小学数学 格点型面积.教师版
格点多边形的面积计算教学课件

THANKS
感谢观看
解题思路
通过观察格点图形,确定多边形 边界上的格点数目,应用公式进
行计算。
解答过程
首先数出多边形边界上的格点数目 ,然后代入公式进行计算,得出面 积值。
注意事项
要确保数出的格点数目准确无误, 避免计算错误。
例题二:不规则格点多边形面积计算
解题思路
将不规则多边形划分为若干个规则多边形,分别计算规则多边形的 面积,再求和。
常见错误与误区提示
总结学生在计算过程中可能出现的错误和误区,如忽略倾斜45度的边、计算边界上格点 数目时出错等。针对这些问题,给出正确的解题方法和建议。
06
课堂小结与拓展延伸
本节课知识点回顾总结
格点多边形的定义
回顾格点多边形的定义,强调顶点均位于格点上的特点。
面积计算公式的推导
回顾格点多边形面积计算公式的推导过程,强调公式中各项的意义 和计算方法。
格点多边形性质总结
性质1
格点多边形的面积等于其内部格 点数加上边界格点数的一半再减
去1。
性质2
格点多边形的面积也可以通过将 多边形划分为若干个基本图形( 如矩形、梯形等),然后分别计 算各基本图形的面积并求和得到
。
性质3
如果一个格点多边转换法
将格点多边形转换成其他已知面积的多边形,如矩形、三角 形等,再利用公式求解。
转化法:将复杂图形转化为简单图形求解
平移法
通过平移格点多边形使其变为规则多边形,便于计算面积。
旋转法
将格点多边形绕某点旋转一定角度,使其变为易于计算面积的图形。
03
典型例题分析与解答过程展示
例题一:规则格点多边形面积计算
02
格点多边形面积计算方法论述
五年级下册数学教案-同步培优:格点与面积 北师大版

五年级下册数学教案-同步培优:格点与面积北师大版一、教学目标1.了解格点和面积的概念。
2.掌握计算不规则图形的面积的方法。
3.熟练掌握正方形和长方形的面积的计算方法。
4.培养学生的空间想象力和推理能力。
二、教学重点1.理解和掌握格点和面积的概念。
2.掌握计算不规则图形的面积的方法。
三、教学难点1.长方形和正方形面积的计算方法。
2.推理判断长方形和正方形面积变化的规律。
四、教学准备1.学生课本。
2.教案和笔记。
3.教学投影仪和电脑。
五、教学过程5.1 导入(5分钟)教师介绍格点和面积的定义,并提出问题:“你所在的教室面积有多少?”5.2 学习和巩固(40分钟)5.2.1 学习格点和面积的概念(15分钟)教师向学生介绍格点的概念,并示范在一个正方形纸上画出格点图案。
教师提出问题:“你们能在纸上画出一个矩形格点图案吗?”学生们可以一起创作、研究,探究出各种格点图形。
接着,教师向学生讲解面积的概念,并让学生自己画出一个图形,然后计算出这个不规则图形的面积。
学生可以用拼图方式来计算不规则图形的面积。
5.2.2 学习长方形和正方形的面积(25分钟)教师引导学生分别用不同的方法计算长方形和正方形的面积,并让学生探究其里面的规律。
学生可以通过计算面积的过程中,自己创新出各种计算方法,例如正方形边长的平方等。
5.3 展示和总结(10分钟)教师让学生集体展示各自设计的格点图形,然后教师在屏幕上展示最好的几个图案,并让学生进行评论和推荐。
教师总结本课的内容,要求学生回答“什么是格点和面积?如何计算长方形与正方形的面积?”六、课后练习教师布置学生回家后完成相关数学作业。
考核的部分包括:1.计算不规则图形的面积。
2.计算长方形和正方形的面积。
3.运用计算规律解决实际问题。
七、教学反思本节课的主要目的是让学生了解格点和面积的概念,掌握计算不规则图形的面积的方法,以及熟练掌握正方形和长方形的面积的计算方法。
在教学过程中,教师注重引导学生自主学习,发挥学生的能动性和主动性,让学生在实际操作中理解公式和计算方法。
上海奥数精讲 第7讲讲义 格点与面积(教师版)

教具准备1、课件:PPT、“例3”、“例3拓展”、“例3拓展”flash动画。
2、板书。
教学难点正方形格点多边形面积的计算;三角形格点多边形面积的计算。
教学重点正方形格点多边形面积的计算;三角形格点多边形面积的计算。
教学目标1.认识格点的概念;2.会用毕格定理计算格点多边形的面积;3.培养学生借助格点图,很快地比较和计算图形的面积大小。
第7讲格点与面积内容概述1.什么是格点?平常我们用的方格纸的方格(每个小方格都是一个小正方形)都是由横、纵两组平行线垂直相交构成的,其中相邻两条平行线的距离都是相等的(通常规定是1个单位),在这样的方格纸上,横、纵两组平行线垂直相交的交点称为格点.以格点为顶点画出的多边形称为格点多边形.三角形格点多边形是指:每相邻三点成“∵”或“∴”,所形成的三角形都是等边三角形.规定它的面积为1,以这样的点为顶点画出的多边形为三角形格点多边形.2.正方形格点多边形的面积公式(毕格定理):S=L÷2+N -1(S为面积;其中L为周界上的格点数;N为图形内包含的格点数)3. 三角形格点多边形的面积计算公式:如果用S表示面积,N表示图形内包含的格点数,L表示图形周界上的格点数,那么:S=2×(L÷2+N -1)。
引入教学过程教学目标:激发学生对格点产生浓厚的学习兴趣。
如下图,相邻四点连成的小正方形面积为1平方厘米,分别连结各点,组成下面12个图形,你发现有什么排列的规律?算出各图形的面积,你发现有什么排列的规律?算出各图形的面积。
找出图形外面一周的点数,中间的点数与面积三者之间的关系。
(1)(2)(3)上节课回顾所谓操作问题,实际上是对某个事物按一定要求进行的一种变换,这种变换可以具体执行。
操作问题往往是求连续进行这种操作后可能得到的结果。
本节课主要介绍:⑴ 与数字相关的操作问题; ⑵ 染色相关的操作问题; ⑶ 计数方面的操作问题。
环节一:引入【讲解过程】1、学生分小组讨论,分别派代表回答教师问题。
四年级下第4讲《格点图形面积计算》教学课件

例题讲解
mathematics
例题1:图中每个最小正方形的面积都是1平方厘米,那么三个阴影图形的面积分别是多少 平方厘米? 分析:这几个多边形都不规则,我们能不能把它们切成很多规则的小块,一块一块地求
面积呢?或者给它们添补一些规则的小块,使得它们变成规则可求的大图形.
例题讲解
类似地,在最小正三角形面积为1的三角形网格中,三角形格点图形也有面积计算公式: 三角形格点多边形面积=边界格点数+内部格点数×2-2 仔细比较这两个公式,可以发现:三角形格点的公式正好是正方形格点公式的2倍, 大家想一下,为什么是这样呢?
这种方法我们也称为毕 克定理!
例题讲解
mathematics
mathematics
练习1:图中相邻两格点间的距离均为1厘米,那么阴影图形的面积分别是多少平方厘米?
例题讲解
mathematics
通过例1中的第1小题我们学会了将大块不规则图形“分割”成许多规则的图形,这种方法称 为“分割法”,但是不一定每个图形都很容易分割;第2小题我们学会了把不好算的图形“添 补”成规则的大图形,计算时用大图形的面积减去空白部分的面积,这种方法称为“添补法”. 分割法,正所谓“大事化小”,把不规则的大图形化为规则的小图形. 添补法则正好相反,是“以小见大”,把不规则图形周围添上规则的小图形,使总面积便于计 算. 使用割、补法的时候,一般应该从图形的顶点出发,尽量沿着格线划分,以便与小方格的面积 找到联系或者利用垂直等性质. 接下来我们用分割、添补的方法计算一下三角形格点图形的面积.
例题4:如图,每个最小等边三角形的面积都是1平方厘米,阴影部分的面积是多少平方厘 米? 分析:尝试着用格点图形面积公式计算一下吧!先数数边界格点、内部格点分别有多少
小学奥数-格点型面积

板块一 正方形格点问题在一张纸上,先画出一些水平直线和一些竖直直线,并使任意两条相邻的平行线的距离都相等(通常规定是1个单位),这样在纸上就形成了一个方格网,其中的每个交点就叫做一个格点.在方格网中,以格点为顶点画出的多边形叫做格点多边形,例如,右图中的乡村小屋图形就是一个格点多边形.那么,格点多边形的面积如何计算?它与格点数目有没有关系?如果有,这两者之间的关系能否用计算公式来表达?下面就让我们一起来探讨这些问题吧!用N 表示多边形内部格点,L 表示多边形周界上的格点,S 表示多边形面积,请同学们分析前几个例题的格点数.我们能发现如下规律:12LS N =+-.这个规律就是毕克定理.毕克定理若一个格点多边形内部有N 个格点,它的边界上有L 个格点, 则它的面积为12LS N =+-. 例题精讲格点型面积【例 1】用9个钉子钉成相互间隔为1厘米的正方阵(如右图).如果用一根皮筋将适当的三个钉子连结起来就得到一个三角形,这样得到的三角形中,面积等于1平方厘米的三角形的个数有多少?面积等于2平方厘米的三角形有多少个?【解析】面积等于1平方厘米的三角形有32个.面积等于2平方厘米的三角形有8个.(1)面积等于1平方厘米的分类统计如下:①②③底为2,高为1底为2,高为1底为1,高为23×2=6(个)3×2=6(个)3×2=6(个)④⑤⑥底为1,高为2底为2,高为1底为1,高为23×2=6(个)2×2=4(个)2×2=4(个)所以,面积等于1平方厘米的三角形的个数有:6+6+6+6+4+4=32(个).(2)面积等于2平方厘米的分类统计如下:3×2=6(个)1×2=2(个)所以,面积等于2平方厘米的三角形的个数有:6+2=8(个).【例 2】如图,44⨯的方格纸上放了16枚棋子,以棋子为顶点的正方形有个.【解析】根据正方形的大小,分类数正方形.共能组成五种大小不同的正方形(如右图).⨯的正方形:1个;11⨯的正方形:4个;33⨯的正方形:9个;22以11⨯正方形对角线为边长的正方形:4个;以12⨯长方形对角线为边长的正方形:2个.故可以组成9414220++++=(个)正方形.【例 3】判断下列图形哪些是格点多边形?⑴⑵⑶【解析】根据格点多边形的定义可知,图形的边必须是直线段,顶点要在格点上!所以只有⑴是格点多边形.【例 4】如图,计算各个格点多边形的面积.【解析】本题所给的图形都是规则图形,它们的面积运用公式直接可求,只要判断出相应的有关数据就行了.方法一:图⑴是正方形,边长是4,所以面积是4416⨯=(面积单位);图⑵是矩形,长是5,宽是3,所以面积是5315⨯=(面积单位);图⑶是三角形,底是5,高是4,所以面积是54210⨯÷=(面积单位);图⑷是平行四边形,底是5,高是3,所以面积是5315⨯=(面积单位);图⑸是直角梯形,上底是3,下底是5,高是3,所以面积是353212+⨯÷=()(面积单位);图⑹是梯形,上底是3,下底是6,高是4,所以面积是364218+⨯÷=()(面积单位).【巩固】如果两格点之间的距离是2,能利用刚计算的结果说出相应面积么?(教师总结:面积数值均扩大4倍.)方法二:以上部分图形除了利用各自的面积公式直接求出外,我们还可以从推导它们的面积公式过程中得到启发,即用“割补法”或“扩展法”分别转化成长方形来求.这一种方法很重要,在下面的题目中我们还将使用这种方法!如图⑶,我们利用“扩展法”将其转化,如图所示,从图中易知三角形面积是长方形面积的一半.如图⑷,我们利用“割补法”将其阴影部分面积平移到右边,转化成一个长方形,从中易得平行四边形面积.同理,图⑸、⑹也可利用同样的思想.【例 5】如图(a),计算这个格点多边形的面积.【解析】方法一(扩展法).这是个三角形,虽然有三角形面积公式可用,但判断它的底和高却十分困难,只能另想别的办法:这个三角形是处在长是6、宽是4的矩形内,除此之外还有其他三个直角三角形,如下右图(b),这三个直角三角形面积很容易求出,再用矩形面积减去这三个直角三角形面积,就是所要求的三角形面积.矩形面积是6424⨯=;直角三角形Ⅰ的面积是:6226⨯÷=;直角三角形Ⅱ的面积是:4224⨯÷=;直角三角形Ⅲ面积是4224⨯÷=;所求三角形的面积是2464410-++=()(面积单位).方法二(割补法).将原三角形分割成两个我们方便计算面积的三角形,如(c)图.因此三角形的面积是:52252210⨯÷+⨯÷=(面积单位).【例 6】 (“新加坡小学数学奥林匹克”竞赛试题)右图是一个方格网,计算阴影部分的面积.【解析】 扩展法.把所求三角形扩展成正方形ABCD 中.这个正方形中有四个三角形:一个是要求的AEF ;另外三个分别是:ABE 、FEC 、DAF ,它们都有一条边是水平放置的,易求它们的面积分别为21.5cm ,22cm ,21.5cm .所以,图中阴影部分的面积为:33 1.5224⨯-⨯+=()(2cm ).【例 7】 分别计算图中两个格点多边形的面积.⑴ ⑵【解析】 利用“扩展法”和“割补法”我们都可以简单的得到⑴的面积均为9面积单位.⑵的面积均为10面积单位.【点评】“一个格点多边形面积的大小很可能是由哪些因素决定呢?”“格点多边形内部的格点数和周界上的格点数与格点多边形的面积有没有什么内在联系呢?”下面我们就来探讨一下!在巩固中,我们发现两个图形面积相等.进一步还可以发现第一个图形边界上的格点数是8个;第二个图形边界上的格点数是10个,包含在图形内的格点数也相等,都是6个.【巩固】求下列各个格点多边形的面积.⑵⑴⑷⑶【解析】 ⑴ ∵12L =;10N =,∴1211011522L S N =+-=+-=(面积单位); ⑵ ∵10L =;16N =,∴1011612022L S N =+-=+-=(面积单位);⑶ ∵6L =;12N =,∴611211422L S N =+-=+-=(面积单位);⑷ ∵10L =;13N =,∴1011311722L S N =+-=+-=(面积单位).用N 表示多边形内部格点,L 表示多边形周界上的格点,S 表示多边形面积,请同学们分析前几个例题的格点数.我们能发现如下规律:12LS N =+-.这个规律就是毕克定理.【例 8】我们开始提到的“乡村小屋”的面积是多少?【解析】图形内部格点数9N=;图形边界上的格点数20L=;根据毕克定理,则1182LS N=+-=(单位面积).【例 9】右图是一个812⨯面积单位的图形.求矩形内的箭形ABCDEFGH的面积.HGFEDCBA【解析】箭形ABCDEFGH的面积810214842121232246=+÷-+⨯+÷-⨯=++=()()(面积单位).【例 10】右图中每个小正方形的面积都是1,那么图中这只“狗”所占的面积是多少?【解析】图形内部格点数为54,图形周界上格点数为19.所以图形的面积为:54192162.5+÷-=(面积单位).【巩固】如图,每一个小方格的面积都是1平方厘米,那么用粗线围成的图形的面积是多少平方厘米?【解析】方法一:正方形格点阵中多边形面积公式:(N+L2-1)×单位正方形面积,其中N为图形内格点数,L为图形周界上格点数.有N=4,L=7,则用粗线围成图形的面积为:(4+72-1)×1=6.5(平方厘米)方法二:如右上图,先求出粗实线外格点内的图形的面积,毕克定理若一个格点多边形内部有N个格点,它的边界上有L个格点,则它的面积为12LS N=+-.有①=3÷2=1.5,②=2÷2=1,③=2÷2=1,④=2÷2=1,⑤=2÷2=l ,⑥=2÷2=1,还有三个小正方形,所以粗实线外格点内的图形面积为1.5+l +1+1+1+1+3=9.5,而整个格点阵所围成的图形的面积为16,所以粗线围成的图形的面积为:16-9.5=6.5平方厘米.【例 11】 (“小学数学奥林匹克”竞赛试题)55⨯的方格纸,小方格的面积是1平方厘米,小方格的顶点称为格点.请你在图上选7个格点,要求其中任意3个格点都不在一条直线上,并且使这7个点用直线连接后所围成的面积尽可能大.那么,所围图形的面积是 平方厘米.【解析】 为了使这7个点围成最大的面积,这7个点应尽量在正方形的边或顶点上,如图选取7个点,围成面积最大.最大面积为550.5323.5⨯-⨯=(平方厘米).【例 12】 (“保良局亚洲区城市小学数学”竞赛试题)第一届保良局亚洲区城市小学数学邀请赛在7月21日开幕,下面的图形中,每一个小方格的面积是1,那么7、2、1三个数字所占的面积之和是多少?【解析】 要计算三个数字所占的面积之和,可以先分别求出每个数字所占的面积.显然,图中的三个数字都可以看作格点多边形,根据毕克定理,可以很方便地求出每个数字所占的面积.值得注意的是:数字“7”内部有两个格点,而数字“2”和“1”内部都没有格点.7所占的面积为:215218.5+÷-=;2所占的面积为:242111÷-=;1所占的面积为:17217.5÷-=.所以,这三个数字所占的面积之和为:8.5117.527++=.【例 13】 (第六届“从小爱数学”邀请赛试题)两个边长相等的正方形各被分成25个大小相同的小方格.现将这两个正方形的一部分重叠起来,若左上角的阴影部分(块状)面积为25.12cm ,右下角的阴影部分(线状)面积为27.4cm ,求大正方形的面积.【解析】 块状部分与线状部分之间的部分称为D ,则D 与前者共14个方格,与后者共17个方格,因此每个方格的面积是2197.4 5.121714cm 25-÷-=()()()大正方形的面积为219cm .【例 14】 (第六届“华杯赛”试题)图中正六边形ABCDEF 的面积是54,AP =2PF ,CQ =2BQ ,求阴影四边形CEPQ 的面积.B PQFEDCB A【解析】 如图,将正六边形ABCDEF 等分为54个小正三角形.根据平行四边形对角线平分平行四边形面积,PEF 面积3=,CDE 面积9=,四边形ABQP 面积11=.上述三块面积之和为391123++=.因此,阴影四边形CEPQ 面积为542331-=.板块二 三角形格点问题所谓三角形格点多边形是指:每相邻三点成“∵”或“∴”,所形成的三角形都是等边三角形.规定它的面积为1,以这样的点为顶点画出的多边形为三角形格点多边形.关于三角形格点多边形的面积同样有它的计算公式:如果用S 表示面积,N 表示图形内包含的格点数,L 表示图形周界上的格点数,那么有22S N L =⨯+-,就是格点多边形面积等于图形内部所包含格点数的2倍与周界上格点数的和减去2.【例 15】 如图(a ),有21个点,每相邻三个点成“∵”或“∴”,所形成的三角形都是等边三角形.计算三角形ABC 的面积.(b )(a )(c )(d )【解析】 方法一:如图(b )所示,在ABC 内连接相邻的三个点成DEF ,再连接DC 、EA 、FB 后是ABC可看成是由DEF 分别延长FD 、DE 、EF 边一倍、一倍、二倍而成的,由等积变换不难得到2ACDS=, 3AEBS=,4FBCS=,所以123410S =+++=(面积单位).方法二:如图(c )所示,作辅助线把图Ⅰ′、Ⅱ′、Ⅲ′分别移拼到Ⅰ、Ⅱ、Ⅲ的位置,这样可以通过数小正三角形的方法,求出ABC 的面积为10.方法三:如图(d )所示:作辅助线可知:平行四边形ARBE 中有6个小正三角形,而ABE 的面积是平行四边形ARBE 面积的一半,即3AEBS=,平行四边形ADCH 中有4个小正三角形,而ADC 的面积是平行四边形ADCH 面积的一半,即2ACDS =.平行四边形FBGC 中有8个小正三角形,而FBC 的面积是平行四边形FBGC 的一半,即:4FBCS =.所以123410S =+++=(面积单位).【巩固】如图,每相邻三个点所形成的三角形都是面积为1的等边三角形,计算ABC 的面积.【解析】 因为5N =;3L =:所以22253211S N L =⨯+-=⨯+-=(面积单位).【例 16】求下列格点多边形的面积(每相邻三个点“∵”或“∴”成面积为1的等边三角形).⑴⑵⑶⑷【解析】⑴∵7=⨯+-=⨯+-=(面积单位);S N LN=,∴22277219L=;7⑵∵5=⨯+-=⨯+-=(面积单位);S N LN=,∴22285219L=;8⑶∵6=⨯+-=⨯+-=(面积单位);S N LN=,∴22276218L=;7⑷∵7S N L=⨯+-=⨯+-=(面积单位).L=;8N=,∴22287221【例 17】把大正三角形每边八等分,组成如右图所示的三角形网.如果大三角形的面积是128,求图中粗线所围成的三角形的面积.【解析】图中有1357911131564÷=,+++++++=(个)小三角形,那么一个小三角形的面积是128642图形内部格点数为12,图形周界上格点数为4;图形的面积为:2124226⨯=.⨯+-=(面积单位),进而得图形的面积为:26252【例 18】如图,如果每一个小三角形的面积是1平方厘米,那么四边形ABCD的面积是多少平方厘米?【解析】法一:正三角形方形格点阵中多边形面积公式:(2N+L-2)x单位正三角形面积,其中N为图形内格点数,L为图形周界上格点数.有N=9,L=4,所以用粗线围成的图形的面积为:(9×2+4-2)×1=20(平方厘米).法二:如下图,我们先数出粗实线内完整的小正三角形有10个,而将不完整的小正三角形分成4部分计算,其中①部分对应的平行四边形面积为4,所以①部分的面积为2,②、③、④部分对应的平行四边形面积分别为2,8,6,所以②、③、④部分的面积分别为1,4,3.所以粗实线内图形的面积为10+2+1+4+3=20(平方厘米).【例 19】把同一个三角形的三条边分别5等分、7等分(如图1,图2),然后适当连接这些等分点,便得到了若干个面积相等的小三角形.已知图1中阴影部分面积是294平方分米,那么图2中阴影部分的面积是______平方分米.【解析】图1中阴影部分占整个三角形面积的1225,图2中阴影部分占整个三角形面积的1649,故图2中阴影部分的面积为294÷12162549⨯=200(平方分米).【例 20】将图中的图形分割成面积相等的三块.【解析】如右图所示.【例 21】如图涂阴影部分的小正六角星形面积是16平方厘米,问:大正六角星形面积是多少平方厘米?【解析】如图,涂阴影部分的小正六角星形可分成12个与三角形PMN全等(能完全重叠地放在一起)的小三角形.而图中的大正六角星形除去小正六角星形后.有6×4=24个与三角形PMN全等的小三角形,所以大正六角星形的面是小正六角星形的3倍,即48平方厘米.【例 22】(第五届“华杯赛”试题)正六边形ABCDEF的面积是6平方厘米.M是AB中点,N是CD中点,P是EF中点.问:三角形MNP的面积是多少平方厘米?SRQABC DEFNM PPMFEDCBA【解析】将正六边形分成六个面积为1平方厘米的正三角形,再取它们各边的中点将每个正三角形分为4个小正三角形.于是正六边形ABCDEF被分成了24个小正三角形,每一个小正三角形的面积是6240.25÷=(平方厘米),三角形MNP由9个小正三角形所组成,所以三角形MNP的面积0.259 2.25=⨯=(平方厘米).【例 23】如果下图中任意相邻的三个点构成的三角形面积都是2平方厘米.那么,三角形ABC的面积是_____平方厘米.【解析】ABC ABD BCD ACD S S S S ∆∆∆∆=++21221229=⨯+⨯+⨯66()=平方厘米。
巧用“格点”算面积 - ME博客—数学教师博客群,教育博客,教 …

巧用“格点”算面积
请你算一算下面各图的面积:(为了计算的方便,我们把图中相邻两个点之间的距离看作是1个长度单位,把相邻4个点连线后得到的正方形的面积看成是1个面积单位。
)
这里一共有6张图,估计大家利用计算公式可以很方便地算出图1和图3的面积。
图1面积长×宽:7×3=21,图3面积长×宽÷2:5×4÷2=10。
但其它的几张图就不能直接算了。
你有没有发现,这些图都是画在格点图上的,利用这些格点,我们就可以很轻松地算出所有图形的面积了。
格点面积=内部格点数+周界格点数÷2-1。
还是拿图1和图3举例。
图1面积:12+20÷2-1=21;图3面积:7+8÷2-1=10。
计算的结果和我们刚才用面积计算公式的结果是一样的。
那你现在是不是也可以用这个新的公式来算算其它几张图的面积了呢?
哈哈,其实这个新公式并不是我的发明,它的名字叫“毕克定理”。
利用该公式计算格点面积时,不必考虑这是一个什么图形,而是直接利用它就可以算出各种图形的面积了。
是不是很方便啊?。
小学奥数:格点型面积(毕克定理)

小学奥数:格点型面积(毕克定理)板块一正方形格点问题在一张纸上,先画出一些水平直线和一些竖直直线,并使任意两条相邻的平行线的距离都相等(通常规定是1个单位),这样在纸上就形成了一个方格网,其中的每个交点就叫做一个格点.在方格网中,以格点为顶点画出的多边形叫做格点多边形,例如,右图中的乡村小屋图形就是一个格点多边形.那么,格点多边形的面积如何计算?它与格点数目有没有关系?如果有,这两者之间的关系能否用计算公式来表达?下面就让我们一起来探讨这些问题吧!用N表示多边形内部格点,L表示多边形周界上的格点,S表示多边形面积,请同学们分析前几个例题的格点数.我们能发现如下规律:12LS N=+-.这个规律就是毕克定理.【例1】用9个钉子钉成相互间隔为1厘米的正方阵(如右图).如果用一根皮筋将适当的三个钉子连结起来就得到一个三角形,这样得到的三角形中,面积等于1平方厘米的三角形的个数有多少?面积等于2平方厘米的三角形有多少个?【例2】如图,44⨯的方格纸上放了16枚棋子,以棋子为顶点的正方形有个.【例3】判断下列图形哪些是格点多边形?⑴⑵⑶【例4】如图,计算各个格点多边形的面积.毕克定理若一个格点多边形内部有N个格点,它的边界上有L个格点,则它的面积为12LS N=+-.【巩固】如果两格点之间的距离是2,能利用刚计算的结果说出相应面积么?(教师总结:面积数值均扩大4倍.)【例5】如图(a),计算这个格点多边形的面积.【例6】(“新加坡小学数学奥林匹克”竞赛试题)右图是一个方格网,计算阴影部分的面积.【例7】分别计算图中两个格点多边形的面积.⑴⑵【巩固】求下列各个格点多边形的面积.⑵⑴⑷⑶【例8】我们开始提到的“乡村小屋”的面积是多少?【例9】右图是一个812⨯面积单位的图形.求矩形内的箭形ABCDEFGH的面积.HGFAEDCB【例10】右图中每个小正方形的面积都是1,那么图中这只“狗”所占的面积是多少?【巩固】如图,每一个小方格的面积都是1平方厘米,那么用粗线围成的图形的面积是多少平方厘米?【例11】(“小学数学奥林匹克”竞赛试题)55⨯的方格纸,小方格的面积是1平方厘米,小方格的顶点称为格点.请你在图上选7个格点,要求其中任意3个格点都不在一条直线上,并且使这7个点用直线连接后所围成的面积尽可能大.那么,所围图形的面积是平方厘米.【例12】(“保良局亚洲区城市小学数学”竞赛试题)第一届保良局亚洲区城市小学数学邀请赛在7月21日开幕,下面的图形中,每一个小方格的面积是1,那么7、2、1三个数字所占的面积之和是多少?【例13】(第六届“从小爱数学”邀请赛试题)两个边长相等的正方形各被分成25个大小相同的小方格.现将这两个正方形的一部分重叠起来,若左上角的阴影部分(块状)面积为25.12cm,右下角的阴影部分7.4cm,求大正方形的面积.(线状)面积为2【例 14】 (第六届“华杯赛”试题)图中正六边形ABCDEF 的面积是54,AP =2PF ,CQ =2BQ ,求阴影四边形CEPQ 的面积.B PQFEDCB A板块二 三角形格点问题所谓三角形格点多边形是指:每相邻三点成“∵”或“∴”,所形成的三角形都是等边三角形.规定它的面积为1,以这样的点为顶点画出的多边形为三角形格点多边形.关于三角形格点多边形的面积同样有它的计算公式:如果用S 表示面积,N 表示图形内包含的格点数,L 表示图形周界上的格点数,那么有22S N L =⨯+-,就是格点多边形面积等于图形内部所包含格点数的2倍与周界上格点数的和减去2.【例 15】 如图(a ),有21个点,每相邻三个点成“∵”或“∴”,所形成的三角形都是等边三角形.计算三角形ABC 的面积.A B CD F E(b )(a )【巩固】如图,每相邻三个点所形成的三角形都是面积为1的等边三角形,计算ABC的面积.【例 16】 求下列格点多边形的面积(每相邻三个点“∵”或“∴”成面积为1的等边三角形).⑴⑵⑶⑷【例17】把大正三角形每边八等分,组成如右图所示的三角形网.如果大三角形的面积是128,求图中粗线所围成的三角形的面积.【例18】如图,如果每一个小三角形的面积是1平方厘米,那么四边形ABCD的面积是多少平方厘米?【例19】把同一个三角形的三条边分别5等分、7等分(如图1,图2),然后适当连接这些等分点,便得到了若干个面积相等的小三角形.已知图1中阴影部分面积是294平方分米,那么图2中阴影部分的面积是______平方分米.【例20】将图中的图形分割成面积相等的三块.【例21】如图涂阴影部分的小正六角星形面积是16平方厘米,问:大正六角星形面积是多少平方厘米?【例 22】 (第五届“华杯赛”试题)正六边形ABCDEF 的面积是6平方厘米.M 是AB 中点,N 是CD 中点,P 是EF 中点.问:三角形MNP 的面积是多少平方厘米?SRQAB CD EF NM P EB【例 23】 如果下图中任意相邻的三个点构成的三角形面积都是2平方厘米.那么,三角形ABC 的面积是_____平方厘米.Welcome To Download !!!欢迎您的下载,资料仅供参考!。
数学【春季精英课程】第2册PC第09讲格点面积教师版

第九讲 格点面积1、 如图a 所示, 在方格网中,以格点为顶点画出的直线型多边形叫做格点多边形(通常规定一个小正方形为1个单位)。
用N 表示多边形内部格点数,L 表示多边形周界上的格点数,S 表示多边形面积,我们能发现如下规律:21S N L =+÷-,这个就是毕克定理。
2、如图b 所示,在正三角形网中,以格点为顶点画出的直线型多边形叫做格点多边形(通常规定每个小正三角形的面积为1个单位)。
用N 表示多边形内部格点,N 表示多边形周界上的格点,S 表示多边形面积,与毕克定理类似的有:22S N L =+-。
图a图b1、学会用“割补”、“扩展”的方法和格点面积公式求格点多边形的面积;2、学会区分三角形格点多边形和正方形格点多边形,灵活计算格点面积;3、培养学员掌握数与形之间的联系。
如下图,计算下列各个格点多边形的面积(每个小正方形的边长是1)。
【解析】本题所给的图形都是规则图形,它们的面积运用公式直接可求,只要判断相应的有关数据就行了。
解答:第(1)图是三角形,底是5,高是4,所以面积是5×4÷2=10;第(2)图是平行四边形,底是5,高是3,所以面积是5×3=15;第(3)图是梯形,上底是3,下底是6,高是4,所以面积是(3+6)×4÷2=18。
图中每个小正方形的面积都是4平方厘米,求图中阴影部分的面积是多少平方厘米?讲演者:得分:讲演者:得分:【解析】据正方形拼组的特点可以得出,周边上四个三角形可以拼成两个和中间的正方形一样大小的正方形,所以这个阴影部分的面积就是3个中间正方形的面积之和,即:4×4×3=48(平方厘米)。
解答:图中阴影部分的面积是48平方厘米。
下图中喇叭、小猫、小马的面积各是多少?(每个小正方形的边长是1)【解析】解答:喇叭3;小猫11;小马6。
图中有21个点,其中每相邻的三点“∴或∵”所形成的三角形都是面积为1的等边三角形,试计算四边形DEFG的面积。
五年级下册数学教案-同步培优:格点与面积北师大版

五年级下册数学教案同步培优:格点与面积北师大版教案:五年级下册数学教案同步培优:格点与面积北师大版一、教学内容本节课的教学内容来自于北师大版五年级下册的数学教材,主要涵盖第103页至第105页的“格点与面积”相关知识。
这部分内容主要让学生理解格点的概念,学会用格点来表示二维图形,并利用格点计算图形的面积。
二、教学目标1. 理解格点的概念,能够用格点来表示二维图形。
2. 掌握利用格点计算图形面积的方法。
3. 培养学生的逻辑思维能力和解决问题的能力。
三、教学难点与重点1. 教学难点:理解格点的概念,掌握利用格点计算图形面积的方法。
2. 教学重点:能够用格点来表示二维图形,并利用格点计算图形的面积。
四、教具与学具准备1. 教具:黑板、粉笔、多媒体教学设备。
2. 学具:练习本、笔、尺子、格点纸。
五、教学过程1. 导入:通过一个实际问题引入本节课的主题,例如:“一个正方形地面,每边长6米,问这个正方形的面积是多少?”让学生尝试用格点来表示这个正方形,并计算其面积。
2. 讲解:讲解格点的概念,解释什么是格点,如何用格点来表示二维图形。
通过示例,让学生理解利用格点计算图形面积的方法。
3. 练习:让学生进行随堂练习,例如:“用格点表示一个边长为4厘米的正方形,并计算其面积。
”让学生独立完成,教师进行讲解和指导。
4. 拓展:引导学生思考,除了正方形,其他二维图形是否也可以用格点来表示和计算面积?让学生进行思考和讨论。
六、板书设计板书设计如下:格点的概念:格点:在二维坐标系中,横纵坐标都是整数的点用格点表示图形:将图形的顶点用格点表示计算面积的方法:计算规则图形的面积:数出图形内部的格点数,每个格点代表1个单位面积计算不规则图形的面积:数出图形内部的格点数,每个格点代表1个单位面积七、作业设计1. 题目:用格点表示下列图形,并计算其面积。
a) 一个边长为5厘米的正方形b) 一个长为8厘米,宽为3厘米的长方形2. 答案:a) 边长为5厘米的正方形,内部有25个格点,面积为25平方厘米b) 长为8厘米,宽为3厘米的长方形,内部有24个格点,面积为24平方厘米八、课后反思及拓展延伸课后反思:学生对格点的概念的理解是否清楚?学生是否掌握了利用格点计算图形面积的方法?是否有学生对其他二维图形用格点表示和计算面积有疑问?拓展延伸:引导学生思考,除了用格点来表示和计算面积,还有其他方法吗?让学生尝试解决更复杂的问题,例如:“一个正方形地面,每边长8米,有一个角被一条宽度为2米的道路占用,道路的长度为6米,求剩余部分的面积。
格点面积课件

格点面积
例1图中每个小正方形的面积是1平方厘米,完成下列表格,并找出规律。
例2图中相邻两点的距离都是1,那么下面三个图形的面积是多少?
【巩固练习】相邻两个格点的距离是1,求下列图形的面积。
例3如图所示,其中相邻三点形成的等边三角形的面积为1,试求下图的面积,并填表。
例4下图是个三角形点阵,其中最小等边三角形面积为2平方厘米,下图的面积为多少?
【巩固练习】如图所示,相邻的三个点所形成的等边三角形面积为1,计算多边形的面积。
例5左土的面积为30平方厘米,那么有图的面积是多少?
课后作业
1.相邻两个格点的距离是1,下列两图的面积。
2.三角形点阵连出最小正三角形面积是1,图中的面积是多少?
3.如图,最小正三角形的面积是4平方厘米,那么阴影部分的面积是多少?
4.每个小方格的面积都是1平方厘米,那么用粗线围成的图形面积是多少?。
数学四年级 第19讲 格点与割补(教师版+学生版,含详细解析)

第19讲格点与割补内容概述明确格点多边形的概念,学会通过分割和添补的方法计算其面积;学会利用割补法计算不规则图形的面积;掌握格点多边形的面积计算公式.典型问题兴趣篇1.图19-l中相邻两格点问的距离均为1厘米.三个多边形的面积分别是多少平方厘米?答案:4平方厘米2平方厘米8平方厘米【分析】方法:正方形格点阵中多边形面积公式:(N+L2-1)×单位正方形面积,其中N为图形内格点数,L为图形周界上格点数.有N=0,L=10,则用粗线围成图形的面积为:(0+10÷2-1)×1=4(平方厘米) 有N=0,L=10,则用粗线围成图形的面积为:(1+4÷2-1)×1=2(平方厘米) 有N=5,L=8,则用粗线围成图形的面积为:(5+8÷2-1)×1=8(平方厘米)2.图19-2中相邻两格点问的距离均为l厘米.三个阴影图形的面积分别是多少平方厘米? 答案:5平方厘米5平方厘米0.5平方厘米【分析】方法:正方形格点阵中多边形面积公式:(N+L2-1)×单位正方形面积,其中N为图形内格点数,L为图形周界上格点数.有N=4,L=4,则用粗线围成图形的面积为:(4+4÷2-1)×1=5(平方厘米) 有N=4,L=4,则用粗线围成图形的面积为:(4+4÷2-1)×1=5(平方厘米) 有N=0,L=3,则用粗线围成图形的面积为:(0+3÷2-1)×1=0.5(平方厘米)3.图19-3中每个小正方形的面积均为2平方厘米.阴影多边形的面积是多少平方厘米? 答案:19平方厘米【分析】方法:交点组成了正方形格点,正方形格点阵中多边形面积公式:(N+L2-1)×单位正方形面积,其中N为图形内格点数,L为图形周界上格点数.有N=7,L=17,则用粗线围成图形的面积为:(7+7÷2-1)×2=19(平方厘米)4.图19-4是一个三角形点阵,其中能连出的最小的等边三角形的面积为l平方厘米.三个多边形的面积分别为多少平方厘米?答案:6平方厘米6平方厘米14平方厘米【分析】方法:正三角形方形格点阵中多边形面积公式:(2N+L-2)x单位正三角形面积,其中N为图形内格点数,L为图形周界上格点数.有N=0,L=8,所以用粗线围成的图形的面积为:(0×2+8-2)×1=6(平方厘米).有N=2,L=4,所以用粗线围成的图形的面积为:(2×2+4-2)×1=6(平方厘米).有N=4,L=7,所以用粗线围成的图形的面积为:(4×2+7-2)×1=14(平方厘米).5.如图19-5所示,如果每个小等边三角形的面积都是1平方厘米.四边形ABCD和三角形EFG的面积分别是多少平方厘米?答案:20平方厘米10平方厘米【分析】方法:正三角形方形格点阵中多边形面积公式:(2N+L-2)x单位正三角形面积,其中N为图形内格点数,L为图形周界上格点数.有N=9,L=4,所以用粗线围成的图形的面积为:(9×2+4-2)×1=20(平方厘米).有N=4,L=4,所以用粗线围成的图形的面积为:(4×2+4-2)×1=10(平方厘米).6.图19-6中的数字分别表示对应线段的长度,试求这个多边形的面积.(单位:厘米)答案:32平方厘米【分析】3×2+2×4+(5-2)×(3+1+2)=327.如图19-7所示,在正方形ABCD 内部有一个长方形.EFGH .已知正方形ABCD 的边长是6厘米,图中线段AE 、AH 都等于2厘米.求长方形EFGH 的面积.答案:16平方厘米【分析】先算正方形面积6×6=36 再算左上角和右下角三角形面积2×2÷2×2=4 后算左下角和右上角三角形面积4×4÷2×2=16 36-4-16=168.如图19-8所示,四边形ABCD 是长方形,长AD 等于7厘米,宽AB 等于5厘米,四边形CDEF 是平行四边形.如果BH 的长是3厘米,那么图中阴影部分面积是多少平方厘米?答案:25平方厘米【分析】 CDEF S 平行四边形=DC×BC=5×7=35,HC=BC-BH=7-3=4,所以CDH S =12×CD×HC=12×5×4=10. S 阴影=CDEF S 平行四边形-CDH S =35-10=25(平方厘米).9.如图19-9所示,大正方形的边长为10厘米.连接大正方形的各边中点得到一个小正方形,将小正方形每边三等分,再将三等分点与大正方形的中心和一个顶点相连.请问:图中阴影部分的面积总和等于多少平方厘米?答案:50平方厘米【分析】 如下图,我们将大正方形中的所有图形分成A 、B 两种三角形.其中含有A 形三角形8个,B 形三角形16个,其中阴影部分含有A 形三角形4个,B形三角形8个.方形面积的12,即为所以,阴影部分面积恰好为大正12×10×10=50(平方厘米).10.在图19-10中,五个小正方形的边长都是2厘米,求三角形ABC的面积.答案:14平方厘米【分析】方法:转化为正方形格点,正方形格点阵中多边形面积公式:(N+L2-1)×单位正方形面积,其中N为图形内格点数,L为图形周界上格点数.有N=3,L=3,则用粗线围成图形的面积为:(3+3÷2-1)×4=14(平方厘米)拓展篇1. 图19-11中相邻格点围成的最小正方形或正三角形的面积均为l平方厘米.这三个多边形的面积分别是多少平方厘米?答案:7.5平方厘米 6.5平方厘米9平方厘米【分析】方法:正方形格点阵中多边形面积公式:(N+L2-1)×单位正方形面积,其中N为图形内格点数,L为图形周界上格点数.有N=4,L=9,则用粗线围成图形的面积为:(4+9÷2-1)×1=7.5(平方厘米) 有N=3,L=9,则用粗线围成图形的面积为:(3+9÷2-1)×1=6.5(平方厘米) 有N=4,L=12,则用粗线围成图形的面积为:(4+12÷2-1)×1=9(平方厘米)2. (1)图19-12中每个小正方形的面积是2平方厘米.阴影部分面积是多少平方厘米?(2)图19-13中每个小正三角形的面积是4平方厘米.阴影部分面积是多少平方厘米?答案:17平方厘米56平方厘米【分析】方法:正方形格点阵中多边形面积公式:(N+L2-1)×单位正方形面积,其中N为图形内格点数,L为图形周界上格点数.有N=3,L=13,则用粗线围成图形的面积为:(3+13÷2-1)×2=17(平方厘米) 【分析】方法:正三角形方形格点阵中多边形面积公式:(2N+L-2)x单位正三角形面积,其中N为图形内格点数,L为图形周界上格点数.有N=4,L=8,所以用粗线围成的图形的面积为:(4×2+8-2)×4=56(平方厘米).3.图19-14中每个小正方形的边长为1厘米.阴影部分的面积是多少平方厘米?答案:14平方厘米【分析】方法:可用公式先算出整个图形的面积,在减去中间空白部分的面积。
格点面积(一)

格点⾯积(⼀)年级四年级学科奥数版本通⽤版课程标题格点型⾯积(⼀)编稿⽼师李允⼀校林卉⼆校张琦锋审核⾼旭东什么是格点?格点与⾯积之间⼜有什么关系?这⼀讲我们就来探讨这些问题。
定义:画在⽅格纸上的多边形,多边形的所有顶点都在⽅格纸上的横、纵两组平⾏线垂直相交的交点上,这样的多边形,我们称它为格点多边形。
或者,在纸上画出两组不垂直的平⾏线,连结它们的交点所构成的三⾓形都是等边三⾓形,以这样的点为顶点画出的多边形也称为格点多边形。
分类:我们现在最常接触到的,就是正⽅形格点问题和三⾓形格点问题。
1. 正⽅形格点问题指的是正⽅形的格点都是由两组互相垂直相交的平⾏线的交点构成的.每⼀个⼩⽅格都是⼀个⼩正⽅形。
2. 所谓三⾓形格点多边形是指:每相邻三点成“∵”或“∴”,所形成的三⾓形都是等边三⾓形,以这样的点为顶点画出的多边形为三⾓形格点多边形。
计算格点多边形⾯积常⽤的⽅法: 1. “割补法”或“扩展法”。
2. 公式法:毕克定理(若⼀个格点多边形内部有N 个格点,它的边界上有L 个格点,则它的⾯积为:S =N +2L-1)例1 判断下列图形中哪些是格点多边形。
分析与解:根据格点多边形的定义可知,图形的边必须是直线,顶点要在格点上。
所以只有(1)是格点多边形。
例2第⼀届保良局亚洲区城市⼩学数学邀请赛在1996年7⽉21⽇开幕,下⾯的图形中,每⼀⼩⽅格的⾯积是1,那么7,2,1三个数字所占的⾯积之和是。
分析与解:7,2,1所占的⾯积分别为7.5,10和7.5 ,所以它们所占的⾯积之和为25。
例3根据下列图形,⽤N表⽰多边形内部的格点,L表⽰多边形周界上的格点,S表⽰多边形的⾯积,填写下表:图形图形内的格点数(N)边界上的格点数(L)⾯积(S)图(1)图(2)图(3)图(4)图(5)分析与解:如下表:图形图形内的格点数(N)边界上的格点数(L)⾯积(S)图(1)9 16 16图(2)8 16 15图(3)10 12 15图(4)7 12 12图(5)13 12 18根据表格,我们能发现如下规律:S =N +2L-1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模块一、正方形格点问题在一张纸上,先画出一些水平直线和一些竖直直线,并使任意两条相邻的平行线的距离都相等(通常规定是1个单位),这样在纸上就形成了一个方格网,其中的每个交点就叫做一个格点.在方格网中,以格点为顶点画出的多边形叫做格点多边形,例如,右图中的乡村小屋图形就是一个格点多边形.那么,格点多边形的面积如何计算?它与格点数目有没有关系?如果有,这两者之间的关系能否用计算公式来表达?下面就让我们一起来探讨这些问题吧!用N 表示多边形内部格点,L 表示多边形周界上的格点,S 表示多边形面积,请同学们分析前几个例题的格点数.我们能发现如下规律:12LS N =+-.这个规律就是毕克定理.【例 1】 判断下列图形哪些是格点多边形?⑴⑵⑶【答案】⑴是格点多边形【例 2】 如图,计算各个格点多边形的面积.【解析】 本题所给的图形都是规则图形,它们的面积运用公式直接可求,只要判断出相应的有关数据就行了.方法一:图⑴是正方形,边长是4,所以面积是4416⨯=(面积单位);图⑵是矩形,长是5,宽是3,所以面积是5315⨯=(面积单位);图⑶是三角形,底是5,高是4,所以面积是54210⨯÷=(面积单位); 图⑷是平行四边形,底是5,高是3,所以面积是5315⨯=(面积单位); 图⑸是直角梯形,上底是3,下底是5,高是3,所以面积是353212+⨯÷=()(面积单位); 图⑹是梯形,上底是3,下底是6,高是4,所以面积是364218+⨯÷=()(面积单位).毕克定理若一个格点多边形内部有N 个格点,它的边界上有L 个格点, 则它的面积为12LS N =+-. 例题精讲4-2-7.格点型面积【例 3】 如图(a ),计算这个格点多边形的面积.【考点】格点型面积 【难度】2星 【题型】解答 【解析】 方法一(扩展法).这是个三角形,虽然有三角形面积公式可用,但判断它的底和高却十分困难,只能另想别的办法:这个三角形是处在长是6、宽是4的矩形内,除此之外还有其他三个直角三角形,如下右图(b ),这三个直角三角形面积很容易求出,再用矩形面积减去这三个直角三角形面积,就是所要求的三角形面积.矩形面积是6424⨯=;直角三角形Ⅰ的面积是:6226⨯÷=;直角三角形Ⅱ的面积是:4224⨯÷=;直角三角形Ⅲ面积是4224⨯÷=;所求三角形的面积是2464410-++=()(面积单位).方法二(割补法).将原三角形分割成两个我们方便计算面积的三角形,如(c )图.因此三角形的面积是:52252210⨯÷+⨯÷=(面积单位).【答案】10【例 4】右图是一个方格网,计算阴影部分的面积.【考点】格点型面积 【难度】2星 【题型】解答 【关键词】新加坡小学数学奥林匹克竞赛 【解析】 扩展法.把所求三角形扩展成正方形ABCD 中.这个正方形中有四个三角形:一个是要求的AEF V ;另外三个分别是:△ABE 、△FEC 、△DAF ,它们都有一条边是水平放置的,易求它们的面积分别为21.5cm ,22cm ,21.5cm .所以,图中阴影部分的面积为:33 1.5224⨯-⨯+=()(2cm ). 【答案】4【例 5】 分别计算图中两个格点多边形的面积.【考点】格点型面积 【难度】3星 【题型】解答 【解析】 利用“扩展法”和“割补法”我们都可以简单的得到第一幅图的面积均为9面积单位.第二幅图的面积均为10面积单位.【点评】“一个格点多边形面积的大小很可能是由哪些因素决定呢?”“格点多边形内部的格点数和周界上的格点数与格点多边形的面积有没有什么内在联系呢?”下面我们就来探讨一下!在巩固中,我们发现两个图形面积相等.进一步还可以发现第一个图形边界上的格点数是8个;第二个图形边界上的格点数是10个,包含在图形内的格点数也相等,都是6个.【答案】第一幅图的面积均为9;第二幅图的面积均为10.【巩固】 求下列各个格点多边形的面积.(1) (2) (3)(4)【考点】格点型面积 【难度】3星 【题型】解答【例 6】 “乡村小屋”的面积是多少?【考点】格点型面积 【难度】3星 【题型】解答【解析】 图形内部格点数9N =;图形边界上的格点数20L = ;根据毕克定理, 则1182LS N =+-=(单位面积).【答案】18【例 7】 右图是一个812⨯面积单位的图形.求矩形内的箭形ABCDEFGH 的面积.H GFED C BA【考点】格点型面积 【难度】3星 【题型】解答 【解析】 箭形ABCDEFGH 的面积810214842121232246=+÷-+⨯+÷-⨯=++=()()(面积单位). 【答案】46【例 8】 比较图中的两个阴影部分①和②的面积,它们的大小关系______【考点】格点型面积 【难度】3星 【题型】填空【关键词】希望杯,五年级,二试,第9题,6分【解析】 ①的面积为:1112111313222⨯⨯+⨯⨯+⨯⨯=,②的面积也为3223⨯÷=。
所以两块阴影部分面积相等均为3。
【答案】相等【例 9】 右图中每个小正方形的面积都是1,那么图中这只“狗”所占的面积是多少?【考点】格点型面积 【难度】4星 【解析】 图形内部格点数为54,图形周界上格点数为19.所以图形的面积为:54192162.5+÷-=(面积单位).【答案】62.5【巩固】如图,每一个小方格的面积都是1平方厘米,那么用粗线围成的图形的面积是多少平方厘米?【考点】格点型面积【难度】3星【题型】解答【解析】方法一:正方形格点阵中多边形面积公式:(N+L2-1)×单位正方形面积,其中N为图形内格点数,L为图形周界上格点数.有N=4,L=7,则用粗线围成图形的面积为:(4+72-1)×1=6.5(平方厘米)方法二:如右上图,先求出粗实线外格点内的图形的面积,有①=3÷2=1.5,②=2÷2=1,③=2÷2=1,④=2÷2=1,⑤=2÷2=l,⑥=2÷2=1,还有三个小正方形,所以粗实线外格点内的图形面积为1.5+l+1+1+1+1+3=9.5,而整个格点阵所围成的图形的面积为16,所以粗线围成的图形的面积为:16-9.5=6.5平方厘米.【答案】6.5平方厘米【例 10】第一届保良局亚洲区城市小学数学邀请赛在7月21日开幕,下面的图形中,每一个小方格的面积是1,那么7、2、1三个数字所占的面积之和是多少?【考点】格点型面积【难度】3星【题型】解答【关键词】保良局亚洲区城市小学数学竞赛【解析】要计算三个数字所占的面积之和,可以先分别求出每个数字所占的面积.显然,图中的三个数字都可以看作格点多边形,根据毕克定理,可以很方便地求出每个数字所占的面积.值得注意的是:数字“7”内部有两个格点,而数字“2”和“1”内部都没有格点.7所占的面积为:215218.5+÷-=;2所占的面积为:242111÷-=;1所占的面积为:17217.5÷-=.所以,这三个数字所占的面积之和为:8.5117.527++=.【答案】27【例 11】55⨯的方格纸,小方格的面积是1平方厘米,小方格的顶点称为格点.请你在图上选7个格点,要求其中任意3个格点都不在一条直线上,并且使这7个点用直线连接后所围成的面积尽可能大.那么,所围图形的面积是平方厘米.【考点】格点型面积【难度】3星【题型】填空【关键词】小学数学奥林匹克【解析】为了使这7个点围成最大的面积,这7个点应尽量在正方形的边或顶点上,如图选取7个点,围成面积最大.最大面积为550.5323.5⨯-⨯=(平方厘米).【答案】23.5平方厘米【例 12】 两个边长相等的正方形各被分成25个大小相同的小方格.现将这两个正方形的一部分重叠起来,若左上角的阴影部分(块状)面积为25.12cm ,右下角的阴影部分(线状)面积为27.4cm ,求大正方形的面积.【考点】格点型面积 【难度】5星 【题型】解答 【关键词】从小爱数学 【解析】 块状部分与线状部分之间的部分称为D ,则D 与前者共14个方格,与后者共17个方格,因此每个方格的面积是2197.4 5.121714cm 25-÷-=()()()大正方形的面积为219cm .【答案】19平方厘米【例 13】 将边长为正整数n 的正方形平均分成2n 个小正方形,每个小正方形的顶点称为格点。
例如:图A 中的格点是边长为2的正方形的格点。
图B 中,在边长为12的正方形中有四个完全相同的直角三角形。
如果三角形的一条直角边是3,那么这四个三角形各边共经过多少个格点?(每个格点只计一次)(A )(B )【考点】格点型面积 【难度】2星 【题型】解答 【关键词】希望杯,四年级,二试,第19题,10分 【解析】 如下图是一个三角形的示意图,共经过了33个格点【答案】33个格点模块二、三角形格点问题1、定义:所谓三角形格点多边形是指:每相邻三点成“∵”或“∴”,所形成的三角形都是等边三角形.规定它的面积为1,以这样的点为顶点画出的多边形为三角形格点多边形.2、公式:关于三角形格点多边形的面积同样有它的计算公式:如果用S 表示面积,N 表示图形内包含的格点数,L 表示图形周界上的格点数,那么有22S N L =⨯+-,就是格点多边形面积等于图形内部所包含格点数的2倍与周界上格点数的和减去2.【例 14】 如图(a ),有21个点,每相邻三个点成“∵”或“∴”,所形成的三角形都是等边三角形.计算三角形ABC的面积.(b )(a )(c )(d )【考点】格点型面积 【难度】2星 【题型】解答 【解析】 方法一:如图(b )所示,在V ABC 内连接相邻的三个点成V DEF ,再连接DC 、EA 、FB 后是V ABC可看成是由V DEF 分别延长FD 、DE 、EF 边一倍、一倍、二倍而成的,由等积变换不难得到2ACD S =V , 3AEB S =V ,4FBC S =V ,所以123410S =+++=V (面积单位).方法二:如图(c )所示,作辅助线把图Ⅰ′、Ⅱ′、Ⅲ′分别移拼到Ⅰ、Ⅱ、Ⅲ的位置,这样可以通过数小正三角形的方法,求出V ABC 的面积为10.方法三:如图(d )所示:作辅助线可知:平行四边形ARBE 中有6个小正三角形,而V ABE 的面积是平行四边形ARBE 面积的一半,即3AEB S =V ,平行四边形ADCH 中有4个小正三角形,而V ADC 的面积是平行四边形ADCH 面积的一半,即2ACD S =V .平行四边形FBGC 中有8个小正三角形,而V FBC 的面积是平行四边形FBGC 的一半,即:4FBC S =V .所以123410S =+++=V (面积单位).【答案】10【巩固】 如图,每相邻三个点所形成的三角形都是面积为1的等边三角形,计算△ABC 的面积.【考点】格点型面积 【难度】2星 【题型】解答 【解析】 因为5N =;3L =:所以22253211S N L =⨯+-=⨯+-=(面积单位). 【答案】11【例 15】 求下列格点多边形的面积(每相邻三个点“∵”或“∴”成面积为1的等边三角形).(1) (2) (3) (4)【考点】格点型面积 【难度】2星 【题型】解答【解析】 ⑴ ∵7L =;7N =,∴22277219S N L =⨯+-=⨯+-=(面积单位);⑵ ∵5L =;8N =,∴22285219S N L =⨯+-=⨯+-=(面积单位); ⑶ ∵6L =;7N =,∴22276218S N L =⨯+-=⨯+-=(面积单位); ⑷ ∵7L =;8N =,∴22287221S N L =⨯+-=⨯+-=(面积单位).【答案】(1)19;(2)19;()【例 16】把大正三角形每边八等分,组成如右图所示的三角形网.如果大三角形的面积是128,求图中粗线所围成的三角形的面积.【考点】格点型面积【难度】2星【题型】解答【解析】图中有1357911131564+++++++=(个)小三角形,那么一个小三角形的面积是128642÷=,图形内部格点数为12,图形周界上格点数为4;图形的面积为:2124226⨯+-=(面积单位),进而得图形的面积为:26252⨯=.【答案】52【例 17】如图,如果每一个小三角形的面积是1平方厘米,那么四边形ABCD的面积是多少平方厘米?DCBA④③②①ABCD①【考点】格点型面积【难度】2星【题型】解答【解析】法一:正三角形方形格点阵中多边形面积公式:(2N+L-2)x单位正三角形面积,其中N为图形内格点数,L 为图形周界上格点数.有N=9,L=4,所以用粗线围成的图形的面积为:(9×2+4-2)×1=20(平方厘米).法二:如下图,我们先数出粗实线内完整的小正三角形有10个,而将不完整的小正三角形分成4部分计算,其中①部分对应的平行四边形面积为4,所以①部分的面积为2,②、③、④部分对应的平行四边形面积分别为2,8,6,所以②、③、④部分的面积分别为1,4,3.所以粗实线内图形的面积为10+2+1+4+3=20(平方厘米).【答案】20平方厘米【例 18】如果下图中任意相邻的三个点构成的三角形面积都是2平方厘米.那么,三角形ABC的面积是_____平方厘米.【考点】格点型面积【难度】2星【题型】解答【解析】ABC ABD BCD ACDS S S S∆∆∆∆=++21221229=⨯+⨯+⨯66()=平方厘米【答案】66平方厘米模块三、构造格点进行解题【例 19】 图中正六边形ABCDEF 的面积是54,AP =2PF ,CQ =2BQ ,求阴影四边形CEPQ 的面积.B PQFEDCB A【考点】格点型面积 【难度】2星 【题型】解答 【关键词】华杯赛 【解析】 如图,将正六边形ABCDEF 等分为54个小正三角形.根据平行四边形对角线平分平行四边形面积,PEF△面积3=,CDE △面积9=,四边形ABQP 面积11=.上述三块面积之和为391123++=.因此,阴影四边形CEPQ 面积为542331-=.【答案】31【例 20】 正六边形ABCDEF 的面积是6平方厘米.M 是AB 中点,N 是CD 中点,P 是EF 中点.问:三角形MNP的面积是多少平方厘米?SRQAB CD EF NM P EB【考点】格点型面积 【难度】2星 【题型】解答 【关键词】华杯赛 【解析】 将正六边形分成六个面积为1平方厘米的正三角形,再取它们各边的中点将每个正三角形分为4个小正三角形.于是正六边形ABCDEF 被分成了24个小正三角形,每一个小正三角形的面积是6240.25÷=(平方厘米),三角形MNP 由9个小正三角形所组成,所以三角形MNP 的面积0.259 2.25=⨯=(平方厘米).【答案】2.25【例 21】 如图涂阴影部分的小正六角星形面积是16平方厘米,问:大正六角星形面积是多少平方厘米?O PN M【考点】格点型面积 【难度】2星 【题型】解答 【解析】 如图,涂阴影部分的小正六角星形可分成12个与三角形PMN 全等(能完全重叠地放在一起)的小三角形.而图中的大正六角星形除去小正六角星形后.有6×4=24个与三角形PMN 全等的小三角形,所以大正六角星形的面是小正六角星形的3倍,即48平方厘米.【答案】48平方厘米【例 22】把正三角形每边三等分,将各边的中间段取来向外面作小正三角形,得到一个六角形.再将这个六角形的各个“角”(即小正三角形)的两边三等分,又以它们的中间段向外作更小的正三角形,这样就得到图所示的图形.如果这个图形面积是1,那么原来的正三角形面积是多少?【考点】格点型面积【难度】2星【题型】解答【解析】方法一:如右图,我们将图6-5分成若干个大小、形状完全相同的小正三角形,由40块小正三角形组成图6-5,而由27块小正三角形组成了图中最大的正三角形.120块小正三角形的面积为1,所以每块为1 120,那么原来的正三角形由81块小正三角形组成,其面积显然为27 40.方法二:如下图,我们把图6-5中的三角形分成A、B、C三种,设A形正三角形面积为“1”,则B、C两种正三角形的面积依次为“19”、“181”.在图中:BACA种、B种、C种正三角形的个数依次为1,3,12,所以图6-5中图形的面积为1+3×19+12×181=4027.所以有“1”对应2740,而原来的正三角形即为三角形A,所以原来的正三角形的面积为2740.【答案】27 40。