2017年山东省东营市中考数学试卷(含答案解析版)

合集下载

2017东营中考数学试题及答案

2017东营中考数学试题及答案

2017东营中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是正确的?A. \(\sqrt{2}\)是有理数B. \(\sqrt{2}\)是无理数C. \(\sqrt{2}\)是实数D. \(\sqrt{2}\)是复数答案:B2. 一个等腰三角形的底边长为6,腰长为5,那么其周长是多少?A. 16B. 21C. 26D. 31答案:B3. 如果一个二次函数的图像开口向上,且顶点坐标为(1,-4),那么下列哪个选项是正确的?A. \(y=ax^2+bx+c\)中a>0, b>0B. \(y=ax^2+bx+c\)中a>0, b<0C. \(y=ax^2+bx+c\)中a<0, b>0D. \(y=ax^2+bx+c\)中a<0, b<0答案:B4. 一个圆的半径为3,那么它的面积是多少?A. 9πB. 18πC. 27πD. 36π答案:C5. 一个数的相反数是-5,那么这个数是多少?A. 5B. -5C. 0D. 10答案:A6. 下列哪个选项是正确的?A. \(\frac{1}{2}+\frac{1}{3}=\frac{5}{6}\)B. \(\frac{1}{2}+\frac{1}{3}=\frac{1}{5}\)C. \(\frac{1}{2}+\frac{1}{3}=\frac{3}{5}\)D. \(\frac{1}{2}+\frac{1}{3}=\frac{1}{6}\)答案:A7. 一个等差数列的前三项分别是2,5,8,那么它的第四项是多少?A. 11B. 12C. 13D. 14答案:A8. 一个直角三角形的两个直角边长分别为3和4,那么它的斜边长是多少?A. 5B. 6C. 7D. 8答案:A9. 一个多项式除以x-2得到的商是x+1,那么这个多项式是多少?A. \(x^2-x+2\)B. \(x^2+x+2\)C. \(x^2-x-2\)D. \(x^2+x-2\)答案:B10. 一个数的平方是25,那么这个数是多少?A. 5B. -5C. 5或-5D. 0答案:C二、填空题(每题3分,共15分)11. 如果一个数的立方是-8,那么这个数是_。

2017年东营市中考数学试卷解析

2017年东营市中考数学试卷解析

2017年山东省东营市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.下列四个数中,最大的数是()A.3 B.C.0 D.π【分析】根据在数轴上表示的两个实数,右边的总比左边的大可得答案.【解答】解:0<<3<π,故选:D.【点评】此题主要考查了实数的比较大小,关键是掌握利用数轴也可以比较任意两个实数的大小,即在数轴上表示的两个实数,右边的总比左边的大,在原点左侧,绝对值大的反而小.2.下列运算正确的是()A.(x﹣y)2=x2﹣y2B.|﹣2|=2﹣ C.﹣= D.﹣(﹣a+1)=a+1【分析】根据完全平方公式,二次根式的化简以及去括号的法则进行解答.【解答】解:A、原式=x2﹣2xy+y2,故本选项错误;B、原式=2﹣,故本选项正确;C、原式=2﹣,故本选项错误;D、原式=a﹣1,故本选项错误;故选:B.【点评】本题综合考查了二次根式的加减法,实数的性质,完全平方公式以及去括号,属于基础题,难度不大.3.若|x2﹣4x+4|与互为相反数,则x+y的值为()A.3 B.4 C.6 D.9【分析】根据相反数的定义得到|x2﹣4x+4|+=0,再根据非负数的性质得x2﹣4x+4=0,2x﹣y﹣3=0,然后利用配方法求出x,再求出y,最后计算它们的和即可.【解答】解:根据题意得|x2﹣4x+4|+=0,所以|x2﹣4x+4|=0,=0,即(x﹣2)2=0,2x﹣y﹣3=0,所以x=2,y=1,所以x+y=3.故选A.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n 的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.也考查了非负数的性质.4.小明从家到学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,小明从家到学校行驶路程s(m)与时间t(min)的大致图象是()A.B.C.D.【分析】根据题意判断出S随t的变化趋势,然后再结合选项可得答案.【解答】解:小明从家到学校,先匀速步行到车站,因此S随时间t的增长而增长,等了几分钟后坐上了公交车,因此时间在增加,S不增长,坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,因此S又随时间t的增长而增长,故选:C.【点评】此题主要考查了函数图象,关键是正确理解题意,根据题意判断出两个变量的变化情况.5.已知a∥b,一块含30°角的直角三角板如图所示放置,∠2=45°,则∠1等于()A.100°B.135°C.155° D.165°【分析】先过P作PQ∥a,则PQ∥b,根据平行线的性质即可得到∠3的度数,再根据对顶角相等即可得出结论.【解答】解:如图,过P作PQ∥a,∵a∥b,∴PQ∥b,∴∠BPQ=∠2=45°,∵∠APB=60°,∴∠APQ=15°,∴∠3=180°﹣∠APQ=165°,∴∠1=165°,故选:D.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等,同旁内角互补.6.如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是()A.B.C.D.【分析】根据正方形表面展开图的结构即可求出判断出构成这个正方体的表面展开图的概率.【解答】解:设没有涂上阴影的分别为:A、B、C、D、E、F、G,如图所示,从其余的小正方形中任取一个涂上阴影共有7种情况,而能够构成正方体的表面展开图的有以下情况,D、E、F、G,∴能构成这个正方体的表面展开图的概率是,故选(A)【点评】本题考查概率,解题的关键是熟识正方体表面展开图的结构,本题属于中等题型.7.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=8,AB=5,则AE的长为()A.5 B.6 C.8 D.12【分析】由基本作图得到AB=AF,AG平分∠BAD,故可得出四边形ABEF是菱形,由菱形的性质可知AE⊥BF,故可得出OB的长,再由勾股定理即可得出OA的长,进而得出结论.【解答】解:连结EF,AE与BF交于点O,∵四边形ABCD是平行四边形,AB=AF,∴四边形ABEF是菱形,∴AE⊥BF,OB=BF=4,OA=AE.∵AB=5,在Rt△AOB中,AO==3,∴AE=2AO=6.故选B.【点评】本题考查的是作图﹣基本作图,熟知平行四边形的性质、勾股定理、平行线的性质是解决问题的关键.8.若圆锥的侧面积等于其底面积的3倍,则该圆锥侧面展开图所对应扇形圆心角的度数为()A.60°B.90°C.120° D.180°【分析】根据圆锥侧面积恰好等于底面积的3倍可得圆锥的母线长=3×底面半径,根据圆锥的侧面展开图的弧长等于圆锥的底面周长,可得圆锥侧面展开图所对应的扇形圆心角度数.【解答】解:设母线长为R,底面半径为r,∴底面周长=2πr,底面面积=πr2,侧面面积=lr=πrR,∵侧面积是底面积的3倍,∴3πr2=πrR,∴R=3r,设圆心角为n,有=πR,∴n=120°.故选C.【点评】本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长,以及利用扇形面积公式求出是解题的关键.9.如图,把△ABC沿着BC的方向平移到△DEF的位置,它们重叠部分的面积是△ABC面积的一半,若BC=,则△ABC移动的距离是()A.B.C.D.﹣【分析】移动的距离可以视为BE或CF的长度,根据题意可知△ABC与阴影部分为相似三角形,且面积比为2:1,所以EC:BC=1:,推出EC的长,利用线段的差求BE的长.【解答】解:∵△ABC沿BC边平移到△DEF的位置,∴AB∥DE,∴△ABC∽△HEC,∴=()2=,∴EC:BC=1:,∵BC=,∴EC=,∴BE=BC﹣EC=﹣.故选:D.【点评】本题主要考查相似三角形的判定和性质、平移的性质,关键在于证△ABC 与阴影部分为相似三角形.10.如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PHPC其中正确的是()A.①②③④B.②③C.①②④D.①③④【分析】由正方形的性质和相似三角形的判定与性质,即可得出结论.【解答】解:∵△BPC是等边三角形,∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,在正方形ABCD中,∵AB=BC=CD,∠A=∠ADC=∠BCD=90°∴∠ABE=∠DCF=30°,∴BE=2AE;故①正确;∵PC=CD,∠PCD=30°,∴∠PDC=75°,∴∠FDP=15°,∵∠DBA=45°,∴∠PBD=15°,∴∠FDP=∠PBD,∵∠DFP=∠BPC=60°,∴△DFP∽△BPH;故②正确;∵∠FDP=∠PBD=15°,∠ADB=45°,∴∠PDB=30°,而∠DFP=60°,∴∠PFD≠∠PDB,∴△PFD与△PDB不会相似;故③错误;∵∠PDH=∠PCD=30°,∠DPH=∠DPC,∴△DPH∽△CPD,∴,∴D P2=PHPC,故④正确;故选C.【点评】本题考查的正方形的性质,等边三角形的性质以及相似三角形的判定和性质,解答此题的关键是熟练掌握性质和定理.二、填空题(本大题共8小题,共28分)11.《“一带一路”贸易合作大数据报告(2017)》以“一带一路”贸易合作现状分析和趋势预测为核心,采集调用了8000多个种类,总计1.2亿条全球进出口贸易基础数据…,1.2亿用科学记数法表示为 1.2×108.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:1.2亿用科学记数法表示为1.2×108.故答案为:1.2×108.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.分解因式:﹣2x2y+16xy﹣32y=﹣2y(x﹣4)2.【分析】根据提取公因式以及完全平方公式即可求出答案.【解答】解:原式=﹣2y(x2﹣8x+16)=﹣2y(x﹣4)2故答案为:﹣2y(x﹣4)2【点评】本题考查因式分解,解题的关键是熟练运用因式分解法,本题属于基础题型.13.为选拔一名选手参加全国中学生游泳锦标赛自由泳比赛,我市四名中学生参加了男子100米自由泳训练,他们成绩的平均数及其方差s2如下表所示:如果选拔一名学生去参赛,应派乙去.【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加.【解答】解:∵>>=,∴从乙和丙中选择一人参加比赛,∵S<S,∴选择乙参赛,故答案为:乙.【点评】题考查了平均数和方差,一般地设n个数据,x1,x2,…x n的平均数为,则方差S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.14.如图,AB是半圆直径,半径OC⊥AB于点O,D为半圆上一点,AC∥OD,AD与OC交于点E,连结CD、BD,给出以下三个结论:①OD平分∠COB;②BD=CD;③CD2=CECO,其中正确结论的序号是①②③.【分析】①由OC⊥AB就可以得出∠BOC=∠AOC=90°,再由OC=OA就可以得出∠OCA=∠OAC=45°,由AC∥OD就可以得出∠BOD=45°,进而得出∠DOC=45°,从而得出结论;②由∠BOD=∠COD即可得出BD=CD;③由∠AOC=90°就可以得出∠CDA=45°,得出∠DOC=∠CDA,就可以得出△DOC∽△EDC.进而得出,得出CD2=CECO.【解答】解:①∵OC⊥AB,∴∠BOC=∠AOC=90°.∵OC=OA,∴∠OCA=∠OAC=45°.∵AC∥OD,∴∠BOD=∠CAO=45°,∴∠DOC=45°,∴∠BOD=∠DOC,∴OD平分∠COB.故①正确;②∵∠BOD=∠DOC,∴BD=CD.故②正确;③∵∠AOC=90°,∴∠CDA=45°,∴∠DOC=∠CDA.∵∠OCD=∠OCD,∴△DOC∽△EDC,∴,∴CD2=CECO.故③正确.故答案为:①②③.【点评】本题考查了圆周角定理,平行线的性质,圆的性质,圆心角与弦的关系定理的运用,相似三角形的判定及性质;熟练掌握圆周角定理和相似三角形的判定与性质是解决问题的关键.15.如图,已知菱形ABCD的周长为16,面积为8,E为AB的中点,若P为对角线BD上一动点,则EP+AP的最小值为2.【分析】如图作CE′⊥AB于E′,甲BD于P′,连接AC、AP′.首先证明E′与E重合,因为A、C关于BD对称,所以当P与P′重合时,PA′+P′E的值最小,由此求出CE 即可解决问题.【解答】解:如图作CE′⊥AB于E′,甲BD于P′,连接AC、AP′.∵已知菱形ABCD的周长为16,面积为8,∴AB=BC=4,ABCE′=8,∴CE′=2,在Rt△BCE′中,BE′==2,∵BE=EA=2,∴E与E′重合,∵四边形ABCD是菱形,∴BD垂直平分AC,∴A、C关于BD对称,∴当P与P′重合时,PA′+P′E的值最小,最小值为CE的长=2,故答案为2.【点评】本题考查轴对称﹣最短问题、菱形的性质等知识,解题的关键是学会添加常用辅助线,本题的突破点是证明CE是△ABC的高,学会利用对称解决最短问题.16.我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是25尺.【分析】这种立体图形求最短路径问题,可以展开成为平面内的问题解决,展开后可转化下图,所以是个直角三角形求斜边的问题,根据勾股定理可求出.【解答】解:如图,一条直角边(即枯木的高)长20尺,另一条直角边长5×3=15(尺),因此葛藤长为=25(尺).故答案为:25.【点评】本题考查了平面展开最短路径问题,关键是把立体图形展成平面图形,本题是展成平面图形后为直角三角形按照勾股定理可求出解.17.一数学兴趣小组来到某公园,准备测量一座塔的高度.如图,在A处测得塔顶的仰角为α,在B处测得塔顶的仰角为β,又测量出A、B两点的距离为s米,则塔高为米.【分析】在Rt△BCD中有BD=,在Rt△ACD中,根据tan∠A==可得tanα=,解之求出CD即可得.【解答】解:在Rt△BCD中,∵tan∠CBD=,∴BD=,在Rt△ACD中,∵tan∠A==,∴tanα=,解得:CD=,故答案为:.【点评】本题主要考查解直角三角形的应用﹣仰角俯角问题,解题的关键是根据两直角三角形的公共边利用三角函数建立方程求解.18.如图,在平面直角坐标系中,直线l:y=x﹣与x轴交于点B1,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x轴,交直线l于点B3,以A2B3为边长作等边三角形A3A2B3,…,则点A2017的横坐标是.【分析】先根据直线l :y=x ﹣与x 轴交于点B 1,可得B 1(1,0),OB 1=1,∠OB 1D=30°,再,过A 1作A 1A ⊥OB 1于A ,过A 2作A 2B ⊥A 1B 2于B ,过A 3作A 3C ⊥A 2B 3于C ,根据等边三角形的性质以及含30°角的直角三角形的性质,分别求得A 1的横坐标为,A 2的横坐标为,A 3的横坐标为,进而得到A n 的横坐标为,据此可得点A 2017的横坐标.【解答】解:由直线l :y=x ﹣与x 轴交于点B 1,可得B 1(1,0),D (﹣,0),∴OB 1=1,∠OB 1D=30°,如图所示,过A 1作A 1A ⊥OB 1于A ,则OA=OB 1=,即A 1的横坐标为=,由题可得∠A 1B 2B 1=∠OB 1D=30°,∠B 2A 1B 1=∠A 1B 1O=60°,∴∠A 1B 1B 2=90°,∴A 1B 2=2A 1B 1=2,过A 2作A 2B ⊥A 1B 2于B ,则A 1B=A 1B 2=1,即A 2的横坐标为+1==,过A 3作A 3C ⊥A 2B 3于C ,同理可得,A 2B 3=2A 2B 2=4,A 2C=A 2B 3=2,即A 3的横坐标为+1+2==,同理可得,A 4的横坐标为+1+2+4==,由此可得,A n 的横坐标为,∴点A 2017的横坐标是,故答案为:.【点评】本题主要考查了一次函数图象上点的坐标特征以及等边三角形的性质的运用,解决问题的关键是依据等边三角形的性质找出规律,求得A n 的横坐标为.三、解答题(本大题共7小题,共62分)19.(1)计算:6cos45°+()﹣1+(﹣1.73)0+|5﹣3|+42017×(﹣0.25)2017(2)先化简,再求值:(﹣a +1)÷+﹣a ,并从﹣1,0,2中选一个合适的数作为a 的值代入求值.【分析】(1)根据特殊角的三角函数值、负整数指数幂、零指数幂、绝对值、幂的乘方可以解答本题;(2)根据分式的加减法和除法可以化简题目中的式子,然后在﹣1,0,2中选一个使得原分式有意义的值代入即可解答本题.【解答】解:(1)6cos45°+()﹣1+(﹣1.73)0+|5﹣3|+42017×(﹣0.25)2017=6×+3+1+5﹣3+42017×(﹣)2017==8;(2)(﹣a+1)÷+﹣a=====﹣a﹣1,当a=0时,原式=﹣0﹣1=﹣1.【点评】本题考查分式的化简求值、实数的运算、殊角的三角函数值、负整数指数幂、零指数幂、绝对值、幂的乘方,解答本题的关键是明确它们各自的计算方法.20.为大力弘扬“奉献、友爱、互助、进步”的志愿服务精神,传播“奉献他人、提升自我”的志愿服务理念,东营市某中学利用周末时间开展了“助老助残、社区服务、生态环保、网络文明”四个志愿服务活动(每人只参加一个活动),九年级某班全班同学都参加了志愿服务,班长为了解志愿服务的情况,收集整理数据后,绘制以下不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)求该班的人数;(2)请把折线统计图补充完整;(3)求扇形统计图中,网络文明部分对应的圆心角的度数;(4)小明和小丽参加了志愿服务活动,请用树状图或列表法求出他们参加同一服务活动的概率.【分析】(1)根据参加生态环保的人数以及百分比,即可解决问题;(2)社区服务的人数,画出折线图即可;(3)根据圆心角=360°×百分比,计算即可;(4)用列表法即可解决问题;【解答】解:(1)该班全部人数:12÷25%=48人.(2)48×50%=24,折线统计如图所示:(3)×360°=45°.(4)分别用“1,2,3,4”代表“助老助残、社区服务、生态环保、网络文明”四个服务活动,列表如下:则所有可能有16种,其中他们参加同一活动有4种,所以他们参加同一服务活动的概率P==.【点评】本题考查折线图、扇形统计图、列表法等知识,解题的关键是记住基本概念,属于中考常考题型.21.如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作⊙O的切线DE,交AC于点E,AC的反向延长线交⊙O于点F.(1)求证:DE⊥AC;(2)若DE+EA=8,⊙O的半径为10,求AF的长度.【分析】(1)欲证明DE⊥AC,只需推知OD∥AC即可;(2)如图,过点O作OH⊥AF于点H,构建矩形ODEH,设AH=x.则由矩形的性质推知:AE=10﹣x,OH=DE=8﹣(10﹣x)=x﹣2.在Rt△AOH中,由勾股定理知:x2+(x﹣2)2=102,通过解方程得到AH的长度,结合OH⊥AF,得到AF=2AH=2×8=16.【解答】(1)证明:∵OB=OD,∴∠ABC=∠ODB,∵AB=AC,∴∠ABC=∠ACB,∴∠ODB=∠ACB,∴OD∥AC.∵DE是⊙O的切线,OD是半径,∴DE⊥OD,∴DE⊥AC;(2)如图,过点O作OH⊥AF于点H,则∠ODE=∠DEH=∠OHE=90°,∴四边形ODEH是矩形,∴OD=EH,OH=DE.设AH=x.∵DE+AE=8,OD=10,∴AE=10﹣x,OH=DE=8﹣(10﹣x)=x﹣2.在Rt△AOH中,由勾股定理知:AH2+OH2=OA2,即x2+(x﹣2)2=102,解得x1=8,x2=﹣6(不合题意,舍去).∴AH=8.∵OH⊥AF,∴AH=FH=AF,∴AF=2AH=2×8=16.【点评】本题考查了切线的性质,勾股定理,矩形的判定与性质.解题时,利用了方程思想,属于中档题.22.如图,一次函数y=kx+b的图象与坐标轴分别交于A、B两点,与反比例函数y=的图象在第一象限的交点为C,CD⊥x轴,垂足为D,若OB=3,OD=6,△AOB 的面积为3.(1)求一次函数与反比例函数的解析式;(2)直接写出当x>0时,kx+b﹣<0的解集.【分析】(1)根据三角形面积求出OA,得出A、B的坐标,代入一次函数的解析式即可求出解析式,把x=6代入求出D的坐标,把D的坐标代入反比例函数的解析式求出即可;(2)根据图象即可得出答案.=3,OB=3,【解答】解:(1)∵S△AOB∴OA=2,∴B(3,0),A(0,﹣2),代入y=kx+b得:,解得:k=,b=﹣2,∴一次函数y=x﹣2,∵OD=6,∴D(6,0),CD⊥x轴,当x=6时,y=×6﹣2=2∴C(6,2),∴n=6×2=12,∴反比例函数的解析式是y=;(2)当x>0时,kx+b﹣<0的解集是0<x<6.【点评】本题考查了用待定系数法求出函数的解析式,一次函数和和反比例函数的交点问题,函数的图象的应用,主要考查学生的观察图形的能力和计算能力.23.为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对A、B两类学校进行改扩建,根据预算,改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元.(1)改扩建1所A类学校和1所B类学校所需资金分别是多少万元?(2)该县计划改扩建A、B两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元,其中地方财政投入到A、B两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案?【分析】(1)可根据“改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元”,列出方程组求出答案;(2)要根据“国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元”来列出不等式组,判断出不同的改造方案.【解答】解:(1)设改扩建一所A类和一所B类学校所需资金分别为x万元和y万元由题意得,解得,答:改扩建一所A类学校和一所B类学校所需资金分别为1200万元和1800万元.(2)设今年改扩建A类学校a所,则改扩建B类学校(10﹣a)所,由题意得:,解得,∴3≤a≤5,∵x取整数,∴x=3,4,5.即共有3种方案:方案一:改扩建A类学校3所,B类学校7所;方案二:改扩建A类学校4所,B类学校6所;方案三:改扩建A类学校5所,B类学校5所.【点评】本题考查了一元一次不等式组的应用,二元一次方程组的应用.解决问题的关键是读懂题意,找到关键描述语,找到所求的量的数量关系.24.如图,在等腰三角形ABC中,∠BAC=120°,AB=AC=2,点D是BC边上的一个动点(不与B、C重合),在AC上取一点E,使∠ADE=30°.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式并写出自变量x的取值范围;(3)当△ADE是等腰三角形时,求AE的长.【分析】(1)根据两角相等证明:△ABD∽△DCE;(2)如图1,作高AF,根据直角三角形30°的性质求AF的长,根据勾股定理求BF的长,则可得BC的长,根据(1)中的相似列比例式可得函数关系式,并确定取值;(3)分三种情况进行讨论:①当AD=DE时,如图2,由(1)可知:此时△ABD∽△DCE,则AB=CD,即2=2﹣x;②当AE=ED时,如图3,则ED=EC,即y=(2﹣y);③当AD=AE时,∠AED=∠EDA=30°,∠EAD=120°,此时点D与点B重合,不符合题意,此情况不存在.【解答】证明:(1)∵△ABC是等腰三角形,且∠BAC=120°,∴∠ABD=∠ACB=30°,∴∠ABD=∠ADE=30°,∵∠ADC=∠ADE+∠EDC=∠ABD+∠DAB,∴∠EDC=∠DAB,∴△ABD∽△DCE;(2)如图1,∵AB=AC=2,∠BAC=120°,过A作AF⊥BC于F,∴∠AFB=90°,∵AB=2,∠ABF=30°,∴AF=AB=1,∴BF=,∴BC=2BF=2,则DC=2﹣x,EC=2﹣y,∵△ABD∽△DCE,∴,∴,化简得:y=x+2(0<x<2);(3)当AD=DE时,如图2,由(1)可知:此时△ABD∽△DCE,则AB=CD,即2=2﹣x,x=2﹣2,代入y=x+2,解得:y=4﹣2,即AE=4﹣2,当AE=ED时,如图3,∠EAD=∠EDA=30°,∠AED=120°,∴∠DEC=60°,∠EDC=90°,则ED=EC,即y=(2﹣y),解得:y=,即AE=,当AD=AE时,∠AED=∠EDA=30°,∠EAD=120°,此时点D与点B重合,不符合题意,此情况不存在,∴当△ADE是等腰三角形时,AE=4﹣2或.【点评】本题是相似形的综合题,考查了三角形相似的性质和判定、等腰三角形的性质、直角三角形30°角的性质,本题的几个问题全部围绕△ABD∽△DCE,解决问题;难度适中.25.如图,直线y=﹣x+分别与x轴、y轴交于B、C两点,点A在x轴上,∠ACB=90°,抛物线y=ax2+bx+经过A,B两点.(1)求A、B两点的坐标;(2)求抛物线的解析式;(3)点M是直线BC上方抛物线上的一点,过点M作MH⊥BC于点H,作MD ∥y轴交BC于点D,求△DMH周长的最大值.【分析】(1)由直线解析式可求得B、C坐标,在Rt△BOC中由三角函数定义可求得∠OCB=60°,则在Rt△AOC中可得∠ACO=30°,利用三角函数的定义可求得OA,则可求得A点坐标;(2)由A、B两点坐标,利用待定系数法可求得抛物线解析式;(3)由平行线的性质可知∠MDH=∠BCO=60°,在Rt△DMH中利用三角函数的定义可得到DH、MH与DM的关系,可设出M点的坐标,则可表示出DM的长,从而可表示出△DMH的周长,利用二次函数的性质可求得其最大值.【解答】解:(1)∵直线y=﹣x+分别与x轴、y轴交于B、C两点,∴B(3,0),C(0,),∴OB=3,OC=,∴tan∠BCO==,∴∠BCO=60°,∵∠ACB=90°,∴∠ACO=30°,∴=tan30°=,即=,解得AO=1,∴A(﹣1,0);(2)∵抛物线y=ax2+bx+经过A,B两点,∴,解得,∴抛物线解析式为y=﹣x2+x+;(3)∵MD∥y轴,MH⊥BC,∴∠MDH=∠BCO=60°,则∠DMH=30°,∴DH=DM,MH=DM,∴△DMH的周长=DM+DH+MH=DM+DM+DM=DM,∴当DM有最大值时,其周长有最大值,∵点M是直线BC上方抛物线上的一点,∴可设M(t,﹣t2+t+),则D(t,﹣t+),∴DM=﹣t2+t+),则D(t,﹣t+),∴DM=﹣t2+t+﹣(﹣t+)=﹣t2+t=﹣(t﹣)2+,∴当t=时,DM有最大值,最大值为,此时DM=×=,即△DMH周长的最大值为.【点评】本题为二次函数的综合应用,涉及待定系数法、三角函数的定义、二次函数的性质、方程思想等知识.在(1)中注意函数图象与坐标的交点的求法,在(2)中注意待定系数法的应用,在(3)中找到DH、MH与DM的关系是解题的关键.本题考查知识点较多,综合性较强,难度适中.。

2017年山东省东营市中考数学试卷

2017年山东省东营市中考数学试卷

2017年山东省东营市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列四个数中,最大的数是()A.3 B.C.0 D.π2.(3分)下列运算正确的是()A.(x﹣y)2=x2﹣y2B.|﹣2|=2﹣ C.﹣= D.﹣(﹣a+1)=a+1 3.(3分)若|x2﹣4x+4|与互为相反数,则x+y的值为()A.3 B.4 C.6 D.94.(3分)小明从家到学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,小明从家到学校行驶路程s(m)与时间t(min)的大致图象是()A.B.C.D.5.(3分)已知a∥b,一块含30°角的直角三角板如图所示放置,∠2=45°,则∠1等于()A.100°B.135°C.155° D.165°6.(3分)如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是()A.B.C.D.7.(3分)如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=8,AB=5,则AE的长为()A.5 B.6 C.8 D.128.(3分)若圆锥的侧面积等于其底面积的3倍,则该圆锥侧面展开图所对应扇形圆心角的度数为()A.60°B.90°C.120° D.180°9.(3分)如图,把△ABC沿着BC的方向平移到△DEF的位置,它们重叠部分的面积是△ABC面积的一半,若BC=,则△ABC移动的距离是()A.B.C.D.﹣10.(3分)如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PH•PC其中正确的是()A.①②③④B.②③C.①②④D.①③④二、填空题(本大题共8小题,共28分)11.(3分)《“一带一路”贸易合作大数据报告(2017)》以“一带一路”贸易合作现状分析和趋势预测为核心,采集调用了8000多个种类,总计1.2亿条全球进出口贸易基础数据…,1.2亿用科学记数法表示为.12.(3分)分解因式:﹣2x2y+16xy﹣32y=.13.(3分)为选拔一名选手参加全国中学生游泳锦标赛自由泳比赛,我市四名中学生参加了男子100米自由泳训练,他们成绩的平均数及其方差s2如下表所示:如果选拔一名学生去参赛,应派去.14.(3分)如图,AB是半圆直径,半径OC⊥AB于点O,D为半圆上一点,AC ∥OD,AD与OC交于点E,连结CD、BD,给出以下三个结论:①OD平分∠COB;②BD=CD;③CD2=CE•CO,其中正确结论的序号是.15.(4分)如图,已知菱形ABCD的周长为16,面积为8,E为AB的中点,若P为对角线BD上一动点,则EP+AP的最小值为.16.(4分)我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是尺.17.(4分)一数学兴趣小组来到某公园,准备测量一座塔的高度.如图,在A 处测得塔顶的仰角为α,在B处测得塔顶的仰角为β,又测量出A、B两点的距离为s米,则塔高为米.18.(4分)如图,在平面直角坐标系中,直线l:y=x﹣与x轴交于点B1,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x轴,交直线l 于点B3,以A2B3为边长作等边三角形A3A2B3,…,则点A2017的横坐标是.三、解答题(本大题共7小题,共62分)19.(8分)(1)计算:6cos45°+()﹣1+(﹣1.73)0+|5﹣3|+42017×(﹣0.25)2017(2)先化简,再求值:(﹣a+1)÷+﹣a,并从﹣1,0,2中选一个合适的数作为a的值代入求值.20.(7分)为大力弘扬“奉献、友爱、互助、进步”的志愿服务精神,传播“奉献他人、提升自我”的志愿服务理念,东营市某中学利用周末时间开展了“助老助残、社区服务、生态环保、网络文明”四个志愿服务活动(每人只参加一个活动),九年级某班全班同学都参加了志愿服务,班长为了解志愿服务的情况,收集整理数据后,绘制以下不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)求该班的人数;(2)请把折线统计图补充完整;(3)求扇形统计图中,网络文明部分对应的圆心角的度数;(4)小明和小丽参加了志愿服务活动,请用树状图或列表法求出他们参加同一服务活动的概率.21.(8分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作⊙O的切线DE,交AC于点E,AC的反向延长线交⊙O于点F.(1)求证:DE⊥AC;(2)若DE+EA=8,⊙O的半径为10,求AF的长度.22.(8分)如图,一次函数y=kx+b的图象与坐标轴分别交于A、B两点,与反比例函数y=的图象在第一象限的交点为C,CD⊥x轴,垂足为D,若OB=3,OD=6,△AOB的面积为3.(1)求一次函数与反比例函数的解析式;(2)直接写出当x>0时,kx+b﹣<0的解集.23.(9分)为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对A、B两类学校进行改扩建,根据预算,改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元.(1)改扩建1所A类学校和1所B类学校所需资金分别是多少万元?(2)该县计划改扩建A、B两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元,其中地方财政投入到A、B两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案?24.(10分)如图,在等腰三角形ABC中,∠BAC=120°,AB=AC=2,点D是BC 边上的一个动点(不与B、C重合),在AC上取一点E,使∠ADE=30°.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式并写出自变量x的取值范围;(3)当△ADE是等腰三角形时,求AE的长.25.(12分)如图,直线y=﹣x+分别与x轴、y轴交于B、C两点,点A在x轴上,∠ACB=90°,抛物线y=ax2+bx+经过A,B两点.(1)求A、B两点的坐标;(2)求抛物线的解析式;(3)点M是直线BC上方抛物线上的一点,过点M作MH⊥BC于点H,作MD ∥y轴交BC于点D,求△DMH周长的最大值.2017年山东省东营市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2017•东营)下列四个数中,最大的数是()A.3 B.C.0 D.π【分析】根据在数轴上表示的两个实数,右边的总比左边的大可得答案.【解答】解:0<<3<π,故选:D.【点评】此题主要考查了实数的比较大小,关键是掌握利用数轴也可以比较任意两个实数的大小,即在数轴上表示的两个实数,右边的总比左边的大,在原点左侧,绝对值大的反而小.2.(3分)(2017•东营)下列运算正确的是()A.(x﹣y)2=x2﹣y2B.|﹣2|=2﹣ C.﹣= D.﹣(﹣a+1)=a+1【分析】根据完全平方公式,二次根式的化简以及去括号的法则进行解答.【解答】解:A、原式=x2﹣2xy+y2,故本选项错误;B、原式=2﹣,故本选项正确;C、原式=2﹣,故本选项错误;D、原式=a﹣1,故本选项错误;故选:B.【点评】本题综合考查了二次根式的加减法,实数的性质,完全平方公式以及去括号,属于基础题,难度不大.3.(3分)(2017•东营)若|x2﹣4x+4|与互为相反数,则x+y的值为()A.3 B.4 C.6 D.9【分析】根据相反数的定义得到|x2﹣4x+4|+=0,再根据非负数的性质得x2﹣4x+4=0,2x﹣y﹣3=0,然后利用配方法求出x,再求出y,最后计算它们的和即可.【解答】解:根据题意得|x2﹣4x+4|+=0,所以|x2﹣4x+4|=0,=0,即(x﹣2)2=0,2x﹣y﹣3=0,所以x=2,y=1,所以x+y=3.故选A.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n 的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.也考查了非负数的性质.4.(3分)(2017•东营)小明从家到学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,小明从家到学校行驶路程s(m)与时间t(min)的大致图象是()A.B.C.D.【分析】根据题意判断出S随t的变化趋势,然后再结合选项可得答案.【解答】解:小明从家到学校,先匀速步行到车站,因此S随时间t的增长而增长,等了几分钟后坐上了公交车,因此时间在增加,S不增长,坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,因此S又随时间t的增长而增长,故选:C.【点评】此题主要考查了函数图象,关键是正确理解题意,根据题意判断出两个变量的变化情况.5.(3分)(2017•东营)已知a∥b,一块含30°角的直角三角板如图所示放置,∠2=45°,则∠1等于()A.100°B.135°C.155° D.165°【分析】先过P作PQ∥a,则PQ∥b,根据平行线的性质即可得到∠3的度数,再根据对顶角相等即可得出结论.【解答】解:如图,过P作PQ∥a,∵a∥b,∴PQ∥b,∴∠BPQ=∠2=45°,∵∠APB=60°,∴∠APQ=15°,∴∠3=180°﹣∠APQ=165°,∴∠1=165°,故选:D.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等,同旁内角互补.6.(3分)(2017•东营)如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是()A.B.C.D.【分析】根据正方形表面展开图的结构即可求出判断出构成这个正方体的表面展开图的概率.【解答】解:设没有涂上阴影的分别为:A、B、C、D、E、F、G,如图所示,从其余的小正方形中任取一个涂上阴影共有7种情况,而能够构成正方体的表面展开图的有以下情况,D、E、F、G,∴能构成这个正方体的表面展开图的概率是,故选(A)【点评】本题考查概率,解题的关键是熟识正方体表面展开图的结构,本题属于中等题型.7.(3分)(2017•东营)如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG 交BC于点E.若BF=8,AB=5,则AE的长为()A.5 B.6 C.8 D.12【分析】由基本作图得到AB=AF,AG平分∠BAD,故可得出四边形ABEF是菱形,由菱形的性质可知AE⊥BF,故可得出OB的长,再由勾股定理即可得出OA的长,进而得出结论.【解答】解:连结EF,AE与BF交于点O,∵四边形ABCD是平行四边形,AB=AF,∴四边形ABEF是菱形,∴AE⊥BF,OB=BF=4,OA=AE.∵AB=5,在Rt△AOB中,AO==3,∴AE=2AO=6.故选B.【点评】本题考查的是作图﹣基本作图,熟知平行四边形的性质、勾股定理、平行线的性质是解决问题的关键.8.(3分)(2017•东营)若圆锥的侧面积等于其底面积的3倍,则该圆锥侧面展开图所对应扇形圆心角的度数为()A.60°B.90°C.120° D.180°【分析】根据圆锥侧面积恰好等于底面积的3倍可得圆锥的母线长=3×底面半径,根据圆锥的侧面展开图的弧长等于圆锥的底面周长,可得圆锥侧面展开图所对应的扇形圆心角度数.【解答】解:设母线长为R,底面半径为r,∴底面周长=2πr,底面面积=πr2,侧面面积=lr=πrR,∵侧面积是底面积的3倍,∴3πr2=πrR,∴R=3r,设圆心角为n,有=πR,∴n=120°.故选C.【点评】本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长,以及利用扇形面积公式求出是解题的关键.9.(3分)(2017•东营)如图,把△ABC沿着BC的方向平移到△DEF的位置,它们重叠部分的面积是△ABC面积的一半,若BC=,则△ABC移动的距离是()A.B.C.D.﹣【分析】移动的距离可以视为BE或CF的长度,根据题意可知△ABC与阴影部分为相似三角形,且面积比为2:1,所以EC:BC=1:,推出EC的长,利用线段的差求BE的长.【解答】解:∵△ABC沿BC边平移到△DEF的位置,∴AB∥DE,∴△ABC∽△HEC,∴=()2=,∴EC:BC=1:,∵BC=,∴EC=,∴BE=BC﹣EC=﹣.故选:D.【点评】本题主要考查相似三角形的判定和性质、平移的性质,关键在于证△ABC 与阴影部分为相似三角形.10.(3分)(2017•东营)如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PH•PC其中正确的是()A.①②③④B.②③C.①②④D.①③④【分析】由正方形的性质和相似三角形的判定与性质,即可得出结论.【解答】解:∵△BPC是等边三角形,∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,在正方形ABCD中,∵AB=BC=CD,∠A=∠ADC=∠BCD=90°∴∠ABE=∠DCF=30°,∴BE=2AE;故①正确;∵PC=CD,∠PCD=30°,∴∠PDC=75°,∴∠FDP=15°,∵∠DBA=45°,∴∠PBD=15°,∴∠FDP=∠PBD,∵∠DFP=∠BPC=60°,∴△DFP∽△BPH;故②正确;∵∠FDP=∠PBD=15°,∠ADB=45°,∴∠PDB=30°,而∠DFP=60°,∴∠PFD≠∠PDB,∴△PFD与△PDB不会相似;故③错误;∵∠PDH=∠PCD=30°,∠DPH=∠DPC,∴△DPH∽△CPD,∴,∴DP2=PH•PC,故④正确;故选C.【点评】本题考查的正方形的性质,等边三角形的性质以及相似三角形的判定和性质,解答此题的关键是熟练掌握性质和定理.二、填空题(本大题共8小题,共28分)11.(3分)(2017•东营)《“一带一路”贸易合作大数据报告(2017)》以“一带一路”贸易合作现状分析和趋势预测为核心,采集调用了8000多个种类,总计1.2亿条全球进出口贸易基础数据…,1.2亿用科学记数法表示为 1.2×108.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:1.2亿用科学记数法表示为1.2×108.故答案为:1.2×108.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)(2017•东营)分解因式:﹣2x2y+16xy﹣32y=﹣2y(x﹣4)2.【分析】根据提取公因式以及完全平方公式即可求出答案.【解答】解:原式=﹣2y(x2﹣8x+16)=﹣2y(x﹣4)2故答案为:﹣2y(x﹣4)2【点评】本题考查因式分解,解题的关键是熟练运用因式分解法,本题属于基础题型.13.(3分)(2017•东营)为选拔一名选手参加全国中学生游泳锦标赛自由泳比赛,我市四名中学生参加了男子100米自由泳训练,他们成绩的平均数及其方差s 2如下表所示:如果选拔一名学生去参赛,应派 乙 去.【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加.【解答】解:∵>>=,∴从乙和丙中选择一人参加比赛,∵S <S ,∴选择乙参赛,故答案为:乙.【点评】题考查了平均数和方差,一般地设n 个数据,x 1,x 2,…x n 的平均数为,则方差S 2=[(x 1﹣)2+(x 2﹣)2+…+(x n ﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.14.(3分)(2017•东营)如图,AB 是半圆直径,半径OC ⊥AB 于点O ,D 为半圆上一点,AC ∥OD ,AD 与OC 交于点E ,连结CD 、BD ,给出以下三个结论:①OD 平分∠COB ;②BD=CD ;③CD 2=CE•CO ,其中正确结论的序号是 ①②③ .【分析】①由OC ⊥AB 就可以得出∠BOC=∠AOC=90°,再由OC=OA 就可以得出∠OCA=∠OAC=45°,由AC∥OD就可以得出∠BOD=45°,进而得出∠DOC=45°,从而得出结论;②由∠BOD=∠COD即可得出BD=CD;③由∠AOC=90°就可以得出∠CDA=45°,得出∠DOC=∠CDA,就可以得出△DOC∽△EDC.进而得出,得出CD2=CE•CO.【解答】解:①∵OC⊥AB,∴∠BOC=∠AOC=90°.∵OC=OA,∴∠OCA=∠OAC=45°.∵AC∥OD,∴∠BOD=∠CAO=45°,∴∠DOC=45°,∴∠BOD=∠DOC,∴OD平分∠COB.故①正确;②∵∠BOD=∠DOC,∴BD=CD.故②正确;③∵∠AOC=90°,∴∠CDA=45°,∴∠DOC=∠CDA.∵∠OCD=∠OCD,∴△DOC∽△EDC,∴,∴CD2=CE•CO.故③正确.故答案为:①②③.【点评】本题考查了圆周角定理,平行线的性质,圆的性质,圆心角与弦的关系定理的运用,相似三角形的判定及性质;熟练掌握圆周角定理和相似三角形的判定与性质是解决问题的关键.15.(4分)(2017•东营)如图,已知菱形ABCD的周长为16,面积为8,E为AB的中点,若P为对角线BD上一动点,则EP+AP的最小值为2.【分析】如图作CE′⊥AB于E′,交BD于P′,连接AC、AP′.首先证明E′与E重合,因为A、C关于BD对称,所以当P与P′重合时,PA′+P′E的值最小,由此求出CE 即可解决问题.【解答】解:如图作CE′⊥AB于E′,交BD于P′,连接AC、AP′.∵已知菱形ABCD的周长为16,面积为8,∴AB=BC=4,AB•CE′=8,∴CE′=2,在Rt△BCE′中,BE′==2,∵BE=EA=2,∴E与E′重合,∵四边形ABCD是菱形,∴BD垂直平分AC,∴A、C关于BD对称,∴当P与P′重合时,PA′+P′E的值最小,最小值为CE的长=2,故答案为2.【点评】本题考查轴对称﹣最短问题、菱形的性质等知识,解题的关键是学会添加常用辅助线,本题的突破点是证明CE是△ABC的高,学会利用对称解决最短问题.16.(4分)(2017•东营)我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B 处,则问题中葛藤的最短长度是25尺.【分析】这种立体图形求最短路径问题,可以展开成为平面内的问题解决,展开后可转化下图,所以是个直角三角形求斜边的问题,根据勾股定理可求出.【解答】解:如图,一条直角边(即枯木的高)长20尺,另一条直角边长5×3=15(尺),因此葛藤长为=25(尺).故答案为:25.【点评】本题考查了平面展开最短路径问题,关键是把立体图形展成平面图形,本题是展成平面图形后为直角三角形按照勾股定理可求出解.17.(4分)(2017•东营)一数学兴趣小组来到某公园,准备测量一座塔的高度.如图,在A处测得塔顶的仰角为α,在B处测得塔顶的仰角为β,又测量出A、B两点的距离为s米,则塔高为米.【分析】在Rt△BCD中有BD=,在Rt△ACD中,根据tan∠A==可得tanα=,解之求出CD即可得.【解答】解:在Rt△BCD中,∵tan∠CBD=,∴BD=,在Rt△ACD中,∵tan∠A==,∴tanα=,解得:CD=,故答案为:.【点评】本题主要考查解直角三角形的应用﹣仰角俯角问题,解题的关键是根据两直角三角形的公共边利用三角函数建立方程求解.18.(4分)(2017•东营)如图,在平面直角坐标系中,直线l:y=x﹣与x 轴交于点B1,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x 轴,交直线l于点B3,以A2B3为边长作等边三角形A3A2B3,…,则点A2017的横坐标是.【分析】先根据直线l:y=x﹣与x轴交于点B1,可得B1(1,0),OB1=1,∠OB1D=30°,再,过A1作A1A⊥OB1于A,过A2作A2B⊥A1B2于B,过A3作A3C ⊥A2B3于C,根据等边三角形的性质以及含30°角的直角三角形的性质,分别求得A1的横坐标为,A2的横坐标为,A3的横坐标为,进而得到A n的横坐标为,据此可得点A2017的横坐标.【解答】解:由直线l:y=x﹣与x轴交于点B1,可得B1(1,0),D(﹣,0),∴OB1=1,∠OB1D=30°,如图所示,过A1作A1A⊥OB1于A,则OA=OB1=,即A1的横坐标为=,由题可得∠A1B2B1=∠OB1D=30°,∠B2A1B1=∠A1B1O=60°,∴∠A1B1B2=90°,∴A1B2=2A1B1=2,过A2作A2B⊥A1B2于B,则A1B=A1B2=1,即A2的横坐标为+1==,过A3作A3C⊥A2B3于C,同理可得,A2B3=2A2B2=4,A2C=A2B3=2,即A3的横坐标为+1+2==,同理可得,A4的横坐标为+1+2+4==,由此可得,A n的横坐标为,∴点A2017的横坐标是,故答案为:.【点评】本题主要考查了一次函数图象上点的坐标特征以及等边三角形的性质的运用,解决问题的关键是依据等边三角形的性质找出规律,求得A n的横坐标为.三、解答题(本大题共7小题,共62分)19.(8分)(2017•东营)(1)计算:6cos45°+()﹣1+(﹣1.73)0+|5﹣3|+42017×(﹣0.25)2017(2)先化简,再求值:(﹣a+1)÷+﹣a,并从﹣1,0,2中选一个合适的数作为a的值代入求值.【分析】(1)根据特殊角的三角函数值、负整数指数幂、零指数幂、绝对值、幂的乘方可以解答本题;(2)根据分式的加减法和除法可以化简题目中的式子,然后在﹣1,0,2中选一个使得原分式有意义的值代入即可解答本题.【解答】解:(1)6cos45°+()﹣1+(﹣1.73)0+|5﹣3|+42017×(﹣0.25)2017=6×+3+1+5﹣3+42017×(﹣)2017==8;(2)(﹣a+1)÷+﹣a=====﹣a﹣1,当a=0时,原式=﹣0﹣1=﹣1.【点评】本题考查分式的化简求值、实数的运算、殊角的三角函数值、负整数指数幂、零指数幂、绝对值、幂的乘方,解答本题的关键是明确它们各自的计算方法.20.(7分)(2017•东营)为大力弘扬“奉献、友爱、互助、进步”的志愿服务精神,传播“奉献他人、提升自我”的志愿服务理念,东营市某中学利用周末时间开展了“助老助残、社区服务、生态环保、网络文明”四个志愿服务活动(每人只参加一个活动),九年级某班全班同学都参加了志愿服务,班长为了解志愿服务的情况,收集整理数据后,绘制以下不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)求该班的人数;(2)请把折线统计图补充完整;(3)求扇形统计图中,网络文明部分对应的圆心角的度数;(4)小明和小丽参加了志愿服务活动,请用树状图或列表法求出他们参加同一服务活动的概率.【分析】(1)根据参加生态环保的人数以及百分比,即可解决问题;(2)社区服务的人数,画出折线图即可;(3)根据圆心角=360°×百分比,计算即可;(4)用列表法即可解决问题;【解答】解:(1)该班全部人数:12÷25%=48人.(2)48×50%=24,折线统计如图所示:(3)×360°=45°.(4)分别用“1,2,3,4”代表“助老助残、社区服务、生态环保、网络文明”四个服务活动,列表如下:则所有可能有16种,其中他们参加同一活动有4种,所以他们参加同一服务活动的概率P==.【点评】本题考查折线图、扇形统计图、列表法等知识,解题的关键是记住基本概念,属于中考常考题型.21.(8分)(2017•东营)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC 于点D,过点D作⊙O的切线DE,交AC于点E,AC的反向延长线交⊙O于点F.(1)求证:DE⊥AC;(2)若DE+EA=8,⊙O的半径为10,求AF的长度.【分析】(1)欲证明DE⊥AC,只需推知OD∥AC即可;(2)如图,过点O作OH⊥AF于点H,构建矩形ODEH,设AH=x.则由矩形的性质推知:AE=10﹣x,OH=DE=8﹣(10﹣x)=x﹣2.在Rt△AOH中,由勾股定理知:x2+(x﹣2)2=102,通过解方程得到AH的长度,结合OH⊥AF,得到AF=2AH=2×8=16.【解答】(1)证明:∵OB=OD,∴∠ABC=∠ODB,∵AB=AC,∴∠ABC=∠ACB,∴∠ODB=∠ACB,∴OD∥AC.∵DE是⊙O的切线,OD是半径,∴DE⊥OD,∴DE⊥AC;(2)如图,过点O作OH⊥AF于点H,则∠ODE=∠DEH=∠OHE=90°,∴四边形ODEH是矩形,∴OD=EH,OH=DE.设AH=x.∵DE+AE=8,OD=10,∴AE=10﹣x,OH=DE=8﹣(10﹣x)=x﹣2.在Rt△AOH中,由勾股定理知:AH2+OH2=OA2,即x2+(x﹣2)2=102,解得x1=8,x2=﹣6(不合题意,舍去).∴AH=8.∵OH⊥AF,∴AH=FH=AF,∴AF=2AH=2×8=16.【点评】本题考查了切线的性质,勾股定理,矩形的判定与性质.解题时,利用了方程思想,属于中档题.22.(8分)(2017•东营)如图,一次函数y=kx+b的图象与坐标轴分别交于A、B 两点,与反比例函数y=的图象在第一象限的交点为C,CD⊥x轴,垂足为D,若OB=3,OD=6,△AOB的面积为3.(1)求一次函数与反比例函数的解析式;(2)直接写出当x>0时,kx+b﹣<0的解集.【分析】(1)根据三角形面积求出OA,得出A、B的坐标,代入一次函数的解析式即可求出解析式,把x=6代入求出C的坐标,把C的坐标代入反比例函数的解析式求出即可;(2)根据图象即可得出答案.=3,OB=3,【解答】解:(1)∵S△AOB∴OA=2,∴B(3,0),A(0,﹣2),代入y=kx+b得:,解得:k=,b=﹣2,∴一次函数y=x﹣2,∵OD=6,∴D(6,0),CD⊥x轴,当x=6时,y=×6﹣2=2∴C(6,2),∴n=6×2=12,∴反比例函数的解析式是y=;(2)当x>0时,kx+b﹣<0的解集是0<x<6.【点评】本题考查了用待定系数法求出函数的解析式,一次函数和和反比例函数的交点问题,函数的图象的应用,主要考查学生的观察图形的能力和计算能力.23.(9分)(2017•东营)为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对A、B两类学校进行改扩建,根据预算,改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元.(1)改扩建1所A类学校和1所B类学校所需资金分别是多少万元?(2)该县计划改扩建A、B两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元,其中地方财政投入到A、B两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案?【分析】(1)可根据“改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元”,列出方程组求出答案;(2)要根据“国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元”来列出不等式组,判断出不同的改造方案.【解答】解:(1)设改扩建一所A类和一所B类学校所需资金分别为x万元和y 万元由题意得,解得,答:改扩建一所A类学校和一所B类学校所需资金分别为1200万元和1800万元.(2)设今年改扩建A类学校a所,则改扩建B类学校(10﹣a)所,由题意得:,解得,∴3≤a≤5,∵x取整数,∴x=3,4,5.即共有3种方案:方案一:改扩建A类学校3所,B类学校7所;方案二:改扩建A类学校4所,B类学校6所;方案三:改扩建A类学校5所,B类学校5所.【点评】本题考查了一元一次不等式组的应用,二元一次方程组的应用.解决问题的关键是读懂题意,找到关键描述语,找到所求的量的数量关系.24.(10分)(2017•东营)如图,在等腰三角形ABC中,∠BAC=120°,AB=AC=2,点D是BC边上的一个动点(不与B、C重合),在AC上取一点E,使∠ADE=30°.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式并写出自变量x的取值范围;(3)当△ADE是等腰三角形时,求AE的长.【分析】(1)根据两角相等证明:△ABD∽△DCE;(2)如图1,作高AF,根据直角三角形30°的性质求AF的长,根据勾股定理求BF的长,则可得BC的长,根据(1)中的相似列比例式可得函数关系式,并确定取值;(3)分三种情况进行讨论:①当AD=DE时,如图2,由(1)可知:此时△ABD∽△DCE,则AB=CD,即2=2﹣x;②当AE=ED时,如图3,则ED=EC,即y=(2﹣y);③当AD=AE时,∠AED=∠EDA=30°,∠EAD=120°,此时点D与点B重合,不符合题意,此情况不存在.【解答】证明:(1)∵△ABC是等腰三角形,且∠BAC=120°,∴∠ABD=∠ACB=30°,∴∠ABD=∠ADE=30°,∵∠ADC=∠ADE+∠EDC=∠ABD+∠DAB,∴∠EDC=∠DAB,∴△ABD∽△DCE;(2)如图1,∵AB=AC=2,∠BAC=120°,过A作AF⊥BC于F,∴∠AFB=90°,∵AB=2,∠ABF=30°,∴AF=AB=1,∴BF=,∴BC=2BF=2,则DC=2﹣x,EC=2﹣y,∵△ABD∽△DCE,∴,∴,化简得:y=x+2(0<x<2);(3)当AD=DE时,如图2,由(1)可知:此时△ABD∽△DCE,则AB=CD,即2=2﹣x,x=2﹣2,代入y=x+2,解得:y=4﹣2,即AE=4﹣2,当AE=ED时,如图3,∠EAD=∠EDA=30°,∠AED=120°,∴∠DEC=60°,∠EDC=90°,则ED=EC,即y=(2﹣y),解得:y=,即AE=,当AD=AE时,∠AED=∠EDA=30°,∠EAD=120°,此时点D与点B重合,不符合题意,此情况不存在,∴当△ADE是等腰三角形时,AE=4﹣2或.【点评】本题是相似形的综合题,考查了三角形相似的性质和判定、等腰三角形的性质、直角三角形30°角的性质,本题的几个问题全部围绕△ABD∽△DCE,解决问题;难度适中.25.(12分)(2017•东营)如图,直线y=﹣x+分别与x轴、y轴交于B、C 两点,点A在x轴上,∠ACB=90°,抛物线y=ax2+bx+经过A,B两点.(1)求A、B两点的坐标;(2)求抛物线的解析式;(3)点M是直线BC上方抛物线上的一点,过点M作MH⊥BC于点H,作MD ∥y轴交BC于点D,求△DMH周长的最大值.【分析】(1)由直线解析式可求得B、C坐标,在Rt△BOC中由三角函数定义可。

2017东营中考数学试题及答案

2017东营中考数学试题及答案

2017东营中考数学试题及答案东营市2017年中考数学试题一、选择题(每题2分,共10分)1. 下列哪个数是最小的正整数?A. -3B. 0C. 1D. 22. 已知一个直角三角形的两条直角边分别为3和4,求斜边长度。

A. 5B. 6C. 7D. 83. 如果一个数的平方等于16,那么这个数可能是:A. 4B. -4C. 4或-4D. 以上都不是4. 下列哪个表达式等价于 \(2x + 3\)?A. \(2(x + 1) + 1\)B. \(2(x + 2) + 1\)C. \(2x + 2 + 1\)D. \(2(x - 1) + 5\)5. 一个圆的半径为5,求圆的面积。

A. 25πB. 50πC. 75πD. 100π二、填空题(每题2分,共10分)6. 一个数的相反数是-7,这个数是________。

7. 若 \(a^2 - b^2 = (a + b)(a - b)\),则 \(a^2 - 25\) 可以表示为________。

8. 一个数的绝对值是4,这个数可以是________。

9. 已知 \(2x - 3 = 11\),求 \(x\) 的值,答案是________。

10. 一个长方体的长、宽、高分别是2、3和4,求它的体积,答案是________。

三、解答题(共80分)11. 解一元一次方程:\(3x + 5 = 14\)。

(5分)12. 已知一个长方体的长、宽、高分别是5cm、4cm和3cm,求它的表面积和体积。

(10分)13. 利用勾股定理求直角三角形的斜边长度,已知直角边长分别为6cm 和8cm。

(5分)14. 证明:\((a + b)^2 = a^2 + 2ab + b^2\)。

(5分)15. 解不等式:\(2x - 5 < 3x + 1\)。

(5分)16. 已知一个圆的直径是10cm,求这个圆的周长和面积。

(5分)17. 利用因式分解法解一元二次方程:\(x^2 - 5x + 6 = 0\)。

2017年山东省东营市中考数学试卷

2017年山东省东营市中考数学试卷

2017年山东省东营市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列四个数中,最大的数是()A.3 B.C.0 D.π2.(3分)下列运算正确的是()A.(x﹣y)2=x2﹣y2B.|﹣2|=2﹣ C.﹣= D.﹣(﹣a+1)=a+1 3.(3分)若|x2﹣4x+4|与互为相反数,则x+y的值为()A.3 B.4 C.6 D.94.(3分)小明从家到学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,小明从家到学校行驶路程s(m)与时间t(min)的大致图象是()A.B.C.D.5.(3分)已知a∥b,一块含30°角的直角三角板如图所示放置,∠2=45°,则∠1等于()A.100°B.135°C.155° D.165°6.(3分)如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是()A.B.C.D.7.(3分)如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=8,AB=5,则AE的长为()A.5 B.6 C.8 D.128.(3分)若圆锥的侧面积等于其底面积的3倍,则该圆锥侧面展开图所对应扇形圆心角的度数为()A.60°B.90°C.120° D.180°9.(3分)如图,把△ABC沿着BC的方向平移到△DEF的位置,它们重叠部分的面积是△ABC面积的一半,若BC=,则△ABC移动的距离是()A.B.C.D.﹣10.(3分)如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PH•PC其中正确的是()A.①②③④B.②③C.①②④D.①③④二、填空题(本大题共8小题,共28分)11.(3分)《“一带一路”贸易合作大数据报告(2017)》以“一带一路”贸易合作现状分析和趋势预测为核心,采集调用了8000多个种类,总计1.2亿条全球进出口贸易基础数据…,1.2亿用科学记数法表示为.12.(3分)分解因式:﹣2x2y+16xy﹣32y=.13.(3分)为选拔一名选手参加全国中学生游泳锦标赛自由泳比赛,我市四名中学生参加了男子100米自由泳训练,他们成绩的平均数及其方差s2如下表所示:如果选拔一名学生去参赛,应派去.14.(3分)如图,AB是半圆直径,半径OC⊥AB于点O,D为半圆上一点,AC ∥OD,AD与OC交于点E,连结CD、BD,给出以下三个结论:①OD平分∠COB;②BD=CD;③CD2=CE•CO,其中正确结论的序号是.15.(4分)如图,已知菱形ABCD的周长为16,面积为8,E为AB的中点,若P为对角线BD上一动点,则EP+AP的最小值为.16.(4分)我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是尺.17.(4分)一数学兴趣小组来到某公园,准备测量一座塔的高度.如图,在A 处测得塔顶的仰角为α,在B处测得塔顶的仰角为β,又测量出A、B两点的距离为s米,则塔高为米.18.(4分)如图,在平面直角坐标系中,直线l:y=x﹣与x轴交于点B1,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x轴,交直线l 于点B3,以A2B3为边长作等边三角形A3A2B3,…,则点A2017的横坐标是.三、解答题(本大题共7小题,共62分)19.(8分)(1)计算:6cos45°+()﹣1+(﹣1.73)0+|5﹣3|+42017×(﹣0.25)2017(2)先化简,再求值:(﹣a+1)÷+﹣a,并从﹣1,0,2中选一个合适的数作为a的值代入求值.20.(7分)为大力弘扬“奉献、友爱、互助、进步”的志愿服务精神,传播“奉献他人、提升自我”的志愿服务理念,东营市某中学利用周末时间开展了“助老助残、社区服务、生态环保、网络文明”四个志愿服务活动(每人只参加一个活动),九年级某班全班同学都参加了志愿服务,班长为了解志愿服务的情况,收集整理数据后,绘制以下不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)求该班的人数;(2)请把折线统计图补充完整;(3)求扇形统计图中,网络文明部分对应的圆心角的度数;(4)小明和小丽参加了志愿服务活动,请用树状图或列表法求出他们参加同一服务活动的概率.21.(8分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作⊙O的切线DE,交AC于点E,AC的反向延长线交⊙O于点F.(1)求证:DE⊥AC;(2)若DE+EA=8,⊙O的半径为10,求AF的长度.22.(8分)如图,一次函数y=kx+b的图象与坐标轴分别交于A、B两点,与反比例函数y=的图象在第一象限的交点为C,CD⊥x轴,垂足为D,若OB=3,OD=6,△AOB的面积为3.(1)求一次函数与反比例函数的解析式;(2)直接写出当x>0时,kx+b﹣<0的解集.23.(9分)为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对A、B两类学校进行改扩建,根据预算,改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元.(1)改扩建1所A类学校和1所B类学校所需资金分别是多少万元?(2)该县计划改扩建A、B两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元,其中地方财政投入到A、B两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案?24.(10分)如图,在等腰三角形ABC中,∠BAC=120°,AB=AC=2,点D是BC 边上的一个动点(不与B、C重合),在AC上取一点E,使∠ADE=30°.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式并写出自变量x的取值范围;(3)当△ADE是等腰三角形时,求AE的长.25.(12分)如图,直线y=﹣x+分别与x轴、y轴交于B、C两点,点A在x轴上,∠ACB=90°,抛物线y=ax2+bx+经过A,B两点.(1)求A、B两点的坐标;(2)求抛物线的解析式;(3)点M是直线BC上方抛物线上的一点,过点M作MH⊥BC于点H,作MD ∥y轴交BC于点D,求△DMH周长的最大值.2017年山东省东营市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2017•东营)下列四个数中,最大的数是()A.3 B.C.0 D.π【分析】根据在数轴上表示的两个实数,右边的总比左边的大可得答案.【解答】解:0<<3<π,故选:D.【点评】此题主要考查了实数的比较大小,关键是掌握利用数轴也可以比较任意两个实数的大小,即在数轴上表示的两个实数,右边的总比左边的大,在原点左侧,绝对值大的反而小.2.(3分)(2017•东营)下列运算正确的是()A.(x﹣y)2=x2﹣y2B.|﹣2|=2﹣ C.﹣= D.﹣(﹣a+1)=a+1【分析】根据完全平方公式,二次根式的化简以及去括号的法则进行解答.【解答】解:A、原式=x2﹣2xy+y2,故本选项错误;B、原式=2﹣,故本选项正确;C、原式=2﹣,故本选项错误;D、原式=a﹣1,故本选项错误;故选:B.【点评】本题综合考查了二次根式的加减法,实数的性质,完全平方公式以及去括号,属于基础题,难度不大.3.(3分)(2017•东营)若|x2﹣4x+4|与互为相反数,则x+y的值为()A.3 B.4 C.6 D.9【分析】根据相反数的定义得到|x2﹣4x+4|+=0,再根据非负数的性质得x2﹣4x+4=0,2x﹣y﹣3=0,然后利用配方法求出x,再求出y,最后计算它们的和即可.【解答】解:根据题意得|x2﹣4x+4|+=0,所以|x2﹣4x+4|=0,=0,即(x﹣2)2=0,2x﹣y﹣3=0,所以x=2,y=1,所以x+y=3.故选A.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n 的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.也考查了非负数的性质.4.(3分)(2017•东营)小明从家到学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,小明从家到学校行驶路程s(m)与时间t(min)的大致图象是()A.B.C.D.【分析】根据题意判断出S随t的变化趋势,然后再结合选项可得答案.【解答】解:小明从家到学校,先匀速步行到车站,因此S随时间t的增长而增长,等了几分钟后坐上了公交车,因此时间在增加,S不增长,坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,因此S又随时间t的增长而增长,故选:C.【点评】此题主要考查了函数图象,关键是正确理解题意,根据题意判断出两个变量的变化情况.5.(3分)(2017•东营)已知a∥b,一块含30°角的直角三角板如图所示放置,∠2=45°,则∠1等于()A.100°B.135°C.155° D.165°【分析】先过P作PQ∥a,则PQ∥b,根据平行线的性质即可得到∠3的度数,再根据对顶角相等即可得出结论.【解答】解:如图,过P作PQ∥a,∵a∥b,∴PQ∥b,∴∠BPQ=∠2=45°,∵∠APB=60°,∴∠APQ=15°,∴∠3=180°﹣∠APQ=165°,∴∠1=165°,故选:D.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等,同旁内角互补.6.(3分)(2017•东营)如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是()A.B.C.D.【分析】根据正方形表面展开图的结构即可求出判断出构成这个正方体的表面展开图的概率.【解答】解:设没有涂上阴影的分别为:A、B、C、D、E、F、G,如图所示,从其余的小正方形中任取一个涂上阴影共有7种情况,而能够构成正方体的表面展开图的有以下情况,D、E、F、G,∴能构成这个正方体的表面展开图的概率是,故选(A)【点评】本题考查概率,解题的关键是熟识正方体表面展开图的结构,本题属于中等题型.7.(3分)(2017•东营)如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG 交BC于点E.若BF=8,AB=5,则AE的长为()A.5 B.6 C.8 D.12【分析】由基本作图得到AB=AF,AG平分∠BAD,故可得出四边形ABEF是菱形,由菱形的性质可知AE⊥BF,故可得出OB的长,再由勾股定理即可得出OA的长,进而得出结论.【解答】解:连结EF,AE与BF交于点O,∵四边形ABCD是平行四边形,AB=AF,∴四边形ABEF是菱形,∴AE⊥BF,OB=BF=4,OA=AE.∵AB=5,在Rt△AOB中,AO==3,∴AE=2AO=6.故选B.【点评】本题考查的是作图﹣基本作图,熟知平行四边形的性质、勾股定理、平行线的性质是解决问题的关键.8.(3分)(2017•东营)若圆锥的侧面积等于其底面积的3倍,则该圆锥侧面展开图所对应扇形圆心角的度数为()A.60°B.90°C.120° D.180°【分析】根据圆锥侧面积恰好等于底面积的3倍可得圆锥的母线长=3×底面半径,根据圆锥的侧面展开图的弧长等于圆锥的底面周长,可得圆锥侧面展开图所对应的扇形圆心角度数.【解答】解:设母线长为R,底面半径为r,∴底面周长=2πr,底面面积=πr2,侧面面积=lr=πrR,∵侧面积是底面积的3倍,∴3πr2=πrR,∴R=3r,设圆心角为n,有=πR,∴n=120°.故选C.【点评】本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长,以及利用扇形面积公式求出是解题的关键.9.(3分)(2017•东营)如图,把△ABC沿着BC的方向平移到△DEF的位置,它们重叠部分的面积是△ABC面积的一半,若BC=,则△ABC移动的距离是()A.B.C.D.﹣【分析】移动的距离可以视为BE或CF的长度,根据题意可知△ABC与阴影部分为相似三角形,且面积比为2:1,所以EC:BC=1:,推出EC的长,利用线段的差求BE的长.【解答】解:∵△ABC沿BC边平移到△DEF的位置,∴AB∥DE,∴△ABC∽△HEC,∴=()2=,∴EC:BC=1:,∵BC=,∴EC=,∴BE=BC﹣EC=﹣.故选:D.【点评】本题主要考查相似三角形的判定和性质、平移的性质,关键在于证△ABC 与阴影部分为相似三角形.10.(3分)(2017•东营)如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PH•PC其中正确的是()A.①②③④B.②③C.①②④D.①③④【分析】由正方形的性质和相似三角形的判定与性质,即可得出结论.【解答】解:∵△BPC是等边三角形,∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,在正方形ABCD中,∵AB=BC=CD,∠A=∠ADC=∠BCD=90°∴∠ABE=∠DCF=30°,∴BE=2AE;故①正确;∵PC=CD,∠PCD=30°,∴∠PDC=75°,∴∠FDP=15°,∵∠DBA=45°,∴∠PBD=15°,∴∠FDP=∠PBD,∵∠DFP=∠BPC=60°,∴△DFP∽△BPH;故②正确;∵∠FDP=∠PBD=15°,∠ADB=45°,∴∠PDB=30°,而∠DFP=60°,∴∠PFD≠∠PDB,∴△PFD与△PDB不会相似;故③错误;∵∠PDH=∠PCD=30°,∠DPH=∠DPC,∴△DPH∽△CPD,∴,∴DP2=PH•PC,故④正确;故选C.【点评】本题考查的正方形的性质,等边三角形的性质以及相似三角形的判定和性质,解答此题的关键是熟练掌握性质和定理.二、填空题(本大题共8小题,共28分)11.(3分)(2017•东营)《“一带一路”贸易合作大数据报告(2017)》以“一带一路”贸易合作现状分析和趋势预测为核心,采集调用了8000多个种类,总计1.2亿条全球进出口贸易基础数据…,1.2亿用科学记数法表示为 1.2×108.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:1.2亿用科学记数法表示为1.2×108.故答案为:1.2×108.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)(2017•东营)分解因式:﹣2x2y+16xy﹣32y=﹣2y(x﹣4)2.【分析】根据提取公因式以及完全平方公式即可求出答案.【解答】解:原式=﹣2y(x2﹣8x+16)=﹣2y(x﹣4)2故答案为:﹣2y(x﹣4)2【点评】本题考查因式分解,解题的关键是熟练运用因式分解法,本题属于基础题型.13.(3分)(2017•东营)为选拔一名选手参加全国中学生游泳锦标赛自由泳比赛,我市四名中学生参加了男子100米自由泳训练,他们成绩的平均数及其方差s 2如下表所示:如果选拔一名学生去参赛,应派 乙 去.【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加. 【解答】解:∵>>=,∴从乙和丙中选择一人参加比赛, ∵S<S,∴选择乙参赛, 故答案为:乙.【点评】题考查了平均数和方差,一般地设n 个数据,x 1,x 2,…x n 的平均数为,则方差S 2=[(x 1﹣)2+(x 2﹣)2+…+(x n ﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.14.(3分)(2017•东营)如图,AB 是半圆直径,半径OC ⊥AB 于点O ,D 为半圆上一点,AC ∥OD ,AD 与OC 交于点E ,连结CD 、BD ,给出以下三个结论:①OD 平分∠COB ;②BD=CD ;③CD 2=CE•CO ,其中正确结论的序号是 ①②③ .【分析】①由OC ⊥AB 就可以得出∠BOC=∠AOC=90°,再由OC=OA 就可以得出∠OCA=∠OAC=45°,由AC∥OD就可以得出∠BOD=45°,进而得出∠DOC=45°,从而得出结论;②由∠BOD=∠COD即可得出BD=CD;③由∠AOC=90°就可以得出∠CDA=45°,得出∠DOC=∠CDA,就可以得出△DOC∽△EDC.进而得出,得出CD2=CE•CO.【解答】解:①∵OC⊥AB,∴∠BOC=∠AOC=90°.∵OC=OA,∴∠OCA=∠OAC=45°.∵AC∥OD,∴∠BOD=∠CAO=45°,∴∠DOC=45°,∴∠BOD=∠DOC,∴OD平分∠COB.故①正确;②∵∠BOD=∠DOC,∴BD=CD.故②正确;③∵∠AOC=90°,∴∠CDA=45°,∴∠DOC=∠CDA.∵∠OCD=∠OCD,∴△DOC∽△EDC,∴,∴CD2=CE•CO.故③正确.故答案为:①②③.【点评】本题考查了圆周角定理,平行线的性质,圆的性质,圆心角与弦的关系定理的运用,相似三角形的判定及性质;熟练掌握圆周角定理和相似三角形的判定与性质是解决问题的关键.15.(4分)(2017•东营)如图,已知菱形ABCD的周长为16,面积为8,E为AB的中点,若P为对角线BD上一动点,则EP+AP的最小值为2.【分析】如图作CE′⊥AB于E′,交BD于P′,连接AC、AP′.首先证明E′与E重合,因为A、C关于BD对称,所以当P与P′重合时,PA′+P′E的值最小,由此求出CE 即可解决问题.【解答】解:如图作CE′⊥AB于E′,交BD于P′,连接AC、AP′.∵已知菱形ABCD的周长为16,面积为8,∴AB=BC=4,AB•CE′=8,∴CE′=2,在Rt△BCE′中,BE′==2,∵BE=EA=2,∴E与E′重合,∵四边形ABCD是菱形,∴BD垂直平分AC,∴A、C关于BD对称,∴当P与P′重合时,PA′+P′E的值最小,最小值为CE的长=2,故答案为2.【点评】本题考查轴对称﹣最短问题、菱形的性质等知识,解题的关键是学会添加常用辅助线,本题的突破点是证明CE是△ABC的高,学会利用对称解决最短问题.16.(4分)(2017•东营)我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B 处,则问题中葛藤的最短长度是25尺.【分析】这种立体图形求最短路径问题,可以展开成为平面内的问题解决,展开后可转化下图,所以是个直角三角形求斜边的问题,根据勾股定理可求出.【解答】解:如图,一条直角边(即枯木的高)长20尺,另一条直角边长5×3=15(尺),因此葛藤长为=25(尺).故答案为:25.【点评】本题考查了平面展开最短路径问题,关键是把立体图形展成平面图形,本题是展成平面图形后为直角三角形按照勾股定理可求出解.17.(4分)(2017•东营)一数学兴趣小组来到某公园,准备测量一座塔的高度.如图,在A处测得塔顶的仰角为α,在B处测得塔顶的仰角为β,又测量出A、B两点的距离为s米,则塔高为米.【分析】在Rt△BCD中有BD=,在Rt△ACD中,根据tan∠A==可得tanα=,解之求出CD即可得.【解答】解:在Rt△BCD中,∵tan∠CBD=,∴BD=,在Rt△ACD中,∵tan∠A==,∴tanα=,解得:CD=,故答案为:.【点评】本题主要考查解直角三角形的应用﹣仰角俯角问题,解题的关键是根据两直角三角形的公共边利用三角函数建立方程求解.18.(4分)(2017•东营)如图,在平面直角坐标系中,直线l:y=x﹣与x 轴交于点B1,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x 轴,交直线l于点B3,以A2B3为边长作等边三角形A3A2B3,…,则点A2017的横坐标是.【分析】先根据直线l:y=x﹣与x轴交于点B1,可得B1(1,0),OB1=1,∠OB1D=30°,再,过A1作A1A⊥OB1于A,过A2作A2B⊥A1B2于B,过A3作A3C ⊥A2B3于C,根据等边三角形的性质以及含30°角的直角三角形的性质,分别求得A1的横坐标为,A2的横坐标为,A3的横坐标为,进而得到A n的横坐标为,据此可得点A2017的横坐标.【解答】解:由直线l:y=x﹣与x轴交于点B1,可得B1(1,0),D(﹣,0),∴OB1=1,∠OB1D=30°,如图所示,过A1作A1A⊥OB1于A,则OA=OB1=,即A1的横坐标为=,由题可得∠A1B2B1=∠OB1D=30°,∠B2A1B1=∠A1B1O=60°,∴∠A1B1B2=90°,∴A1B2=2A1B1=2,过A2作A2B⊥A1B2于B,则A1B=A1B2=1,即A2的横坐标为+1==,过A3作A3C⊥A2B3于C,同理可得,A2B3=2A2B2=4,A2C=A2B3=2,即A3的横坐标为+1+2==,同理可得,A4的横坐标为+1+2+4==,由此可得,A n的横坐标为,∴点A2017的横坐标是,故答案为:.【点评】本题主要考查了一次函数图象上点的坐标特征以及等边三角形的性质的运用,解决问题的关键是依据等边三角形的性质找出规律,求得A n的横坐标为.三、解答题(本大题共7小题,共62分)19.(8分)(2017•东营)(1)计算:6cos45°+()﹣1+(﹣1.73)0+|5﹣3|+42017×(﹣0.25)2017(2)先化简,再求值:(﹣a+1)÷+﹣a,并从﹣1,0,2中选一个合适的数作为a的值代入求值.【分析】(1)根据特殊角的三角函数值、负整数指数幂、零指数幂、绝对值、幂的乘方可以解答本题;(2)根据分式的加减法和除法可以化简题目中的式子,然后在﹣1,0,2中选一个使得原分式有意义的值代入即可解答本题.【解答】解:(1)6cos45°+()﹣1+(﹣1.73)0+|5﹣3|+42017×(﹣0.25)2017=6×+3+1+5﹣3+42017×(﹣)2017==8;(2)(﹣a+1)÷+﹣a=====﹣a﹣1,当a=0时,原式=﹣0﹣1=﹣1.【点评】本题考查分式的化简求值、实数的运算、殊角的三角函数值、负整数指数幂、零指数幂、绝对值、幂的乘方,解答本题的关键是明确它们各自的计算方法.20.(7分)(2017•东营)为大力弘扬“奉献、友爱、互助、进步”的志愿服务精神,传播“奉献他人、提升自我”的志愿服务理念,东营市某中学利用周末时间开展了“助老助残、社区服务、生态环保、网络文明”四个志愿服务活动(每人只参加一个活动),九年级某班全班同学都参加了志愿服务,班长为了解志愿服务的情况,收集整理数据后,绘制以下不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)求该班的人数;(2)请把折线统计图补充完整;(3)求扇形统计图中,网络文明部分对应的圆心角的度数;(4)小明和小丽参加了志愿服务活动,请用树状图或列表法求出他们参加同一服务活动的概率.【分析】(1)根据参加生态环保的人数以及百分比,即可解决问题;(2)社区服务的人数,画出折线图即可;(3)根据圆心角=360°×百分比,计算即可;(4)用列表法即可解决问题;【解答】解:(1)该班全部人数:12÷25%=48人.(2)48×50%=24,折线统计如图所示:(3)×360°=45°.(4)分别用“1,2,3,4”代表“助老助残、社区服务、生态环保、网络文明”四个服务活动,列表如下:则所有可能有16种,其中他们参加同一活动有4种,所以他们参加同一服务活动的概率P==.【点评】本题考查折线图、扇形统计图、列表法等知识,解题的关键是记住基本概念,属于中考常考题型.21.(8分)(2017•东营)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC 于点D,过点D作⊙O的切线DE,交AC于点E,AC的反向延长线交⊙O于点F.(1)求证:DE⊥AC;(2)若DE+EA=8,⊙O的半径为10,求AF的长度.【分析】(1)欲证明DE⊥AC,只需推知OD∥AC即可;(2)如图,过点O作OH⊥AF于点H,构建矩形ODEH,设AH=x.则由矩形的性质推知:AE=10﹣x,OH=DE=8﹣(10﹣x)=x﹣2.在Rt△AOH中,由勾股定理知:x2+(x﹣2)2=102,通过解方程得到AH的长度,结合OH⊥AF,得到AF=2AH=2×8=16.【解答】(1)证明:∵OB=OD,∴∠ABC=∠ODB,∵AB=AC,∴∠ABC=∠ACB,∴∠ODB=∠ACB,∴OD∥AC.∵DE是⊙O的切线,OD是半径,∴DE⊥OD,∴DE⊥AC;(2)如图,过点O作OH⊥AF于点H,则∠ODE=∠DEH=∠OHE=90°,∴四边形ODEH是矩形,∴OD=EH,OH=DE.设AH=x.∵DE+AE=8,OD=10,∴AE=10﹣x,OH=DE=8﹣(10﹣x)=x﹣2.在Rt△AOH中,由勾股定理知:AH2+OH2=OA2,即x2+(x﹣2)2=102,解得x1=8,x2=﹣6(不合题意,舍去).∴AH=8.∵OH⊥AF,∴AH=FH=AF,∴AF=2AH=2×8=16.【点评】本题考查了切线的性质,勾股定理,矩形的判定与性质.解题时,利用了方程思想,属于中档题.22.(8分)(2017•东营)如图,一次函数y=kx+b的图象与坐标轴分别交于A、B 两点,与反比例函数y=的图象在第一象限的交点为C,CD⊥x轴,垂足为D,若OB=3,OD=6,△AOB的面积为3.(1)求一次函数与反比例函数的解析式;(2)直接写出当x>0时,kx+b﹣<0的解集.【分析】(1)根据三角形面积求出OA,得出A、B的坐标,代入一次函数的解析式即可求出解析式,把x=6代入求出C的坐标,把C的坐标代入反比例函数的解析式求出即可;(2)根据图象即可得出答案.=3,OB=3,【解答】解:(1)∵S△AOB∴OA=2,∴B(3,0),A(0,﹣2),代入y=kx+b得:,解得:k=,b=﹣2,∴一次函数y=x﹣2,∵OD=6,∴D(6,0),CD⊥x轴,当x=6时,y=×6﹣2=2∴C(6,2),∴n=6×2=12,∴反比例函数的解析式是y=;(2)当x>0时,kx+b﹣<0的解集是0<x<6.【点评】本题考查了用待定系数法求出函数的解析式,一次函数和和反比例函数的交点问题,函数的图象的应用,主要考查学生的观察图形的能力和计算能力.23.(9分)(2017•东营)为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对A、B两类学校进行改扩建,根据预算,改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元.(1)改扩建1所A类学校和1所B类学校所需资金分别是多少万元?(2)该县计划改扩建A、B两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元,其中地方财政投入到A、B两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案?【分析】(1)可根据“改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元”,列出方程组求出答案;(2)要根据“国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元”来列出不等式组,判断出不同的改造方案.【解答】解:(1)设改扩建一所A类和一所B类学校所需资金分别为x万元和y 万元由题意得,解得,答:改扩建一所A类学校和一所B类学校所需资金分别为1200万元和1800万元.(2)设今年改扩建A类学校a所,则改扩建B类学校(10﹣a)所,由题意得:,解得,∴3≤a≤5,∵x取整数,∴x=3,4,5.即共有3种方案:方案一:改扩建A类学校3所,B类学校7所;方案二:改扩建A类学校4所,B类学校6所;方案三:改扩建A类学校5所,B类学校5所.【点评】本题考查了一元一次不等式组的应用,二元一次方程组的应用.解决问题的关键是读懂题意,找到关键描述语,找到所求的量的数量关系.24.(10分)(2017•东营)如图,在等腰三角形ABC中,∠BAC=120°,AB=AC=2,点D是BC边上的一个动点(不与B、C重合),在AC上取一点E,使∠ADE=30°.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式并写出自变量x的取值范围;(3)当△ADE是等腰三角形时,求AE的长.【分析】(1)根据两角相等证明:△ABD∽△DCE;(2)如图1,作高AF,根据直角三角形30°的性质求AF的长,根据勾股定理求BF的长,则可得BC的长,根据(1)中的相似列比例式可得函数关系式,并确定取值;(3)分三种情况进行讨论:①当AD=DE时,如图2,由(1)可知:此时△ABD∽△DCE,则AB=CD,即2=2﹣x;②当AE=ED时,如图3,则ED=EC,即y=(2﹣y);③当AD=AE时,∠AED=∠EDA=30°,∠EAD=120°,此时点D与点B重合,不符合题意,此情况不存在.【解答】证明:(1)∵△ABC是等腰三角形,且∠BAC=120°,∴∠ABD=∠ACB=30°,∴∠ABD=∠ADE=30°,∵∠ADC=∠ADE+∠EDC=∠ABD+∠DAB,∴∠EDC=∠DAB,∴△ABD∽△DCE;(2)如图1,∵AB=AC=2,∠BAC=120°,过A作AF⊥BC于F,∴∠AFB=90°,∵AB=2,∠ABF=30°,∴AF=AB=1,∴BF=,∴BC=2BF=2,则DC=2﹣x,EC=2﹣y,∵△ABD∽△DCE,∴,∴,化简得:y=x+2(0<x<2);(3)当AD=DE时,如图2,由(1)可知:此时△ABD∽△DCE,则AB=CD,即2=2﹣x,x=2﹣2,代入y=x+2,解得:y=4﹣2,即AE=4﹣2,当AE=ED时,如图3,∠EAD=∠EDA=30°,∠AED=120°,∴∠DEC=60°,∠EDC=90°,则ED=EC,即y=(2﹣y),解得:y=,即AE=,当AD=AE时,∠AED=∠EDA=30°,∠EAD=120°,此时点D与点B重合,不符合题意,此情况不存在,∴当△ADE是等腰三角形时,AE=4﹣2或.【点评】本题是相似形的综合题,考查了三角形相似的性质和判定、等腰三角形的性质、直角三角形30°角的性质,本题的几个问题全部围绕△ABD∽△DCE,解决问题;难度适中.25.(12分)(2017•东营)如图,直线y=﹣x+分别与x轴、y轴交于B、C 两点,点A在x轴上,∠ACB=90°,抛物线y=ax2+bx+经过A,B两点.(1)求A、B两点的坐标;(2)求抛物线的解析式;(3)点M是直线BC上方抛物线上的一点,过点M作MH⊥BC于点H,作MD ∥y轴交BC于点D,求△DMH周长的最大值.【分析】(1)由直线解析式可求得B、C坐标,在Rt△BOC中由三角函数定义可。

2017年度山东东营市中考数学试卷

2017年度山东东营市中考数学试卷

2017年山东省东营市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列四个数中,最大的数是()A.3 B.C.0 D.π2.(3分)下列运算正确的是()A.(x﹣y)2=x2﹣y2B.|﹣2|=2﹣ C.﹣= D.﹣(﹣a+1)=a+1 3.(3分)若|x2﹣4x+4|与互为相反数,则x+y的值为()A.3 B.4 C.6 D.94.(3分)小明从家到学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,小明从家到学校行驶路程s(m)与时间t(min)的大致图象是()A.B.C.D.5.(3分)已知a∥b,一块含30°角的直角三角板如图所示放置,∠2=45°,则∠1等于()A.100°B.135°C.155° D.165°6.(3分)如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是()A.B.C.D.7.(3分)如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=8,AB=5,则AE的长为()A.5 B.6 C.8 D.128.(3分)若圆锥的侧面积等于其底面积的3倍,则该圆锥侧面展开图所对应扇形圆心角的度数为()A.60°B.90°C.120° D.180°9.(3分)如图,把△ABC沿着BC的方向平移到△DEF的位置,它们重叠部分的面积是△ABC面积的一半,若BC=,则△ABC移动的距离是()A.B.C.D.﹣10.(3分)如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PH•PC其中正确的是()A.①②③④B.②③C.①②④D.①③④二、填空题(本大题共8小题,共28分)11.(3分)《“一带一路”贸易合作大数据报告(2017)》以“一带一路”贸易合作现状分析和趋势预测为核心,采集调用了8000多个种类,总计1.2亿条全球进出口贸易基础数据…,1.2亿用科学记数法表示为.12.(3分)分解因式:﹣2x2y+16xy﹣32y=.13.(3分)为选拔一名选手参加全国中学生游泳锦标赛自由泳比赛,我市四名中学生参加了男子100米自由泳训练,他们成绩的平均数及其方差s2如下表所示:甲乙丙丁1′05″331′04″261′04″261′07″29S2 1.1 1.1 1.3 1.6如果选拔一名学生去参赛,应派去.14.(3分)如图,AB是半圆直径,半径OC⊥AB于点O,D为半圆上一点,AC ∥OD,AD与OC交于点E,连结CD、BD,给出以下三个结论:①OD平分∠COB;②BD=CD;③CD2=CE•CO,其中正确结论的序号是.15.(4分)如图,已知菱形ABCD的周长为16,面积为8,E为AB的中点,若P为对角线BD上一动点,则EP+AP的最小值为.16.(4分)我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是尺.17.(4分)一数学兴趣小组来到某公园,准备测量一座塔的高度.如图,在A 处测得塔顶的仰角为α,在B处测得塔顶的仰角为β,又测量出A、B两点的距离为s米,则塔高为米.18.(4分)如图,在平面直角坐标系中,直线l:y=x﹣与x轴交于点B1,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x轴,交直线l 于点B3,以A2B3为边长作等边三角形A3A2B3,…,则点A2017的横坐标是.三、解答题(本大题共7小题,共62分)19.(8分)(1)计算:6cos45°+()﹣1+(﹣1.73)0+|5﹣3|+42017×(﹣0.25)2017(2)先化简,再求值:(﹣a+1)÷+﹣a,并从﹣1,0,2中选一个合适的数作为a的值代入求值.20.(7分)为大力弘扬“奉献、友爱、互助、进步”的志愿服务精神,传播“奉献他人、提升自我”的志愿服务理念,东营市某中学利用周末时间开展了“助老助残、社区服务、生态环保、网络文明”四个志愿服务活动(每人只参加一个活动),九年级某班全班同学都参加了志愿服务,班长为了解志愿服务的情况,收集整理数据后,绘制以下不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)求该班的人数;(2)请把折线统计图补充完整;(3)求扇形统计图中,网络文明部分对应的圆心角的度数;(4)小明和小丽参加了志愿服务活动,请用树状图或列表法求出他们参加同一服务活动的概率.21.(8分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作⊙O的切线DE,交AC于点E,AC的反向延长线交⊙O于点F.(1)求证:DE⊥AC;(2)若DE+EA=8,⊙O的半径为10,求AF的长度.22.(8分)如图,一次函数y=kx+b的图象与坐标轴分别交于A、B两点,与反比例函数y=的图象在第一象限的交点为C,CD⊥x轴,垂足为D,若OB=3,OD=6,△AOB的面积为3.(1)求一次函数与反比例函数的解析式;(2)直接写出当x>0时,kx+b﹣<0的解集.23.(9分)为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对A、B两类学校进行改扩建,根据预算,改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元.(1)改扩建1所A类学校和1所B类学校所需资金分别是多少万元?(2)该县计划改扩建A、B两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元,其中地方财政投入到A、B两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案?24.(10分)如图,在等腰三角形ABC中,∠BAC=120°,AB=AC=2,点D是BC 边上的一个动点(不与B、C重合),在AC上取一点E,使∠ADE=30°.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式并写出自变量x的取值范围;(3)当△ADE是等腰三角形时,求AE的长.25.(12分)如图,直线y=﹣x+分别与x轴、y轴交于B、C两点,点A在x轴上,∠ACB=90°,抛物线y=ax2+bx+经过A,B两点.(1)求A、B两点的坐标;(2)求抛物线的解析式;(3)点M是直线BC上方抛物线上的一点,过点M作MH⊥BC于点H,作MD ∥y轴交BC于点D,求△DMH周长的最大值.2017年山东省东营市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2017•东营)下列四个数中,最大的数是()A.3 B.C.0 D.π【分析】根据在数轴上表示的两个实数,右边的总比左边的大可得答案.【解答】解:0<<3<π,故选:D.【点评】此题主要考查了实数的比较大小,关键是掌握利用数轴也可以比较任意两个实数的大小,即在数轴上表示的两个实数,右边的总比左边的大,在原点左侧,绝对值大的反而小.2.(3分)(2017•东营)下列运算正确的是()A.(x﹣y)2=x2﹣y2B.|﹣2|=2﹣ C.﹣= D.﹣(﹣a+1)=a+1【分析】根据完全平方公式,二次根式的化简以及去括号的法则进行解答.【解答】解:A、原式=x2﹣2xy+y2,故本选项错误;B、原式=2﹣,故本选项正确;C、原式=2﹣,故本选项错误;D、原式=a﹣1,故本选项错误;故选:B.【点评】本题综合考查了二次根式的加减法,实数的性质,完全平方公式以及去括号,属于基础题,难度不大.3.(3分)(2017•东营)若|x2﹣4x+4|与互为相反数,则x+y的值为()A.3 B.4 C.6 D.9【分析】根据相反数的定义得到|x2﹣4x+4|+=0,再根据非负数的性质得x2﹣4x+4=0,2x﹣y﹣3=0,然后利用配方法求出x,再求出y,最后计算它们的和即可.【解答】解:根据题意得|x2﹣4x+4|+=0,所以|x2﹣4x+4|=0,=0,即(x﹣2)2=0,2x﹣y﹣3=0,所以x=2,y=1,所以x+y=3.故选A.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n 的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.也考查了非负数的性质.4.(3分)(2017•东营)小明从家到学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,小明从家到学校行驶路程s(m)与时间t(min)的大致图象是()A.B.C.D.【分析】根据题意判断出S随t的变化趋势,然后再结合选项可得答案.【解答】解:小明从家到学校,先匀速步行到车站,因此S随时间t的增长而增长,等了几分钟后坐上了公交车,因此时间在增加,S不增长,坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,因此S又随时间t的增长而增长,故选:C.【点评】此题主要考查了函数图象,关键是正确理解题意,根据题意判断出两个变量的变化情况.5.(3分)(2017•东营)已知a∥b,一块含30°角的直角三角板如图所示放置,∠2=45°,则∠1等于()A.100°B.135°C.155° D.165°【分析】先过P作PQ∥a,则PQ∥b,根据平行线的性质即可得到∠3的度数,再根据对顶角相等即可得出结论.【解答】解:如图,过P作PQ∥a,∵a∥b,∴PQ∥b,∴∠BPQ=∠2=45°,∵∠APB=60°,∴∠APQ=15°,∴∠3=180°﹣∠APQ=165°,∴∠1=165°,故选:D.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等,同旁内角互补.6.(3分)(2017•东营)如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是()A.B.C.D.【分析】根据正方形表面展开图的结构即可求出判断出构成这个正方体的表面展开图的概率.【解答】解:设没有涂上阴影的分别为:A、B、C、D、E、F、G,如图所示,从其余的小正方形中任取一个涂上阴影共有7种情况,而能够构成正方体的表面展开图的有以下情况,D、E、F、G,∴能构成这个正方体的表面展开图的概率是,故选(A)【点评】本题考查概率,解题的关键是熟识正方体表面展开图的结构,本题属于中等题型.7.(3分)(2017•东营)如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG 交BC于点E.若BF=8,AB=5,则AE的长为()A.5 B.6 C.8 D.12【分析】由基本作图得到AB=AF,AG平分∠BAD,故可得出四边形ABEF是菱形,由菱形的性质可知AE⊥BF,故可得出OB的长,再由勾股定理即可得出OA的长,进而得出结论.【解答】解:连结EF,AE与BF交于点O,∵四边形ABCD是平行四边形,AB=AF,∴四边形ABEF是菱形,∴AE⊥BF,OB=BF=4,OA=AE.∵AB=5,在Rt△AOB中,AO==3,∴AE=2AO=6.故选B.【点评】本题考查的是作图﹣基本作图,熟知平行四边形的性质、勾股定理、平行线的性质是解决问题的关键.8.(3分)(2017•东营)若圆锥的侧面积等于其底面积的3倍,则该圆锥侧面展开图所对应扇形圆心角的度数为()A.60°B.90°C.120° D.180°【分析】根据圆锥侧面积恰好等于底面积的3倍可得圆锥的母线长=3×底面半径,根据圆锥的侧面展开图的弧长等于圆锥的底面周长,可得圆锥侧面展开图所对应的扇形圆心角度数.【解答】解:设母线长为R,底面半径为r,∴底面周长=2πr,底面面积=πr2,侧面面积=lr=πrR,∵侧面积是底面积的3倍,∴3πr2=πrR,∴R=3r,设圆心角为n,有=πR,∴n=120°.故选C.【点评】本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长,以及利用扇形面积公式求出是解题的关键.9.(3分)(2017•东营)如图,把△ABC沿着BC的方向平移到△DEF的位置,它们重叠部分的面积是△ABC面积的一半,若BC=,则△ABC移动的距离是()A.B.C.D.﹣【分析】移动的距离可以视为BE或CF的长度,根据题意可知△ABC与阴影部分为相似三角形,且面积比为2:1,所以EC:BC=1:,推出EC的长,利用线段的差求BE的长.【解答】解:∵△ABC沿BC边平移到△DEF的位置,∴AB∥DE,∴△ABC∽△HEC,∴=()2=,∴EC:BC=1:,∵BC=,∴EC=,∴BE=BC﹣EC=﹣.故选:D.【点评】本题主要考查相似三角形的判定和性质、平移的性质,关键在于证△ABC 与阴影部分为相似三角形.10.(3分)(2017•东营)如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PH•PC其中正确的是()A.①②③④B.②③C.①②④D.①③④【分析】由正方形的性质和相似三角形的判定与性质,即可得出结论.【解答】解:∵△BPC是等边三角形,∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,在正方形ABCD中,∵AB=BC=CD,∠A=∠ADC=∠BCD=90°∴∠ABE=∠DCF=30°,∴BE=2AE;故①正确;∵PC=CD,∠PCD=30°,∴∠PDC=75°,∴∠FDP=15°,∵∠DBA=45°,∴∠PBD=15°,∴∠FDP=∠PBD,∵∠DFP=∠BPC=60°,∴△DFP∽△BPH;故②正确;∵∠FDP=∠PBD=15°,∠ADB=45°,∴∠PDB=30°,而∠DFP=60°,∴∠PFD≠∠PDB,∴△PFD与△PDB不会相似;故③错误;∵∠PDH=∠PCD=30°,∠DPH=∠DPC,∴△DPH∽△CPD,∴,∴DP2=PH•PC,故④正确;故选C.【点评】本题考查的正方形的性质,等边三角形的性质以及相似三角形的判定和性质,解答此题的关键是熟练掌握性质和定理.二、填空题(本大题共8小题,共28分)11.(3分)(2017•东营)《“一带一路”贸易合作大数据报告(2017)》以“一带一路”贸易合作现状分析和趋势预测为核心,采集调用了8000多个种类,总计1.2亿条全球进出口贸易基础数据…,1.2亿用科学记数法表示为 1.2×108.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:1.2亿用科学记数法表示为1.2×108.故答案为:1.2×108.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)(2017•东营)分解因式:﹣2x2y+16xy﹣32y=﹣2y(x﹣4)2.【分析】根据提取公因式以及完全平方公式即可求出答案.【解答】解:原式=﹣2y(x2﹣8x+16)=﹣2y(x﹣4)2故答案为:﹣2y(x﹣4)2【点评】本题考查因式分解,解题的关键是熟练运用因式分解法,本题属于基础题型.13.(3分)(2017•东营)为选拔一名选手参加全国中学生游泳锦标赛自由泳比赛,我市四名中学生参加了男子100米自由泳训练,他们成绩的平均数及其方差s2如下表所示:甲乙丙丁1′05″331′04″261′04″261′07″29S2 1.1 1.1 1.3 1.6如果选拔一名学生去参赛,应派乙去.【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加.【解答】解:∵>>=,∴从乙和丙中选择一人参加比赛,∵S<S,∴选择乙参赛,故答案为:乙.【点评】题考查了平均数和方差,一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.14.(3分)(2017•东营)如图,AB是半圆直径,半径OC⊥AB于点O,D为半圆上一点,AC∥OD,AD与OC交于点E,连结CD、BD,给出以下三个结论:①OD平分∠COB;②BD=CD;③CD2=CE•CO,其中正确结论的序号是①②③.【分析】①由OC⊥AB就可以得出∠BOC=∠AOC=90°,再由OC=OA就可以得出∠OCA=∠OAC=45°,由AC∥OD就可以得出∠BOD=45°,进而得出∠DOC=45°,从而得出结论;②由∠BOD=∠COD即可得出BD=CD;③由∠AOC=90°就可以得出∠CDA=45°,得出∠DOC=∠CDA,就可以得出△DOC ∽△EDC.进而得出,得出CD2=CE•CO.【解答】解:①∵OC⊥AB,∴∠BOC=∠AOC=90°.∵OC=OA,∴∠OCA=∠OAC=45°.∵AC∥OD,∴∠BOD=∠CAO=45°,∴∠DOC=45°,∴∠BOD=∠DOC,∴OD平分∠COB.故①正确;②∵∠BOD=∠DOC,∴BD=CD.故②正确;③∵∠AOC=90°,∴∠CDA=45°,∴∠DOC=∠CDA.∵∠OCD=∠OCD,∴△DOC∽△EDC,∴,∴CD2=CE•CO.故③正确.故答案为:①②③.【点评】本题考查了圆周角定理,平行线的性质,圆的性质,圆心角与弦的关系定理的运用,相似三角形的判定及性质;熟练掌握圆周角定理和相似三角形的判定与性质是解决问题的关键.15.(4分)(2017•东营)如图,已知菱形ABCD的周长为16,面积为8,E为AB的中点,若P为对角线BD上一动点,则EP+AP的最小值为2.【分析】如图作CE′⊥AB于E′,交BD于P′,连接AC、AP′.首先证明E′与E重合,因为A、C关于BD对称,所以当P与P′重合时,PA′+P′E的值最小,由此求出CE 即可解决问题.【解答】解:如图作CE′⊥AB于E′,交BD于P′,连接AC、AP′.∵已知菱形ABCD的周长为16,面积为8,∴AB=BC=4,AB•CE′=8,∴CE′=2,在Rt△BCE′中,BE′==2,∵BE=EA=2,∴E与E′重合,∵四边形ABCD是菱形,∴BD垂直平分AC,∴A、C关于BD对称,∴当P与P′重合时,PA′+P′E的值最小,最小值为CE的长=2,故答案为2.【点评】本题考查轴对称﹣最短问题、菱形的性质等知识,解题的关键是学会添加常用辅助线,本题的突破点是证明CE是△ABC的高,学会利用对称解决最短问题.16.(4分)(2017•东营)我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B 处,则问题中葛藤的最短长度是25尺.【分析】这种立体图形求最短路径问题,可以展开成为平面内的问题解决,展开后可转化下图,所以是个直角三角形求斜边的问题,根据勾股定理可求出.【解答】解:如图,一条直角边(即枯木的高)长20尺,另一条直角边长5×3=15(尺),因此葛藤长为=25(尺).故答案为:25.【点评】本题考查了平面展开最短路径问题,关键是把立体图形展成平面图形,本题是展成平面图形后为直角三角形按照勾股定理可求出解.17.(4分)(2017•东营)一数学兴趣小组来到某公园,准备测量一座塔的高度.如图,在A处测得塔顶的仰角为α,在B处测得塔顶的仰角为β,又测量出A、B 两点的距离为s米,则塔高为米.【分析】在Rt△BCD中有BD=,在Rt△ACD中,根据tan∠A==可得tanα=,解之求出CD即可得.【解答】解:在Rt△BCD中,∵tan∠CBD=,∴BD=,在Rt△ACD中,∵tan∠A==,∴tanα=,解得:CD=,故答案为:.【点评】本题主要考查解直角三角形的应用﹣仰角俯角问题,解题的关键是根据两直角三角形的公共边利用三角函数建立方程求解.18.(4分)(2017•东营)如图,在平面直角坐标系中,直线l:y=x﹣与x 轴交于点B1,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x 轴,交直线l于点B3,以A2B3为边长作等边三角形A3A2B3,…,则点A2017的横坐标是.【分析】先根据直线l:y=x﹣与x轴交于点B1,可得B1(1,0),OB1=1,∠OB1D=30°,再,过A1作A1A⊥OB1于A,过A2作A2B⊥A1B2于B,过A3作A3C ⊥A2B3于C,根据等边三角形的性质以及含30°角的直角三角形的性质,分别求得A1的横坐标为,A2的横坐标为,A3的横坐标为,进而得到A n的横坐标为,据此可得点A2017的横坐标.【解答】解:由直线l:y=x﹣与x轴交于点B1,可得B1(1,0),D(﹣,0),∴OB1=1,∠OB1D=30°,如图所示,过A1作A1A⊥OB1于A,则OA=OB1=,即A1的横坐标为=,由题可得∠A1B2B1=∠OB1D=30°,∠B2A1B1=∠A1B1O=60°,∴∠A1B1B2=90°,∴A1B2=2A1B1=2,过A2作A2B⊥A1B2于B,则A1B=A1B2=1,即A2的横坐标为+1==,过A3作A3C⊥A2B3于C,同理可得,A2B3=2A2B2=4,A2C=A2B3=2,即A3的横坐标为+1+2==,同理可得,A4的横坐标为+1+2+4==,由此可得,A n的横坐标为,∴点A2017的横坐标是,故答案为:.【点评】本题主要考查了一次函数图象上点的坐标特征以及等边三角形的性质的运用,解决问题的关键是依据等边三角形的性质找出规律,求得A n的横坐标为.三、解答题(本大题共7小题,共62分)19.(8分)(2017•东营)(1)计算:6cos45°+()﹣1+(﹣1.73)0+|5﹣3|+42017×(﹣0.25)2017(2)先化简,再求值:(﹣a+1)÷+﹣a,并从﹣1,0,2中选一个合适的数作为a的值代入求值.【分析】(1)根据特殊角的三角函数值、负整数指数幂、零指数幂、绝对值、幂的乘方可以解答本题;(2)根据分式的加减法和除法可以化简题目中的式子,然后在﹣1,0,2中选一个使得原分式有意义的值代入即可解答本题.【解答】解:(1)6cos45°+()﹣1+(﹣1.73)0+|5﹣3|+42017×(﹣0.25)2017=6×+3+1+5﹣3+42017×(﹣)2017==8;(2)(﹣a+1)÷+﹣a=====﹣a﹣1,当a=0时,原式=﹣0﹣1=﹣1.【点评】本题考查分式的化简求值、实数的运算、殊角的三角函数值、负整数指数幂、零指数幂、绝对值、幂的乘方,解答本题的关键是明确它们各自的计算方法.20.(7分)(2017•东营)为大力弘扬“奉献、友爱、互助、进步”的志愿服务精神,传播“奉献他人、提升自我”的志愿服务理念,东营市某中学利用周末时间开展了“助老助残、社区服务、生态环保、网络文明”四个志愿服务活动(每人只参加一个活动),九年级某班全班同学都参加了志愿服务,班长为了解志愿服务的情况,收集整理数据后,绘制以下不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)求该班的人数;(2)请把折线统计图补充完整;(3)求扇形统计图中,网络文明部分对应的圆心角的度数;(4)小明和小丽参加了志愿服务活动,请用树状图或列表法求出他们参加同一服务活动的概率.【分析】(1)根据参加生态环保的人数以及百分比,即可解决问题;(2)社区服务的人数,画出折线图即可;(3)根据圆心角=360°×百分比,计算即可;(4)用列表法即可解决问题;【解答】解:(1)该班全部人数:12÷25%=48人.(2)48×50%=24,折线统计如图所示:(3)×360°=45°.(4)分别用“1,2,3,4”代表“助老助残、社区服务、生态环保、网络文明”四个服务活动,列表如下:则所有可能有16种,其中他们参加同一活动有4种,所以他们参加同一服务活动的概率P==.【点评】本题考查折线图、扇形统计图、列表法等知识,解题的关键是记住基本概念,属于中考常考题型.21.(8分)(2017•东营)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC 于点D,过点D作⊙O的切线DE,交AC于点E,AC的反向延长线交⊙O于点F.(1)求证:DE⊥AC;(2)若DE+EA=8,⊙O的半径为10,求AF的长度.【分析】(1)欲证明DE⊥AC,只需推知OD∥AC即可;(2)如图,过点O作OH⊥AF于点H,构建矩形ODEH,设AH=x.则由矩形的性质推知:AE=10﹣x,OH=DE=8﹣(10﹣x)=x﹣2.在Rt△AOH中,由勾股定理知:x2+(x﹣2)2=102,通过解方程得到AH的长度,结合OH⊥AF,得到AF=2AH=2×8=16.【解答】(1)证明:∵OB=OD,∴∠ABC=∠ODB,∵AB=AC,∴∠ABC=∠ACB,∴∠ODB=∠ACB,∴OD∥AC.∵DE是⊙O的切线,OD是半径,∴DE⊥OD,∴DE⊥AC;(2)如图,过点O作OH⊥AF于点H,则∠ODE=∠DEH=∠OHE=90°,∴四边形ODEH是矩形,∴OD=EH,OH=DE.设AH=x.∵DE+AE=8,OD=10,∴AE=10﹣x,OH=DE=8﹣(10﹣x)=x﹣2.在Rt△AOH中,由勾股定理知:AH2+OH2=OA2,即x2+(x﹣2)2=102,解得x1=8,x2=﹣6(不合题意,舍去).∴AH=8.∵OH⊥AF,∴AH=FH=AF,∴AF=2AH=2×8=16.【点评】本题考查了切线的性质,勾股定理,矩形的判定与性质.解题时,利用了方程思想,属于中档题.22.(8分)(2017•东营)如图,一次函数y=kx+b的图象与坐标轴分别交于A、B 两点,与反比例函数y=的图象在第一象限的交点为C,CD⊥x轴,垂足为D,若OB=3,OD=6,△AOB的面积为3.(1)求一次函数与反比例函数的解析式;(2)直接写出当x>0时,kx+b﹣<0的解集.【分析】(1)根据三角形面积求出OA,得出A、B的坐标,代入一次函数的解析式即可求出解析式,把x=6代入求出C的坐标,把C的坐标代入反比例函数的解析式求出即可;(2)根据图象即可得出答案.=3,OB=3,【解答】解:(1)∵S△AOB∴OA=2,∴B(3,0),A(0,﹣2),代入y=kx+b得:,解得:k=,b=﹣2,∴一次函数y=x﹣2,∵OD=6,∴D(6,0),CD⊥x轴,当x=6时,y=×6﹣2=2∴C(6,2),∴n=6×2=12,∴反比例函数的解析式是y=;(2)当x>0时,kx+b﹣<0的解集是0<x<6.【点评】本题考查了用待定系数法求出函数的解析式,一次函数和和反比例函数的交点问题,函数的图象的应用,主要考查学生的观察图形的能力和计算能力.23.(9分)(2017•东营)为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对A、B两类学校进行改扩建,根据预算,改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元.(1)改扩建1所A类学校和1所B类学校所需资金分别是多少万元?(2)该县计划改扩建A、B两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元,其中地方财政投入到A、B两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案?【分析】(1)可根据“改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元”,列出方程组求出答案;(2)要根据“国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元”来列出不等式组,判断出不同的改造方案.【解答】解:(1)设改扩建一所A类和一所B类学校所需资金分别为x万元和y 万元由题意得,解得,答:改扩建一所A类学校和一所B类学校所需资金分别为1200万元和1800万元.(2)设今年改扩建A类学校a所,则改扩建B类学校(10﹣a)所,由题意得:,解得,∴3≤a≤5,∵x取整数,∴x=3,4,5.即共有3种方案:方案一:改扩建A类学校3所,B类学校7所;方案二:改扩建A类学校4所,B类学校6所;方案三:改扩建A类学校5所,B类学校5所.【点评】本题考查了一元一次不等式组的应用,二元一次方程组的应用.解决问题的关键是读懂题意,找到关键描述语,找到所求的量的数量关系.24.(10分)(2017•东营)如图,在等腰三角形ABC中,∠BAC=120°,AB=AC=2,点D是BC边上的一个动点(不与B、C重合),在AC上取一点E,使∠ADE=30°.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式并写出自变量x的取值范围;(3)当△ADE是等腰三角形时,求AE的长.【分析】(1)根据两角相等证明:△ABD∽△DCE;(2)如图1,作高AF,根据直角三角形30°的性质求AF的长,根据勾股定理求BF的长,则可得BC的长,根据(1)中的相似列比例式可得函数关系式,并确定取值;(3)分三种情况进行讨论:①当AD=DE时,如图2,由(1)可知:此时△ABD∽△DCE,则AB=CD,即2=2﹣x;②当AE=ED时,如图3,则ED=EC,即y=(2﹣y);③当AD=AE时,∠AED=∠EDA=30°,∠EAD=120°,此时点D与点B重合,不符合题意,此情况不存在.【解答】证明:(1)∵△ABC是等腰三角形,且∠BAC=120°,∴∠ABD=∠ACB=30°,∴∠ABD=∠ADE=30°,∵∠ADC=∠ADE+∠EDC=∠ABD+∠DAB,∴∠EDC=∠DAB,∴△ABD∽△DCE;(2)如图1,∵AB=AC=2,∠BAC=120°,过A作AF⊥BC于F,∴∠AFB=90°,∵AB=2,∠ABF=30°,∴AF=AB=1,∴BF=,∴BC=2BF=2,则DC=2﹣x,EC=2﹣y,∵△ABD∽△DCE,∴,∴,化简得:y=x+2(0<x<2);(3)当AD=DE时,如图2,由(1)可知:此时△ABD∽△DCE,则AB=CD,即2=2﹣x,x=2﹣2,代入y=x+2,解得:y=4﹣2,即AE=4﹣2,当AE=ED时,如图3,∠EAD=∠EDA=30°,∠AED=120°,∴∠DEC=60°,∠EDC=90°,则ED=EC,即y=(2﹣y),解得:y=,即AE=,当AD=AE时,∠AED=∠EDA=30°,∠EAD=120°,此时点D与点B重合,不符合题意,此情况不存在,∴当△ADE是等腰三角形时,AE=4﹣2或.【点评】本题是相似形的综合题,考查了三角形相似的性质和判定、等腰三角形的性质、直角三角形30°角的性质,本题的几个问题全部围绕△ABD∽△DCE,解决问题;难度适中.25.(12分)(2017•东营)如图,直线y=﹣x+分别与x轴、y轴交于B、C 两点,点A在x轴上,∠ACB=90°,抛物线y=ax2+bx+经过A,B两点.(1)求A、B两点的坐标;(2)求抛物线的解析式;(3)点M是直线BC上方抛物线上的一点,过点M作MH⊥BC于点H,作MD ∥y轴交BC于点D,求△DMH周长的最大值.【分析】(1)由直线解析式可求得B、C坐标,在Rt△BOC中由三角函数定义可。

山东省东营市2017年中考数学真题试题

山东省东营市2017年中考数学真题试题

a≥3 , „„„„„„„„„„„„„„„„„„„„„„„„„„„„„7 分 a≤5
∴3≤a≤5,即 a=3,4,5. 答:有 3 种改扩建方案, 方案一:A 类学校有 3 所,B 类学校有 7 所; 方案二:A 类学校有 4 所,B 类学校有 6 所; 方案三:A 类学校有 5 所,B 类学校有 5 所.„„„„„„„„„„„„„„„„9 分 24.(本题满分 10 分) (1)证明:∵在等腰△ABC 中,∠BAC=120° ∴∠ABD=∠ACB= 30° ∴∠ABD=∠ADE „„„„„„„„„„„2 分 ∵∠ADC=∠ADE+∠EDC=∠ABD+∠DAB
解得
答:改扩建 1 所 A 类学校需资金 1200 万元,改扩建 1 所 B 类学校需资金 1800 万元. „„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„4 分 (2)设 A 类学校有 a 所,则 B 类学校有(10—a)所. 则 分 解得
( (1800 500) (10 a)≤11800 1200 300)a ,„„„„„„„„„„„„„6 300a 500(10 a)≥4000
18.
22017-1 . 2
三、解答题:本大题共 7 小题,共 62 分.解答要写出必要的文字说明、证明过程或演算步 骤. 19.(本题满分 8 分) 解: (1)原式= 6?
2 2
3 + 1 + 5 - 3 2 - 1 = 8 „„„„3 分
2原式
3 a2 1 a 1 4 a 2 a 1 a 1 a 2 a 2
第Ⅰ卷(选择题
共 30 分)
一、选择题:本大题共 10 小题,在每小题给出的四个选项中,只有一项是正确的,请把正 确的选项选出来.每小题选对得 3 分,选错、不选或选出的答案超过一个均记零分. 1.下列四个数中,最大的数是( A.3 B. 3 )

2017东营中考数学试题及答案

2017东营中考数学试题及答案

2017东营中考数学试题及答案本篇文章将呈现2017年东营中考数学试题及其答案,考察内容包括数与代数、函数与方程、几何与测度、统计与概率等。

以下将按照题目类型进行分类,以清晰展示试题及答案。

一、数与代数1.若自然数n满足3n+5是奇数,则n的取值范围是多少?解析:奇数的特点是无法被2整除,因此我们将3n+5看作是x+5的形式,其中x=3n。

我们知道,x是偶数当且仅当x+5是奇数,所以当x是偶数时,3n+5是奇数。

要使3n+5是奇数,则x必须是奇数。

假设x=2k+1,其中k为整数。

代入3n=2k+1,则n=(2k+1)/3,由于n是自然数,所以k必须是3的倍数,于是k=3m,其中m为整数。

综合以上,得出结论n=(2×3m+1)/3=2m+1。

答案:n的取值范围是全体正整数。

2.已知集合A={x | -4≤x≤5},集合B={x | x≥-3},则A与B的交集是多少?解析:根据集合的定义,交集是指同时属于两个集合的元素。

由 A 与 B 的定义可知,-4≤x≤5 且x≥-3,所以A∩B = B = {x | x≥-3}。

答案:A与B的交集是{x | x≥-3}。

二、函数与方程1.求不等式 |2x-1|+3<7 的解集。

解析:首先,我们将不等式转化为等价的形式:|2x-1|<4。

根据绝对值的性质,当 |a|<b 时,a 的取值范围为 -b<a<b。

代入本题 |2x-1|<4 的情况,得到 -4<2x-1<4,再解得 -3/2<x<5/2。

答案:不等式 |2x-1|+3<7 的解集为 -3/2<x<5/2。

2.已知函数 f(x) = (x-3)^2,求 f(x) = 1 的解。

解析:将给定的函数 f(x) = (x-3)^2 与 1 进行比较,得到 (x-3)^2 = 1。

由平方根的性质可知,(x-3)^2 = 1 的解为 x-3 = ±1,解得 x = 2 或 x = 4。

2017年山东省东营市中考数学试卷-答案

2017年山东省东营市中考数学试卷-答案

山东省东营市2017年初中学业水平考试数学答案解析第Ⅰ卷,a b ∥,∴4560APB ∠=,15∴∠,-∠=,1165APQ180165∴∠=,故选:7,四边形AB=,,5∴==.故选:B.AE AO26,侧120.故选:底面半径,根据圆锥的侧面展开图【解析】ABC △沿12BC =:,3BC =【提示】移动的距离可以视为12BC =:,推出【解析】BPC △是等边三角形,60,在正方形AB BC =90,30∴∠,2BE AE ∴=PC CD =,30PCD ∠,75∴∠,15∴∠,45DBA ∠=,15∴∠,FDP PBD ∴∠=∠,60DFP ∠=∠,DFP ∴△;故②正确;15FDP ∠=,45ADB ∠,30PDB ∴∠,而60∠,PFD ∴∠PDB △不会相似;故③错误;30PDH PCD ∠=∠,DPH DPC ∠,DPH ∴△2DP PH PC ∴=,故④正确;故选:C 【提示】由正方形的性质和相似三角形的判定与性质,即可得出结论.【考点】正方形的性质,等边三角形的性质,直角三角形的性质及相似三角形的性质与判定【解析】x x >丁甲从乙和丙中选择一人参加比赛,2S S <乙丙【提示】首先比较平均数,平均数相同时选择方差较小的运动员参加. 【解析】①OC AB ⊥90.OC OA =45.AC OD ∥45,45∴∠,BOD ∴∠=.故①正确;②BOD DOC ∠=∠,BD ∴.故②正确;③90AOC ∠=,45∴∠,CDA ∴∠∠.OCD ∠=DOC EDC ∽△DC OC EC DC=2CD CE CO ∴.故③正确;故答案为:①②③.【提示】①由90,再由OC OA =45,45BOD =,进而得出45DOC =,从而得出结论;CD =;90就可以得出45,得出,得出CE CO . 【解析】如图作CE AB '⊥于E ',交BD 于P ',连接AC '、AP .已知菱形83AB CE '=,BE EA =重合,四边形P 与P '重合时,【考点】圆柱的侧面展开图是矩形,勾股定理及曲面的最小值tan tan sαββα-BCD 中,tan CBD ∠中,tan A ∠=,解得:tan tan tan s CD αββα=-,故答案为:tan tan s αββα-.t a n CD β,在R t △,根据t a n A ∠30,30,60∠,90∴∠,∴1AB =的横坐标为1-,过30,再过,根据等边三角形的性质以及含30角19.【答案】(1)8 16cos452⎛⎫+ ⎪⎝⎭21)1(2)a a ++-42a a +--20.【答案】(1)该班全部人数:1225%48÷=人; (2)4850%24⨯=,折线统计如图所示:636045=; (4)分别用“1,2,3,4”代表“助老助残、社区服务、生态环保、网络文明”四个服务活动,列表如下:41360⨯百分比,计算即可;)用列表法即可解决问题.)OB OD =,AB AC =.DE 是O 的切线,)如图,过点O 作OH AF ⊥90ODE DEH =∠,∴四边形,OH DE =.DE AE +10OD =(10)2x x --=-.在.OH AF ⊥22816AF AH ∴==⨯=.)3AOB S =△2=-,∴一次函数,6OD =,反比例函数的解析式是,x 取整数,)ABC △是等腰三角形,120,30∴∠,30∴∠,ADC ∠=EDC =∠DCE ∽△,AB AC =120,过A 90,2AB =,30,112AF ∴==,BF ∴2BF =y -,ABD △∽△,22x ∴=30,120,60∴∠,90EDC ∠,则E 时,30AED EDA ∠=,120EAD ∠=,此时点42-330的性质求30,120EAD ∠,此时点)直线60,90ACB ∠=,30∴∠,3tan303AO CO ∴=)抛物线)MD y ∥轴,60,则30∠,DH ∴DMH △的周长3DM DM ,∴有最大值,点60,则在30,利用三角函数的定义可求得两点坐标,利用待定系数法可求得抛物线解析式;60,在Rt点的坐标,则可表示出DM11 / 11。

【2017中考数学真题】山东东营市试卷及解析【2017数学中考真题系列】

【2017中考数学真题】山东东营市试卷及解析【2017数学中考真题系列】

2017年山东省东营市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列四个数中,最大的数是()A.3 B.C.0 D.π2.(3分)下列运算正确的是()A.(x﹣y)2=x2﹣y2B.|﹣2|=2﹣ C.﹣= D.﹣(﹣a+1)=a+1 3.(3分)若|x2﹣4x+4|与互为相反数,则x+y的值为()A.3 B.4 C.6 D.94.(3分)小明从家到学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,小明从家到学校行驶路程s(m)与时间t(min)的大致图象是()A.B.C.D.5.(3分)已知a∥b,一块含30°角的直角三角板如图所示放置,∠2=45°,则∠1等于()A.100°B.135°C.155° D.165°6.(3分)如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是()A.B.C.D.7.(3分)如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=8,AB=5,则AE的长为()A.5 B.6 C.8 D.128.(3分)若圆锥的侧面积等于其底面积的3倍,则该圆锥侧面展开图所对应扇形圆心角的度数为()A.60°B.90°C.120° D.180°9.(3分)如图,把△ABC沿着BC的方向平移到△DEF的位置,它们重叠部分的面积是△ABC面积的一半,若BC=,则△ABC移动的距离是()A.B.C.D.﹣10.(3分)如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PH•PC其中正确的是()A.①②③④B.②③C.①②④D.①③④二、填空题(本大题共8小题,共28分)11.(3分)《“一带一路”贸易合作大数据报告(2017)》以“一带一路”贸易合作现状分析和趋势预测为核心,采集调用了8000多个种类,总计1.2亿条全球进出口贸易基础数据…,1.2亿用科学记数法表示为.12.(3分)分解因式:﹣2x2y+16xy﹣32y=.13.(3分)为选拔一名选手参加全国中学生游泳锦标赛自由泳比赛,我市四名中学生参加了男子100米自由泳训练,他们成绩的平均数及其方差s2如下表所示:如果选拔一名学生去参赛,应派去.14.(3分)如图,AB是半圆直径,半径OC⊥AB于点O,D为半圆上一点,AC ∥OD,AD与OC交于点E,连结CD、BD,给出以下三个结论:①OD平分∠COB;②BD=CD;③CD2=CE•CO,其中正确结论的序号是.15.(4分)如图,已知菱形ABCD的周长为16,面积为8,E为AB的中点,若P为对角线BD上一动点,则EP+AP的最小值为.16.(4分)我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是尺.17.(4分)一数学兴趣小组来到某公园,准备测量一座塔的高度.如图,在A 处测得塔顶的仰角为α,在B处测得塔顶的仰角为β,又测量出A、B两点的距离为s米,则塔高为米.18.(4分)如图,在平面直角坐标系中,直线l:y=x﹣与x轴交于点B1,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x轴,交直线l 于点B3,以A2B3为边长作等边三角形A3A2B3,…,则点A2017的横坐标是.三、解答题(本大题共7小题,共62分)19.(8分)(1)计算:6cos45°+()﹣1+(﹣1.73)0+|5﹣3|+42017×(﹣0.25)2017(2)先化简,再求值:(﹣a+1)÷+﹣a,并从﹣1,0,2中选一个合适的数作为a的值代入求值.20.(7分)为大力弘扬“奉献、友爱、互助、进步”的志愿服务精神,传播“奉献他人、提升自我”的志愿服务理念,东营市某中学利用周末时间开展了“助老助残、社区服务、生态环保、网络文明”四个志愿服务活动(每人只参加一个活动),九年级某班全班同学都参加了志愿服务,班长为了解志愿服务的情况,收集整理数据后,绘制以下不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)求该班的人数;(2)请把折线统计图补充完整;(3)求扇形统计图中,网络文明部分对应的圆心角的度数;(4)小明和小丽参加了志愿服务活动,请用树状图或列表法求出他们参加同一服务活动的概率.21.(8分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作⊙O的切线DE,交AC于点E,AC的反向延长线交⊙O于点F.(1)求证:DE⊥AC;(2)若DE+EA=8,⊙O的半径为10,求AF的长度.22.(8分)如图,一次函数y=kx+b的图象与坐标轴分别交于A、B两点,与反比例函数y=的图象在第一象限的交点为C,CD⊥x轴,垂足为D,若OB=3,OD=6,△AOB的面积为3.(1)求一次函数与反比例函数的解析式;(2)直接写出当x>0时,kx+b﹣<0的解集.23.(9分)为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对A、B两类学校进行改扩建,根据预算,改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元.(1)改扩建1所A类学校和1所B类学校所需资金分别是多少万元?(2)该县计划改扩建A、B两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元,其中地方财政投入到A、B两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案?24.(10分)如图,在等腰三角形ABC中,∠BAC=120°,AB=AC=2,点D是BC 边上的一个动点(不与B、C重合),在AC上取一点E,使∠ADE=30°.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式并写出自变量x的取值范围;(3)当△ADE是等腰三角形时,求AE的长.25.(12分)如图,直线y=﹣x+分别与x轴、y轴交于B、C两点,点A在x轴上,∠ACB=90°,抛物线y=ax2+bx+经过A,B两点.(1)求A、B两点的坐标;(2)求抛物线的解析式;(3)点M是直线BC上方抛物线上的一点,过点M作MH⊥BC于点H,作MD ∥y轴交BC于点D,求△DMH周长的最大值.2017年山东省东营市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列四个数中,最大的数是()A.3 B.C.0 D.π【解答】解:0<<3<π,故选:D.2.(3分)下列运算正确的是()A.(x﹣y)2=x2﹣y2B.|﹣2|=2﹣ C.﹣= D.﹣(﹣a+1)=a+1【解答】解:A、原式=x2﹣2xy+y2,故本选项错误;B、原式=2﹣,故本选项正确;C、原式=2﹣,故本选项错误;D、原式=a﹣1,故本选项错误;故选:B.3.(3分)若|x2﹣4x+4|与互为相反数,则x+y的值为()A.3 B.4 C.6 D.9【解答】解:根据题意得|x2﹣4x+4|+=0,所以|x2﹣4x+4|=0,=0,即(x﹣2)2=0,2x﹣y﹣3=0,所以x=2,y=1,所以x+y=3.故选:A.4.(3分)小明从家到学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,小明从家到学校行驶路程s(m)与时间t(min)的大致图象是()A.B.C.D.【解答】解:小明从家到学校,先匀速步行到车站,因此S随时间t的增长而增长,等了几分钟后坐上了公交车,因此时间在增加,S不增长,坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,因此S又随时间t的增长而增长,故选:C.5.(3分)已知a∥b,一块含30°角的直角三角板如图所示放置,∠2=45°,则∠1等于()A.100°B.135°C.155° D.165°【解答】解:如图,过P作PQ∥a,∵a∥b,∴PQ∥b,∴∠BPQ=∠2=45°,∵∠APB=60°,∴∠APQ=15°,∴∠3=180°﹣∠APQ=165°,∴∠1=165°,故选:D.6.(3分)如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是()A.B.C.D.【解答】解:设没有涂上阴影的分别为:A、B、C、D、E、F、G,如图所示,从其余的小正方形中任取一个涂上阴影共有7种情况,而能够构成正方体的表面展开图的有以下情况,D、E、F、G,∴能构成这个正方体的表面展开图的概率是,故选:A.7.(3分)如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=8,AB=5,则AE的长为()A.5 B.6 C.8 D.12【解答】解:连结EF,AE与BF交于点O,∵四边形ABCD是平行四边形,AB=AF,∴四边形ABEF是菱形,∴AE⊥BF,OB=BF=4,OA=AE.∵AB=5,在Rt△AOB中,AO==3,∴AE=2AO=6.故选:B.8.(3分)若圆锥的侧面积等于其底面积的3倍,则该圆锥侧面展开图所对应扇形圆心角的度数为()A.60°B.90°C.120° D.180°【解答】解:设母线长为R,底面半径为r,∴底面周长=2πr,底面面积=πr2,侧面面积=lr=πrR,∵侧面积是底面积的3倍,∴3πr2=πrR,∴R=3r,设圆心角为n,有=πR,∴n=120°.故选:C.9.(3分)如图,把△ABC沿着BC的方向平移到△DEF的位置,它们重叠部分的面积是△ABC面积的一半,若BC=,则△ABC移动的距离是()A.B.C.D.﹣【解答】解:∵△ABC沿BC边平移到△DEF的位置,∴AB∥DE,∴△ABC∽△HEC,∴=()2=,∴EC:BC=1:,∵BC=,∴EC=,∴BE=BC﹣EC=﹣.故选:D.10.(3分)如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PH•PC其中正确的是()A.①②③④B.②③C.①②④D.①③④【解答】解:∵△BPC是等边三角形,∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,在正方形ABCD中,∵AB=BC=CD,∠A=∠ADC=∠BCD=90°∴∠ABE=∠DCF=30°,∴BE=2AE;故①正确;∵PC=CD,∠PCD=30°,∴∠PDC=75°,∴∠FDP=15°,∵∠DBA=45°,∴∠PBD=15°,∴∠FDP=∠PBD,∵∠DFP=∠BPC=60°,∴△DFP∽△BPH;故②正确;∵∠FDP=∠PBD=15°,∠ADB=45°,∴∠PDB=30°,而∠DFP=60°,∴∠PFD≠∠PDB,∴△PFD与△PDB不会相似;故③错误;∵∠PDH=∠PCD=30°,∠DPH=∠DPC,∴△DPH∽△CPD,∴,∴DP2=PH•PC,故④正确;故选:C.二、填空题(本大题共8小题,共28分)11.(3分)《“一带一路”贸易合作大数据报告(2017)》以“一带一路”贸易合作现状分析和趋势预测为核心,采集调用了8000多个种类,总计1.2亿条全球进出口贸易基础数据…,1.2亿用科学记数法表示为 1.2×108.【解答】解:1.2亿用科学记数法表示为1.2×108.故答案为:1.2×108.12.(3分)分解因式:﹣2x2y+16xy﹣32y=﹣2y(x﹣4)2.【解答】解:原式=﹣2y(x2﹣8x+16)=﹣2y(x﹣4)2故答案为:﹣2y(x﹣4)213.(3分)为选拔一名选手参加全国中学生游泳锦标赛自由泳比赛,我市四名中学生参加了男子100米自由泳训练,他们成绩的平均数及其方差s2如下表所如果选拔一名学生去参赛,应派乙去.【解答】解:∵>>=,∴从乙和丙中选择一人参加比赛,∵S<S,∴选择乙参赛,故答案为:乙.14.(3分)如图,AB是半圆直径,半径OC⊥AB于点O,D为半圆上一点,AC ∥OD,AD与OC交于点E,连结CD、BD,给出以下三个结论:①OD平分∠COB;②BD=CD;③CD2=CE•CO,其中正确结论的序号是①②③.【解答】解:①∵OC⊥AB,∴∠BOC=∠AOC=90°.∵OC=OA,∴∠OCA=∠OAC=45°.∵AC∥OD,∴∠BOD=∠CAO=45°,∴∠DOC=45°,∴∠BOD=∠DOC,∴OD平分∠COB.故①正确;②∵∠BOD=∠DOC,∴BD=CD.故②正确;③∵∠AOC=90°,∴∠CDA=45°,∴∠DOC=∠CDA.∵∠OCD=∠OCD,∴△DOC∽△EDC,∴,∴CD2=CE•CO.故③正确.故答案为:①②③.15.(4分)如图,已知菱形ABCD的周长为16,面积为8,E为AB的中点,若P为对角线BD上一动点,则EP+AP的最小值为2.【解答】解:如图作CE′⊥AB于E′,交BD于P′,连接AC、AP′.∵已知菱形ABCD的周长为16,面积为8,∴AB=BC=4,AB•CE′=8,∴CE′=2,在Rt△BCE′中,BE′==2,∵BE=EA=2,∴E与E′重合,∵四边形ABCD是菱形,∴BD垂直平分AC,∴A、C关于BD对称,∴当P与P′重合时,P′A+P′E的值最小,最小值为CE的长=2,故答案为2.16.(4分)我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是25尺.【解答】解:如图,一条直角边(即枯木的高)长20尺,另一条直角边长5×3=15(尺),因此葛藤长为=25(尺).故答案为:25.17.(4分)一数学兴趣小组来到某公园,准备测量一座塔的高度.如图,在A 处测得塔顶的仰角为α,在B处测得塔顶的仰角为β,又测量出A、B两点的距离为s米,则塔高为米.【解答】解:在Rt△BCD中,∵tan∠CBD=,∴BD=,在Rt△ACD中,∵tan∠A==,∴tanα=,解得:CD=,故答案为:.18.(4分)如图,在平面直角坐标系中,直线l:y=x﹣与x轴交于点B1,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x轴,交直线l 于点B3,以A2B3为边长作等边三角形A3A2B3,…,则点A2017的横坐标是.【解答】解:由直线l:y=x﹣与x轴交于点B1,可得B1(1,0),D(0,﹣),∴OB1=1,∠OB1D=30°,如图所示,过A1作A1A⊥OB1于A,则OA=OB1=,即A1的横坐标为=,由题可得∠A1B2B1=∠OB1D=30°,∠B2A1B1=∠A1B1O=60°,∴∠A1B1B2=90°,∴A1B2=2A1B1=2,过A2作A2B⊥A1B2于B,则A1B=A1B2=1,即A2的横坐标为+1==,过A3作A3C⊥A2B3于C,同理可得,A2B3=2A2B2=4,A2C=A2B3=2,即A3的横坐标为+1+2==,同理可得,A4的横坐标为+1+2+4==,由此可得,A n的横坐标为,∴点A2017的横坐标是,故答案为:.三、解答题(本大题共7小题,共62分)19.(8分)(1)计算:6cos45°+()﹣1+(﹣1.73)0+|5﹣3|+42017×(﹣0.25)2017(2)先化简,再求值:(﹣a+1)÷+﹣a,并从﹣1,0,2中选一个合适的数作为a的值代入求值.【解答】解:(1)6cos45°+()﹣1+(﹣1.73)0+|5﹣3|+42017×(﹣0.25)2017=6×+3+1+5﹣3+42017×(﹣)2017==8;(2)(﹣a+1)÷+﹣a=====﹣a﹣1,当a=0时,原式=﹣0﹣1=﹣1.20.(7分)为大力弘扬“奉献、友爱、互助、进步”的志愿服务精神,传播“奉献他人、提升自我”的志愿服务理念,东营市某中学利用周末时间开展了“助老助残、社区服务、生态环保、网络文明”四个志愿服务活动(每人只参加一个活动),九年级某班全班同学都参加了志愿服务,班长为了解志愿服务的情况,收集整理数据后,绘制以下不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)求该班的人数;(2)请把折线统计图补充完整;(3)求扇形统计图中,网络文明部分对应的圆心角的度数;(4)小明和小丽参加了志愿服务活动,请用树状图或列表法求出他们参加同一服务活动的概率.【解答】解:(1)该班全部人数:12÷25%=48人.(2)48×50%=24,折线统计如图所示:(3)×360°=45°.(4)分别用“1,2,3,4”代表“助老助残、社区服务、生态环保、网络文明”四个服务活动,列表如下:则所有可能有16种,其中他们参加同一活动有4种,所以他们参加同一服务活动的概率P==.21.(8分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作⊙O的切线DE,交AC于点E,AC的反向延长线交⊙O于点F.(1)求证:DE⊥AC;(2)若DE+EA=8,⊙O的半径为10,求AF的长度.【解答】(1)证明:∵OB=OD,∴∠ABC=∠ODB,∵AB=AC,∴∠ABC=∠ACB,∴∠ODB=∠ACB,∴OD∥AC.∵DE是⊙O的切线,OD是半径,∴DE⊥OD,∴DE⊥AC;(2)如图,过点O作OH⊥AF于点H,则∠ODE=∠DEH=∠OHE=90°,∴四边形ODEH是矩形,∴OD=EH,OH=DE.设AH=x.∵DE+AE=8,OD=10,∴AE=10﹣x,OH=DE=8﹣(10﹣x)=x﹣2.在Rt△AOH中,由勾股定理知:AH2+OH2=OA2,即x2+(x﹣2)2=102,解得x1=8,x2=﹣6(不合题意,舍去).∴AH=8.∵OH⊥AF,∴AH=FH=AF,∴AF=2AH=2×8=16.22.(8分)如图,一次函数y=kx+b的图象与坐标轴分别交于A、B两点,与反比例函数y=的图象在第一象限的交点为C,CD⊥x轴,垂足为D,若OB=3,OD=6,△AOB的面积为3.(1)求一次函数与反比例函数的解析式;(2)直接写出当x>0时,kx+b﹣<0的解集.【解答】解:(1)∵S=3,OB=3,△AOB∴OA=2,∴B(3,0),A(0,﹣2),代入y=kx+b得:,解得:k=,b=﹣2,∴一次函数y=x﹣2,∵OD=6,∴D(6,0),CD⊥x轴,当x=6时,y=×6﹣2=2∴C(6,2),∴n=6×2=12,∴反比例函数的解析式是y=;(2)当x>0时,kx+b﹣<0的解集是0<x<6.23.(9分)为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对A、B两类学校进行改扩建,根据预算,改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元.(1)改扩建1所A类学校和1所B类学校所需资金分别是多少万元?(2)该县计划改扩建A、B两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元,其中地方财政投入到A、B两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案?【解答】解:(1)设改扩建一所A类和一所B类学校所需资金分别为x万元和y 万元由题意得,解得,答:改扩建一所A类学校和一所B类学校所需资金分别为1200万元和1800万元.(2)设今年改扩建A类学校a所,则改扩建B类学校(10﹣a)所,由题意得:,解得,∴3≤a≤5,∵a取整数,∴a=3,4,5.即共有3种方案:方案一:改扩建A类学校3所,B类学校7所;方案二:改扩建A类学校4所,B类学校6所;方案三:改扩建A类学校5所,B类学校5所.24.(10分)如图,在等腰三角形ABC中,∠BAC=120°,AB=AC=2,点D是BC 边上的一个动点(不与B、C重合),在AC上取一点E,使∠ADE=30°.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式并写出自变量x的取值范围;(3)当△ADE是等腰三角形时,求AE的长.【解答】证明:(1)∵△ABC是等腰三角形,且∠BAC=120°,∴∠ABD=∠ACB=30°,∴∠ABD=∠ADE=30°,∵∠ADC=∠ADE+∠EDC=∠ABD+∠DAB,∴∠EDC=∠DAB,∴△ABD∽△DCE;(2)如图1,∵AB=AC=2,∠BAC=120°,过A作AF⊥BC于F,∴∠AFB=90°,∵AB=2,∠ABF=30°,∴AF=AB=1,∴BF=,∴BC=2BF=2,则DC=2﹣x,EC=2﹣y,∵△ABD∽△DCE,∴,∴,化简得:y=x+2(0<x<2);(3)当AD=DE时,如图2,由(1)可知:此时△ABD∽△DCE,则AB=CD,即2=2﹣x,x=2﹣2,代入y=x+2,解得:y=4﹣2,即AE=4﹣2,当AE=ED时,如图3,∠EAD=∠EDA=30°,∠AED=120°,∴∠DEC=60°,∠EDC=90°,则ED=EC,即y=(2﹣y),解得:y=,即AE=,当AD=AE时,∠AED=∠EDA=30°,∠EAD=120°,此时点D与点B重合,不符合题意,此情况不存在,∴当△ADE是等腰三角形时,AE=4﹣2或.25.(12分)如图,直线y=﹣x+分别与x轴、y轴交于B、C两点,点A在x轴上,∠ACB=90°,抛物线y=ax2+bx+经过A,B两点.(1)求A、B两点的坐标;(2)求抛物线的解析式;(3)点M是直线BC上方抛物线上的一点,过点M作MH⊥BC于点H,作MD ∥y轴交BC于点D,求△DMH周长的最大值.【解答】解:(1)∵直线y=﹣x+分别与x轴、y轴交于B、C两点,∴B(3,0),C(0,),∴OB=3,OC=,∴tan∠BCO==,∴∠BCO=60°,∵∠ACB=90°,∴∠ACO=30°,∴=tan30°=,即=,解得AO=1,∴A(﹣1,0);(2)∵抛物线y=ax2+bx+经过A,B两点,∴,解得,∴抛物线解析式为y=﹣x2+x+;(3)∵MD∥y轴,MH⊥BC,∴∠MDH=∠BCO=60°,则∠DMH=30°,∴DH=DM,MH=DM,∴△DMH的周长=DM+DH+MH=DM+DM+DM=DM,∴当DM有最大值时,其周长有最大值,∵点M是直线BC上方抛物线上的一点,∴可设M(t,﹣t2+t+),则D(t,﹣t+),∴DM=﹣t2+t+﹣(﹣t+)=﹣t2+t=﹣(t﹣)2+,∴当t=时,DM有最大值,最大值为,此时DM=×=,即△DMH周长的最大值为.。

2017年山东省东营市中考数学(全解全析)

2017年山东省东营市中考数学(全解全析)

2017年山东省东营市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.下列四个数中,最大的数是()A.3 B.C.0 D.π【解析】在数轴上表示的两个实数,右边的总比左边的大,0<<3<π,故选:D.2.下列运算正确的是()A.(x﹣y)2=x2﹣y2B.|﹣2|=2﹣C.﹣=D.﹣(﹣a+1)=a+1【解析】A、原式=x2﹣2xy+y2,故本选项错误;B、原式=2﹣,故本选项正确;C、原式=2﹣,故本选项错误;D、原式=a﹣1,故本选项错误;故选:B.3.若|x2﹣4x+4|与互为相反数,则x+y的值为()A.3 B.4 C.6 D.9【解析】根据题意得|x2﹣4x+4|+=0,所以|x2﹣4x+4|=0,=0,即(x﹣2)2=0,2x﹣y﹣3=0,所以x=2,y=1,所以x+y=3.故选A.4.小明从家到学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,小明从家到学校行驶路程s(m)与时间t(min)的大致图象是()A.B.C.D.【解析】小明从家到学校,先匀速步行到车站,因此S随时间t的增长而增长,等了几分钟后坐上了公交车,因此时间在增加,S不增长,坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,因此S又随时间t的增长而增长,故选:C.5.已知a∥b,一块含30°角的直角三角板如图所示放置,∠2=45°,则∠1等于()A.100°B.135°C.155°D.165°【解析】如图,过P作PQ∥a,∵a∥b,∴PQ∥b,∴∠BPQ=∠2=45°,∵∠APB=60°,∴∠APQ=15°,∴∠3=180°﹣∠APQ=165°,∴∠1=165°,故选:D.6.如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是()A.B.C.D.【解析】设没有涂上阴影的分别为:A、B、C、D、E、F、G,如图所示,从其余的小正方形中任取一个涂上阴影共有7种情况,而能够构成正方体的表面展开图的有以下情况,D、E、F、G,∴能构成这个正方体的表面展开图的概率是,故选(A)7.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=8,AB=5,则AE的长为()A.5 B.6 C.8 D.12【解析】连结EF,AE与BF交于点O,∵四边形ABCD是平行四边形,AB=AF,∴四边形ABEF是菱形,∴AE⊥BF,OB=BF=4,OA=AE.∵AB=5,在Rt△AOB中,AO==3,∴AE=2AO=6.故选B.8.若圆锥的侧面积等于其底面积的3倍,则该圆锥侧面展开图所对应扇形圆心角的度数为()A.60°B.90°C.120°D.180°【解析】设母线长为R,底面半径为r,∴底面周长=2πr,底面面积=πr2,侧面面积=lr=πrR,∵侧面积是底面积的3倍,∴3πr2=πrR,∴R=3r,设圆心角为n,有=πR,∴n=120°.故选C.9.如图,把△ABC沿着BC的方向平移到△DEF的位置,它们重叠部分的面积是△ABC面积的一半,若BC=,则△ABC移动的距离是()A.B.C.D.﹣【解析】∵△ABC沿BC边平移到△DEF的位置,∴AB∥DE,∴△ABC∽△HEC,∴=()2=,∴EC:BC=1:,∵BC=,∴EC=,∴BE=BC﹣EC=﹣.故选:D.10.如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PHPC其中正确的是()A.①②③④B.②③C.①②④D.①③④【解析】∵△BPC是等边三角形,∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,在正方形ABCD中,∵AB=BC=CD,∠A=∠ADC=∠BCD=90°∴∠ABE=∠DCF=30°,∴BE=2AE;故①正确;∵PC=CD,∠PCD=30°,∴∠PDC=75°,∴∠FDP=15°,∵∠DBA=45°,∴∠PBD=15°,∴∠FDP=∠PBD,∵∠DFP=∠BPC=60°,∴△DFP∽△BPH;故②正确;∵∠FDP=∠PBD=15°,∠ADB=45°,∴∠PDB=30°,而∠DFP=60°,∴∠PFD≠∠PDB,∴△PFD与△PDB不会相似;故③错误;∵∠PDH=∠PCD=30°,∠DPH=∠DPC,∴△DPH∽△CPD,∴,∴DP2=PHPC,故④正确;故选C.二、填空题(本大题共8小题,共28分)11.《“一带一路”贸易合作大数据报告(2017)》以“一带一路”贸易合作现状分析和趋势预测为核心,采集调用了8000多个种类,总计1.2亿条全球进出口贸易基础数据…,1.2亿用科学记数法表示为 1.2×108.【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.1.2亿=120000000=1.2×108.故答案为:1.2×108.12.分解因式:﹣2x2y+16xy﹣32y=﹣2y(x﹣4)2.【解析】原式=﹣2y(x2﹣8x+16)=﹣2y(x﹣4)2故答案为:﹣2y(x﹣4)213.为选拔一名选手参加全国中学生游泳锦标赛自由泳比赛,我市四名中学生参加了男子100米自由泳训练,他们成绩的平均数及其方差s2如下表所示:甲乙丙丁1′05″331′04″261′04″261′07″29S2 1.1 1.1 1.3 1.6如果选拔一名学生去参赛,应派乙去.【解析】∵>>=,∴从乙和丙中选择一人参加比赛,∵S<S,∴选择乙参赛,故答案为:乙.14.如图,AB是半圆直径,半径OC⊥AB于点O,D为半圆上一点,AC∥OD,AD与OC 交于点E,连结CD、BD,给出以下三个结论:①OD平分∠COB;②BD=CD;③CD2=CECO,其中正确结论的序号是①②③.【思路】①由OC⊥AB就可以得出∠BOC=∠AOC=90°,再由OC=OA就可以得出∠OCA=∠OAC=45°,由AC∥OD就可以得出∠BOD=45°,进而得出∠DOC=45°,从而得出结论;②由∠BOD=∠COD即可得出BD=CD;③由∠AOC=90°就可以得出∠CDA=45°,得出∠DOC=∠CDA,就可以得出△DOC∽△EDC.进而得出,得出CD2=CECO.【解析】①∵OC⊥AB,∴∠BOC=∠AOC=90°.∵OC=OA,∴∠OCA=∠OAC=45°.∵AC∥OD,∴∠BOD=∠CAO=45°,∴∠DOC=45°,∴∠BOD=∠DOC,∴OD平分∠COB.故①正确;②∵∠BOD=∠DOC,∴BD=CD.故②正确;③∵∠AOC=90°,∴∠CDA=45°,∴∠DOC=∠CDA.∵∠OCD=∠OCD,∴△DOC∽△EDC,∴,∴CD2=CECO.故③正确.故答案为:①②③.15.如图,已知菱形ABCD的周长为16,面积为8,E为AB的中点,若P为对角线BD 上一动点,则EP+AP的最小值为2.【解析】如图作C E′⊥AB于E′,甲BD于P′,连接AC、AP′.∵已知菱形ABCD的周长为16,面积为8,∴AB=BC=4,ABCE′=8,∴CE′=2,在Rt△BCE′中,BE′==2,∵BE=EA=2,∴E与E′重合,∵四边形ABCD是菱形,∴BD垂直平分AC,∴A、C关于BD对称,∴当P与P′重合时,PA′+P′E的值最小,最小值为CE的长=2,故答案为2.16.我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是25尺.【解析】如图,一条直角边(即枯木的高)长20尺,另一条直角边长5×3=15(尺),因此葛藤长为=25(尺).故答案为:25.17.一数学兴趣小组来到某公园,准备测量一座塔的高度.如图,在A处测得塔顶的仰角为α,在B处测得塔顶的仰角为β,又测量出A、B两点的距离为s米,则塔高为米.【解析】在Rt△BCD中,∵tan∠CBD=,∴BD=,在Rt△ACD中,∵tan∠A==,∴tanα=,解得:CD=,故答案为:.18.如图,在平面直角坐标系中,直线l:y=x﹣与x轴交于点B1,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x轴,交直线l于点B3,以A2B3为边长作等边三角形A3A2B3,…,则点A2017的横坐标是.【思路】先根据直线l:y=x﹣与x轴交于点B1,可得B1(1,0),OB1=1,∠OB1D=30°,再,过A1作A1A⊥OB1于A,过A2作A2B⊥A1B2于B,过A3作A3C⊥A2B3于C,根据等边三角形的性质以及含30°角的直角三角形的性质,分别求得A1的横坐标为,A2的横坐标为,A3的横坐标为,进而得到A n的横坐标为,据此可得点A2017的横坐标.【解析】由直线l:y=x﹣与x轴交于点B1,可得B1(1,0),D(﹣,0),∴OB1=1,∠OB1D=30°,如图所示,过A1作A1A⊥OB1于A,则OA=OB1=,即A1的横坐标为=,由题可得∠A1B2B1=∠OB1D=30°,∠B2A1B1=∠A1B1O=60°,∴∠A1B1B2=90°,∴A1B2=2A1B1=2,过A2作A2B⊥A1B2于B,则A1B=A1B2=1,即A2的横坐标为+1==,过A3作A3C⊥A2B3于C,同理可得,A2B3=2A2B2=4,A2C=A2B3=2,即A3的横坐标为+1+2==,同理可得,A4的横坐标为+1+2+4==,由此可得,A n的横坐标为,∴点A2017的横坐标是,故答案为:.三、解答题(本大题共7小题,共62分)19.(1)计算:6cos45°+()﹣1+(﹣1.73)0+|5﹣3|+42017×(﹣0.25)2017(2)先化简,再求值:(﹣a+1)÷+﹣a,并从﹣1,0,2中选一个合适的数作为a的值代入求值.【分析】(1)根据特殊角的三角函数值、负整数指数幂、零指数幂、绝对值、幂的乘方可以解答本题;(2)根据分式的加减法和除法可以化简题目中的式子,然后在﹣1,0,2中选一个使得原分式有意义的值代入即可解答本题.【解】(1)6cos45°+()﹣1+(﹣1.73)0+|5﹣3|+42017×(﹣0.25)2017=6×+3+1+5﹣3+42017×(﹣)2017==8;(2)(﹣a+1)÷+﹣a=====﹣a﹣1,当a=0时,原式=﹣0﹣1=﹣1.20.为大力弘扬“奉献、友爱、互助、进步”的志愿服务精神,传播“奉献他人、提升自我”的志愿服务理念,东营市某中学利用周末时间开展了“助老助残、社区服务、生态环保、网络文明”四个志愿服务活动(每人只参加一个活动),九年级某班全班同学都参加了志愿服务,班长为了解志愿服务的情况,收集整理数据后,绘制以下不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)求该班的人数;(2)请把折线统计图补充完整;(3)求扇形统计图中,网络文明部分对应的圆心角的度数;(4)小明和小丽参加了志愿服务活动,请用树状图或列表法求出他们参加同一服务活动的概率.【分析】(1)根据参加生态环保的人数以及百分比,即可解决问题;(2)社区服务的人数,画出折线图即可;(3)根据圆心角=360°×百分比,计算即可;(4)用列表法即可解决问题;【解】(1)该班全部人数:12÷25%=48人.(2)48×50%=24,折线统计如图所示:(3)×360°=45°.(4)分别用“1,2,3,4”代表“助老助残、社区服务、生态环保、网络文明”四个服务活动,列表如下:则所有可能有16种,其中他们参加同一活动有4种,所以他们参加同一服务活动的概率P==.21.如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作⊙O的切线DE,交AC于点E,AC的反向延长线交⊙O于点F.(1)求证:DE⊥AC;(2)若DE+EA=8,⊙O的半径为10,求AF的长度.【分析】(1)欲证明DE⊥AC,只需推知OD∥AC即可;(2)如图,过点O作OH⊥AF于点H,构建矩形ODEH,设AH=x.则由矩形的性质推知:AE=10﹣x,OH=DE=8﹣(10﹣x)=x﹣2.在Rt△AOH中,由勾股定理知:x2+(x﹣2)2=102,通过解方程得到AH的长度,结合OH⊥AF,得到AF=2AH=2×8=16.【解】(1)证明:∵OB=OD,∴∠ABC=∠ODB,∵AB=AC,∴∠ABC=∠ACB,∴∠ODB=∠ACB,∴OD∥AC.∵DE是⊙O的切线,OD是半径,∴DE⊥OD,∴DE⊥AC;(2)如图,过点O作OH⊥AF于点H,则∠ODE=∠DEH=∠OHE=90°,∴四边形ODEH是矩形,∴OD=EH,OH=DE.设AH=x.∵DE+AE=8,OD=10,∴AE=10﹣x,OH=DE=8﹣(10﹣x)=x﹣2.在Rt△AOH中,由勾股定理知:AH2+OH2=OA2,即x2+(x﹣2)2=102,解得x1=8,x2=﹣6(不合题意,舍去).∴AH=8.∵OH⊥AF,∴AH=FH=AF,∴AF=2AH=2×8=16.22.如图,一次函数y=kx+b的图象与坐标轴分别交于A、B两点,与反比例函数y=的图象在第一象限的交点为C,CD⊥x轴,垂足为D,若OB=3,OD=6,△AOB的面积为3.(1)求一次函数与反比例函数的解析式;(2)直接写出当x>0时,kx+b﹣<0的解集.【分析】(1)根据三角形面积求出OA,得出A、B的坐标,代入一次函数的解析式即可求出解析式,把x=6代入求出D的坐标,把D的坐标代入反比例函数的解析式求出即可;(2)根据图象即可得出答案.=3,OB=3,【解】(1)∵S△AOB∴OA=2,∴B(3,0),A(0,﹣2),代入y=kx+b得:,解得:k=,b=﹣2,∴一次函数y=x﹣2,∵OD=6,∴D(6,0),CD⊥x轴,当x=6时,y=×6﹣2=2∴C(6,2),∴n=6×2=12,∴反比例函数的解析式是y=;(2)当x>0时,kx+b﹣<0的解集是0<x<6.23.为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对A、B 两类学校进行改扩建,根据预算,改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元.(1)改扩建1所A类学校和1所B类学校所需资金分别是多少万元?(2)该县计划改扩建A、B两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元,其中地方财政投入到A、B两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案?【分析】(1)可根据“改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元”,列出方程组求出答案;(2)要根据“国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元”来列出不等式组,判断出不同的改造方案.【解】(1)设改扩建一所A类和一所B类学校所需资金分别为x万元和y万元由题意得,解得,答:改扩建一所A类学校和一所B类学校所需资金分别为1200万元和1800万元.(2)设今年改扩建A类学校a所,则改扩建B类学校(10﹣a)所,由题意得:,解得,∴3≤a≤5,∵x取整数,∴x=3,4,5.即共有3种方案:方案一:改扩建A类学校3所,B类学校7所;方案二:改扩建A类学校4所,B类学校6所;方案三:改扩建A类学校5所,B类学校5所.24.如图,在等腰三角形ABC中,∠BAC=120°,AB=AC=2,点D是BC边上的一个动点(不与B、C重合),在AC上取一点E,使∠ADE=30°.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式并写出自变量x的取值范围;(3)当△ADE是等腰三角形时,求AE的长.【分析】(1)根据两角相等证明:△ABD∽△DCE;(2)如图1,作高AF,根据直角三角形30°的性质求AF的长,根据勾股定理求BF的长,则可得BC的长,根据(1)中的相似列比例式可得函数关系式,并确定取值;(3)分三种情况进行讨论:①当AD=DE时,如图2,由(1)可知:此时△ABD∽△DCE,则AB=CD,即2=2﹣x;②当AE=ED时,如图3,则ED=EC,即y=(2﹣y);③当AD=AE时,∠AED=∠EDA=30°,∠EAD=120°,此时点D与点B重合,不符合题意,此情况不存在.【解】(1)∵△ABC是等腰三角形,且∠BAC=120°,∴∠ABD=∠ACB=30°,∴∠ABD=∠ADE=30°,∵∠ADC=∠ADE+∠EDC=∠ABD+∠DAB,∴∠EDC=∠DAB,∴△ABD∽△DCE;(2)如图1,∵AB=AC=2,∠BAC=120°,过A作AF⊥BC于F,∴∠AFB=90°,∵AB=2,∠ABF=30°,∴AF=AB=1,∴BF=,∴BC=2BF=2,则DC=2﹣x,EC=2﹣y,∵△ABD∽△DCE,∴,∴,化简得:y=x+2(0<x<2);(3)当AD=DE时,如图2,由(1)可知:此时△ABD∽△DCE,则AB=CD,即2=2﹣x,x=2﹣2,代入y=x+2,解得:y=4﹣2,即AE=4﹣2,当AE=ED时,如图3,∠EAD=∠EDA=30°,∠AED=120°,∴∠DEC=60°,∠EDC=90°,则ED=EC,即y=(2﹣y),解得:y=,即AE=,当AD=AE时,∠AED=∠EDA=30°,∠EAD=120°,此时点D与点B重合,不符合题意,此情况不存在,∴当△ADE是等腰三角形时,AE=4﹣2或.25.如图,直线y=﹣x+分别与x轴、y轴交于B、C两点,点A在x轴上,∠ACB=90°,抛物线y=ax2+bx+经过A,B两点.(1)求A、B两点的坐标;(2)求抛物线的解析式;(3)点M是直线BC上方抛物线上的一点,过点M作MH⊥BC于点H,作MD∥y轴交BC 于点D,求△DMH周长的最大值.【分析】(1)由直线解析式可求得B、C坐标,在Rt△BOC中由三角函数定义可求得∠OCB=60°,则在Rt△AOC中可得∠ACO=30°,利用三角函数的定义可求得OA,则可求得A 点坐标;(2)由A、B两点坐标,利用待定系数法可求得抛物线解析式;(3)由平行线的性质可知∠MDH=∠BCO=60°,在Rt△DMH中利用三角函数的定义可得到DH、MH与DM的关系,可设出M点的坐标,则可表示出DM的长,从而可表示出△DMH 的周长,利用二次函数的性质可求得其最大值.【解】(1)∵直线y=﹣x+分别与x轴、y轴交于B、C两点,∴B(3,0),C(0,),∴OB=3,OC=,∴tan∠BCO==,∴∠BCO=60°,∵∠ACB=90°,∴∠ACO=30°,∴=tan30°=,即=,解得AO=1,∴A(﹣1,0);(2)∵抛物线y=ax2+bx+经过A,B两点,∴,解得,∴抛物线解析式为y=﹣x2+x+;(3)∵MD∥y轴,MH⊥BC,∴∠MDH=∠BCO=60°,则∠DMH=30°,∴DH=DM,MH=DM,∴△DMH的周长=DM+DH+MH=DM+DM+DM=DM,∴当DM有最大值时,其周长有最大值,∵点M是直线BC上方抛物线上的一点,∴可设M(t,﹣t2+t+),则D(t,﹣t+),∴DM=﹣t2+t+),则D(t,﹣t+),∴DM=﹣t2+t+﹣(﹣t+)=﹣t2+t=﹣(t﹣)2+,∴当t=时,DM有最大值,最大值为,此时DM=×=,即△DMH周长的最大值为.。

2017年山东省东营市中考数学试卷(含答案解析版)

2017年山东省东营市中考数学试卷(含答案解析版)

2017年山东省东营市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列四个数中,最大的数是()A.3 B.C.0 D.π2.(3分)下列运算正确的是()A.(x﹣y)2=x2﹣y2B.|﹣2|=2﹣ C.﹣= D.﹣(﹣a+1)=a+1 3.(3分)若|x2﹣4x+4|与互为相反数,则x+y的值为()A.3 B.4 C.6 D.94.(3分)小明从家到学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,小明从家到学校行驶路程s(m)与时间t(min)的大致图象是()A.B.C.D.5.(3分)已知a∥b,一块含30°角的直角三角板如图所示放置,∠2=45°,则∠1等于()A.100°B.135°C.155° D.165°6.(3分)如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是()A.B.C.D.7.(3分)如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=8,AB=5,则AE的长为()A.5 B.6 C.8 D.128.(3分)若圆锥的侧面积等于其底面积的3倍,则该圆锥侧面展开图所对应扇形圆心角的度数为()A.60°B.90°C.120° D.180°9.(3分)如图,把△ABC沿着BC的方向平移到△DEF的位置,它们重叠部分的面积是△ABC面积的一半,若BC=,则△ABC移动的距离是()A.B.C.D.﹣10.(3分)如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PH•PC其中正确的是()A.①②③④B.②③C.①②④D.①③④二、填空题(本大题共8小题,共28分)11.(3分)《“一带一路”贸易合作大数据报告(2017)》以“一带一路”贸易合作现状分析和趋势预测为核心,采集调用了8000多个种类,总计1.2亿条全球进出口贸易基础数据…,1.2亿用科学记数法表示为.12.(3分)分解因式:﹣2x2y+16xy﹣32y=.13.(3分)为选拔一名选手参加全国中学生游泳锦标赛自由泳比赛,我市四名中学生参加了男子100米自由泳训练,他们成绩的平均数及其方差s2如下表所示:甲乙丙丁1′05″331′04″261′04″261′07″29S2 1.1 1.1 1.3 1.6如果选拔一名学生去参赛,应派去.14.(3分)如图,AB是半圆直径,半径OC⊥AB于点O,D为半圆上一点,AC ∥OD,AD与OC交于点E,连结CD、BD,给出以下三个结论:①OD平分∠COB;②BD=CD;③CD2=CE•CO,其中正确结论的序号是.15.(4分)如图,已知菱形ABCD的周长为16,面积为8,E为AB的中点,若P为对角线BD上一动点,则EP+AP的最小值为.16.(4分)我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是尺.17.(4分)一数学兴趣小组来到某公园,准备测量一座塔的高度.如图,在A 处测得塔顶的仰角为α,在B处测得塔顶的仰角为β,又测量出A、B两点的距离为s米,则塔高为米.18.(4分)如图,在平面直角坐标系中,直线l:y=x﹣与x轴交于点B1,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x轴,交直线l 于点B3,以A2B3为边长作等边三角形A3A2B3,…,则点A2017的横坐标是.三、解答题(本大题共7小题,共62分)19.(8分)(1)计算:6cos45°+()﹣1+(﹣1.73)0+|5﹣3|+42017×(﹣0.25)2017(2)先化简,再求值:(﹣a+1)÷+﹣a,并从﹣1,0,2中选一个合适的数作为a的值代入求值.20.(7分)为大力弘扬“奉献、友爱、互助、进步”的志愿服务精神,传播“奉献他人、提升自我”的志愿服务理念,东营市某中学利用周末时间开展了“助老助残、社区服务、生态环保、网络文明”四个志愿服务活动(每人只参加一个活动),九年级某班全班同学都参加了志愿服务,班长为了解志愿服务的情况,收集整理数据后,绘制以下不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)求该班的人数;(2)请把折线统计图补充完整;(3)求扇形统计图中,网络文明部分对应的圆心角的度数;(4)小明和小丽参加了志愿服务活动,请用树状图或列表法求出他们参加同一服务活动的概率.21.(8分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作⊙O的切线DE,交AC于点E,AC的反向延长线交⊙O于点F.(1)求证:DE⊥AC;(2)若DE+EA=8,⊙O的半径为10,求AF的长度.22.(8分)如图,一次函数y=kx+b的图象与坐标轴分别交于A、B两点,与反比例函数y=的图象在第一象限的交点为C,CD⊥x轴,垂足为D,若OB=3,OD=6,△AOB的面积为3.(1)求一次函数与反比例函数的解析式;(2)直接写出当x>0时,kx+b﹣<0的解集.23.(9分)为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对A、B两类学校进行改扩建,根据预算,改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元.(1)改扩建1所A类学校和1所B类学校所需资金分别是多少万元?(2)该县计划改扩建A、B两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元,其中地方财政投入到A、B两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案?24.(10分)如图,在等腰三角形ABC中,∠BAC=120°,AB=AC=2,点D是BC 边上的一个动点(不与B、C重合),在AC上取一点E,使∠ADE=30°.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式并写出自变量x的取值范围;(3)当△ADE是等腰三角形时,求AE的长.25.(12分)如图,直线y=﹣x+分别与x轴、y轴交于B、C两点,点A在x轴上,∠ACB=90°,抛物线y=ax2+bx+经过A,B两点.(1)求A、B两点的坐标;(2)求抛物线的解析式;(3)点M是直线BC上方抛物线上的一点,过点M作MH⊥BC于点H,作MD ∥y轴交BC于点D,求△DMH周长的最大值.2017年山东省东营市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列四个数中,最大的数是()A.3 B.C.0 D.π【解答】解:0<<3<π,故选:D.2.(3分)下列运算正确的是()A.(x﹣y)2=x2﹣y2B.|﹣2|=2﹣ C.﹣= D.﹣(﹣a+1)=a+1【解答】解:A、原式=x2﹣2xy+y2,故本选项错误;B、原式=2﹣,故本选项正确;C、原式=2﹣,故本选项错误;D、原式=a﹣1,故本选项错误;故选:B.3.(3分)若|x2﹣4x+4|与互为相反数,则x+y的值为()A.3 B.4 C.6 D.9【解答】解:根据题意得|x2﹣4x+4|+=0,所以|x2﹣4x+4|=0,=0,即(x﹣2)2=0,2x﹣y﹣3=0,所以x=2,y=1,所以x+y=3.故选:A.4.(3分)小明从家到学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,小明从家到学校行驶路程s(m)与时间t(min)的大致图象是()A.B.C.D.【解答】解:小明从家到学校,先匀速步行到车站,因此S随时间t的增长而增长,等了几分钟后坐上了公交车,因此时间在增加,S不增长,坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,因此S又随时间t的增长而增长,故选:C.5.(3分)已知a∥b,一块含30°角的直角三角板如图所示放置,∠2=45°,则∠1等于()A.100°B.135°C.155° D.165°【解答】解:如图,过P作PQ∥a,∵a∥b,∴PQ∥b,∴∠BPQ=∠2=45°,∵∠APB=60°,∴∠APQ=15°,∴∠3=180°﹣∠APQ=165°,∴∠1=165°,故选:D.6.(3分)如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是()A.B.C.D.【解答】解:设没有涂上阴影的分别为:A、B、C、D、E、F、G,如图所示,从其余的小正方形中任取一个涂上阴影共有7种情况,而能够构成正方体的表面展开图的有以下情况,D、E、F、G,∴能构成这个正方体的表面展开图的概率是,故选:A.7.(3分)如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=8,AB=5,则AE的长为()A.5 B.6 C.8 D.12【解答】解:连结EF,AE与BF交于点O,∵四边形ABCD是平行四边形,AB=AF,∴四边形ABEF是菱形,∴AE⊥BF,OB=BF=4,OA=AE.∵AB=5,在Rt△AOB中,AO==3,∴AE=2AO=6.故选:B.8.(3分)若圆锥的侧面积等于其底面积的3倍,则该圆锥侧面展开图所对应扇形圆心角的度数为()A.60°B.90°C.120° D.180°【解答】解:设母线长为R,底面半径为r,∴底面周长=2πr,底面面积=πr2,侧面面积=lr=πrR,∵侧面积是底面积的3倍,∴3πr2=πrR,∴R=3r,设圆心角为n,有=πR,∴n=120°.故选:C.9.(3分)如图,把△ABC沿着BC的方向平移到△DEF的位置,它们重叠部分的面积是△ABC面积的一半,若BC=,则△ABC移动的距离是()A.B.C.D.﹣【解答】解:∵△ABC沿BC边平移到△DEF的位置,∴AB∥DE,∴△ABC∽△HEC,∴=()2=,∴EC:BC=1:,∵BC=,∴EC=,∴BE=BC﹣EC=﹣.故选:D.10.(3分)如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PH•PC其中正确的是()A.①②③④B.②③C.①②④D.①③④【解答】解:∵△BPC是等边三角形,∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,在正方形ABCD中,∵AB=BC=CD,∠A=∠ADC=∠BCD=90°∴∠ABE=∠DCF=30°,∴BE=2AE;故①正确;∵PC=CD,∠PCD=30°,∴∠PDC=75°,∴∠FDP=15°,∵∠DBA=45°,∴∠PBD=15°,∴∠FDP=∠PBD,∵∠DFP=∠BPC=60°,∴△DFP∽△BPH;故②正确;∵∠FDP=∠PBD=15°,∠ADB=45°,∴∠PDB=30°,而∠DFP=60°,∴∠PFD≠∠PDB,∴△PFD与△PDB不会相似;故③错误;∵∠PDH=∠PCD=30°,∠DPH=∠DPC,∴△DPH∽△CPD,∴,∴DP2=PH•PC,故④正确;故选:C.二、填空题(本大题共8小题,共28分)11.(3分)《“一带一路”贸易合作大数据报告(2017)》以“一带一路”贸易合作现状分析和趋势预测为核心,采集调用了8000多个种类,总计1.2亿条全球进出口贸易基础数据…,1.2亿用科学记数法表示为 1.2×108.【解答】解:1.2亿用科学记数法表示为1.2×108.故答案为:1.2×108.12.(3分)分解因式:﹣2x2y+16xy﹣32y=﹣2y(x﹣4)2.【解答】解:原式=﹣2y(x2﹣8x+16)=﹣2y(x﹣4)2故答案为:﹣2y(x﹣4)213.(3分)为选拔一名选手参加全国中学生游泳锦标赛自由泳比赛,我市四名中学生参加了男子100米自由泳训练,他们成绩的平均数及其方差s2如下表所示:甲乙丙丁1′05″331′04″261′04″261′07″29S2 1.1 1.1 1.3 1.6如果选拔一名学生去参赛,应派乙去.【解答】解:∵>>=,∴从乙和丙中选择一人参加比赛,∵S<S,∴选择乙参赛,故答案为:乙.14.(3分)如图,AB是半圆直径,半径OC⊥AB于点O,D为半圆上一点,AC ∥OD,AD与OC交于点E,连结CD、BD,给出以下三个结论:①OD平分∠COB;②BD=CD;③CD2=CE•CO,其中正确结论的序号是①②③.【解答】解:①∵OC⊥AB,∴∠BOC=∠AOC=90°.∵OC=OA,∴∠OCA=∠OAC=45°.∵AC∥OD,∴∠BOD=∠CAO=45°,∴∠DOC=45°,∴∠BOD=∠DOC,∴OD平分∠COB.故①正确;②∵∠BOD=∠DOC,∴BD=CD.故②正确;③∵∠AOC=90°,∴∠CDA=45°,∴∠DOC=∠CDA.∵∠OCD=∠OCD,∴△DOC∽△EDC,∴,∴CD2=CE•CO.故③正确.故答案为:①②③.15.(4分)如图,已知菱形ABCD的周长为16,面积为8,E为AB的中点,若P为对角线BD上一动点,则EP+AP的最小值为2.【解答】解:如图作CE′⊥AB于E′,交BD于P′,连接AC、AP′.∵已知菱形ABCD的周长为16,面积为8,∴AB=BC=4,AB•CE′=8,∴CE′=2,在Rt△BCE′中,BE′==2,∵BE=EA=2,∴E与E′重合,∵四边形ABCD是菱形,∴BD垂直平分AC,∴A、C关于BD对称,∴当P与P′重合时,P′A+P′E的值最小,最小值为CE的长=2,故答案为2.16.(4分)我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是25尺.【解答】解:如图,一条直角边(即枯木的高)长20尺,另一条直角边长5×3=15(尺),因此葛藤长为=25(尺).故答案为:25.17.(4分)一数学兴趣小组来到某公园,准备测量一座塔的高度.如图,在A 处测得塔顶的仰角为α,在B处测得塔顶的仰角为β,又测量出A、B两点的距离为s米,则塔高为米.【解答】解:在Rt△BCD中,∵tan∠CBD=,∴BD=,在Rt△ACD中,∵tan∠A==,∴tanα=,解得:CD=,故答案为:.18.(4分)如图,在平面直角坐标系中,直线l:y=x﹣与x轴交于点B1,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x轴,交直线l 于点B3,以A2B3为边长作等边三角形A3A2B3,…,则点A2017的横坐标是.【解答】解:由直线l:y=x﹣与x轴交于点B1,可得B1(1,0),D(0,﹣),∴OB1=1,∠OB1D=30°,如图所示,过A1作A1A⊥OB1于A,则OA=OB1=,即A1的横坐标为=,由题可得∠A1B2B1=∠OB1D=30°,∠B2A1B1=∠A1B1O=60°,∴∠A1B1B2=90°,∴A1B2=2A1B1=2,过A2作A2B⊥A1B2于B,则A1B=A1B2=1,即A2的横坐标为+1==,过A3作A3C⊥A2B3于C,同理可得,A2B3=2A2B2=4,A2C=A2B3=2,即A3的横坐标为+1+2==,同理可得,A4的横坐标为+1+2+4==,由此可得,A n的横坐标为,∴点A2017的横坐标是,故答案为:.三、解答题(本大题共7小题,共62分)19.(8分)(1)计算:6cos45°+()﹣1+(﹣1.73)0+|5﹣3|+42017×(﹣0.25)2017(2)先化简,再求值:(﹣a+1)÷+﹣a,并从﹣1,0,2中选一个合适的数作为a的值代入求值.【解答】解:(1)6cos45°+()﹣1+(﹣1.73)0+|5﹣3|+42017×(﹣0.25)2017=6×+3+1+5﹣3+42017×(﹣)2017==8;(2)(﹣a+1)÷+﹣a=====﹣a﹣1,当a=0时,原式=﹣0﹣1=﹣1.20.(7分)为大力弘扬“奉献、友爱、互助、进步”的志愿服务精神,传播“奉献他人、提升自我”的志愿服务理念,东营市某中学利用周末时间开展了“助老助残、社区服务、生态环保、网络文明”四个志愿服务活动(每人只参加一个活动),九年级某班全班同学都参加了志愿服务,班长为了解志愿服务的情况,收集整理数据后,绘制以下不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)求该班的人数;(2)请把折线统计图补充完整;(3)求扇形统计图中,网络文明部分对应的圆心角的度数;(4)小明和小丽参加了志愿服务活动,请用树状图或列表法求出他们参加同一服务活动的概率.【解答】解:(1)该班全部人数:12÷25%=48人.(2)48×50%=24,折线统计如图所示:(3)×360°=45°.(4)分别用“1,2,3,4”代表“助老助残、社区服务、生态环保、网络文明”四个服务活动,列表如下:则所有可能有16种,其中他们参加同一活动有4种,所以他们参加同一服务活动的概率P==.21.(8分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作⊙O的切线DE,交AC于点E,AC的反向延长线交⊙O于点F.(1)求证:DE⊥AC;(2)若DE+EA=8,⊙O的半径为10,求AF的长度.【解答】(1)证明:∵OB=OD,∴∠ABC=∠ODB,∵AB=AC,∴∠ABC=∠ACB,∴∠ODB=∠ACB,∴OD∥AC.∵DE是⊙O的切线,OD是半径,∴DE⊥OD,∴DE⊥AC;(2)如图,过点O作OH⊥AF于点H,则∠ODE=∠DEH=∠OHE=90°,∴四边形ODEH是矩形,∴OD=EH,OH=DE.设AH=x.∵DE+AE=8,OD=10,∴AE=10﹣x,OH=DE=8﹣(10﹣x)=x﹣2.在Rt△AOH中,由勾股定理知:AH2+OH2=OA2,即x2+(x﹣2)2=102,解得x1=8,x2=﹣6(不合题意,舍去).∴AH=8.∵OH⊥AF,∴AH=FH=AF,∴AF=2AH=2×8=16.22.(8分)如图,一次函数y=kx+b的图象与坐标轴分别交于A、B两点,与反比例函数y=的图象在第一象限的交点为C,CD⊥x轴,垂足为D,若OB=3,OD=6,△AOB的面积为3.(1)求一次函数与反比例函数的解析式;(2)直接写出当x>0时,kx+b﹣<0的解集.=3,OB=3,【解答】解:(1)∵S△AOB∴OA=2,∴B(3,0),A(0,﹣2),代入y=kx+b得:,解得:k=,b=﹣2,∴一次函数y=x﹣2,∵OD=6,∴D(6,0),CD⊥x轴,当x=6时,y=×6﹣2=2∴C(6,2),∴n=6×2=12,∴反比例函数的解析式是y=;(2)当x>0时,kx+b﹣<0的解集是0<x<6.23.(9分)为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对A、B两类学校进行改扩建,根据预算,改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元.(1)改扩建1所A类学校和1所B类学校所需资金分别是多少万元?(2)该县计划改扩建A、B两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元,其中地方财政投入到A、B两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案?【解答】解:(1)设改扩建一所A类和一所B类学校所需资金分别为x万元和y 万元由题意得,解得,答:改扩建一所A类学校和一所B类学校所需资金分别为1200万元和1800万元.(2)设今年改扩建A类学校a所,则改扩建B类学校(10﹣a)所,由题意得:,解得,∴3≤a≤5,∵a取整数,∴a=3,4,5.即共有3种方案:方案一:改扩建A类学校3所,B类学校7所;方案二:改扩建A类学校4所,B类学校6所;方案三:改扩建A类学校5所,B类学校5所.24.(10分)如图,在等腰三角形ABC中,∠BAC=120°,AB=AC=2,点D是BC 边上的一个动点(不与B、C重合),在AC上取一点E,使∠ADE=30°.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式并写出自变量x的取值范围;(3)当△ADE是等腰三角形时,求AE的长.【解答】证明:(1)∵△ABC是等腰三角形,且∠BAC=120°,∴∠ABD=∠ACB=30°,∴∠ABD=∠ADE=30°,∵∠ADC=∠ADE+∠EDC=∠ABD+∠DAB,∴∠EDC=∠DAB,∴△ABD∽△DCE;(2)如图1,∵AB=AC=2,∠BAC=120°,过A作AF⊥BC于F,∴∠AFB=90°,∵AB=2,∠ABF=30°,∴AF=AB=1,∴BF=,∴BC=2BF=2,则DC=2﹣x,EC=2﹣y,∵△ABD∽△DCE,∴,∴,化简得:y=x+2(0<x<2);(3)当AD=DE时,如图2,由(1)可知:此时△ABD∽△DCE,则AB=CD,即2=2﹣x,x=2﹣2,代入y=x+2,解得:y=4﹣2,即AE=4﹣2,当AE=ED时,如图3,∠EAD=∠EDA=30°,∠AED=120°,∴∠DEC=60°,∠EDC=90°,则ED=EC,即y=(2﹣y),解得:y=,即AE=,当AD=AE时,∠AED=∠EDA=30°,∠EAD=120°,此时点D与点B重合,不符合题意,此情况不存在,∴当△ADE是等腰三角形时,AE=4﹣2或.25.(12分)如图,直线y=﹣x+分别与x轴、y轴交于B、C两点,点A在x轴上,∠ACB=90°,抛物线y=ax2+bx+经过A,B两点.(1)求A、B两点的坐标;(2)求抛物线的解析式;(3)点M是直线BC上方抛物线上的一点,过点M作MH⊥BC于点H,作MD ∥y轴交BC于点D,求△DMH周长的最大值.【解答】解:(1)∵直线y=﹣x+分别与x轴、y轴交于B、C两点,∴B(3,0),C(0,),∴OB=3,OC=,∴tan∠BCO==,∴∠BCO=60°,∵∠ACB=90°,∴∠ACO=30°,∴=tan30°=,即=,解得AO=1,∴A(﹣1,0);(2)∵抛物线y=ax2+bx+经过A,B两点,∴,解得,∴抛物线解析式为y=﹣x2+x+;(3)∵MD∥y轴,MH⊥BC,∴∠MDH=∠BCO=60°,则∠DMH=30°,∴DH=DM,MH=DM,∴△DMH的周长=DM+DH+MH=DM+DM+DM=DM,∴当DM有最大值时,其周长有最大值,∵点M是直线BC上方抛物线上的一点,∴可设M(t,﹣t2+t+),则D(t,﹣t+),∴DM=﹣t2+t+﹣(﹣t+)=﹣t2+t=﹣(t﹣)2+,∴当t=时,DM有最大值,最大值为,此时DM=×=,即△DMH周长的最大值为.。

山东省东营市中考数学试卷含答案.docx

山东省东营市中考数学试卷含答案.docx

2017 年山东省东营市中考数学试卷一、选择题(本大题共10 小题,每小题 3 分,共 30 分)1.( 3 分)下列四个数中,最大的数是()A. 3B.C. 0D.π2.( 3 分)下列运算正确的是()A.( x﹣ y)2=x2﹣ y2B. |﹣2|=2﹣C.﹣= D .﹣(﹣ a+1) =a+13.( 3 分)若 |x 2﹣ 4x+4| 与互为相反数,则x+y 的值为()A.3B. 4C.6D.94.(3 分)小明从家到学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,小明从家到学校行驶路程s( m)与时间 t ( min)的大致图象是()A. B. C. D.5.( 3 分)已知a∥b,一块含30°角的直角三角板如图所示放置,∠2=45°,则∠ 1 等于()A. 100°B. 135°C. 155°D.165°6.( 3 分)如图,共有12 个大小相同的小正方形,其中阴影部分的 5 个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是()A.B.C.D.7.( 3 分)如图,在 ?ABCD中,用直尺和圆规作∠BAD的平分线AG交 BC于点 E.若 BF=8, AB=5,则 AE的长为()A.5B.6C.8D.128.( 3 分)若的面等于其底面的 3 倍,面展开所扇形心角的度数()A. 60°B9.( 3 分)如,把△. 90°ABC沿着C. 120°D.180°BC的方向平移到△DEF的位置,它重叠部分的面是△ABC面的一半,若BC=,△ABC移的距离是()A.B.C.D.10.( 3分)如,在正方形ABCD中,△ BPC是等三角形,BP、 CP 的延分交AD 于点E、F,接BD、 DP, BD 与CF相交于点H,出下列:2①BE=2AE;②△ DFP∽△ BPH;③△ PFD∽△ PDB;④ DP=PH?PC其中正确的是()A.①②③④B.②③C.①②④D.①③④二、填空(本大共8 小,共28 分)11.( 3 分)《“一一路” 易合作大数据告(2017)》以“一一路” 易合作状分析和核心,采集用了8000 多个种,条全球出口易基数据⋯,用科学数法表示.12.( 3 分)分解因式:2x2y+16xy 32y=.13.(3 分)拔一名手参加全国中学生游泳自由泳比,我市四名中学生参加了男子100 米自由泳,他成的平均数及其方差s2如下表所示:甲乙丙丁1′ 05″1′ 04″1′ 04″1′ 07″33262629S2如果拔一名学生去参,派去.14.( 3 分)如, AB是半直径,半径OC⊥ AB于点 O, D 半上一点, AC∥ OD, AD与 OC交于点 E,2CD、BD,出以下三个:① OD平分∠ COB;②BD=CD;③ CD=CE?CO,其中正确的序号是.15.( 4 分)如,已知菱形ABCD的周16,面 8,E AB的中点,若 P 角 BD上一点,EP+AP的最小.16.( 4 分)我国古代有一道数学:“枯木一根直立地上,高二丈,周三尺,有葛藤自根而上,五周而达其,葛藤之几何” 意是:如所示,把枯木看作一个柱体,因一丈是十尺,柱的高 20 尺,底面周 3 尺,有葛藤自点 A 而上,五周后其末端恰好到达点 B ,中葛藤的最短度是尺.17.( 4 分)一数学趣小来到某公园,准量一座塔的高度.如,在 A 得塔的仰角α,在B 得塔的仰角β,又量出A、B 两点的距离s 米,塔高米.18.( 4 分)如,在平面直角坐系中,直l :y= x与x交于点B1,以 OB1作等三角形A1OB1,点 A1作 A1B2平行于 x ,交直l 于点 B2,以 A1B2作等三角形A2A1B2,点 A2作 A2B3平行于 x ,交直l 于点 B3,以 A2B3作等三角形A3A2B3,⋯,点A2017的横坐是.三、解答题(本大题共7 小题,共62 分)19.( 8 分)( 1)计算: 6cos45 ° +()﹣ 10﹣ 320172017 +(﹣) +|5|+4 ×(﹣)(2)先化简,再求值:(﹣a+1)÷+﹣a,并从﹣1,0,2中选一个合适的数作为 a 的值代入求值.20.( 7 分)为大力弘扬“奉献、友爱、互助、进步”的志愿服务精神,传播“奉献他人、提升自我”的志愿服务理念,东营市某中学利用周末时间开展了“助老助残、社区服务、生态环保、网络文明”四个志愿服务活动(每人只参加一个活动),九年级某班全班同学都参加了志愿服务,班长为了解志愿服务的情况,收集整理数据后,绘制以下不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)求该班的人数;(2)请把折线统计图补充完整;(3)求扇形统计图中,网络文明部分对应的圆心角的度数;(4)小明和小丽参加了志愿服务活动,请用树状图或列表法求出他们参加同一服务活动的概率.21.( 8 分)如图,在△ABC中, AB=AC,以 AB为直径的⊙ O交 BC于点 D,过点 D 作⊙ O的切线 DE,交 AC于点 E, AC的反向延长线交⊙ O于点 F.(1)求证: DE⊥ AC;(2)若 DE+EA=8,⊙ O的半径为 10,求 AF 的长度.22.( 8 分)如图,一次函数y=kx+b 的图象与坐标轴分别交于A、 B 两点,与反比例函数y= 的图象在第一象限的交点为C, CD⊥ x 轴,垂足为 D,若 OB=3, OD=6,△ AOB的面积为3.(1)求一次函数与反比例函数的解析式;(2)直接写出当 x> 0 时, kx+b﹣< 0 的解集.23.( 9 分)为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对校进行改扩建,根据预算,改扩建 2 所 A 类学校和 3 所 B 类学校共需资金7800 万元,改扩建和 1 所 B 类学校共需资金5400 万元.A、 B 两类学3 所 A类学校(1)改扩建 1 所 A 类学校和 1 所 B 类学校所需资金分别是多少万元(2)该县计划改扩建 A、B 两类学校共 10 所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11800 万元;地方财政投入资金不少于4000 万元,其中地方财政投入到A、 B 两类学校的改扩建资金分别为每所300 万元和 500 万元.请问共有哪几种改扩建方案24.(10 分)如图,在等腰三角形ABC中,∠ BAC=120°, AB=AC=2,点 D是 BC边上的一个动点(不与B、C 重合),在 AC上取一点E,使∠ ADE=30°.(1)求证:△ ABD∽△ DCE;(2)设 BD=x, AE=y,求 y 关于 x 的函数关系式并写出自变量x 的取值范围;(3)当△ ADE是等腰三角形时,求AE的长.25.( 12 分)如图,直线y=﹣x+分别与x轴、y轴交于B、C两点,点 A 在 x 轴上,∠ ACB=90°,抛物线 y=ax 2+bx+经过A,B两点.(1)求 A、 B 两点的坐标;(2)求抛物线的解析式;(3)点 M是直线 BC上方抛物线上的一点,过点M作 MH⊥ BC于点 H,作 MD∥ y 轴交 BC于点 D,求△ DMH周长的最大值.2017 年山东省东营市中考数学试卷参考答案一、选择题(本大题共10 小题,每小题 3 分,共 30 分)1.( 3 分)(2017?东营)下列四个数中,最大的数是()A. 3B.C. 0D.π【解答】解: 0<<3<π,故选:D.【点评】此题主要考查了实数的比较大小,关键是掌握利用数轴也可以比较任意两个实数的大小,即在数轴上表示的两个实数,右边的总比左边的大,在原点左侧,绝对值大的反而小.2.( 3 分)(2017?东营)下列运算正确的是()A.( x﹣ y)2=x2﹣ y2B. |﹣2|=2﹣C.﹣= D .﹣(﹣ a+1) =a+1【考点】78:二次根式的加减法;28:实数的性质;36:去括号与添括号;4C:完全平方公式.【解答】解:A、原式=x 2﹣2xy+y 2,故本选项错误;B、原式 =2﹣,故本选项正确;C、原式 =2﹣,故本选项错误;D、原式 =a﹣ 1,故本选项错误;故选:B.【点评】本题综合考查了二次根式的加减法,实数的性质,完全平方公式以及去括号,属于基础题难度小.3.( 3 分)(2017?东营)若 |x 2﹣4x+4| 与互为相反数,则x+y 的值为()A.3B. 4C.6D.9【考点】 A6:解一元二次方程﹣配方法;16:非负数的性质:绝对值;23:非负数的性质:算术平方根.菁【分析】根据相反数的定义得到|x 2﹣ 4x+4|+=0,再根据非负数的性质得x2﹣ 4x+4=0, 2x ﹣ y﹣3=0,然后利用配方法求出x,再求出 y,最后计算它们的和即可.【解答】解:根据题意得|x 2﹣ 4x+4|+=0,所以 |x 2﹣ 4x+4|=0 ,=0,即( x﹣ 2)2=0, 2x﹣ y﹣ 3=0,所以 x=2,y=1,所以 x+y=3.故选 A.【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n 的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.也考查了非负数的性质.4.(3 分)( 2017?东营)小明从家到学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,小明从家到学校行驶路程s( m)与时间 t ( min )的大致图象是()A. B. C. D.【分析】根据题意判断出S 随 t 的变化趋势,然后再结合选项可得答案.【解答】解:小明从家到学校,先匀速步行到车站,因此S 随时间 t 的增长而增长,等了几分钟后坐上了公交车,因此时间在增加,S 不增长,坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,因此S又随时间t 的增长而增长,故选: C.【点评】此题主要考查了函数图象,关键是正确理解题意,根据题意判断出两个变量的变化情况.5.( 3 分)( 2017?东营)已知 a∥ b,一块含 30°角的直角三角板如图所示放置,∠ 2=45°,则∠ 1等于()A. 100°B. 135°C. 155°D. 165°【考点】 JA:平行线的性质.菁优网版权所有【解答】解:如图,过P 作 PQ∥ a,∵ a∥ b,∴ PQ∥ b,∴∠ BPQ=∠2=45°,∵∠ APB=60°,∴∠ APQ=15°,∴∠ 3=180°﹣∠ APQ=165°,∴∠ 1=165°,故选: D.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等,同旁内角互补.6.( 3 分)( 2017?东营)如图,共有12 个大小相同的小正方形,其中阴影部分的 5 个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是()A. B. C. D.【考点】 X5:几何概率;I6 :几何体的展开图.菁优网版权所有【分析】根据正方形表面展开图的结构即可求出判断出构成这个正方体的表面展开图的概率.【解答】解:设没有涂上阴影的分别为:A、B、C、D、E、F、G,如图所示,从其余的小正方形中任取一个涂上阴影共有7 种情况,而能够构成正方体的表面展开图的有以下情况,D、 E、 F、 G,∴能构成这个正方体的表面展开图的概率是,故选( A)【点评】本题考查概率,解题的关键是熟识正方体表面展开图的结构,本题属于中等题型.7.( 3 分)( 2017?东营)如图,在 ?ABCD中,用直尺和圆规作∠BAD的平分线 AG交 BC于点 E.若 BF=8,AB=5,则 AE的长为()A.5B. 6C.8D.12【考点】N2:作图—基本作图;L5:平行四边形的性质.菁优网版权所有【分析】由基本作图得到 AB=AF,AG平分∠故可得出 OB的长,再由勾股定理即可得出BAD,故可得出四边形ABEF是菱形,由菱形的性质可知OA的长,进而得出结论.AE⊥ BF,【解答】解:连结EF, AE 与 BF 交于点 O,∵四边形 ABCD是平行四边形,AB=AF,∴四边形ABEF是菱形,∴AE⊥ BF,OB=BF=4, OA=AE.∵ AB=5,在 Rt △ AOB中, AO==3,∴ AE=2AO=6.故选 B.【点评】本题考查的是作图﹣基本作图,熟知平行四边形的性质、勾股定理、平行线的性质是解决问题的关键.8.( 3 分)( 2017?东营)若圆锥的侧面积等于其底面积的 3 倍,则该圆锥侧面展开图所对应扇形圆心角的度数为()A. 60° B. 90° C. 120°D. 180°【考点】 MP:圆锥的计算.菁优网版权所有【分析】根据圆锥侧面积恰好等于底面积的 3 倍可得圆锥的母线长=3×底面半径,根据圆锥的侧面展开图的弧长等于圆锥的底面周长,可得圆锥侧面展开图所对应的扇形圆心角度数.【解答】解:设母线长为R,底面半径为r ,∴底面周长 =2π r ,底面面积 =π r 2,侧面面积 = lr= πrR,∵侧面积是底面积的 3 倍,∴ 3πr 2 =π rR,∴ R=3r,设圆心角为n,有= πR,∴ n=120°.故选 C.【点评】本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长,以及利用扇形面积公式求出是解题的关键.9.( 3 分)( 2017?东营)如图,把△ABC沿着 BC的方向平移到△DEF 的位置,它们重叠部分的面积是△ABC面积的一半,若BC=,则△ ABC移动的距离是()A.B.C.D.﹣【考点】 Q2:平移的性质.菁优网版权所有【分析】移动的距离可以视为BE 或 CF的长度,根据题意可知△ABC与阴影部分为相似三角形,且面积比为 2: 1,所以 EC: BC=1:,推出EC的长,利用线段的差求BE的长.【解答】解:∵△ ABC沿 BC边平移到△ DEF的位置,∴ AB∥ DE,∴△ ABC∽△ HEC,∴=()2=,∴EC: BC=1:,∵ BC=,∴ EC=,∴ BE=BC﹣EC=﹣.故选:D.【点评】本题主要考查相似三角形的判定和性质、平移的性质,关键在证△ABC与阴影部分为相似三角形.10.( 3 分)( 2017?东营)如图,在正方形ABCD中,△ BPC是等边三角形, BP、CP的延长线分别交 AD于点E、 F,连接 BD、DP, BD与 CF相交于点 H,给出下列结论:①BE=2AE;②△ DFP∽△ BPH;③△ PFD∽△ PDB;2④DP=PH?PC其中正确的是()A.①②③④ B .②③ C .①②④D.①③④【考点】 S9:相似三角形的判定与性质;KK:等边三角形的性质;LE:正方形的性质.菁优网版权所有【分析】由正方形的性质和相似三角形的判定与性质,即可得出结论.【解答】解:∵△ BPC是等边三角形,∴BP=PC=BC,∠ PBC=∠PCB=∠ BPC=60°,在正方形ABCD中,∵AB=BC=CD,∠ A=∠ADC=∠ BCD=90°∴∠ ABE=∠ DCF=30°,∴ BE=2AE;故①正确;∵PC=CD,∠PCD=30°,∴∠ PDC=75°,∴∠ FDP=15°,∵∠ DBA=45°,∴∠ PBD=15°,∴∠ FDP=∠PBD,∵∠ DFP=∠ BPC=60°,∴△ DFP∽△ BPH;故②正确;∵∠FDP=∠PBD=15°,∠ ADB=45°,∴∠ PDB=30°,而∠ DFP=60°,∴∠ PFD≠∠ PDB,∴△ PFD与△ PDB不会相似;故③ ;∵∠PDH=∠ PCD=30°,∠ DPH=∠ DPC,∴△ DPH∽△ CPD,∴,∴ DP2=PH?PC,故④正确;故C.【点】本考的正方形的性,等三角形的性以及相似三角形的判定和性,解答此的关是熟掌握性和定理.二、填空(本大共8 小,共28 分)11.( 3 分)( 2017?)《“一一路” 易合作大数据告(2017)》以“一一路” 易合作状分析和核心,采集用了8000 多个种,条全球出口易基数据⋯,用科学数法表示×108.【考点】 1I :科学数法—表示大的数.菁网版所有【分析】科学数法的表示形式数成 a ,小数点移了多少位,当原数的< 1 , n 是数.a× 10n的形式,其中1≤ |a| < 10, n 整数.确定n 的,要看把原n 的与小数点移的位数相同.当原数> 1 , n 是正数;【解答】解:用科学数法表示×108.故答案:×108.【点】此考科学数法的表示方法.科学数法的表示形式a× 10n的形式,其中1≤ |a| <10, n 整数,表示关要正确确定 a 的以及 n 的.12.( 3 分)( 2017?)分解因式:2x2y+16xy 32y=2y( x 4)2.【考点】 55:提公因式法与公式法的合运用.菁网版所有【分析】根据提取公因式以及完全平方公式即可求出答案.【解答】解:原式 = 2y( x28x+16) = 2y( x 4)2故答案:2y (x 4)2【点】本考因式分解,解的关是熟运用因式分解法,本属于基型.13.( 3 分)(2017?)拔一名手参加全国中学生游泳自由泳比,我市四名中学生参加了男子 100 米自由泳,他成的平均数及其方差s2如下表所示:甲乙丙丁1′ 05″1′ 04″1′ 04″1′ 07″33262629S2如果拔一名学生去参,派乙去.【考点】 W7:方差; W1:算平均数.菁网版所有【分析】首先比平均数,平均数相同方差小的运参加.【解答】解:∵>>=,∴从乙和丙中一人参加比,∵S<S,∴ 乙参,故答案:乙.【点】考了平均数和方差,一般地n 个数据, x1,x2,⋯ x n的平均数,方差S2= [ ( x1)2+(x2)2+⋯+(x n)2],它反映了一数据的波大小,方差越大,波性越大,反之也成立.14.( 3 分)(2017?)如,AB是半直径,半径OC⊥ AB于点 O, D 半上一点,AC∥OD, AD与 OC2交于点 E,连结 CD、 BD,给出以下三个结论:①OD平分∠ COB;② BD=CD;③ CD=CE?CO,其中正确结论的序号是①②③.【考点】 S9:相似三角形的判定与性质;M5:圆周角定理.菁优网版权所有【分析】①由 OC⊥ AB 就可以得出∠ BOC=∠ AOC=90°,再由OC=OA就可以得出∠ OCA=∠OAC=45°,由 AC∥OD就可以得出∠BOD=45°,进而得出∠ DOC=45°,从而得出结论;②由∠BOD=∠ COD即可得出BD=CD;③由∠ AOC=90°就可以得出∠CDA=45°,得出∠ DOC=∠ CDA,就可以得出△DOC∽△ EDC.进而得出,2得出 CD=CE?CO.【解答】解:①∵ OC⊥ AB,∴∠ BOC=∠ AOC=90°.∵ OC=OA,∴∠ OCA=∠ OAC=45°.∵ AC∥ OD,∴∠ BOD=∠CAO=45°,∴∠ DOC=45°,∴∠ BOD=∠DOC,∴ OD平分∠ COB.故①正确;②∵∠ BOD=∠ DOC,∴BD=CD.故②正确;③∵∠ AOC=90°,∴∠ CDA=45°,∴∠ DOC=∠ CDA.∵∠ OCD=∠ OCD,∴△ DOC∽△ EDC,2∴,∴ CD=CE?CO.故③正确.故答案为:①②③.【点评】本题考查了圆周角定理,平行线的性质,圆的性质,圆心角与弦的关系定理的运用,相似三角形的判定及性质;熟练掌握圆周角定理和相似三角形的判定与性质是解决问题的关键.15.( 4 分)( 2017?东营)如图,已知菱形ABCD的周长为16,面积为 8,E 为 AB 的中点,若 P 为对角线BD上一动点,则 EP+AP的最小值为2.【考点】 PA:轴对称﹣最短路线问题;L8:菱形的性质.菁优网版权所有【分析】如图作 CE′⊥ AB 于 E′,甲 BD于 P′,连接AC、 AP′.首先证明E′与 E 重合,因为A、 C 关于BD对称,所以当P 与 P′重合时, PA′ +P′ E 的值最小,由此求出CE即可解决问题.【解答】解:如图作CE′⊥ AB于 E′,甲 BD于 P′,连接AC、 AP′.∵已知菱形ABCD的周长为16,面积为 8,∴ AB=BC=4,AB?CE′ =8,∴ CE′ =2,在Rt △ BCE′中,BE′ ==2,∵ BE=EA=2,∴ E 与 E′重合,∵四边形ABCD是菱形,∴ BD垂直平分AC,∴ A、 C 关于 BD对称,∴当P 与 P′重合时, PA′ +P′ E的值最小,最小值为CE的长 =2,故答案为2.【点评】本题考查轴对称﹣最短问题、菱形的性质等知识,解题的关键是学会添加常用辅助线,本题的突破点是证明CE是△ ABC的高,学会利用对称解决最短问题.16.( 4 分)( 2017?东营)我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20 尺,底面周长为 3 尺,有葛藤自点 A 处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是25尺.【考点】 KV:平面展开﹣最短路径问题;KU:勾股定理的应用.菁优网版权所有【专题】 16 :压轴题; 35 :转化思想.【分析】这种立体图形求最短路径问题,可以展开成为平面内的问题解决,展开后可转化下图,所以是个直角三角形求斜边的问题,根据勾股定理可求出.【解答】解:如图,一条直角边(即枯木的高)长20 尺,另一条直角边长5×3=15(尺),因此葛藤长为=25(尺).故答案为:25.【点评】本题考查了平面展开最短路径问题,关键是把立体图形展成平面图形,本题是展成平面图形后为直角三角形按照勾股定理可求出解.17.( 4 分)( 2017?)一数学趣小来到某公园,准量一座塔的高度.如,在 A 得塔的仰角α,在 B 得塔的仰角β,又量出A、B 两点的距离s 米,塔高米.【考点】 TA:解直角三角形的用仰角俯角.菁网版所有【分析】在 Rt △ BCD中有 BD=,在Rt△ ACD中,根据tan ∠ A= =可得tanα =,解之求出CD 即可得.【解答】解:在 Rt △ BCD中,∵ tan ∠ CBD= ,∴ BD=,在Rt△ ACD中,∵ tan∠ A= =,∴ tanα =,解得: CD=,故答案:.【点】本主要考解直角三角形的用仰角俯角,解的关是根据两直角三角形的公共利用三角函数建立方程求解.18.( 4 分)( 2017?)如,在平面直角坐系中,直l : y= x与x交于点B1,以 OB1作等三角形A1OB1,点 A1作 A1B2平行于 x ,交直l 于点 B2,以 A1B2作等三角形A2A1B2,点 A2作 A2B3平行于 x ,交直l 于点 B3,以 A2B3作等三角形A3A2 B3,⋯,点A2017的横坐是.【考点】 F8:一次函数象上点的坐特征;D2:律型:点的坐.菁网版所有【分析】先根据直线 l : y=x﹣与 x 轴交于点 B ,可得 B (1, 0),OB=1,∠ OBD=30°,再,过 A 作11111A A⊥OB 于 A,过 A 作 A B⊥ A B 于 B,过 A 作 A C⊥ A B 于 C,根据等边三角形的性质以及含30°角的直角1122123323三角形的性质,分别求得A1的横坐标为,A2的横坐标为, A3的横坐标为,进而得到 A n的横坐标为,据此可得点 A的横坐标.2017【解答】解:由直线 l :y=x﹣11与 x 轴交于点 B1,可得 B1( 1,0),D(﹣,0),∴ OB=1,∠ OBD=30°,如图所示,过A1作 A1A⊥ OB1于 A,则 OA=OB1= ,即 A1的横坐标为=,由题可得∠ A1B2B1=∠OB1D=30°,∠B2A1B1=∠ A1B1O=60°,∴∠ A1B1B2=90°,∴ A1B2=2A1B1=2,过 A2作 A2B⊥ A1B2于 B,则 A1B= A1B2=1,即 A2的横坐标为 +1= =,过 A 作 A C⊥ A B 于 C,同理可得,A B =2A B =4,A C= A B =2,即 A 的横坐标为+1+2= =,332323222233同理可得, A4的横坐标为+1+2+4= =,由此可得,A n的横坐标为,∴点A2017的横坐标是,故答案为:.【点评】本题主要考查了一次函数图象上点的坐标特征以及等边三角形的性质的运用,解决问题的关键是依据等边三角形的性质找出规律,求得A n的横坐标为.三、解答题(本大题共7 小题,共62 分)19.( 8 分)( 2017?东营)( 1)计算: 6cos45 ° +()﹣10﹣320172017 +(﹣) +|5|+4 ×(﹣)(2)先化简,再求值:(﹣a+1)÷+﹣a,并从﹣1,0,2中选一个合适的数作为 a 的值代入求值.【考点】 6D:分式的化简求值;2C:实数的运算;47:幂的乘方与积的乘方;6E:零指数幂;6F:负整数指数幂; T5:特殊角的三角函数值.菁优网版权所有【分析】( 1)根据特殊角的三角函数值、负整数指数幂、零指数幂、绝对值、幂的乘方可以解答本题;(2)根据分式的加减法和除法可以化简题目中的式子,然后在﹣1,0,2 中选一个使得原分式有意义的值代入即可解答本题.【解答】解:( 1) 6cos45 ° +()﹣ 10﹣320172017 +(﹣) +|5|+4×(﹣)=6×+3+1+5﹣ 3+42017×(﹣)2017==8;(2)(﹣a+1)÷+﹣a=====﹣a﹣ 1,当 a=0 时,原式 =﹣0﹣ 1=﹣ 1.【点评】本题考查分式的化简求值、实数的运算、殊角的三角函数值、负整数指数幂、零指数幂、绝对值、幂的乘方,解答本题的关键是明确它们各自的计算方法.20.( 7 分)( 2017?东营)为大力弘扬“奉献、友爱、互助、进步”的志愿服务精神,传播“奉献他人、提升自我”的志愿服务理念,东营市某中学利用周末时间开展了“助老助残、社区服务、生态环保、网络文明”四个志愿服务活动(每人只参加一个活动),九年级某班全班同学都参加了志愿服务,班长为了解志愿服务的情况,收集整理数据后,绘制以下不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)求该班的人数;(2)请把折线统计图补充完整;(3)求扇形统计图中,网络文明部分对应的圆心角的度数;(4)小明和小丽参加了志愿服务活动,请用树状图或列表法求出他们参加同一服务活动的概率.【解答】解:( 1)该班全部人数:12÷ 25%=48人.(2) 48× 50%=24,折线统计如图所示:(3)× 360° =45°.(4)分别用“ 1,2,3,4”代表“助老助残、社区服务、生态环保、网络文明”四个服务活动,列表如下:则所有可能有16 种,其中他们参加同一活动有 4 种,所以他们参加同一服务活动的概率P= = .【点评】本题考查折线图、扇形统计图、列表法等知识,解题的关键是记住基本概念,属于中考常考题型.21.( 8 分)( 2017?东营)如图,在△ABC中, AB=AC,以 AB 为直径的⊙ O交 BC于点 D,过点 D 作⊙ O 的切线 DE,交 AC于点 E, AC的反向延长线交⊙ O于点 F.(1)求证: DE⊥ AC;(2)若 DE+EA=8,⊙ O的半径为 10,求 AF 的长度.【考点】 MC:切线的性质;KH:等腰三角形的性质;KQ:勾股定理; LD:矩形的判定与性质.网版权所有【分析】( 1)欲证明 DE⊥ AC,只需推知 OD∥ AC即可;(2)如图,过点 O作 OH⊥ AF 于点 H,构建矩形 ODEH,设 AH=x.则由矩形的性质推知:AE=10﹣ x,OH=DE=8﹣( 10﹣ x) =x﹣ 2.在 Rt△ AOH中,由勾股定理知: x2+( x﹣ 2)2=102,通过解方程得到AH的长度,结合OH⊥ AF,得到 AF=2AH=2× 8=16.【解答】( 1)证明:∵ OB=OD,∴∠ ABC=∠ ODB,∵ AB=AC,∴∠ ABC=∠ ACB,∴∠ ODB=∠ ACB,∴ OD∥ AC.∵DE是⊙ O的切线, OD是半径,∴ DE⊥OD,∴ DE⊥ AC;(2)如图,过点 O作 OH⊥ AF 于点 H,则∠ ODE=∠ DEH=∠ OHE=90°,∴四边形 ODEH是矩形,∴OD=EH,OH=DE.设 AH=x.∵ DE+AE=8,OD=10,∴ AE=10﹣x, OH=DE=8﹣( 10﹣ x) =x﹣ 2.在 Rt△ AOH中,由勾股定理知:222222=8,x2=﹣ 6(不合题意,舍去).∴AH=8.∵OH⊥ AF,∴ AH=FH=AF,AH+OH=OA,即 x +( x﹣ 2) =10,解得 x1∴A F=2AH=2× 8=16.【点评】本题考查了切线的性质,勾股定理,矩形的判定与性质.解题时,利用了方程思想,属于中档题.22.( 8 分)(2017?东营)如图,一次函数y=kx+b 的图象与坐标轴分别交于A、B 两点,与反比例函数y= 的图象在第一象限的交点为C,CD⊥ x 轴,垂足为D,若 OB=3, OD=6,△ AOB的面积为3.(1)求一次函数与反比例函数的解析式;(2)直接写出当 x> 0 时, kx+b﹣< 0 的解集.【考点】 G8:反比例函数与一次函数的交点问题.菁优网版权所有【分析】( 1)根据三角形面积求出OA,得出 A、B 的坐标,代入一次函数的解析式即可求出解析式,把x=6代入求出D的坐标,把 D 的坐标代入反比例函数的解析式求出即可;(2)根据图象即可得出答案.【解答】解:( 1)∵ S△AOB=3, OB=3,∴ OA=2,∴ B( 3, 0),A( 0,﹣ 2),代入 y=kx+b 得:,解得: k= , b=﹣2,∴一次函数y= x﹣ 2,∵ OD=6,∴ D( 6,0), CD⊥x 轴,当 x=6 时, y= ×6﹣ 2=2∴C( 6, 2),∴ n=6× 2=12,∴反比例函数的解析式是y=;(2)当 x> 0 时, kx+b﹣< 0 的解集是0< x<6.【点评】本题考查了用待定系数法求出函数的解析式,一次函数和和反比例函数的交点问题,函数的图象的应用,主要考查学生的观察图形的能力和计算能力.23.( 9 分)( 2017?东营)为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对A、B 两类学校进行改扩建,根据预算,改扩建 2 所 A 类学校和 3 所 B 类学校共需资金7800 万元,改扩建3所 A 类学校和 1 所 B 类学校共需资金5400 万元.(1)改扩建 1 所 A 类学校和 1 所 B 类学校所需资金分别是多少万元(2)该县计划改扩建 A、B 两类学校共 10 所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11800 万元;地方财政投入资金不少于4000 万元,其中地方财政投入到A、 B 两类学校的改扩建资金分别为每所300 万元和 500 万元.请问共有哪几种改扩建方案【考点】 CE:一元一次不等式组的应用;9A:二元一次方程组的应用.菁优网版权所有【分析】( 1)可根据“改扩建 2 所 A 类学校和 3 所 B 类学校共需资金7800 万元,改扩建 3 所 A 类学校和1所 B 类学校共需资金5400 万元”,列出方程组求出答案;(2)要根据“国家财政拨付资金不超过11800 万元;地方财政投入资金不少于4000 万元”来列出不等式组,判断出不同的改造方案.【解答】解:( 1)设改扩建一所 A 类和一所 B 类学校所需资金分别为x 万元和 y 万元由题意得,解得,答:改扩建一所 A 类学校和一所 B 类学校所需资金分别为1200 万元和 1800 万元.(2)设今年改扩建 A 类学校 a 所,则改扩建 B 类学校( 10﹣ a)所,由题意得:,解得,∴ 3≤ a≤ 5,∵ x取整数,∴x=3, 4,5.即共有 3 种方案:方案一:改扩建 A 类学校 3 所, B 类学校 7 所;方案二:改扩建 A 类学校 4 所, B 类学校 6 所;方案三:改扩建A类学校 5 所, B 类学校 5 所.【点评】本题考查了一元一次不等式组的应用,二元一次方程组的应用.解决问题的关键是读懂题意,找到关键描述语,找到所求的量的数量关系.24.( 10 分)( 2017?东营)如图,在等腰三角形ABC中,∠ BAC=120°, AB=AC=2,点 D 是 BC边上的一个动点(不与B、 C 重合),在 AC上取一点E,使∠ ADE=30°.(1)求证:△ ABD∽△ DCE;(2)设 BD=x, AE=y,求 y 关于 x 的函数关系式并写出自变量x 的取值范围;(3)当△ ADE是等腰三角形时,求AE的长.【考点】SO:相似形综合题.菁优网版权所有【分析】( 1)根据两角相等证明:△ABD∽△ DCE;(2)如图 1,作高 AF,根据直角三角形30°的性质求AF 的长,根据勾股定理求BF 的长,则可得BC的长,根据( 1)中的相似列比例式可得函数关系式,并确定取值;(3)分三种情况进行讨论:①当AD=DE时,如图2,由(1)可知:此时△ ABD∽△ DCE,则AB=CD,即2=2﹣x;②当 AE=ED时,如图 3,则 ED= EC,即 y= ( 2﹣ y);③当 AD=AE时,∠ AED=∠ EDA=30°,∠EAD=120°,此时点 D 与点 B 重合,不符合题意,此情况不存在.【解答】证明:( 1)∵△ ABC是等腰三角形,且∠ BAC=120°,∴∠ ABD=∠ ACB=30°,∴∠ ABD=∠ADE=30°,∵∠ ADC=∠ADE+∠ EDC=∠ ABD+∠ DAB,∴∠ EDC=∠ DAB,∴△ ABD∽△ DCE;(2)如图 1,∵ AB=AC=2,∠ BAC=120°,过 A 作 AF⊥ BC于 F,∴∠ AFB=90°,∵ AB=2,∠ ABF=30°,∴AF= AB=1,∴ BF=,∴ BC=2BF=2,则DC=2﹣x,EC=2﹣y,∵△ ABD∽△ DCE,∴,∴,化简得: y=x+2( 0< x< 2);(3)当 AD=DE时,如图2,由( 1)可知:此时△ABD∽△ DCE,则 AB=CD,即 2=2﹣x,x=2﹣2,代入 y=x+2,解得:y=4﹣ 2,即AE=4﹣2,当AE=ED时,如图3,∠EAD=∠ EDA=30°,∠ AED=120°,∴∠ DEC=60°,∠EDC=90°,则 ED=EC,即 y=( 2﹣ y),解得:y= ,即 AE= ,当 AD=AE时,∠AED=∠ EDA=30°,∠EAD=120°,此时点 D 与点 B 重合,不符合题意,此情况不存在,∴当△ ADE是等腰三角形时,AE=4﹣ 2或.【点评】本题是相似形的综合题,考查了三角形相似的性质和判定、等腰三角形的性质、直角三角形角的性质,本题的几个问题全部围绕△ABD∽△ DCE,解决问题;难度适中.25.( 12 分)( 2017?东营)如图,直线 y=﹣x+分别与x轴、y轴交于B、C两点,点A 在30°x 轴上,∠ACB=90°,抛物线y=ax2+bx+经过A,B两点.。

山东省东营市2017年中考数学试卷(含答案)

山东省东营市2017年中考数学试卷(含答案)

绝密★启用前 试卷类型:A二0一二年东营市初中学生学业考试数 学 试 题(总分120分 考试时间120分钟)注意事项:1. 本试题分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷3页为选择题,36分;第Ⅱ卷8页为非选择题,84分;全卷共11页.2. 答第Ⅰ卷前,考生务必将自己的姓名、考号、考试科目涂写在答题卡上,考试结束,试题和答题卡一并收回.3. 第Ⅰ卷每题选出答案后,都必须用2B 铅笔把答题卡上对应题目的答案标号【ABCD 】涂黑.如需改动,先用橡皮擦干净,再改涂其它答案.4. 考试时,不允许使用科学计算器.第Ⅰ卷(选择题 共36分)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分. 1.31-的相反数是 ( ) A .31B . -31C . 3D . -32. 下列运算正确的是( )A .523x x x =⋅B .336()x x = C .5510x x x +=D .336x x x =-3. 下列图形中,是中心对称图形的是 ()A .B .C .D .4、下图能说明∠1>∠2的是( )12)A. 21)D.12 ))B.12 )) C.5、根据下图所示程序计算函数值,若输入的x 的值为52,则输出的函数值为( ) A .32B .25C .425D .2546.将点A (2,1)向左..平移2个单位长度得到点A ′,则点A ′的坐标是( ) A .(2,3)B .(2,-1)C .(4,1)D. (0,1)7. 小明用图中所示的扇形纸片作一个圆锥的侧面,已知扇形的半径为5cm ,弧长是6πcm ,那么这个的圆锥的高是( )A . 4cmB . 6cmC . 8cmD . 2cm 8.若43=x,79=y ,则yx 23-的值为( )A .74B .47C .3-D .729. 方程0411)1(2=+---x k x k 有两个实数根,则k 的取值范围是( ). A . k ≥1B . k ≤1C . k >1D . k <110. 小英同时掷甲、乙两枚质地均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).记甲立方体朝上一面上的数字为x 、乙立方体朝上一面朝上的数字为y ,这样就确定点P 的一个坐标(x y ,),那么点P 落在双曲线x y 6=上的概率为( ) A .118B .112 C .19D .1611. 如图,在直角坐标系中,矩形OABC 的顶点O 在坐标原点,边OA 在x 轴上,OC 在y 轴上,如果矩形OA ′B ′C ′与矩形OABC 关于点O 位似,且矩形OA ′B ′C ′的面积等于矩形OABC 面积的14,那么点B ′的坐标是( ) A .(-2,3)B .(2,-3)C .(3,-2)或(-2,3)D .(-2,3)或(2,-3)OBAB(第7题图) 5cm12. 如图,一次函数3+=x y 的图象与x 轴,y 轴交于A ,B 两点,与反比例函数x y 4=的图象相交于C ,D 两点,分别过C ,D 两点作y 轴,x 轴的垂线,垂足为E ,F ,连接CF ,DE .有下列四个结论:①△CEF 与△DEF 的面积相等;②△AOB ∽△FOE ;③△DCE ≌△CDF ;④AC BD =.其中正确的结论是( )A .①②B . ①②③C .①②③④D . ②③④(第12题图)绝密★启用前 试卷类型:A二0一二年东营市初中学生学业考试数 学 试 题第Ⅱ卷(非选择题 共84分)注意事项:1.第Ⅱ卷共8页,用钢笔或圆珠笔直接写在试卷上. 2.答卷前将密封线内的项目填写清楚.二、填空题:本大题共5小题,共20分,只要求填写最后结果,每小题填对得4分.13、南海是我国固有领海,她的面积超过东海、黄海、渤海面积的总和,约为360万平方千米,360万用科学记数法可表示为 . 14.分解因式:x x 93 = . 15.某校篮球班21名同学的身高如下表:16. 某施工工地安放了一个圆柱形饮水桶的木制支架(如图1),若不计木条的厚度,其俯视图如图2所示,已知AD 垂直平分BC ,AD=BC=48cm ,则圆柱形饮水桶的底面半径的最大值是 cm .得 分 评 卷 人BDCA(第16题图2)(第16题图1)17. 在平面直角坐标系xOy 中,点1A ,2A ,3A ,…和1B ,2B ,3B ,…分别在直线y =和x 轴上.△OA 1B 1,△B 1A 2B 2,△B 2A 3B 3,都是等腰直角三角形,如果A 1(1,1), A 2(23,27),那么点n A 的纵坐标是_ _____三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤. 18. (本题满分7分,第⑴题3分,第⑵题4分)(1)计算:()122160tan 33101+-+︒-⎪⎭⎫⎝⎛--;(2)先化简,再求代数式212312+-÷⎪⎭⎫ ⎝⎛+-x x x 的值,其中x 是不等式组⎩⎨⎧<+>-812,02x x 的整数解.得 分评 卷 人19. (本题满分9分)某校学生会干部对校学生会倡导的“助残”自愿捐款活动进行抽样调查,得到一组学生捐款情况的数据,对学校部分捐款人数进行调查和分组统计后,将数据整理成如图所示的统计图(图中信息不完整). 已知A 、B 两组捐款人数的比为1 : 5.请结合以上信息解答下列问题.(1) a= ,本次调查样本的容量是 ; (2) 先求出C 组的人数,再补全“捐款人数分组统计图1”;(3) 若任意抽出1名学生进行调查,恰好是捐款数不少于30元的概率是多少?捐款人数分组统计图1捐款人数分组统计图2得 分评 卷 人20. (本题满分9分)如图,AB 是⊙O 的直径,AM 和BN 是它的两条切线,DE 切⊙O 于点E ,交AM 于点D ,交BN 于点C ,(1)求证:OD ∥BE ;(2)如果OD =6cm ,OC =8cm ,求CD 的长.得 分 评 卷 人(第20题图)A DNEBC OM每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地.已知公路运价为1.5元/(吨·千米),铁路运价为1.2元/(吨·千米),且这两次运输共支出公路运输费15000元,铁路运输费97200元.求:(1)该工厂从A地购买了多少吨原料?制成运往B地的产品多少吨?(2)这批产品的销售款比原料费与运输费的和多多少元?西67.5°,轮船以21海里/时的速度向正北方向行驶,下午2时该船到达B处,这时观测到城市P位于该船的南偏西36.9°方向,求此时轮船所处位置B与城市P的距离?(参考数据:sin36.9°≈35,tan36.9°≈34,sin67.5°≈1213,tan67.5°≈125)(第22题图)APCB36.9°67.5°且DF =BE .求证:CE =CF ;(2)如图2,在正方形ABCD 中,E 是AB 上一点,G 是AD 上一点,如果∠GCE =45°,请你利用(1)的结论证明:GE =BE +GD .(3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图3,在直角梯形ABCD 中,AD ∥BC (BC >AD ),∠B =90°,AB =BC ,E 是AB 上一点,且∠DCE =45°,BE =4,DE =10, 求直角梯形ABCD 的面积.(第23题图1)(第23题图3)B CA DE(第23题图2)24.(本题满分11分)已知抛物线36232++=bx x y 经过 A (2,0). 设顶点为点P ,与x 轴的另一交点为点B . (1)求b 的值,求出点P 、点B 的坐标; (2)如图,在直线 y=3x 上是否存在点D ,使四边形OPBD 为平行四边形?若存在,求出点D 的坐标;若不存在,请说明理由;(3)在x 轴下方的抛物线上是否存在点M ,使△AMP ≌△AMB ?如果存在,试举例验证你的猜想;如果不存在,试说明理由.得 分评 卷 人(第24题图)参考答案与评分标准评卷说明:1. 选择题和填空题中的每小题,只有满分和零分两个评分档,不给中间分.2. 解答题中的每小题的解答中所对应的分数,是指考生正确解答到该步骤所应得的累计分数.本答案对每小题只给出一种解法,对考生的其他解法,请参照评分意见进行评分.3. 如果考生在解答的中间过程出现计算错误,但并没有改变试题的实质和难度,其后续部分酌情给分,但最多不超过正确解答分数的一半;若出现严重的逻辑错误,后续部分就不再给分.一.选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.13.3.6×106; 14.x (x +3)(x -3); 15. 187; 16. 30;17.123-⎪⎭⎫⎝⎛n三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤. 18. (本题满分7分,第⑴题3分,第⑵题4分)(1)解:原式=-3-33+1+23…………………………2分 =-2-3…………………………3分 (2)原式=122(1)(1)x x x x x -+·++-11x =+, ………………1分解不等式组⎩⎨⎧<+>-812,02x x 得722x <<,………………………2分因为x 是整数,所以3x =,……………………3分 当3x =时,原式=14.……………………4分19. 解:(1)20,500;…………………………2分 (2)500×40%=200,C 组的人数为200. … 4分补图见图. …………………………5分 (3)∵D 、E 两组的人数和为:500×(28%+8%)=180,………………7分 ∴捐款数不少于30元的概率是:1800.36.500=……………………………… 9分20.(1)证明:连接OE ,∵AM 、DE 是⊙O 的切线,OA 、OE 是⊙O 的半径,∴∠ADO=∠EDO , ∠DAO=∠DEO =90°, ……………………2分 ∴∠AOD=∠EOD=12∠AOE , ∵∠ABE=12∠AOE ∴∠AOD=∠ABE ,∴OD ∥BE …………………5分(2)由(1)得:∠AOD=∠EOD=12∠AOE , 同理,有:∠BOC=∠EOC=12∠BOE∴∠AOD +∠EOD +∠BOC +∠EOC=180° ∴∠EOD +∠EOC =90°,∴△DOC 是直角三角形,…………………………7分∴ CD=cm )(10643622=+=+OC OD ……………………9分21.解:(1)设工厂从A 地购买了x 吨原料,制成运往B 地的产品y 吨.则依题意,得:⎩⎨⎧=+=+.97200)120110(2.1,15000)1020(5.1x y x y …………………………4分 解这个方程组,得:⎩⎨⎧==.300,400y x∴工厂从A 地购买了400吨原料,制成运往B 地的产品300吨. ………7分 (2)依题意,得:300×8000-400×1000-15000-97200=1887800 ∴批产品的销售款比原料费与运输费的和多1887800元. ………………9分 22.解:过点P 作PC ⊥AB ,垂足为C ,设PC =x 海里. 在Rt △APC 中,∵tan ∠A =PC AC ,∴AC =5tan 67.512PC x=︒.…………3分在Rt △PCB 中,∵tan ∠B =PC BC ,∴BC =4tan 36.93x x=︒.…………5分∵AC +BC =AB =21×5,∴54215123x x +=⨯,解得60x =. ∵sin PC B PB ∠=,∴60560100sin sin 36.93PC PB B ===⨯=∠︒(海里).(第20题答案图)A DNEBC OM∴向阳号轮船所处位置B 与城市P 的距离为100海里.………………9分 23. 解答:(1)证明:在正方形ABCD 中,∵BC =CD ,∠B =∠CDF ,BE =DF , ∴△CBE ≌△CDF .∴CE =CF . …………………………2分(2)证明: 如图2,延长AD 至F ,使DF =BE .连接CF . 由(1)知△CBE ≌△CDF ,∴∠BCE =∠DCF .∴∠BCE +∠ECD =∠DCF +∠ECD 即∠ECF =∠BCD =90°,又∠GCE =45°,∴∠GCF =∠GCE =45°. ∵CE =CF ,∠GCE =∠GCF ,GC =GC , ∴△ECG ≌△FCG .…………………………5分 ∴GE =GF∴GE =DF +GD =BE +GD . ……………6分 (3)解:如图3,过C 作CG ⊥AD ,交AD 延长线于G .在直角梯形ABCD 中,∵AD ∥BC ,∴∠A =∠B =90°, 又∠CGA =90°,AB =BC , ∴四边形ABCD 为正方形.∴AG =BC .…………………………7分 已知∠DCE =45°,根据(1)(2)可知,ED =BE +DG .……8分所以10=4+DG ,即DG =6.设AB =x ,则AE =x -4,AD =x -6 在Rt △AED 中, ∵222AEAD DE+=,即()()2224610-+-=x x .解这个方程,得:x =12,或x =-2(舍去).…………………………9分 ∴AB =12.所以梯形ABCD 的面积为S=.10812)126(21)(21=⨯+=+AB BC AD答:梯形ABCD 的面积为108. …………………………10分 24.解:(1)由于抛物线36232++=bx x y 经过A (2,0), 所以3624230++⨯=b , 解得34-=b .…………………………1分C(第23题答案图1)(第23题答案图2)(第23题答案图3)B A D EG(第23题答案图3)所以抛物线的解析式为3634232+-=x x y . (*) 将(*)配方,得()324232--=x y , 所以顶点P 的坐标为(4,-23)…………………………2分 令y =0,得()0324232=--x , 解得6,221==x x . 所以点B 的坐标是(6,0). ………………3分(2)在直线 y=3x 上存在点D ,使四边形OPBD 为平行四边形. ……4分理由如下:设直线PB 的解析式为kx y =+b ,把B (6,0),P (4,-23)分别代入,得⎪⎩⎪⎨⎧-=+=+.324,06b k b k解得⎪⎩⎪⎨⎧-==.36,3b k所以直线PB 的解析式为363-=x y .…………………………5分 又直线OD 的解析式为x y 3=所以直线PB ∥OD . …………………………6分设设直线OP 的解析式为mx y =,把P (4,-23)代入,得324-=m 解得23-=m .如果OP ∥BD ,那么四边形OPBD 为平行四边形.…………7分设直线BD 的解析式为n x y +-=23,将B (6,0)代入,得0=n +-33,所以33=n 所以直线BD 的解析式为n x y +-=23, 解方程组⎪⎩⎪⎨⎧+-==.3323,3x y x y 得⎪⎩⎪⎨⎧==.32,2y x 所以D 点的坐标为(2,23)…………………8分(3)符合条件的点M 存在.验证如下:过点P 作x 轴的垂线,垂足为为C ,则PC =23,AC =2,由勾股定理,可得AP =4,PB =4,又AB =4,所以△APB 是等边三角形,只要作∠P AB 的平分线交抛物线于M 点,连接PM ,BM ,由于AM =AM , ∠P AM =∠BAM ,AB =AP ,可得△AMP ≌△AMB.因此即存在这样的点M ,使△AMP ≌△AMB.…………………………11分第24题答案图。

2017年山东省东营市中考数学(word版,有解析)

2017年山东省东营市中考数学(word版,有解析)

2021年山东省东营市中|考数学试卷一、选择题(本大题共10小题,每题3分,共30分)1.以下四个数中,最|大的数是()A.3 B.C.0 D.π【解析】在数轴上表示的两个实数,右边的总比左边的大,0<<3<π ,应选:D.2.以下运算正确的选项是()A.(x﹣y )2 =x2﹣y2B.|﹣2| =2﹣C.﹣=D.﹣(﹣a +1 ) =a +1【解析】A、原式=x2﹣2xy +y2 ,故本选项错误;B、原式=2﹣,故本选项正确;C、原式=2﹣,故本选项错误;D、原式=a﹣1 ,故本选项错误;应选:B.3.假设|x2﹣4x +4|与互为相反数,那么x +y的值为()A.3 B.4 C.6 D.9【解析】根据题意得|x2﹣4x +4| +=0 ,所以|x2﹣4x +4| =0 ,=0 ,即(x﹣2 )2 =0 ,2x﹣y﹣3 =0 ,所以x =2 ,y =1 ,所以x +y =3.应选A.4.小明从家到学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,小明从家到学校行驶路程s (m )与时间t (min )的大致图象是()A.B.C.D.【解析】小明从家到学校,先匀速步行到车站,因此S随时间t的增长而增长,等了几分钟后坐上了公交车,因此时间在增加,S不增长,坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,因此S又随时间t的增长而增长,应选:C.5.a∥b ,一块含30°角的直角三角板如下图放置,∠2 =45° ,那么∠1等于()A.100°B.135°C.155°D.165°【解析】如图,过P作PQ∥a ,∵a∥b ,∴PQ∥b ,∴∠BPQ =∠2 =45° ,∵∠APB =60° ,∴∠APQ =15° ,∴∠3 =180°﹣∠APQ =165° ,∴∠1 =165° ,应选:D.6.如图,共有12个大小相同的小正方形,其中阴影局部的5个小正方形是一个正方体的外表展开图的一局部,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的外表展开图的概率是()A.B.C.D.【解析】设没有涂上阴影的分别为:A、B、C、D、E、F、G ,如下图,从其余的小正方形中任取一个涂上阴影共有7种情况,而能够构成正方体的外表展开图的有以下情况,D、E、F、G ,∴能构成这个正方体的外表展开图的概率是,应选(A )7.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.假设BF =8 ,AB =5 ,那么AE的长为()A.5 B.6 C.8 D.12【解析】连结EF ,AE与BF交于点O ,∵四边形ABCD是平行四边形,AB =AF ,∴四边形ABEF是菱形,∴AE⊥BF ,OB =BF =4 ,OA =AE.∵AB =5 ,在Rt△AOB中,AO ==3 ,∴AE =2AO =6.应选B.8.假设圆锥的侧面积等于其底面积的3倍,那么该圆锥侧面展开图所对应扇形圆心角的度数为()A.60°B.90°C.120°D.180°【解析】设母线长为R ,底面半径为r ,∴底面周长=2πr ,底面面积=πr2 ,侧面面积=lr =πrR ,∵侧面积是底面积的3倍,∴3πr2=πrR ,∴R =3r ,设圆心角为n ,有=πR ,∴n =120°.应选C.9.如图,把△ABC沿着BC的方向平移到△DEF的位置,它们重叠局部的面积是△ABC面积的一半,假设BC =,那么△ABC移动的距离是()A.B.C.D.﹣【解析】∵△ABC沿BC边平移到△DEF的位置,∴AB∥DE ,∴△ABC∽△HEC ,∴= ()2 =,∴EC:BC =1:,∵BC =,∴EC =,∴BE =BC﹣EC =﹣.应选:D.10.如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F ,连接BD、DP ,BD与CF相交于点H ,给出以下结论:①BE =2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2 =PHPC其中正确的选项是()A.①②③④B.②③C.①②④D.①③④【解析】∵△BPC是等边三角形,∴BP =PC =BC ,∠PBC =∠PCB =∠BPC =60° ,在正方形ABCD中,∵AB =BC =CD ,∠A =∠ADC =∠BCD =90°∴∠ABE =∠DCF =30° ,∴BE =2AE;故①正确;∵PC =CD ,∠PCD =30° ,∴∠PDC =75° ,∴∠FDP =15° ,∵∠DBA =45° ,∴∠PBD =15° ,∴∠FDP =∠PBD ,∵∠DFP =∠BPC =60° ,∴△DFP∽△BPH;故②正确;∵∠FDP =∠PBD =15° ,∠ADB =45° ,∴∠PDB =30° ,而∠DFP =60° ,∴∠PFD≠∠PDB ,∴△PFD与△PDB不会相似;故③错误;∵∠PDH =∠PCD =30° ,∠DPH =∠DPC ,∴△DPH∽△CPD ,∴,∴DP2 =PHPC ,故④正确;应选C.二、填空题(本大题共8小题,共28分)11.< "一带一路〞贸易合作大数据报告(2021 )>以"一带一路〞贸易合作现状分析和趋势预测为核心,采集调用了8000多个种类,总计1.2亿条全球进出口贸易根底数据… ,1.2亿用科学记数法表示为 1.2×108.【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10 ,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝|对值与小数点移动的位数相同.当原数绝|对值>1时,n是正数;当原数的绝|对值<1时,n是负数.1.2亿=120000000 =1.2×108.故答案为:1.2×108.12.分解因式:﹣2x2y +16xy﹣32y =﹣2y (x﹣4 )2.【解析】原式=﹣2y (x2﹣8x +16 ) =﹣2y (x﹣4 )2故答案为:﹣2y (x﹣4 )213.为选拔一名选手参加全国中学生游泳锦标赛自由泳比赛,我市四名中学生参加了男子100米自由泳训练,他们成绩的平均数及其方差s2如下表所示:甲乙丙丁1′05″331′04″261′04″261′07″29S2 1.1 1.1 1.3 1.6如果选拔一名学生去参赛,应派乙去.【解析】∵>>=,∴从乙和丙中选择一人参加比赛,∵S<S,∴选择乙参赛,故答案为:乙.14.如图,AB是半圆直径,半径OC⊥AB于点O ,D为半圆上一点,AC∥OD ,AD与OC交于点E ,连结CD、BD ,给出以下三个结论:①OD平分∠COB;②BD =CD;③CD2 =CECO ,其中正确结论的序号是①②③.【思路】①由OC⊥AB就可以得出∠BOC =∠AOC =90° ,再由OC =OA就可以得出∠OCA =∠OAC =45° ,由AC∥OD就可以得出∠BOD =45° ,进而得出∠DOC =45° ,从而得出结论;②由∠BOD =∠COD即可得出BD =CD;③由∠AOC =90°就可以得出∠CDA =45°,得出∠DOC =∠CDA ,就可以得出△DOC∽△EDC.进而得出,得出CD2 =CECO.【解析】①∵OC⊥AB ,∴∠BOC =∠AOC =90°.∵OC =OA ,∴∠OCA =∠OAC =45°.∵AC∥OD ,∴∠BOD =∠CAO =45° ,∴∠DOC =45° ,∴∠BOD =∠DOC ,∴OD平分∠COB.故①正确;②∵∠BOD =∠DOC ,∴BD =CD.故②正确;③∵∠AOC =90° ,∴∠CDA =45° ,∴∠DOC =∠CDA.∵∠OCD =∠OCD ,∴△DOC∽△EDC ,∴,∴CD2 =CECO.故③正确.故答案为:①②③.15.如图,菱形ABCD的周长为16 ,面积为8,E为AB的中点,假设P为对角线BD上一动点,那么EP +AP的最|小值为2.【解析】如图作CE′⊥AB于E′ ,甲BD于P′ ,连接AC、AP′.∵菱形ABCD的周长为16 ,面积为8,∴AB =BC =4 ,ABCE′ =8,∴CE′ =2,在Rt△BCE′中,BE′ ==2 ,∵BE =EA =2 ,∴E与E′重合,∵四边形ABCD是菱形,∴BD垂直平分AC ,∴A、C关于BD对称,∴当P与P′重合时,PA′ +P′E的值最|小,最|小值为CE的长=2,故答案为2.16.我国古代有这样一道数学问题:"枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?〞题意是:如下图,把枯木看作一个圆柱体,因一丈是十尺,那么该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,那么问题中葛藤的最|短长度是25尺.【解析】如图,一条直角边(即枯木的高)长20尺,另一条直角边长5×3 =15 (尺) ,因此葛藤长为=25 (尺).故答案为:25.17.一数学兴趣小组来到某公园,准备测量一座塔的高度.如图,在A处测得塔顶的仰角为α ,在B处测得塔顶的仰角为β ,又测量出A、B两点的距离为s米,那么塔高为米.【解析】在Rt△BCD中,∵tan∠CBD =,∴BD =,在Rt△ACD中,∵tan∠A ==,∴tanα =,解得:CD =,故答案为:.18.如图,在平面直角坐标系中,直线l:y =x﹣与x轴交于点B1 ,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2 ,过点A2作A2B3平行于x轴,交直线l于点B3 ,以A2B3为边长作等边三角形A3A2B3,… ,那么点A2021的横坐标是.【思路】先根据直线l:y =x﹣与x轴交于点B1 ,可得B1 (1 ,0 ) ,OB1 =1 ,∠OB1D =30° ,再,过A1作A1A⊥OB1于A ,过A2作A2B⊥A1B2于B ,过A3作A3C⊥A2B3于C ,根据等边三角形的性质以及含30°角的直角三角形的性质,分别求得A1的横坐标为,A2的横坐标为,A3的横坐标为,进而得到A n的横坐标为,据此可得点A2021的横坐标.【解析】由直线l:y =x﹣与x轴交于点B1 ,可得B1 (1 ,0 ) ,D (﹣,0 ) ,∴OB1 =1 ,∠OB1D =30° ,如下图,过A1作A1A⊥OB1于A ,那么OA =OB1 =,即A1的横坐标为=,由题可得∠A1B2B1 =∠OB1D =30° ,∠B2A1B1 =∠A1B1O =60° ,∴∠A1B1B2 =90° ,∴A1B2 =2A1B1 =2 ,过A2作A2B⊥A1B2于B ,那么A1B =A1B2 =1 ,即A2的横坐标为 +1 ==,过A3作A3C⊥A2B3于C ,同理可得,A2B3 =2A2B2 =4 ,A2C =A2B3 =2 ,即A3的横坐标为 +1 +2 ==,同理可得,A4的横坐标为 +1 +2 +4 ==,由此可得,A n的横坐标为,∴点A2021的横坐标是,故答案为:.三、解答题(本大题共7小题,共62分)19.(1 )计算:6cos45° + ()﹣1 + (﹣1.73 )0 +|5﹣3| +42021×(﹣0.25 )2021(2 )先化简,再求值:(﹣a+1 )÷ +﹣a ,并从﹣1 ,0 ,2中选一个适宜的数作为a的值代入求值.【分析】(1 )根据特殊角的三角函数值、负整数指数幂、零指数幂、绝|对值、幂的乘方可以解答此题;(2 )根据分式的加减法和除法可以化简题目中的式子,然后在﹣1 ,0 ,2中选一个使得原分式有意义的值代入即可解答此题.【解】(1 )6cos45° + ()﹣1 + (﹣1.73 )0 +|5﹣3| +42021×(﹣0.25 )2021=6× +3 +1 +5﹣3 +42021×(﹣)2021==8;(2 ) (﹣a +1 )÷ +﹣a=====﹣a﹣1 ,当a =0时,原式=﹣0﹣1 =﹣1.20.为大力弘扬"奉献、友爱、互助、进步〞的志愿效劳精神,传播"奉献他人、提升自我〞的志愿效劳理念,东营市某中学利用周末时间开展了"助老助残、社区效劳、生态环保、网络文明〞四个志愿效劳活动(每人只参加一个活动) ,九年级|某班全班同学都参加了志愿效劳,班长为了解志愿效劳的情况,收集整理数据后,绘制以下不完整的统计图,请你根据统计图中所提供的信息解答以下问题:(1 )求该班的人数;(2 )请把折线统计图补充完整;(3 )求扇形统计图中,网络文明局部对应的圆心角的度数;(4 )小明和小丽参加了志愿效劳活动,请用树状图或列表法求出他们参加同一效劳活动的概率.【分析】(1 )根据参加生态环保的人数以及百分比,即可解决问题;(2 )社区效劳的人数,画出折线图即可;(3 )根据圆心角=360°×百分比,计算即可;(4 )用列表法即可解决问题;【解】(1 )该班全部人数:12÷25% =48人.(2 )48×50% =24 ,折线统计如下图:(3 )×360° =45°.(4 )分别用"1 ,2 ,3 ,4〞代表"助老助残、社区效劳、生态环保、网络文明〞四个效劳活动,列表如下:那么所有可能有16种,其中他们参加同一活动有4种,所以他们参加同一效劳活动的概率P ==.21.如图,在△ABC中,AB =AC ,以AB为直径的⊙O交BC于点D ,过点D作⊙O的切线DE ,交AC于点E ,AC的反向延长线交⊙O于点F.(1 )求证:DE⊥AC;(2 )假设DE +EA =8 ,⊙O的半径为10 ,求AF的长度.【分析】(1 )欲证明DE⊥AC ,只需推知OD∥AC即可;(2 )如图,过点O作OH⊥AF于点H ,构建矩形ODEH ,设AH =x.那么由矩形的性质推知:AE =10﹣x ,OH =DE =8﹣(10﹣x ) =x﹣2.在Rt△AOH中,由勾股定理知:x2+ (x﹣2 )2 =102 ,通过解方程得到AH的长度,结合OH⊥AF ,得到AF =2AH =2×8 =16.【解】(1 )证明:∵OB =OD ,∴∠ABC =∠ODB ,∵AB =AC ,∴∠ABC =∠ACB ,∴∠ODB =∠ACB ,∴OD∥AC.∵DE是⊙O的切线,OD是半径,∴DE⊥OD ,∴DE⊥AC;(2 )如图,过点O作OH⊥AF于点H ,那么∠ODE =∠DEH =∠OHE =90° ,∴四边形ODEH是矩形,∴OD =EH ,OH =DE.设AH =x.∵DE +AE =8 ,OD =10 ,∴AE =10﹣x ,OH =DE =8﹣(10﹣x ) =x﹣2.在Rt△AOH中,由勾股定理知:AH2 +OH2 =OA2 ,即x2 + (x﹣2 )2 =102 ,解得x1 =8 ,x2 =﹣6 (不合题意,舍去).∴AH =8.∵OH⊥AF ,∴AH =FH =AF ,∴AF =2AH =2×8 =16.22.如图,一次函数y =kx +b的图象与坐标轴分别交于A、B两点,与反比例函数y =的图象在第|一象限的交点为C ,CD⊥x轴,垂足为D ,假设OB =3 ,OD =6 ,△AOB的面积为3.(1 )求一次函数与反比例函数的解析式;(2 )直接写出当x>0时,kx +b﹣<0的解集.【分析】(1 )根据三角形面积求出OA ,得出A、B的坐标,代入一次函数的解析式即可求出解析式,把x =6代入求出D的坐标,把D的坐标代入反比例函数的解析式求出即可;(2 )根据图象即可得出答案.=3 ,OB =3 ,【解】(1 )∵S△AOB∴OA =2 ,∴B (3 ,0 ) ,A (0 ,﹣2 ) ,代入y =kx +b得:,解得:k =,b =﹣2 ,∴一次函数y =x﹣2 ,∵OD =6 ,∴D (6 ,0 ) ,CD⊥x轴,当x =6时,y =×6﹣2 =2∴C (6 ,2 ) ,∴n =6×2 =12 ,∴反比例函数的解析式是y =;(2 )当x>0时,kx +b﹣<0的解集是0<x<6.23.为解决中小学大班额问题,东营市各县区今年将改扩建局部中小学,某县方案对A、B两类学校进行改扩建,根据预算,改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元.(1 )改扩建1所A类学校和1所B类学校所需资金分别是多少万元?(2 )该县方案改扩建A、B两类学校共10所,改扩建资金由国|家财政和地方财政共同承当.假设国|家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元,其中地方财政投入到A、B两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案?【分析】(1 )可根据"改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元〞,列出方程组求出答案;(2 )要根据"国|家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元〞来列出不等式组,判断出不同的改造方案.【解】(1 )设改扩建一所A类和一所B类学校所需资金分别为x万元和y万元由题意得,解得,答:改扩建一所A类学校和一所B类学校所需资金分别为1200万元和1800万元.(2 )设今年改扩建A类学校a所,那么改扩建B类学校(10﹣a )所,由题意得:,解得,∴3≤a≤5 ,∵x取整数,∴x =3 ,4 ,5.即共有3种方案:方案一:改扩建A类学校3所,B类学校7所;方案二:改扩建A类学校4所,B类学校6所;方案三:改扩建A类学校5所,B类学校5所.24.如图,在等腰三角形ABC中,∠BAC =120° ,AB =AC =2 ,点D是BC边上的一个动点(不与B、C重合) ,在AC上取一点E ,使∠ADE =30°.(1 )求证:△ABD∽△DCE;(2 )设BD =x ,AE =y ,求y关于x的函数关系式并写出自变量x的取值范围;(3 )当△ADE是等腰三角形时,求AE的长.【分析】(1 )根据两角相等证明:△ABD∽△DCE;(2 )如图1 ,作高AF ,根据直角三角形30°的性质求AF的长,根据勾股定理求BF的长,那么可得BC的长,根据(1 )中的相似列比例式可得函数关系式,并确定取值;(3 )分三种情况进行讨论:①当AD =DE时,如图2 ,由(1 )可知:此时△ABD∽△DCE ,那么AB =CD ,即2 =2﹣x;②当AE =ED时,如图3 ,那么ED =EC ,即y =(2﹣y );③当AD =AE时,∠AED =∠EDA =30° ,∠EAD =120° ,此时点D与点B重合,不符合题意,此情况不存在.【解】(1 )∵△ABC是等腰三角形,且∠BAC =120° ,∴∠ABD =∠ACB =30° ,∴∠ABD =∠ADE =30° ,∵∠ADC =∠ADE +∠EDC =∠ABD +∠DAB ,∴∠EDC =∠DAB ,∴△ABD∽△DCE;(2 )如图1 ,∵AB =AC =2 ,∠BAC =120° ,过A作AF⊥BC于F ,∴∠AFB =90° ,∵AB =2 ,∠ABF =30° ,∴AF =AB =1 ,∴BF =,∴BC =2BF =2,那么DC =2﹣x ,EC =2﹣y ,∵△ABD∽△DCE ,∴,∴,化简得:y =x +2 (0<x<2);(3 )当AD =DE时,如图2 ,由(1 )可知:此时△ABD∽△DCE ,那么AB =CD ,即2 =2﹣x ,x =2﹣2 ,代入y =x +2 ,解得:y =4﹣2,即AE =4﹣2,当AE =ED时,如图3 ,∠EAD =∠EDA =30° ,∠AED =120° ,∴∠DEC =60° ,∠EDC =90° ,那么ED =EC ,即y =(2﹣y ) ,解得:y =,即AE =,当AD =AE时,∠AED =∠EDA =30° ,∠EAD =120° ,此时点D与点B重合,不符合题意,此情况不存在,∴当△ADE是等腰三角形时,AE =4﹣2或.25.如图,直线y =﹣x+分别与x轴、y轴交于B、C两点,点A在x轴上,∠ACB =90° ,抛物线y =ax2 +bx +经过A ,B两点.(1 )求A、B两点的坐标;(2 )求抛物线的解析式;(3 )点M是直线BC上方抛物线上的一点,过点M作MH⊥BC于点H ,作MD∥y轴交BC 于点D ,求△DMH周长的最|大值.【分析】(1 )由直线解析式可求得B、C坐标,在Rt△BOC中由三角函数定义可求得∠OCB =60° ,那么在Rt△AOC中可得∠ACO =30° ,利用三角函数的定义可求得OA ,那么可求得A点坐标;(2 )由A、B两点坐标,利用待定系数法可求得抛物线解析式;(3 )由平行线的性质可知∠MDH =∠BCO =60°,在Rt△DMH中利用三角函数的定义可得到DH、MH与DM的关系,可设出M点的坐标,那么可表示出DM的长,从而可表示出△DMH 的周长,利用二次函数的性质可求得其最|大值.【解】(1 )∵直线y =﹣x +分别与x轴、y轴交于B、C两点,∴B (3 ,0 ) ,C (0 ,) ,∴OB =3 ,OC =,∴tan∠BCO ==,∴∠BCO =60° ,∵∠ACB =90° ,∴∠ACO =30° ,∴=tan30° =,即=,解得AO =1 ,∴A (﹣1 ,0 );(2 )∵抛物线y =ax2 +bx +经过A ,B两点,∴,解得,∴抛物线解析式为y =﹣x2 +x +;(3 )∵MD∥y轴,MH⊥BC ,∴∠MDH =∠BCO =60° ,那么∠DMH =30° ,∴DH =DM ,MH =DM ,∴△DMH的周长=DM +DH +MH =DM +DM +DM =DM ,∴当DM有最|大值时,其周长有最|大值,∵点M是直线BC上方抛物线上的一点,∴可设M (t ,﹣t2 +t +) ,那么D (t ,﹣t +) ,∴DM =﹣t2 +t +) ,那么D (t ,﹣t +) ,∴DM =﹣t2 +t +﹣(﹣t +) =﹣t2 +t =﹣(t﹣)2 +,∴当t =时,DM有最|大值,最|大值为,此时DM =×=,即△DMH周长的最|大值为.。

2017年山东省东营市中考数学答案解析

2017年山东省东营市中考数学答案解析
30 24 18 12 6 O 社 区 服 务 助 老 助 残 生 态 环 保 网 络 文 明 人数
服务活动
„„„„„„„„„„„„„„„3 分
(3)
6 360 o 45 o 48
„„„„„„„„„„„„„„„„„„„„„4 分
(4)分别用“1、2、3、4”代表“助老助残、社区服务、生态环保、网络文明”四个服务 活动,可用列表法表示如下: 小明 小丽 1 2 3 4 1 (1,1) (1,2) (1,3) (1,4) 2 (2,1) (2,2) (2,3) (2,4) 3 (3,1) (3,2) (3,3) (3,4) 4 (4,1) (4,2) (4,3) (4,4)
18.
22017-1 . 2
三、解答题:本大题共 7 小题,共 62 分.解答要写出必要的文字说明、证明过程或演算步 骤. 19.(本题满分 8 分) 解: (1)原式= 6?
2 2
3 + 1 + 5 - 3 2 - 1 = 8 „„„„3 分
3 4 a2 1 a 1 2原式 a 2 a 1 a 1 a 2 a 2 4 a2 a 1 4 a 2 a 1 a 2 a 2
∴2 23. (本题满分 9 分) 解:(1)设改扩建 1 所 A 类学校需资金 x 万元,改扩建 1 所 B 类学校需资金 y 万元, 则
4 1 16 4
„„„„„„„„„„„„„„„„„„„„„7 分
数学答案第 2 页,共 6 页
∴DE⊥AC.„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„4 分 (2)解:过点 O 作 OH AF ,垂足为 H, 则 ODE DEH OHE 90 , ∴四边形 ODEH 为矩形, ∴ OD EH , OH DE 设 AH x , ∵DE+EA=8,OD=10 (第 21 题答案图) ∴ AE 10 x , OH DE 8 (10 x) x 2 „„„„„„„„„„„„„„6 分 在 Rt△AOH 中,由勾股定理知: AH 2 OH 2 OA2 . 即 x x 2 10 ,

2017年山东省东营市中考数学试卷(解析版)

2017年山东省东营市中考数学试卷(解析版)

2017年山东省东营市中考数学试卷(解析版)2017年山东省东营市中考数学试卷一、选择题(本大题共 10小题,每小题 3分,共 30分)1.下列四个数中,最大的数是()A . 3B .C . 0D . π【分析】根据在数轴上表示的两个实数,右边的总比左边的大可得答案. 【解答】解:0<<3<π,故选:D .【点评】此题主要考查了实数的比较大小, 关键是掌握利用数轴也可以比较任意两个实数的大小, 即在数轴上表示的两个实数, 右边的总比左边的大, 在原点左侧,绝对值大的反而小.2.下列运算正确的是()A .(x ﹣ y ) 2=x2﹣ y 2B . |﹣ 2|=2﹣C . ﹣ =D . ﹣ (﹣ a+1) =a+1【分析】根据完全平方公式,二次根式的化简以及去括号的法则进行解答. 【解答】解:A 、原式 =x2﹣ 2xy+y2,故本选项错误;B 、原式 =2﹣ ,故本选项正确;C 、原式 =2﹣ ,故本选项错误;D 、原式 =a﹣ 1,故本选项错误;故选:B .【点评】本题综合考查了二次根式的加减法, 实数的性质, 完全平方公式以及去括号,属于基础题,难度不大.3.若 |x2﹣ 4x+4|与互为相反数,则 x+y的值为()A . 3B . 4C . 6D . 9【分析】根据相反数的定义得到 |x2﹣ 4x+4|+=0, 再根据非负数的性质得 x 2﹣ 4x+4=0, 2x ﹣ y ﹣ 3=0,然后利用配方法求出 x ,再求出 y ,最后计算它们的和即可.【解答】解:根据题意得 |x2﹣ 4x+4|+=0,1所以 |x2﹣ 4x+4|=0, =0,即(x ﹣ 2) 2=0, 2x ﹣ y ﹣ 3=0,所以 x=2, y=1,所以 x+y=3.故选 A .【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n的形式, 再利用直接开平方法求解, 这种解一元二次方程的方法叫配方法. 也考查了非负数的性质.4.小明从家到学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,小明从家到学校行驶路程 s (m )与时间 t (min )的大致图象是()A .B .C .D .【分析】根据题意判断出 S 随 t 的变化趋势,然后再结合选项可得答案. 【解答】解:小明从家到学校,先匀速步行到车站,因此 S 随时间 t 的增长而增长, 等了几分钟后坐上了公交车,因此时间在增加, S 不增长,坐上了公交车, 公交车沿着公路匀速行驶一段时间后到达学校, 因此 S 又随时间 t 的增长而增长,故选:C .【点评】此题主要考查了函数图象, 关键是正确理解题意, 根据题意判断出两个变量的变化情况.5.已知a ∥ b ,一块含30°角的直角三角板如图所示放置,∠ 2=45°,则∠ 1等于()2。

2017山东东营中考试卷解析版

2017山东东营中考试卷解析版

2017年山东省东营市中考数学试卷总分:120分版本:不限第Ⅰ卷(选择题共30分)一、选择题:(每小题3分,共10小题,合计30分)1.(2017山东东营,1,3分)下列四个数中,最大的数是()A.3 B. 3 C.0 D.π【答案】D【解析】1<3<2,π>3,∴选D2.(2017山东东营,2,3分)下列运算正确的是()A.(x-y)2=x2-y2B.|3-2|=2- 3 C.8-3= 5 D.-(-a+1)=a+1 【答案】B【解析】A:由完全平方公式可得(x-y)2=x2-2xy+y2,故A错误;B:∵3<2,∴3-2<0,根据负数的绝对值等于它的相反数,可得|3-2|=2-3,故B正确;C:8与3不是同类项,故不能合并,所以C错误;D:根据去括号法则中“括号前面是-号,将括号和-号去掉,扩到括号里的各项要变号”可得-(-a+1)=a-13.(2017山东东营,3,3分)若|x2-4x+4|与2x-y-3互为相反数,则x+y的值为()A.3 B.4 C.6 D.9【答案】A【解析】|x2-4x+4|≥0,且2x-y-3≥0,要使|x2-4x+4|与2x-y-3互为相反数,则x2-4x+4=0且2x-y-3=0,解得x=2,y=1,所以x+y=3,故选A4.(2017山东东营,4,3分)小明从家到学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校.小明从家到学校行驶路程s(m)与时间t(min)的大致图象是()A.B.C.D.【答案】C【解析】“小明从家到学校,先匀速步行到车站”,可知随着时间的增加,路程越来越大;“等了几分钟”说明随着时间的增加,路程不变在图象中表示为水平线段;“公交车沿着公路匀速行驶一段时间后到达学校”说明随着时间的增加,路程越来越大。

故选C5.(2017山东东营,5,3分)已知a∥b,一块含30°角的直角三角板如图所示放置,∠2=45°,则∠1等于()A.100°B.135°C.155°D.165°【答案】D【解析】如图,易得∠2+∠5=60°,∵∠2=45°,∴∠5=15°,∴∠1=165°6.(2017山东东营,6,3分)如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是( )A .47B .37C .27D .17【答案】A【解析】要从7个空白小正方形中选1个涂阴影,共有7种等可能结果,其中符合要求的是最下面的一行中的每一个,即有4种符合要求的结果,所以符合要求的概率是47,故选A 7.(2017山东东营,7,3分)如图,在□ABCD 中,用直尺和圆规作∠BAD 的平分线AG 交BC 于点E ,若BF =8,AB =5,则AE 的长为( )A .5B .6C .8D .12【答案】B【解析】连接EF ,∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠F AE =∠AEB ,∵AE 平分∠BAD ,∴∠F AE =∠EAB ,∴∠EAB =∠AEB ,∴AB =EB ,由作图可得,AB =AF ,∴EB =AF ,又∵AD ∥BC ,∴四边形ABEF 是平行四边形,再由AB =AF ,可得□AB EF是菱形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年山东省东营市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列四个数中,最大的数是()A.3 B.C.0 D.π2.(3分)下列运算正确的是()A.(x﹣y)2=x2﹣y2B.|﹣2|=2﹣ C.﹣= D.﹣(﹣a+1)=a+1 3.(3分)若|x2﹣4x+4|与互为相反数,则x+y的值为()A.3 B.4 C.6 D.94.(3分)小明从家到学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,小明从家到学校行驶路程s(m)与时间t(min)的大致图象是()A.B.C.D.5.(3分)已知a∥b,一块含30°角的直角三角板如图所示放置,∠2=45°,则∠1等于()A.100°B.135°C.155° D.165°6.(3分)如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是()A.B.C.D.7.(3分)如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=8,AB=5,则AE的长为()A.5 B.6 C.8 D.128.(3分)若圆锥的侧面积等于其底面积的3倍,则该圆锥侧面展开图所对应扇形圆心角的度数为()A.60°B.90°C.120° D.180°9.(3分)如图,把△ABC沿着BC的方向平移到△DEF的位置,它们重叠部分的面积是△ABC面积的一半,若BC=,则△ABC移动的距离是()A.B.C.D.﹣10.(3分)如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PH•PC其中正确的是()A.①②③④B.②③C.①②④D.①③④二、填空题(本大题共8小题,共28分)11.(3分)《“一带一路”贸易合作大数据报告(2017)》以“一带一路”贸易合作现状分析和趋势预测为核心,采集调用了8000多个种类,总计1.2亿条全球进出口贸易基础数据…,1.2亿用科学记数法表示为.12.(3分)分解因式:﹣2x2y+16xy﹣32y=.13.(3分)为选拔一名选手参加全国中学生游泳锦标赛自由泳比赛,我市四名中学生参加了男子100米自由泳训练,他们成绩的平均数及其方差s2如下表所示:甲乙丙丁1′05″331′04″261′04″261′07″29S2 1.1 1.1 1.3 1.6如果选拔一名学生去参赛,应派去.14.(3分)如图,AB是半圆直径,半径OC⊥AB于点O,D为半圆上一点,AC ∥OD,AD与OC交于点E,连结CD、BD,给出以下三个结论:①OD平分∠COB;②BD=CD;③CD2=CE•CO,其中正确结论的序号是.15.(4分)如图,已知菱形ABCD的周长为16,面积为8,E为AB的中点,若P为对角线BD上一动点,则EP+AP的最小值为.16.(4分)我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是尺.17.(4分)一数学兴趣小组来到某公园,准备测量一座塔的高度.如图,在A 处测得塔顶的仰角为α,在B处测得塔顶的仰角为β,又测量出A、B两点的距离为s米,则塔高为米.18.(4分)如图,在平面直角坐标系中,直线l:y=x﹣与x轴交于点B1,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x轴,交直线l 于点B3,以A2B3为边长作等边三角形A3A2B3,…,则点A2017的横坐标是.三、解答题(本大题共7小题,共62分)19.(8分)(1)计算:6cos45°+()﹣1+(﹣1.73)0+|5﹣3|+42017×(﹣0.25)2017(2)先化简,再求值:(﹣a+1)÷+﹣a,并从﹣1,0,2中选一个合适的数作为a的值代入求值.20.(7分)为大力弘扬“奉献、友爱、互助、进步”的志愿服务精神,传播“奉献他人、提升自我”的志愿服务理念,东营市某中学利用周末时间开展了“助老助残、社区服务、生态环保、网络文明”四个志愿服务活动(每人只参加一个活动),九年级某班全班同学都参加了志愿服务,班长为了解志愿服务的情况,收集整理数据后,绘制以下不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)求该班的人数;(2)请把折线统计图补充完整;(3)求扇形统计图中,网络文明部分对应的圆心角的度数;(4)小明和小丽参加了志愿服务活动,请用树状图或列表法求出他们参加同一服务活动的概率.21.(8分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作⊙O的切线DE,交AC于点E,AC的反向延长线交⊙O于点F.(1)求证:DE⊥AC;(2)若DE+EA=8,⊙O的半径为10,求AF的长度.22.(8分)如图,一次函数y=kx+b的图象与坐标轴分别交于A、B两点,与反比例函数y=的图象在第一象限的交点为C,CD⊥x轴,垂足为D,若OB=3,OD=6,△AOB的面积为3.(1)求一次函数与反比例函数的解析式;(2)直接写出当x>0时,kx+b﹣<0的解集.23.(9分)为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对A、B两类学校进行改扩建,根据预算,改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元.(1)改扩建1所A类学校和1所B类学校所需资金分别是多少万元?(2)该县计划改扩建A、B两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元,其中地方财政投入到A、B两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案?24.(10分)如图,在等腰三角形ABC中,∠BAC=120°,AB=AC=2,点D是BC 边上的一个动点(不与B、C重合),在AC上取一点E,使∠ADE=30°.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式并写出自变量x的取值范围;(3)当△ADE是等腰三角形时,求AE的长.25.(12分)如图,直线y=﹣x+分别与x轴、y轴交于B、C两点,点A在x轴上,∠ACB=90°,抛物线y=ax2+bx+经过A,B两点.(1)求A、B两点的坐标;(2)求抛物线的解析式;(3)点M是直线BC上方抛物线上的一点,过点M作MH⊥BC于点H,作MD ∥y轴交BC于点D,求△DMH周长的最大值.2017年山东省东营市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下列四个数中,最大的数是()A.3 B.C.0 D.π【解答】解:0<<3<π,故选:D.2.(3分)下列运算正确的是()A.(x﹣y)2=x2﹣y2B.|﹣2|=2﹣ C.﹣= D.﹣(﹣a+1)=a+1【解答】解:A、原式=x2﹣2xy+y2,故本选项错误;B、原式=2﹣,故本选项正确;C、原式=2﹣,故本选项错误;D、原式=a﹣1,故本选项错误;故选:B.3.(3分)若|x2﹣4x+4|与互为相反数,则x+y的值为()A.3 B.4 C.6 D.9【解答】解:根据题意得|x2﹣4x+4|+=0,所以|x2﹣4x+4|=0,=0,即(x﹣2)2=0,2x﹣y﹣3=0,所以x=2,y=1,所以x+y=3.故选:A.4.(3分)小明从家到学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,小明从家到学校行驶路程s(m)与时间t(min)的大致图象是()A.B.C.D.【解答】解:小明从家到学校,先匀速步行到车站,因此S随时间t的增长而增长,等了几分钟后坐上了公交车,因此时间在增加,S不增长,坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,因此S又随时间t的增长而增长,故选:C.5.(3分)已知a∥b,一块含30°角的直角三角板如图所示放置,∠2=45°,则∠1等于()A.100°B.135°C.155° D.165°【解答】解:如图,过P作PQ∥a,∵a∥b,∴PQ∥b,∴∠BPQ=∠2=45°,∵∠APB=60°,∴∠APQ=15°,∴∠3=180°﹣∠APQ=165°,∴∠1=165°,故选:D.6.(3分)如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是()A.B.C.D.【解答】解:设没有涂上阴影的分别为:A、B、C、D、E、F、G,如图所示,从其余的小正方形中任取一个涂上阴影共有7种情况,而能够构成正方体的表面展开图的有以下情况,D、E、F、G,∴能构成这个正方体的表面展开图的概率是,故选:A.7.(3分)如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=8,AB=5,则AE的长为()A.5 B.6 C.8 D.12【解答】解:连结EF,AE与BF交于点O,∵四边形ABCD是平行四边形,AB=AF,∴四边形ABEF是菱形,∴AE⊥BF,OB=BF=4,OA=AE.∵AB=5,在Rt△AOB中,AO==3,∴AE=2AO=6.故选:B.8.(3分)若圆锥的侧面积等于其底面积的3倍,则该圆锥侧面展开图所对应扇形圆心角的度数为()A.60°B.90°C.120° D.180°【解答】解:设母线长为R,底面半径为r,∴底面周长=2πr,底面面积=πr2,侧面面积=lr=πrR,∵侧面积是底面积的3倍,∴3πr2=πrR,∴R=3r,设圆心角为n,有=πR,∴n=120°.故选:C.9.(3分)如图,把△ABC沿着BC的方向平移到△DEF的位置,它们重叠部分的面积是△ABC面积的一半,若BC=,则△ABC移动的距离是()A.B.C.D.﹣【解答】解:∵△ABC沿BC边平移到△DEF的位置,∴AB∥DE,∴△ABC∽△HEC,∴=()2=,∴EC:BC=1:,∵BC=,∴EC=,∴BE=BC﹣EC=﹣.故选:D.10.(3分)如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PH•PC其中正确的是()A.①②③④B.②③C.①②④D.①③④【解答】解:∵△BPC是等边三角形,∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,在正方形ABCD中,∵AB=BC=CD,∠A=∠ADC=∠BCD=90°∴∠ABE=∠DCF=30°,∴BE=2AE;故①正确;∵PC=CD,∠PCD=30°,∴∠PDC=75°,∴∠FDP=15°,∵∠DBA=45°,∴∠PBD=15°,∴∠FDP=∠PBD,∵∠DFP=∠BPC=60°,∴△DFP∽△BPH;故②正确;∵∠FDP=∠PBD=15°,∠ADB=45°,∴∠PDB=30°,而∠DFP=60°,∴∠PFD≠∠PDB,∴△PFD与△PDB不会相似;故③错误;∵∠PDH=∠PCD=30°,∠DPH=∠DPC,∴△DPH∽△CPD,∴,∴DP2=PH•PC,故④正确;故选:C.二、填空题(本大题共8小题,共28分)11.(3分)《“一带一路”贸易合作大数据报告(2017)》以“一带一路”贸易合作现状分析和趋势预测为核心,采集调用了8000多个种类,总计1.2亿条全球进出口贸易基础数据…,1.2亿用科学记数法表示为 1.2×108.【解答】解:1.2亿用科学记数法表示为1.2×108.故答案为:1.2×108.12.(3分)分解因式:﹣2x2y+16xy﹣32y=﹣2y(x﹣4)2.【解答】解:原式=﹣2y(x2﹣8x+16)=﹣2y(x﹣4)2故答案为:﹣2y(x﹣4)213.(3分)为选拔一名选手参加全国中学生游泳锦标赛自由泳比赛,我市四名中学生参加了男子100米自由泳训练,他们成绩的平均数及其方差s2如下表所示:甲乙丙丁1′05″331′04″261′04″261′07″29S2 1.1 1.1 1.3 1.6如果选拔一名学生去参赛,应派乙去.【解答】解:∵>>=,∴从乙和丙中选择一人参加比赛,∵S<S,∴选择乙参赛,故答案为:乙.14.(3分)如图,AB是半圆直径,半径OC⊥AB于点O,D为半圆上一点,AC ∥OD,AD与OC交于点E,连结CD、BD,给出以下三个结论:①OD平分∠COB;②BD=CD;③CD2=CE•CO,其中正确结论的序号是①②③.【解答】解:①∵OC⊥AB,∴∠BOC=∠AOC=90°.∵OC=OA,∴∠OCA=∠OAC=45°.∵AC∥OD,∴∠BOD=∠CAO=45°,∴∠DOC=45°,∴∠BOD=∠DOC,∴OD平分∠COB.故①正确;②∵∠BOD=∠DOC,∴BD=CD.故②正确;③∵∠AOC=90°,∴∠CDA=45°,∴∠DOC=∠CDA.∵∠OCD=∠OCD,∴△DOC∽△EDC,∴,∴CD2=CE•CO.故③正确.故答案为:①②③.15.(4分)如图,已知菱形ABCD的周长为16,面积为8,E为AB的中点,若P为对角线BD上一动点,则EP+AP的最小值为2.【解答】解:如图作CE′⊥AB于E′,交BD于P′,连接AC、AP′.∵已知菱形ABCD的周长为16,面积为8,∴AB=BC=4,AB•CE′=8,∴CE′=2,在Rt△BCE′中,BE′==2,∵BE=EA=2,∴E与E′重合,∵四边形ABCD是菱形,∴BD垂直平分AC,∴A、C关于BD对称,∴当P与P′重合时,P′A+P′E的值最小,最小值为CE的长=2,故答案为2.16.(4分)我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是25尺.【解答】解:如图,一条直角边(即枯木的高)长20尺,另一条直角边长5×3=15(尺),因此葛藤长为=25(尺).故答案为:25.17.(4分)一数学兴趣小组来到某公园,准备测量一座塔的高度.如图,在A 处测得塔顶的仰角为α,在B处测得塔顶的仰角为β,又测量出A、B两点的距离为s米,则塔高为米.【解答】解:在Rt△BCD中,∵tan∠CBD=,∴BD=,在Rt△ACD中,∵tan∠A==,∴tanα=,解得:CD=,故答案为:.18.(4分)如图,在平面直角坐标系中,直线l:y=x﹣与x轴交于点B1,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x轴,交直线l 于点B3,以A2B3为边长作等边三角形A3A2B3,…,则点A2017的横坐标是.【解答】解:由直线l:y=x﹣与x轴交于点B1,可得B1(1,0),D(0,﹣),∴OB1=1,∠OB1D=30°,如图所示,过A1作A1A⊥OB1于A,则OA=OB1=,即A1的横坐标为=,由题可得∠A1B2B1=∠OB1D=30°,∠B2A1B1=∠A1B1O=60°,∴∠A1B1B2=90°,∴A1B2=2A1B1=2,过A2作A2B⊥A1B2于B,则A1B=A1B2=1,即A2的横坐标为+1==,过A3作A3C⊥A2B3于C,同理可得,A2B3=2A2B2=4,A2C=A2B3=2,即A3的横坐标为+1+2==,同理可得,A4的横坐标为+1+2+4==,由此可得,A n的横坐标为,∴点A2017的横坐标是,故答案为:.三、解答题(本大题共7小题,共62分)19.(8分)(1)计算:6cos45°+()﹣1+(﹣1.73)0+|5﹣3|+42017×(﹣0.25)2017(2)先化简,再求值:(﹣a+1)÷+﹣a,并从﹣1,0,2中选一个合适的数作为a的值代入求值.【解答】解:(1)6cos45°+()﹣1+(﹣1.73)0+|5﹣3|+42017×(﹣0.25)2017=6×+3+1+5﹣3+42017×(﹣)2017==8;(2)(﹣a+1)÷+﹣a=====﹣a﹣1,当a=0时,原式=﹣0﹣1=﹣1.20.(7分)为大力弘扬“奉献、友爱、互助、进步”的志愿服务精神,传播“奉献他人、提升自我”的志愿服务理念,东营市某中学利用周末时间开展了“助老助残、社区服务、生态环保、网络文明”四个志愿服务活动(每人只参加一个活动),九年级某班全班同学都参加了志愿服务,班长为了解志愿服务的情况,收集整理数据后,绘制以下不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)求该班的人数;(2)请把折线统计图补充完整;(3)求扇形统计图中,网络文明部分对应的圆心角的度数;(4)小明和小丽参加了志愿服务活动,请用树状图或列表法求出他们参加同一服务活动的概率.【解答】解:(1)该班全部人数:12÷25%=48人.(2)48×50%=24,折线统计如图所示:(3)×360°=45°.(4)分别用“1,2,3,4”代表“助老助残、社区服务、生态环保、网络文明”四个服务活动,列表如下:则所有可能有16种,其中他们参加同一活动有4种,所以他们参加同一服务活动的概率P==.21.(8分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作⊙O的切线DE,交AC于点E,AC的反向延长线交⊙O于点F.(1)求证:DE⊥AC;(2)若DE+EA=8,⊙O的半径为10,求AF的长度.【解答】(1)证明:∵OB=OD,∴∠ABC=∠ODB,∵AB=AC,∴∠ABC=∠ACB,∴∠ODB=∠ACB,∴OD∥AC.∵DE是⊙O的切线,OD是半径,∴DE⊥OD,∴DE⊥AC;(2)如图,过点O作OH⊥AF于点H,则∠ODE=∠DEH=∠OHE=90°,∴四边形ODEH是矩形,∴OD=EH,OH=DE.设AH=x.∵DE+AE=8,OD=10,∴AE=10﹣x,OH=DE=8﹣(10﹣x)=x﹣2.在Rt△AOH中,由勾股定理知:AH2+OH2=OA2,即x2+(x﹣2)2=102,解得x1=8,x2=﹣6(不合题意,舍去).∴AH=8.∵OH⊥AF,∴AH=FH=AF,∴AF=2AH=2×8=16.22.(8分)如图,一次函数y=kx+b的图象与坐标轴分别交于A、B两点,与反比例函数y=的图象在第一象限的交点为C,CD⊥x轴,垂足为D,若OB=3,OD=6,△AOB的面积为3.(1)求一次函数与反比例函数的解析式;(2)直接写出当x>0时,kx+b﹣<0的解集.【解答】解:(1)∵S=3,OB=3,△AOB∴OA=2,∴B(3,0),A(0,﹣2),代入y=kx+b得:,解得:k=,b=﹣2,∴一次函数y=x﹣2,∵OD=6,∴D(6,0),CD⊥x轴,当x=6时,y=×6﹣2=2∴C(6,2),∴n=6×2=12,∴反比例函数的解析式是y=;(2)当x>0时,kx+b﹣<0的解集是0<x<6.23.(9分)为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对A、B两类学校进行改扩建,根据预算,改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元.(1)改扩建1所A类学校和1所B类学校所需资金分别是多少万元?(2)该县计划改扩建A、B两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元,其中地方财政投入到A、B两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案?【解答】解:(1)设改扩建一所A类和一所B类学校所需资金分别为x万元和y 万元由题意得,解得,答:改扩建一所A类学校和一所B类学校所需资金分别为1200万元和1800万元.(2)设今年改扩建A类学校a所,则改扩建B类学校(10﹣a)所,由题意得:,解得,∴3≤a≤5,∵a取整数,∴a=3,4,5.即共有3种方案:方案一:改扩建A类学校3所,B类学校7所;方案二:改扩建A类学校4所,B类学校6所;方案三:改扩建A类学校5所,B类学校5所.24.(10分)如图,在等腰三角形ABC中,∠BAC=120°,AB=AC=2,点D是BC 边上的一个动点(不与B、C重合),在AC上取一点E,使∠ADE=30°.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式并写出自变量x的取值范围;(3)当△ADE是等腰三角形时,求AE的长.【解答】证明:(1)∵△ABC是等腰三角形,且∠BAC=120°,∴∠ABD=∠ACB=30°,∴∠ABD=∠ADE=30°,∵∠ADC=∠ADE+∠EDC=∠ABD+∠DAB,∴∠EDC=∠DAB,∴△ABD∽△DCE;(2)如图1,∵AB=AC=2,∠BAC=120°,过A作AF⊥BC于F,∴∠AFB=90°,∵AB=2,∠ABF=30°,∴AF=AB=1,∴BF=,∴BC=2BF=2,则DC=2﹣x,EC=2﹣y,∵△ABD∽△DCE,∴,∴,化简得:y=x+2(0<x<2);(3)当AD=DE时,如图2,由(1)可知:此时△ABD∽△DCE,则AB=CD,即2=2﹣x,x=2﹣2,代入y=x+2,解得:y=4﹣2,即AE=4﹣2,当AE=ED时,如图3,∠EAD=∠EDA=30°,∠AED=120°,∴∠DEC=60°,∠EDC=90°,则ED=EC,即y=(2﹣y),解得:y=,即AE=,当AD=AE时,∠AED=∠EDA=30°,∠EAD=120°,此时点D与点B重合,不符合题意,此情况不存在,∴当△ADE是等腰三角形时,AE=4﹣2或.25.(12分)如图,直线y=﹣x+分别与x轴、y轴交于B、C两点,点A在x轴上,∠ACB=90°,抛物线y=ax2+bx+经过A,B两点.(1)求A、B两点的坐标;(2)求抛物线的解析式;(3)点M是直线BC上方抛物线上的一点,过点M作MH⊥BC于点H,作MD ∥y轴交BC于点D,求△DMH周长的最大值.【解答】解:(1)∵直线y=﹣x+分别与x轴、y轴交于B、C两点,∴B(3,0),C(0,),∴OB=3,OC=,∴tan∠BCO==,∴∠BCO=60°,∵∠ACB=90°,∴∠ACO=30°,∴=tan30°=,即=,解得AO=1,∴A(﹣1,0);(2)∵抛物线y=ax2+bx+经过A,B两点,∴,解得,∴抛物线解析式为y=﹣x2+x+;(3)∵MD∥y轴,MH⊥BC,∴∠MDH=∠BCO=60°,则∠DMH=30°,∴DH=DM,MH=DM,∴△DMH的周长=DM+DH+MH=DM+DM+DM=DM,∴当DM有最大值时,其周长有最大值,∵点M是直线BC上方抛物线上的一点,∴可设M(t,﹣t2+t+),则D(t,﹣t+),∴DM=﹣t2+t+﹣(﹣t+)=﹣t2+t=﹣(t﹣)2+,∴当t=时,DM有最大值,最大值为,此时DM=×=,即△DMH周长的最大值为.。

相关文档
最新文档