归方程为 A .y = x-1B .y = x+1C .y =88+12x D .y = 176二、填空题13.将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是________.14.口袋里装有1红,2白,3黄共6个形状相同的小球,从中取出2球,事件A =“取出的两球同色”,B =“取出的2球中至少有一个黄球”,C =“取出的2球至少有一个白球”,D “取出的两球不同色”,E =“取出的2球中至多有一个白球”.下列判断中正确的序号为________.①A 与D 为对立事件;②B 与C 是互斥事件;③C 与E 是对立事件:④()1P CE =;⑤()()P B P C =.15.某同学进行投篮训练,在甲、乙、丙三个不同的位置投中的概率分别13,12,p ,该同学站在这三个不同的位置各投篮一次,恰好投中两次的概率为718,则p 的值为_____. 16.运行下边的流程图,输出的结果是__________.17.执行如图所示的程序框图,若输出的结果是5,则判断框内的取值范围是________________.18.某程序流程框图如图所示,现执行该程序,输入下列函数()2sin3f x x π=, ()2cos3f x x π=,()4tan 3f x x π=,则可以输出的函数是()f x =__________.19.玉林市有一学校为了从254名学生选取部分学生参加某次南宁研学活动,决定采用系统抽样的方法抽取一个容量为42的样本,那么从总体中应随机剔除的个体数目为__________. 20.下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;②设有一个回归方程ˆ35yx =-,若变量x 增加一个单位时,则y 平均增加5个单位; ③线性回归方程^^^y b x a =+所在直线必过(),x y ; ④曲线上的点与该点的坐标之间具有相关关系;⑤在一个22⨯列联表中,由计算得213.079K =,则其两个变量之间有关系的可能性是0090.其中错误的是________.三、解答题21.某大学综合评价面试测试中,共设置两类考题:A 类题有4个不同的小题,B 类题有3个不同的小题.某考生从中任抽取3个不同的小题解答. (1)求该考生至少抽取到2个A 类题的概率;(2)设所抽取的3个小题中B 类题的个数为X ,求随机变量X 的分布列与均值. 22.在这智能手机爆发的时代,大部分高中生都有手机,在手机面前,有些学生无法抵御手机尤其是手机游戏和短视频的诱惑,从而导致无法专心完成学习任务,成绩下滑;但是对于自制力强,能有效管理自己的学生,手机不仅不会对他们的学习造成负面影响,还能成为他们学习的有力助手,我校某研究型学习小组调查研究“中学生使用智能手机对学习的影响部分统计数据如下表:不使用手机 使用手机 合计 学习成绩优秀人数 28 12 40 学习成绩不优秀人数 14 26 40 合计423880参考数据:22()()()()()n ad bc K a c b d a b c d -=++++,其中n a b c d =+++.()20P K k ≥ 0.10 0.05 0.025 0.010 0.005 0.001 0k2.7063.8415.0246.6357.87910.828(1)试根据以上数据,运用独立性检验思想,指出有多大把握认为中学生使用手机对学习有影响?(2)研究小组将该样本中不使用手机且成绩优秀的同学记为A 组,使用手机且成绩优秀的同学记为B 组,计划从A 组推选的4人和B 组推选的2人中,随机挑选两人来分享学习经验,求挑选的两人中一人来自A 组、另一人来自B 组的概率.23.已知某算法的程序框图如图所示,若将输出的(x ,y)值依次记为(x 1,y 1),(x 2,y 2),…,(x n ,y n ),….(1)若程序运行中输出的一个数组是(9,t),求t 的值; (2)程序结束时,共输出(x ,y)的组数为多少; (3)写出程序框图的程序语句.24.给出30个数:1,2,4,7,,其规律是:第1个数是1,第2个数比第1个数大1,第3个数比第2个数大2,第4个数比第3个数大3,以此类推,要计算这30个数的和,现已给出了解决该问题的算法框图(如图所示).(1)请在图中处理框内①处和判断框中的②处填上合适的语句,使之能完成该题算法功能;(2)根据算法框图写出算法语句.25.2018年8月8日是我国第十个全民健身日,其主题是:新时代全民健身动起来.某市为了解全民健身情况,随机从某小区居民中抽取了40人,将他们的年龄分成7段:[10,20),[20,30),[30,40),[40,50),[50,60),[60,70),[70,80]后得到如图所示的频率分布直方图.(1)试求这40人年龄的平均数的估计值;(2)(i)若从样本中年龄在[50,70)的居民中任取2人赠送健身卡,求这2人中至少有1人年龄不低于60岁的概率;(ⅱ)已知该小区年龄在[10,80]内的总人数为2000,若18岁以上(含18岁)为成年人,试估计该小区年龄不超过80岁的成年人人数.26.某校为了了解甲、乙两班的数学学习情况,从两班各抽出10名学生进行数学水平测试,成绩如下(单位:分):甲班:82848589798091897974乙班:90768681848786828583(1)求两个样本的平均数; (2)求两个样本的方差和标准差; (3)试分析比较两个班的学习情况.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】作出图象,得到点P 的坐标围成的图形是以原点为中心的边长为22正方形,到坐标原点O 的距离1d ≤的点P 围成的图形是以原点为圆心,半径为1的圆,由此利用几何概型能求出到坐标原点O 的距离1d ≤的点P 的概率. 【详解】点(),P x y 满足2x y +≤,∴当0x ≥,0y ≥时,2x y +≤;当0x ≥,0y ≤时,2x y -≤; 当0x ≤,0y ≥时,2x y -+≤; 当0x ≤,0y ≤时,2x y --≤. 作出图象,得到点P 的坐标围成的图形是以原点为中心的边长为2正方形,到坐标原点O 的距离1d ≤的点P 围成的图形是以原点为圆心,半径为1的圆,∴到坐标原点O 的距离1d ≤的点P 的概率为:282222S p S π===⨯圆正方形.故选:B . 【点睛】本题考查概率的求法,几何概型等基础知识,考查运算求解能力,是中档题.2.B解析:B 【分析】根据部分平均分组分配的方法可求得分法总数和伯爵恰有两人的分法数,根据古典概型概率公式可求得结果. 【详解】7人进行封爵,每个等级至少一人,至多两人,则共有2211225575327555322322C C C C C C A A A A A ⋅=种分法;其中伯爵恰有两人的分法有2211142247532247543232C C C C C A C C A A A ⋅=种分法, ∴伯爵恰有两人的概率2247542257552225C C A p C C A A ==.故选:B . 【点睛】本题考查数学史与古典概型概率问题的求解,关键是能够利用排列组合中不平均分组分配的方法确定分法总数和符合题意的分法数.3.D解析:D 【分析】利用与面积有关的几何概型概率计算公式求解即可. 【详解】由题可知,正方形的面积为=22=4S ⨯正,设这个月牙图案的面积为S , 由与面积有关的几何概型概率计算公式可得,向这个正方形里随机投入芝麻,落在月牙形图案内的概率为150=4500S S P S ==正,解得65S =. 故选:D 【点睛】本题考查与面积有关的几何概型概率计算公式;属于基础题、常考题型.4.C解析:C 【分析】设甲、乙到达的时间分别为,x y ,列出所有基本事件的约束条件,同时列出两艘船停靠泊位时都不需要等待的约束条件,利用线性规划做出平面区域,利用几何概型概率关系转化为面积比. 【详解】设甲、乙到达的时间分别为,x y ,则所有基本事件的构成的区域024{|}024x x y ≤≤⎧Ω=⎨≤≤⎩, 则这两艘船停靠泊位时都不需要等待包含的基本事件构成的区域024024{(,)|}46x y A x y y x x y ≤≤⎧⎪≤≤⎪=⎨≥+⎪⎪≥+⎩,做出Ω构成的区域,其面积为224=576,阴影部分为集合A 构成的区域,面积为221(2018)3622+=, 这两艘船停靠泊位时都不需要等待的概率362181()576288P A ==. 故选:C.【点睛】本题考查利用线性规划做出事件对应的平面区域,再利用几何概型概率公式求出事件的概率,属于中档题.5.C解析:C 【解析】执行程序一次,8,2s n =-=,执行第二次,4,1s n =-=,满足判断框条件,跳出循环,输出4s =-,故选C.6.D解析:D 【分析】根据程序框图,先计算出N 和T 的含义,再根据S N T =-即可求得输出值.或利用等差数列的求和公式求解. 【详解】依题意:得1352019N =+++⋯+,02462018T =++++⋯+. 解法一:(10)(32)(54)(20192018)1010S N T =-=-+-+-++-=,故选:D.解法二:(12019)1010101010102N +⨯==⨯,(02018)1010100910102T +⨯==⨯,所以10101010101010091010(10101009)1010S N T =-=⨯-⨯=⨯-=,故选:D. 【点睛】本题考查了程序框图的简单应用,数列求和公式的应用,属于中档题.7.D解析:D 【分析】执行循环结构的程序框图,逐次运算,根据判断条件终止循环,即可得到运算结果,得到答案. 【详解】由题意,执行循环结构的程序框图,可知:第一次运行时,1(1)11,0(1)1,3T S n =-=-=+-=-=•; 第二次运行时,3(1)33,1(3)4,5T S n =-=-=-+-=-=•; 第三次运行时,5(1)55,4(5)9,7T S n =-=-=-+-=-=•; 第四次运行时,7(1)77,9(7)16,9T S n =-=-=-+-=-=•; 第五次运行时,9(1)99,16(9)25,11T S n =-=-=-+-=-=•; 第六次运行时,11(1)1111,25(11)36T S =-=-=-+-=-•, 此时刚好满足9n >,所以输出S 的值为36-.故选D. 【点睛】本题主要考查了循环结构的程序框图的计算与输出问题,其中解答中熟练应用给定的程序框图,逐次运算,根据判断条件,终止循环得到结果是解答的关键,着重考查了推理与运算能力,属于基础题.8.B解析:B 【分析】此程序框图是循环结构图,模拟程序逐层判断,得出结果. 【详解】 解: 模拟程序:,,a b n 的初始值分别为1,2,4,第1次循环:s 1225=+⨯=,,,a 2b 5n 3===,不满足2n <; 第2次循环:s 22512=+⨯=,,,a 5b 12n 2===,不满足2n <; 第3次循环:s 521229=+⨯=,,,a 12b 29n 1===,满足2n <,故输出29S =. 故选B. 【点睛】本题考查了程序框图的循环结构,解题的关键是要读懂循环结构的流程图,根据判断框内的条件逐步解题.9.D解析:D 【解析】试题分析:由表格得(),x y 为:()10,38,因为(),x y 在回归方程y bx a =+上且2b =-,()38102a ∴=⨯-+,解得58a =∴2ˆ58y x =-+,当6x =时,26ˆ5846y=-⨯+=,故选D. 考点:1、线性回归方程的性质;2、回归方程的应用.10.D解析:D 【分析】选项A 求出海水稻根系深度的中位数是444745.52+=,判断选项A 正确;选项B 写出普通水稻根系深度的众数是32,判断选项B 正确;选项C 先求出海水稻根系深度的平均数,再求出普通水稻根系深度的平均数,判断选项C 正确;选项D 先求出普通水稻根系深度的方差,再求出海水稻根系深度的方差,判断选项D 错误. 【详解】解:选项A :海水稻根系深度的中位数是444745.52+=,故选项A 正确; 选项B :普通水稻根系深度的众数是32,故选项B 正确;选项C :海水稻根系深度的平均数393938434447495050514510+++++++++=,普通水稻根系深度的平均数252732323436384041453510+++++++++=,故选项C 正确;选项D :普通水稻根系深度的方差2222222211[(3845)(3945)(3945)(4345)(4445)(4745)(4945)(5045)10S =-+-+-+-+-+-+-+-+, 海水稻根系深度的方差2222222221[(2535)(2735)(3235)(3235)(3435)(3635)(3835)(4035)(10S =-+-+-+-+-+-+-+-+,故选项D 错误 故选:D. 【点睛】本题考查根据茎叶图求中位数、众数、平均数、方差,是基础题.11.A解析:A 【分析】计算得到 4.5x =,114t y +=,代入回归方程计算得到答案. 【详解】3456 4.54x +++==, 2.54 4.51144t t y ++++==,中心点(),x y 过ˆ0.70.35yx =+, 即114.50.70.354t +=⨯+,解得3t =. 故选:A . 【点睛】本题考查了回归方程的相关问题,意在考查学生的计算能力.12.C解析:C 【详解】试题分析:由已知可得176,176x y ==∴中心点为()176,176, 代入回归方程验证可知,只有方程y =88+12x 成立,故选C 二、填空题13.【解析】基本事件总数为36点数之和小于10的基本事件共有30种所以所求概率为【考点】古典概型【名师点睛】概率问题的考查侧重于对古典概型和对立事件的概率的考查属于简单题江苏对古典概型概率的考查注重事件解析:56【解析】基本事件总数为36,点数之和小于10的基本事件共有30种,所以所求概率为305.366= 【考点】古典概型【名师点睛】概率问题的考查,侧重于对古典概型和对立事件的概率的考查,属于简单题.江苏对古典概型概率的考查,注重事件本身的理解,淡化计数方法.因此先明确所求事件本身的含义,然后一般利用枚举法、树形图解决计数问题,而当正面问题比较复杂时,往往利用对立事件的概率公式进行求解.14.①④【分析】在①中由对立事件定义得与为对立事件;有②中与有可能同时发生;在③中与有可能同时发生;在④中(C )(E );在⑤中从而(B )(C )【详解】口袋里装有1红2白3黄共6个形状相同小球从中取出2球解析:①④ 【分析】在①中,由对立事件定义得A 与D 为对立事件;有②中,B 与C 有可能同时发生;在③中,C 与E 有可能同时发生;在④中,()P CUE P =(C )P +(E )()1P CE -=;在⑤中C B ≠,从而P (B )P ≠(C ).【详解】口袋里装有1红,2白,3黄共6个形状相同小球,从中取出2球, 事件A = “取出的两球同色”, B = “取出的2球中至少有一个黄球”,C = “取出的2球至少有一个白球”,D “取出的两球不同色”,E = “取出的2球中至多有一个白球”,①,由对立事件定义得A 与D 为对立事件,故①正确;②,B 与C 有可能同时发生,故B 与C 不是互斥事件,故②错误; ③,C 与E 有可能同时发生,不是对立事件,故③错误;④,P (C )631=155=-,P (E )1415=,8()15P CE =,从而()P CE P =(C )P +(E )()1P CE -=,故④正确;⑤,C B ≠,从而P (B )P ≠(C ),故⑤错误. 故答案为:①④. 【点睛】本题考查命题真假的判断,是基础题,考查对立互斥事件,解题时要认真审题,注意对立事件、互斥事件等基本概念的合理运用.15.【分析】在甲乙丙处投中分别记为事件恰好投中两次为事件发生由此利用相互独立事件概率乘法公式能求出结果【详解】在甲乙丙处投中分别记为事件ABC 恰好投中两次为事件发生故恰好投中两次的概率P (1)解得p 故答解析:23【分析】在甲、乙、丙处投中分别记为事件A ,B ,C ,恰好投中两次为事件ABC ,ABC ,ABC 发生,由此利用相互独立事件概率乘法公式能求出结果.【详解】在甲、乙、丙处投中分别记为事件A ,B ,C , 恰好投中两次为事件ABC ,ABC ,ABC 发生, 故恰好投中两次的概率P ()1111113232p p ⎛⎫=⨯⨯-+⨯-⨯+ ⎪⎝⎭(113-)17218p ⨯⨯=, 解得p 23=. 故答案为:23.【点睛】本题考查概率的求法,考查相互独立事件概率乘法公式等基础知识,考查运算求解能力,是基础题.16.94【解析】不成立执行不成立执行成立所以输出解析:94 【解析】3,3311050a a =∴=⨯+=>不成立,执行31013150a =⨯+=>,不成立, 执行33119450a =⨯+=>,成立, 所以输出94.a =17.【详解】试题分析:若输出的结果是5那么说明循环运行了4次因此判断框内的取值范围是考点:程序框图 解析:【详解】试题分析:若输出的结果是5,那么说明循环运行了4次,.因此判断框内的取值范围是.考点:程序框图.18.【分析】根据得知函数的图象关于点对称由可得知函数的周期为于此可在题中三个函数中找出合乎条件的函数作出输出结果【详解】可知函数的图象关于点对称由得所以函数的周期为由三角函数的周期公式可知函数和的最小正解析:()2cos 3f x x π=. 【分析】根据()302f x f x ⎛⎫+--= ⎪⎝⎭得知函数()y f x =的图象关于点3,04⎛⎫- ⎪⎝⎭对称,由()f x + 302f x ⎛⎫+= ⎪⎝⎭可得知函数()y f x =的周期为3,于此可在题中三个函数中找出合乎条件的函数作出输出结果. 【详解】()302f x f x ⎛⎫+--= ⎪⎝⎭,可知函数()y f x =的图象关于点3,04⎛⎫- ⎪⎝⎭对称,由()302f x f x ⎛⎫++= ⎪⎝⎭,得()3322f x f x f x ⎛⎫⎛⎫+=-=- ⎪ ⎪⎝⎭⎝⎭,所以函数()y f x =的周期为3.由三角函数的周期公式可知,函数()2sin3f x x π=和()2cos 3f x x π=的最小正周期为3,函数()4tan3f x x π=的最小正周期为34,不合乎要求; 对于函数()2sin 3f x x π=,323sin sin 04342f ππ⎡⎤⎛⎫⎛⎫-=⨯-=-≠ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦;对于函数()2cos3f x x π=,323cos cos 04342f ππ⎡⎤⎛⎫⎛⎫⎛⎫-=⨯-=-= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,合乎题意. 所以,函数()2cos3f x x π=的图象关于点3,04⎛⎫- ⎪⎝⎭对称, 故输出的函数为()2cos 3f x x π=,故答案为()2cos 3f x x π=. 【点睛】本题考查程序框图,考查三角函数的周期性和对称性,能根据抽象函数关系式得出函数的基本性质,是解本题的关键,属于中等题.19.2【解析】【分析】根据系统抽样的概念结合可得最后结果为2【详解】学生总数不能被容量整除根据系统抽样的方法应从总体中随机剔除个体保证整除∵故应从总体中随机剔除个体的数目是2故答案为2【点睛】本题主要考解析:2 【解析】 【分析】根据系统抽样的概念结合2544262=⨯+,可得最后结果为2. 【详解】学生总数不能被容量整除,根据系统抽样的方法,应从总体中随机剔除个体,保证整除. ∵2544262=⨯+,故应从总体中随机剔除个体的数目是2,故答案为2. 【点睛】本题主要考查系统抽样,属于基础题;从容量为N 的总体中抽取容量为n 的样本,系统抽样的前面两个步骤是:(1)将总体中的N 个个体进行编号;(2)当Nn为整数时,抽样距即为N n ;当N n 不是整数时,从总体中剔除一些个体,使剩下的总体中的个体的个数N '能被n 整除.20.②④⑤【解析】分析:根据方程性质回归方程性质及其含义卡方含义确定命题真假详解:由方差的性质知①正确;由线性回归方程的特点知③正确;回归方程若变量增加一个单位时则平均减少5个单位;曲线上的点与该点的坐解析:②④⑤【解析】分析:根据方程性质、回归方程性质及其含义、卡方含义确定命题真假. 详解:由方差的性质知①正确;由线性回归方程的特点知③正确;回归方程ˆ35yx =-中若变量x 增加一个单位时,则y 平均减少5个单位; 曲线上的点与该点的坐标之间不一定具有相关关系;在一个22⨯列联表中,由计算得213.079K =,只能确定两个变量之间有相关关系的可能性,所以②④⑤均错误.点睛:本题考查方程性质、回归方程性质及其含义、卡方含义,考查对基本概念理解与简单应用能力.三、解答题21.(1)2235;(2)分布列见解析,97EX = 【分析】(1)利用古典概率与互斥事件概率计算公式即可得出.(2)设所抽取的3个小题中B 类题的个数为X ,则X 的取值为0,1,2,3.利用超几何分布列计算公式即可得出. 【详解】(1)该考生至少抽取到2个A 类题的概率213434372235P +==. (2)设所抽取的3个小题中B 类题的个数为X ,则X 的取值为0,1,2,3.34374(0)35P X ===, 21433718(1)35P X ===, 12433712(2)35P X ===, 33371(3)35P X ===, ∴随机变量X 的分布列为:均值0123353535357EX =⨯+⨯+⨯+⨯=. 【点睛】本题考查古典概率与互斥事件概率计算公式、超几何分布列计算公式及其数学期望计算公式,考查推理能力与计算能力. 22.(1)99.5%;(2)815. 【分析】(1)根据22⨯列联表中的数据,代入卡方计算,即可求解; (2)根据古典概型,列出基本时间,根据概率公式,即可求解. 【详解】 (1)根据公式得2280(28261412)9.8257.87942384040K ⨯⨯-⨯==≥⨯⨯⨯.所以有99.5%的把握认为中学生使用手机对学习有影响.(2)记A 组推选的4人为a ,b ,c ,d ,B 组推选的2人为e ,f , 则从这6人中任取两人有15种取法:()()()()(),,,,,a b a c a d a e a f ()()()(),,,,b c b d b e b f ()()()c,,,d c e c f ()(),,d e d f(),e f其中一人来自A 组、另一人来自B 组有8种取法, 故概率为815p =. 【点睛】本题考查(1)独立性检验(2)古典概型概率计算,考查计算能力,属于中等题型. 23.(1)-4;(2)1008;(3)详见解析. 【解析】 【分析】(1)根据程序框图的运算流程,依次求解x =1,x =3,x =9时y 的值,即可得t 的值; (2)根据程序框图的运算流程,当n =1时,输出第1对,当n =3时,输出第2对,…,以此类推,已知求到当n =2015时,即可确定输出的组数. (3)程序框图利用DO LOOP UNTIL 语句写出程序语句即可. 【详解】(1)开始x =1时,y =0;接着x =3,y =-2;然后x =9,y =-4,所以t =-4. (2)当n =1时,输出一对, 当n =3时,又输出一对,…, 当n =2015时,输出最后一对,由上可知,程序循环变量n 的初值为1,终值为2015,步长为2故循环共执行(2015﹣1)÷2+1=1008次共输出(x,y)的组数为1 008.(3)程序框图的程序语句如下:【点睛】本题考查解决程序框图中的循环结构时,常采用框图的流程写出前几次循环的结果,找规律,属于中档题.24.(1) ①处应填;②处应填 (2)见解析【解析】分析:(1)由已知中程序的功能是给出个数,其规律是:第个数是;第个数是;第个数比第个数大,第个数比第大,,依次类推,要计算区间个数的和,可以根据循环此时,循环变量的初值、步长计算出循环变量的终值,得到①中的条件;再根据累加的变化规律,得到②中累加通项的表达式;(2)利用直到型循环结构,写出程序.详解:(1)因为是求30个数的和,故循环体应执行30次,其中是计数变量,因此判断框内的条件就是限制计数变量的,故应为,算法中的变量实质是表示参与求和的各个数,由于它也是变化的,且满足第个数比其前一个数大,第个数比其前一个数大,故应有,故①处应填;②处应填.(2)根据框图,写出算法如下:点睛:本题主要考查了直到型的循环结构的算法框图,解答中循环体的循环次数=(循环终值-初值)+步长+1,确定循环的次数,其中循环次数、终值、初值、步长中,能知道其中的三个可求解另一个,对于循环结构的程序框图,判断框内的内容容易出错,做题时要注意,同时注意循环点所在的位置.25.(1)37;(2)(ⅰ)35;(ⅱ)1760. 【分析】 (1)用每组数据中间点值乘以频率相加即得;(2)(i )年龄在[50,70)的人有6人,其中年龄在[50,60)的有4人,6人分别编号后用列举法写出任选2人的所有基本事件,同时得出至少有1人年龄不低于60岁的基本事件,计数后可得概率;(ⅱ)求出18岁以上的居民所占频率即可得.【详解】解:(1)平均数()150.15250.2350.3450.15550.165750.0537x =⨯+⨯+⨯+⨯+⨯++⨯=.(2)(ⅰ)样本中,年龄在[50,70)的人共有40×0.15=6人,其中年龄在[50,60)的有4人,设为a ,b ,c ,d ,年龄在[60,70)的有2人,设为x ,y .则从中任选2人共有如下15个基本事件:(a ,b ),(a ,c ),(a ,d ),(a ,x ),(a ,y ),(b ,c ),(b ,d ),(b ,x ),(b ,y ),(c ,d ),(c ,x ),(c ,y ),(d ,x ),(d ,y ),(x ,y ).至少有1人年龄不低于60岁的共有如下9个基本事件:(a ,x ),(a ,y ),(b ,x ),(b ,y ),(c ,x ),(c ,y ),(d ,x ),(d ,y ),(x ,y ).记“这2人中至少有1人年龄不低于60岁”为事件A ,故所求概率()93155P A ==. (ⅱ)样本中年龄在18岁以上的居民所占频率为1-(18-10)×0.015=0.88, 故可以估计,该小区年龄不超过80岁的成年人人数约为2000×0.88=1760.【点睛】本题考查频率分布直方图,考查古典概型,考查频率分布直方图的应用,考查了学生的数据处理能力,运算求解能力,属于中档题.26.(1)=83.2x 甲,=84x 乙;(2)22=26.36=13.2S S 甲乙,,=5.13S 甲,=3.63S 乙;(3)乙班的总体学习情况比甲班好【解析】试题分析:每组样本数据有10个,求样本的平均数利用平均数公式,10个数的平均数等于这10个数的和除以10;比较平均分的大小可以看出两个班学生平均水平的高低,求样本的方差只需使用方差公式,求这10个数与平均数的差的平方方和再除以10;比较两组数据方差的大小就可得出两组数据的标准差的大小,标准差较小者成绩较稳定 . 试题 (1)x 甲=110×(82+84+85+89+79+80+91+89+79+74)=83. 2, x 乙=110×(90+76+86+81+84+87+86+82+85+83)=84.(2)2S 甲=110×[(82-83. 2)2+(84-83. 2)2+(85-83. 2)2+(89-83. 2)2+(79-83. 2)2+(80-83. 2)2+(91-83. 2)2+(89-83. 2)2+(79-83. 2)2+(74-83. 2)2]=26. 36, 2S 甲=110[(90-84)2+(76-84)2+(86-84)2+(81-84)2+(84-84)2+(87-84)2+(86-84)2+(82-84)2+(85-84)2+(83-84)2]=13. 2,则s 甲,s 乙≈3. 63.(3)由于x x <甲乙,则甲班比乙班平均水平低.由于S S >甲乙,则甲班没有乙班稳定. 所以乙班的总体学习情况比甲班好【点睛】怎样求样本的平均数,n 个数的平均数等于这n 个数的和除以n ;比较平均数的大小可以看出两个样本平均水平的高低,怎样求样本的方差,就是求这n 个数与平均数的差的平方方和再除以n ;比较两组数据方差的大小就可得出两组数据的标准差的大小,标准差较小者成绩较稳定 .。
【苏科版】高中数学必修三期末模拟试题含答案(1)
一、选择题1.若数列{a n }满足a 1=1,a 2=1,a n +2=a n +a n +1,则称数列{a n }为斐波那契数列,斐波那契螺旋线是根据斐波那契数列画出来的螺旋曲线,自然界中存在许多斐波那契螺旋线的图案,是自然界最完美的经典黄金比例.作图规则是在以斐波那契数为边的正方形拼成的长方形中画一个圆心角为90°的扇形,连起来的弧线就是斐波那契螺旋线,如图所示的7个正方形的边长分别为a 1,a 2,…,a 7,在长方形ABCD 内任取一点,则该点不在任何一个扇形内的概率为( )A .1103156π-B .14π-C .17126π-D .681237π-2.太极图是以黑白两个鱼形纹组成的图案,它形象化地表达了阴阳轮转、相反相成是万物生成变化根源的哲理,展现了一种相互转化,相对统一的形式美.按照太极图的构图方法,在平面直角坐标系中,圆O 被函数2sin8y x π=的图象分割为两个对称的鱼形图案(如图),其中阴影部分小圆的周长均为4π,现从大圆内随机取一点,则此点取自阴影部分的概率为( )A .136B .118C .116D .183.从一口袋中有放回地每次摸出1个球,摸出一个白球的概率为0.4,摸出一个黑球的概率为0.5,若摸球3次,则恰好有2次摸出白球的概率为 A .0.24B .0.26C .0.288D .0.2924.关于圆周率π,数学发展史上出现过许多有创意的求法,如著名的普丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计π的值:先请120名同学每人随机写下一个x ,y 都小于1的正实数对()x y ,,再统计其中x ,y 能与1构成钝角三角形三边的数对()x y ,的个数m ,最后根据统计个数m 估计π的值.如果统计结果是34m =,那么可以估计π的值为( )A.237B.4715C.1715D.53175.执行如图所示的程序框图输出的结果是()A.8B.6C.5D.36.执行如图所示的程序框图,若输入的a,b的值分别为1,1,则输出的S是()A.25 B.18 C.11 D.37.执行如图所示的程序框图,若输入的,a b的值分别为1,2,则输出的S是()A.70 B.29 C.12 D.58.执行如图所示的程序框图,若输出的结果为63,则判断框中应填入的条件为()i≤A.4i≤B.5i≤C.6i≤D.79.某林场有树苗30000棵,其中松树苗4000棵.为调查树苗的生长情况,采用分层抽样的方法抽取一个容量为150的样本,则样本中松树苗的数量为()A.30 B.25 C.20 D.1510.在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没有发生在规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是A.甲地:总体均值为3,中位数为4 B.乙地:总体均值为1,总体方差大于0 C.丙地:中位数为2,众数为3 D.丁地:总体均值为2,总体方差为3 11.某产品的广告费用x与销售额y的统计数据如下表:广告费用x(万元)2345销售额y(万元)25374454根据上表可得回归方程ˆˆˆybx a =+中的ˆb 为9.4,据此模型预报广告费用为6万元时销售额为( ) A .61.5万元B .62.5万元C .63.5万元D .65.0万元12.设有一个直线回归方程为2 1.5y x =-,则变量x 增加一个单位时( ) A .y 平均增加1.5个单位 B .y 平均增加2个单位 C .y 平均减少1.5个单位D .y 平均减少2个单位二、填空题13.现有五个分别标有A 、B 、C 、D 、E 的小球,随机取出三个小球放进三个盒子,每个盒子只能放一个小球,则D 、E 至少有一个在盒子中的概率为______.14.某种饮料每箱装6听,若其中有2听不合格,质检员从中随机抽出2听,则含有不合格品的概率为________.15.现采用随机模拟的方法估计某运动员射击4次,至少击中3次的概率:先由计算器给出0到9之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7, 8,9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了 20组随机数:7527 0293 7140 9857 0347 4373 8636 6947 1417 4698 0371 6233 2616 8045 6011 3661 9597 7424 7610 4281根据以上数据估计该射击运动员射击4次至少击中3次的概率为__________. 16.执行如图所示的程序框图,输出的值为__________.17.运行下边的流程图,输出的结果是__________.18.如图,若输入的x 值为,则相应输出的值为____.19.对两个变量y 和x 进行回归分析,得到一组样本数据()11,x y ,()22,x y ,…,(),n n x y ,则下列说法中正确的序号是______.①由样本数据得到的回归直线方程y bx a =+必过样本点的中心 ②残差平方和越小的模型,拟合的效果越好③用相关指数2R 来刻画回归效果,2R 越小说明拟合效果越好④若变量y 和x 之间的相关系数为0.946r =-,则变量y 和x 之间线性相关性强 20.调查了某地若干户家庭的年收入x (单位:万元)和年饮食支出y (单位:万元),调查显示年收入x 与年饮食支出y 具有线性相关关系,并由调查数据得到y 对x 的回归直线方程:^y =0.245x+0.321.由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加_______万元.三、解答题21.某地区为了解群众上下班共享单车使用情况,根据年龄按分层抽样的方式调查了该地区50名群众,他们的年龄频数及使用共享单车人数分布如下表: 年龄段 20~29 30~39 40~49 50~60 频数1218155经常使用共享单车 6 12 5 1(1)由以上统计数据完成下面的22⨯列联表,并判断是否有95%的把握认为以40岁为分界点对是否经常使用共享单车有差异?年龄低于40岁 年龄不低于40岁 总计经常使用共享单车 不经常使用共享单车 总计附:()()()()()22n ad bc K a b c d a c b d -=++++,n a b c d =+++.()20P K k ≥ 0.25 0.15 0.10 0.050 0.025 0.010 0k1.3232.0722.7063.8415.0246.635(2)若采用分层抽样的方式从年龄低于40岁且经常使用共享单车的群众中选出6人,再从这6人中随机抽取2人,求这2人中恰好有1人年龄在30~39岁的概率. 22.已知集合{(,)|[0,2],[1,1]}M x y x y =∈∈-. (1)若,x y Z ∈,求0x y +≥的概率; (2)若,x y R ∈,求0x y +≥的概率.23.如图,在边长为4的正方形ABCD 的边上有一点P ,沿着折线BCDA 由点B (起点)向点A (终点)运动.设点P 运动的路程为x ,APB △的面积为y ,求y 与x 之间的函数关系式,并画出程序框图.24.试画出求4+11414?4+++(共10个4)的值的程序框图.25.某企业投资两个新型项目,投资新型项目A 的投资额m (单位:十万元)与纯利润n (单位:万元)的关系式为 1.70.5n m =-,投资新型项目B 的投资额x (单位:十万元)与纯利润y (单位:万元)的散点图如图所示.(1)求y 关于x 的线性回归方程;(2)根据(1)中的回归方程,若A ,B 两个项目都投资60万元,试预测哪个项目的收益更好.附:回归直线y bx a =+的斜率和截距的最小二乘估计分别为1221ni ii nii x y nx yb xnx==-=-∑∑,a y bx =-.26.庐江县统计局统计了该县2019年10户家庭的年收入和年饮食支出的统计资料如下表:年收入x (万元) 24466677810年饮食支出y (万元)1.0 1.5 1.62.0 1.8 1.9 1.8 2.0 2.1 2.3(1)由散点图可知y 与x 是线性相关的,求线性回归方程; (2)若某家庭年收入为9万元,预测其年饮食支出. 附:回归直线的斜率和截距的最小二乘估计公式分别为:1122211()ˆˆ).ˆ(,()nniii ii i nni i i i x x y y x y nxybay bx x x x nx ====---===---∑∑∑∑(参考数据:1010211115,406i ii i i x yx ====∑∑)【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】由题意求得数列{}n a 的前8项,求得长方形ABCD 的面积,再求出6个扇形的面积和,由测度比是面积比得答案. 【详解】由题意可得,数列{}n a 的前8项依次为:1,1,2,3,5,8,13,21.∴长方形ABCD 的面积为1321273⨯=.6个扇形的面积之和为222222(1235813)684ππ+++++=.∴所求概率681273P π=-. 故选:D . 【点睛】本题考查几何概型概率的求法,考查扇形面积公式的应用,是基础题.2.D解析:D 【分析】根据几何概型的概率公式,求出大圆的面积和小圆的面积,计算面积比即可. 【详解】由已知,可得大圆的直径为y =3sin 8πx 的周期,由T 2168ππ==,可知大圆半径为8, 则面积为S =64π,一个小圆的周长242l r r π==∴= 故小圆的面积S ′=π•22=4π, 在大圆内随机取一点,此点取自阴影部分的概率为: P 2'81648S S ππ===, 故选:D . 【点睛】本题考查了几何概型的概率计算问题,关键是明确测度比为面积比,是基础题.3.C解析:C 【分析】首先分析可能的情况:(白,非白,白)、(白,白,非白)、(非白,白,白),然后计算相应概率. 【详解】因为摸一次球,是白球的概率是0.4,不是白球的概率是0.6, 所以0.40.60.40.40.40.60.60.40.40.288P =⨯⨯+⨯⨯+⨯⨯=, 故选C. 【点睛】本题考查有放回问题的概率计算,难度一般.4.B解析:B 【分析】由试验结果知120对0~1之间的均匀随机数,x y ,满足0101x y ≤<⎧⎨≤<⎩,面积为1,两个数能与1构成钝角三角形三边的数对(,)x y ,满足221x y +<且0101x y ≤<⎧⎨≤<⎩, 1x y +>,面积为142π-,由几何概型概率计算公式,得出所取的点在圆内的概率是圆的面积比正方形的面积,二者相等即可估计π的值. 【详解】由题意,120名同学随机写下的实数对()x y ,落在由0101x y <<⎧⎨<<⎩的正方形内,其面积为1.两个数能与1构成钝角三角形应满足2211x y x y +>⎧⎨+<⎩且0101x y <<⎧⎨<<⎩, 此为一弓形区域,其面积为142π-.由题意134421120π-=,解得4715π=,故选B . 【点睛】本题考查了随机模拟法求圆周率的问题,也考查了几何概率的应用问题,是综合题.5.A解析:A 【分析】根据程序框图循环结构运算,依次代入求解即可. 【详解】根据程序框图和循环结构算法原理,计算过程如下:1,1,x y z x y ===+第一次循环2,1,2z x y === 第二次循环3,2,3z x y === 第三次循环5,3,5z x y ===第四次循环8z =,退出循环输一次8z =. 所以选A 【点睛】本题考查了程序框图的基本结构和运算,主要是掌握循环结构在何时退出循环结构,属于基础题.6.C解析:C 【分析】该程序的功能是利用循环结构计算并输出变量S 的值,模拟程序的运行过程,分析循环中各变量的变化情况,即可得到答案. 【详解】模拟执行程序框图,可得:1,1,1a b n ===, 第1次循环,可得3,1,3,2S a b n ====; 第2次循环,可得5,3,5,3S a b n ====; 第3次循环,可得11,5,11,4S a b n ====, 满足判断条件,输出11S =. 故选:C. 【点睛】本题主要考查了循环结构的程序框图的计算与输出,其中解答中模拟程序框图的运行过程,逐次计算,结合判断条件求解是解答的关键,意在考查运算与求解能力,属于基础题.7.B解析:B 【分析】此程序框图是循环结构图,模拟程序逐层判断,得出结果. 【详解】 解: 模拟程序:,,a b n 的初始值分别为1,2,4,第1次循环:s 1225=+⨯=,,,a 2b 5n 3===,不满足2n <; 第2次循环:s 22512=+⨯=,,,a 5b 12n 2===,不满足2n <; 第3次循环:s 521229=+⨯=,,,a 12b 29n 1===,满足2n <, 故输出29S =. 故选B.【点睛】本题考查了程序框图的循环结构,解题的关键是要读懂循环结构的流程图,根据判断框内的条件逐步解题.8.B解析:B 【解析】 【分析】模拟执行程序框图,依次写出每次循环得到的,i S 的值,当输出的63S =时,退出循环,对应的条件为5i ≤,从而得到结果. 【详解】当=11S i =,时,不满足输出条件,故进行循环,执行循环体; 当1123,2S i =+==,不满足输出条件,故进行循环,执行循环体; 当2327,3S i =+==,不满足输出条件,故进行循环,执行循环体; 当37215,4S i =+==,不满足输出条件,故进行循环,执行循环体; 当415231,5S i =+==,不满足输出条件,故进行循环,执行循环体; 当313263,6S i =+==,满足输出条件,故判断框中应填入的条件为5i ≤, 故选B. 【点睛】该题考查的是有关程序框图的问题,根据题意写出判断框中需要填入的条件,属于简单题目.9.C解析:C 【详解】 抽取比例为150130000200=, 1400020200∴⨯=, 抽取数量为20,故选C.10.D解析:D 【详解】试题分析:由于甲地总体均值为,中位数为,即中间两个数(第天)人数的平均数为,因此后面的人数可以大于,故甲地不符合.乙地中总体均值为,因此这天的感染人数总数为,又由于方差大于,故这天中不可能每天都是,可以有一天大于,故乙地不符合,丙地中中位数为,众数为,出现的最多,并且可以出现,故丙地不符合,故丁地符合.考点:众数、中位数、平均数、方差11.C解析:C 【分析】先求出所给数据的平均数,得到样本中心点,根据回归直线经过样本中心点,求出ˆa,得到线性回归方程,把6x =代入即可求出答案. 【详解】 由题意知4235 3.54x +++==,44253754404y +++==, 则40ˆˆ9.4 3.57.1ay bx =-=-⨯=, 所以回归方程为9.4.1ˆ7yx =+, 则广告费用为6万元时销售额为9.467.163.5⨯+=, 故答案为C. 【点睛】本题考查了线性回归方程的求法与应用,属于基础题.12.C解析:C 【解析】 【分析】细查题意,根据回归直线方程中x 的系数是 1.5-,得到变量x 增加一个单位时,函数值要平均增加 1.5-个单位,结合回归方程的知识,根据增加和减少的关系,即可得出本题的结论. 【详解】因为回归直线方程是2 1.5ˆyx =-, 当变量x 增加一个单位时,函数值平均增加 1.5-个单位, 即减少1.5个单位,故选C. 【点睛】本题是一道关于回归方程的题目,掌握回归方程的分析时解题的关键,属于简单题目.二、填空题13.【分析】计算出都不在盒子中的概率利用对立事件的概率公式可求得结果【详解】记事件从五个分别标有的小球随机取出三个小球放进三个盒子则至少有一个在盒子中则事件从五个分别标有的小球随机取出三个小球放进三个盒 解析:910【分析】计算出D 、E 都不在盒子中的概率,利用对立事件的概率公式可求得结果. 【详解】记事件:M 从五个分别标有A 、B 、C 、D 、E 的小球,随机取出三个小球放进三个盒子,则D 、E 至少有一个在盒子中,则事件:M 从五个分别标有A 、B 、C 、D 、E 的小球,随机取出三个小球放进三个盒子,则D 、E 都不在盒子中,所有的基本事件有:ABC 、ABD 、ABE 、ACD 、ACE 、ADE 、BCD 、BCE 、BDE 、CDE ,共10种,事件M 所包含的基本事件为:ABC ,共1种, 故()()19111010P M P M =-=-=. 故答案为:910. 【点睛】方法点睛:求解古典概型概率的方法如下: (1)列举法; (2)列表法; (3)数状图法; (4)排列组合数的应用.14.【分析】含有不合格品分为两类:一件不合格和两件不合格分别利用组合公式即可得到答案【详解】质检员从中随机抽出2听共有种可能而其中含有不合格品共有种可能于是概率为:【点睛】本题主要考查超几何分布的相关计解析:35【分析】含有不合格品分为两类:一件不合格和两件不合格,分别利用组合公式即可得到答案. 【详解】质检员从中随机抽出2听共有2615C =种可能,而其中含有不合格品共有1122429C C C +=种可能,于是概率为:93155=. 【点睛】本题主要考查超几何分布的相关计算,难度不大.15.【分析】根据数据统计击中目标的次数再用古典概型概率公式求解【详解】由数据得射击4次至少击中3次的次数有15所以射击4次至少击中3次的概率为故答案为:【点睛】本题考查古典概型概率公式考查基本分析求解能解析:34【分析】根据数据统计击中目标的次数,再用古典概型概率公式求解. 【详解】由数据得射击4次至少击中3次的次数有15, 所以射击4次至少击中3次的概率为153204=. 故答案为:34【点睛】本题考查古典概型概率公式,考查基本分析求解能力,属基础题.16.【分析】模拟执行程序框图只要按照程序框图规定的运算方法逐次计算直到达到输出条件即可得到输出的的值【详解】输入第一次循环;第二次循环;第三次循环;第四次循环;第五次循环;第六次循环退出循环输出故答案为 解析:42【分析】模拟执行程序框图,只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可得到输出的S 的值. 【详解】输入0,2,1S a i ===, 第一次循环,2,4,2S a i ===; 第二次循环,6,6,3S a i ===; 第三次循环,12,8,4S a i ===; 第四次循环,20,10,5S a i ===; 第五次循环,30,12,6S a i ===; 第六次循环,42,14,7S a i ===, 退出循环,输出42S =,故答案为42. 【点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.17.94【解析】不成立执行不成立执行成立所以输出解析:94 【解析】3,3311050a a =∴=⨯+=>不成立,执行31013150a =⨯+=>,不成立, 执行33119450a =⨯+=>,成立, 所以输出94.a =18.【解析】试题分析:根据题意得出执行程序框图后输出的是分段函数y=由此求出输入x=时输出y的值解:根据题意执行程序框图后输出的是分段函数y=当输入x=时sin>cos所以输出的y=cos=故答案为考点解析:.【解析】试题分析:根据题意得出执行程序框图后输出的是分段函数y=,由此求出输入x=时输出y的值.解:根据题意,执行程序框图后输出的是分段函数y=,当输入x=时,sin>cos,所以输出的y=cos=.故答案为.考点:程序框图.19.①②④【分析】根据两个变量线性相关的概念及性质逐项判定即可求解【详解】由题意根据回归直线方程的特征可得线性回归直线方程一定过样本中心所以①正确;根据残差的概念可得残差平方和越小的模型拟合效果越好所以解析:①②④【分析】根据两个变量线性相关的概念及性质,逐项判定,即可求解.【详解】由题意,根据回归直线方程的特征,可得线性回归直线方程一定过样本中心,所以①正确;根据残差的概念,可得残差平方和越小的模型,拟合效果越好,所以②正确;根据相关指数的概念,可得2R越大说明拟合效果越好,所以③不正确;r=-,则变量y和x之间负相关,且线性相关性若变量y和x之间的相关系数为0.946强,所以④正确;故答案为:①②④.【点睛】本题主要考查了两个变量的线性相关性的概念与判定,其中解答中熟记线性相关的基本概念和结论是解答的关键,属于基础题.20.245【解析】当变为时=0245(x+1)+0321=0245x+0321+0245而0245x+0321+0245-(0245x+0321)=0245因此家庭年收入每增加1万元年饮食支出平均增加0解析:245 【解析】当x 变为1x +时,y ∧=0.245(x+1)+0.321=0.245x+0.321+0.245,而0.245x+0.321+0.245-(0.245x+0.321)=0.245.因此家庭年收入每增加1万元,年饮食支出平均增加0.245万元,本题填写0.245.三、解答题21.(1)见解析;(2)518【分析】(1)根据题意填写列联表,由表中数据计算观测值,对照临界值得出结论; (2)用分层抽样法选出6人,利用列举法求出基本事件数,再计算所求的概率值. 【详解】(1) 根据题意填写2×2列联表如下:222()50(1814126) 4.327 3.841()()()()30202426n ad bc K a b c d a c b d -⨯⨯-⨯===>++++⨯⨯⨯所以有95%的把握认为以40岁为分界点对是否经常使用共享单车有差异.(2) 用分层抽样法选出6人,其中20~29岁的有2人,记为A 、B ,30~39岁的有4人,记为c 、d 、e 、f,再从这6人中随机抽取2人,基本事件为: AB 、Ac 、Ad 、Ae 、Af 、Be 、Bd 、Be 、Bf 、cd 、ce 、cf 、de 、df 、ef 共15种不同取法;则抽取的这2人中恰好有1人年龄在30~39岁的基本事件为:Ac 、Ad 、Ae 、Af 、Bc 、Bd 、Be 、Bf 共8种不同取法; 故所求的概率为815P =. 【点睛】本题考查了学生运用表格求相应统计数据的能力,会运用独立性检验处理实际问题中的关联性问题,考查了分层抽样结果,以及求简单随机事件的概率,可以列举法处理,属于中档题. 22.(1)89 (2)78【解析】试题分析:(1)因为x ,y ∈Z ,且x ∈[0,2],y ∈[-1,1],基本事件是有限的,所以为古典概型,这样求得总的基本事件的个数,再求得满足x ,y ∈Z ,x +y≥0的基本事件的个数,然后求比值即为所求的概率.(2)因为x ,y ∈R ,且围成面积,则为几何概型中的面积类型,先求x ,y ∈Z ,求x+y≥0表示的区域的面积,然后求比值即为所求的概率. 试题(1)设"x+y 0,,"x y Z ≥∈为事件,,A x y Z ∈,[]0,2x ∈,即[]0,1,2;1,1x y =∈-,即1,0,1y =-. 则基本事件有:()()()()()()()()()0,1,0,0,0,1,1,1,1,0,1,1,2,1,2,0,2,1---共9个,其中满足的基本事件有8个,所以()89p A =.故,,0x y Z x y ∈+≥的概率为89. (2)设"0,,"x y x y R +≥∈为事件B ,因为][0,2,1,1x y ⎡⎤∈∈-⎣⎦,则基本事件为如图四边形ABCD 区域,事件B 包括的区域为其中的阴影部分.所以()11-1122-11722===228ABCD ABCDABCD S S p B S S ⨯⨯⨯⨯⨯=⨯四边形阴影四边形四边形,故",0"x y R x y ∈+≥,的概率为78. 点睛:(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解. (2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域.(3)几何概型有两个特点:一是无限性,二是等可能性.基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用“比例解法”求解几何概型的概率.23.()()()()204848212812x x y x x x ⎧≤≤⎪=≤≤⎨⎪-≤≤⎩;程序框图见解析;【解析】试题分析:根据题意可得到面积函数是一个分段函数,写出函数后,利用条件分支结构写出程序框图即可. 试题由题意可得y=.程序框图如图:点睛:本题考查分段函数的算法写法,属于中档题,注意当分段函数为两段时,需要一个分支结构,如果分段函数三段时,需要两个分支结构才能完成,特别在写算法程序时,注意分支结构的连接,是与否的处理一定要细心.24.见解析【解析】试题分析: 根据已知的函数解析式的规律,可利用循环结构得算法及流程图.用计数器i来控制循环次数.14AA=+求解析式.试题解析;程序框图如下图所示.【dj 】本题考查流程图的概念,解答本题关键是掌握住本问题的解决方法,根据问题的解决方案制订出符合要求的框图,熟练掌握框图语言,能正确用框图把算法表示出来,属于基本知识的考查.25.(1) 1.60.2y x=+;(2)B项目的收益更好.【分析】(1)先利用平均数公式求出样本中心点的坐标,再利用所给公式求出b的值,最后将样本中心点的坐标代入回归方程求得a的值即可;(2)分别利用所给关系式以及所求回归方程,求出A ,B 两个项目投资60万元,该企业所得纯利润的估计值,便可预测哪个项目的收益更好. 【详解】(1)由散点图可知,x 取1,2,3,4,5时,y 的值分别为2,3,5,7,8, 所以1234535x ++++==,2357855y ++++==,22222212233547585351.61234553b ⨯+⨯+⨯+⨯+⨯-⨯⨯==++++-⨯, 则5 1.630.2a =-⨯=,故y 关于x 的线性回归方程为 1.60.2y x =+.(2)因为投资新型项目A 的投资额m (单位:十万元)与纯利润n (单位:万元)的关系式为 1.70.5n m =-,所以若A 项目投资60万元,则该企业所得纯利润的估计值为1.760.59.7⨯-=万元; 因为y 关于x 的线性回归方程为 1.60.2y x =+,所以若B 项目投资60万元,则该企业所得纯利润的估计值为1.660.29.8⨯+=万元. 因为9.89.7>,所以可预测B 项目的收益更好. 【点睛】方法点睛:求回归直线方程的步骤:①依据样本数据确定两个变量具有线性相关关系;②计算211,,,nniiii i x y x x y==∑∑的值;③计算回归系数,a b ;④写出回归直线方程为ˆy bx a=+; 回归直线过样本点中心(),x y 是一条重要性质,利用线性回归方程可以估计总体,帮助我们分析两个变量的变化趋势.26.(1)ˆ0.150.9yx =+;(2)2.25万元. 【分析】(1)由已知数据求出x 和y ,根据所给公式求出ˆb与ˆa 的值,即可得y 关于x 的线性回归方程;(2)在(1)中求得的线性回归方程中,取9x =求得y 值即可. 【详解】解:(1)依题意可计算得, 1(24466677810)610x =+++++++++=, 1(1.0 1.5 1.6 2.0 1.8 1.9 1.8 2.0 2.1 2.3) 1.810y =+++++++++=. 236x =,10.8x y ⋅=,又101115i ii x y==∑,1021406i i x ==∑,1022110151ˆ0.1100i i i iix y x ybxx ==∴=≈⋅--∑∑,ˆˆ0.9ay bx =-=,ˆ0.150.9y x ∴=+, ∴所求的线性回归方程为ˆ0.150.9yx =+. (2)当9x =时,ˆ0.1590.9 2.25y=⨯+=(万元), ∴估计大多数年收入9万元的家庭每年饮食支出约为2.25万元.【点睛】本题考查线性回归方程的求法,考查计算能力,是基础题.。
【浙教版】高中数学必修三期末模拟试题含答案
一、选择题1.已知sin y x =,在区间[],ππ-上任取一个实数x ,则y ≥12-的概率为( ) A .712B .23C .34 D .562.我国魏晋时期的数学家刘徽,创立了用圆内接正多边形面积无限逼近圆面积的方法,称为“割圆术”,为圆周率的研究提供了科学的方法.在半径为1的圆内任取一点,则该点取自圆内接正十二边形外的概率为 A .3B .31-C .3πD .31π-3.赵爽是三国时期吴国的数学家,他创制了一幅“勾股圆方图”,也称“赵爽弦图”,如图,若在大正方形内随机取-点,这一点落在小正方形内的概率为15,则勾与股的比为( )A .13B .12C .33D .224.在二项式42nx x +的展开式,前三项的系数成等差数列,把展开式中所有的项重新排成一列,有理项都互不相邻的概率为( )A .16B .14C .512D .135.如图所示程序框图是德国数学家科拉茨1937年提出的一个著名猜想.根据猜想,不断重复程序运算,经过有限步后,一定可以得到1.对于科拉茨猜想,目前谁也不能证明,也不能否定.按照这种运算,若输出k 的值为9,则输入整数N 的值可以为( )A.3 B.5 C.6 D.10 6.阅读如图所示的程序框图,当输入5n=时,输出的S=()A.6 B.4615C.7 D.47157.执行如图所示的程序框图,则输出的n值是()A .5B .7C .9D .118.执行如下图的程序框图,那么输出S 的值是( )A .2B .1C .12D .-19.演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是 A .中位数 B .平均数 C .方差D .极差10.①45化为二进制数为(2)101101;②一个总体含有1000个个体(编号为0000,0001,…,0999),采用系统抽样从中抽取一个容量为50的样本,若第一个抽取的编号为0008,则第六个编号为0128; ③已知a ,b ,c 为ABC ∆三个内角A ,B ,C 的对边,其中3a =,4c =,6A π=,则这样的三角形有两个解.以上说法正确的个数是( ) A .0B .1C .2D .311.已知某8个数的平均数为3,方差为2,现加入一个新数据3,此时这9个数的平均数为x ,方差为2s ,则( ) A .3x =,22s < B .3x =,22s > C .3x >,22s < D .3x >,22s >12.根据如下样本数据 x 3 4 5 6 7 8 y﹣4.0﹣2.50.5﹣0.52.03.0得到的回归方程为y bx a =+,则( ) A .a >0,b <0B .a >0,b >0C .a <0,b <0D .a <0,b >0二、填空题13.将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是________.14.现采用随机模拟的方法估计某运动员射击4次,至少击中3次的概率:先由计算器给出0到9之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7, 8,9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了 20组随机数:7527 0293 7140 9857 0347 4373 8636 6947 1417 4698 0371 6233 2616 8045 6011 3661 9597 7424 7610 4281根据以上数据估计该射击运动员射击4次至少击中3次的概率为__________.15.在古代三国时期吴国的数学家赵爽创制了一幅“赵爽弦图”,由四个全等的直角三角形围成一个大正方形,中间空出一个小正方形(如图阴影部分).若直角三角形中较小的锐角为a .现向大正方形区城内随机投掷一枚飞镖,要使飞镖落在小正方形内的概率为14,则cos α=_____________.16.某程序框图如图所示,则该程序运行后输出的S 的值为________.17.执行如图所示的程序框图,若输入n的值为8,则输出的s的值为_____.18.一个算法的程序框图如下图所示,若该程序输出的结果为,则判断框中应填入的条件是____.19.已知一组数据为2,3,4,5,6,则这组数据的方差为______.20.总体由编号为01,02, ,29,30的30个个体组成.利用下面的随机数表选取样本,选取方法是从随机数表第2行的第6列数字开始由左到右依次选取两个数字,则选出来的第3个个体的编号为__________.三、解答题21.从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:(1)求频率分布直方图中的a,b的值;(2)从阅读时间在[14,18)的学生中任选2人,求恰好有1人阅读时间在[14,16),另1人阅读时间在[16,18)的概率.22.某校为研究学生语言学科的学习情况,现对高二200名学生英语和语文某次考试成绩进行抽样分析.将200名学生编号为001,002,…,200,采用系统抽样的方法等距抽取10名学生,将10名学生的两科成绩(单位:分)绘成折线图如下:(1)若第二段抽取的学生编号是026,写出第六段抽取的学生编号;(2)在这两科成绩差低于20分的学生中随机抽取2人进行访谈,求2人成绩均是语文成绩高于英语成绩的概率;(3)根据折线图,比较该校高二年级学生的语文和英语两科成绩,写出至少两条统计结论. 23.如图,已知单位圆221x y +=与x 轴正半轴交于点P ,当圆上一动点Q 从P 出发沿逆时针旋转一周回到P 点后停止运动.设OQ 扫过的扇形对应的圆心角为xrad ,当02x π<<时,设圆心O 到直线PQ 的距离为y ,y 与x 的函数关系式()y f x =是如图所示的程序框图中的①②两个关系式.(1)写出程序框图中①②处的函数关系式; (2)若输出的y 值为12,求点Q 的坐标. 24.某商场第一年销售计算机5 000台,如果平均每年销售量比上一年增加10%,那么从第一年起,大约几年可使总销量达到40 000台?画出解决此问题的程序框图,并写出程序. 25.为提高某作物产量,种植基地对单位面积播种数与每棵作物的产量之间的关系进行了研究,收集了10块试验田的数据,得到下表:试验田编号 1 2 3 45 6 7 8 9 10 (棵2/m ) 3.5 4 5.1 5.7 6.1 6.9 7.5 8 9.1 11.2 (斤/棵)0.330.320.30.280.270.250.250.240.220.15技术人员选择模型21y a bx =+作为y 与x 的回归方程类型,令2i i u x =,1ii v y =. (1)由最小二乘法得到线性回归方程v u βα=+,求y 关于x 的回归方程; (2)利用(1)得出的结果,计算当单位面积播种数x 为何值时,单位面积的总产量w xy =的预报值最大?(计算结果精确到0.01)附:对于一组数据()11,u v ,()22,u v …(),n n u v 其回归直线v u βα=+的斜率和截距的最小二乘法估计分别为1221ni i i nii u v nu vunuβ==-⋅=-∑∑,v u αβ=-.参考数据:1500nii u==∑,140ni i v ==∑,12321n i i i u v ==∑,2135642ni i u ==∑,30 5.48≈.26.某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人.第一组工人用第一种生产方式,第二组工人用第二种生产方式。
【人教版】高中数学必修三期末模拟试卷带答案
一、选择题1.2019年5月22日具有“国家战略”意义的“长三角一体化”会议在芜潮举行,长三角城市群包括,上海市以及江苏省、浙江省、安徽省三省部分城市,简称“三省一市".现有4名高三学生准备高考后到上海市、江苏省、浙江省、安徽省四个地方旅游,假设每名同学均从这四个地方中任意选取一个去旅游则恰有一个地方未被选中的概率为( ) A .2764B .916C .81256D .7162.如图,在圆心角为2π,半径为1的扇形中,在弦AB 上任取一点,则38AOC π∠≤的概率为( )A .14B .222C .34D .223.已知0.5log 5a =、3log 2b =、0.32c =、212d ⎛⎫= ⎪⎝⎭,从这四个数中任取一个数m ,使函数()32123x mx x f x =+++有极值点的概率为( ) A .14B .12C .34D .14.现有10个数,它们能构成一个以1为首项,3-为公比的等比数列,若从这个10个数中随机抽取一个数,则它小于8的概率是( ) A .710B .35C .12D .255.给出一个算法的程序框图如图所示,该程序框图的功能是( )A .求出,,a b c 三数中的最小数B .求出,,a b c 三数中的最大数C .将,,a b c 从小到大排列D .将,,a b c 从大到小排列6.在如图所示的程序框图中,若函数12log (),?0()2,?0x x x f x x -<⎧⎪=⎨⎪≥⎩,则输出的结果是( )A .16B .8C .162D .827.鸡兔同笼,是中国古代著名的趣味题之一.《孙子算经》中就有这样的记载:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各有几何?设计如右图的算法来解决这个问题,则判断框中应填入的是( )A .94m >B .94m =C .35m =D .35m ≤8.读下面的程序:上面的程序在执行时如果输入6,那么输出的结果为() A .6B .720C .120D .50409.从两个班级各随机抽取5名学生测量身高(单位:cm ),甲班的数据为169,162,150,160,159,乙班的数据为180,160,150,150,165.据此估计甲、乙两班学生的平均身高x 甲,x 乙及方差2s 甲,2s 乙的关系为( )A .x 甲>x 乙,2s 甲>2s 乙B .x 甲>x 乙,2s 甲<2s 乙C .x 甲<x 乙,2s 甲<2s 乙D .x 甲<x 乙,2s 甲>2s 乙10.下列说法正确的是( )①设某大学的女生体重(kg)y 与身高(cm)x 具有线性相关关系,根据一组样本数据(,)(1,2,3,,)i i x y i n =,用最小二乘法建立的线性回归方程为0.8585.71y x =- ,则若该大学某女生身高增加1cm ,则其体重约增加0.85kg ;②关于x 的方程210(2)x mx m -+=>的两根可分别作为椭圆和双曲线的离心率; ③过定圆C 上一定点A 作圆的动弦AB ,O 为原点,若1()2OP OA OB =+,则动点P 的轨迹为椭圆;④已知F 是椭圆22143x y +=的左焦点,设动点P 在椭圆上,若直线FP 的斜率大于3,则直线OP (O 为原点)的斜率的取值范围是3333(,)(,)282-∞-.A .①②③B .①③④C .①②④D .②③④11.某产品的广告费用x 与销售额y 的统计数据如下表: 广告费用(万元)4235销售额(万元)49263954根据上表可得回归方程ˆˆˆybx a =+中的ˆb 为9.4,据此模型预报广告费用为6万元时销售额为A .63.6万元B .65.5万元C .67.7万元D .72.0万元12.已知一组数据12,,,n x x x 的平均数3x =,则数据1232,32,,32n x x x +++的平均数为( ) A .3B .5C .9D .11二、填空题13.乒乓球赛规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换,每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,甲发球得1分的概率为35,乙发球得1分的概率为23,各次发球的胜负结果相互独立,甲、乙的一局比赛中,甲先发球.则开始第4次发球时,甲、乙的比分为1比2的概率为________.14.若某学校要从5名男同学和2名女同学中选出3人参加社会考察活动,则选出的同学中男女生均不少于1名的概率是_____.15.如图,在半径为1的圆上随机地取两点,B E,连成一条弦BE,则弦长超过圆内接正BCD∆边长的概率是__________.16.执行如图所示的伪代码,若输出的y的值为10,则输入的x的值是________.17.如图所示的程序框图,输出S的结果是__________.18.将二进制数110 101(2)转为七进制数,结果为________.19.某市有A、B、C三所学校,各校有高三文科学生分别为650人,500人,350人,在三月进行全市联考后,准备用分层抽样的方法从所有高三文科学生中抽取容量为120的样本,进行成绩分析,则应从B校学生中抽取______人.20.已知一组数据x,8,7,9,7,若这组数据的平均数为8,则它们的方差为______.三、解答题21.考试结束以后,学校对甲、乙两个班的数学考试成绩进行分析,规定:大于或等于80分为优秀,80分以下为非优秀.统计成绩后,得到如下的22⨯列联表,且已知在甲、乙两个班全部110人中随机抽取1人为优秀的概率为3 11.(1)若按99.9%的可靠性要求,能否认为“成绩与班级有关系”;(2)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求抽到9号或10号的概率.参考公式与临界值表:22()()()()()n ad bc K a b c d a c b d -=++++.优秀 非优秀 合计甲班 10 乙班 30合计11022.某鲜花批发店每天早晨以每支2元的价格从鲜切花生产基地购入某种玫瑰,经过保鲜加工后全部装箱(每箱500支,平均每支玫瑰的保鲜加工成本为1元),然后以每箱2000元的价格整箱出售.由于鲜花的保鲜特点,制定了如下促销策略:若每天下午3点以前所购进的玫瑰没有售完,则对未售出的玫瑰以每箱1200元的价格降价处理.根据经验,降价后能够把剩余玫瑰全部处理完毕,且当天不再购进该种玫瑰.因库房限制每天最多加工6箱.(1)若某天此鲜花批发店购入并加工了6箱该种玫瑰,在下午3点以前售出4箱,且6箱该种玫瑰被6位不同的顾客购买.现从这6位顾客中随机选取2人赠送优惠卡,求恰好一位是以2000元价格购买的顾客且另一位是以1200元价格购买的顾客的概率: (2)此鲜花批发店统计了100天该种玫瑰在每天下午3点以前的销售量t (单位:箱),统计结果如下表所示(视频率为概率): t /箱 4 5 6 频数30xs①估计接下来的一个月(30天)该种玫瑰每天下午3点前的销售量不少于5箱的天数并说明理由;②记2log x s b x ⎡⎤=+⎢⎥⎣⎦,64x ≤,若此批发店每天购进的该种玫瑰箱数为5箱时所获得的平均利润最大,求实数b 的最小值(不考虑其他成本,2log x x ⎡⎤⎢⎥⎣⎦为2log x x 的整数部分,例如:[]2.12=,[]0.10=).23.编写一个程序,要求输入两个正数a 和b 的值,输出a b 和b a 的值,并画出程序框图.24.图是求239111112222S =+++++的一个程序框图. (1)在程序框图的①处填上适当的语句; (2)写出相应的程序.25.为研究冬季昼夜温差大小对某反季节大豆新品种发芽率的影响,某校课外兴趣小组记录了5组昼夜温差与100颗种子发芽数,得到如下资料: 组号 1 2 3 4 5 温差x (C ︒) 10 11 13 12 8 发芽数y (颗)2325302616经分析,这组数据具有较强的线性相关关系,因此该小组确定的研究方案是:先从这五组数据中选取3组数据求出线性回归方程,再用没选取的2组数据进行检验.(1)若选取的是第2,3,4组的数据,求出y 关于x 的线性回归方程ˆˆˆybx a =+; (2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠?(参考公式:()()()1122211ˆnni i i i i i nn i i i i x x y y x y nxy bx x x nx====---==--∑∑∑∑,ˆˆay bx =-) 26. 2.5PM 是指空气中直径小于或等于2.5微米的颗粒物(也称可入肺颗粒物),为了探究车流量与 2.5PM 的浓度是否相关,现采集到某城市周一至周五某时间段车流量与2.5PM浓度的数据如下表:(1)根据上表数据,求出这五组数据组成的散点图的样本中心坐标;(2)用最小二乘法求出y关于x的线性回归方程y bx a=+;(3)若周六同一时间段车流量是100万辆,试根据(2)求出的线性回归方程预测,此时2.5PM的浓度是多少?(参考公式:()()()121ni iiniix x y ybx x==--=-∑∑,a y bx=-)【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】求出4名同学去旅游的所有情况种数,再求出恰有一个地方未被选中的种数,由概率公式计算出概率.【详解】4名同学去旅游的所有情况有:44256=种恰有一个地方未被选中共有2113424322144C CC AA⋅⋅=种情况;所以恰有一个地方未被选中的概率:144925616 p==;故选:B.【点睛】本题考查古典概型,解题关键是求出基本事件的个数,本题属于中档题.2.D解析:D【分析】由题意可知,38AOCπ∠的概率为AC AB,由题意结合平面几何知识求得1AC =,2AB =,则答案可求.【详解】 如图,4OAB π∠=,若38AOC π∠=,则33488ACO ππππ∠=--=, OAC ∴∆为等腰三角形,即1AC OA ==.在Rt AOB ∆中, 1OA OB ==,2AB ∴=.由测度比为长度比可得38AOC π∠的概率为222AC AB ==. 故选:D . 【点睛】本题考查几何概型,考查灵活变形能力,是中档题.3.B解析:B 【分析】求出函数的导数,根据函数的极值点的个数求出m 的范围,通过判断a ,b ,c ,d 的范围,得到满足条件的概率值即可. 【详解】f ′(x )=x 2+2mx +1, 若函数f (x )有极值点, 则f ′(x )有2个不相等的实数根, 故△=4m 2﹣4>0,解得:m >1或m <﹣1,而a =log 0.55<﹣2,0<b =log 32<1、c =20.3>1,0<d =(12)2<1, 满足条件的有2个,分别是a ,c , 故满足条件的概率p 2142==, 故选:B . 【点睛】本题考查了函数的单调性、极值问题,考查导数的应用以及对数、指数的性质,是一道中档题.4.B解析:B 【分析】先由题意写出成等比数列的10个数,然后找出小于8的项的个数,代入古典概率的计算公式即可求解 【详解】解:由题意()13n n a -=-成等比数列的10个数为:1,3-,2(3)-,39(3)(3)-⋯-其中小于8的项有:1,3-,3(3)-,5(3)-,7(3)-,9(3)-共6个数 这10个数中随机抽取一个数, 则它小于8的概率是63105P ==. 故选:B . 【点睛】本题主要考查了等比数列的通项公式及古典概率的计算公式的应用,属于基础试题5.A解析:A 【分析】对a 、b 、c 赋三个不等的值,并根据程序框图写出输出的结果,可得知该程序的功能. 【详解】令2a =,3b =,1c =,则23>不成立,21>成立,则1a =,输出的a 的值为1, 因此,该程序的功能是求出a 、b 、c 三数中的最小数,故选A . 【点睛】本题考查程序框图的功能,解题的关键就是根据题意将每个步骤表示出来,考查分析问题的能力,属于中等题.6.A解析:A 【解析】模拟执行程序框图,可得160a =-≤,执行循环体,12log 1640b ==-<,12log 420a ==-<,不满足条件4a >,执行循环体,12log 210b ==-<,12log 10a ==,不满足条件4a >,执行循环体,0210b ==>,1220a ==>,不满足条件4a >,执行循环体,2240b ==>,4216a ==,满足条件4a >,退出循环,输出a 的值为16.选A.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.7.B解析:B 【分析】由题意知i 为鸡的数量,j 为兔的数量,m 为足的数量,根据题意可得出判断条件. 【详解】由题意可知i 为鸡的数量,j 为兔的数量,m 为足的数量,根据题意知,在程序框图中,当计算足的数量为94时,算法结束,因此,判断条件应填入“94m =”. 故选B. 【点睛】本题考查算法程序框图中判断条件的填写,考查分析问题和解决问题的能力,属于中等题.8.B解析:B 【解析】 【分析】执行程序,逐次计算,根据判断条件终止循环,即可求解输出的结果,得到答案. 【详解】由题意,执行程序,可得:第1次循环:满足判断条件,1,2S i ==; 第2次循环:满足判断条件,2,3S i ==; 第3次循环:满足判断条件,6,4S i ==; 第4次循环:满足判断条件,24,5S i ==; 第5次循环:满足判断条件,120,6S i ==; 第6次循环:满足判断条件,720,7S i ==; 不满足判断条件,终止循环,输出720S =,故选B. 【点睛】本题主要考查了循环结构的程序框图的计算输出,其中解答中正确理解循环结构的程序框图的计算功能,逐次计算是解答的关键,着重考查了推理与运算能力,属于基础题.9.C解析:C 【解析】 【分析】利用公式求得x 甲和x 乙,从而得到x 甲和x 乙的大小,观察两组数据的波动程度,可以得到2s 甲与2s 乙的大小,从而求得结果.【详解】 甲班平均身高1691621501601591605x ++++==甲,乙班平均身高1801601501501651615x ++++==乙,所以x x <甲乙,方差表示数据的波动,当波动越大时,方差越大,甲班的身高都差不多,波动比较小,而乙班身高差距则比加大,波动比较大,所以22s s >乙甲,故选C. 【点睛】该题考查的是有关所给数据的平均数与方差的比较大小的问题,涉及到的知识点有平均数的公式,观察数据波动程度来衡量方差的大小,属于简单题目.10.C解析:C 【分析】利用线性回归方程系数的几何意义,圆锥曲线离心率的范围,椭圆的性质,逐一判断即可. 【详解】①设某大学的女生体重y (kg )与身高x (cm )具有线性相关关系,根据一组样本数据(x i ,y i )(i =1,2,…,n ),用最小二乘法建立的线性回归方程为y ∧=0.85x ﹣85.71,则若该大学某女生身高增加1cm ,则其体重约增加0.85kg ,正确;②关于x 的方程x 2﹣mx +1=0(m >2)的两根之和大于2,两根之积等于1,故两根中,一根大于1,一根大于0小于1,故可分别作为椭圆和双曲线的离心率.正确; ③设定圆C 的方程为(x ﹣a )2+(x ﹣b )2=r 2,其上定点A (x 0,y 0),设B (a +r cosθ,b +r sinθ),P (x ,y ),由12OP =(OA OB +)得0022x a rcos x y b rsin y θθ++⎧=⎪⎪⎨++⎪=⎪⎩,消掉参数θ,得:(2x ﹣x 0﹣a )2+(2y﹣y 0﹣b )2=r 2,即动点P 的轨迹为圆, ∴故③不正确;④由22143x y +=,得a 2=4,b 2=3,∴1c ==.则F (﹣1,0),如图:过F 作垂直于x 轴的直线,交椭圆于A (x 轴上方),则x A =﹣1,代入椭圆方程可得32A y =. 当P 为椭圆上顶点时,P (0FP k =32OA k =-, ∴当直线FP时,直线OP 的斜率的取值范围是32⎛⎫-∞- ⎪⎝⎭,. 当P 为椭圆下顶点时,P (0,∴当直线FP 时,直线OP 的斜率的取值范围是(8,32),综上,直线OP (O 为原点)的斜率的取值范围是32⎛⎫-∞- ⎪⎝⎭,∪,32). 故选C 【点睛】本题以命题真假的判断为载体,着重考查了相关系数、离心率、椭圆简单的几何性质等知识点,属于中档题.11.B解析:B 【详解】试题分析:4235492639543.5,4244x y ++++++====, ∵数据的样本中心点在线性回归直线上,回归方程ˆˆˆybx a =+中的ˆb 为9.4, ∴42=9.4×3.5+a , ∴ˆa =9.1,∴线性回归方程是y=9.4x+9.1,∴广告费用为6万元时销售额为9.4×6+9.1=65.5 考点:线性回归方程12.D解析:D 【解析】分析:一组数据中的每一个数加或减一个数,它的平均数也加或减这个数;;依此规律求解即可.详解::∵一组数据12,,,n x x x 的平均数为3, ∴另一组数据1232,32,,32n x x x +++的平均数121211323232[32]33211n n x x x x x x n n n=++++⋯++=++⋯++=⨯+=()(), 故选D.点睛:本题考查了平均数,平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.二、填空题13.【分析】先确定比分为1比2时甲乙在三次发球比赛中得分情况再分别求对应概率最后根据互斥事件概率公式求结果【详解】比分为1比2时有三种情况:(1)甲第一次发球得分甲第二次发球失分乙第一次发球得分(2)甲解析:2875【分析】先确定比分为1比2时甲乙在三次发球比赛中得分情况,再分别求对应概率,最后根据互斥事件概率公式求结果 【详解】比分为1比2时有三种情况:(1)甲第一次发球得分,甲第二次发球失分,乙第一次发球得分(2)甲第一次发球失分,甲第二次发球得分,乙第一次发球得分(3)甲第一次发球失分,甲第二次发球失分,乙第一次发球失分 所以概率为3222322212855355355375⨯⨯+⨯⨯+⨯⨯= 【点睛】本题考查根据互斥事件概率公式求概率,考查基本分析求解能力,属中档题.14.【解析】【分析】选出的男女同学均不少于1名有两种情况:1名男生2名女生和2名男生1名女生根据组合数公式求出数量再用古典概型计算公式求解【详解】从5名男同学和2名女同学中选出3人有种选法;选出的男女同 解析:57【解析】 【分析】选出的男女同学均不少于1名有两种情况: 1名男生2名女生和2名男生1名女生,根据组合数公式求出数量,再用古典概型计算公式求解. 【详解】从5名男同学和2名女同学中选出3人,有3735C = 种选法;选出的男女同学均不少于1名,有12215252··25C C C C += 种选法; 故选出的同学中男女生均不少于1名的概率:255357P == . 【点睛】本题考查排列组合和古典概型. 排列组合方法:1、直接考虑,适用包含情况较少时;2、间接考虑,当直接考虑情况较多时,可以用此法.15.【解析】【分析】取圆内接等边三角形的顶点为弦的一个端点当另一端点在劣弧上时求出劣弧的长度运用几何概型的计算公式即可得结果【详解】记事件{弦长超过圆内接等边三角形的边长}如图取圆内接等边三角形的顶点为解析:13【解析】 【分析】取圆内接等边三角形BCD 的顶点B 为弦的一个端点,当另一端点在劣弧CD 上时,BEBC >,求出劣弧CD 的长度,运用几何概型的计算公式,即可得结果.【详解】记事件A ={弦长超过圆内接等边三角形的边长},如图,取圆内接等边三角形BCD 的顶点B 为弦的一个端点, 当另一端点在劣弧CD 上时,BE BC >, 设圆的半径为r ,劣弧CD 的长度是23rπ, 圆的周长为2r π,所以()21323rP A r ππ==,故答案为13. 【点睛】本题主要考查“长度型”的几何概型,属于中档题. 解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与长度有关的几何概型问题关鍵是计算问题的总长度以及事件的长度;几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本事件对应的区域测度把握不准导致错误 ;(3)利用几何概型的概率公式时 , 忽视验证事件是否等可能性导致错误.16.3【解析】【分析】分析出算法的功能是求分段函数的值根据输出的值为10分别求出当时和当时的值即可【详解】由程序语句知:算法的功能是求的值当时解得(或不合題意舍去);当时解得舍去综上的值为3故答案为3【解析:3 【解析】 【分析】分析出算法的功能是求分段函数22,31,3x x y x x <⎧=⎨+≥⎩的值,根据输出的值为10 ,分别求出当3x <时和当3x ≥时的x 值即可. 【详解】由程序语句知:算法的功能是求22,31,3x x y x x <⎧=⎨+≥⎩的值, 当3x ≥时,2110y x =+=,解得3x =(或3- ,不合題意舍去); 当3x <时,210y x ==,解得5x = ,舍去, 综上,x 的值为3,故答案为3 . 【点睛】本题主要考查条件语句以及算法的应用,属于中档题 .算法是新课标高考的一大热点,其中算法的交汇性问题已成为高考的一大亮,这类问题常常与函数、数列、不等式等交汇自然,很好地考查考生的信息处理能力及综合运用知识解决问題的能力,解决算法的交汇性问题的方:(1)读懂程序框图、明确交汇知识,(2)根据给出问题与程序框图处理问题即可.17.【解析】阅读流程图可得该流程图计算的数值为: 解析:【解析】阅读流程图可得,该流程图计算的数值为:13sin 0sin 1sin 52626262S ππππππ⎛⎫⎛⎫⎛⎫=⨯++⨯+++⨯+=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 18.【解析】试题分析:把十进制的化为七进制则所以结果为考点:进位制解析:7104()【解析】试题分析:245(2)110101112121253=+⨯+⨯+⨯=,把十进制的53化为七进制,则53774÷=,7710÷=,1701÷=,所以结果为(7)104.考点:进位制.19.40【分析】设应从B 校抽取n 人利用分层抽样的性质列出方程组能求出结果【详解】设应从B 校抽取n 人某市有ABC 三所学校各校有高三文科学生分别为650人500人350人在三月进行全市联考后准备用分层抽样的解析:40 【分析】设应从B 校抽取n 人,利用分层抽样的性质列出方程组,能求出结果. 【详解】设应从B 校抽取n 人,某市有A 、B 、C 三所学校,各校有高三文科学生分别为650人,500人,350人, 在三月进行全市联考后,准备用分层抽样的方法从所有高三文科学生中抽取容量为120的样本,120n650500350500∴=++,解得n 40=.故答案为40. 【点睛】本题考查应从B 校学生中抽取人数的求法,考查分层抽样的性质等基础知识,考查运算求解能力,是基础题.20.【解析】因为平均数为所以方差为解析:45【解析】因为平均数为8,所以9,x = 方差为222214[10111]55++++=三、解答题21.(1)不能;(2)736. 【分析】(1)根据已知条件求得优秀人数,填写22⨯列联表,计算出2K 的值,由此作出判断. (2)根据古典概型概率计算方法,计算出所求概率. 【详解】(1)依题意,在甲、乙两个班全部110人中随机抽取1人为优秀的概率为311,所以总的优秀人数为31103011⨯=人.由于甲班优秀10人,故乙班优秀20人,由此填写22⨯列联表如下:根据列联表中的数据,得到()22110103020507.48610.82830805060K ⨯⨯-⨯=≈<⨯⨯⨯,因此按99.9%的可靠性要求,不能认为“成绩与班级有关系”.(2)设“抽到9或10号”为事件A ,先后两次抛掷一枚均匀的骰子,出现的点数为(x ,y ).所有的基本事件有:(1,1)、(1,2)、(1,3)、…、(6,6)共36个.事件A 包含的基本事件有:(3,6)、(4,5)、(5,4)、(6,3)、(5,5)、(4,6)(6,4)共7个. 所以P (A )=736,即抽到9号或10号的概率为736. 【点睛】本小题主要考查22⨯列联表独立性检验,考查古典概型概率计算,属于中档题. 22.(1)815;(2)①21;②4- 【分析】(1)根据古典概型概率公式计算可得; (2)①用100−30可得;②用购进5箱的平均利润>购进6箱的平均利润,解不等式可得. 【详解】解:(1)设这6位顾客是A ,B ,C ,D ,E ,F .其中3点以前购买的顾客是A ,B ,C ,D .3点以后购买的顾客是E ,F .从这6为顾客中任选2位有15种选法:(A ,B ),(A ,C ),(A ,D ),(A ,E ),(A ,F ),(B ,C ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F ),其中恰好一位是以2000元价格购买的顾客,另一位是以1200元价格购买的顾客的有8种:(A ,E ),(A ,F ),(B ,E ),(B ,F ),(C ,E ),(C ,F ),(D ,E ),(D ,F ). 根据古典概型的概率公式得815P =; (2)①依题意30100x s ++=, ∴70x s +=,所以估计接下来的一个月(30天)内该种玫瑰每天下午3点以前的销售量不少于5箱的天数是3070%21⨯=天;②批发店每天在购进4箱数量的玫瑰时所获得的平均利润为: 4×2000−4×500×3=2000元;批发店每天在购进5箱数量的玫瑰时所获得的平均利润为:3070(420001120055003)(5200055003)2260100100⨯⨯+⨯-⨯⨯+⨯⨯-⨯⨯=元; 批发店每天在购进6箱数量的玫瑰时所获得的平均利润为:30(420002120065003)(520001120065003)100100x ⨯⨯+⨯-⨯⨯+⨯⨯+⨯-⨯⨯ (6200065003)4202230100x s s+⨯⨯-⨯⨯=++ 由()2260420223070x x >++-, 解得:32.5x >, 则32.564x <≤所以270log x x b x ⎡⎤++=⎢⎥⎣⎦,要求b 的最小值,则求()2log x g x x x ⎡⎤=+⎢⎥⎣⎦的最大值,令()2log x f x x =,则()()()'22ln 2ln 1log ln x x f x x x -==,(]32.5,64x ∈ 明显()'0f x >,则()2log xf x x=在(]32.5,64上单调递增,则()2log x gx x x⎡⎤=+⎢⎥⎣⎦在(]32.5,64上单调递增, ()264646464641074log 646g x ⎡⎤⎡⎤∴=+=+=+=⎢⎥⎢⎥⎣⎦⎣⎦, 则b 的最小值为70744-=-. 【点睛】本题考查了古典概型及其概率计算公式,属中档题. 23.见解析; 【解析】试题分析: 先利用INPUT 语句输入两个正数a 和b 的值,再分别赋值a b 和b a 的值,最后输出a b 和b a 的值 试题程序和程序框图分别如下:24.(1)2TT =;(2)见解析 【解析】 【分析】⑴要计算239111112222S =+++++的一个程序框图的值需要用直到型循环结构,利用被累加数列的通项公式求解即可⑵根据框图写出对应得程序语句,即可得解 【详解】(1)的意图为表示各累加项,即数列的通项公式,故为2T T = (2)程序如下:【点睛】本题主要考查了程序框图的补全,结合题意运用数列的通项公式求出结果,然后再给出程序,需要熟练掌握各知识点。
【人教版】高中数学必修三期末一模试卷附答案
一、选择题1.有五条线段长度分别为1,3,5,7,9,从这5条线段中任取3条,则所取3条线段能构成一个三角形的概率( ) A .110B .310C .12D .7102.若数列{a n }满足a 1=1,a 2=1,a n +2=a n +a n +1,则称数列{a n }为斐波那契数列,斐波那契螺旋线是根据斐波那契数列画出来的螺旋曲线,自然界中存在许多斐波那契螺旋线的图案,是自然界最完美的经典黄金比例.作图规则是在以斐波那契数为边的正方形拼成的长方形中画一个圆心角为90°的扇形,连起来的弧线就是斐波那契螺旋线,如图所示的7个正方形的边长分别为a 1,a 2,…,a 7,在长方形ABCD 内任取一点,则该点不在任何一个扇形内的概率为( )A .1103156π-B .14π-C .17126π-D .681237π-3.某研究机构在对具有线性相关的两个变量x 和y 进行统计分析时,得到如下数据: x 4 6 8 10 12 y12356由表中数据求得y 关于x 的回归方程为ˆˆ,则在这些样本点中任取一点,该点落在回归直线下方的概率为( )A .25B .35C .34D .124.在编号分别为(0,1,2,,1)i i n =⋅⋅⋅-的n 名同学中挑选一人参加某项活动,挑选方法如下:抛掷两枚骰子,将两枚骰子的点数之和除以n 所得的余数如果恰好为i ,则选编号为i 的同学.下列哪种情况是不公平的挑选方法( ) A .2n = B .3n =C .4n =D .6n =5.如图是计算11113519++++的值的一个程序框图,其中判断框内应填的是( )A .10iB .10i ≤C .10i >D .10i <6.执行如下图的程序框图,输出S的值是()A.2 B.1C.12D.-17.执行如图所示的程序框图,则输出的S=()A.1-B.2-C.2D.1 28.我国古代名著《庄子·天下篇》中有一句名言“一尺之棰,日取其半,万世不竭”,其意思为:一尺的木棍,每天截取一半,永远都截不完.现将该木棍依此规律截取,如图所示的程序框图的功能就是计算截取20天后所剩木棍的长度(单位:尺),则①②③处可分别填入的是()A .20i <,1S S i=-,2i i = B .20i ≤,1S S i=-,2i i = C .20i <,2SS =,1i i =+ D .20i ≤,2SS =,1i i =+ 9.2020年2月,受新冠肺炎的影响,医卫市场上出现了“一罩难求”的现象.在政府部门的牵头下,部分工厂转业生产口罩,下表为某小型工厂2-5月份生产的口罩数(单位:万) 月份x 2 3 4 5 口罩数y4.5432.5口罩数y 与月份x 之间有较好的线性相关关系,其线性回归直线方程是0.7y x a =-+,则a 的值为( ) A .6.1B .5.8C .5.95D .6.7510.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生B .200号学生C .616号学生D .815号学生11.某宠物商店对30只宠物狗的体重(单位:千克)作了测量,并根据所得数据画出了频率分布直方图如下图所示,则这30只宠物狗体重(单位:千克)的平均值大约为( )A .15.5B .15.6C .15.7D .1612.从8名女生4名男生中,选出3名学生组成课外小组,如果按性别比例分层抽样,则不同的抽取方法数为( ) A .112种B .100种C .90种D .80种二、填空题13.从1,2,3,4这四个数中一次随机取两个数,则其中一个数是另一个的两倍的概率是______14.重庆一中高一,高二,高三的模联社团的人数分别为25,15,10,现采用分层抽样的方法从中抽取部分学生参加模联会议,已知在高二年级和高三年级中共抽取5名同学,若从这5名同学中再随机抽取2名同学承担文件翻译工作,则抽取的两名同学来自同一年级的概率为__________.15.有五条线段,长度分别为2,3,5,7,9,从这五条线段中任取三条,则所取三条线段能构成一个三角形的概率为___________.16.使用如图所示算法对下面一组数据进行统计处理,则输出的结果为__________.数据:19.3a =,29.6a =,39.3a = 49.4a =,59.4a =,69.3a = 79.3a =,89.7a =,99.2a = 109.5a =,119.3a =,129.6a =17.已知流程图如图,则输出的i =________.18.101110(2)转化为十进制数是__________.19.玉林市有一学校为了从254名学生选取部分学生参加某次南宁研学活动,决定采用系统抽样的方法抽取一个容量为42的样本,那么从总体中应随机剔除的个体数目为__________.20.某班60名学生参加普法知识竞赛,成绩都在区间[40100],上,其频率分布直方图如图所示,则成绩不低于60分的人数为___.三、解答题21.我国科学家屠呦呦教授由于在发现青蒿素和治疗疟疾的疗法上的贡献获得诺贝尔医学奖,以青蒿素类药物为主的联合疗法已经成为世界卫生组织推荐的抗疟疾标准疗法,目前,国内青蒿人工种植发展迅速,调查表明,人工种植的青蒿的长势与海拔高度、土壤酸碱度、空气湿度的指标有极强的相关性,现将这三项的指标分别记为x ,y ,z ,并对它们进行量化:0表示不合格,1表示临界合格,2表示合格,再用综合指标x y z ω=++的值评定人工种植的青蒿的长势等级:若4ω≥,则长势为一级;若23ω≤≤,则长势为二级;若01ω≤≤,则长势为三级;为了了解目前人工种植的青蒿的长势情况,研究人员随机抽取了10块青蒿人工种植地,得到如下结果: 种植地编号1A2A3A 4A 5A(),,x y z()0,1,0()1,2,1()2,1,1()2,2,2()0,1,1种植地编号6A7A8A9A10A(),,x y z ()1,1,2 ()2,1,2 ()2,0,1 ()2,2,1 ()0,2,1(1)在这10块青蒿人工种植地中任取两地,求这两地的空气湿度的指标z 相同的概率; (2)从长势等级是一级的人工种植地中任取一地,其综合指标为m ,从长势等级不是一级的人工种植地中任取一地,其综合指标为n ,记随机变量X m n =-,求X 的分布列. 22.端午节吃粽子是我国的传统习俗,设一盘中装有6个粽子,其中豆沙粽1个,肉粽2个,白粽3个,这三种粽子的外观完全相同.(Ⅰ)从中不放回的任取3个,记X 表示取到的肉粽个数,求X 的分布列和()E X ; (Ⅱ)从中有放回的任取3个,记Y 表示取到的肉棕个数,求(2)P Y ≥; (Ⅲ)比较()E X 与()E Y 的大小(只需写出结论). 23.读下列程序:INPUT x 0IF x THEN < ^2y x = PRINT yELSE 2*y x =PRINT y END IFEND(1)根据程序,画出对应的程序框图;(2)写出该程序表示的函数,并求出当输出的4y =时,输入的x 的值. 24.某中学男子体育组的百米赛跑的成绩(单位:秒)如下:12.1,13.2,12.7,12.8,12.5,12.4,12.7,11.5,11.6,11.7.设计一个算法从这些成绩中搜索出小于12.1秒的成绩,画出程序框图,并编写相应程序.25.某大学为了了解数学专业研究生招生的情况,对近五年的报考人数进行了统计,得到如下统计数据:(1)经分析,y 与x 存在显著的线性相关性,求y 关于x 的线性回归方程ˆˆˆybx a =+并预测2020年(按6x =计算)的报考人数;(2)每年报考该专业研究生的考试成绩大致符合正态分布()2,Nμσ,根据往年统计数据385μ=,2225σ=,录取方案:总分在400分以上的直接录取,总分在[]385,400之间的进入面试环节,录取其中的80%,低于385分的不予录取,请预测2020年该专业录取的大约人数(最后结果四舍五入,保留整数).参考公式和数据:()()()121ˆniii nii x x y y bx x ==--=-∑∑,ˆˆay bx =-,()()51360iii x x y y =--=∑.若随机变量()2~,X Nμσ,则()0.6826P X μσμσ-<<+=,()220.9544P X μσμσ-<<+=,()330.9974P X μσμσ-<<+=.26.党的十八大以来,我国精准扶贫已经实施了六年,我国贫困人口从2012年的9899万人,减少到2018年的1660万人,2019年将努力实现减少贫困人口1000万人以上的目标,力争2020年在现行标准下,农村贫困人口全部脱贫,贫困县全部脱贫摘帽.某市为深入分析该市当前扶贫领域存在的突出问题,市扶贫办近三年来,每半年对贫困户(用y 表示,单位:万户)进行取样,统计结果如图所示,从2016年6月底到2019年6月底的共进行了七次统计,统计时间用序号t 表示,例如:2016年12月底(时间序号为2)贫困户为5.2万户.(1)求y 关于t 的线性回归方程y bx a =+,并预测到2020年12月底,该市能否实现贫困户全部脱贫;(2)为尽快打赢脱贫攻坚战,该市扶贫办在2019年6月底时,对全市贫困户随机抽取了100户贫困户,对每个家庭最主要经济收入来源进行抽样调查,统计结果如图.并决定据此选派一批农业技术人员对全市所有贫困户中,家庭最主要经济收入来源为养殖收入和种植收入的贫困户进行对口帮扶,每一名农业技术人员对口帮扶贫困户90户,则该市应分别安排多少农业技术人员对家庭最主要经济收入来源为养殖收入和种植收入的贫困户进行对口帮扶? 附:回归直线的斜率和截距的最小二乘法估计公式分别为:()()()1122211nniii ii i nniii i tty y t y nt yb tttnt====---==--∑∑∑∑,a y bt =-【参考答案】***试卷处理标记,请不要删除一、选择题1.B 解析:B 【分析】列出所有的基本事件,并找出事件“所取三条线段能构成一个三角形”所包含的基本事件,再利用古典概型的概率公式计算出所求事件的概率. 【详解】所有的基本事件有:()1,3,5、()1,3,7、()1,3,9、()1,5,7、()1,5,9、()1,7,9、()3,5,7、()3,5,9、()3,7,9、()5,7,9,共10个,其中,事件“所取三条线段能构成一个三角形”所包含的基本事件有:()3,5,7、()3,7,9、()5,7,9,共3个,由古典概型的概率公式可知,事件“所取三条线段能构成一个三角形”的概率为310, 故选:B . 【点睛】本题考查古典概型的概率计算,解题的关键就是列举基本事件,常见的列举方法有:枚举法和树状图法,列举时应遵循不重不漏的基本原则,考查计算能力,属于中等题.2.D解析:D 【分析】由题意求得数列{}n a 的前8项,求得长方形ABCD 的面积,再求出6个扇形的面积和,由测度比是面积比得答案. 【详解】由题意可得,数列{}n a 的前8项依次为:1,1,2,3,5,8,13,21.∴长方形ABCD 的面积为1321273⨯=.6个扇形的面积之和为222222(1235813)684ππ+++++=.∴所求概率681273P π=-. 故选:D . 【点睛】本题考查几何概型概率的求法,考查扇形面积公式的应用,是基础题.3.A解析:A 【分析】求出样本点的中心,求出ˆa的值,得到回归方程得到5个点中落在回归直线下方的有(6,2),(8,3),共2个,求出概率即可.【详解】8x =, 3.4y =,故3.40.658ˆa=⨯+,解得: 1.8a =-, 则0.65.8ˆ1yx =-, 故5个点中落在回归直线下方的有(6,2),(8,3),共2个, 故所求概率是25p =, 故选:A . 【点睛】本题考查回归方程概念、概率的计算以及样本点的中心,考查数据处理能力,是一道基础题.4.C解析:C 【分析】首先求出两枚骰子的点数之和可能的取值对应的概率,再分别讨论四个选项中n 的取值对应的余数的概率,若每一个余数的概率都相等则是公平的,若不相等则不公平,即可得正确选项. 【详解】由题意知两枚骰子的点数之和为X ,则X 可能为2,3,4,5,6,7,8,9,10,11,12,()1236P X ==, ()2336P X ==,()3436P X ==,()4536P X ==,()5636P X ==()6736P X ==,()5836P X ==,()4936P X ==,()31036P X ==,()21136P X ==,()11236P X ==, 对于选项A :2n =时,0,1,i = ()1351023636362P i ⎛⎫==++⨯= ⎪⎝⎭,()246421136363636362P i ==++++=,所以2n =是公平的,故选项A 不正确; 对于选项B :3n =时,0,1,2i =,()254110363636363P i ==+++=,()363113636363P i ==++=, ()145212363636363P i ==+++=,所以3n =是公平的,故选项B 不正确; 对于选项C :4n =时,0,1,2,3i =()351103636364P i ==++=,()442136369P i ==+=, ()153123636364P i ==++=,()2625336363618P i ==++= 因为概率不相等,所以4n =不公平,故选项C 正确; 对于选项D :6n =时,0,1,2,3,4,5i =()511036366P i ==+=,()611366P i ===,()151236366P i ==+=, ()241336366P i ==+=,()331436366P i ==+=,()421536366P i ==+=, 所以6n =是公平的,故选项D 不正确, 故选:C 【点睛】关键点点睛:本题解题的关键点是理解题意,对于所给n 的值的每一个余数出现的概率相等即为公平,不相等即为不公平.5.C解析:C 【分析】分析式子11113519++++的特征,可以得到程序框图的功能是求11113519S =++++的值,观察循环量i 的特征,得到结果. 【详解】由于程序框图的功能是求11113519S =++++的值, 分母n 的初值为1,终值为19,步长为2, 故程序共执行10次,故循环变量i 的值不大于10时,应不满足条件,继续执行循环, 大于10时,应满足条件,退出循环, 故判断框内应填的是i >10, 故选:C. 【点睛】思路点睛:该题考查的是有关程序框图的问题,解题思路如下: (1)观察式子的特征,得到程序框图的功能; (2)由式子的项数,得到循环量i 的特征,得到结果.6.C解析:C 【分析】模拟程序的运行,依次写出每次循环得到的k 和S 值,根据题意即可得到结果. 【详解】程序运行如下,k =1,S =112-=﹣1, k =2,S =()111--=12;k =3,S =12112=-;k =4,S =11-2=﹣1… 变量S 的值以3为周期循环变化,当k =2015时,12S =, k =2016时,结束循环,输出S 的值为12. 故选:C . 【点睛】本题考查程序框图,是当型结构,即先判断后执行,满足条件执行循环,不满足条件,跳出循环,算法结束,解答的关键是算准周期,属于中档题.7.D解析:D 【分析】列举出前四次循环,可知,该算法循环是以3为周期的周期循环,利用周期性可得出输出的S 的值. 【详解】第一次循环,02020k =≤成立,1112S ==--,011k =+=; 第二次循环,12020k =≤成立,()11112S ==--,112k =+=;第三次循环,22020k =≤成立,12112S ==-,213k =+=;第四次循环,32020k =≤成立,1112S ==--,314k =+=; 由上可知,该算法循环是周期循环,且周期为3,依次类推,执行最后一次循环,20202020k =≤成立,且202036731=⨯+,此时12S =, 202012021k =+=,20212020k =≤不成立,跳出循环体,输出S 的值为12. 故选:D.本题考查利用程序框图计算输出结果,推导出循环的周期性是解题的关键,考查计算能力,属于中等题.8.D解析:D 【分析】先由第一天剩余的情况确定循环体,再由结束条件确定循环条件即可. 【详解】根据题意可知,第一天12S =,所以满足2S S =,不满足1S S i=-,故排除AB ,由框图可知,计算第二十天的剩余时,有2SS =,且21i =,所以循环条件应该是20i ≤. 故选D. 【点睛】本题考查了程序框图的实际应用问题,把握好循环体与循环条件是解决此题的关键,属于中档题.9.C解析:C 【分析】求得 3.5x y ==,得到样本中心点(3.5,3.5),再把样本中心点代入回归直线方程得解. 【详解】由表可得 3.5x y ==,带入线性回归方程中有 3.50.7 3.5 5.95=+⨯=a , 故选:C . 【点睛】本题考查利用线性相关关系求回归直线方程,属于基础题.10.C解析:C 【分析】等差数列的性质.渗透了数据分析素养.使用统计思想,逐个选项判断得出答案. 【详解】详解:由已知将1000名学生分成100个组,每组10名学生,用系统抽样,46号学生被抽到,所以第一组抽到6号,且每组抽到的学生号构成等差数列{}n a ,公差10d =,所以610n a n =+()n *∈N ,若8610n =+,则15n =,不合题意;若200610n =+,则19.4n =,不合题意; 若616610n =+,则61n =,符合题意;若815610n =+,则80.9n =,不合题意.故选C .本题主要考查系统抽样.11.B解析:B【分析】由频率分布直方图分别计算出各组得频率、频数,然后再计算出体重的平均值【详解】由频率分布直方图可以计算出各组频率分别为:0.10.20.250.250.15,,,,,0.05频数为:367.57.54.51.5,,,,,则平均值为:113136157.5177.519 4.521 1.515.630⨯+⨯+⨯+⨯+⨯+⨯=故选B【点睛】本题主要考查了由频率分布直方图计算平均数,需要注意计算不要出错12.A解析:A【解析】分析:根据分层抽样的总体个数和样本容量,做出女生和男生各应抽取的人数,得到女生要抽取2人,男生要抽取1人,根据分步计数原理得到需要抽取的方法数.详解:∵8名女生,4名男生中选出3名学生组成课外小组,∴每个个体被抽到的概率是14,根据分层抽样要求,应选出8×14=2名女生,4×14=1名男生,∴有C82•C41=112.故答案为:A.点睛:本题主要考查分层抽样和计数原理,意在考查学生对这些知识的掌握水平.二、填空题13.【详解】解:从1234这四个数中一次随机取两个数有(12)(13)(14)(23)(24)(34)共6种情况;其中其中一个数是另一个的两倍的有两种即(12)(24);则其概率为;故答案为解析:1 3【详解】解:从1,2,3,4这四个数中一次随机取两个数,有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共6种情况;其中其中一个数是另一个的两倍的有两种,即(1,2),(2,4);则其概率为2163=; 故答案为13. 简单考察古典概型的概率计算,容易题.14.【分析】由人数之比求出抽出的5名同学中高二高三年级人数通过列举出从这5名同学中再随机抽取2名同学的所有可能即可求出抽取的两名同学来自同一年级的概率【详解】解:高二高三抽取人数之比为所以5名同学中高二 解析:25【分析】由人数之比求出抽出的5名同学中高二、高三年级人数,通过列举出从这5名同学中再随机抽取2名同学的所有可能即可求出抽取的两名同学来自同一年级的概率. 【详解】解:高二高三抽取人数之比为15:103:2=,所以5名同学中高二有3人,高三有2人, 设高二3人为123,,A A A ,高三2人为12,B B ,则随机抽取2名同学的可能有12131112232122313212A A A A A B A B A A A B A B A B A B B B ,,,,,,,,,共十种可能,其中抽取的两名同学来自同一年级的有12132312,,,A A A A A A B B 四种可能,则 抽取的两名同学来自同一年级的概率为42105=, 故答案为:25. 【点睛】本题考查了分层抽样,考查了古典概型概率的求解.本题的关键是求出高二、高三各抽出的人数.15.【解析】【分析】列出所有的基本事件并找出事件所取三条线段能构成一个三角形所包含的基本事件再利用古典概型的概率公式计算出所求事件的概率【详解】所有的基本事件有:共个其中事件所取三条线段能构成一个三角形 解析:310【解析】 【分析】列出所有的基本事件,并找出事件“所取三条线段能构成一个三角形”所包含的基本事件,再利用古典概型的概率公式计算出所求事件的概率. 【详解】所有的基本事件有:()2,3,5、()2,3,7、()2,3,9、()2,5,7、()2,5,9、()2,7,9、()3,5,7、()3,5,9、()3,7,9、()5,7,9,共10个,其中,事件“所取三条线段能构成一个三角形”所包含的基本事件有:()3,5,7、()3,7,9、()5,7,9,共3个,由古典概型的概率公式可知,事件“所取三条线段能构成一个三角形”的概率为310, 故答案为310. 【点睛】本题考查古典概型的概率的计算,解题的关键就是列举基本事件,常见的列举方法有:枚举法和树状图法,列举时应遵循不重不漏的基本原则,考查计算能力,属于中等题.16.【分析】分析程序框图的功能在于寻找和输出一组数据的最大值观察该题所给的数据可知其最大值为M 的值即为取最大时对应的脚码从而求得结果【详解】仔细分析程序框图的作用和功能所解决的问题是找出一组数据的最大值 解析:9.7,8【分析】分析程序框图的功能,在于寻找和输出一组数据的最大值,观察该题所给的数据,可知其最大值为9.7,M 的值即为取最大时对应的脚码,从而求得结果. 【详解】仔细分析程序框图的作用和功能, 所解决的问题是找出一组数据的最大值,并指明其为第几个数,观察数据得到第八个数是最大的,且为9.7, 所以答案是9.7,8. 【点睛】该题考查的是有关程序框图的问题,涉及到的知识点有框图的作用和功能,观察所给的数据,从而得到结果,所以要读取框图的作用非常关键.17.9【解析】根据流程图可得:否;否;否;否;是输出故答案为9解析:9 【解析】根据流程图可得:1,3S i ==,否,133S =⨯=,3i =;否339S =⨯=,5i =; 否9545S =⨯=,7i =;否457315S =⨯=,9i =;是输出9i =,故答案为9.18.46【解析】试题分析:考点:进位制间的关系解析:46 【解析】试题分析:2345(2)101110121212021246=⨯+⨯+⨯+⨯+⨯=. 考点:进位制间的关系.19.2【解析】【分析】根据系统抽样的概念结合可得最后结果为2【详解】学生总数不能被容量整除根据系统抽样的方法应从总体中随机剔除个体保证整除∵故应从总体中随机剔除个体的数目是2故答案为2【点睛】本题主要考解析:2 【解析】 【分析】根据系统抽样的概念结合2544262=⨯+,可得最后结果为2. 【详解】学生总数不能被容量整除,根据系统抽样的方法,应从总体中随机剔除个体,保证整除. ∵2544262=⨯+,故应从总体中随机剔除个体的数目是2,故答案为2. 【点睛】本题主要考查系统抽样,属于基础题;从容量为N 的总体中抽取容量为n 的样本,系统抽样的前面两个步骤是:(1)将总体中的N 个个体进行编号;(2)当Nn为整数时,抽样距即为N n ;当N n 不是整数时,从总体中剔除一些个体,使剩下的总体中的个体的个数N '能被n 整除.20.30【解析】由题意可得:则成绩不低于分的人数为人解析:30 【解析】 由题意可得:()400.0150.0300.0250.0051030⨯+++⨯=则成绩不低于60分的人数为30人三、解答题21.(1)25;(2)分布列见解析 【分析】()1由表可知:空气湿度指标为0的有A 1,空气湿度指标为1的有A 2,A 3,A 5,A 8,A9,A10,空气湿度指标为2的有A4,A6,A7,由此能求出这两地的空气温度的指标z 相同的概率;()2由题意得长势等级是一级()4ω≥有A2,A 3,A4,A6,A7,A9,长势等级不是一级(4)ω<的有A 1,A 5,A 8,A10,从而随机变量X 的所有可能取值为1,2,3,4,5,分别求出相应的概率,由此能求出X 的分布列和()E X . 【详解】(1)由表可以知道:空气湿度指标为0的有1A ,空气湿度指标为1的有2A ,3A ,5A ,8A ,9A ,10A ,空气湿度指标为2的有4A ,6A ,7A ,在这10块青蒿人工种植地中任取两地,基本事件总数21045n C ==,这两地的空气温度的指标z 相同包含的基本事件个数226318m C C =+=,所以这两地的空气温度的指标z 相同的概率182455m p n ===. (2)根据题意得10块青蒿人工种植的综合指标如下表:其中长势等级是一级4≥有2A ,3A ,4A ,6A ,7A ,9A ,共6个, 长势等级不是一级()4ω<的有1A ,5A ,8A ,10A ,共4个, 随机变量X 的所有可能取值为1,2,3,4,5,()11321164114C C P X C C ===,()1111312211647224C C C C P X C C +===, ()11111131122111647324C C C C C C P X C C ++===,()111121111164148C C C C P X C C +===, ()111111641524C C P X C C ===, 所以X 的分布列为:本题考查概率的求法,考查离散型随机变量的分布列的求法,是中档题,解题时要认真审题,注意排列组合知识的合理运用. 22.(Ⅰ)见解析,()1E X =;(Ⅱ)727;(Ⅲ)()()E X E Y =. 【分析】(Ⅰ)X 的取值分别为0,1,2,分别求出其概率可得分布列,再由期望公式计算期望; (Ⅱ)(2)P Y ≥(2)(3)P Y P Y ==+=,由此可得; (Ⅲ)Y 的取值分别为0,1,2,3,分别计算概率后可得期望. 【详解】(Ⅰ)由题意X 的取值分别为0,1,2,34361(0)5C P X C ===,1224363(1)5C C P X C ===,14361(2)5C P X C ===,X 的分布列为:X012P153515期望为()0121555E X=⨯+⨯+⨯=;(Ⅱ)2233242(2)69CP Y⨯⨯===,3321(3)627P Y===,所以217(2)(2)(3)92727P Y P Y P Y≥==+==+=,(Ⅲ)又3348(0)627P Y===,1233244(1)69CP Y⨯⨯===,所以421()12319927E Y=⨯+⨯+⨯=.所以()()E X E Y=【点睛】本题考查随机变量的分布列与数学期望,掌握概率公式是解题基础.23.(1)见解析;(2)2x=±【分析】(1)根据题目所给程序即可画出程序框图;(2)首先可以根据程序框图得出该程序所表示的函数,然后将4y=带入,即可得出结果.【详解】(1)对应的程序框图如图所示:(2)该程序表示的函数是()2(0)20x xyx x⎧<⎪=⎨≥⎪⎩,,,当0x<时,由24y x==得2x=-,当0x≥时,由24y x==得2x=,综上所述,当输出的4y =时,输入的x 的值是2x =±. 【点睛】本题考查了程序框图的相关性质,主要考查了程序框图的条件结构,考查了函数方程思想,考查了推理能力,是中档题. 24.答案见解析 【解析】试题分析:由题意,可知本题是要输出成绩小于12.1秒时的所有值,所以需要采用条件结构来画程序框图;再利用程序框图,编写出相应的程序即可. 试题程序框图如图所示:程序: i =1 while i <=10 Gi =input (“Gi =”); if Gi <12.1 print (%io (2),Gi ); end i =i +1; end点睛:本题考查的是算法与流程图.对算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.25.(1)ˆ368yx =-;208人;(2)90. 【分析】(1)由已知表格中的数据求得ˆb与ˆa 的值,则线性回归方程可求,取6x =求得y 值即可;(2)研究生的考试成绩大致符合正态分布(385N ,215),求出(400)P X >,乘以208可得直接录取人数,再求出[385,400]之间的录取人数,则答案可求. 【详解】解:(1)()11234535x =++++= ()130601001401701005y =++++= 可求:()25110ii x x =-=∑,由()()()121360ˆ3610niii ni i x x y y bx x ==--===-∑∑, ˆˆ1003638ay bx =-=-⨯=- ∴y 关于x 的线性回归方程是ˆ368yx =-. 当2020年即6x =时,ˆ3668208y=⨯-=人 即2020年的报考人数大约为208人(2)研究生的考试成绩大致符合正态分布()2385,15N ,则400=385+15,()10.68264000.15872P x ->==, 直接录取人数为2800.158733.0133⨯=≈人[]385,400之间的录取人数为0.68262800.856.8572⨯⨯=≈ 所以2020年该专业录取的大约为33+57=90人 【点睛】本题考查线性回归方程的求法,考查正态分布曲线的特点及所表示的意义,考查运算求解能力,属于中档题.26.(1)0.5 6.3y t =-+,不能;(2)58人和116人. 【分析】(1)由题意求得t 、y 后,代入公式即可得b 、a ,即可得线性回归方程;代入10t =求得 1.3y =即可得解;(2)由统计图计算可得家庭最主要经济收入来源为养殖收入和种植收入的贫困户户数,即可得解. 【详解】 (1)∵123456747t ++++++==,5.9 5.2 4.8 4.4 3.6 3.3 2.9 4.37y ++++++==,()()()()()()3 1.620.910.5010.7213 1.40.59410149b -⨯+-⨯+-⨯++⨯-+⨯-+⨯-==-++++++,()4.30.54 6.3a y bt =-=--⨯=,y 关于t 的线性回归方程0.5 6.3y t =-+.2020年12月底时,10t =,代入知 1.30y =>,不能实现贫困户全部脱贫.(2)2019年6月底时,贫困户共2.9万户,由图知,家庭最主要经济收入来源为养殖收入和种植收入分别占18%和36%,290000.189058⨯÷=,290000.3690116⨯÷=,对家庭最主要经济收入来源为养殖收入和种植收入的贫困户分别安排58人和116人.【点睛】本题考查了统计的应用,考查了线性回归方程的求解和应用,属于中档题.。
【浙教版】高中数学必修三期末模拟试卷附答案
一、选择题1.甲、乙两人约定某天晚上6:00~7:00之间在某处会面,并约定甲早到应等乙半小时,而乙早到无需等待即可离去,那么两人能会面的概率是( ) A .58B .13C .18D .382.“哥德巴赫猜想”是近代三大数学难题之一,其内容是:一个大于2的偶数都可以写成两个质数(素数)之和,也就是我们所谓的“1+1”问题.它是1742年由数学家哥德巴赫提出的,我国数学家潘承洞、王元、陈景润等在哥德巴赫猜想的证明中做出相当好的成绩.若将6拆成两个正整数的和,则拆成的和式中,加数全部为质数的概率为( )A .15 B .13C .35D .233.已知边长为2的正方形ABCD ,在正方形ABCD 内随机取一点,则取到的点到正方形四个顶点A B C D ,,,的距离都大于1的概率为( )A .16πB .4π C .34- D .14π-4.在下列命题中,①从分别标有1,2,……,9的9张卡片中不放回地随机抽取2次,每次抽取1张,则抽到的2张卡片上的数奇偶性不同的概率是518; ②341()2x x+的展开式中的常数项为2;③设随机变量~(0,1)N ξ,若(1)P p ξ≥=,则1(10)2P p ξ-<<=-. 其中所有正确命题的序号是( ) A .② B .①③ C .②③D .①②③5.执行如图所示的程序框图,结果是( )A.11 B.12 C.13 D.14 6.执行如图所示的程序框图,如果输入x=5,y=1,则输出的结果是()A.261 B.425 C.179 D.544n ,则输入整数p的最大值是( ) 7.执行如图的程序框图,若输出的6A .15B .16C .31D .328.《数书九章》是我国宋代数学家秦九韶的著作,其中给出了求多项式的值的秦九韶算法,如图所示的程序框图给出了一个利用秦九韶算法求某多项式值的实例,若输入的13x =,输出的12181=y 则判断框“”中应填入的是( )A .2?k ≤B .3?k ≤C .4?k ≤D .5?≤k9.为了解一片经济树林的生长情况,随机测量了其中100株树木的底部周长(单位:cm ),根据所得数据画出样本的频率分布直方图如图所示.那么在这100株树木中,底部周长小于110cm 的株数n 是 ( )A .30B .60C .70D .8010.某中学有学生300人,其中一年级120人,二,三年级各90人,现要利用抽样方法取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一,二,三年级依次统一编号为1,2,…,300;使用系统抽样时,将学生统一编号为1,2,…,300,并将整个编号依次分为10段.如果抽得的号码有下列四种情况:①7,37,67,97,127,157,187,217,247,277; ②5,9,100,107,121,180,195,221,265,299; ③11,41,71,101,131,161,191,221,251,281; ④31,61,91,121,151,181,211,241,271,299. 关于上述样本的下列结论中,正确的是( ) A .②④都不能为分层抽样 B .①③都可能为分层抽样 C .①④都可能为系统抽样 D .②③都不能为系统抽样11.在一段时间内,某种商品的价格x (元)和销售量y (件)之间的一组数据如下表:价格x (元) 4 6 8 10 12 销售量y (件)358910若y 与x 呈线性相关关系,且解得回归直线ˆˆˆybx a =+的斜率0.9b ∧=,则a ∧的值为( ) A .0.2 B .-0.7 C .-0.2 D .0.712.有一个同学家开了一个小卖部,他为了研究气温对热饮销售的影响,经统计,得到一个卖出的热饮杯数与当天气温的对比表: 温度℃ -5 0 4 7 12 15 19 23 27 31 36 热饮杯数15615013212813011610489937654根据上表数据确定的线性回归方程应该是( )A .ˆ 2.352147.767yx =-+ B .ˆ 2.352127.765yx =-+ C .ˆ 2.35275.501yx =+D .ˆ 2.35263.674yx =+ 二、填空题13.如图,在圆心角为23π,半径为2的扇形AOB 中任取一点P ,则2OA OP ⋅≤的概率为________.14.在区间[-1,2]上随机取一个数x,则x ∈[0,1]的概率为 . 15.在区间[]0,2中随机地取出一个数x ,则sin6x π>的概率是__________.16.根据下列算法语句,当输入x 为60时,输出y 的值为_______.17.如果执行如图的程序框图,那么输出的S =__________.18.图中的程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入,,a b i 的值分别为6,8,0,则输出的i =________.19.如图是某地区2018年12个月的空气质量指数以及相比去年同期变化幅度的数据统计图表,根据图表,下面叙述正确的是______.①2月相比去年同期变化幅度最小,3月的空气质量指数最高;②第一季度的空气质量指数的平均值最大,第三季度的空气质量指数的平均值最小; ③第三季度空气质量指数相比去年同期变化幅度的方差最小; ④空气质量指数涨幅从高到低居于前三位的月份为6、8、4月.20.设一个回归方程为0.4 1.8y x =-,则当25x =时,y 的估计值是_______.三、解答题21.甲、乙两家商场对同一种商品开展促销活动,对购买该商品的顾客两家商场的奖励方案如下:甲商场:顾客转动如图所示圆盘,当指针指向阴影部分(图中四个阴影部分均为扇形,且每个扇形圆心角均为15︒,边界忽略不计)即为中奖.乙商场:从装有3个白球3个红球的盒子中一次性摸出2个球(球除颜色外不加区分),如果摸到的是2个红球,即为中奖.问:购买该商品的顾客在哪家商场中奖的可能性大?22.一汽车厂生产A ,B ,C 三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):按类用分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A 类轿车10辆.轿车A 轿车B 轿车C 舒适型 100 150 z标准型300450600(1)求z 的值;(2)用分层抽样的方法在C 类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;(3)用随机抽样的方法从B 类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2 把这8辆轿车的得分看作一个总体,从中任取一个得分数a , 记这8辆轿车的得分的平均数为x ,定义事件{|0.5E a a x =-≤,且函数2() 2.31f x ax ax =-+没有零点},求事件E 发生的概率.23.试找出一个求有限数列{}123,,,,n a a a a 中的最大数的算法.24.如图所示,已知底角为45°的等腰梯形ABCD ,底边BC 长为7 cm ,腰长为22cm ,当一条垂直于底边BC (垂足为F )的直线l 从B 点开始由左至右移动(与梯形ABCD 有公共点)时,直线l 把梯形分成两部分,令BF =x (0≤x ≤7),左边部分的面积为y ,求y 与x 之间的函数关系式,画出程序框图,并写出程序.25.某校2011年到2019年参加“北约”“华约”考试而获得加分的学生人数(每位学生只能参加“北约”“华约”中的一种考试)可以通过以下表格反映出来.(为了方便计算,将2011年编号为1,2012年编号为2,依此类推) 年份x 1 2 3 4 5 6 7 8 9 人数y23545781010(1)求这九年来,该校参加“北约”“华约”考试而获得加分的学生人数的平均数和方差; (2)根据最近五年的数据,利用最小二乘法求出y 与x 的线性回归方程,并依此预测该校2020年参加“北约”“华约”考试而获得加分的学生人数.(最终结果精确至个位) 参考数据:回归直线的方程是y bx a =+,其中()()()1221121niii nnin i i ii ii x y nx y b n x x x xy x xy ====-=---=-∑∑∑∑,a y bx =-.95293i ii x y==∑,925255i i x ==∑.26.某市举办了一次“诗词大赛”,分预赛和复赛两个环节,已知共有20000名学生参加了预赛,现从参加预赛的全体学生中随机地抽取100人的预赛成绩作为样本,得到如下的统计数据.地抽取2人,求恰有1人预赛成绩优良的概率;(2)由样本数据分析可知,该市全体参加预赛学生的预赛成绩Z 服从正态分布()2,N μσ,其中μ可近似为样本中的100名学生预赛成绩的平均值(同一组数据用该组数据的中间值代替),且2361σ=.利用该正态分布,估计全市参加预赛的全体学生中预赛成绩不低于72分的人数;(3)预赛成绩不低于91分的学生将参加复赛,复赛规则如下: ①参加复赛的学生的初始分都设置为100分;②参加复赛的学生可在答题前自己决定答题数量n ,每一题都需要“花”掉一定分数来获取答题资格(即用分数来买答题资格),规定答第k 题时“花”掉的分数为()0.21,2,k k n =; ③每答对一题得2分,答错得0分;④答完n 题后参加复赛学生的最终分数即为复赛成绩.已知学生甲答对每道题的概率均为0.75,且每题答对与否都相互独立,则当他的答题数量n 为多少时,他的复赛成绩的期望值最大?参考数据:若()2~,Z Nμσ,则() 6.827P Z μσμσ-<<+≈,()220.9545P Z μσμσ-<<+≈,()330.9973P Z μσμσ-<<+≈【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】由题意知本题是一个几何概型,试验包含的所有事件是{(,)|01x y x Ω=,01}y ,写出满足条件的事件是{(,)|01A x y x =,01y ,12y x -≤,}x y ≤,算出事件对应的集合表示的面积,根据几何概型概率公式得到结果. 【详解】解:由题意知本题是一个几何概型,设甲到的时间为x ,乙到的时间为y ,则试验包含的所有事件是{(,)|01x y x Ω=,01}y , 事件对应的集合表示的面积是1S =,满足条件的事件是{(,)|01A x y x =,01y ,12y x -≤,}x y ≤, 则()1,1B ,1,12C ⎛⎫⎪⎝⎭,10,2D ⎛⎫ ⎪⎝⎭, 则事件A 对应的集合表示的面积是111131122228⨯⨯-⨯⨯=,根据几何概型概率公式得到33818P ==; 所以甲、乙两人能见面的概率38P =. 故选:D .【点睛】本题主要考查几何概型的概率计算,要解决此问题,一般要通过把试验发生包含的事件所对应的区域求出,根据集合对应的图形面积,用面积的比值得到结果.2.A解析:A 【分析】列出所有可以表示成和为6的正整数式子,找到加数全部为质数的只有336+=,利用古典概型求解即可. 【详解】6拆成两个正整数的和含有的基本事件有:(1,5),(2,4),(3,3), (4,2),(5,1), 而加数全为质数的有(3,3), 根据古典概型知,所求概率为15P =. 故选:A. 【点睛】本题主要考查了古典概型,基本事件,属于容易题.3.D解析:D 【分析】根据题意,作出满足题意的图像,利用面积测度的几何概型,即得解. 【详解】分别以A ,B ,C ,D 四点为圆心,1为半径作圆,由题意满足条件的点在图中的阴影部分224ABCD S =⨯=,214144ABCD S S ππ=-⨯⨯=-阴影由几何测度的古典概型,14ABCD S P S π==-阴影 故选:D 【点睛】本题考查了面积测度的几何概型,考查了学生综合分析,数形结合,数学运算的能力,属于中档题.4.C解析:C 【解析】 【分析】根据二项式定理,古典概型,以及正态分布的概率计算,对选项进行逐一判断,即可判断. 【详解】对①:从9张卡片中不放回地随机抽取2次,共有9872⨯=种可能; 满足2张卡片上的数奇偶性不同,共有54240⨯⨯=种可能; 根据古典概型的概率计算公式可得,其概率为405729P ==,故①错误; 对②:对341()2x x +写出通项公式可得434124144122rrr r r rr x T C C xx ---+⎛⎫⎛⎫==⋅⋅ ⎪ ⎪⎝⎭⎝⎭,令1240r -=,解得3r =,即可得常数项为31422C -⋅=,故②正确;对③:由正态分布的特点可知11(10)(1)22P P p ξξ-<<=-≥=-,故③正确. 综上所述,正确的有②③. 故选:C. 【点睛】本题考查古典概型的概率计算,二项式定理求常数项,以及正态分布的概率计算,属综合性基础题.5.B解析:B 【分析】根据已知的程序语句可得,该程序的功能是利用循环结构计算并输出k 的值,模拟程序的运行过程,可得答案. 【详解】根据题意,模拟程序框图的运行过程,如下:17,0n k ==17不是偶数,3171=52n =⨯+,011k =+=,521≠; 52是偶数,52262n ==,112k =+=,261≠; 26是偶数,26132n ==,213k =+=,131≠; 13不是偶数,3131=40n =⨯+,314k =+=,401≠; 40是偶数,40202n ==,415k =+=,201≠; 20是偶数,20102n ==,516k =+=,101≠; 10是偶数,1052n ==,617k =+=,51≠; 5不是偶数,351=16n =⨯+,718k =+=,161≠; 16是偶数,1682n ==,819k =+=,81≠; 8是偶数,842n ==,9110k =+=,41≠; 4是偶数,422n ==,10111k =+=,21≠; 2是偶数,212n ==,11112k =+=,11=; 故选:B 【点睛】解题的关键是要读懂程序框图,模拟程序框图的运行过程,即突破难点.6.B解析:B 【分析】根据循环结构的条件,依次运算求解,即得解. 【详解】起始值:5,1,0x y n ===,满足1105<⨯,故:5,0,2x y n ===; 满足0105<⨯,故:7,4,4x y n ===; 满足4107<⨯,故:11,36,6x y n ===; 满足361011<⨯,故:17,144,8x y n ===; 满足1441017<⨯,故:25,400,10x y n ===; 此时:4001025>⨯,满足输出条件:输出425x y += 故选:B 【点睛】本题考查了程序框图的循环结构,考查了学生逻辑推理,数学运算的能力,属于中档题.7.C解析:C 【分析】根据程序框图的循环结构,依次运行,算出输出值为6n =时S 的值,使得S p <不成立时p 的值即可. 【详解】根据程序框图可知,1,0n S == 则11021,2S n -=+==21123,3S n -=+== 31327,4S n -=+== 417215,5S n -=+== 5115231,6S n -=+==此时应输出6n =,需31p <不成立.因而整数p 的最大值为31 故选:C 【点睛】本题考查了程序框图的简单应用,根据输出结果确定判读框,属于中档题.8.C解析:C【分析】模拟程序的运行过程,即可得出输出y 的值时判断框中应填入的是什么. 【详解】模拟程序的运行过程如下, 输入114,1,11333x k y ===⨯+=, 41132,1339k y ==⨯+=,131403,19327k y ==⨯+=, 4011214,127381k y ==⨯+=, 此时不满足循环条件,输出12181=y ; 则判断框中应填入的是4?k ≤.故选:C . 【点睛】本题考查了算法与程序框图的应用问题,理解框图的功能是解题的关键,是基础题.9.C解析:C 【解析】解:由图可知:则底部周长小于110cm 段的频率为(0.01+0.02+0.04)×10=0.7, 则频数为100×0.7=70人. 故选C .10.B解析:B 【分析】根据系统抽样和分层抽样的定义分别进行判断即可. 【详解】若采用简单随机抽样,根据简单随机抽样的特点,1~300之间任意一个号码都有可能出现;若采用分层抽样,则1~120号为一年级,121~210为二年级,211~300为三年级.且根据分层抽样的概念,需要在1~120之间抽取4个,121~210与211~300之间各抽取3个; 若采用系统抽样,根据系统抽样的概念,需要在1~30,31~60,61~90,91~ 120,121~150,151~180,181~210,211~240,241~270,271~300之间各抽一个.①项,1~120之间有 4个,121~210之间有 3个,211~300之间有 3个,并且满足系统抽样的条件,所以①项为系统抽样或分层抽样;②项,1~120之间有 4个,121~210之间有 3个,211~300之间有 3个,可能为分层抽样;③项,1~120之间有 4个,121~210之间有 3个,211~300之间有 3个,并且满足系统抽样的条件,所以③项为系统抽样或分层抽样;④项,第一个数据大于30,所以④项不可能为系统抽样,并且④项不满足分层抽样的条件.综上所述,B 选项正确. 故选:B. 【点睛】本题主要考查系统抽样和分层抽样,掌握系统抽样和分层抽样的定义是解题的关键,属于基础题.(1)系统抽样适用于总体容量较大的情况.将总体平均分成若干部分,按事先确定的规则在各部分中抽取,在起始部分抽样时采用简单随机抽样;(2)分层抽样适用于已知总体是由差异明显的几部分组成的.将总体分成互不交叉的层,然后分层进行抽取,各层抽样时采用简单随机抽样或系统抽样.11.C解析:C 【解析】 【分析】由题意利用线性回归方程的性质计算可得a 的值. 【详解】 由于468101285x ++++==,35891075y ++++==,由于线性回归方程过样本中心点(),x y ,故:70.98a =⨯+, 据此可得:0.2a =-. 故选C . 【点睛】本题主要考查线性回归方程的性质及其应用,属于中等题.12.A解析:A 【解析】分析:先观察表中数据的规律,确定回归系数b 的符号,再计算x 和y ,代入选项确定正确答案.详解:由表中数据规律发现:热饮杯数y 随当天气温x 升高而减少,则0b <,排除C 、D. 计算1169=(504712151923273136)1111x -++++++++++= 11228=(15615013212813011610489937654)111.641111y ++++++++++=≈将x 代入选项A ,得1692.352147.767111.6311ˆy=-⨯+= 将x 代入选项B ,得1692.352127.76591.6311ˆy=-⨯+= 所以选项A 正确. 故选A.点睛:本题考查线性回归方程的求法与应用,一次项系数b 符号的判断和回归直线过样本中心点(,)x y 是解题关键.二、填空题13.【分析】根据题意建立坐标系求出圆心角扇形区域的面积进而设由数量积的计算公式可得满足的区域求出其面积代入几何概率的计算公式即可求解【详解】根据题意建立如图的坐标系则则扇形的面积为设若则有即;则满足的区解析:13328π+【分析】根据题意,建立坐标系,求出圆心角扇形区域的面积,进而设(),P x y ,由数量积的计算公式可得满足2OA OP ⋅≤的区域,求出其面积,代入几何概率的计算公式即可求解. 【详解】根据题意,建立如图的坐标系,则()(2,0,3A B - 则扇形AOB 的面积为21242233ππ⨯⨯= 设(),P x y若2OA OP ⋅≤,则有22x ≤,即1x ≤; 则满足2OA OP ⋅≤的区域为如图的阴影区域,直线1x =与弧AB 的交点为P ',易得P '的坐标为(3,则阴影区域的面积为232π+故2OA OP ⋅≤的概率21324283P πππ==+故答案为:128π+【点睛】本题考查几何概型,涉及数量积的计算,属于综合题.14.【分析】直接利用长度型几何概型求解即可【详解】因为区间总长度为符合条件的区间长度为所以由几何概型概率公式可得在区间-12上随机取一个数x 则x ∈01的概率为故答案为:【点睛】解决几何概型问题常见类型有解析:13【分析】直接利用长度型几何概型求解即可. 【详解】因为区间总长度为()213--=, 符合条件的区间长度为101-=, 所以,由几何概型概率公式可得,在区间[-1,2]上随机取一个数x,则x ∈[0,1]的概率为13, 故答案为:13. 【点睛】解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与长度有关的几何概型问题关鍵是计算问题的总长度以及事件的长度.15.【解析】分析:根据几何概型的概率公式即可得到结论详解:区间的两端点间距离是2在区间内任取一点该点表示的数都大于故在区间中随机地取出一个数这个数大于的概率为故答案为:点睛:本题主要考查概率的计算根据几解析:34【解析】分析:根据几何概型的概率公式即可得到结论. 详解:区间[]0,2的两端点间距离是2,在区间1,22⎛⎤⎥⎝⎦内任取一点,该点表示的数都大于1sin62π=, 故在区间中随机地取出一个数,这个数大于12的概率为 1232.204-=- , 故答案为:34.点睛:本题主要考查概率的计算,根据几何概型的概率公式是解决本题的关键.16.31【解析】分析程序中各变量各语句的作用再根据流程图所示的顺序可知:该程序的作用是计算并输出分段函数的函数值当时则故答案为31点睛:算法是新课程中的新增加的内容也必然是新高考中的一个热点应高度重视程解析:31 【解析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是计算并输出分段函数()0.550{250.65050x x y x x ≤=+-,,> 的函数值,当60x =时,则y 250.6605031=+-=(),故答案为31.点睛:算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.17.42【分析】输入由循环语句依次执行即可计算出结果【详解】当时当时当时当时当时当时故答案为42【点睛】本题主要考查了程序框图中的循环语句的运算求出输出值较为基础解析:42 【分析】输入1k =,由循环语句,依次执行,即可计算出结果 【详解】当1k =时,0212S =+⨯= 当2k =时,021226S =+⨯+⨯= 当3k =时,021222312S =+⨯+⨯+⨯= 当4k =时,021********S =+⨯+⨯+⨯+⨯= 当5k =时,0212223242530S =+⨯+⨯+⨯+⨯+⨯= 当6k =时,021222324252642S =+⨯+⨯+⨯+⨯+⨯+⨯= 故答案为42 【点睛】本题主要考查了程序框图中的循环语句的运算,求出输出值,较为基础18.4【解析】当输入时运算程序继续此时进而有这时输出应填答案解析:4 【解析】当输入6,8,0a b i ===时,1,,2i a b b b a =<=-=,运算程序继续,此时6,2a b ==,2,,4i a b a a b =>=-=,进而有3,,2i a b a a b =>=-=,这时2,314a b i ===+=,输出2,314a b i ===+=,应填答案4.19.①②③【分析】根据折线的变化率得到相比去年同期变化幅度、升降趋势逐一验证即可【详解】根据折现统计图可得2月相比去年同期变化幅度最小3月的空气质量指数最高故①正确;第一季度的空气质量指数的平均值最大第解析:①②③ 【分析】根据折线的变化率,得到相比去年同期变化幅度、升降趋势,逐一验证即可. 【详解】根据折现统计图可得,2月相比去年同期变化幅度最小,3月的空气质量指数最高,故①正确;第一季度的空气质量指数的平均值最大,第三季度的空气质量指数的平均值最小,故②正确;第三季度空气质量指数相比去年同期变化幅度的方差最小,故③正确; 空气质量指数涨幅从高到低居于前三位的月份为6、8、9月,故④错误, 故答案为:①②③. 【点睛】本题考查条形统计图和折线图的应用,重点考查数据分析,从表中准确获取信息是关键,属于中档题型.20.2【解析】分析:直接利用回归方程将代入即可求得的估计值详解:∵回归方程为∴当时的估计值为故答案为82点睛:本题考查回归方程的运用考查学生的计算能力属于基础题解析:2 【解析】分析:直接利用回归方程,将25x =代入,即可求得y 的估计值. 详解:∵回归方程为0.4 1.8y x =-,∴当25x =时,y 的估计值为 0.425 1.88.2y =⨯-=.故答案为8.2.点睛:本题考查回归方程的运用,考查学生的计算能力,属于基础题.三、解答题21.乙商场中奖的可能性大.【解析】试题分析:分别计算两种方案中奖的概率.先记出事件,得到试验发生包含的所有事件,和符合条件的事件,由等可能事件的概率公式得到. 试题如果顾客去甲商场,试验的全部结果构成的区域为圆盘的面积2R π,阴影部分的面积为224153606R R ππ⨯=, 则在甲商场中奖的概率为212166R P R ππ==; 如果顾客去乙商场,记3个白球为1a ,2a ,3a ,3个红球为1b ,2b ,3b ,记(x ,y )为一次摸球的结果,则一切可能的结果有:()12,a a ,()13,a a ,()11,a b ,()12,a b ,()13,a b ,()23,a a ,()21,a b ,()22,a b ,()23,a b ,()31,a b ,()32,a b ,()33,a b ,()12,b b ,()13,b b ,()23,b b ,共15种, 摸到的是2个红球有()12,b b ,()13,b b ,()23,b b ,共3种,则在乙商场中奖的概率为231155P ==, 又12p p <,则购买该商品的顾客在乙商场中奖的可能性大. 22.(1)400;(2)710;(3)12【分析】(1)由分层抽样按比例可得z ;(2)把5个样本编号,用列举法列出任取2辆的所有基本事件,得出至少有1辆舒适型轿车的基本事件,计数后可得概率.(3)求出x ,确定事件E 所含x 的个数后可得概率. 【详解】 (1)由题意1050400400600600z=+++,解得400z =; (2)C 类产品中舒适型和标准型产品数量比为40026003=,因此5人样品中舒适型抽取了2辆,标准型抽取了3辆,编号为,,,,A B a b c ,任取2辆的基本事件有:,,,,,,,,,AB Aa Ab Ac Ba Ab Ac ab ac bc 共10个,其中至少有1辆舒适型轿车的基本事件有,,,,,,AB Aa Ab Ac Ba Ab Ac 共7个,所求概率为710P =. (3)由题意9.48.69.29.68.79.39.08.298x +++++++==,满足0.5a x -≤的有9.4,8.6,9.2,8.7,9.3,9.0共6个,函数2() 2.31f x ax ax =-+没有零点,则24 2.310a a ∆=-⨯<,解得09.24a <<,再去掉9.3,9.4,还有4个, ∴所求概率为4182P ==. 【点睛】本题考查分层抽样,考查古典概型,解题关键是用列举法写出所有的基本事件. 23.见解析 【分析】将1a 与2a 进行比较,将其中较大的数记作b ,再依次判断每个数与b 的大小关系得到算法. 【详解】第一步:将1a 与2a 进行比较,将其中较大的数暂时先记作b ; 第二步:将b 与3a 进行比较,将其中较大的数暂时先记作b ; 第三步:将b 与4a 进行比较,将其中较大的数暂时先记作b ; ……第n 步:将b 与n a 进行比较,将其中较大的数记作b ; (执行完每一步后,b 的值就是前n 个数中的最大数)1n +步:输出b ,b 的值即为所求得最大值.说明:上述算法的1n +步中,每一步都要与上一步中得到的最大数b 进行比较,得出新的最大数b ;b 可以取不同的值,b 就称之为变量在第一步到第1n +步的算法过程中,都把比较后的较大数记作b ,即把值赋予了b ,这个过程就是赋值的过程,这个过程有两个功能:第一,可以不断对b 的值进行改变,即把数值放入b 中;第二,b 的值每变化一次都是为下一步的比较服务. 【点睛】本题考查了设计求最大值的算法,意在考查学生对于算法的理解和应用.24.221,02222,251(7)10,572x x y x x x x ⎧≤≤⎪⎪=-<≤⎨⎪⎪-+<<⎩,程序框图和程序见解析. 【分析】根据直线l 将梯形分割的左边部分的形状进行分类讨论,求出函数关系式,即可根据条件结构画出程序框图,并写出程序. 【详解】过点A ,D 分别作AG ⊥BC ,DH ⊥BC ,垂足分别是G ,H .∵四边形ABCD 是等腰梯形,底角是45°,AB =2cm ,∴BG =AG =DH =HC =2 cm .又BC =7cm ,∴AD =GH =3cm ,当02x ≤≤时,212y x=; 当25x <≤时,22y x =-; 当57x <<时,21(7)102y x =-+, 所以221,02222,251(7)10,572x x y x x x x ⎧≤≤⎪⎪=-<≤⎨⎪⎪-+<<⎩ . 程序框图如下:程序:INPUT “x =”;xIF x >=0 AND x <=2 THENy =0.5 *x ^2ELSEIF x <=5 THENy =2*x -2ELSEy =-0.5*(x -7) ^2+10END IFEND IFPRINT yEND【点睛】本题主要考查分段函数解析式的求法、程序框图的画法以及程序语句的书写,意在考查学生分类讨论思想和算法语句的理解和书写.25.(1)6;689;(2) 1.3 1.1y x =-,12人. 【分析】(1)由表格中的数据,利用平均数和方差的公式,即可求解; (2)由表中近五年的数据,利用公式,求得ˆˆ,ba ,求得回归直线方程,代入10x =,即可作出结论.【详解】(1)由表格中的数据,利用平均数的计算公式,可得2354578101069++++++++=. 由方差的公式,可得()()()2222168263610699s ⎡⎤=-+-++-=⎣⎦. (2)由表中近五年的数据知,7x =,8y =,95293i i i x y==∑,925255i i x ==∑, 9592255293578ˆ 1.32555495i ii i i x y xy b x x==--⨯⨯===-⨯-∑∑, 又a y bx =-,所以8 1.37 1.1a =-⨯=-,故y 与x 的线性回归方程为 1.3 1.1y x =-,当10x =时, 1.310 1.111.912y =⨯-=≈,故估计该校2020年参加“北约”“华约”考试而获得加分的学生有12人.【点睛】本题主要考查了平均数与方差的计算,以及回归直线方程的求解及应用,其中解答中认真审题,根据公式准确计算是解答的关键,着重考查运算与求解能力.26.(1)2552;(2)3173;(3)当他的答题数量7n =时,他的复赛成绩的期望值最大. 【分析】(1)由表可知,样本中成绩不低于60分的学生共有40人,其中成绩优良的人数为15人,再结合排列组合与古典概型即可得解;(2)先求出样本中的100名学生预赛成绩的平均值,即为μ,从而推出~(53Z N ,219),再根据正态分布的性质即可得解;(3)以随机变量ξ表示甲答对的题数,则~B ξ(,0.75)n ,记甲答完n 题所得的分数为随机变量X ,则2X ξ=,为了获取答n 道题的资格,甲需要“花”掉的分数为20.1()n n +,设甲答完n 题后的复赛成绩的期望值为()f n ,则2()1000.1()()f n n n E X =-++,最后利用配方法即可得解.【详解】解:(1)由题意得样本中成绩不低于60分的学生共有40分,其中成绩优良的人数为15人,记“从样本中预赛成绩不低于60分的学生中随机地抽取2人,恰有1人预赛成绩优良”为事件A ,则()1125152402552C C P A C == 答:“从样本中预赛成绩不低于60分的学生中随机地抽取2人,恰有1人预赛成绩优良”的概率为2552(2)由题意知样本中的100名学生预赛成绩的平均值为:100.1300.2500.3700.25900.1533x =⨯+⨯+⨯+⨯+⨯=,则53μ=,由2361σ=得19σ=,所以()()()()17210.158652P Z P Z P Z μσμσμσ≥=≥+=--<≤+≈, 所以,估计全市参加参赛的全体学生中,成绩不低于72分的人数为20000×0.15865=3173,即全市参赛学生中预赛成绩不低于72分的人数为3173.(3)以随机变量ξ表示甲答对的题数,则()~,0.75B n ξ,且()0.75E n ξ=, 记甲答完n 题所加的分数为随机变量X ,则2X ξ=,∴()()2 1.5E X E n ξ==, 依题意为了获取答n 道题的资格,甲需要“花”掉的分数为:()()20.2123...0.1n n n ⨯++++=+,设甲答完n 题后的复赛成绩的期望值为()f n ,则()()()221000.1 1.50.17104.9f n n n n n =-++=--+, 由于*n N ∈,所以当7n =时,()f n 取最大值104.9.即当他的答题数量7n =时,他的复赛成绩的期望值最大.【点睛】本题考查古典概型、正态分布的性质、二项分布的性质及数学期望的实际应用,考查学生对数据的分析与处理能力,属于中档题.。
【浙教版】高中数学必修三期末模拟试卷(附答案)
一、选择题1.袋中有白球2个,红球3个,从中任取两个,则互斥且不对立的两个事件是()A.至少有一个白球;都是白球B.两个白球;至少有一个红球C.红球、白球各一个;都是白球D.红球、白球各一个;至少有一个白球2.中国是发现、研究和运用勾股定理最古老的国家之一,最早对勾股定理进行证明的是三国时期吴国的数学家赵爽,他创制了一幅“勾股圆方图”,用数形结合的方法给出了勾股定理的详细证明.如图所示的“勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,已知四个直角三角形的两条直角边的长度之比为12,若向大正方形中随机投入一点,则该点落入小正方形的概率为()A.125B.19C.15D.133.某研究机构在对具有线性相关的两个变量x和y进行统计分析时,得到如下数据:x4681012y12356由表中数据求得y关于的回归方程为落在回归直线下方的概率为()A.25B.35C.34D.124.从2017年到2019年的3年高考中,针对地区差异,理科数学全国卷每年都命了3套卷,即:全国I卷,全国II卷,全国III卷.小明同学马上进入高三了,打算从这9套题中选出3套体验一下,则选出的3套题年份和编号都各不相同的概率为()A.184B.142C.128D.1145.执行如图所示的程序框图,则输出s的值为()A .34B .56C .1324D .771206.运行下图所示的程序框图,如果输入的2020n =,则输出的n =( )A .6B .7C .63D .647.更相减损术是出自中国古代数学专著《九章算术》的一种算法,其内容如下:“可半者半之,不可半者,副置分母、子之数,以少减多,更相减损,求其等也,以等数约之”下图是该算法的程序框图,如果输入102a =,238b =,则输出的a 值是A .17B .34C .36D .688.执行如图所示的程序框图,若输出的值为7,则框图中①处可以填入( )A .7SB .21SC .28SD .36S9.某教研机构随机抽取某校20个班级,调查各班关注汉字听写大赛的学生人数,根据所得数据的茎叶图,以组距为5将数据分组成[)[)[)[)[)[)[)[]0,5,5,10,10,15,15,20,20,25,25,30,30,35,35,40时,所作的频率分布直方图如图所示,则原始茎叶图可能是( )A .B .C .D .10.为了解一片经济树林的生长情况,随机测量了其中100株树木的底部周长(单位:cm ),根据所得数据画出样本的频率分布直方图如图所示.那么在这100株树木中,底部周长小于110cm 的株数n 是 ( )A .30B .60C .70D .8011.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况. 下列叙述中正确的是( )A .消耗1升汽油,乙车最多可行驶5千米B .以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多C .甲车以80千米/小时的速度行驶1小时,消耗10升汽油D .某城市机动车最高限速80千米/小时. 相同条件下,在该市用丙车比用乙车更省油 12.下列说法:①设有一个回归方程35y x =-,变量x 增加一个单位时,y 平均增加5个单位;②线性回归直线ˆybx a =+必过必过点(),x y ;③在吸烟与患肺病这两个分类变量的计算中,从独立性检验知,有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,那么他有99%的可能患肺病;其中错误的个数是( ) A .0B .1C .2D .3二、填空题13.掷一颗骰子,向上的点数第一次记为x ,第二次记为y ,则()2log 3x y +=的概率________.14.一个袋子里装有大小形状完全相同的5个小球,其编号分别为1,2,3,4,5,甲、乙两人进行取球,甲先从袋子中随机取出一个小球,若编号为1,则停止取球;若编号不为1,则将该球放回袋子中.由乙随机取出2个小球后甲再从袋子中剩下的3个小球随机取出一个,然后停止取球,则甲能取到1号球的概率为__________.15.如图,在半径为1的圆上随机地取两点,B E ,连成一条弦BE ,则弦长超过圆内接正BCD ∆边长的概率是__________.16.运行下边的流程图,输出的结果是__________.17.执行右面的程序框图,若输入的x 的值为0,则输出的y 的值是________.18.一个算法的程序框图如下图所示,若该程序输出的结果为,则判断框中应填入的条件是____.19.下列说法正确的是__________(填序号)(1)已知相关变量(),x y 满足回归方程ˆ24yx =-,若变量x 增加一个单位,则y 平均增加4个单位(2)若,p q 为两个命题,则“p q ∨”为假命题是“p q ∧”为假命题的充分不必要条件(3)若命题0:p x R ∃∈,20010x x -+<,则:p x R ⌝∀∉,210x x -+≥(4)已知随机变量()22X N σ~,,若()0.32P X a <=,则()40.68P X a >-=20.为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa )的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,,第五组,如图是根据试验数据制成的频率分布直方图,已知第一组与第二组共有20人,第三组没有疗效的有6人,则第三组中有疗效的人数为__________.三、解答题21.一种疫苗在正式上市之前要进行多次人体临床试验接种,假设每次接种之间互不影响,每人每次接种成功的概率相等.某医学研究院研究团队研发了新冠疫苗,并率先开展了新冠疫苗Ⅰ期和Ⅱ期临床试验.Ⅰ期试验为了解疫苗接种剂量与接种成功之间的关系,选取了两种剂量接种方案(0.5ml/次剂量组(低剂量)与1ml/次剂量组(中剂量)),临床试验免疫结果对比如下:接种成功 接种不成功 总计(人) 0.5ml/次剂量组 28 8 36 1ml/次剂量组 33 3 36 总计(人)611172(1)根据数据说明哪种方案接种效果好?并判断是否有90%的把握认为该疫苗接种成功与两种剂量接种方案有关?(2)若以数据中的频率为概率,从两组不同剂量组中分别抽取1名试验者,以X 表示这2人中接种成功的人数,求X 的分布列和数学期望.参考公式:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++附表:()20P K k ≥ 0.40 0.25 0.15 0.10 0.050 0.025 0.010 0.001 0k0.7081.3232.0722.7063.8415.0246.63510.82822.2019年8月8日是我国第十一个全民健身日,其主题是:新时代全民健身动起来.某市为了解全民健身情况,随机从某小区居民中抽取了40人,将他们的年龄分成7段:[10,20),[20,30),[30,40),[40,50),[50,60),[60,70),[70,80]后得到如图所示的频率分布直方图.(1)试求这40人年龄的平均数、中位数的估计值;(2)若从样本中年龄在[50,70)的居民中任取2人赠送健身卡,求这2人中至少有1人年龄不低于60岁的概率;23.如图,已知单位圆x 2+y 2=1与x 轴正半轴交于点P ,当圆上一动点Q 从P 出发沿逆时针方向旋转一周回到P 点后停止运动设OQ 扫过的扇形对应的圆心角为xrad,当0<x<2π时,设圆心O 到直线PQ 的距离为y,y 与x 的函数关系式y=f(x)是如图所示的程序框图中的①②两个关系式(Ⅰ)写出程序框图中①②处的函数关系式; (Ⅱ)若输出的y 值为2,求点Q 的坐标.24.试画出求4+11414?4+++(共10个4)的值的程序框图.25.假设关于某设备的使用年限x (年)和所支出的维修费用y (万元),有如下的统计资料:x (年)1 2 3 4 5y (万元) 5 6 7 8 10由资料可知y 对x 呈线性相关关系. (1)求y 关于x 的线性回归方程;(2)请估计该设备使用年限为15年时的维修费用.参考公式:线性回归方程y bx a =+的最小二乘法计算公式:1221ni ii nii x y nx yb xnx==-=-∑∑,a y bx =-,参考数据:5115263748510120i ii x y==⨯+⨯+⨯+⨯+⨯=∑26. 2.5PM 是指空气中直径小于或等于2.5微米的颗粒物(也称可入肺颗粒物),为了探究车流量与 2.5PM 的浓度是否相关,现采集到某城市周一至周五某时间段车流量与2.5PM 浓度的数据如下表:时间周一 周二 周三 周四 周五 车流量x (万辆)50 51 54 57 58 2.5PM 的浓度y (微克/立方米)3940424445(1)根据上表数据,求出这五组数据组成的散点图的样本中心坐标; (2)用最小二乘法求出y 关于x 的线性回归方程y bx a =+;(3)若周六同一时间段车流量是100万辆,试根据(2)求出的线性回归方程预测,此时2.5PM 的浓度是多少?(参考公式:()()()121nii i nii xx y yb xx==--=-∑∑,a y bx =-)【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】从装有3个红球和2个白球的红袋内任取两个球,所有的情况有3种:“2个白球”、“一个白球和一个红球”、“2个红球”.由于对立事件一定是互斥事件,且它们之中必然有一个发生而另一个不发生,结合所给的选项,逐一进行判断,从而得出结论. 【详解】从装有3个红球和2个白球的红袋内任取两个球,所有的情况有3种:“2个白球”、“一个白球和一个红球”、“2个红球”.由于对立事件一定是互斥事件,且它们之中必然有一个发生而另一个不发生, 对于A ,至少有1个白球;都是白球,不是互斥事件.故不符合.对于B 两个白球;至少有一个红球,是互斥事件,但也是对立事件,故不符合. 对于C 红球、白球各一个;都是白球是互斥事件,但不是对立事件,故符合. 对于D 红球、白球各一个;至少有一个白,不是互斥事件.故不符合. 故选:C . 【点睛】本题主要考查互斥事件与对立事件的定义,意在考查学生对这些知识的理解掌握水平.2.C解析:C 【分析】由已知的线段的长度比,得出两正方形的面积,运用概率公式可得选项. 【详解】设直角三角形的两直角边分别为1和2所以小正方形的边长为211-=,面积为1,大正方形的面积为25=. 所以飞镖落在小正方形内的概率为15. 故选:C. 【点睛】本题考查几何概型,关键在于由长度的关系得出大正方形和小正方形的面积,属于中档题.3.A解析:A 【分析】求出样本点的中心,求出ˆa的值,得到回归方程得到5个点中落在回归直线下方的有(6,2),(8,3),共2个,求出概率即可.【详解】8x =, 3.4y =,故3.40.658ˆa=⨯+,解得: 1.8a =-, 则0.65.8ˆ1yx =-, 故5个点中落在回归直线下方的有(6,2),(8,3),共2个, 故所求概率是25p =, 故选:A . 【点睛】本题考查回归方程概念、概率的计算以及样本点的中心,考查数据处理能力,是一道基础题.4.D解析:D 【分析】先计算出9套题中选出3套试卷的可能,再计算3套题年份和编号都各不相同的可能,通过古典概型公式可得答案. 【详解】通过题意,可知从这9套题中选出3套试卷共有39=84C 种可能,而3套题年份和编号都各不相同共有336A =种可能,于是所求概率为61=8414.选D. 【点睛】本题主要考查古典概型,意在考查学生的分析能力,计算能力,难度不大.5.D解析:D 【分析】模拟执行程序框图,只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可得到输出的s的值. 【详解】由0s =,1k =满足条件,则3k =,14s =,满足条件; 5k =,1154612s =+=,满足条件; 7k =,511312824s =+=,满足条件; 9k =,131772410120s =+=,不满足条件, 此时输出77120s =. 故选:D.【点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.6.A解析:A【分析】根据题中所给的框图,模拟执行程序框图,求得结果.【详解】输入2020100n =>,且不是奇数,赋值1010100n =>,且不是奇数,赋值505100n =>,且是奇数,赋值252100n =>,且不是奇数,赋值126100n =>,且不是奇数,赋值63100n =<,赋值()2log 6316n =+=,输出6.故选:A【点睛】该题考查的是有关程序框图的问题,涉及到的知识点有计算程序框图的输出结果,属于简单题目.7.B解析:B【分析】根据程序框图进行模拟运算即可得出.【详解】根据程序框图,输入的102a =,238b =,因为a b ,且a b <,所以238102136b =-=;第二次循环,13610234b =-=;第三次循环,1023468a =-=;第四次循环,683434a =-= ,此时34a b ==,输出34a =,故选B .【点睛】本题主要考查更相减损术的理解以及程序框图的理解、识别和应用.8.C解析:C【分析】根据程序框图列出所有的循环步骤,最后一次循环中的S 满足条件,以及倒数第二次循环中S 不满足条件来选择四个选项中的判断条件.【详解】第一次循环:1S =,不满足条件,2i =;第二次循环:3S =,不满足条件,3i =;第三次循环:6S =,不满足条件,4i =;第四次循环:10S =,不满足条件,5i =;第五次循环:15S =,不满足条件,6i =;第六次循环:21S =,不满足条件,7i =;第七次循环:28S =,满足条件,输出的值为7.所以判断框中的条件可填写“28S ”.故选C .【点睛】本题考查程序框图中判断条件的选择,这种类型的问题一般要列举出所有的循环步骤,利用最后一次和倒数第二次循环中变量满足与不满足来筛选判断条件,考查逻辑推理能力,属于中等题.9.A解析:A【解析】由频率分布直方图可知:第一组的频数为20×0.01×5=1个,[0,5)的频数为20×0.01×5=1个,[5,10)的频数为20×0.01×5=1个,[10,15)频数为20×0.04×5=4个,[15,20)频数为20×0.02×5=2个,[20,25)频数为20×0.04×5=4个,[25,30)频数为20×0.03×5=3个,[30,35)频数为20×0.03×5=3个,[35,40]频数为20×0.02×5=2个,则对应的茎叶图为A ,本题选择A 选项.点睛:茎叶图、频率分布表和频率分布直方图都是用来描述样本数据的分布情况的.茎叶图由所有样本数据构成,没有损失任何样本信息,可以随时记录;而频率分布表和频率分布直方图则损失了样本的一些信息,必须在完成抽样后才能制作.10.C解析:C【解析】解:由图可知:则底部周长小于110cm 段的频率为(0.01+0.02+0.04)×10=0.7, 则频数为100×0.7=70人.故选C .11.D解析:D【详解】解:对于A ,由图象可知当速度大于40km /h 时,乙车的燃油效率大于5km /L , ∴当速度大于40km /h 时,消耗1升汽油,乙车的行驶距离大于5km ,故A 错误;对于B ,由图象可知当速度相同时,甲车的燃油效率最高,即当速度相同时,消耗1升汽油,甲车的行驶路程最远,∴以相同速度行驶相同路程,三辆车中,甲车消耗汽油最少,故B 错误;对于C ,由图象可知当速度为80km /h 时,甲车的燃油效率为10km /L ,即甲车行驶10km 时,耗油1升,故行驶1小时,路程为80km ,燃油为8升,故C 错误; 对于D ,由图象可知当速度小于80km /h 时,丙车的燃油效率大于乙车的燃油效率, ∴用丙车比用乙车更省油,故D 正确故选D .考点:1、数学建模能力;2、阅读能力及化归思想.12.C解析:C【解析】分析:利用回归方程和独立性检验对每一个命题逐一判断.详解:对于①,一个回归方程35y x =-,变量x 增加一个单位时,y 应平均减少5个单位,所以该命题是错误的;对于②,线性回归直线ˆybx a =+必过必过点(),x y ,是正确的;对于③,在吸烟与患肺病这两个分类变量的计算中,从独立性检验知,有99%的把握认为吸烟与患肺病有关系时,我们说某人吸烟,并不能说明他有99%的可能患肺病,所以该命题是错误的.故答案为:C.点睛:本题主要考查回归方程和独立性检验,意在考查学生对这些知识的掌握水平和分析推理能力.二、填空题13.【分析】计算得到列举共有5种情况计算得到概率【详解】则故解有共5种情况故故答案为:【点睛】本题考查了概率的计算意在考查学生的计算能力和应用能力 解析:536【分析】计算得到8x y +=,列举共有5种情况,计算得到概率.【详解】()2log 3x y +=,则8x y +=,故解有()()()()()2,6,3,5,4,4,5,3,6,2共5种情况, 故556636p ==⨯. 故答案为:536. 【点睛】 本题考查了概率的计算,意在考查学生的计算能力和应用能力.14.【分析】通过分析先计算甲在第一次取得编号为1的概率再计算甲在第二次取得编号为1的概率两者相加即为所求【详解】甲在第一次取得编号为1的概率为;甲在第二次取得编号为1的概率为于是所求概率为故答案为【点睛 解析:925【分析】通过分析,先计算甲在第一次取得编号为1的概率,再计算甲在第二次取得编号为 1的概率,两者相加即为所求.【详解】甲在第一次取得编号为1的概率为15;甲在第二次取得编号为1的概率为 24254145325C C ⨯⨯=,于是所求概率为149+52525=,故答案为925. 【点睛】本题主要考查概率的相关计算,意在考查学生的分析能力,计算能力,难度中等. 15.【解析】【分析】取圆内接等边三角形的顶点为弦的一个端点当另一端点在劣弧上时求出劣弧的长度运用几何概型的计算公式即可得结果【详解】记事件{弦长超过圆内接等边三角形的边长}如图取圆内接等边三角形的顶点为 解析:13【解析】【分析】取圆内接等边三角形BCD 的顶点B 为弦的一个端点,当另一端点在劣弧CD 上时,BEBC >,求出劣弧CD 的长度,运用几何概型的计算公式,即可得结果.【详解】记事件A ={弦长超过圆内接等边三角形的边长}, 如图,取圆内接等边三角形BCD 的顶点B 为弦的一个端点,当另一端点在劣弧CD 上时,BE BC >,设圆的半径为r ,劣弧CD 的长度是23r π, 圆的周长为2r π, 所以()21323r P A r ππ==,故答案为13. 【点睛】本题主要考查“长度型”的几何概型,属于中档题. 解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与长度有关的几何概型问题关鍵是计算问题的总长度以及事件的长度;几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本事件对应的区域测度把握不准导致错误 ;(3)利用几何概型的概率公式时 , 忽视验证事件是否等可能性导致错误. 16.94【解析】不成立执行不成立执行成立所以输出解析:94【解析】3,3311050a a =∴=⨯+=>不成立,执行31013150a =⨯+=>,不成立,执行33119450a =⨯+=>,成立,所以输出94.a =17.13【解析】点睛:算法与流程图的考查侧重于对流程图循环结构的考查先明晰算法及流程图的相关概念包括选择结构循环结构伪代码其次要重视循环起点条件循环次数循环终止条件更要通过循环规律明确流程图研究的数学问 解析:13【解析】2012,32113x x x y =⇒=⇒==⨯+=点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.18.【解析】试题分析:由于第一次执行循环体之后条件成立第二次执行循环体之后条件成立第三次执行循环体之后条件成立第四次执行循环体之后条件成立第五次执行循环体之后条件不成立退出循环输出结果故判断框的条件考点 解析:6i <【解析】 试题分析:由于,第一次执行循环体之后,,条件成立,第二次执行循环体之后, ,条件成立,第三次执行循环体之后,,条件成立,第四次执行循环体之后, ,条件成立,第五次执行循环体之后,,条件不成立,退出循环,输出结果, 故判断框的条件. 考点:程序框图的应用.19.【分析】(1)由回归方程知相关变量与成负相关(2)为假命题则同时为假命题为假命题则中至少有一假命题(3)全称命题与特称命题转换条件不变结论变相反(4)由正态曲线的对称性可解【详解】(1)由回归方程知 解析:(2)【分析】(1)由回归方程ˆ24yx =-知相关变量y 与x 成负相关,(2) “p q ∨”为假命题则,p q 同时为假命题,“p q ∧”为假命题则,p q 中至少有一假命题(3)全称命题与特称命题转换条件不变,结论变相反 (4)由正态曲线的对称性可解.【详解】(1)由回归方程ˆ24yx =-知相关变量y 与x 成负相关,若变量x 增加一个单位,则y 平均增加4-个单位,故(1)错误(2) “p q ∨”为假命题则,p q 同时为假命题,“p q ∧”为假命题则,p q 中至少有一假命题,所以“p q ∨”为假命题是“p q ∧”为假命题的充分不必要条件是正确的.故(2)正确 (3)全称命题与特称命题转换条件不变,结论变相反,故(3)错误(4)由正态曲线的对称性知,随机变量()22X N σ~,,若()0.32P X a <=,对称轴是2x = ,则()40.32P X a >-=,故(4)错误.故答案为; (2)【点睛】利用正态曲线的对称性求概率是常见的正态分布应用问题.解题的关键是利用对称轴=x μ确定所求概率对应的随机变量的区间与已知概率对应的随机变量的区间的关系,必要时可借助图形判断.对于正态分布2()N μσ,,由=x μ是正态曲线的对称轴知: (1)对任意的a ,有()()P X a P X a μμ<->+=;(2)()001;()P X x P X x -≥=<;(3)()()=()P a X b P X b P X a <<<≤-.20.12【解析】分析:由频率=以及直方图可得分布在区间第一组与第二组共有20人的频率即可求出第三组中有疗效的人数得到答案详解:由直方图可得分布在区间第一组和第二组共有20人分布唉区间第一组与第二组的频率解析:12【解析】分析:由频率=频数样本容量,以及直方图可得分布在区间第一组与第二组共有20人的频率,即可求出第三组中有疗效的人数得到答案.详解:由直方图可得分布在区间第一组和第二组共有20人,分布唉区间第一组与第二组的频率分别为0.24,0.16,所以第一组有12人,第二组8人第三组的频率为0.36,所以第三组的人数为18人,第三组中没有疗效的有6人,第三组由疗效的有12人.点睛:1、用样本估计总体是统计的基本思想,而利用频率分布表和频率分布直方图来估计总体则是用样本的频率分布去估计总体分布的两种主要方法,分布表在数量表示上比较准确,直方图比较直观.2、频率分布表中的频数之和等于样本容量,各组中的频率之和等于1;在频率分布直方图中,各小长方形的面积表示相应各组的频率,所以,所有小长方形的面积的和等于1.三、解答题21.(1)1ml/次剂量组(中剂量)接种效果好,没有;(2)答案见解析.【分析】(1)由古典概率公式可求得两种剂量接种成功的概率,比较大小可得结论,再由二联表求得2K ,进行独立性检验可得结论;(2)先分析出随机变量所有的可能的取值,再由概率的乘法和加法公式求得分布列,从而求得期望.【详解】解:(1)0.5ml/次剂量组(低剂量)接种成功的概率为287369=, 1ml/次剂量组(中剂量)接种成功的概率为33113612=, ∵117129>,∴1ml/次剂量组(中剂量)接种效果好,由22⨯列联表得()22722838332.683.261113636k⨯-⨯=≈<⨯⨯⨯.没有90%的把握认为该疫苗接种成功与两种剂量接种方案有关.(2)X得可能取值为0,1,2()212191210854P X==⨯==,()71211291912912108P X==⨯+⨯=,()711772912108P X==⨯=,X得分布均为()0125410810810836E X=⨯+⨯+⨯==.【点睛】本题考查古典概率公式,独立性检验,离散性随机变量的分布列,以及随机变量的期望,属于中档题.22.(1)平均数37,中位数为35;(2)35;【分析】(1)利用小矩形的中点乘以小矩形的面积从而得到平均数,设中位数为x,列出关于x的方程,即可得答案;(2)样本中,年龄在[50,70)的人共有40×0.15=6人,其中年龄在[50,60)的有4人,设为a,b,c,d,年龄在[60,70)的有2人,设为x,y,利用古典概型的概率计算公式,即可得答案.【详解】(1)平均数()150.15250.2350.3450.15550.165750.0537x=⨯+⨯+⨯+⨯+⨯++⨯=.前三组的频率之和为0.15+0.2+0.3=0.65,故中位数落在第3组,设中位数为x,则(x-30)×0.03+0.15+0.2=0.5,解得35x=,即中位数为35.(2)样本中,年龄在[50,70)的人共有40×0.15=6人,其中年龄在[50,60)的有4人,设为a,b,c,d,年龄在[60,70)的有2人,设为x,y.则从中任选2人共有如下15个基本事件:(a,b),(a,c),(a,d),(a,x),(a,y),(b,c),(b,d),(b,x),(b,y),(c,d),(c,x),(c,y),(d,x),(d,y),(x,y).至少有1人年龄不低于60岁的共有如下9个基本事件:(a ,x ),(a ,y ),(b ,x ),(b ,y ),(c ,x ),(c ,y ),(d ,x ),(d ,y ),(x ,y ).记“这2人中至少有1人年龄不低于60岁”为事件A ,故所求概率()93155P A ==. 【点睛】本题考查利用频率分布直方图估计平均数、中位数、古典概型的概率计算公式,考查数据处理能力,求概率时注意列出所有可能的结果.23.(1)见解析;(2)见解析.【解析】 试题分析:(1)根据题意得到函数解析式为f(x)=(]()x ,0,π,2x ,,22cos x cos x ππ⎧∈⎪⎪⎨⎪-∈⎪⎩,根据这一条件可得到结果;(2)当0<x<2π时x=2π3,π<x<2π时, x=4π3,分别求得点的坐标. (I)当0<x≤π时,y=cos 2x ;, 当π<x<2π时,y=cos(π-2x )=-cos 2x 综上可知,函数解析式为f(x)=(]()x ,0,π,2x ,,22cos x cos x ππ⎧∈⎪⎪⎨⎪-∈⎪⎩. 所以框图中①②处应填充的式子分别为y=cos2x ,y=-cos 2x , (Ⅱ)若输出的y 值为,则当0<x<2π时由cos 2x =12,得x=2π3,此时点Q 的坐标为(-12; 当π<x<2π时,由-cos=2x =12,得x=4π3,此时点Q 的坐标为(-1224.见解析【解析】试题分析: 根据已知的函数解析式的规律,可利用循环结构得算法及流程图.用计数器i 来控制循环次数.14A A=+求解析式. 试题解析;程序框图如下图所示.【dj 】本题考查流程图的概念,解答本题关键是掌握住本问题的解决方法,根据问题的解决方案制订出符合要求的框图,熟练掌握框图语言,能正确用框图把算法表示出来,属于基本知识的考查.25.(1) 1.2 3.6y x =+;(2)21.6万元.【分析】(1)先求出年限x 和维修费用y 的平均值,即得到样本中心点,利用最小二乘法得到线性回归方程的系数,根据样本中心点在线性回归直线上,得到a 值,即得线性回归方程; (2)将15x =代入回归直线方程即可求得结果.【详解】(1)1234535x ++++==,5678107.25++++==y 51120i i i x y ==∑,522222211234555i i x ==++++=∑ 25945nx =⨯=,537.2108nx y =⨯⨯= ∴120108 1.25545b -==-,7.2 1.23 3.6a =-⨯= ∴y 关于x 的线性回归方程为 1.2 3.6y x =+ (2)在上述回归方程中,当15x =时得21.6y =∴该设备使用年限为15年时的维修费用大约为21.6万元.【点睛】本题考查回归直线方程的求解及其应用,其中认真审题,准确合理的运算是解决此类问题的关键,考查运算能力,属于基础题.26.(1)()54,42(2)0.72 3.12y x =+(3)75.12微克/立方米【分析】(1)求出,x y 从而得到样本点的中心;(2)利用参考公式求出()52150ii x x =-=∑,()()136n i i i x x y y =--=∑,从而得到b ,再将。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
市二中数学必修三期末考试模拟试题
考试时间:90分钟 试卷满分:100分 李纯霖
一、选择题:本大题共14小题,每小题4分,共56分.在每小题给出的四个选项中,只有一项是符合要求的.
1.如果输入n =2,那么执行右图中算法的结果是( ). A .输出3 B .输出4 C .输出5
D .程序出错,输不出任何结果
2.一个容量为1 000的样本分成若干组,已知某组的频率为0.4,则该组的频数是( ). A .400
B .40
C .4
D .600
3.从1,2,3,4这4个数中,不放回地任意取两个数,两个数都是奇数的概率是( ). A .
6
1
B .
4
1
C .3
1
D .
2
1 4.通过随机抽样用样本估计总体,下列说法正确的是( ). A .样本的结果就是总体的结果 B .样本容量越大,可能估计就越精确
C .样本的标准差可以近似地反映总体的平均状态
D .数据的方差越大,说明数据越稳定 5.把11化为二进制数为( ). A .1 011(2)
B .11 011(2)
C .10 110(2)
D .0 110(2)
6.已知x 可以在区间[-t ,4t ](t >0)上任意取值,则x ∈[-2
1
t ,t ]的概率是( ). A .
6
1 B .103 C .3
1
D .
2
1 7.执行右图中的程序,如果输出的结果是4,那么输入的只可能是( ).
A .4
B .2
第一步,输入n . 第二步,n =n +1. 第三步,n =n +2. 第四步,输出n .
C.±2或者-4 D.2或者-4
8.右图是根据某赛季甲、乙两名篮球运动员每场比赛
得分情况画出的茎叶图.从这个茎叶图可以看出甲、乙两名
运动员得分的中位数分别是().
A.31,26
B.36,23
C.36,26
D.31,23
9.按照程序框图(如右图)执行,第3个输出的数是().
A.3
B.4
C.5
D.6
10.在下列各图中,两个变量具有线性相关关系的图是().
(1)(2)(3)(4)
A.(1)(2)B.(1)(3)C.(2)(4)D.(2)(3) 11.右图执行的程序的功能是().
A.求两个正整数的最大公约数
B.求两个正整数的最大值
C.求两个正整数的最小值
D.求圆周率的不足近似值
12.已知n 次多项式f (x )=a n x n +a n -1x n -1
+…+a 1x +a 0,用秦九韶算法求f (x 0)的值,需要进行的乘法运算、加法运算的次数依次是( ).
A .n ,n
B .2n ,n
C .
2
1+)
(n n ,n D .n +1,n +1
13.有一位同学家开了一个小卖部,他为了研究气温对热饮销售的影响,经过统计得到了一天所卖的热饮杯数(y )与当天气温(x ℃)之间的线性关系,其回归方程为y
ˆ=-2.35x +147.77.如果某天气温为2℃时,则该小卖部大约能卖出热饮的杯数是( ).
A .140
B .143
C .152
D .156
14.若以连续掷两次骰子分别得到的点数m ,n 作为点P 的坐标,求点P 落在圆x 2+y 2
=16外部的概率是( ).
A .
9
5
B .
3
2 C .
9
7 D .
9
8 二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 15.假设要抽查某种品牌的850颗种子的发芽率,抽取60粒进行实验.利用随机数表抽取种子时,先将850颗种子按001,002,…,850进行编号,如果从随机数表第8行第7列的数7开始向右读,请你依次写出最先检测的4颗种子的编号 , , , .
(下面摘取了随机数表第7行至第9行)
84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76 63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79 33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54 16.由经验得知,在某商场付款处排队等候付款的人数及其概率如下:
则排队人数为2或3人的概率为 .
17.一个社会调查机构就某地居民的月收入调查了10 000人,并根据所得数据画了样 本的频率分布直方图(如下图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10 000人中再用分层抽样方法抽出80人作进一步调查,则在[1 500,2 000)(元)月收入段应抽出 人.
18.已知数列{a n },a 1=1,a n +1=a n -n ,计算数列{a n }的第20项.现已给出该问题算法的程序框图(如图所示).
为使之能完成上述的算法功能,则在右图判断框中(A )处应填上合适的语句是 ;在处理框中(B )处应填上合适的语句是 .
三、解答题:本大题共3小题,共28分. 解答应写出文字说明,证明过程或演算步骤. 19.(本小题满分8分)
从甲、乙两名学生中选拔一人参加射箭比赛,为此需要对他们的射箭水平进行测试.现这两名学生在相同条件下各射箭10次,命中的环数如下:
甲 8 9 7 9 7 6 10 10 8 6 乙
10
9
8
6
8
7
9
7
8
8
(1)计算甲、乙两人射箭命中环数的平均数和标准差; (2)比较两个人的成绩,然后决定选择哪名学生参加射箭比赛.
20.(本小题满分10分)
0.000 1
0.000 2 0.000 3 0.000 4 0.000 5 1 000 1 500 2 000 2 500 3 000 3 500 4 000
月收入/元
频率 组距
按右图所示的程序框图操作:
(1)写出输出的数所组成的数集.若将输出的数按照输出的顺序从前往后依次排列,则得到数列{a n},请写出数列{a n}的通项公式;
(2)如何变更A框内的赋值语句,使得根据这个程序框图所输出的数恰好是数列{2n}的前7项?
(3)如何变更B框内的赋值语句,使得根据这个程序框图所输出的数恰好是数列{3n-2}的前7项?
21.(本小题满分10分)
在甲、乙两个盒子中分别装有标号为1,2,3,4的四个球,现从甲、乙两个盒子中各取出1个球,每个球被取出的可能性相等.
(1)求取出的两个球上标号为相同数字的概率;
(2)求取出的两个球上标号之积能被3整除的概率.
参考答案
一、选择题:
1.C 2.A 3.A 4.B 5.A 6.B 7.B 8.C 9.C
10.D 11.A
12.A
13.B
14.C
解析:
7.解:如x ≥0,则x 2=4,得x =2;
如x <0,则由y =x ,不能输出正值,所以无解.故选B . 14.解:点P (m ,n )的坐标的所有可能有6×6=36种, 而点P 在圆x 2+y 2=16内部只有8种,即
⎩⎨⎧ ⎩⎨⎧ ⎩⎨⎧ ⎩⎨⎧ ⎩⎨⎧ ⎩⎨⎧ ⎩⎨⎧ ⎩⎨⎧ 故点P 在圆x 2+y 2=16内部概率为92,而点P 落在该圆外部的概率为9
7. 二、填空题:
15. 785,567,199,810. 16. 0.6.
17. 16 .
18.n ≤19?(或n <20?);S =S -n .
三、解答题:
19.解:(1)计算得甲x =8,乙x =8;s 甲≈1.41,s 乙≈1.10.
(2)由(1)可知,甲、乙两名学生射箭命中环数的平均数相等,但s 乙<s 甲,这表明乙的成绩比甲更稳定一些. 故选择乙参赛更合适.
20.解:(1)输出的数依次为1,3,5,7,9,11,13; 数列{a n }的通项公式为a n =2n -1,n ∈N *且n ≤7.
(2)将A 框内的语句改为“a =2”即可. (3)将B 框内的语句改为“a =a +3”即可.
21.解:设从甲、乙两个盒子中各取1个球,其数字分别为x ,y . 用(x ,y )表示抽取结果,则所有可能的结果有16种,即
(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4), (3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4). (1)设“取出的两个球上的标号相同”为事件A , 则A ={(1,1),(2,2),(3,3),(4,4)}. 事件A 由4个基本事件组成,故所求概率P (A )=
164=4
1
. m =1 n =3 m =1 n =1 m =1 n =2 m =2 n =1 m =2 n =2 m =2 n =3 m =3 n =1 m =3 n =2
(2)设“取出的两个球上标号的数字之积能被3整除”为事件B , 则B ={(1,3),(3,1),(2,3),(3,2),(3,3),(3,4),(4,3)} 事件B 由7个基本事件组成,故所求概率P (A )=
16
7.。