拜耳-艾美乐吡虫啉 文档

合集下载

杀虫剂吡虫啉的使用方法 吡虫啉常见问题详解

杀虫剂吡虫啉的使用方法 吡虫啉常见问题详解

杀虫剂吡虫啉的使用方法吡虫啉常见问题详解吡虫啉是一种杀虫剂可能很多人都不是很了解广泛用于农业方面。

那么今天火爆农资招商网小编就来为您讲解一下什么是吡虫啉以及吡虫啉的使用方法。

一、吡虫啉的有效成分1常见商品名称:吡虫啉、艾美乐、康复多、大功臣、大丰收、蚜虱净、一遍净、扑虱蚜、高巧、连胜、必林、毒蚜、蚜克西、蚜虫灵、虱蚜灵、敌虱蚜、抗虱丁等。

2主要含量与剂型:5%乳油、5%片剂、1 0%可湿性粉剂、25%可湿性粉剂、50%可湿性粉剂、70%可湿性粉剂、70%水分散粒剂、200克/升可溶液剂、350克/升悬浮剂、600克/升悬浮种衣剂、70%湿拌种剂等。

3理化性质:吡虫啉纯品为白色结晶熔点143.8℃(结晶体I)、136.4℃(结晶体Ⅱ)微溶于水、甲苯、异丙醇可溶于二氯甲烷pH5~11稳定。

原药外观为浅桔黄色结晶。

在土壤中稳定性较高半衰期150天。

属低毒杀虫剂原药大鼠急性经口LDso为1260毫克/千克对兔眼睛有轻微刺激性对皮肤无刺激性试验条件下无致癌、致突变作用对高等动物、鱼、鸟类低毒。

4产品特点:吡虫啉是一种吡啶类杀虫剂具有内吸、胃毒、触杀、拒食及驱避作用杀虫谱广、药效高、持效期长、残留低。

其杀虫机理是作用于昆虫的烟酸乙酰胆碱酯酶受体而干扰害虫运动神经系统。

害虫接触药剂后中枢神经正常传导受阻使其麻痹死亡。

该药速效性好施药后1天即有较高的防效且药效和温度呈正相关温度高、杀虫效果好。

5吡虫啉常与杀虫单、杀虫双、噻嗪酮、三唑锡、三唑磷、异丙威、抗蚜威、仲丁威、丁硫克百威、灭多威、敌敌畏、毒死蜱、马拉硫磷、辛硫磷、高效氯氰菊酯、氯氰菊酯、联苯菊酯。

氰戊菊酯、阿维菌素、灭幼脲、哒螨灵等杀虫剂成分混配用于生产复配杀虫剂。

6适用作物及防治对象:吡虫啉广泛适用于瓜果蔬菜、粮棉油作物、甜菜、茶树、马铃薯、落叶果树、常绿果树及观赏植物等对刺吸式口器害虫具有良好的防治效果如蚜虫类、叶蝉类、粉虱类、飞虱类、蓟马类、木虱类、盲蝽类等并对鞘翅目的甲虫、双翅目的斑潜蝇和鳞翅目的潜叶蛾等害虫也有较好的防效。

新农药艾美乐对稻飞虱的防治效果

新农药艾美乐对稻飞虱的防治效果

新农药艾美乐对稻飞虱的防治效果作者:张正美来源:《农业与技术》2014年第02期摘要:稻飞虱是水稻的重要害虫,以稻飞虱为靶标,对艾美乐70%水分散粒剂进行示范推广,并证明了其较好的防治效果。

关键词:艾美乐;稻飞虱;防治效果中图分类号:S435 文献标识码:A1 稻飞虱昆虫纲同翅目(Homoptera)飞虱科(Delphacidae)害虫。

俗名火蠓虫。

稻飞虱是迁飞性害虫之一,危害水稻的稻飞虱主要是灰飞虱、白背飞虱和褐飞虱。

1.1 形态特征稻飞虱属同翅目,飞虱科。

稻飞虱成虫分长翅和短翅两种类型,长翅型有较强的趋光迁飞习性,短翅型成虫属定居繁殖型,繁殖能力极强,寿命长,产卵能力强,一般可产卵300~600粒,最多可达1000余粒,其卵产在稻株叶鞘和叶脉组织内,卵粒香蕉形,排列成一条,称为“卵条”。

若虫分5龄,体色有深浅之分,初孵时淡黄白色,后变褐色,5龄若虫体长约3.2mm,前翅芽超过后翅芽尖端。

1.2 危害状稻飞虱是水稻的重要害虫,主要以成虫、若虫集中在稻丛下部刺吸植株汁液,可引起稻株中毒萎缩,影响水稻的光合作用和呼吸作用,轻则减产2~3成,重则颗粒无收。

被害部呈现长形棕色斑,严重时下部茎秆变黑,全株枯死,造成落塘。

为害严重时全田枯死似火烧状,颗粒无收。

1.3 发生特点在云南稻飞虱一年发生5~10代,田间世代重叠。

冬春温暖的年份,有少量成虫、若虫和卵在再生稻上越冬。

但每年初次发生的虫源,主要是随西南气流迁入的亚洲的中南半岛诸国稻区终年发生的飞虱。

东川稻飞虱的严重为害时期在7~9月份。

成虫趋光性强,卵多产在稻株下部叶鞘及嫩茎组织内。

虫害发生时多从稻田中间点片发生,向四处蔓延。

栽插密度大,氮肥施用量过多,植株贪青茎杆柔软,往往受害严重。

同时水稻品种不同,抗虫性有较明显的差异。

品种抗性差、种植密度大、气候适宜、天敌数量少和孕穗、抽穗、扬花灌浆期都有利于稻飞虱的发生。

2 新农药艾美乐德国拜耳公司研制的农药艾美乐是一种高效、内吸性、广谱型、低残留新型杀虫剂,对环境和作物高度安全,特别适合用在对农药残留要求严格的有机农业生产上。

吡虫啉的使用方法

吡虫啉的使用方法

吡虫啉适用作物看下面的详细介绍:十字花科蔬菜蚜虫、叶蝉、粉虱等从害虫发生初期或虫量开始较快上升时开始喷药,15天左右1次,连喷2次。

每667平方米使用5%乳油30~40毫升,或5%片剂30~40克,或10%可湿性粉剂15~20克,或25%可湿性粉剂6~8克,或50%可湿性粉剂3~4克,或70%可湿性粉剂或70%水分散粒剂2~3克,或200克/升可溶液剂8~10毫升,或350克/升悬浮剂4~6毫升,兑水30~45千克均匀喷雾。

番茄、茄子、黄瓜、西瓜等瓜果类的蚜虫、粉虱、蓟马、斑潜蝇从害虫发生初期或虫量开始迅速增多时开始喷药,15天左右1次,连喷2次左右。

一般每667平方米使用5%乳油60~80毫升,或5%片剂60~80克,或10%可湿性粉剂30~40克,或25%可湿性粉剂12~16克,或50%可湿性粉剂6~8克,或70%可湿性粉剂或70%水分散粒剂4~6克,或200克/升可溶液剂15~20毫升,或350克/升悬浮剂8~12毫升,兑水45~60千克均匀喷雾。

保护地蔬菜白粉虱、斑潜蝇从害虫发生初期开始喷药,10--15天1次,连喷2~3次。

一般每667平方米使用5%乳油80~100毫升,或5%片剂80~100克,或10%可湿性粉剂40~60克,或25%可湿性粉剂20-25克,或50%可湿性粉剂100-12克,或70%可湿性粉剂或70%水分散粒剂6-8克,或200克/升可溶液剂20~30毫升,或350克/升悬浮剂12~15毫升,兑水45~60千克均匀喷雾。

小麦蚜虫播种前药剂拌种或包衣,每10千克种子使用600克/升悬浮种衣剂60~70克,或70%湿拌种剂50~60克均匀拌种或包衣,晾干后播种。

生长期在小麦抽穗期至灌浆初期喷药1~2次。

一般每667平方米使用5%乳油60~100毫升,或5%片剂60--100克,或10%可湿性粉剂30~50克,或25%可湿性粉剂12~10克,或50%可湿性粉剂6~10克,或70%可湿性粉剂或70%水分散粒剂4~7克,或200克/升可溶液剂15~25毫升,或350克/升悬浮剂8~15毫升,兑水30~45千克均匀喷雾。

拜耳-艾美乐吡虫啉 文档

拜耳-艾美乐吡虫啉 文档

德国拜耳--拜耳艾美乐70% 吡虫啉3克杀蚜虫蓟马飞虱叶蝉商品名称:艾美乐70%水分散颗粒剂,杀虫对象:蚜虫飞虱蓟马叶蝉斑潜蝇,有效成分:吡虫啉包装规格:3克,生产企业农药登记证号:PD20050011分装企业农药登记证号:PD20050011F040008产品标准证号:Q/HZ-JV032-2009,生产批准证号:HNP33121-A8289生产日期:2013年2月21日质量保证期:2年艾美乐70%水分散剂是拜耳作物科学公司开发的一种氯烟碱类杀虫剂,其内吸性强,活性高,同时具备触杀和胃毒作用,该制剂有效成分含量高,剂型先进,使用、储存安全方便,艾美乐对多种刺吸式口器害虫具有优异的防效,如:蚜虫、飞虱、小绿叶蝉等,在推荐浓度下对作物安全。

与传统杀虫剂作用机制不同,无交互抗性,适用于无公害农产品的生产。

艾美乐具有强内吸性,持效期长。

是常规药剂的1-2倍,可以减少打药1-2次。

超高活性、超低用量。

先进的剂型(水分散粒剂),崩解迅速,有利于植物吸收,药效稳定;无粉易储藏。

拜耳独特的小包装,便于使用和运输。

通过控制蚜虫等传毒害虫,有效防治介体传毒的作物病毒病。

毒性低,对使用者和环境安全,对皮肤和眼睛无刺激作用。

作用机制具有优良无比的内吸和胃毒作用,作用于乙酰胆碱酯酶的受体,阻断昆虫正常的神经传导,使其麻痹致死。

它杀虫速度虽稍慢,但持效期长。

害虫一旦吸食本品后2-3小时内失去行动能力,48小时内达到死亡高峰。

适用作物蔬菜、果树、花卉、棉花、茶、烟草等。

防治对象各种蚜虫、稻飞虱、叶蝉、白粉虱、黑刺粉虱、梨木虱、瓜蓟马等剌吸式害虫,此外,可以防治潜叶蛾,跳甲、稻水象甲、稻负泥虫。

使用技术对蚜虫、飞虱、蓟马类每亩用药3-4.5克,对水45升喷雾。

防治粉虱7000-8000倍喷雾。

若有鳞翅目害虫与蚜虫等同时混合发生,与其它杀虫剂混使用,可适当降低剂量。

质量保证期:两年规格:3g 使用更方便每亩一袋产品说明艾美乐70%水分散粒剂为新烟碱类杀虫剂,内吸性强,活性高,作用谱广,同时具备胃毒和触杀作用。

吡虫啉的合成与应用

吡虫啉的合成与应用

© 1994-2010 China Academic Journal Electronic Publishing House. All rights reserved.
Practice [ C] . London :Oxford Science Pubilcations ,1998. [ 3 ] 闵恩泽 ,等. 绿色化学与技术 ———推进化工生产可持续
发展的途径[ C] . 中国科学院院士咨询报告 ,1998. [4 ] 黄隐华. 绿色化学与零排放工艺 [J ] . 四川师范大学学
甲酰氯滴加到含 N - 氧 - 3 - 甲基吡啶 、三乙胺 、二 氯甲烷的混合物中即可得到含 2 - 氯 - 5 - 甲基吡 啶 ,84 % ,2 - 氯 - 3 - 甲基吡啶 ,16 %的混合物 。然 后加入酸吸收剂 K2CO3 和溶剂 CCl4 ,再通入氯气进 行氯取代即可 。
2. 3 碱法 由硝基胍与乙二胺环化先制得 2 - 硝基亚氨基
3 吡虫啉的应用
吡虫啉为硝基亚甲基化合物 ,其纯品为结晶状 固体 ,低毒 、长效 、是一种新型的超高效内吸性杀虫 剂 。其作用靶标为乙酰胆碱受体 ,干扰昆虫的神经 系统的正常传导 ,引起神经通路的阻塞 ,造成乙酰胆 碱的大量积累 ,从而导致昆虫麻痹 ,并最终死亡 。因 此吡虫啉具有较高的杀虫活性 ,尤其对刺吸式口器 害虫有特效 。它广泛应用于水稻 、小麦 、玉米 、大豆 、 马铃薯 、甜菜 、棉花 、柑桔 、蔬菜等农作物的害虫防 治 。目前主要防治对象有 :稻飞虱 、稻纵卷叶螟 、二 化螟 、蚜虫 、稻叶蝉 、梨木虱 、蓟马等 。使用方法除叶 面喷洒和土壤处理外 ,种子处理效果尤为出色 。
将亚硝基氯与氯化氢的混合物通入由氯化氢饱和了 的含 2 - 氨基 - 5 - 甲基吡啶的混合物中 ,也可得到 2 - 氯 - 5 - 氯甲基吡啶 。

最新水稻全程解决方案

最新水稻全程解决方案

最新水稻全程解决方案篇一:水稻全程病虫害防治方案水稻全程病虫草害防治方案一、秧田期1、种子处理:用碧护5000倍液浸种,提高萌发率。

2、苗床土消毒:用普力克或敌克松喷施苗床,预防苗期立枯、猝倒。

3、播种后盖土,喷施40%丁·噁乳油防治杂草出土。

4、水稻二叶一心期用碧护+稻腾+5g艾美乐喷施苗床,预防稻秆蝇、二化螟,同时预防稻飞虱,在秧田期防治好稻飞虱是防治条纹叶枯病的最关键技术,同时促根、壮苗、抗旱。

这个时期用碧护一方面可降低株高和地上部分的干物重,增加地下部分干物重,另一方面随着时间的延长可促进水稻分蘖。

·坐蔸、立枯病与烂秧:80%的丙森锌600倍液+好力克3000倍液+艾美乐3000倍液。

二、大田期1、移栽返青后(约5-7天)用20%苄·乙·甲+特芜农(10%苄嘧磺隆)拌肥或细土撒施防除杂草。

插秧后7-10天用艾美乐+稻腾+农地乐防治稻秆蝇、卷叶虫、二化螟、稻飞虱等等。

2、水稻分孽盛期用碧护+富士一号+好力克防稻瘟病、纹枯病、稻曲病,这个时期用碧护可增加有效穗数来提高产量。

3、水稻孕穗期(剑叶全展时)用碧护+稻腾+艾美乐防治卷叶虫、稻飞虱,此时是稻飞虱、卷叶虫防治的重点阶段,这个时期用碧护可显著提高有效穗数、每穗总粒数、实粒数和千粒重。

水稻破口期前5-7天是防治稻曲病的最关键时期。

4、水稻齐穗期用碧护+好力克+富士一号喷施,防治稻瘟病、稻曲病、穗颈瘟,。

碧护可促进粒大粒饱,增加千粒重,防早衰,增产。

稻腾由德国拜耳公司开发研制,以胃毒作用为主,具有活性高、杀虫谱广、见效快、耐雨水冲刷、对捕食性昆虫和寄生性天敌安全等特点。

对多种作物上的鳞翅目害虫、抗性害虫有很高的防效,对水稻稻纵卷叶螟、二化螟有特效。

有效成分:氟虫双酰胺(全球第一个上市的邻苯二甲酰胺类产品)+阿维菌素全新的作用机理:鱼尼丁受体是细胞内钙离子通道,氟虫双酰胺作用于鱼尼丁受体,使钙离子通道打开,钙离子不可逆地释放,钙离子的释放引起肌肉组织迅速收缩,害虫立刻停止取食,然后麻痹,直至最后死亡。

杀虫剂吡虫啉使用方法

杀虫剂吡虫啉使用方法

杀虫剂吡虫啉使用方法吡虫啉在杀虫剂中早已经名声在外了,早已经被广大农民朋友所熟悉和知晓,但是在使用中有的农民朋友还是不知道或者说不清楚它的具体正确的使用方法,今天就从杀虫剂吡虫啉的简单介绍到具体的使用方法以及适用作物给大家做一个全面的讲解,希望由中国农药第一网为你编辑这篇文章后对吡虫啉有更深刻的了解。

有效成分吡虫啉(imidacloprid)常见商品名称吡虫啉、艾美乐、康复多、大功臣、大丰收、蚜虱净、一遍净、扑虱蚜、高巧、连胜、必林、毒蚜、蚜克西、蚜虫灵、虱蚜灵、敌虱蚜、抗虱丁等。

主要含量与剂型5%乳油、5%片剂、1 0%可湿性粉剂、25% 可湿性粉剂、50%可湿性粉剂、70% 可湿性粉剂、70%水分散粒剂、200 克/升可溶液剂、350 克/升悬浮剂、600 克/升悬浮种衣剂、70%湿拌种剂等。

理化性质吡虫啉纯品为白色结晶,熔点143.8 C (结晶体I)、136.4 C (结晶体口),微溶于水、甲苯、异丙醇,可溶于二氯甲烷,pH5〜11稳定。

原药外观为浅桔黄色结晶。

在土壤中稳定性较高,半衰期150 天。

属低毒杀虫剂,原药大鼠急性经口LDso 为1260 毫克/ 千克,对兔眼睛有轻微刺激性,对皮肤无刺激性,试验条件下无致癌、致突变作用,对高等动物、鱼、鸟类低毒。

产品特点吡虫啉是一种吡啶类杀虫剂,具有内吸、胃毒、触杀、拒食及驱避作用,杀虫谱广、药效高、持效期长、残留低。

其杀虫机理是作用于昆虫的烟酸乙酰胆碱酯酶受体,而干扰害虫运动神经系统。

害虫接触药剂后,中枢神经正常传导受阻,使其麻痹死亡。

该药速效性好,施药后1 天即有较高的防效,且药效和温度呈正相关,温度高、杀虫效果好。

吡虫啉常与杀虫单、杀虫双、噻嗪酮、三唑锡、三唑磷、异丙威、抗蚜威、仲丁威、丁硫克百威、灭多威、敌敌畏、毒死蜱、马拉硫磷、辛硫磷、高效氯氰菊酯、氯氰菊酯、联苯菊酯。

氰戊菊酯、阿维菌素、灭幼脲、哒螨灵等杀虫剂成分混配,用于生产复配杀虫剂。

拜耳 高巧Gaucho(吡虫啉)产品资料

拜耳 高巧Gaucho(吡虫啉)产品资料
Marketing/Portfolio management • Slide 6
超强内吸的特性
--极适合于种子处理的优异化合物
通过作物种子或根部吸收,高巧能被迅速传导至 植株各个部分,从而彻底防治作物早期害虫,包 括叶面害虫和地下害虫。这些害虫往往是病毒媒 介物,会造成作物退化或植株畸形如玉米粗缩病、 小麦丛矮病、水稻、棉花幼苗畸形等等;结果是
Marketing/Portfolio management • Slide 27
高巧-马铃薯
来自高巧+苗盛的好处: 防治谱广- 虫害:叶面害虫/ 地下害
药效长-全生育期控制蚜虫、甲虫 不受天气影响,田间药效发挥稳定 经济-省工省时省药,无需费时监测或再行喷防 病害:土传病害/ 种传病害
苗齐苗壮叶色浓绿,长势旺
Marketing/Portfolio management • Slide 31
高巧-玉米
高巧用于玉米制种田控制玉米花叶粗缩病毒 成本较高,但是因病毒对作物产量影响特别 大,所以控制病毒缩带来的效益也特别地明 显。在发病严重的地区,即使是普通玉米田 也是有机会的。
使用剂量:每公斤玉米种用高巧FS 600 3- 6毫升加4-6毫升水拌匀晾干即可播种。加 上立克秀可同时控制丝黑穗病;加上苗盛可 控制茎基腐病和其它土传病害。
Marketing/Portfolio management • Slide 32
Your partner for growth
Marketing/Portfolio management • Slide 26 传统农药抗性治理的最佳选择
高巧-马铃薯
虫害-叶面害虫:蚜虫;甲虫
-地下害虫:金针虫;蛴螬
病害-对立枯丝核菌引起的病害有特效:如黑痣病;茎基腐病 此外对其他种传、土传病害也有相当防效 使用高巧和苗盛-马铃薯: 优质+高产

拜耳农药知识讲座

拜耳农药知识讲座
德国拜耳作物科学公司
Crop Science
今年果园又丰收了真高兴
感谢大家给予机会
结识新朋友 不忘老朋友 愿我们永远成为好朋友
今天希望和各位农民朋友交流问题
一:世界农药发展现状 二:怎样购买需要农药 三:怎样正确使用农药 四:拜耳农药使用技术交流
农药知识讲座
农药分类(用途)
•杀虫剂/杀螨剂 •杀菌剂/杀线虫剂 •除草剂 •植物生长调节剂
使用方法:稀释500—700倍均匀喷雾
艾美乐70%水分散粒 剂
拜耳创制 世纪新药
艾美乐的化学类别
• 通用名称:吡虫啉Imidacloprid
• 结构类别:氯烟酰胍类化合物 • 剂 型:70%水分散粒剂
产品特性
超高效、强内吸性、杀虫谱较广、 低毒安全, 对生态环境影响小。 它是专门防治刺吸式口器害虫的好 武器!
拜耳作物科学
与您携手并进
拜耳作物科学: 强强联合
市场占有率 24%
14%
市场排名 1
3
22%
2
26%
1
2019年销售额:
Turnover 2019:
市场占有率:
Market share:
60.5 亿欧元
Euro 6,5 billion
~ 20%
~ 20%
1.4
0.2
2.0
0.8
生物科学BioScience 杀虫剂Insecticides 杀菌剂Fungicide
持效期长?按推荐使用艾美乐对作物非常安全?残留低适合于无公害蔬菜与绿色果品生产?毒性低对使用者和环境友好低残留无公害通过消灭传毒媒介如蚜虫飞虱叶蝉粉虱木虱等有效预防和控制作物病毒病预防作物病毒病作物害虫使用剂量克亩蔬菜蚜虫1522西瓜瓜蓟马3344白粉虱3344跳甲4466茶树小绿叶蝉2233推荐使用作物害虫使用剂量柑桔蚜虫粉虱2000030000倍潜叶蛾1000015000倍梨树梨木虱1000015000倍桃树蚜虫2000030000倍推荐使用作物害虫使用剂量克亩水稻稻飞虱1522棉花苗蚜1522伏蚜33油菜蚜虫1522烟草蚜虫2233推荐使用作物害虫用剂量荔枝蓟马1000015000倍龙眼木虱1000015000倍香蕉蚜虫蓟马1000015000倍胡椒蚜虫2000030000倍芒果叶蝉蓟马1500020000倍推荐使用作物害虫使用剂量花卉蚜虫2000030000倍观赏植物白粉虱1000015000倍花蓟马1000015000倍蚧壳虫500010000倍推荐使用小包装便于运输和使用强内吸性长持效期达20天超高活性超低剂量防效优异对刺吸式口器害虫先进剂型水分散性粒剂低毒低残留艾美乐五星级杀虫剂主要卖点?兼有保护和内吸治疗作用杀菌剂在发病前期?和初期用药铲除效果卓越

吡虫啉产品安全技术说明书.doc

吡虫啉产品安全技术说明书.doc

化学品安全技术说明书第一部分化学品及企业标识化学品中文名称:.50%吡虫啉可湿性粉剂....................... ............ 化学品英文名称:50%.」midacloprid WP ......................... ........ 企业名称:…山东新势立生物科技有限公司.......... ............. ....... 地址:…山东省宁津县时集工业园................. ............. ....... 邮编:253400 ........................................................电子邮件地址:..sd-n_ewpower@1_ .......... . .................... 联系电话:0534-******* ........................ . .................... 传真号码:.,0534-******* .............................................企业应急电话:...0532-8388.9090. ............... . .................... 产品代码:..XSL-003 ................................................... 产品推荐用途:…杀虫剂................................................. 产品限制用途:..无资料........................... .....................第二部分危险性概述物理化学危险:受高热分解放出有毒的烟雾及气体........................... 健康危害:本品是低毒性杀虫剂….,对.人体有害」使用时要配戴手套及防护… 服,并及时用肥皂和水洗净手脸。

艾美乐

艾美乐

97.6 92.6
98.3 96.3
93.7
芽虱净10%WP 30g/mu
96.9 95.4
90
89
85.5 85 80
81.7
80.4
81.8
75 药后4天
药后10天
主害代前一代防治用药
药后4天
药后10天
主害代防治用药
艾美乐2g/亩,在主害代或主害代前一代都对白背飞虱效果良好
艾美乐防效好于仿制品
防效 (%)
100%
80%
Confidor 200 SL (20 g AI/ha) Generic 200 SL (20 g AI/ha)
棉叶蝉
60%
40%
20%
0% 1 DAA
3 DAA
7 DAA
14 DAA
资料来源:BCS 印度实验结果 (棉叶蝉), 印度 2002年. 实验编号 IND-I-K1-005/02
药后7天 药后20天
艾美乐对伏蚜的防治效果
艾美乐2g/m 艾美乐3g/m 艾美乐4g/m 乐果90ml/m
艾美乐防治棉蓟马
100
90 用药适期:低龄若虫盛发期 80
70
60
艾美乐2-3G+锐劲特SC15ml 50
艾美乐2-3G+锐劲特WG1g
40
30
用药方法:按推荐剂量对水
20 10
进行叶面均匀喷施
70% 水分散粒剂 超高效内吸性杀虫剂
农药登记证号:PD20050011
交流内容
产品介绍 产品使用技术 独特卖点
一、 产品简介
艾美乐享誉全球
• 已在全球 51个国家和地区173种作物上获 得登记,其中包括中国、美国、德国、日 本、法国、英国 等

吡虫啉拌种剂在小麦粉中的残留测定

吡虫啉拌种剂在小麦粉中的残留测定

小麦吡虫啉拌种致小麦粉中吡虫啉残留量研究摘要:小麦吡虫啉拌种能防治小麦整个生长期的蚜虫,然而收获后小麦籽粒中吡虫啉残留量并没有研究。

本文对吡虫啉拌种后小麦籽粒中吡虫啉残留量进行研究。

以吡虫啉4、8、16g/kg进行拌种,收获后以高效液相色谱法测定小麦粉中吡虫啉农药残留量。

小麦粉碎后过40目筛,以甲醇超声提取,固相萃取小柱快速净化提取物,然后用液相色谱分离测定。

结果表明,该方法回收率为87.5%~91.1%,变异系数为9.56%~11.9%,测定样品中吡虫啉残留量为0.124871 mg/kg~0.201233 mg/kg。

当前我国还没有吡虫啉在小麦中的最高残留限量,国际上仅日本与澳大利亚规定了小麦中吡虫啉的最高残留限量(0.05 mg/kg),本研究表明,高剂量的吡虫啉拌种,小麦籽粒中吡虫啉l超过日本和澳大利亚最高残留限量。

关键词:小麦粉;吡虫啉;残留;高效液相色谱1引言:1.1农药残留的定义农药作为当前防治农业病虫害的主要手段,已成为农业生产中不可缺少的生产资料。

根据其用途可以分为杀虫剂、除草剂、杀螨剂、杀菌剂和植物调节剂等;根据化学结构又可分为有机氯、有机磷、有机杂环类农药等。

理想的农药施用到作物上以后,应能有效地防治病虫草害,而不伤害益虫、作物,对人、畜、禽低毒。

但是大部分农药对作物、人、环境都有一定的影响,尤其是我国广大的农户对农药的使用缺乏足够的了解,就会造成农药残留,以致农药超标。

目前粮食安全已经成为全球关心的热点问题,欧盟、美国等西方发达国家对进口食品中农药残留量的指标越来越严格。

农药残留物是由于使用农药而在食品、农产品和动物饲料中出现的特定物质,包括被认为具有毒理学意义的农药衍生物,如农药转化物、代谢物、反应产物以及杂质。

农药残留是施药后的必然现象,但如果超过最大残留限量,对人畜产生不良影响或通过食物链对生态系统中的生物造成毒害,则称为农药残留毒性(简称残毒)。

研究农药残留的最终目的是通过合理使用农药,减少对环境的污染及对人类和生态系统的不良影响。

常见的杀虫剂用途及使用方法

常见的杀虫剂用途及使用方法

吡虫啉吡虫啉是烟碱类超高效杀虫剂,具有广谱、高效、低毒、低残留,害虫不易产生抗性,对人、畜、植物和天敌安全等特点,并有触杀、胃毒和内吸等多重作用。

害虫接触药剂后,中枢神经正常传导受阻,使其麻痹死亡。

产品速效性好,药后1天即有较高的防效,残留期长达25天左右。

药效和温度呈正相关,温度高,杀虫效果好。

主要用于防治刺吸式口器害虫。

防治对象:主要用于防治水稻、小麦、棉花等作物上的刺吸式口器害虫,如蚜虫、叶蝉、蓟马、白粉虱及马铃薯甲虫和麦秆蝇等。

毒性:低毒〈一〉:大粒作物1.花生:40毫升兑水100-150毫升包衣30-40斤种子(1亩地种子)。

.2.玉米:40毫升兑水100 -150毫升包衣10-16斤种子(2-3亩地种子)。

3.小麦:40毫升兑水300-400 毫升包衣30-40斤种子(1亩地种子)。

4.大豆:40毫升兑水20-30毫升包衣8-12斤种子(1亩地种子)。

5.棉花:10毫升兑水50毫升包衣3斤种子(1亩地种子)6.其他豆类:豌豆、豇豆、菜豆、四季豆等40毫升兑水20-50毫升包衣一亩地种子。

7.水稻:浸种10毫升每亩种量,露白后播种,尽量控制水量。

〈二〉:小粒作物油菜、芝麻、菜籽等用40毫升兑水10-20毫升包衣2-3斤种子。

〈三〉:地下结果、块茎类作物土豆、姜、大蒜、山药等一般用40毫升兑水3-4斤分别包衣1亩地种子。

〈四〉:移栽类作物红薯、烟草及芹菜、葱、黄瓜、番茄、辣椒等蔬菜类作物使用方法:1,带营养土移栽的40毫升,拌碎土30斤充分和营养土搅拌均匀。

2,不带营养土移栽的40毫升水以漫过作物根部为标准。

移栽前浸泡2-4小时后用剩余的水兑碎土搅拌成稀泥,再蘸根移栽。

敌百虫防治对象:一种广谱性杀虫剂。

主要胃毒作用,也有触杀作用,可防治咀嚼式口器的害虫,对食叶性害虫均有较强的杀灭作用。

经常用于杀灭灯蛾类、刺蛾类、毒蛾类、卷叶螟、尺蠖、、菜表青虫、绢野螟等。

使用方法:1,用麦糠8千克、90%敌百虫晶体0.5千克,混合拌制成毒饵,撒施在苗床上,可诱杀蝼蛄及地老虎幼虫等。

吡虫啉(imidacloprid)

吡虫啉(imidacloprid)

Toxicological evaluationsIMIDACLOPRIDFirst draft prepared byRoland SoleckiPesticides and Biocides Division, Federal Institute for Health Protection of Consumers and Veterinary Medicine, Berlin, GermanyExplanationEvaluation for acceptable daily intakeBiochemical aspectsAbsorption, distribution, and excretionMetabolismToxicological studiesAcute toxicityShort-term studies of toxicityLong-term studies of toxicity and carcinogenicityGenotoxicityReproductive toxicityMultigeneration studiesDevelopmental toxicitySpecial studiesNeurotoxicityStudies on metabolitesObservations in humansCommentsToxicological evaluationReferencesExplanationImidacloprid, 1[(6-chloro-3-pyridinyl)methyl]-N-nitro-2-imidazolidinimine, is a new neonicotinoid insecticide which has become an important pest control agent on many crops. The neonicotinoid insecticides are related to nicotine in their structure and action at the nicotinic acetylcholine receptor (Casida, 1998). Imidacloprid is most active against suckling insects because of their unique plant-systemic and translaminar properties. Imidacloprid poisoning in the American cockroach, Periplaneta americana, is characterized, in sequence, by loss of leg strength, leg tremors, body shaking and death. Neurophysiological studies have confirmed that imidacloprid is an agonist at the postsynaptic nicotinic acetylcholine receptor of insects. It appears to act like acetylcholine, by exciting specific nerve cells. There is also some evidence, however, that imidacloprid has multiple agonist and antagonist effects on neuronal nicotinic acetylcholine receptor channels of clonal rat phaeochromocytoma cells (Nagata et al., 1998).The selective toxicity of imidacloprid to insects and not to mammals is attributed to differences inthe binding affinity or potency at the nicotinic acetylcholine receptor (Chao & Casida, 1997). The specificity of nicotinoid insecticides appears to be related to receptor subtype, function, neuronal region and developmental stage, and their metabolic lability leads to bioactivated toxicants such as desnitro-imidacloprid in mammals. The selectivity also depends in large part on major structural differences in the neuronal nicotinic acetylcholine receptor binding sites of mammals and insects (Casida, 1998). The selectivity of the chloronicotyl compounds for insects as opposed to mammals can be partly explained by differences in the ionization of the pyrolidine nitrogen. Imidacloprid is poorly ionized in neutral media, in contrast to nicotine, and thus passes easily through insect lipophilic barriers (Sone et al., 1994; Roe et al., 1999). Imidacloprid has not previously been evaluated by the JMPR.Evaluation for acceptable daily intake1. Biochemical aspects(a) Absorption, distribution and excretionImidacloprid labelled with 14C in either the methylene or the imidazolidine ring was administered in a physiological saline solution at concentrations of 0.1–2 mg/l to a total of 50 male and 20 female rats. Groups of five male and five female rats were given a single dose of 1 mg/kg bw intravenously or a single dose of 1 or 20 mg/kg bw orally. Other groups were given 14 doses of of the non-radiolabelled compound at 1 mg/kg bw orally once per day and, 24 h after the last dose, a single oral dose of 1 mg/kg bw as the radiolabelled compound. Radiolabel was determined in plasma and excreta as a function of time and, after sacrifice 48 h after treatment, the concentration of total radiolabel was determined in organs and tissues. A further group of five male rats was given a single oral dose of radiolabelled compound at 20 mg/kg bw, and 14CO2 was measured over 48 h. In an additional test, four groups of five male rats were given a single oral dose of 20 mg/kg bw, killed after 40 min, 1.5, 3 and 6 h, and total radiolabel was determined as a function of time in single organs. A final group of five male rats with bile-duct fistulas was given a single intraduodenal dose of 1 mg/kg bw in order to determine the amount of total radiolabel absorbed and to measure the rate and extent of biliary excretion. The design of the study complied with good laboratory practice (GLP).After oral administration of 1 or 20 mg/kg bw of [pyridinyl-14C-methylene]imidacloprid, the radiolabel was extensively absorbed from the intestinal lumen and readily distributed from the plasma into the body. The radiolabel was also readily eliminated. After intravenous administration of 1 mg/kg bw, about 92% of the recovered radiolabel was excreted in urine and faeces within 48 h. Most of the radiolabel was excreted via the kidneys, with an average ratio in urine:faeces of 4:1. After oral administration, about 96% of the dose was excreted in urine and faeces within 48 h. No difference was found between female and male rats. More than 90% of the renal radiolabel was excreted during 24 h after dosage. The average residual radiolabel in the body, excluding the gastrointestinal tract, at sacrifice was about 0.5%, and that in the gastrointestinal tract was about 0.06% of the administered dose. The rats with bile-duct fistulas excreted only 4.7% of the administered dose with faeces, 56% in urine and about 36% with bile. These findings indicate the existence of enterohepatic circulation of the radiolabel. Significant amounts of radiolabel were not excreted in expired air (CO2). The elimination of total radiolabel from the plasma could beapproximated by a combination of two exponential terms, from which elimination half-lives were calculated. The two half-lives varied from 2.6–3.6 to 26–118 h, respectively (Klein, 1987a).The distribution of [pyridinyl-14C-methylene]imidacloprid was investigated in male rats by conventional whole-body autoradiography on X-ray film in a study conducted according to GLP. The rats were given a single oral dose of 20 mg/kg bw, and the distribution of radiolabel was visualized at 1, 2, 4, 24 and 48 h after treatment. For visualization of the initial distribution, one animal was injected intravenously with 20 mg/kg bw and killed 5 min later.The radiolabel was readily absorbed and rapidly distributed to the tissues and organs. The pattern of distribution showed that the radiolabel could readily permeate tissues: With the exception of fatty tissues, the central nervous system and the mineral part of bone, blackening on the autoradiogram was seen on all other parts of the body 5 min after intravenous injection and 1 h after oral dosage. Higher concentrations were seen later in the thyroid and adrenals, but, after 24 h, all other organs and tissues showed only small amounts of radiolabel. The high degree of blackening over the kidney during the first 24 h is a reflection of the high rate of renal excretion of the administered compound. The concentration of radiolabel decreased in organs and tissues with time after administration. The concentrations in the fatty tissues and in the central nervous system were very low throughout the study (Klein, 1987b).Imidacloprid labelled with 14C in the 4 and 5 positions of the imidazolidine ring was administered orally to male and female rats at a dose of 1 mg/kg bw and additionally to male rats at a dose of 150 mg/kg bw, in a study conducted according to GLP. Radiolabel was determined in excreta and in plasma as a function of time, and single organs and tissues were assayed for total radiolabel at sacrifice 48 h after treatment. The biokinetics of [imidazolidine-4,5-14C]imidacloprid was similar to that of methylene-14C-labelled compound. The administered radiolabel was extensively absorbed from the intestinal lumen and rapidly distributed in the body. Excretion was rapid, and the renal route predominated (Klein & Brauner, 1991).The nitroso metabolite of imidacloprid, 1-(6-chloro-3-pyridylmethyl)-N-nitroso(imidazoli-din-2-ylidene)amine (WAK 3839), has been identified as a minor constituent of edible plant commodities but was not found in the excreta of rats in the studies described above. Absorption of imidacloprid and WAK 3839 began immediately after oral administration of 1 mg/kg bw. A comparison of the curves of concentration–time in plasma suggested that the absorption was similarly extensive, and no significant differences in terminal half-times were found after administration of imidacloprid (38 h) and WAK 3839 (47 h). WAK 3839 was eliminated slightly faster, and the concentrations of total radiolabel in the organs were lower than with the parent compound. After administration of a single high dose of imidacloprid, 150 mg/kg bw, to male rats, the ratio of excretion of total radiolabel was the same as after the low dose. Pretreatment with repeated doses also did not affect the pattern of excretion (Klein, 1990).(b) MetabolismIn the biokinetics study of Klein (1987a), urine was collected separately from each rat under cool conditions, at intervals of 0–4, 4–8, 8–24 and 24–48 h, and faeces were collected at intervals of 0–24 and 24–48 h after treatment. The metabolites were extracted from faeces, further isolated by preparative high-performance liquid chromatography (HPLC) and then purified by other HPLC methods. The metabolites were identified by chromatographic comparison with authentic reference compounds in at least two independent chromatographic systems or by 1H-nuclearmagnetic resonance and mass spectroscopic techniques.A proposed metabolic pathway of imidacloprid in rats is shown in Figure 1. After administration of low doses, no relevant sex dependence was seen in the excretion pattern of the compound or in the metabolic profiles in excreta. All the identified metabolites were found at each dose group and in both sexes. The main metabolites were 6-chloronicotinic acid and its glycine conjugate, which were found only in urine. The amounts of monohydroxylated (5-hydroxy-imidacloprid) and olefinic metabolites were similar to those of unchanged parent compound. All other biotransformation products were quantitatively of minor significance.Figure 1. Proposed metabolic pathway of imidacloprid in ratsTwo main routes of metabolism responsible for the degradation of imidacloprid were identified.The first is oxidative cleavage, yielding 6-chloronicotinic acid, which is conjugated with glycine to form a hippuric acid-type conjugate. These two metabolites together represented most of the identified metabolites, or about 30% of the recovered radiolabel. Of minor importance in terms of quantity is dechlorination of the pyridinyl moiety, producing the 6-hydroxy nicotinic acid and its methylmercapturic acid derivative, probably as a degradation product of a glutathione conjugate. The 6-methylmercapto nicotinic acid conjugated with glycine, and the glycine conjugate constituted 5.6% of the recovered radiolabel. The second important biodegradation step starts with hydroxylation of the imidazolidine ring at the 4 or 5 position, and about 16% of the recovered radiolabel was identified as the sum of 4- and 5-hydroxy imidacloprid. The loss of water yields the olefinic compound. These biotransformation products and the unchanged parent compound were excreted in urine and faeces, while the guanidine compound was a less important metabolite and was eliminated only in faeces.The high excretion rate of the parent compound (average, 14%) indicates rapid passage through the body, as was confirmed by the elimination of > 90% of the recovered radiolabel within 24 h after administration (Klein & Karl, 1990).The distribution of the metabolites in liver and kidney at various times after a single oral dose was investigated in rats under the same test conditions as used by Klein (1987a). The metabolites were extracted from lyophilized organs with water and methanol, further purified by HPLC and thin-layer chromatography and identified by comparative HPLC with authentic reference compounds in at least two independent chromatographic systems and also by mass and 1H-nuclear magnetic resonance spectroscopic techniques. The metabolites found in the kidney were identical to those identified in urine. Triazinone was not found in the excreta and may have undergone further biodegradation before elimination via the kidney or the bile. The relative amounts of those biotransformation products formed by oxidative mechanisms (e.g. 6-chloronicotinic acid) increased in the liver during the test period. In kidney, the relative amount of the more polar compounds decreased with time (6-chloronicotinic acid and its glycine conjugate), while the amounts of the olefinic metabolite and the mono-hydroxylated derivative 4-hydroxyimidacloprid showed a relative increase. The proportion of the parent compound decreased slowly as it was metabolized (Karl & Klein, 1992).The metabolic pattern of imidacloprid and its nitroso metabolite in excreta was investigated in male rats after administration of a single oral dose of 1 mg/kg bw of imidacloprid or the nitroso compound and after administration of a high dose of 150 mg/kg bw imidacloprid. After the low dose of imidacloprid, about 82% of the renal radiolabel was detected. The main renal metabolite (about 30%) was the glycine conjugate of 6-chloronicotinic acid. The parent compound was present at about 12%, the two monohydroxylated biotransformation products (4-hydroxy and 5-hydroxyimidacloprid) at about 19% and the olefinic metabolite at about 11%. 6-Chloronicotinic acid represented 7.9% of the renal radiolabel. No nitroso compound was formed under these conditions. In the faeces, imidacloprid, the olefinic metabolite, 6-chloronicotinic acid and its glycine conjugate were identified. These findings are in good agreement with those reported by Klein & Karl (1990).Few metabolites were found in the urine of male rats given the nitroso compound orally. Besides unchanged nitroso compound, only 8% of the renal radiolabel was attributable to the guanidine-type metabolite, some of which was also found in faeces. This finding indicates that the metabolism of the nitroso compound is completely different from that of its parent compound. Inorder to investigate whether the nitroso compound is formed as a biotransformation product of imidacloprid in vivo, a high single oral dose of 150 mg/kg bw imidacloprid was given to male rats. No nitroso metabolite was formed. In the urine of rats given a diet containing 1800 ppm of imidacloprid for 1 year and then one oral dose of [methylene-14C]imidacloprid, 9.3% of the radiolabel was attributable to the nitroso metabolite, corresponding to 6.8% of the administered dose. The nitroso compound is therefore formed in vivo in rats after long-term intake of imidacloprid. In order to confirm this finding, a direct isotope dilution analysis was conducted with the urine of these rats and also with the urine of mice that had been fed a diet containing 2000 ppm of imidacloprid for about 1 year. Both analyses clearly demonstrated the presence of the nitroso compound in the urine (Klein, 1990).2. Toxicological studies(a) Acute toxicityThe results of studies on the acute toxicity of imidacloprid are summarized in Table 1. The methods used in these studies complied with OECD guidelines and GLP.Table 1. Acute toxicity of imidaclopridSpecies (mg/kg bw)Strain(mg/m3 air)Sex(%)Route LD50LC50Purity ReferenceRat Bor:WISW Male Oral42094.2Bomann(1989a)Female450–480Rat Bor:WISW Male Oral64096.0Bomann(1991a)Female650Rat Bor:WISW Male Oral50094.3Bomann(1991b)Female380Mouse Bor:NMRI Male Oral13094.2Bomann(1989b)Female170Rat Bor:WISW Male Percutaneous> 500094.2Krötlinger(1989)Female> 5000Rat Bor:WISW Male Inhalation(aerosol, 4 h)> 6995.3Pauluhn(1988a)Female> 69Rat Bor:WISW Male Inhalation(dust, 4 h)> 530095.3Pauluhn(1988a)Female> 5300Rat Bor:WISW Male Intraperitoneal 160–17094.2Krötlinger(1990)Imidacloprid given orally as a single dose was moderately toxic to rats (LD50, 380–650 mg/kg bw) and mice (LD50, 130–170 mg/kg bw). Behavioural and respiratory signs, disturbances of motility, narrowed palpebral fissures, transient trembling and spasms were seen in rats and mice treated orally at doses > 200 mg/kg bw and > 71 mg/kg bw, respectively. The clinical signs were reversed within 6 days. Imidacloprid given intraperitoneally showed moderate to low acute toxicity in rats, the signs being similar to those after oral administration. Very little toxicity was seen after acute dermal application. The LC50 for a single exposure to an aerosol could not be determined exactly, as rats tolerated inhalation for 4 h of the maximum concentration of dust that could be produced technically (0.069 mg/l of air) without signs or deaths.Imidacloprid (purity, 94.2%) did not irritate the eyes or skin of HC New Zealand white rabbits (Pauluhn, 1988b,c) and did not sensitize the skin of DHPW guinea-pigs (Ohta, 1988).(b) Short-term studies of toxicityMiceGroups of 10 male and 10 female Charles-River B6C3F1mice were given diets containing imidacloprid (purity, 92.8%) at a concentration of 0, 120, 600 or 3000 ppm for up to 107 days, equivalent to 17, 86 and 430 mg/kg bw per day. The study did not comply with GLP.Seven males and seven females at 3000 ppm died; furthermore, several animals displayed a poor general condition, and rough coats were observed frequently. Body-weight gain was reduced and food consumption was increased in males at 600 ppm and males and females at 3000 ppm. At this dose, clinical chemical tests showed significantly decreased urea and cholesterol concentrations in males and lowered alanine aminotransferase activity and glucose concentration in females. Alkaline phosphatase activity was significantly increased in both sexes at 3000 ppm and in females at 120 and 600 ppm. Differences in the weights of the liver, heart, spleen, kidneys, testes and adrenals were observed at 3000 ppm. The NOAEL was 120 ppm, equivalent to 17 mg/kg bw per day (Eiben, 1988a).RatsGroups of 10 male and 10 female Wistar rats [Bor:WISW(SPF-Cpb)] received diets containing imidacloprid (purity, 92.8%) at a concentration of 0, 120, 600 or 3000 ppm for up to 98 days, equal to 11, 57 and 410 mg/kg bw per day for males and 15, 78 and 510 mg/kg bw per day for females. The study did not comply with GLP.Food intake was increased in animals at 3000 ppm, and body-weight gain was decreased at 600 and 3000 ppm. Significantly elevated alkaline phosphatase activity and depressed glucose concentration were found in males and females at 3000 ppm, and the males also showed a reduced cholesterol concentration. Degenerative histological lesions in the epithelium of the testicular tubules were seen in five of 10 males at 3000 ppm, and multifocal group cell necrosis was diagnosed in the liver of one male at this dietary concentration. The NOAEL was 120 ppm, equal to 11 mg/kg bw per day (Eiben, 1988b).Groups of 10 male and 10 female Wistar rats [Bor:WISW(SPF-Cpb)] received diets containing imidacloprid (purity, 95.3%) at a concentration of 0, 150, 600 or 2400 ppm for up to 96 days, equal to 14, 61 and 300 mg/kg bw per day for males and 20, 83 and 420 mg/kg bw per day for females. Satellite groups consisting of 10 male and 10 female rats received the test substance at a concentration of 0 or 2400 ppm over the same period, and, to study the reversibility of any effects, control diet was provided during the subsequent 4-week post-treatment observation period. The study was conducted according to GLP.In animals at 2400 ppm, feed intake was increased during treatment and recovery. Reduced body-weight gain was observed in males at 600 ppm and in females at 2400 ppm. Slightly longer thromboplastin times and depressed thrombocyte counts were found at 2400 ppm, both of which were only partially reversible. Elevated alkaline phosphatase and alanine aminotransferase activities and depressed protein, albumin, cholesterol and triglyceride concentrations were found in males and females at 2400 ppm. Depressed protein concentrations were also found in males at 150 and 600 ppm. Males at 2400 ppm showed increased incidences of cellular necroses, round-cell infiltration, swollen cellular nuclei and cytoplasmic lesions in the liver, but these hepatotoxic effects were reversible within the subsequent 4-week post-treatment observation period. The NOAEL was 150 ppm, equal to 14 mg/kg bw per day (Eiben & Rinke, 1989). Imidacloprid (purity, 95.3%) was administered in dust form through the nose only to groups of 10 male and 10 female Wistar rats [Bor:WISW(SPF-Cpb)] at analytically determined concentrations of 0, 20, 110 and 500 mg/m3on 5 consecutive days for 6 h/day. The respirability of the test substance at the highest concentration was relatively low; about 20% of the administered mass of the substance was in the form of particles < 5 mg. The study was conducted according to GLP. Body-weight gain was slightly decreased at the two higher concentrations. Elevated O-demethylase and N-demethylase activities were found in a liver homogenate from animals at 110 mg/m3air. The NOAEL was 20 mg/ m3air (Pauluhn, 1988a).Imidacloprid (purity, 95.3%) was administered in dust form through the nose only to groups of 10 male and 10 female Wistar rats [Bor:WISW(SPF-Cpb)] at analytically determined concentrations of 0, 5.5, 30 and 190 mg/m3 for 6 h/day, 5 days per week for 4 weeks. The study was conducted according to GLP.Body-weight gain was decreased in males at the two higher concentrations. Increased mixed-function oxidase activities were found in liver homogenate from females at these concentrations and in males at 190 mg/m3air. Increased alanine aminotransferase and glutamate dehydrogenase activities were seen in both sexes at the highest concentration, and alanine aminotransferase activity was increased in females at 30 mg/m3air. The females had increased alkaline phosphatase activity at the two higher concentrations and increased liver weights at 190 mg/m3of air. The serum alpha1-globulin fraction was reduced in both sexes at the two higher concentrations. At 190 mg/m3of air, blood coagulation time was increased in females and thrombocyte counts were depressed in males. The NOAEL was 5.5 mg/ m3air (Pauluhn, 1988d) RabbitsImidacloprid (purity, 95.0%), mixed to a paste in a physiological saline solution containing 2% Cremophor EL, was applied to the shorn dorsal and flank skin of groups of five male and five female HC New Zealand white rabbits at a dose of 0 or 1000 mg/kg bw for 6 h/day for 15 days. The study was conducted according to GLP. No treatment-related effects were observed. The NOAEL was 1000 mg/kg bw per day at the limit dose tested (Flucke, 1990).DogsGroups of two male and two female pure-bred beagle dogs received diets containing imidacloprid (purity, 92.8%) at a concentration of 0, 200, 1000 or 5000 ppm for up to 28 days, providing average intakes of 0, 7.3, 31 and 49 mg/kg bw per day for males and females combined. The study was not conducted according to GLP.Two animals at 5000 ppm died, and the other two were killed in moribund condition. The symptoms observed were ataxia, tremor and occasional vomiting. Reductions in food consumptionwere recorded at the two higher concentrations, and body weight was markedly reduced at 5000 ppm. The results of hearing tests, ophthalmic examinations, urine analyses and haematological examiinations indicated no treatment-related changes at any dietary concentration. Cytochrome P450 activity in the liver was slightly increased in males and females at 1000 ppm. The triiodothyronine concentration in plasma was slightly decreased in one male and one female at 5000 ppm. The weight of the liver was increased in one female at 1000 ppm; one male at this concentration showed slight hepatocellular hypertrophy with slight pigmentation of Kupffer cells, and another had minimal follicular atrophy of the thyroid. The NOAEL was 200 ppm, equal to 7.3 mg/kg bw per day (Bloch et al., 1987).Groups of four male and four female beagles [Bor:Beag] were given diets containing imidacloprid (purity, 95.3%) at a concentration of 0, 200, 600 or 1800/1200 ppm for 13 weeks. The concentration of active ingredient at the highest level was reduced at week 4 because of low food intake. The study was conducted according to GLP.The food consumption of animals at 600 ppm was reduced. At higher concentrations, the animals showed a clinically emaciated state and transient trembling. Body-weight gain was reduced at 1800 ppm, but, once the active ingredient concentration had been reduced to 1200 ppm, a trend to normalization was apparent. The NOAEL was 200 ppm, equal to 7.5 mg/kg bw per day (Ruf, 1990).Groups of four male and four female pure-bred beagles were given diets containing imidacloprid (purity, 94.9%) at a concentration of 0, 200, 500 or 1250/2500 ppm for 52 weeks. The concentration of 1250 ppm was increased from week 17 onwards. The mean intakes of imidacloprid were equal to 0, 6.1, 15 and 41/72 mg/kg bw per day for males and females combined. The study was conducted according to GLP.Slight, temporary reductions in food intake were seen in both sexes at 1250 ppm and at the increased concentration of 2500 ppm. At 1250/2500 ppm, clinical chemical examination revealed an increased plasma cholesterol concentration in females after 13 and 26 weeks, increased hepatic cytochrome P450 activity and slightly increased liver weights in males and females after 52 weeks. The NOAEL was 500 ppm, equal to 15 mg/kg bw per day (Allen et al., 1989).(c) Long-term studies of toxicity and carcinogenicityMiceGroups of 50 male and 50 female Charles-River B6C3F1mice received diets containing imidacloprid (purity, 95.3%) at a concentration of 0, 100, 330 or 1000 ppm for 24 months. In a supplemental study to determine the maximum tolerated dose, groups of 50 male and female mice were given diets containing imidacloprid (purity, 90.0%) at a concentration of 0 or 2000 ppm for 24 months. Ten additional mice of each sex were included per dose in both studies for interim sacrifice after 12 months of treatment. The mean intake of imidacloprid was equal to 20, 66, 210 and 410 mg/kg bw per day for males and 30, 100, 270 and 420 mg/kg bw per day for females. The study was conducted according to GLP.Food intake was decreased by 24% in females at 2000 ppm, and water intake was decreased in males and females at this concentration. Mice at 1000 and 2000 ppm had significantly, dose-related reduced weight gains, particularly during the latter half of the study. At 2000 ppm, lower leukocyte counts were found in both sexes. Reduced blood cholesterol concentrations were observed at 2000 ppm after 52 weeks. An increased incidence of low-grade periacinar hepatic-cell hypertrophy was found in males at 2000 ppm. The brains of animals at the highest concentrationshowed more mineralization of the thalamus than in the control groups. There was no evidence of a carcinogenic effect. The NOAEL was 330 ppm, equal to 66 mg/kg bw per day (Watta-Gebert, 1991a,b).RatsGroups of 50 male and 50 female Wistar rats [Bor:WISW (SPF-Cpb)] received diets containing imidacloprid (purity, 94.3–95.3%; mixed batch) at a concentration of 0, 100, 300 or 900 ppm for 24 months. In a supplemental study to determine the maximum tolerated dose, groups of 50 male and female Wistar rats were given diets containing imidacloprid at a concentration of 0 or 1800 ppm for 24 months. Ten additional rats of each sex were included per dose in each study for interim sacrifice after 12 months of treatment. The mean intake of imidacloprid was equal to 5.7, 17, 51 and 100 mg/kg bw per day for males and 7.6, 25, 73 and 140 mg/kg bw per day for females. The study was conducted according to GLP.Water intake was reduced by 13% in females at 1800 ppm. Reduced weight gain was noted in males and females at 900 ppm, the decreases reaching a maximum of 11–12% at 1800 ppm. The absolute weights of the liver and kidney in females and of the liver in males were reduced after 12 months at 900 ppm. Histological assessment of these organs afforded no evidence of treatment-related lesions. An increased incidence of mineralization in the colloid of the thyroid gland follicles, in comparison with the incidences of this lesion in controls in previous studies, was determined in males at concentrations > 300 ppm and in females at 900 ppm. At 1800 ppm, fewer colloid aggregations and parafollicular hyperplasia were observed. There was no evidence of a carcinogenic effect. The NOAEL was 100 ppm, equal to 5.7 mg/kg bw per day (Eiben, 1991; Eiben & Kaliner, 1991).(d) GenotoxicityImidacloprid was investigated in an adequate range of assays for genotoxicity in vitro and in vivo (Table 2).Table 2. Studies of the genotoxicity of imidaclopridEnd-point Test object Concentration ordose Purity(%)Result ReferenceIn vitroReverse mutation S. typhimuriumTA1535, TA100,TA1537, TA98<12 000µg/plate95.0Negative a Herbold(1989a)Reverse mutation S. typhimuriumTA1535, TA100,TA1537, TA98< 5000 µg/plate 96.0Negative a Herbold (1991)Reverse mutation S. typhimuriumTA1535, TA100,TA1537, TA98< 5000 µg/plate 96.3Negative a Herbold (1991)Reverse mutation S. typhimurium TA98,TA100, TA1535,TA1537< 5000 µg/plate 97.4Negative a Herbold (1992)Reverse mutation S. typhimurium TA98,TA100, TA1535,TA1537; E. coli< 5000 µg/plate 93.7Negative Watanabe(1991a)。

吡虫啉知识

吡虫啉知识

吡虫啉是烟碱类超高效杀虫剂,具有广谱、高效、低毒、低残留,害虫不易产生抗性,对人、畜、植物和天敌安全等特点,并有触杀、胃毒和内吸等多重作用。

害虫接触药剂后,中枢神经正常传导受阻,使其麻痹死亡。

产品速效性好,药后1天即有较高的防效,残留期长达25天左右。

药效和温度呈正相关,温度高,杀虫效果好。

主要用于防治刺吸式口器害虫。

吡虫啉在我国的商品名称很多,如海正吡虫啉、一遍净、蚜虱净、大功臣、康复多等。

性能与特点吡虫啉是新一代氯代尼古丁杀虫剂,具有广谱、高效、低毒、低残留,害虫不易产生抗性,对人、畜、植物和天敌安全等特点,并有触杀、胃毒和内吸多重药效。

害虫接触药剂后,中枢神经正常传导受阻,使其麻痹死亡。

速效性好,药后1天即有较高的防效,残留期长达25天左右。

药效和温度呈正相关,温度高,杀虫效果好。

主要用于防治刺吸式口器害虫。

剂型2.5%、10%、60%可湿性粉剂,5%乳油,20%浓可溶性粉剂,20%可溶性液剂,70%水分散粒剂。

防治对象和使用方法防治绣线菊蚜、苹果瘤蚜、桃蚜、梨木虱、卷叶蛾等害虫,可用10%吡虫啉4000~6000倍液喷雾,或用5%吡虫啉乳油2000~3000倍液喷雾。

注意事项不能与碱性农药混用,药品应放于阴凉干燥处存放,果品采收前15天停用。

几种杀虫剂对桃蚜及其天敌异色瓢虫的亚致死效应温室生态系统代表着节肢动物生长发育的一类独特的生态环境。

这种人为的环境条件适于害虫种群的迅速增长,因而温室内害虫的发生情况往往较露地更为严重。

研究某些关键因子(如杀虫剂、天敌生物、环境温度等)在温室生态系统中对害虫种群的调控作用,以及这些因子之间的联合效应,有助于提高保护地害虫综合治理的水平。

杀虫剂和天敌生物的应用一直是防治害虫的两种主要措施,而化学防治与生物防治之间往往存在着难以调和的矛盾。

为适应生产上的需要,协调运用化学防治与生物防治技术,本研究从生物学、生态学和生理学的层次上测定了吡虫啉、鱼藤酮、氰戊菊酯、阿维菌素、抗蚜威和印楝素6种杀虫剂对桃蚜及其捕食性天敌异色瓢虫的亚致死影响。

吡虫啉系列浅谈

吡虫啉系列浅谈

吡虫啉系列浅谈吡虫啉系列产品浅谈一、吡虫啉的简介吡虫啉是1984年由德国拜耳公司和日本特殊农药公司共同开发一个的超高效杀虫剂。

在国内最早由江苏省农药研究所在1992年底仿制成功,其后吡虫啉的开发呈遍地开花之势。

自1996年制剂产品进入市场以来,吡虫啉的生产和销售一直呈现快速上升的趋势,是国内近十年发展最快的新型硝基亚甲基类杀虫剂。

吡虫啉杀虫谱广,持效期长,尤其对有机磷类和氨基甲酸酯类产生抗性的飞虱、粉虱、蚜虫等刺吸式口器害虫具有优异的防治效果,对部分鞘翅目、双翅目和鳞翅目如稻螟虫、稻瘿蚊、稻象甲、稻负泥虫、柑橘潜叶蛾、果蝇等害虫也表现出较高的防效。

吡虫啉是我国第一批高毒农药替代品种,近10 年来需求不断增长而成为市场追逐的热点产品,生产企业在农业部登记火爆。

目前登记原药的有江苏省农药研究所、江苏克胜、红太阳集团、江苏扬农、江苏长青、江苏常农、浙江海正等63 家国内企业和德国拜耳1 家国外企业,登记单剂的有近370 家企业,登记复配制剂的有近600 家企业。

据相关资料和主要生产企业了解,国内吡虫啉原药产能约为2.5 万吨,2009 年全国吡虫啉原药产量约为12000 吨,约占全球总产量的2/3,国内市场需求量在3000~4000 吨左右,出口在8000 吨左右。

目前由于通货膨胀和原材料价格上涨等原因,今年11月份95%吡虫啉原药价格约为1150000 元/ 吨,比去年同期历史最低价格上涨了了30000 元/ 吨,并且数量较大时不容易拿到现货。

二、吡虫啉理化性质及制剂加工:理化性质吡虫啉纯品为无色晶体,有微弱气味,熔点143.8℃,密度1.543(20℃),溶解度(g/L,20℃):水中0.5l ,二氯甲烷55,异丙醇1.2,甲苯0.68,正己烷<0.1,在pH 5~11 的介质中稳定。

【毒性】原药大鼠急性经口LD50 为1260mg/kg,急性经皮LD50>1000mg/kg。

对兔眼睛和皮肤无刺激作用。

月季药剂

月季药剂

黑星病、白粉病
代森锰锌,多抗霉素,甲基硫菌灵
杜邦福星,巴斯夫翠贝,先正达世高,陶氏益农晴菌唑。

灰霉病
伤口防护
1.治菌思奇乳油(啶菌噁唑)
德国拜耳施佳乐(嘧霉胺)
先正达卉友
德国拜耳50%异菌脲
霜霉病
1.德国拜耳银法利
2.先正达阿米西达(嘧菌酯)
3.拜耳普力克霜霉威盐酸盐
红蜘蛛
1:爱卡螨
2:金满枝
3:乙螨唑
4:阿维菌素
5:克螨特
6:螨危
喷洒1-2次清园药物,如:怀农特柑橘油,石硫合剂等
蚜虫
1.德国拜耳极锐(含量60%吡蚜酮20%烯啶虫胺)
2.德国拜耳艾美乐(70%吡虫啉)
3.陶氏益农立可施(50%氟啶虫胺腈)
4.先正达阿克泰(25%噻虫嗪)
食叶虫
1.阿维菌素(中国农大产的效果最好)
2.苏云金杆菌BT(生物源杀虫剂)
3.德国巴斯夫-除尽(10%虫螨腈对二斑叶螨也有效果)
蓟马
陶氏益农艾绿士(乙基多杀霉素)对菜青虫也有效
陶氏益农立可施对蚜虫也特效。

吡虫啉PPT课件

吡虫啉PPT课件

[2]. Imidacloprid general fact sheet. National Pesticide Information Center. /factsheets/imidagen.html.

[3]. Imidacloprid general fact sheet. National Pesticide Information Center. /factsheets/imidacloprid.html.
Tokushu Noyaku Seizo K.K. in Japan synthesized among other
compounds the nitroguanidine NTN 33893, known today as imidacloprid. The addition of a heterocyclic substituent杂环取代基, the 6-chloro-3-pyridyl-methyl moiety, to the nitromethylene substituted activity heterocycles and (NMHs) further increased the insecticidal
aerosol exposure in
inhalation LC50 was estimated to be greater than 5323 mg/m3 for
粉 剂
for
气 雾
rats. Imidacloprid dust is considered slightly toxic but the7
优 化
remarkably
optimization
finally
resulted in the invention of imidacloprid from Nihon Bayer
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

德国拜耳--拜耳艾美乐
70% 吡虫啉3克杀蚜虫蓟马飞虱叶蝉
商品名称:艾美乐70%水分散颗粒剂,杀虫对象:蚜虫飞虱蓟马叶蝉斑潜蝇,有效成分:吡虫啉
包装规格:3克,生产企业农药登记证号:PD20050011
分装企业农药登记证号:PD20050011F040008
产品标准证号:Q/HZ-JV032-2009,生产批准证号:HNP33121-A8289
生产日期:2013年2月21日
质量保证期:2年
艾美乐70%水分散剂是拜耳作物科学公司开发的一种氯烟碱类杀虫剂,其内吸性强,活性高,同时具备触杀和胃毒作用,该制剂有效成分含量高,剂型先进,使用、储存安全方便,艾美乐对多种刺吸式口器害虫具有优异的防效,如:蚜虫、飞虱、小绿叶蝉等,在推荐浓度下对作物安全。

与传统杀虫剂作用机制不同,无交互抗性,适用于无公害农产品的生产。

艾美乐具有强内吸性,持效期长。

是常规药剂的1-2倍,可以减少打药1-2次。

超高活性、超低用量。

先进的剂型(水分散粒剂),崩解迅速,有利于植物吸收,药效稳定;无粉易储藏。

拜耳独特的小包装,便于使用和运输。

通过控制蚜虫等传毒害虫,有效防治介体传毒的作物病毒病。

毒性低,对使用者和环境安全,对皮肤和眼睛无刺激作用。

作用机制
具有优良无比的内吸和胃毒作用,作用于乙酰胆碱酯酶的受体,阻断昆虫正常的神经传导,使其麻痹致死。

它杀虫速度虽稍慢,但持效期长。

害虫一旦吸食本品后2-3小时内失去行动能力,48小时内达到死亡高峰。

适用作物
蔬菜、果树、花卉、棉花、茶、烟草等。

防治对象
各种蚜虫、稻飞虱、叶蝉、白粉虱、黑刺粉虱、梨木虱、瓜蓟马等剌吸式害虫,此外,可以防治潜叶蛾,跳甲、稻水象甲、稻负泥虫。

使用技术
对蚜虫、飞虱、蓟马类每亩用药3-4.5克,对水45升喷雾。

防治粉虱7000-8000倍喷雾。

若有鳞翅目害虫与蚜虫等同时混合发生,与其它杀虫剂混使用,可适当降低剂量。

质量保证期:两年
规格:3g 使用更方便每亩一袋
产品说明艾美乐70%水分散粒剂为新烟碱类杀虫剂,内吸性强,活性高,作用谱广,同时具备胃毒和触杀作用。

该制剂有效成份含量高,剂型先进,使用和贮运安全方便。

艾美乐对多种刺吸式口器害虫具有优异的防效,如蚜虫、稻飞虱、小绿叶蝉等,在推荐剂量下对作物安全。

产品外观
特点说明●水分散粒剂剂型先进●德国原产,品质保障
●内吸性强●持效期长●适用范围广●活性高,剂量低
●毒性低●小包装,方便运输和使用
●“逆境屏蔽”——提高抗逆性,促进作物健康,提高产量
使用方法
作物(或范围)物防治对象制剂用药量使用方法
茶树小绿叶蝉2-4克/亩喷雾
棉花蚜虫2-3克/亩喷雾
十字花科蔬菜蚜虫1.33-1.9克/亩喷雾
水稻稻飞虱2-3克/亩喷雾
小麦蚜虫2-4克/亩喷雾
注意事项说明注意事项:
1.安全间隔期:十字花科蔬菜甘蓝7天,萝卜14天,水稻14天,棉花14天,茶树7 天,小麦20天;每个生长季最多施药次数:茶树和小麦1次,其它作物2次。

2.在配药和施药时,应穿戴防护服、戴口罩、手套等,严禁吸烟和饮食。

3.使用本品及清洗药具时应注意避免污染水源,蜂场及蚕室。

4.用药后应用大量清水和肥皂清洗手、脸及其它可能接触到药剂或雾滴的部位。

5.不可与碱性农药混用,建议与其他作用机制不同的杀虫剂轮换使用,以延缓抗性产生。

相关文档
最新文档