2008年考研数学一真题及答案

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2008年考研数学一真题
一、选择题(1 8小题,每小题4分,共32分。下列每题给出的四个选项中,只有一个选项是符合题目要求的。)
(1)设函数 ,则 的零点个数为
(A)0 (B)1
(C)2 (D)3
【答案】B。
【解析】
且 ,则 是 唯一的零点
综上所述,本题正确答案是B。
【考点】高等数学—一元函数积分学—积分上限的函数及其导数

则 , ,即 也是以2为周期的周期函数。
【方法二】
对于任意的 ,有

故 也是以2为周期的周期函数。
【方法三】
对于任意的 ,有
由于 以2为周期,则
所以
故 也是以2为周期的周期函数。
【方法四】
对于任意的 ,有

故 也是以2为周期的周期函数。
【考点】高等数学—函数、极限、连续—函数的有界性、单调性、周期性和奇偶性
【解析】
(I)数学归纳法:
记 阶行列式 的值为
当 时 ,命题 正确;
当 时, ,命题正确
设 时,命题 正确
当 时,按第一列展开,则有
命题正确,所以 。
(II)由克拉默法则, 方程组有唯一解,故 时方程组有唯一解,且用克拉默法则,有
(III)当 时,方程组为
由 ,方程组有无穷多解,其通解为 ,其中 为任意常数。
(等价无穷小代换)
(洛必达法则)
( )
(等价无穷小代换)
【方法二】
(等价无穷小代换)
(变量代换 )
(洛必达法则)
(等价无穷小代换)
【方法三】
由泰勒公式 ,可得
则,上式
【方法四】
(拉格朗日中值定理)
【方法五】
由于当 时, ,则
所以
【考点】高等数学—函数、极限、连续—无穷小量的性质及无穷小量的比较,极限的四则运算
(A) 不可逆, 不可逆
(B) 不可逆, 可逆
(C) 可逆, 可逆
(D) 可逆, 不可逆
【答案】C。
【解析】
因为
所以可知 可逆, 可逆
综上所述,本题正确答案是C。
【考点】线性代数—矩阵—矩阵的概念和性质,矩阵可逆的充分必要条件
(6) 设 为3阶实对称矩阵,如果二次曲面方程
在正交变换下的标准方程的图形如右图所示,
综上所述,本题正确答案是 。
【考点】高等数学—常微分方程—变量可分离wenku.baidu.com微分方程
(10)曲线 在点 处的切线方程是。
【答案】
【解析】
先求曲线在点 处的斜率
等式 两端对 求导得
在上式中,将 代入可得
所以曲线在该点处的切线方程为 即
综上所述,本题正确答案是 。
【考点】高等数学—一元函数微分学—导数的几何意义和物理意义
(12)设曲面 是 的上侧,则 。
【答案】 。
【解析】
补曲面 ,取下侧,记

综上所述,本题正确答案是 。
【考点】高等数学—多元函数积分学—二重积分与三重积分的概念、性质、计算和应用,两类曲面积分的概念、性质及计算
(13)设 为2阶矩阵, 为线性无关的2维列向量, , ,则 的非零特征值为。
【答案】1。
(2)函数 在点 处的梯度等于
(A) (B)
(C) (D)
【答案】A。
【解析】
所以
综上所述,本题正确答案是A。
【考点】高等数学—多元函数微分学—方向导数和梯度
(3)在下列微分方程中,以 为通解的是
(A) (B)
(C) (D)
【答案】D。
【解析】
由通解表达式
可知其特征根为
可见其对应特征方程为
故对应微分方程为
(18)(本题满分10分)
设函数 连续,
(I)利用定义证明函数 可导,且 ;
(II)当 是以2为周期的周期函数时,证明函数 也是以2为周期的周期函数。
【解析】
(I)对于任意的 ,由于函数 连续,所以
(积分中值定理)
其中 介于 和 之间。
又 ,可知 可导,且
(II)【方法一】
对于任意的 ,有
所以,
从而有 (常数)
【解析】
【方法一】
定义法:由
可得矩阵 的特征值为 ,因此 的非零特征值为 。
【方法二】
矩阵相似:
可知 , 的特征值易得为 ,所以可得矩阵 的特征值为 ,因此 的非零特征值为 。
综上所述,本题正确答案是 。
【考点】线性代数—矩阵的特征值和特征向量—矩阵的特征值和特征向量的概念、性质,相似变换、相似矩阵的概念及性质
高等数学—一元函数微分学—微分中值定理,洛必达(L'Hospital)法则
(16)(本题满分9分)
计算曲线积分 ,其中 是曲线 上从点 到点 的一段。
【解析】
【方法一】
【方法二】
添加 轴上从点 到点 的直线段 , 为 与 围成的封闭区域,则
【考点】高等数学—多元函数积分学—二重积分与三重积分的概念、性质、计算和应用,两类曲线积分的概念、性质及计算,格林(Green)公式
高等数学—一元函数积分学—积分上限的函数及其导数
(19)(本题满分11分)
将函数 展开成余弦级数,并求 的和。
【解析】
因为 是偶函数,于是 ,对 有
所以
令 ,

【考点】高等数学—无穷级数—函数的傅里叶(Fourier)系数与傅里叶级数,函数在 上的正弦级数和余弦级数
(20)(本题满分10分)
设 为3维列向量,矩阵 ,其中 分别是
【解析】
(Ⅰ)因为
所以 是 的无偏估计量。
(Ⅱ)当 时, , , ,从而 ,D[
所以
【考点】概率论与数理统计—数理统计的基本概念—统计量的数字特征
(14)设随机变量 服从参数为1的泊松分布,则 。
【答案】
【解析】由已知,有 ,所以
所以
综上所述,本题正确答案是 。
【考点】概率论与数理统计—随机变量的数字特征—一维随机变量及函数的数字特征
三、解答题: 小题,共94分。解答应写出文字说明、证明过程或演算步骤。
(15)(本题满分9分)
求极限
【解析】
【方法一】
则 的正特征值的个数为
(A) (B)1
(C)2 (D)3
【答案】B。
【解析】
所给图形为双叶双曲线,标准方程为
二次型正交变换化为标准形时,其平方项的系数就是 的特征值,可知 的正特征值的个数为1
综上所述,本题正确答案是B。
【考点】线性代数—二次型—次型的标准形和规范形
(7)设随机变量 独立同分布,且 的分布函数为 ,则 的分布函数为
【方法二】
排除法:若取 , ,则显然 单调, 收敛,但 ,显然 不收敛,排除A。
若取 ,显然 收敛且单调,但 不收敛,排除C和D。
综上所述,本题正确答案是B。
【考点】高等数学—函数、极限、连续—函数的有界性、单调性、周期性和奇偶性,极限存在的两个准则:单调有界准则和夹逼准则
(5)设 为 阶非零矩阵, 为 阶单位矩阵,若 ,则
可得
已知 ,所以 ,得


所以

综上所述,本题正确答案是D。
【考点】概率论与数理统计—随机变量的数字特征—随机变量函数的数学期望矩、协方差、相关系数及其性质
二、填空题(9 14小题,每小题4分,共24分。)
(9)微分方程 满足条件 的解是 。
【答案】 。
【解析】
分离变量得 ,l两边积分有
利用条件, ,解得
(A) (B)
(C) (D)
【答案】A。
【解析】
综上所述,本题正确答案是A。
【考点】概率论与数理统计—多维随机变量及其分布—随机变量的独立性和不相关性,两个及两个以上随机变量简单函数的分布
(8)设随机变量 ,且相关系数 ,则
(A) (B)
(C) (D)
【答案】D。
【解析】
由相关系数的性质可知:
如果 则必有
(11)已知幂级数 在 处收敛,在 处发散,则幂级数 的收敛域为。
【答案】 。
【解析】
由题设可知,幂级数 在 处收敛,在 处发散,即 时,幂级数收敛。
对于幂级数 ,则收敛区间为
又幂级数 在 处收敛,在 处发散,
所以对于幂级数 收敛域为 。
综上所述,本题正确答案是 。
【考点】高等数学—无穷级数—幂级数及其收敛半径、收敛区间(指开区间)和收敛域
(17)(本题满分11分)
已知曲线 求曲线 距 面最远和最近的点。
【解析】
设 为曲线 上任意一点,则点 到 面的距离为 ,即原题化为求 在条件 下的最值点,构造拉格朗日函数
解方程组
得 ,从而
得可能极值点:

根据几何意义,曲线 上存在距 面最远和最近的点,故所求点依次为 。
【考点】高等数学—多元函数微分学—多元函数的极值和条件极值
的转置。证明:
(I)秩 ;
(II)若 线性相关,则秩 。
【解析】
(I)因为 为3维列向量,所以 都是3阶矩阵,
且秩
那么
(II) 线性相关,则设
于是,
【考点】线性代数—矩阵—矩阵的秩
(21)(本题满分12分)
设 元线性方程组 ,其中
(I)证明行列式 ;
(II)当 为何值时,该方程组有唯一解,并求 ;
(III)当 为何值时,该方程组有无穷多解,并求通解。
(22)(本题满分11分)
设二维随机变量 相互独立, 的概率密度为 , 的概率为
记 。
(Ⅰ)求 ;
(Ⅱ)求 概率密度 。
【解析】
(Ⅰ)
(Ⅱ)
所以
【考点】概率论与数理统计—多维随机变量的分布—二维随机变量函数的分布
(23)(本题满分11分)
设 为来自 的简单随机样本,记
(Ⅰ)证明 是 的无偏估计量;
(Ⅱ)当 时,求 。
综上所述,本题正确答案是D。
【考点】高等数学—常微分方程—高于二阶的某些常系数齐次线性微分方程
(4)设函数 在 内单调有界, 为数列,下列命题正确的是
(A)若 收敛,则 收敛
(B)若 单调,则 收敛
(C)若 收敛,则 收敛
(D)若 单调,则 收敛
【答案】B。
【解析】
【方法一】
由于 单调, 单调有界,则数列 单调有界,根据单调有界准则知数列 收敛。
相关文档
最新文档