指对幂函数图像总结
高一数学知识点:幂函数知识点_知识点总结
高一数学知识点:幂函数知识点_知识点总结在高一数学的学习中,幂函数是一个重要的知识点。
它不仅在数学理论中有着关键的地位,也在解决实际问题中发挥着重要作用。
接下来,让我们一起深入了解幂函数的相关知识。
一、幂函数的定义一般地,形如\(y =x^α\)(\(α\)为常数)的函数,即以底数为自变量,幂为因变量,指数为常数的函数称为幂函数。
这里需要注意的是,\(α\)可以是有理数,也可以是无理数。
例如,\(y = x^2\),\(y = x^{\frac{1}{2}}\),\(y = x^{ 1}\)等都是幂函数。
二、幂函数的图像幂函数的图像因其指数\(α\)的不同而具有不同的特征。
当\(α > 0\)时:1、\(α > 1\)函数\(y =x^α\)在\(0, +∞)\)上单调递增,且增长速度越来越快;在\((∞, 0)\)上函数无定义。
其图像类似于“一撇”,经过点\((1, 1)\)和\((0, 0)\)。
2、\(0 <α < 1\)函数\(y =x^α\)在\(0, +∞)\)上单调递增,且增长速度越来越慢;在\((∞,0)\)上函数无定义。
其图像类似于“上凸”的曲线,经过点\((1, 1)\)和\((0, 0)\)。
当\(α < 0\)时:函数\(y =x^α\)在\((0, +∞)\)上单调递减,且曲线向\(x\)轴、\(y\)轴无限接近,但永不相交。
在\((∞, 0)\)上函数无定义。
其图像类似于“下凸”的曲线,经过点\((1, 1)\)。
特别地,当\(α = 0\)时,函数\(y = x^0 = 1\)(\(x ≠0\)),是一条平行于\(x\)轴的直线(去掉点\((0, 1)\))。
三、幂函数的性质1、定义域幂函数的定义域与其指数\(α\)有关。
当\(α\)为正整数时,定义域为\(R\);当\(α\)为分数时,要考虑分母的奇偶性以及根号下式子的非负性来确定定义域。
2、值域幂函数的值域也与指数\(α\)有关。
幂函数知识总结
幂函数知识总结幂函数知识总结幂函数复习y某(R)的函数称为幂函数,其中某是自变量,是一、幂函数定义:形如常数。
注意:幂函数与指数函数有何不同?【思考提示】本质区别在于自变量的位置不同,幂函数的自变量在底数位置,而指数函数的自变量在指数位置.观察图:归纳:幂函数图像在第一象限的分布情况如下:二、幂函数的性质归纳:幂函数在第一象限的性质:0,图像过定点(0,0)(1,1),在区间(0,)上单调递增。
0,图像过定点(1,1),在区间(0,)上单调递减。
探究:整数m,n的奇偶与幂函数y某(m,nZ,且m,n互质)的定义域以及奇偶性有什么关系?结果:形如y某(m,nZ,且m,n互质)的幂函数的奇偶性(1)当m,n都为奇数时,f(某)为奇函数,图象关于原点对称;(2)当m为奇数n为偶数时,f(某)为偶函数,图象关于y轴对称;(3)当m为偶数n为奇数时,f(某)是非奇非偶函数,图象只在第一象限内.三、幂函数的图像画法:关键先画第一象限,然后根据奇偶性和定义域画其它象限。
指数大于1,在第一象限为抛物线型(凹);指数等于1,在第一象限为上升的射线;指数大于0小于1,在第一象限为抛物线型(凸);指数等于0,在第一象限为水平的射线;指数小于0,在第一象限为双曲线型;四、规律方法总结:y某(0,1)的图像:1、幂函数mnmny某(q,p,qZ,p,q互质)p的图像:2、幂函数3、比较幂形式的两个数的大小,一般的思路是:(1)若能化为同指数,则用幂函数的单调性;(2)若能化为同底数,则用指数函数的单调性;(3)若既不能化为同指数,也不能化为同底数,则需寻找一个恰当的数作为桥梁来比较大小.题型一:幂函数解析式特征例1.下列函数是幂函数的是()A.y=某某B.y=3某C.y=某+1D.y=某m2m1y(mm1)某练习1:已知函数是幂函数,求此函数的解析式.2a9f(某)(a9a19)某练习2:若函数是幂函数,且图象不经过原点,求函数的解析式.题型二:幂函数性质例2:下列命题中正确的是()A.当0时,函数y某的图象是一条直线B.幂函数的图象都经过(0,0),(1,1)两点C.幂函数的y某图象不可能在第四象限内3D.若幂函数y某为奇函数,则在定义域内是增函数练习3:如图,曲线c1,c2分别是函数y=某m和y=某n在第一象限的图象,那么一定有()A.n0yc1练习4:.(1)函数y=某的单调递减区间为()A.(-∞,1)B.(-∞,0)C.[0,+∞)D.(-∞,+∞)(2).函数y=某(3).幂函数的图象过点(2,4),则它的单调递增区间是.题型三:比较大小.利用幂函数的性质,比较下列各题中两个幂的值的大小:(1)2.3,2.4;(2)0.31,0.35;(3)(2),(3);(4)1.1,0.9..经典例题:例1、已知函数f(某)某2mm3(mZ)为偶函数,且f(3)f(5),求m的值,并确定f(某)的解析式.例2、若(m1)1(32m)1,试求实数m的取值范围.例3、若(m1)3(32m)3,试求实数m的取值范围.例4、若(m1)4(32m)4,试求实数m的取值范围.例5、函数y(m某4某m2)(m2m某1)的定义域是全体实数,求m的c20某34在区间上是减函数.13434取值范围。
指、对、幂函数
专题:指、对、幂函数一、知识点总结(0,,)()(0,,)()(0,0,)(01)1lo m n a n a r s r s a a a a r s Q r s rs a a a r s Q r r s ab a b a b r Q x y a a a x =+=>∈=>∈=>>∈=>≠=⎧⎧⎪⎪⎪⎪⎪⎪⎧⎨⎪⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎩⎩⎪⎧⎪⎨⎪⎩⎩为根指数,为被开方数分数指数幂指数的运算指数函数性质定义:一般地把函数且叫做指数函数。
指数函数性质:见表对数:基本初等函数对数的运算对数函数g ,log ()log log ;log log log ;.log log ;(0,1,0,0)log log (01)1log (,0,1,0)log c a c N a N a M N M N a a a M M N a a a N n M n M a a M N a a y x a a a b b a c a c b a ⋅=+=-=>≠>>=>≠⎧⎧⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎨⎪⎪⎨⎪⎪⎪⎪⎪=>≠>⎪⎪⎩⎩⎧⎨⎩⎩为底数,为真数性质换底公式:定义:一般地把函数且叫做对数函数对数函数性质:见表且y x x αα⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧=⎪⎨⎪⎩⎩幂函数定义:一般地,函数叫做幂函数,是自变量,是常数。
性质:见表2对数运算公式1、x N N a a x=⇔=log ; 2、a aNa =log . 3、01log =a ,1log =a a .4、当0,0,1,0>>≠>N M a a 时: ⑴()N M MN a a a log log log +=;⑵N M N M a a a log log log -=⎪⎭⎫⎝⎛; ⑶M n M a na log log =. 5、换底公式:abb c c a log log log =()0,1,0,1,0>≠>≠>b c c a a . 6、ab b a log 1log =()1,0,1,0≠>≠>b b a a .二、课前热身1. 计算:33(lg 2)3lg 2lg5(lg5)++=_______________2. 若函数f (x )=a |x -2|(a >0,a ≠1)满足f (1)=13,则f (x )的单调递减区间是________3. 设a =⎝⎛⎭⎫3525,b =⎝⎛⎭⎫2535,c =⎝⎛⎭⎫2525,则a ,b ,c 的大小关系是_______________4. 方程|3x-1|=k 有两解,则k 的范围为________5. 设1a >,函数log a y x =在区间[,2]a a 上的最大值与最小值之差为12,则a =________ 6. 若函数f (x )=xa -1(a >0,a ≠1)的定义域和值域都是[0,2],则实数a =________7. 已知12,x x-+=则1122x x-+=8. 设)0(2)log (2>=x x f x ,则=)log (232f三、典例分析 例1:计算:(1)11203217(0.027)()(2)1)79----+-;(2)132123321().40.1()a b --- (3)2lg 225lg 5.02161.1230++-+-;(4)2log 43774lg 25lg 327log +++【变式演练】(1)已知1>>b a 且310log log =+a b b a ,求a b lob b a log -的值。
指数函数、对数函数、幂函数的图像和性质知识点总结.docx
(一)指数与指数函数1.根式(1)根式的概念根式的It念3符号表示a备注3如果x n=a,那么x叫做a的〃次方根a n > lfin e AT P 当«为奇数时,正数的«次方根是一个正数,负数的川次方根是一个负数3零的兀次方根是零3当n为偶数时,正数的n次方根有两个,它们互为相反数"土嚅(° >0)3负数没有偶次方根卩(2).两个重要公式*a①> 0)\a\=<[-a{ci < 0)②=a (注意a必须使砺有意义)。
2.有理数指数幕(1)幕的有关概念①正数的正分数指数幕:a"= 奸(d > (),m. n w AT,且〃〉1);豐 1 1②正数的负分数指数幕:a n = —=-=(^7>0,/?K /?G N\JBL H>1)a n③0的正分数指数幕等于0,0的负分数指数幕没有意义.注:分数指数幕与根式可以互化,通常利用分数指数幕进行根式的运算。
(2)有理数指数幕的性质①a I a'=a H'"(a>0,r、s G Q);②(a r)s=a re(a>0,r> sEQ);③(ab)'=a r b s(a>0,b>0,r E Q);.3.指数函数的图象与性质y=a x a>l 0<a<l图象~d 1 *定义域 R 值域 (0, +oo) 性质(1)过定点(0, 1)(2)当 x>0 时,y>l; x<0 时,0<y<l(2)当 x>0 时,0<y<l; x<0 时,y>l(3)在(-oo, +oo)上是增函数(3)在 (-00 , 4-00 )上是减函数注:如图所示,是指数函数(1) y=a x , (2) y=b x ' (3) ,y=c x (4) ,y=d x 的图象,如何确 定底数a,b,c,d 与1之间的大小关系?提示:在图屮作直线x=l,与它们图象交点的纵坐标即为它们各自底数的值,即 ci>』>l>ai>bi,・・・c>d>l>a>b 。
指对幂函数知识点总结
〖2.1〗指数函数【2.1.1】指数与指数幂的运算(1)根式的概念①如果,,,1nxa a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a的n;当n 是偶数时,正数a 的正的nn 次方根用符号表示;0的n 次方根是0;负数a 没有n 次方根.这里n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:n a=;当n为奇数时,a=;当n为偶数时,(0)|| (0)a a a a a ≥⎧==⎨-<⎩. (2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,m na a m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是: 1()0,,,m m nn aa m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数. (3)分数指数幂的运算性质①(0,,)rs r s aa a a r s R +⋅=>∈②()(0,,)r srs aa a r s R =>∈③()(0,0,)rr r ab a b a b r R =>>∈【2.1.2】指数函数及其性质(4)指数函数〖2.2〗对数函数【2.2.1】对数与对数运算(1)对数的定义 ①若(0,1)xaN a a =>≠且,则x 叫做以a 为底N 的对数,记作log a xN=,其中a 叫做底数,N 叫做真数.②负数和零没有对数. ③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>.(2)几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.(3)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…).(4)对数的运算性质 如果0,1,0,0aa M N >≠>>,那么①加法:log log log ()aa a M N MN += ②减法:log log log aa aM M N N-=③数乘:log log ()n a a n M M n R =∈④log a NaN =⑤loglog (0,)bn a a nM M b n R b =≠∈ ⑥换底公式:log log (0,1)log b a bN N b b a =>≠且【2.2.2】对数函数及其性质(5)对数函数(6)反函数的概念设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ϕ=表示x 是y 的函数,函数()x y ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,习惯上改写成1()y f x -=.(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=;③将1()xf y -=改写成1()y f x -=,并注明反函数的定义域.(8)反函数的性质 ①原函数()y f x =与反函数1()y f x -=的图象关于直线y x =对称.②函数()y f x =的定义域、值域分别是其反函数1()y f x -=的值域、定义域.③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上.④一般地,函数()y f x =要有反函数则它必须为单调函数.〖2.3〗幂函数(1)幂函数的定义 一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数.(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、y ,图象只分布在第一象限.②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1). ③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴.④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当qpα=(其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则q py x=是奇函数,若p 为奇数q 为偶数时,则q py x=是偶函数,若p 为偶数q 为奇数时,则q py x=是非奇非偶函数.⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.。
幂函数的性质与图像ppt
幂函数的性质与图像ppt于0的所有实数,a就不能是负数。
总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不同情况如下:如果a为任意实数,则函数的定义域为大于0的所有实数;如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据q的奇偶性来确定,即如果同时q为偶数,则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时q为奇数,则函数的定义域为不等于0 的所有实数。
在x大于0时,函数的值域总是大于0的实数。
在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。
而只有a为正数,0才进入函数的值域。
由于x大于0是对a的任意取值都有意义的,因此下面给出幂函数在第一象限的各自情况.可以看到:(1)所有的图形都通过(1,1)这点。
(2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。
(3)当a大于1时,幂函数图形下凹;当a小于1大于0时,幂函数图形上凸。
(4)当a小于0时,a越小,图形倾斜程度越大。
(5)a大于0,函数过(0,0);a小于0,函数不过(0,0)点。
(6)显然幂函数无界。
篇二:幂函数的性质与图像(一) - 黄浦教研→首页幂函数的性质与图像(一)学校:储能中学执教:陈云青日期:2011-12-6教学目标1.知道幂函数的概念,会用有代表性的k的值,讨论幂函数的定义域、单调性、奇偶性及最值;2.在探究幂函数的性质与图像的过程中,体会研究函数性质的过程与方法; 3.在交流研究幂函数性质的活动中,感悟数学思想方法。
教学重点幂函数的性质与图像。
教学难点探索研究幂函数性质与图像的途径,熟悉由特殊到一般的数学思想。
情景引入建立下列问题的函数关系:(1)如果正方形的边长为x,那么正方形的面积y?____________ ;(2)如果一个正方体容器的体积为x,那么该正方体容器的棱长y?____________ ;(3)如果某人在x秒内,骑自行车行了1km,那么他骑自行车的平均速度y?____________ 。
指数、对数、幂函数总结归纳
指数与指数幂的运算【学习目标】1.理解有理指数幂的含义,掌握幂的运算.2.理解指数函数的概念和意义,理解指数函数的单调性与特殊点. 3.理解对数的概念及其运算性质.4.重点理解指数函数、对数函数、幂函数的性质,熟练掌握指数、对数运算法则,明确算理,能对常见的指 数型函数、对数型函数进行变形处理.5.会求以指数函数、对数函数、幂函数为载体的复合函数的定义域、单调性及值域等性质. 6.知道指数函数与对数函数互为反函数(a >0,a ≠1).【要点梳理】要点一、幂的概念及运算性质1.整数指数幂的概念及运算性质2.分数指数幂的概念及运算性质为避免讨论,我们约定a>0,n ,m ∈N *,且mn为既约分数,分数指数幂可如下定义: 1n na a =()m n m m n na a a ==-1m nm naa=3.运算法则当a >0,b >0时有:(1)nm nma a a +=⋅;(2)()mn nma a =;(3)()0≠>=-a n m a aa nm n m ,;(4)()mm m b a ab =.要点诠释:(1)根式问题常利用指数幂的意义与运算性质,将根式转化为分数指数幂运算;(2)根式运算中常出现乘方与开方并存,要注意两者的顺序何时可以交换、何时不能交换.如2442)4()4(-≠-;(3)幂指数不能随便约分.如2142)4()4(-≠-.要点二、根式的概念和运算法则1.n 次方根的定义:若x n=y(n ∈N *,n>1,y ∈R),则x 称为y 的n 次方根,即x=n y .n 为奇数时, y 的奇次方根有一个,是负数,记为n y ;零的奇次方根为零,记为00=n ;n 为偶数时,正数y 的偶次方根有两个,记为n y ±负数没有偶次方根;零的偶次方根为零,00n =. 2.两个等式(1)当1n >且*n N ∈时,nnaa =;(2)⎩⎨⎧=)(||)(,为偶数为奇数n a n a a nn要点诠释:①计算根式的结果关键取决于根指数n 的取值,尤其当根指数取偶数时,开方后的结果必为非负数,可先写成||a 的形式,这样能避免出现错误.②指数幂的一般运算步骤有括号先算括号里的;无括号先做指数运算.负指数幂化为正指数幂的倒数.底数是负数,先确定符号,底数是小数,先要化成分数,底数是带分数(如),先要化成假分数(如15/4),然后要尽可能用幂的形式表示,便于用指数运算性质.在化简运算中,也要注意公式: a 2-b 2=(a -b )(a +b ),a 3-b 3=(a -b )(a 2+ab +b 2),a 3+b 3=(a +b )(a 2-ab +b 2), (a ±b )2=a 2±2ab +b 2,(a ±b )3=a 3±3a 2b +3ab 2±b 3,的运用,能够简化运算.指数函数及其性质【要点梳理】要点一、指数函数的概念:函数y=a x(a>0且a ≠1)叫做指数函数,其中x 是自变量,a 为常数,函数定义域为R. 要点诠释:(1)形式上的严格性:只有形如y=a x(a>0且a ≠1)的函数才是指数函数.像23xy =⋅,12xy =,31xy =+等函数都不是指数函数.(2)为什么规定底数a 大于零且不等于1:①如果0a <,则对于一些函数,比如(4)xy =-,当11,,24x x ==⋅⋅⋅时,在实数范围内函数值不存在. ②如果1a =,则11xy ==是个常量,就没研究的必要了。
指数、对数、幂函数总结归纳
指数与指数幂的运算 【学习目标】1.理解有理指数幂的含义,掌握幂的运算.2.理解指数函数的概念和意义,理解指数函数的单调性与特殊点.3.理解对数的概念及其运算性质. 4.重点理解指数函数、对数函数、幂函数的性质,熟练掌握指数、对数运算法则,明确算理,能对常见的指 数型函数、对数型函数进行变形处理.5.会求以指数函数、对数函数、幂函数为载体的复合函数的定义域、单调性及值域等性质.6.知道指数函数与对数函数互为反函数(a >0,a ≠1). 【要点梳理】 要点一、幂的概念及运算性质1.整数指数幂的概念及运算性质2.分数指数幂的概念及运算性质 为避免讨论,我们约定a>0,n ,m ∈N *,且m n为既约分数,分数指数幂可如下定义: 1n na a =()mn m m n n a a a == -1mn mn a a =3.运算法则当a >0,b >0时有:(1)n m n m aa a +=⋅; (2)()mn n m a a =;(3)()0≠>=-a n m a aa n m n m ,; (4)()m m mb a ab =.要点诠释:(1)根式问题常利用指数幂的意义与运算性质,将根式转化为分数指数幂运算;(2)根式运算中常出现乘方与开方并存,要注意两者的顺序何时可以交换、何时不能交换.如2442)4()4(-≠-;(3)幂指数不能随便约分.如2142)4()4(-≠-. 要点二、根式的概念和运算法则1.n 次方根的定义:若x n =y(n ∈N *,n>1,y ∈R),则x 称为y 的n 次方根,即x=n y . n 为奇数时, y 的奇次方根有一个,是负数,记为n y ;零的奇次方根为零,记为00=n ;n 为偶数时,正数y 的偶次方根有两个,记为n y ±负数没有偶次方根;零的偶次方根为零,00n =.2.两个等式(1)当1n >且*n N ∈时,n n a a =;(2)⎩⎨⎧=)(||)(,为偶数为奇数n a n a a n n要点诠释:①计算根式的结果关键取决于根指数n 的取值,尤其当根指数取偶数时,开方后的结果必为非负数,可先写成||a 的形式,这样能避免出现错误.②指数幂的一般运算步骤有括号先算括号里的;无括号先做指数运算.负指数幂化为正指数幂的倒数.底数是负数,先确定符号,底数是小数,先要化成分数,底数是带分数(如),先要化成假分数(如15/4),然后要尽可能用幂的形式表示,便于用指数运算性质.在化简运算中,也要注意公式:a 2-b 2=(a -b )(a +b ),a 3-b 3=(a -b )(a 2+ab +b 2),a 3+b 3=(a +b )(a 2-ab +b 2),(a ±b )2=a 2±2ab +b 2,(a ±b )3=a 3±3a 2b +3ab 2±b 3,的运用,能够简化运算.指数函数及其性质【要点梳理】要点一、指数函数的概念:函数y=a x (a>0且a ≠1)叫做指数函数,其中x 是自变量,a 为常数,函数定义域为R.要点诠释:(1)形式上的严格性:只有形如y=a x (a>0且a ≠1)的函数才是指数函数.像23x y =⋅,12x y =,31x y =+等函数都不是指数函数.(2)为什么规定底数a 大于零且不等于1:①如果0a <,则对于一些函数,比如(4)x y =-,当11,,24x x ==⋅⋅⋅时,在实数范围内函数值不存在. ②如果1a =,则11x y ==是个常量,就没研究的必要了。
幂函数图像及性质总结
幂函数图像及性质总结幂函数图像及性质总结:对任意实数,有|其中,是一个整系数多项式;分别表示 x 的函数,它们是奇函数。
那么,这些系数和就称作二次函数的解析式。
因此,上述公式也可写成如下形式:,故得到常见的二次函数解析式(这里假设两边取常量)。
对于任何的正整数 n,二次函数都有一种特殊的、唯一确定的表达式,称为该正整数的函数表达式。
在大部分情况下,所谓的“初等函数”即指这类特殊的函数。
当然,并非所有的函数都具备这样的性质。
其中,表示第 k 个正整数的 n 次方,表示与它相乘后的积。
由幂的定义知道:令,则:可得出,它又可以看作是积的三角函数,且:根据定义,当时,有当时,同理。
又因为幂函数的底数只能是整数或正整数,故实际上,只要是整数,我们都能找到某个幂函数的一种对应关系,使之转化为的一种表达式。
从而也证明了积与有一种特殊的联系。
令,则函数变为,积变为,我们将积的对应系数称作被乘积的幂函数。
对于正整数 m,存在 k 个自然数,使得:此外,若能够给出幂函数解析式中的整数部分,就可以把整数表达式中的一般式移项,最终得到幂函数解析式。
换句话说,如果已知整数的幂函数解析式,我们通过计算就可以求出整数的值。
这样做会比较繁琐,但事实上,利用这种思想还是很容易得出整数解的。
另外,运用幂函数也可以计算与实数的乘积。
一个重要的原因是它很简单。
不妨以下面的三角函数为例,说明幂函数解析式与指数函数解析式之间的联系。
因为,,所以它也必须满足;令,得到。
进而得到;再者,,所以。
即它是。
由前面的几点,我们可以归纳出指数函数与幂函数的对应规律。
幂函数有许多性质:在许多场合都会遇到某个函数,但求出它的对应系数却十分困难,需借助一些常见的解析式来判断;还有,很多复杂函数的解析式也往往含有它的对应系数;更甚至,当你尝试去求某个指数函数的对应系数时,发现竟无法列举出可靠的对应系数。
幂函数与指数函数的互逆定理则为这些问题提供了完美的答案:已知:对任意实数,,且对于任意的实数,均有。
高一数学《幂函数》PPT课件
函数的性质不同
指数函数的底数是一个大于0且 不等于1的常数,而幂函数的底 数可以是任意实数。此外,指 数函数的值域为正实数集,而 幂函数的值域为非负实数集。
图像的形状不同
指数函数的图像是一条经过点 (0,1)的曲线,而幂函数的图像 是一条经过原点的曲线。
02
常见幂函数类型及其特点
一次幂函数
表达式
幂的乘方法则
幂的乘方
底数不变,指数相乘。公式: (a^m)^n = a^(m×n)
举例
(2^3)^4 = 2^(3×4) = 2^12; (x^2)^5 = x^(2×5) = x^10
积的乘方法则
积的乘方
把积的每一个因式分别乘方,再把所得的幂相乘。公式: (ab)^n = a^n × b^n
举例
在幂函数中,指数a可以取任意实数,但不同的a值会导致函数性质的不
同。学生需要注意区分不同a值对应的函数性质。
02 03
函数定义域
幂函数的定义域与指数a的取值有关。例如,当a≤0时,函数定义域为 非零实数集;当a>0且a为整数时,函数定义域为全体实数集。学生需 要注意根据指数a的取值来确定函数的定义域。
幂函数性质
幂函数的性质包括定义域、值域、奇偶性、单调性等。例如,当a>0时,幂函数在定义域内 单调递增;当a<0时,幂函数在定义域内单调递减。
幂函数图像
幂函数的图像根据a的不同取值而呈现出不同的形态,如直线、抛物线、双曲线等。通过图像 可以直观地了解幂函数的性质。
易错难点剖y = x^n(n为实数)
图像
02
一条直线(n=1时)或射线(n≠1时)
性质
03
当n>0时,函数在(0, +∞)上单调递增;当n<0时,函数在(0,
高中数学一轮复习课件幂函数的图像和性质
总结归纳
及时总结归纳学习过程中 的重点和难点,形成自己 的学习笔记和心得体会, 便于回顾和复习。
保持良好作息和心态,积极备战高考
合理安排时间
保证充足的睡眠和合理的饮食, 保持良好的身体状态和精神状态
。
调整心态
保持积极乐观的心态,相信自己 能够通过努力取得好成绩。遇到 困难时,及时调整情绪,寻求帮
助和支持。
高中数学一轮复习课件 幂函数的图像和性质
汇报人:XXX 2024-01-22
目录
• 幂函数基本概念与性质 • 幂函数图像特征与绘制方法 • 幂函数在解决实际问题中应用 • 幂函数与其他类型函数关系研究 • 高考真题回顾与解题技巧总结 • 复习策略与备考建议
幂函数基本概念与
01
性质
幂函数定义及表达式
加强练习和反思总结是提高解题能力的关键。通过大量的练习可以加深对知识点的 理解和记忆;通过反思总结可以发现自己的不足之处并加以改进。
复习策略与备考建
06
议
制定个性化复习计划,明确目标
分析自身情况
根据自己的数学基础、学习能力 和时间安排,制定适合自己的复
习计划。
明确复习目标
确定自己在幂函数的图像和性质方 面的学习目标,例如掌握基本概念 、理解图像特征、熟练运用性质等 。
03
幂函数与一次、二次函数的比较
虽然幂函数、一次函数和二次函数在形式上有所不同,但它们之间有着
密切的联系。在解决某些问题时,可以通过转化思想将它们相互转化,
从而简化问题的求解过程。
幂函数与指数、对数函数关系探讨
幂函数与指数函数
指数函数的底数a可以看作是幂函数的指数n,而指数函数的指数x则可以看作是幂函数的 自变量。因此,指数函数和幂函数在形式上具有一定的相似性。
指数函数、对数函数、幂函数的图像和性质知识点总结
(一)指数与指数函数1根式(1) 根式的概念(2).两个重要公式”n 为奇数a① 勺a =〈a(a 王0) n 为偶数\a\=: 、—a(a<0)② (n .a)n =a (注意a 必须使I a 有意义) 2. 有理数指数幂 (1)幂的有关概念m①正数的正分数指数幂:a n =n 孑(a 0,m> n N ,且n 1);注:分数指数幂与根式可以互化,通常利用分数指数幂进行 根式的运算。
(2) 有理数指数幂的性质 ① aras=ar+s(a>0,r 、s € Q);②正数的负分数指数幂1— ■ (a • 0, m 、n m 'n N ,且 n 1)③0的正分数指数幂等于 0,0的负分数指数幂没有意义② (ar)s=ars(a>O,r 、s€ Q);③ (ab)r=arbs(a>O,b>O,r € Q);.3. 指数函数的图象与性质注:如图所示,是指数函数(1)y=ax, (2)y=bx, (3),y=cx (4),y=dx的图象,如何确定底数a,b,c,d与1之间的大小关系?提示:在图中作直线x=1,与它们图象交点的纵坐标即为它们各自底数的值,即 c1>d1>1>a1>b1,二c>d>1>a>b 。
即无论在轴 的左侧还是右侧,底数按逆时针方向变大。
(二)对数与对数函数 1、对数的概念 (1) 对数的定义如果a * = N (a - 0且a "),那么数x 叫做以a 为底,N 的对数,记作 x=log a N ,其中a 叫做对数的底数,N 叫做真数。
(2) 几种常见对数2、对数的性质与运算法则(1)对数的性质(a -0,且 a=1):① log a^ 0,② log, =1,③ a 1* 二 N , ④ log a^ = N 。
(2)对数的重要公式:12叫(a,b 均为大于零且不等于1,N 0);log a(3)对数的运算法则:如果a 0,且a=1, M 0, N 0那么①换底公式: N log b② log a b1 iog b a①log a (MN ) = log a M log a N;②log a M-log a M-log a N;N③log a M n二n log a M (n・ R);④log m b n = —log a b。
幂函数知识点及题型归纳总结
幂函数知识点及题型归纳总结知识点精讲一、幂函数的定义一般地,函数()y x R αα=∈叫做幂函数,其中x 是自变量,α是常数.注:判断一个函数是否为幂函数,关键是看其系数是否为1,底数是否为变量x .二、幂函数的图像幂函数的图像一定会出现在第一象限内,一定不会出现在第四项县内,至于是否出现在第二、三象限内,要看函数的奇偶性;幂函数的图像如果与坐标轴相交,则交点一定是原点. 当11,2,3,,12α=-时,在同一坐标系内的函数图像如图2-18所示.三、幂函数的性质当0α>时,幂函数y x α=在(0,)+∞上是增函数,当1α>时,函数图像是向下凸的;当01α<<时,图像是向上凸的,恒过点(0,0)(1,1)和;当0α<时,幂函数y x α=在(0,)+∞上是减函数.幂函数y x α=的图像恒过点(1,1).题型归纳及思路提示题型1 幂函数的定义及其图像思路提示确定幂函数y x α=的定义域,当α为分数时,可转化为根式考虑,是否为偶次根式,或为则被开方式非负.当0α≤时,底数是非零的.例2.68函数2223()(1)a a f x a a x --=--为幂函数(a 为常数),且在(0,)+∞上是减函数,则a =______. 分析根据幂函数的定义及单调性求解a .解析依题意,得2211230a a a a ⎧--=⎪⎨--<⎪⎩,解得2a =. 变式1 函数32204(42)(1)y mx x m x mx -=++++-+的定义域为R ,求实数m 的取值范围.变式2 幂函数()y f x =的图像经过点1(2,)8--,则满足()27f x =的x 的值是______.. 变式3 设11,1,,32a ⎧⎫∈-⎨⎬⎩⎭,则使函数y x α=为奇函数且定义域为R 的所有α的值为( ) .1,3A .1,1B - .1,3C - .1,1,3D -题型2 幂函数性质的综合应用思路提示紧扣幂函数y x α=的定义、图像、性质,特别注意它的单调性在不等式中的作用,这里注意α为奇数时,x α为奇函数,α为偶数时,x α为偶函数.例2.69已知幂函数223()()m m f x x m Z --=∈为偶函数,且在区间(0,)+∞上是减函数.(1)求函数()f x 的解析式;(2)求满足33(1)(32)mma a --+<-的a 的取值范围.分析利用函数()f x 在区间(0,)+∞上是减函数且为偶函数求m ,从而得到()f x 的解析式.解析(1)因为幂函数在区间(0,)+∞上是减函数,所以2230m m --<得 13,m m Z -<<∈又,当0m =时,2233m m --=-;当1m =时,2234m m --=-;当2m =时,2233m m --=-.又因为()f x 为偶函数,所以4()f x x -=.(2)由1m =得1133(1)(32)a a --+<-. 即113311132a a ⎛⎫⎛⎫< ⎪ ⎪+-⎝⎭⎝⎭又13y x =在R 上单调递增,故11132a a <+-,整理得 (1)(32)(23)0a a a +--<,解得23132a a <-<<或,如图所示.故a 的取值范围为23(,1)(,)32-∞-. 评注突破点为由单调性得m 的取值范围,进而验证满足偶函数的值,若从偶函数的条件入手,则不易向下转化.分类讨论时,确定分类标准,做到不重不漏.变式1 已知函数2()f x x =,设函数[]()()(21)()1g x qf f x q f x =-+-+,问是否存在实数(0)q q <,使()g x 在区间(],4-∞-上是减函数,且在区间(4,0)-上是增函数?若存在,求出q ;若不存在,请说明理由.最有效训练题1.下列函数中,既是偶函数又在(,0)-∞上是增函数的是( )43.A y x =32.B y x = 2.C y x -= 14.D y x = 2.幂函数2232()m m y x m Z --=∈的图像如图2-20所示,则m 的值为( ).1A .2B .3C.4D3.幂函数()f x 的图像经过点11(,)42A ,则它在点A 处的切线方程为( ) .4410A x y ++= .4410B x y -+= .20C x y -=.20D x y += 4.若幂函数()f x 的图像经过点13,9⎛⎫⎪⎝⎭则其定义域为( ){}.,0A x x R x ∈> {}.,0B x x R x ∈< {}.,0C x x R x ∈≠ .D R 5.设232555322,,555a b c ⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则,,a b c 的大小关系是( ) .Aa c b >>.B a b c >> .C c a b >> .Db c a >> 6.设1112,1,,,,1,2,3232a ⎧⎫∈---⎨⎬⎩⎭,则使y x α=为奇函数且在(0,)+∞上单调递减的α值的个数为( ) .1A .2B .3C .4D7.已知幂函数()y f x =的图像过点(2,2),则(8)f 的值为_______.8.已知幂函数265()()m m f x x m Z -+=∈为奇函数,且在区间(0,)+∞上是减函数,则()f x 的解析式为32 231- 图 2-19_______.9.已知函数12()f x x =,且(21)(3)f x f x -<,则x 的取值范围是_______.10.设函数()1()f x x Q αα=+∈的定义域为[][],,b a a b --,其中0a b <<,若函数()f x 在区间[],a b 上的最大值为6,最小值为3,则()f x 在[],b a --上的最大值与最小值的和为_______.11.已知函数12()f x x =,给出下列命题:①若1()1x f x >>则;②若120x x <<,则2121()()f x f x x x ->-;③若120x x <<,则2112()()x f x x f x <;④若120x x <<,则1212()()22f x f x x x f ++⎛⎫< ⎪⎝⎭. 其中,所有正确命题的序号是_______.12.点在幂函数()f x 的图像上,点12,4⎛⎫- ⎪⎝⎭在幂函数()g x 的图像上,问当x 为何值时有: (1)()()(2)()()(3)()()f xg x f x g x f x g x >=<。
最全的高中幂-指数-对数-三角函数知识点总结
最全的高中幂-指数-对数-三角函数知识点总结-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN一.幂 函 数一、幂函数定义:形如)(R x y ∈=αα的函数称为幂函数,其中x 是自变量,α是常数。
注意:幂函数与指数函数有何不同?【思考·提示】 本质区别在于自变量的位置不同,幂函数的自变量在底数位置,而指数函数的自变量在指数位置. 观察图:归纳:幂函数图像在第一象限的分布情况如下:二、幂函数的性质归纳:幂函数在第一象限的性质:0>α,图像过定点(0,0)(1,1),在区间(+∞,0)上单调递增。
0<α,图像过定点(1,1),在区间(+∞,0)上单调递减。
探究:整数m,n 的奇偶与幂函数nm x y =),,,(互质且n m Z n m ∈的定义域以及奇偶性有什么关系?结果:形如nmx y =),,,(互质且n m Z n m ∈的幂函数的奇偶性(1)当m ,n 都为奇数时,f (x )为奇函数,图象关于原点对称; (2)当m 为奇数n 为偶数时,f (x )为偶函数,图象关于y 轴对称; (3)当m 为偶数n 为奇数时,f (x )是非奇非偶函数,图象只在第一象限内.三、幂函数的图像画法:关键先画第一象限,然后根据奇偶性和定义域画其它象限。
指数大于1,在第一象限为抛物线型(凹); 指数等于1,在第一象限为上升的射线;指数大于0小于1,在第一象限为抛物线型(凸); 指数等于0,在第一象限为水平的射线; 指数小于0,在第一象限为双曲线型; 四、规律方法总结:1、幂函数)1,0(==ααx y 的图像:2、幂函数),,,,(互质q p Z q p p qx y ∈==αα的图像:3、比较幂形式的两个数的大小,一般的思路是: (1)若能化为同指数,则用幂函数的单调性; (2)若能化为同底数,则用指数函数的单调性;(3)若既不能化为同指数,也不能化为同底数,则需寻找一个恰当的数作为桥梁来比较大小.二.指数与指数幂的运算1.根式的概念:一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N *.负数没有偶次方根;0的任何次方根都是0,记作00=n。
高一数学知识点:幂函数知识点知识点总结
高一数学知识点:幂函数知识点知识点总结高一数学知识点:幂函数知识点总结在高一数学的学习中,幂函数是一个重要的知识点。
幂函数的形式简单,但其中蕴含的性质和规律却丰富多样。
下面我们就来详细总结一下幂函数的相关知识。
一、幂函数的定义一般地,形如$y = x^{\alpha}$($\alpha$为常数)的函数,叫做幂函数。
其中,$x$是自变量,$\alpha$是常数。
需要注意的是,幂函数的底数是自变量$x$,指数是常数$\alpha$。
二、幂函数的图像幂函数的图像因指数$\alpha$的不同而具有不同的特征。
当$\alpha > 0$时:若$\alpha$为正整数,幂函数的图像在第一象限内单调递增。
例如,$y = x^2$的图像是一个开口向上的抛物线,对称轴为$y$轴。
若$\alpha$为正分数,且分母为奇数,分子为偶数,幂函数的图像在第一象限内单调递增,且关于原点对称。
例如,$y =x^{\frac{2}{3}}$的图像在第一象限内类似于一个上凸的曲线。
若$\alpha$为正分数,且分母为偶数,分子为奇数,幂函数的图像在第一象限内单调递增,且关于$y$轴对称。
例如,$y = x^{\frac{1}{2}}$的图像是一个在第一象限内的半支抛物线。
当$\alpha < 0$时:幂函数的图像在第一象限内单调递减,且以坐标轴为渐近线。
例如,$y = x^{-1}$的图像是位于第一、三象限的双曲线。
三、幂函数的性质1、定义域当$\alpha$为正整数时,定义域为$R$。
当$\alpha$为正分数时,若分母为奇数,定义域为$R$;若分母为偶数,定义域为$0, +\infty)$。
当$\alpha$为负整数时,定义域为$\{x|x \neq 0\}$。
当$\alpha$为负分数时,定义域为$\{x|x > 0\}$。
2、值域当$\alpha > 0$时,值域为$0, +\infty)$。
当$\alpha < 0$时,值域为$\{y|y \neq 0\}$。
指数函数、对数函数、幂函数的图像和性质知识点总结
当xo>l时,按交点的高低,从高到低依次为y=x3, y=x2, y=x ,y x2,y=x-1;
1
当0<xo<1时,按交点的高低,从高到低依次为y=x-1,y x2,y=x , y=x2, y=x3。
3、藉函数的性质
段X数
y=x
2y=x
3y=x
1
yx,
-1y=x
定义域
R
R
R
[0,)
x| x Rflx 0
值域
R
[0,)
R
[0,)
y | y Rfi y 0
奇偶性
奇
偶
奇
非奇非偶
奇
单调性
增
x € [0 ,)时,增;
xe(,0]时,减
增
增
x C (0,+)时,减;
x C (- ,0)时,减
定点
(1 , 1)
叫做对数的底数,N叫做真数。
(2)几种常见对数
对数形式
特点
记法
一般对数
底数为aa 0,且a 1
logaN
常用对数
底数为10
lg N
自然对数
底数为e
ln N
2、对数的性质与运算法则
(1)
(2)对数的重要公式:
lonN
-^b(a,b均为大丁零且不等丁1,N 0);loga
指数函数y=ax与对数函数y=logax互为反函数,它们的图象关于直线y=x对称。
(三)籍函数
1、藉函数的定义
形如y=x " (a£ R)的函数称为藉函数,其中x是自变量,a为常数
注:藉函数与指数函数有本质区别在于自变量的位置不同,备函数的自变量在底数位置,而
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
指对幂函数图像特征总结(必修一)
————以第一象限为研究对象
指数函数图像:
在第一象限:底大图高!0<b<a<1<d<c
对数函数图像:
在第一象限做一条y=1的直线,此时观察
其与图像的交点:底大图右!
0<c<d<1<a<b
指数函数与对数函数共同特征: 当a>1时,函数在定义域内单调递增; 当0<a<1时,函数在定义域内单调递减。
幂函数图像特征总结:
在x=1的右侧,作一条垂直于x轴的直线,指大图高!当a<0时,图像为双曲线,图像单调递减;
当a>0,图像单调递增。
{a>1,图像为向上的抛物线,下凸函数
0<a<1,图像为向下的抛物线,上凸函数。