ANSYS 官方帮助文件 27-Turbo-Post
CFX12_05_Post
ANSYS, Inc. Proprietary © 2009 ANSYS, Inc. All rights reserved.
CFD Post
GUI Layout
Training Manual
Additional tabs (various tools) Outline tab (“model tree”)
Details view Various Viewers (3D, Chart, …)
ANSYS, Inc. Proprietary © 2009 ANSYS, Inc. All rights reserved.
5-4
April 28, 2009 Inventory #002598
CFD Post
ANSYSNSYS, Inc. All rights reserved.
Training Manual
5-5
April 28, 2009 Inventory #002598
CFD Post
Creating Locations
Training Manual
Training Manual
b.
From the CFX Launcher
c.
Within ANSYS Workbench
d.
•
From the Start Menu or Command Line
Start > Programs > ANSYS 12.0 > ANSYS CFD-Post
5-3
April 28, 2009 Inventory #002598
5-7
April 28, 2009 Inventory #002598
CFD Post
(完整版)ANSYS命令流使用方法(中文)修改
(完整版)ANSYS命令流使用方法(中文)修改Finish(退出四大模块,回到BEGIN层)/clear (清空内存,开始新的计算)1.定义参数、数组,并赋值.2./prep7(进入前处理)定义几何图形:关键点、线、面、体定义几个所关心的节点,以备后处理时调用节点号。
设材料线弹性、非线性特性设置单元类型及相应KEYOPT设置实常数设置网格划分,划分网格根据需要耦合某些节点自由度定义单元表3./solu加边界条件设置求解选项定义载荷步求解载荷步4./post1(通用后处理)5./post26 (时间历程后处理)6.PLOTCONTROL菜单命令7.参数化设计语言8.理论手册Finish(退出四大模块,回到BEGIN层)/clear (清空内存,开始新的计算)1.定义参数、数组,并赋值.dim, par, type, imax, jmax, kmax, var1, vae2, var3 定义数组par: 数组名type:array 数组,如同fortran,下标最小号为1,可以多达三维(缺省)char 字符串组(每个元素最多8个字符)tableimax,jmax, kmax 各维的最大下标号var1,var2,var3 各维变量名,缺省为row,column,plane(当type 为table时) 2./prep7(进入前处理)2.1 设置单元类型及相应KEYOPTET, itype, ename, kop1……kop6, inopr 设定当前单元类型Itype:单元号Ename:单元名设置实常数Keyopt, itype, knum, valueitype: 已定义的单元类型号knum: 单元的关键字号value: 数值注意:如果,则必须使用keyopt命令,否则也可在ET命令中输入2.2 定义几个所关心的节点,以备后处理时调用节点号。
n,node,x,y,z,thxy, thyz, thzx 根据坐标定义节点号如果已有此节点,则原节点被重新定义,一般为最大节点号。
ansys-中文帮助手册(含目录-word版本)
ansys-中文帮助手册(含目录-word版本)目录第1 章开始使用ANSYS 11.1 完成典型的ANSYS 分析 1 1.2 建立模型 1第2 章加载232.1 载荷概述23 2.2 什么是载荷23 2.3 载荷步、子步和平衡迭代24 2.4 跟踪中时间的作用25 2.5 阶跃载荷与坡道载荷26 2.6 如何加载27 2.7 如何指定载荷步选项68 2.8 创建多载荷步文件77 2.9 定义接头固定处预拉伸78第3 章求解853.1 什么是求解84 3.2 选择求解器84 3.3 使用波前求解器85 3.4 使用稀疏阵直接解法求解器86 3.5 使用雅可比共轭梯度法求解器(JCG)86 3.6 使用不完全乔列斯基共轭梯度法求解器(ICCG)86 3.7 使用预条件共轭梯度法求解器(PCG)86 3.8 使用代数多栅求解器(AMG)87 3.9 使用分布式求解器(DDS)88 3.10 自动迭代(快速)求解器选项88 3.11 在某些类型结构分析使用特殊求解控制89 3.12 使用PGR 文件存储后处理数据92 3.13 获得解答96 3.14 求解多载荷步97 3.15 中断正在运行的作业100 3.16 重新启动一个分析100 3.17 实施部分求解步111 3.18 估计运行时间和文件大小1133.19 奇异解114第4 章后处理概述1164.1 什么是后处理116 4.2 结果文件117 4.3 后处理可用的数据类型117第5 章通用后处理器(POST1) 1185.1 概述118 5.2 将数据结果读入数据库118 5.3 在POST1 中观察结果127 5.4 在POST1 中使用PGR 文件152 5.5 POST1 的其他后处理内容160第6 章时间历程后处理器(POST26)1746.1 时间历程变量观察器174 6.2 进入时间历程处理器176 6.3 定义变量177 6.4 处理变量并进行计算179 6.5 数据的输入181 6.6 数据的输出183 6.7 变量的评价184 6.8 POST26 后处理器的其它功能187 第7 章选择和组件190 7.1 什么是选择190 7.2 选择实体190 7.3 为有意义的后处理选择194 7.4 将几何项目组集成部件与组件195 第8 章图形使用入门1988.1 概述198 8.2 交互式图形与“外部”图形198 8.3 标识图形设备名(UNIX 系统)198 8.4 指定图形显示设备的类型(WINDOWS 系统)2018.5 与系统相关的图形信息202 8.6 产生图形显示205 8.7 多重绘图技术207第9 章通用图形规范2109.1 概述210 9.2 用GUI 控制显示210 9.3 多个ANSYS 窗口,叠加显示210 9.4 改变观察角、缩放及平移211 9.5 控制各种文本和符号214 9.6 图形规范杂项217 9.7 3D 输入设备支持218第10 章增强型图形21910.1 图形显示的两种方法219 10.2P OWER G RAPHICS 的特性219 10.3何时用P OWER G RAPHICS219 10.4激活和关闭P OWER G RAPHICS220 10.5怎样使用P OWER G RAPHICS220 10.6希望从P OWER G RAPHICS 绘图中做什么220第11 章创建几何显示22311.1 用GUI 显示几何体223 11.2 创建实体模型实体的显示223 11.3 改变几何显示的说明224第12 章创建几何模型结果显示23312.1 利用GUI 来显示几何模型结果233 12.2 创建结果的几何显示233 12.3 改变POST1 结果显示规范235 12.4 Q-S LICE 技术238 12.5 等值面技术238 12.6 控制粒子流或带电粒子的轨迹显示239第13 章生成图形24013.1 使用GUI 生成及控制图240 13.2 图形显示动作240 13.3 改变图形显示指定241第14章注释24514.1 注释概述245 14.2 二维注释245 14.3 为ANSYS 模型生成注释246 14.4 三维注释246 14.5 三维查询注释247第15 章动画24815.1 动画概述248 15.2 在ANSYS 中生成动画显示248 15.3 使用基本的动画命令248 15.4 使用单步动画宏249 15.5 离线捕捉动画显示图形序列249 15.6 独立的动画程序250 15.7 WINDOWS 环境中的动画251第16 章外部图形25316.1 外部图形概述253 16.2 生成中性图形文件254 16.3 DISPLAY 程序观察及转换中性图形文件255 16.4 获得硬拷贝图形258 第17 章报告生成器25917.1 启动报告生成器259 17.2 抓取图象260 17.3 捕捉动画260 17.4 获得数据表格261 17.5 获取列表264 17.6 生成报告26417.7 报告生成器的默认设置267 第18 章 CMAP 程序26918.1 CMAP 概述269 18.2 作为独立程序启动CMAP269 18.3 在ANSYS 内部使用CMAP271 18.4 用户化彩色图271第19 章文件和文件管理27419.1 文件管理概述274 19.2 更改缺省文件名274 19.3 将输出送到屏幕、文件或屏幕及文件275 19.4 文本文件及二进制文件275 19.5 将自己的文件读入ANSYS 程序278 19.6 在ANSYS 程序中写自己的ANSYS 文件279 19.7 分配不同的文件名280 19.8 观察二进制文件内容(AXU2)280 19.9 在结果文件上的操作(AUX3)280 19.10 其它文件管理命令280第20 章内存管理与配置28220.1 内存管理282 20.2 基本概念282 20.3 怎样及何时进行内存管理283 20.4 配置文件286第1 章开始使用ANSYS1.1 完成典型的ANSYS 分析ANSYS 软件具有多种有限元分析的能力,包括从简单线性静态分析到复杂的非线性瞬态动力学分析。
ANSYS中文翻译官方高级手册_adv1
C. 参数化提取结果
在本步中,提取结果并赋值给相应的参数。这些参数一般为状态变量和目
标函数。提取数据的操作用*GET 命令(Utility Menu>Parameters>Get Scalar Data)
实现。通常用 POST1 来完成本步操作,特别是涉及到数据的存储,加减或其他
操作。
在梁的例题中,梁的总重量是目标函数。因为重量与体积成比例(假定密
优化设计通常包括以下几个步骤,这些步骤根据用户所选用优化方法的不 同(批处理 GUI 方式)而有细微的差别。
1-2
ANSYS 高级技术分析指南
图 1-2 优化数据流向
优化设计
1. 生成循环所用的分析文件。该文件必须包括整个分析的过程,而且 必须满足以下条件:
a. 参数化建立模型(PREP7)。 b. 求解(SOLUTION)。 c. 提取并指定状态变量和目标函数(POST1/POST26)。 2. 在 ANSYS 数据库里建立与分析文件中变量相对应的参数。这一步
状态变量和目标函数时使用这些操作,应该用可以参数化的操作来代替。
B. 求解
求解器用于定义分析类型和分析选项,施加载荷,指定载荷步,完成有限
元计算。分析中所用到的数据都要指出:凝聚法分析中的主自由度,非线性分析
中的收敛准则,谐波分析中的频率范围等。载荷和边界条件也可以作为设计变量。
梁的例子中,SOLUTION 部分的输入大致如下:
例子中,设计变量是 B(梁的宽度)和 H(梁的高度),因此单元的实参是由 B
和 H 来表示的:
…
/PREP7
!初始化设计变量:
B=2.0
H=3.0
!
ET,1,BEAM3
!2-D 梁单元
ansys通用后处理
• 通过画出结构能误差的等值线图,可显示误差较大的区域 -- 这些区 域需要网格加密。
• 画出所有单元的应力偏差图,可给出每个单元的应力误差值。 (平均 应力和非平均应力不同)
后处理
.误差估计
• 误差估计 仅在 POST1中有效且仅适用于 : – 线性静力结构分析和线性稳态热分析 – 实体单元 (2-D 和 3-D) 和壳单元 – 全图形模式 (非 PowerGraphics) 如果这些条件不能够满足, ANSYS 会自动关闭 误差估 计计算.
为缺省值.
后处理
.路径操作
2. 将数据映射到路径上 – General Postproc > Path Operations > Map onto Path… (或 PDEF
命令) • 选定需要的量, 诸如 SX. • 为选定的量加入一个用于绘图和列表的标签.
– 如果需要,您可以显示这一路径. • General Postproc > Path Operations > Plot Paths • (或键入命令 /PBC,PATH,1 续之以 NPLOT 或 EPLOT命令)
后处理
…结果坐标系
• 将结果坐标系变成不同的坐标系统, 使 用: – General Postproc > Options for Outp… – 或 RSYS 命令
后续的等值图, 列表, 查询拾取等,将显示该坐标系下的 结果值.
缺省 方位 RSYS,0
局部柱坐标系 RSYS,11
总体柱坐标系 RSYS,1
PowerGraphics 关闭
检查网格精度
ANSYS的帮助文件使用说明
ANSYS的帮助文件使用说明很多网友都曾觉得ANSYS使用起来有一定的难度,经常会遇到这样或那样的问题,但市面上的参考书又不尽如人意,那究竟有没有比较好的参数书?有的,个人认为ANSYS的帮助文件就是一本不错的参数书。
接下来就ANSYS在线帮助的使用做一些基本的介绍,希望能对初学者有所帮助。
ANSYS的帮助文件包括所有ANSYS命令解释及所有的GUI解释,还包括ANSYS各模块的分析指南,实例练习等。
一.进入帮助系统可以通过下列三种方式进入:1.进入ANSYS的操作界面后,在应用菜单中选取Help进入;2.在ANSYS程序组中选取Help System进入:Start Menu > Programs > ANSYS XX>Help Sy stem;3.在任何对话框中选取Help。
二.帮助系统的内容安排:点击帮助系统的目录,就看到如下的ANSYS帮助系统的整体内容安排:1.前面4个部分是与软件版本,安装,注册相关的信息,只需作相应的了解即可,如下:※Release Notes※ANSYS Installation and Configuration Guide for UNIX※ANSYS Installation and Configuration Guide for Windows※ANSYS, Inc. Licensing Guide2.接下来两个部分是比较重要的部分,ANSYS的命令和单元手册,对用到的命令和单元应作详细的了解和掌握。
※ANSYS Commands Reference※ANSYS Element Reference3.下面四个部分是ANSYS相关的操作手册,说明如下:※Operations Guide 基本界面,操作指南※Basic Analysis Procedures Guide 基础分析指南※Advanced Analysis Techniques Guide 高级分析指南※Modeling and Meshing Guide 建模与分网指南4.以下几个部分则是ANSYS分模块的分析指南,如下:※Structural Analysis Guide 结构分析指南※Thermal Analysis Guide 热分析指南※CFD FLOTRAN Analysis Guide 流体分析指南※Electromagnetic Field Analysis Guide 电磁场分析指南※Coupled-Field Analysis Guide 耦合场分析指南5.为更好的使用ANSYS方便,快捷的解决更多的工程实际问题,建议仔细学习以下几个部分:※APDL Programmer's Guide:APDL操作手册※ANSYS Troubleshooting Guide:ANSYS错误信息指南※Mechanical Toolbar:机械工具栏※ANSYS/LS-DYNA User's Guide:ANSYS/LS-DYNA操作指南※ANSYS Connection Users Guide:接口技术指南6.欲快速掌握ANSYS的使用,莫过于通过实例和练习,而ANSYS的帮助系统中则提供大量的例题及练习供用户参考,所以以下两个部分是经常光顾的。
ANSYS-提示错误解决办法
ESYS is not valid for line element.原因:是因为我使用LATT的时候,把“--”的那个不小心填成了“1”。
经过ANSYS的命令手册里说那是没有用的项目,但是根据我的理解,这些所谓的没有用的项目实际上都是ANSYS 在为后续的版本留接口。
对于LATT,实际上那个项目可能就是单元坐标系的设置。
当我发现原因后,把1改成0——即使用全局直角坐标系,就没有W ARNING了。
当然,直接空白也没有问题。
NO.0002使用*TREAD的时候,有的时候明明看文件好好的,可是却出现*TREAD end-of-file in data read.后来仔细检查,发现我TXT的数据文件里,分隔是采用TAB键分隔的。
但是在最后一列后面,如果把鼠标点上去,发现数据后面还有一个空格键。
于是,我把每个列最后多的空格键删除,然后发现上面的信息就没有了。
NO.0003Coefficient ratio exceeds 1.0e8 - Check results.这个大概是跟收敛有关,但是我找不到具体的原因。
我建立的一个桥梁分析模型,尽管我分析的结果完全符合我的力学概念判断,规律完全符合基本规律,数据也基本符合实际观测,但是却还是不断出现这个警告信息。
NO.0004*TREAD end-of-file in data readtxt中的表格数据不完整!NO.0005No *CREATE for *END. The *END command is ignored忘了写*END了吧,呵呵NO.0006Keypoint 1 is referenced by only one line. Improperly connected line set for AL command两条线不共点,尝试nummrg命令。
NO.0007L1 is not a recognized PREP7 command, abbreviation, or macro. This command will be ignored还没有进入prep7,先:/prep7NO.0008Keypoint 2 belongs to line 4 and cannot be moved关键点2属于线4,移动低级体素时先移动高级体素!NO.0009Shape testing revealed that 32 of the 640 new or modified elementsviolate shape warning limits. To review test results, please see theoutput file or issue the CHECK command.单元形状奇异,在我的模型中6面体单元的三个边长差距较大,可忽略该错误NO.0010用命令流建模的时候遇到的The drag direction (from the keypoint on drag line 27 that is closestto a keypoint KP of the given area 95) is orthogonal to the areanormal at that KP. Area cannot be dragged by the VDRAG command.意思是拉伸源面的法向与拉伸路径垂直,不能使用VDRAG命令ASEL,S,LOC,Z,143e-3VDRAG,ALL, , , , , , 27本意是按位置z=143e-3位置的面,然后沿编号27的线拉伸,出错,之前用该语句没有任何问题。
Ansys中文帮助-常用命令简介1
ansys常用命令的中文翻译1.A,P1,P2,…,P17,P18(以点定义面)2.AADD,NA1,NA2,…NA8,NA9(面相加)3.AATT,MAT,REAL,TYPE,ESYS,SECN(指定面的单元属性)【注】ESYS为坐标系统号、SECN为截面类型号。
4.*ABBR,Abbr,String(定义一个缩略词)5.ABBRES,Lab,Fname,Ext(从文件中读取缩略词)6.ABBSAVE,Lab,Fname,Ext(将当前定义的缩略词写入文件)7.ABS,IR,IA,--,--,Name,--,--,FACTA(取绝对值)【注】*************8.ACCAT,NA1,NA2(连接面)9.ACEL,ACEX,ACEY,ACEZ(定义结构的线性加速度)10.ACLEAR,NA1,NA2,NINC(清除面单元网格)11.ADAMS,NMODES,KSTRESS,KSHELL【注】*************12.ADAPT,NSOLN,STARGT,TTARGT,FACMN,FACMX,KYKPS,KYMAC【注】*************13.ADD,IR,IA,IB,IC,Name,--,--,FACTA,FACTB,FACTC(变量加运算)14.ADELE,NA1,NA2,NINC,KSWP(删除面)【注】KSWP=0删除面但保留面上关键点、1删除面及面上关键点。
15.ADRAG,NL1,NL2,…,NL6,NLP1,NLP2,…,NLP6(将既有线沿一定路径拖拉成面)16.AESIZE,ANUM,SIZE(指定面上划分单元大小)17.AFILLT,NA1,NA1,RAD(两面之间生成倒角面)18.AFSURF,SAREA,TLINE(在既有面单元上生成重叠的表面单元)19.*AFUN,Lab(指定参数表达式中角度单位)20.AGEN,ITIME,NA1,NA2,NINC,DX,DY,DZ,KINC,NOELEM,IMOVE(复制面)21.AGLUE,NA1,NA2,…,NA8,NA9(面间相互粘接)22.AINA,NA1,NA2,…,NA8,NA9(被选面的交集)23.AINP,NA1,NA2,…,NA8,NA9(面集两两相交)24.AINV,NA,NV(面体相交)25.AL,L1,L2,…,L9,L10(以线定义面)26.ALIST,NA1,NA2,NINC,Lab(列表显示面的信息)【注】Lab=HPT时,显示面上硬点信息,默认为空。
ansys-中文帮助手册(含目录-word版本)
目录第1 章开始使用ANSYS 11.1 完成典型的ANSYS 分析 1 1.2 建立模型 1第2 章加载232.1 载荷概述23 2.2 什么是载荷23 2.3 载荷步、子步和平衡迭代24 2.4 跟踪中时间的作用25 2.5 阶跃载荷与坡道载荷26 2.6 如何加载27 2.7 如何指定载荷步选项68 2.8 创建多载荷步文件77 2.9 定义接头固定处预拉伸78第3 章求解853.1 什么是求解84 3.2 选择求解器84 3.3 使用波前求解器85 3.4 使用稀疏阵直接解法求解器86 3.5 使用雅可比共轭梯度法求解器(JCG)86 3.6 使用不完全乔列斯基共轭梯度法求解器(ICCG)86 3.7 使用预条件共轭梯度法求解器(PCG)86 3.8 使用代数多栅求解器(AMG)87 3.9 使用分布式求解器(DDS)88 3.10 自动迭代(快速)求解器选项88 3.11 在某些类型结构分析使用特殊求解控制89 3.12 使用PGR 文件存储后处理数据92 3.13 获得解答96 3.14 求解多载荷步97 3.15 中断正在运行的作业100 3.16 重新启动一个分析100 3.17 实施部分求解步111 3.18 估计运行时间和文件大小1133.19 奇异解114第4 章后处理概述1164.1 什么是后处理116 4.2 结果文件117 4.3 后处理可用的数据类型117第5 章通用后处理器(POST1) 1185.1 概述118 5.2 将数据结果读入数据库118 5.3 在POST1 中观察结果127 5.4 在POST1 中使用PGR 文件152 5.5 POST1 的其他后处理内容160第6 章时间历程后处理器(POST26)1746.1 时间历程变量观察器174 6.2 进入时间历程处理器176 6.3 定义变量177 6.4 处理变量并进行计算179 6.5 数据的输入181 6.6 数据的输出183 6.7 变量的评价184 6.8 POST26 后处理器的其它功能187第7 章选择和组件190 7.1 什么是选择190 7.2 选择实体190 7.3 为有意义的后处理选择194 7.4 将几何项目组集成部件与组件195第8 章图形使用入门1988.1 概述198 8.2 交互式图形与“外部”图形198 8.3 标识图形设备名(UNIX 系统)198 8.4 指定图形显示设备的类型(WINDOWS 系统)2018.5 与系统相关的图形信息202 8.6 产生图形显示205 8.7 多重绘图技术207第9 章通用图形规范2109.1 概述210 9.2 用GUI 控制显示210 9.3 多个ANSYS 窗口,叠加显示210 9.4 改变观察角、缩放及平移211 9.5 控制各种文本和符号214 9.6 图形规范杂项217 9.7 3D 输入设备支持218第10 章增强型图形21910.1 图形显示的两种方法219 10.2P OWER G RAPHICS 的特性219 10.3何时用P OWER G RAPHICS219 10.4激活和关闭P OWER G RAPHICS220 10.5怎样使用P OWER G RAPHICS220 10.6希望从P OWER G RAPHICS 绘图中做什么220第11 章创建几何显示22311.1 用GUI 显示几何体223 11.2 创建实体模型实体的显示223 11.3 改变几何显示的说明224第12 章创建几何模型结果显示23312.1 利用GUI 来显示几何模型结果233 12.2 创建结果的几何显示233 12.3 改变POST1 结果显示规范235 12.4 Q-S LICE 技术238 12.5 等值面技术238 12.6 控制粒子流或带电粒子的轨迹显示239第13 章生成图形24013.1 使用GUI 生成及控制图240 13.2 图形显示动作240 13.3 改变图形显示指定241第14章注释24514.1 注释概述245 14.2 二维注释245 14.3 为ANSYS 模型生成注释246 14.4 三维注释246 14.5 三维查询注释247第15 章动画24815.1 动画概述248 15.2 在ANSYS 中生成动画显示248 15.3 使用基本的动画命令248 15.4 使用单步动画宏249 15.5 离线捕捉动画显示图形序列249 15.6 独立的动画程序250 15.7 WINDOWS 环境中的动画251第16 章外部图形25316.1 外部图形概述253 16.2 生成中性图形文件254 16.3 DISPLAY 程序观察及转换中性图形文件255 16.4 获得硬拷贝图形258第17 章报告生成器25917.1 启动报告生成器259 17.2 抓取图象260 17.3 捕捉动画260 17.4 获得数据表格261 17.5 获取列表264 17.6 生成报告26417.7 报告生成器的默认设置267 第18 章 CMAP 程序26918.1 CMAP 概述269 18.2 作为独立程序启动CMAP269 18.3 在ANSYS 内部使用CMAP271 18.4 用户化彩色图271第19 章文件和文件管理27419.1 文件管理概述274 19.2 更改缺省文件名274 19.3 将输出送到屏幕、文件或屏幕及文件275 19.4 文本文件及二进制文件275 19.5 将自己的文件读入ANSYS 程序278 19.6 在ANSYS 程序中写自己的ANSYS 文件279 19.7 分配不同的文件名280 19.8 观察二进制文件内容(AXU2)280 19.9 在结果文件上的操作(AUX3)280 19.10 其它文件管理命令280第20 章内存管理与配置28220.1 内存管理282 20.2 基本概念282 20.3 怎样及何时进行内存管理283 20.4 配置文件286第1 章开始使用ANSYS1.1 完成典型的ANSYS 分析ANSYS 软件具有多种有限元分析的能力,包括从简单线性静态分析到复杂的非线性瞬态动力学分析。
ANSYS的帮助文件使用说明
ANSYS的帮助⽂件使⽤说明ANSYS的帮助⽂件使⽤说明很多⽹友都曾觉得ANSYS使⽤起来有⼀定的难度,经常会遇到这样或那样的问题,但市⾯上的参考书⼜不尽如⼈意,那究竟有没有⽐较好的参数书?有的,个⼈认为ANSYS的帮助⽂件就是⼀本不错的参数书。
接下来就ANSYS在线帮助的使⽤做⼀些基本的介绍,希望能对初学者有所帮助。
ANSYS的帮助⽂件包括所有ANSYS命令解释及所有的GUI解释,还包括ANSYS各模块的分析指南,实例练习等。
⼀.进⼊帮助系统可以通过下列三种⽅式进⼊:1.进⼊ANSYS的操作界⾯后,在应⽤菜单中选取Help进⼊;2.在ANSYS程序组中选取Help System进⼊:Start Menu > Programs > ANSYS XX>Help Sy stem;3.在任何对话框中选取Help。
⼆.帮助系统的内容安排:点击帮助系统的⽬录,就看到如下的ANSYS帮助系统的整体内容安排:1.前⾯4个部分是与软件版本,安装,注册相关的信息,只需作相应的了解即可,如下:※Release Notes※ANSYS Installation and Configuration Guide for UNIX※ANSYS Installation and Configuration Guide for Windows※ANSYS, Inc. Licensing Guide2.接下来两个部分是⽐较重要的部分,ANSYS的命令和单元⼿册,对⽤到的命令和单元应作详细的了解和掌握。
※ANSYS Commands Reference※ANSYS Element Reference3.下⾯四个部分是ANSYS相关的操作⼿册,说明如下:※Operations Guide 基本界⾯,操作指南※Basic Analysis Procedures Guide 基础分析指南※Advanced Analysis Techniques Guide ⾼级分析指南※Modeling and Meshing Guide 建模与分⽹指南4.以下⼏个部分则是ANSYS分模块的分析指南,如下:※Structural Analysis Guide 结构分析指南※Thermal Analysis Guide 热分析指南※CFD FLOTRAN Analysis Guide 流体分析指南※Electromagnetic Field Analysis Guide 电磁场分析指南※Coupled-Field Analysis Guide 耦合场分析指南5.为更好的使⽤ANSYS⽅便,快捷的解决更多的⼯程实际问题,建议仔细学习以下⼏个部分:※APDL Programmer's Guide:APDL操作⼿册※ANSYS Troubleshooting Guide:ANSYS错误信息指南※Mechanical Toolbar:机械⼯具栏※ANSYS/LS-DYNA User's Guide:ANSYS/LS-DYNA操作指南※ANSYS Connection Users Guide:接⼝技术指南6.欲快速掌握ANSYS的使⽤,莫过于通过实例和练习,⽽ANSYS的帮助系统中则提供⼤量的例题及练习供⽤户参考,所以以下两个部分是经常光顾的。
ANSYS官方帮助文件27-Turbo-Post
ANSYS官⽅帮助⽂件27-Turbo-PostChapter 27:Turbo PostprocessingThis tutorial is divided into the following sections:27.1. Introduction27.2. Prerequisites27.3. Problem Description27.4. Setup and Solution27.5. Summary27.1. IntroductionThis tutorial demonstrates the multistage turbomachinery postprocessing capabilities of ANSYS FLUENT.In this example, you will read the case and data files (without doing the calculation) and perform a numberof turbomachinery-specific postprocessing operations.This tutorial demonstrates how to do the following:Define the topology of a turbomachinery model while using theta min and theta max.Create surfaces for the display of 3D data.Revolve 3D geometry to display a 360-degree image.Report multistage turbomachinery quantities.Display averaged contours for turbomachinery.Display 2D contours for turbomachinery.Display averaged XY plots for turbomachinery.27.2. PrerequisitesThis tutorial is written with the assumption that you have completed Introduction to Using ANSYS FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow (p.111) and that you are familiar with the ANSYS FLUENT navigation pane and menu structure.27.3. Problem DescriptionThe problem considered in this tutorial is an axial compressor shown schematically in Figure 27.1 (p.1008). The model comprises a single 3D sector of the compressor to take advantage of the circumferential periodicity in the problem.The flow of air through the compressor is simulated and the postprocessing capabilities of ANSYS FLUENT are used to display realistic, full 360-degree images of the solution obtained.Chapter 27:Turbo PostprocessingFigure 27.1 Problem Schematic27.4. Setup and SolutionThe following sections describe the setup and solution steps for this tutorial:27.4.1. Preparation27.4.2. Step 1: Mesh27.4.3. Step 2: General Settings27.4.4. Step 3: Defining the Turbomachinery Topology27.4.5. Step 4: Isosurface Creation27.4.6. Step 5: Contours27.4.7. Step 6: Reporting Turbo Quantities27.4.8. Step 7: Averaged Contours27.4.9. Step 8: 2D Contours27.4.10. Step 9: Averaged XY Plots27.4.1. Preparation1.Download turbo_postprocess.zip from the ANSYS Customer Portal or the User Services Centerto your working folder (as described in Preparation (p.4) of Introduction to Using ANSYS FLUENT inANSYS Workbench: Fluid Flow and Heat Transfer in a Mixing Elbow (p.1)).2.Unzip turbo_postprocess.zip.turbo.cas.gz and turbo.dat.gz can be found in the turbo_postprocess folder after unzipping the file./doc/5f46e15cbe23482fb4da4ca1.html e FLUENT Launcher to start the 3D version of ANSYS FLUENT.For more information about FLUENT Launcher, see Starting ANSYS FLUENT Using FLUENT Launcher in the User’s Guide. The Display Options are enabled by default.Therefore, after you read in the case and data files, the mesh willbe displayed in the embedded graphics window.27.4.2. Step 1: Mesh1.Read the case and data files(turbo.cas.gz and turbo.dat.gz ).File →Read →Case & Data...When you select turbo.cas.gz ,turbo.dat.gz will be read automatically.27.4.3. Step 2: General Settings General1.Display the mesh.General →Display...a.Retain the default Edges option in the Options group box.b.Select Outline in the Edge Type list.c.Deselect all the surfaces from the Surfaces selection list and click the Outline button.d.Click Display .e.Rotate the view by clicking the Rotate Viewicon () in the toolbar, press the left mouse buttonand drag the mouse.To zoom in or out, press the Zoom In/Outbutton and press the leftmouse button and move the mouse up and down.To obtain an isometric display, select the Iso-metric view iconin the toolbar.f.Close the Mesh Display dialog box.27.4.3. Step 2: General SettingsChapter 27:Turbo PostprocessingExtraYou can use the right mouse button to check which zone number corresponds to each boundary.If you click the right mouse button on one of the boundaries displayed in the graphics window,its zone number, name, type, and other variables will be printed in the console.This feature isespecially useful when you have several zones of the same type and you want to distinguishbetween them quickly.27.4.4. Step 3: Defining the Turbomachinery TopologyYou will define the topologies of the flow domain in order to establish a turbomachinery-specific coordinate system. This coordinate system is used in subsequent postprocessing functions. Specifically, you will select the boundary zones that comprise the hub, shroud, inlet, outlet, and periodics.The boundaries may consist of more than one zone.The topologies that you define will be saved to the case file when you save the current model.Thus, if you read the saved case back into ANSYS FLUENT, you do not need to set up the topology again.For more information on defining turbomachinery topologies, see Defining the Turbomachinery Topologyin the User’s Guide.Turbo Topology...Define→1.Specify the surfaces representing the hub.a.Retain the default selection of Hub in the Boundaries group box.b.Select the surface that represent the hub (rotor-hub) in the Surfaces selection list.2.Specify the surfaces representing the casing.27.4.4. Step 3: Defining the Turbomachinery Topologya.Select Casing in the Boundaries group box.b.Select rotor-shroud in the Surfaces selection list.3.Specify the surfaces representing theta periodic.Theta periodic are all rotationally periodic boundary conditions surfaces (periodic boundary condition type) which border the turbo topology on the lateral (pitchwise) boundaries.a.Select Theta Periodic in the Boundaries group box.b.Select rotor-periodic-wall-1 and rotor-periodic-wall-2 in the Surfaces selection list.4.Specify the surfaces representing theta min.a.Select Theta Min in the Boundaries group box.b.Select rotor-blade-suction in the Surfaces selection list.Theta Min and Theta Max are all walls which may border the turbo topology on the lateral (pitchwise) boundaries.The “min”and “max” are determined by the right hand rule about the axis of rotation. Specifically, using the right hand rule, the min surfaces would have the minimum pitchwise coordinate and the max surfaces would have the maximum pitchwise coordinate.5.Specify the surfaces representing theta max.a.Select Theta Max in the Boundaries group box.b.Select rotor-blade-pressure in the Surfaces selection list.6.Specify the surface representing the inlet.a.Select Inlet in the Boundaries group box.b.Select rotor-inlet in the Surfaces selection list.7.Specify the surface representing the outlet.a.Select Outlet in the Boundaries group box.b.Select rotor-outlet in the Surfaces selection list.8.Retain the default name of new-topology-1 for the Turbo Topology Name.9.Click Define to set all the turbomachinery boundaries.Create a second topology to represent the stator.10.Specify the surfaces representing the hub.a.Select Hub in the Boundaries group box.b.Select the surface that represent the hub (stator-hub) in the Surfaces selection list.TipScroll down the Surfaces list to locate the surfaces representing the hub.11.Specify the surfaces representing the casing.a.Select Casing in the Boundaries group box.b.Select stator-shroud in the Surfaces selection list.12.Specify the surfaces representing theta periodic.a.Select Theta Periodic in the Boundaries group box.Chapter 27:Turbo Postprocessingb.Select stator-periodic-wall-1and stator-periodic-wall-2 in the Surfaces selection list.13.Specify the surfaces representing theta min.a.Select Theta Min in the Boundaries group box.b.Select stator-blade-suction in the Surfaces selection list.14.Specify the surfaces representing theta max.a.Select Theta Max in the Boundaries group box.b.Select stator-blade-pressure in the Surfaces selection list.15.Specify the surface representing the inlet.a.Select Inlet in the Boundaries group box.b.Select stator-inlet in the Surfaces selection list.16.Specify the surface representing the outlet.a.Select Outlet in the Boundaries group box.b.Select stator-outlet in the Surfaces selection list.17.Retain the default name of new-topology-2 for the Turbo Topology Name.18.Click Define to set all the turbomachinery boundaries.19.Close the Turbo Topology dialog box.ANSYS FLUENT will inform you that the turbomachinery postprocessing functions have been enabled, and the Turbo menu will appear in ANSYS FLUENT menu bar at the top of the console.You can define any number of turbo topologies in the Turbo Topology dialog box.This is especially useful when you have a model comprising multiple blade rows and you need to define more than one blade row simultaneously. Each topology can be assigned a specific name and accessed using the drop-down list in the Turbo Topology dialog box.For more information on defining turbomachinery topologies, see Defining the Turbomachinery Topologyin the User’s Guide.NoteYou can display the selected surfaces by clicking the Display button in the Turbo Topologydialog box.This is useful as a graphical check to ensure that all relevant surfaces have been selec-ted.27.4.5. Step 4: Isosurface CreationTo display results in a 3D model, you will need surfaces on which the data can be displayed. ANSYS FLUENT creates surfaces for all boundary zones automatically. In a general application, you may want to define additional surfaces for viewing results.The turbo postprocessing capabilities of ANSYS FLUENT allow you to define more complex surfaces, specific to the application and the particular topology that you defined. In this step, you will create surfaces of iso-meridional (marching along the streamwise direction) and spanwise (distance between the huband the shroud) coordinates in the compressor.1.Create surfaces of constant meridional coordinate.Surface→Iso-Surface...27.4.5. Step 4: Isosurface Creationa.Select Mesh... and Meridional Coordinate from the Surface of Constant drop-down lists.b.Enter 0.2 in the Iso-Values text field.c.Enter meridional-0.2 for New Surface Name.d.Click Create.NoteThe isovalues you enter for these turbo-specific surfaces are expressed as a percentage of the entire domain (i.e., you just defined a surface of meridional coordinate equal to 20% of the path along the duct).e.Similarly, define surfaces of meridional coordinates equal to 0.4, 0.6, and 0.8.2.Create surfaces of constant spanwise coordinate.a.Select Mesh... and Spanwise Coordinate from the Surface of Constant drop-down lists.b. Enter 0.25 in the Iso-Values text field.c.Enter spanwise-0.25 for New Surface Name .d.Click Create .e.Similarly, define surfaces of spanwise coordinates equal to 0.5 and 0.75.3.Close the Iso-Surface dialog box.27.4.6. Step 5: ContoursGraphics and Animations→Contours →Set Up...1.Display filled contours of pressure on the meridional isosurfaces (Figure 27.2 (p.1016)). Chapter 27:Turbo Postprocessing27.4.6. Step 5: Contoursa.Make sure Filled is enabled in the Options group box.b.Retain the selection of Pressure...and Static Pressure from the Contours of drop-down lists.c.Select rotor-inlet,meridional-0.2,meridional-0.4,meridional-0.6,meridional-0.8, and rotor-outlet from the Surfaces selection list.d.Enable Draw Mesh in the Options group box.The Mesh Display dialog box will open.i.Retain the current settings and close the Mesh Display dialog box.e.Click Display.f.Rotate and zoom the display using the left and middle mouse buttons, respectively, to obtain theview shown in Figure 27.2 (p.1016).In Figure 27.2 (p.1016), you can observe the buildup of static pressure along the duct.Chapter 27:Turbo PostprocessingFigure 27.2 Filled Contours of Pressure on the Meridional Isosurfaces2.Display filled contours of Mach number (Figure 27.3 (p.1017)).a.Select Velocity... and Mach Number from the Contours of drop-down lists.b.Click Display.In Figure 27.3 (p.1017), you can observe locations at which the flow becomes slightly supersonic, about halfway through the duct.27.4.6. Step 5: ContoursFigure 27.3 Filled Contours of Mach Number on the Meridional Isosurfaces3.Display filled contours of Mach number on the spanwise isosurfaces (Figure 27.4 (p.1018)).a.Deselect all surfaces in the Surfaces selection list.b.Select spanwise-0.25,spanwise-0.5, and spanwise-0.75 from the Surfaces selection list.c.Click Display.The display in Figure 27.4 (p.1018) allows you to further study the variation of the Mach number inside the duct.You may want to explore using different combinations of surfaces to display the same oradditional variables.Figure 27.4 Filled Contours of Mach Number on the Spanwise Isosurfaces4.Display a 360-degree image of the Mach number contours on the hub and blade wall surfaces.a.Deselect all surfaces in the Surfaces selection list.b.Select rotor-hub ,rotor-blade-pressure and rotor-blade-suction from the Surfaces selection list.c.Click Display .d.Display the full 360-degree geometry.Graphics and Animations →Views...Chapter 27:Turbo Postprocessing27.4.6. Step 5: Contoursdialog box.i.Click the Define... button to open the Graphics Periodicity ArrayA.Select fluid-rotor in the Cell Zones list.This will select all the surfaces in the Associated Surfaces list.The default value for Number of Repeats is set to 16.The display is updated to give a full, 360 degree view.B.Click Set and close the Graphics Periodicity dialog box.The display will be updated to show the entire geometry (see Figure 27.5 (p.1020)).Chapter 27:Turbo PostprocessingFigure 27.5 Filled Contours of Mach Number on the 0.5 Spanwise Isosurfaceii.Close the Views dialog box.5.Close the Contours dialog box.NoteThis step demonstrated a typical view-manipulation task. See Postprocessing (p.961) for furtherexamples of postprocessing features.27.4.7. Step 6: Reporting Turbo QuantitiesThe turbomachinery report provides some tabulated information specific to the application and the defined topo-logy.For details, see Generating Reports of Turbomachinery Data in the User’s Guide.Turbo→Report...1.Retain the default selection of Mass-Weighted in the Averages list.2.Select new-topology-1 from the Turbo Topology drop down list.3.Click Compute .4.Close the Turbo Report dialog box.27.4.8. Step 7: Averaged ContoursTurbo averaged contours are generated as projections of the values of a variable averaged in the circumferential direction and visualized on an - plane.1.Disable the periodic repeats.Graphics and Animations →Views...a.Click the Define... button to open the Graphics Periodicity dialog box.i.Click Reset .27.4.8. Step 7: Averaged ContoursChapter 27:Turbo Postprocessingii.Close the Graphics Periodicity dialog box.b.Close the Views dialog box.2.Display filled contours of averaged static pressure (Figure 27.6 (p.1023)).Averaged Contours...Turbo→a.Retain the default selection of Pressure... and Static Pressure from the Contours of drop-downlists.b.Click Display.c.Close the Turbo Averaged Contours dialog box.Figure 27.6 Filled Contours of Averaged Static Pressure27.4.9. Step 8: 2D ContoursIn postprocessing a turbomachinery solution, it is often preferable to display contours on constant spanwise co-ordinates andthen, project these contours onto a plane.This permits easier evaluation of the contours, especially for surfaces that are highly three-dimensional. ANSYS FLUENT allows you to display contours in this manner using the Turbo 2D Contours dialog box.1.Display 2D contours of Mach number (Figure 27.7 (p.1024)).Turbo →2D Contours...27.4.9. Step 8: 2D ContoursChapter 27:Turbo Postprocessinga.Select new-topology-1 from the Turbo Topology drop down list.b.Select Velocity... and Mach Number from the Contours of drop-down lists.c.Enter 0.5 for Normalised Spanwise Coordinates.NoteFor highly curved edges, if a surface is created very close to the curved edge the res-ulting surface may have some void spaces in it.d.Click Display./doc/5f46e15cbe23482fb4da4ca1.html e the mouse to obtain the view shown in Figure 27.7 (p.1024). Figure 27.7 2D Contours of Mach Number on Surface of Spanwise Value 0.5f.Close the Turbo 2D Contours dialog box.27.4.10. Step 9: Averaged XY PlotsIn addition to displaying data on different combinations of complex 3D and flattened surfaces, the turbo postpro-cessing capabilities of ANSYS FLUENT allow you to display XY plots of averaged variables, relevant to the specific topology of a turbomachinery problem. In particular, you will be able to plot circumferentially-averaged valuesof variables as a function of either the spanwise coordinate or the meridional coordinate.1.Plot temperature as a function of the meridional coordinate (Figure 27.8 (p.1025)).Turbo→Averaged XY Plot...27.4.10. Step 9: Averaged XY Plotsa.Select Temperature... and Static Temperature from the Y Axis Function drop-down lists.b.Select Meridional Distance from the X Axis Function drop-down list.c.Enter 0.9 for the Fractional Distance.d.Click Plot.e.Close the Turbo Averaged XY Plot dialog box.Figure 27.8 Averaged XY Plot of Static Temperature on Spanwise Surface of 0.9 Isovalue。
ANSYS CFD-Post使用细节说明
ANSYS CFD-Post TutorialsRelease 14.0ANSYS, Inc.November 2011Southpointe275 Technology Drive Canonsburg, PA 15317ANSYS, Inc. is certified to ISO 9001:2008.ansysinfo@(T) 724-746-3304(F) 724-514-9494Copyright and Trademark Information© 2011 SAS IP, Inc. All rights reserved. Unauthorized use, distribution or duplication is prohibited.ANSYS, ANSYS Workbench, Ansoft, AUTODYN, EKM, Engineering Knowledge Manager, CFX, FLUENT, HFSS and any and all ANSYS, Inc. brand, product, service and feature names, logos and slogans are registered trademarks or trademarks of ANSYS, Inc. or its subsidiaries in the United States or other countries. ICEM CFD is a trademark used by ANSYS, Inc. under license. CFX is a trademark of Sony Corporation in Japan. All other brand, product, serviceand feature names or trademarks are the property of their respective owners.Disclaimer NoticeTHIS ANSYS SOFTWARE PRODUCT AND PROGRAM DOCUMENTATION INCLUDE TRADE SECRETS AND ARE CONFID-ENTIAL AND PROPRIETARY PRODUCTS OF ANSYS, INC., ITS SUBSIDIARIES, OR LICENSORS.The software productsand documentation are furnished by ANSYS, Inc., its subsidiaries, or affiliates under a software license agreement that contains provisions concerning non-disclosure, copying, length and nature of use, compliance with exporting laws, warranties, disclaimers, limitations of liability, and remedies, and other provisions.The software productsand documentation may be used, disclosed, transferred, or copied only in accordance with the terms and conditions of that software license agreement.ANSYS, Inc. is certified to ISO 9001:2008.U.S. Government RightsFor U.S. Government users, except as specifically granted by the ANSYS, Inc. software license agreement, the use, duplication, or disclosure by the United States Government is subject to restrictions stated in the ANSYS, Inc. software license agreement and FAR 12.212 (for non-DOD licenses).Third-Party SoftwareSee the legal information in the product help files for the complete Legal Notice for ANSYS proprietary software and third-party software. If you are unable to access the Legal Notice, please contact ANSYS, Inc.Published in the U.S.A.Table of Contents1. Introduction to the Tutorials (1)2. Post-processing Fluid Flow and Heat Transfer in a Mixing Elbow (3)2.1. Create a Working Directory (4)2.2. Launch CFD-Post (5)2.3. Display the Solution in CFD-Post (9)2.3.1. Become Familiar with the Viewer Controls (11)2.3.2. Create an Instance Reflection (14)2.3.3. Show Velocity on the Symmetry Plane (14)2.3.4. Show Flow Distribution in the Elbow (16)2.3.5. Show the Vortex Structure (19)2.3.6. Show Volume Rendering (20)2.3.7. Compare a Contour Plot to the Display of a Variable on a Boundary (21)2.3.8. Review and Modify a Report (24)2.3.9. Create a Custom Variable and Animate the Display (24)2.3.10. Load and Compare the Results to Those in a Refined Mesh (26)2.3.11. Display Particle Tracks (28)2.4. Save Your Work (38)2.5. Generated Files (39)3.Turbo Post-processing (41)3.1. Problem Description (41)3.2. Create a Working Directory (42)3.3. Launching CFD-Post (43)3.4. Displaying the Solution in CFD-Post (47)3.5. Initializing the Turbomachinery Components (49)3.6. Comparing the Blade-to-Blade, Meridional, and 3D Views (50)3.7. Displaying Contours on Meridional Isosurfaces (52)3.8. Displaying a 360-Degree View (53)3.9. Calculating and Displaying Values of Variables (54)3.10. Displaying the Inlet to Outlet Chart (56)3.11. Generating and Viewing Turbo Reports (58)4. Quantitative Post-processing (61)4.1. Create a Working Directory (62)4.2. Launch CFD-Post (63)4.3. Prepare the Case and CFD-Post (63)4.4.View and Check the Mesh (64)4.5. Create a Line (67)4.6. Create a Chart (68)4.7. Add a Second Line (69)4.8. Create a Chart (70)4.9.View Simulation Values Using the Function Calculator (70)4.10. Create a Table to Show Heat Transfer (71)4.11. Publish a Report (75)iiiRelease 14.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information of ANSYS, Inc. and its subsidiaries and affiliates.Release 14.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information ivof ANSYS, Inc. and its subsidiaries and affiliates.Chapter 1: Introduction to the TutorialsThe tutorials are designed to introduce the capabilities of CFD-Post.The following tutorials are available:•"Post-processing Fluid Flow and Heat Transfer in a Mixing Elbow"•"Turbo Post-processing"For information on the CFD-Post interface (menu bar, tool bar, workspaces, and viewers), see "CFD-Post Graphical Interface".Using HelpTo invoke the help browser, from the menu bar select Help > Contents .You may also use context-sensitive help, which is provided for many of the details views and other parts of the interface.To invoke the context-sensitive help for a particular details view or other feature,ensure that the feature is active, place the mouse pointer over it, then press F1. Not every area of the interface supports context-sensitive help. If context-sensitive help is not available for the feature of in-terest, select Help > Contents and try using the search or index features in the help browser.TipFor more information on the help system, see Accessing Help .1Release 14.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information of ANSYS, Inc. and its subsidiaries and affiliates.Release 14.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information 2of ANSYS, Inc. and its subsidiaries and affiliates.Chapter 2: Post-processing Fluid Flow and Heat Transfer in a Mixing ElbowThis tutorial illustrates how to use CFD-Post to visualize a three-dimensional turbulent fluid flow and heat transfer problem in a mixing elbow.The mixing elbow configuration is encountered in piping systems in power plants and process industries. It is often important to predict the flow field and tem-perature field in the area of the mixing region in order to properly design the junction.This tutorial demonstrates how to do the following:2.1. Create a Working Directory2.2. Launch CFD-Post2.3. Display the Solution in CFD-Post2.4. Save Your Work2.5. Generated FilesProblem DescriptionThe problem to be considered is shown schematically in Figure 2.1 (p.4). A cold fluid at 20° C flows into the pipe through a large inlet and mixes with a warmer fluid at 40° C that enters through a smaller inlet located at the elbow.The pipe dimensions are in inches, but the fluid properties and boundary conditions are given in SI units.The Reynolds number for the flow at the larger inlet is 50,800, so the flow has been modeled as being turbulent.NoteThis tutorial is derived from an existing FLUENT case.The combination of SI and Imperialunits is not typical, but follows a FLUENT example.Because the geometry of the mixing elbow is symmetric, only half of the elbow is modeled.3Release 14.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information of ANSYS, Inc. and its subsidiaries and affiliates.Figure 2.1 Problem Specification2.1. Create a Working DirectoryCFD-Post uses a working directory as the default location for loading and saving files for a particular session or project. Before you run a tutorial, use your operating system's commands to create a working directory where you can store your sample files and results files.By working in that new directory, you prevent accidental changes to any of the sample files.Copying the CAS and DAT/CDAT FilesSample files are provided so that you can begin using CFD-Post immediately.You may find sample files in a variety of places, depending on which products you have:•If you have CFD-Post or ANSYS CFX , sample files are in <CFXROOT>\examples , where <CFXROOT> isthe installation directory for ANSYS CFX or CFD-Post. Copy the .cas and .cdat files (elbow1.cas.gz ,elbow1.cdat.gz ,elbow3.cas.gz , and elbow3.cdat.gz ) and the particle track file (el-bow_tracks.xml ) to your working directory.•If you have FLUENT 12 or later :1.Download cfd-post-elbow.zip from the ANSYS Customer Portal to your working directory.a.On the Customer Portal Home page, click Download Software .This takes you to the ANSYSDownload Center Wizard .Release 14.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information of ANSYS, Inc. and its subsidiaries and affiliates.4Chapter 2: Post-processing Fluid Flow and Heat Transfer in a Mixing Elbowb.Click Next Step .c.Choose a Download Type. Select the Current Release and Updates radio button.d.Click Next Step .e.Choose the Hardware Platform you are using.f.Click Next Step .g.At the bottom of the page, under the heading ANSYS Documentation and Examples , check the box next to ANSYS Fluid Dynamics Tutorial Inputs .h.Click Next Step .i.Click the ANSYS Fluid Dynamics Tutorial Inputs link to download the ANSYS_Fluid_Dy-namics_Tutorial_Inputs.zip file.j.Save and extract the .zip file to any convenient location.Tutorial mesh and solution files foreach of the ANSYS Fluid Dynamics products are located in v140\Tutorial_Inputs\Flu-id_Dynamics\<product>.2.Extract the CAS files and DAT files (elbow1.cas.gz ,elbow1.dat.gz ,elbow3.cas.gz andelbow3.dat.gz ) and the particle track file (elbow_tracks.xml ) from cfd-post-elbow.zip to your working directory.2.2. Launch CFD-PostBefore you start CFD-Post, set the working directory.The procedure for setting the working directory and starting CFD-Post depends on whether you will launch CFD-Post stand-alone, from the ANSYS CFX Launcher, from ANSYS Workbench, or from FLUENT:•To run CFD-Post stand-alone–On Windows:1.From the Start menu, right-click All Programs > ANSYS 14.0 > Fluid Dynamics > CFD-Post 14.0 and select Properties .2.Type the path to your working directory in the Start in field and click OK .3.Click All Programs > ANSYS 14.0 > Fluid Dynamics > CFD-Post 14.0 to launch CFD-Post.–On Linux, enter cfdpost.exe in a terminal window that has its path set up to run CFD-Post (the path will be something similar to /usr/ansys_inc/v140/CFD-Post/cfdpost.exe).•To run ANSYS CFX Launcher1.Start the launcher.You can run the launcher in any of the following ways:–On Windows:¡From the Start menu, go to All Programs > ANSYS 14.0 > Fluid Dynamics > CFX 14.0.¡In a DOS window that has its path set up correctly to run ANSYS CFX, enter cfx5launch (otherwise, you will need to type the full pathname of the cfx5launch command, whichwill be something similar to C:\Program Files\ANSYS Inc\v140\CFX\bin).–On Linux, enter cfx5launch in a terminal window that has its path set up to run ANSYS CFX (the path will be something similar to /usr/ansys_inc/v140/CFX/bin).5Release 14.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information of ANSYS, Inc. and its subsidiaries and unch CFD-Post2.Select the Working Directory (where you copied the sample files).3.Click the CFD-Post 14.0 button.•ANSYS Workbench1.Start ANSYS Workbench.2.From the menu bar, select File > Save As and save the project file to the directory that you want to be the working directory.3.Open the Component Systems toolbox and double-click Results . A Results system opens in the Project Schematic .4.Right-click on the A2 Results cell and select Edit .CFD-Post opens.•FLUENT1.Click the FLUENT icon () in the ANSYS program group to open FLUENT Launcher.FLUENT Launcher allows you to decide which version of FLUENT you will use, based on yourgeometry and on your processing capabilities.2.Ensure that the proper options are enabled.FLUENT Launcher retains settings from the previous session.a.Select 3D from the Dimension list.b.Select a Processing Option (for example Serial ).c.Make sure that the Display Mesh After Reading and Embed Graphics Windows options are enabled.d.Make sure that the Double-Precision option is disabled.Release 14.0 - © SAS IP, Inc. All rights reserved. - Contains proprietary and confidential information of ANSYS, Inc. and its subsidiaries and affiliates.6Chapter 2: Post-processing Fluid Flow and Heat Transfer in a Mixing ElbowLaunch CFD-Post TipYou can also restore the default settings by clicking the Default button.3.Set the working path to the directory created when you unzipped cfd-post-elbow.zip.a.Click Show More Options.b.Click in the Working Directory field and enter the path to your current working directory.box and browse to the directory, using the Browse For Folderdialog box.Chapter 2: Post-processing Fluid Flow and Heat Transfer in a Mixing Elbow5.Select File > Read > Case & Data and choose the elbow1.cas.gz file.6.Select File > Export to CFD-Post.7.In the Select Quantities list that appears, highlight the following variables:–Static Pressure–Density–X Velocity–Y Velocity–Z Velocity–Static Temperature–Turbulent Kinetic Energy (k)8.Click Write.CFD-Post starts with the tutorial file loaded.9.In the FLUENT application, select File > Read > Case & Data and choose the elbow3.cas.gzfile.10.In the Export to CFD-Post dialog box, clear the Open CFD-Post option and click Write. Acceptthe default name and click OK to save the files.11.Close FLUENT.Display the Solution in CFD-Post 2.3. Display the Solution in CFD-PostIn the steps that follow, you will visualize various aspects of the flow for the solution using CFD-Post.You will:•Prepare the case and set the viewer options•Become familiar with the 3D Viewer controls•Create an instance reflection•Show fluid velocity on the symmetry plane•Create a vector plot to show the flow distribution in the elbow•Create streamlines to show the flow distribution in the elbow•Show the vortex structure•Use multiple viewports to compare a contour plot to the display of a variable on a boundary •Review and modify a report•Create a custom variable and cause the plane to move through the domain to show how the values ofa custom variable change at different locations in the geometry•Compare the results to those in a refined mesh•Load a particle track file, then animate the particles, create a chart of a particle's velocity, and create an expression to calculate lengthAve of Pressure on the particle track•Save your work•Create an animation of a plane moving through the domain.Prepare the Case and Set the Viewer Options1.If you have launched CFD-Post from FLUENT, proceed to the next step. For all other situations, loadthe simulation from the data file (elbow1.cdat.gz) from the menu bar by selecting File > Load Results. In the Load Results File dialog box, select elbow1.cdat.gz and click Open.2.If you see a pop-up that discusses Global Variables Ranges, it can be ignored. Click OK.The mixing elbow appears in the 3D Viewer in an isometric orientation.The wireframe appearsin the view and there is a check mark beside User Location and Plots > Wireframe in the Outline tree view; the check mark indicates that the wireframe is visible in the 3D Viewer.3.Optionally, set the viewer background to white:a.Right-click on the viewer and select Viewer Options.b.In the Options dialog box, select CFD-Post > Viewer.c.Set:•Background > Color Type to Solid.•Background > Color to white.To do this, click the bar beside the Color label to cycle through10 basic colors. (Click the right-mouse button to cycle backwards.) Alternatively, you can chooseany color by clicking to the right of the Color option.•Text Color to black (as above).•Edge Color to black (as above).Chapter 2: Post-processing Fluid Flow and Heat Transfer in a Mixing Elbowd.Click OK to have the settings take effect.e.Experiment with rotating the object by clicking on the arrows of the triad in the 3D Viewer.Thisis the triad:In the picture of the triad above, the cursor is hovering in the area opposite the positive Yaxis, which reveals the negative Y axis.NoteThe viewer must be in “viewing mode” for you to be able to click on the triad.You set viewing mode or select mode by clicking the icons in the viewer toolbar:When you have finished experimenting, click the cyan (ISO) sphere in the triad to return tothe isometric view of the object.4.Set CFD-Post to display objects in the units you want to see.These display units are not necessarilythe same types as the units in the results files you load; however, for this tutorial you will set the display units to be the same as the solution units for consistency. As mentioned in the Problem Descrip-tion (p.3), the solution units are SI, except for the length, which is measured in inches.a.Right-click on the viewer and select Viewer Options.TipThe Options dialog box is where you set your preferences; see Setting Preferenceswith the Options Dialog for details.b.In the Options dialog box, select Common > Units.c.Notice that System is set to SI. In order to be able to change an individual setting (length, inthis case) from SI to imperial, set System to Custom. Now set Length to in (inches) and click OK.Note•The display units you set are saved between sessions and projects.This means that you can load results files from diverse sources and always see familiar units displayed.•You have set only length to inches; volume will still be reported in meters.To change volume as well, in the Options dialog box, select Common > Units, then click MoreUnitsto find the full list of settings.2.3.1. Become Familiar with the Viewer ControlsOptionally, take a few moments to become familiar with the viewer controls.These icons switch the mouse from selecting items in the viewer to controlling the orientation and display of the view. First, the sizing controls:1.ClickZoom Box2.Click and drag a rectangular box over the geometry.Display the Solution in CFD-PostChapter 2: Post-processing Fluid Flow and Heat Transfer in a Mixing Elbow3.Release the mouse button to zoom in on the selection.The geometry zoom changes to display the selection at a greater resolution.4.Click Fit View to re-center and re-scale the geometry.Now, the rotation functions:1.Click Rotate on the viewer toolbar.2.Click and drag repeatedly within the viewer to test the rotation of the geometry. Notice how the mousecursor changes depending on where you are in the viewer, particularly near the edges:Figure 2.2 Orientation Control Cursor TypesThe geometry rotates based on the direction of movement. If the mouse cursor has an axis (whichhappens around the edges), the object rotates around the axis shown in the cursor.The axis ofrotation is through the pivot point, which defaults to be in the center of the object.Display the Solution in CFD-Post TipSee Mouse Button Mapping for details about other features that you can access with themouse.Now explore orientation options:1.Right-click a blank area in the viewer and select Predefined Camera > View From -X.2.Right-click a blank area in the viewer and select Predefined Camera > Isometric View (Z Up).3.Click the “Z” axis of triad in the viewer to get a side view of the object.4.Click the three axes in the triad in turn to see the vector objects in all three planes; when you aredone, click the cyan (ISO) sphere.Now explore the differences between the orienting controls you just used and select mode.1.Click to enter select mode.2.Hover over one of the wireframe lines and notice that the cursor turns into a box.3.Click a wireframe line and notice that the details view for the wireframe appears.4.Right-click away from a wireframe line and then again on a wireframe line. Notice how the menuchanges:Figure 2.3 Right-click Menus Vary by Cursor Position5.In the Outline tree view, select the elbow1 > fluid > wall check box; the outer wall of the elbow be-comes solid. Notice that as you hover over the colored area, the cursor again becomes a box, indicating that you can perform operations on that region.When you right-click on the wall, a new menu appears.6.Click on the triad and notice that you cannot change the orientation of the viewer object. (The triad is available only in viewing mode, not select mode.)7.In the Outline tree view, clear the elbow1 > fluid > wall check box; the outer wall of the elbow dis-appears.2.3.2. Create an Instance ReflectionCreate an instance reflection on the symmetry plane so that you can see the complete case:1.With the 3D Viewer toolbar in viewing mode, click on the cyan (ISO) sphere in the triad.This will make it easy to see the instance reflection you are about to create.2.Right-click on one of the wireframe lines on the symmetry plane. (If you were in select mode, themouse cursor would have a “box” image added when you are on a valid line. As you are in viewing mode there is no change to the cursor to show that you are on a wireframe line, so you may see the general right-click menu, as opposed to the right-click menu for the symmetry plane.) See Figure2.3 (p.13).3.From the right-click menu, select Reflect/Mirror . If you see a dialog box prompting you for the direction of the normal, choose the Z axis.The mirrored copy of the wireframe appears.TipIf the reflection you create is on an incorrect axis, click theUndo toolbar icon twice.2.3.3. Show Velocity on the Symmetry PlaneCreate a contour plot of velocity on the symmetry plane:1.From the menu bar, select Insert > Contour . In the Insert Contour dialog box, accept the default name, and click OK .2.In the details view for Contour 1, set the following:Value Setting Tabsymmetry a LocationsGeometry Velocity b Variablea Notice how the available locations are highlighted in the viewer as you move the mouse over the objects in the Locations drop-down list.You could also create a slice plane at a location of your choice and define the contour to be at that location.bVelocity is just an example of a variable you can use. For a list of FLUENT variables and their CFX equivalents, see FLUENT Field Variables Listed by Category in the CFD-Post User's Guide .3.Click Apply .The contour plot for velocity appears and a legend is automatically generated.4.The coloring of the contour plot may not correspond to the colors on the legend because the viewerhas a light source enabled by default.There are several ways to correct this:•You can change the orientation of the objects in the viewer.Chapter 2: Post-processing Fluid Flow and Heat Transfer in a Mixing ElbowDisplay the Solution in CFD-Post •You can experiment with changing the position of the light source by holding down the Ctrl key and dragging the cursor with the right mouse button.•You can disable lighting for the contour plot.To disable lighting, click on the Render tab and clear the check box beside Lighting, then click Apply.Disabling the lighting is the method that provides you with the most flexibility, so change thatsetting now.5.Click the Z on the triad to better orient the geometry (the 3D Viewer must be in viewing mode, notselect mode, to do this).Figure 2.4 Velocity on the Symmetry Plane6.Improve the contrast between the contour regions:a.On the Render tab, select Show Contour Lines and click the plus sign to view more options.b.Select Constant Coloring.c.Set Color Mode to User Specified and set Line Color to black (if necessary, click on the barbeside Line Color until black appears).d.Click Apply.Chapter 2: Post-processing Fluid Flow and Heat Transfer in a Mixing ElbowFigure 2.5 Velocity on the Symmetry Plane (Enhanced Contrast)7.Hide the contour plot by clearing the check box beside User Locations and Plots > Contour 1 in theOutline tree view.TipYou can also hide an object by right-clicking on its name in the Outline tree view andselecting Hide.2.3.4. Show Flow Distribution in the ElbowCreate a vector plot to show the flow distribution in the elbow:1.From the menu bar, select Insert > Vector.2.Click OK to accept the default name.The details view for the vector appears.3.On the Geometry tab, set Domains to fluid and Locations to symmetry.4.Click Apply.5.On the Symbol tab, set Symbol Size to 4.6.Click Apply and notice the changes to the vector plot.Figure 2.6 Vector Plot of Velocity7.Change the vector plot so that the vectors are colored by temperature:a.In the details view for Vector 1, click on the Color tab.b.Set the Mode to Variable.The Variable field becomes enabled.c.Click on the down arrow beside the Variable field to set it to Temperature.d.Click Apply and notice the changes to the vector plot.8.Optionally, change the vector symbol. In the details view for the vector, go to the Symbol tab and setSymbol to Arrow3D. Click Apply.9.Hide the vector plot by right-clicking on a vector symbol in the plot and selecting Hide.In this example you will create streamlines to show the flow distribution by velocity and color those streamlines to show turbulent kinetic energy. CFD-Post uses the Variable setting on the Geometry tabto determine how to calculate the streamlines (that is, location). In contrast, the Variable setting onthe Color tab determines the color used when plotting those streamlines.1.From the menu bar select Insert > Streamline. Accept the default name and click OK.2.In the details view for Streamline 1, choose the points from which to start the streamlines. Click onthe down arrow beside the Start From drop-down widget to see the potential starting points.Hover over each point and notice that the area is highlighted in the 3D Viewer. It would be best to show how streamlines from both inlets interact, so, to make a multi-selection, click the Location editor icon .The Location Selector dialog box appears.3.In the Location Selector dialog box, hold down the Ctrl key and click velocity inlet 5 andvelocity inlet 6 to highlight both locations, then click OK.4.Click Preview Seed Points to see the starting points for the streamlines.5.On the Geometry tab, ensure that Variable is set to Velocity.6.Click on the Color tab and make the following changes:a.Set the Mode to Variable.The Variable field becomes enabled.b.Set the Variable to Turbulence Kinetic Energy.c.Set Range to Local.7.Click Apply.The streamlines show the flow of massless particles through the entire domain.Figure 2.7 Streamlines of Turbulence Kinetic Energy8.Select the check box beside Vector 1.The vectors appear, but are largely hidden by the streamlines.To correct this, highlight Streamline 1 in the Outline tree view and press Delete.The vectors arenow clearly visible, but the work you did to create the streamlines is gone. Click the Undo iconto restore Streamline 1.9.Hide the vector plot and the streamlines by clearing the check boxes beside Vector 1 and Streamline1 in the Outline tree view.2.3.5. Show the Vortex StructureCFD-Post displays vortex core regions to enable you to better understand the processes in your simula-tion. In this example you will look at helicity method for vortex cores, but in your own work you woulduse the vortex core method that you find most instructive.1.In the Outline tree view:a.Under User Locations and Plots, clear the check box for Wireframe.b.Under Cases > elbow1 > fluid, select the check box for wall.c.Double-click on wall to edit its properties.d.On the Render tab, set Transparency to 0.75 .e.Click Apply.This makes the pipe easy to see while also making it possible to see objects inside the pipe.2.From the menu bar, select Insert > Location > Vortex Core Region and click OK to accept the defaultname.3.In the details view for Vortex Core Region 1 on the Geometry tab, set Method to AbsoluteHelicity and Level to .01.4.On the Render tab, set Transparency to 0.2. Click Apply.The absolute helicity vortex that is displayed is created by a mixture of effects from the walls, thecurve in the main pipe, and the interaction of the fluids. If you had chosen the vorticity methodinstead, wall effects would dominate.5.On the Color tab, click on the colored bar in the Color field until the bar is green. Click Apply.This improves the contrast between the vortex region and the blue walls.6.Right-click in the 3D Viewer and select Predefined Camera > Isometric View (Y up).7.In the Outline tree view, select the check box beside Streamline 1.This shows how the streamlinesare affected by the vortex regions.。
ANSYS命令流、二次开发与HELP文档
ANSYS命令流、二次开发与HELP文档(一)简介ANSYS在操作时有两种途径,一种是GUI途径,即通过ANSYS可视化的操作菜单来实现对分析过程的操作,而另外一种就是所谓的命令流,这更像是一种后台操作,操作者分析的过程即是将一条条ANSYS命令按照自己的分析思路组织起来,而ANSYS通过调用这些命令完成分析。
初学ANSYS的人,对命令流充满了迷惑,因为当拿出一个分析过程自动形成的.log文件之后发现一行一行犹如天书,但这些正是ANSYS命令的真实面目,而我们常使用的菜单操作只不过是把这些命令的本来面目给遮盖起来了,在学习ANSYS的过程中,随着学习过程的深入,加之以对命令流本身有个追本溯源的原动力驱使,命令流本身也不是很难。
命令流与菜单操作相比各有其优缺点,学习ANSYS一般从菜单操作开始,因为菜单操作能够做到于使用者直接对话,简洁和可视化,但其缺点是如果一直按照菜单操作的方式进行便不能窥视到ANSYS的工作过程,尤其是在进行同个问题变换其中一个或几个参数进行分析时,其重复操作的工作太多,大大减小了分析的趣味性,把精力放在了没有技术含量的操作上。
ANSYS命令流则弥补了这一缺陷,虽然难以理解,但当使用命令流进行分析时,能够大大的缩短分析的手工工作量,尤其是配合一定APDL语句,能够使分析过程自动进行,而操作者要做的仅仅是调用已经编制好的命令流文件而已,这时操作者的精力将会是放在对整个分析过程的分析和研究上,因为一旦分析过程研究及其实现机理研究透彻,那随之而来的所谓分析只是计算机自己的问题,操作者可以调用完命令之后随心所欲的做其他事情,而且学习命令流可以更好的理解ANSYS的工作过程和分析机理,这是菜单操作方式所没有的,我们在学习ANSYS过程中,菜单操作仅仅是对ANSYS使用环境熟悉的一个过程。
谈到命令流的种种优点,便引起这样一个问题,如何学习ANSYS命令流?更确切的说如何入门命令流?学习ANSYS的人会发现,初学ANSYS命令流会感到无从下手,不知道该如何去进入这个世界,好像是ANSYS命令流的世界只有一个很小的门,大多数人都钻不过去,只有少数人钻了过去看到了里面的美妙景象,其实来说命令流的世界没有想象的这么难以进入。
CFX13_B_Turbo
– Boundary Templates:
• Pt inlet - Ps outlet • Pt inlet - mass flow outlet • Mass flow inlet – Ps outlet
– Interface Type:
批注本地保存成功开通会员云端永久保存去开通
Appendix B Turbo Pre and Post
Introduction to CFX
ANSYS, Inc. Proprietary © 2010 ANSYS, Inc. All rights reserved.
B-1
Release 13.0
Turbo Pre
– Option to quit CFX Pre
ANSYS, Inc. Proprietary © 2010 ANSYS, Inc. All rights reserved.
B-10
Training Manual
Release 13.0 December 2010
Turbo Pre and Post
B-4
Release 13.0 December 2010
Turbo Pre and Post
CFX-Pre Turbo Mode
1. Basic Settings – setup axis of rotation and coordinate frame源自Training Manual
ANSYS, Inc. Proprietary © 2010 ANSYS, Inc. All rights reserved.
ANSYS, Inc. Proprietary © 2010 ANSYS, Inc. All rights reserved.
ANSYS菜单功能详解
Composites Composites
Any
Any Any Any
Any Any Any Any Any Any Any Mechanical Any Any
采用有限元法的CFD软件,专用于粘弹性材料的流动模拟,适用于塑料、树脂、玻璃等材料的挤出成 形、吹塑成形、拉丝、层流混合、涂层过程中的流动及传热和化学反应
可视化的显示CFD仿真结果
专业的涡轮叶栅通道网格划分软件,能快速对形状复杂的叶片和叶栅通道划出高质量的结构化网格
涡轮机械的流线曲率通流计算程序,用于在设计早期快速计算涡轮机械(泵、压缩机、涡轮机)的径 向叶片排数
Any
FLUENT FLUENT Any Any Any Any Any Any Any Any
Polyflow Polyflow Polyflow
System Coupling
Any
Any Any Any Any Any
Any Any Any Any Any
E Analysis type
DesignAssessment Eigenvalue Buckling Buckling Steady-State Electric Conduction Explicit Dynamics Any Any
Thermal
Mechanical APDL
Thermal
ABAQUS
Thermal
Samcef
Thermal-Electric Mechanical APDL
Fluids
完整版ansys 中文帮助手册----内容与目录
目录第1 章开始使用ANSYS 11.1 完成典型的ANSYS 分析 1 1.2 建立模型 1第2 章加载232.1 载荷概述23 2.2 什么是载荷23 2.3 载荷步、子步和平衡迭代24 2.4 跟踪中时间的作用25 2.5 阶跃载荷与坡道载荷26 2.6 如何加载27 2.7 如何指定载荷步选项68 2.8 创建多载荷步文件77 2.9 定义接头固定处预拉伸78第3 章求解853.1 什么是求解84 3.2 选择求解器84 3.3 使用波前求解器85 3.4 使用稀疏阵直接解法求解器86 3.5 使用雅可比共轭梯度法求解器(JCG)86 3.6 使用不完全乔列斯基共轭梯度法求解器(ICCG)86 3.7 使用预条件共轭梯度法求解器(PCG)86 3.8 使用代数多栅求解器(AMG)87 3.9 使用分布式求解器(DDS)88 3.10 自动迭代(快速)求解器选项88 3.11 在某些类型结构分析使用特殊求解控制89 3.12 使用PGR 文件存储后处理数据92 3.13 获得解答96 3.14 求解多载荷步97 3.15 中断正在运行的作业100 3.16 重新启动一个分析100 3.17 实施部分求解步111 3.18 估计运行时间和文件大小1133.19 奇异解114第4 章后处理概述1164.1 什么是后处理116 4.2 结果文件117 4.3 后处理可用的数据类型117第5 章通用后处理器(POST1) 1185.1 概述118 5.2 将数据结果读入数据库118 5.3 在POST1 中观察结果127 5.4 在POST1 中使用PGR 文件152 5.5 POST1 的其他后处理内容160第6 章时间历程后处理器(POST26)1746.1 时间历程变量观察器174 6.2 进入时间历程处理器176 6.3 定义变量177 6.4 处理变量并进行计算179 6.5 数据的输入181 6.6 数据的输出183 6.7 变量的评价184 6.8 POST26 后处理器的其它功能187第7 章选择和组件190 7.1 什么是选择190 7.2 选择实体190 7.3 为有意义的后处理选择194 7.4 将几何项目组集成部件与组件195第8 章图形使用入门1988.1 概述198 8.2 交互式图形与“外部”图形198 8.3 标识图形设备名(UNIX 系统)198 8.4 指定图形显示设备的类型(WINDOWS 系统)2018.5 与系统相关的图形信息202 8.6 产生图形显示205 8.7 多重绘图技术207第9 章通用图形规范2109.1 概述210 9.2 用GUI 控制显示210 9.3 多个ANSYS 窗口,叠加显示210 9.4 改变观察角、缩放及平移211 9.5 控制各种文本和符号214 9.6 图形规范杂项217 9.7 3D 输入设备支持218第10 章增强型图形21910.1 图形显示的两种方法219 10.2P OWER G RAPHICS 的特性219 10.3何时用P OWER G RAPHICS219 10.4激活和关闭P OWER G RAPHICS220 10.5怎样使用P OWER G RAPHICS220 10.6希望从P OWER G RAPHICS 绘图中做什么220第11 章创建几何显示22311.1 用GUI 显示几何体223 11.2 创建实体模型实体的显示223 11.3 改变几何显示的说明224第12 章创建几何模型结果显示23312.1 利用GUI 来显示几何模型结果233 12.2 创建结果的几何显示233 12.3 改变POST1 结果显示规范235 12.4 Q-S LICE 技术238 12.5 等值面技术238 12.6 控制粒子流或带电粒子的轨迹显示239第13 章生成图形24013.1 使用GUI 生成及控制图240 13.2 图形显示动作240 13.3 改变图形显示指定241第14章注释24514.1 注释概述245 14.2 二维注释245 14.3 为ANSYS 模型生成注释246 14.4 三维注释246 14.5 三维查询注释247第15 章动画24815.1 动画概述248 15.2 在ANSYS 中生成动画显示248 15.3 使用基本的动画命令248 15.4 使用单步动画宏249 15.5 离线捕捉动画显示图形序列249 15.6 独立的动画程序250 15.7 WINDOWS 环境中的动画251第16 章外部图形25316.1 外部图形概述253 16.2 生成中性图形文件254 16.3 DISPLAY 程序观察及转换中性图形文件255 16.4 获得硬拷贝图形258第17 章报告生成器25917.1 启动报告生成器259 17.2 抓取图象260 17.3 捕捉动画260 17.4 获得数据表格261 17.5 获取列表264 17.6 生成报告26417.7 报告生成器的默认设置267 第18 章 CMAP 程序26918.1 CMAP 概述269 18.2 作为独立程序启动CMAP269 18.3 在ANSYS 内部使用CMAP271 18.4 用户化彩色图271第19 章文件和文件管理27419.1 文件管理概述274 19.2 更改缺省文件名274 19.3 将输出送到屏幕、文件或屏幕及文件275 19.4 文本文件及二进制文件275 19.5 将自己的文件读入ANSYS 程序278 19.6 在ANSYS 程序中写自己的ANSYS 文件279 19.7 分配不同的文件名280 19.8 观察二进制文件内容(AXU2)280 19.9 在结果文件上的操作(AUX3)280 19.10 其它文件管理命令280第20 章内存管理与配置28220.1 内存管理282 20.2 基本概念282 20.3 怎样及何时进行内存管理283 20.4 配置文件286第1 章开始使用ANSYS1.1 完成典型的ANSYS 分析ANSYS 软件具有多种有限元分析的能力,包括从简单线性静态分析到复杂的非线性瞬态动力学分析。
ANSYS中文操作手册
ANSYS中文操作手册本操作手册旨在为ANSYS软件的新手用户提供必要的指导和帮助,使用户能够更好地应用和掌握该软件。
环境搭建在开始使用ANSYS软件之前,需要正确安装并配置好所需环境,包括:- 操作系统:Windows、Linux或MacOS等。
- ANSYS软件版本:需要选择适合自己的软件版本,并正确安装激活。
- 显卡:需要支持OpenGL,并且需要具有足够的性能来运行ANSYS软件。
常用工具与操作建模在ANSYS软件中进行建模操作时,通常使用以下工具和功能:- Geometry模块:用于创建和编辑几何模型,支持各种基本几何形体的创建和操作。
- Meshing模块:用于创建并生成网格模型,支持自动或手动设置网格参数。
- CAD接口:可以导入各种CAD软件生成的几何模型进行后续处理。
求解在完成建模和网格生成之后,需要进行模拟计算并解算出相关结果,ANSYS提供了多种求解器工具,例如:- Fluent:用于模拟流动、传热和物质传递等。
- Mechanical:用于模拟结构和声学等。
- CFX:用于模拟流动和传热等。
后处理ANSYS软件中的后处理模块可以对计算结果进行可视化处理和分析,包括:- Post-processing:用于生成和查看计算结果的图表和报告。
- Workbench:提供了一款基于图形界面的后处理工具。
常见问题如何解决ANSYS软件启动缓慢的问题?ANSYS软件启动缓慢通常是由于系统资源不足或软件配置不正确所致。
可以尝试以下措施解决:- 关闭其他不必要的程序和软件。
- 检查系统硬件配置是否满足ANSYS软件的最低要求。
- 检查软件激活是否成功,如果有问题需要重新安装和激活。
模拟计算收敛较慢怎么办?模拟计算收敛较慢可以尝试以下方法:- 调整求解器设置,例如逐步递增计算步骤的大小。
- 检查模型是否存在问题,例如几何形状等不合理因素,需要进行修正。
- 增加计算资源,例如使用更强大的服务器或高性能显卡来加速计算。
ANSYS拓扑优化命令流解释
ANSYS拓扑优化命令流解释如何利用ANSYS进行拓扑优化就目前而言,利用有限元进行优化主要分成两个阶段:(1)进行拓扑优化,明确零件最佳的外形、刚度、体积,或者合理的固有频率,主要目的是确定优化的方向;(2)进行尺寸优化,主要目的是确定优化后的的零件具体尺寸值,通常是在完成拓扑优化之后,再执行尺寸优化。
在ANSYS中,利用拓扑优化,可以完成以下两个目的:(1)在特定载荷和约束的条件下,确定零件的最佳外形,或者最小的体积(或者质量);(2)利用拓扑优化,使零件达到需要的固有频率,避免在使用过程中产生共振等不利影响。
1.ANSYS进行拓扑优化的进行拓扑优化的过程在ANSYS中,执行优化,通常分为以下6个步骤:1.1定义需要求解的结构问题对于结构进行优化分析,定义结构的物理特性必不可少,例如,需要定义结构的杨氏模量、泊松比(其值在0.1~0.4之间)、密度等相关的结构特性方面定义需要求解的结构问题,选择合理的优化单元类型,设定优化和非优化的区域定义载荷步或者需要提取的频率对优化过程进行定义和控制,计算并查看结果的信息,以供结构计算能够正常执行下去。
1.2选择合理的优化单元类型,在ANSYS中,不是所有的单元类型都可以执行优化的,必须满足如下的规定:(1)2D平面单元:PLANE82单元和PLANE183单元;(2)3D实体单元:SOLID92单元和SOLID95单元;(3)壳单元:SHELL93单元。
上述单元的特性在帮助文件中有详细的说明,同时对于2D单元,应使用平面应力或者轴对称的单元选项。
1.3指定优化和非优化的区域在ANSYS中规定,单元类型编号为1的单元,才执行优化计算;否则,就不执行优化计算。
例如,对于结构分析中,对于不能去除的部分区域将单元类型编号设定为≥2,就可以不执行优化计算,请见下面的代码片段:Et,1,solid92Et,2,solid92 ……Type,1Vsel,s,num,,1,2Vmesh,all ……Type,2Vsel,s,num,,3Vmesh,all ……说明:上述代码片段定义相同的单元类型(solid92),但编号分别为1和2,并将单元类型编号1利用网格划分分配给了1#体和2#体,从而对其进行优化计算;而单元编号为2利用网格划分分配给了3#体,从而不执行优化计算。
CFX_旋转机械前后处理TurboPrePost
5. 您可以钩选 Single View 和 Three Views 中的任意一个。三个浏 览器将是三维浏览器,Blade to Blade 浏览器和子午面浏览器
3/23/2007 © 2007 ANSYS, Inc. All rights reserved.
于此次模拟不需要这样 6. 展开 Region Information 框
3/23/2007 © 2007 ANSYS, Inc. All rights reserved.
CFX 11.0 ANSYS, Inc. Proprietary
Inventory #002446 W8-7
部件定义
CFX 前处理中的 Region Information 用以识 别所关心的网格区域。CFX 前处理将试着自 动辨识这些区域,但是某些情况下也许需要 手动输入,这取决于在网格文件中是如何为 这些区域命名。
Inventory #002446 W8-13
普通模式
如果您已经进入普通模式,使用通常的做 法您将观察到所有的域,边界条件和域交 界面
Version 1.3
Workshop Supplement
3/23/2007 © 2007 ANSYS, Inc. All rights reserved.
CFX 11.0 ANSYS, Inc. Proprietary
Version 1.3
Workshop Supplement
Inventory #002446 W8-8
物理定义
Version 1.3
Workshop Supplement
所有物理设置,包括流体类型,模拟类型,入口和出口边界条件, 交界面类型和求解器参数都在此面板设置。
ANSYSWorkbench菜单中英文对照
ANSYS_Workbench菜单中英文对照ANSYS Workbench是一种CAD软件,用于进行工程仿真分析。
它提供了一系列功能强大且易于使用的工具,用于建模、网格生成、求解和后处理各种工程问题。
以下是ANSYS Workbench菜单中的一些常见选项及其对应的英文对照。
1. 文件(File)- 新建(New)- 打开(Open)- 保存(Save)- 另存为(Save As)- 退出(Exit)2. 编辑(Edit)- 撤销(Undo)- 重做(Redo)- 剪切(Cut)- 复制(Copy)- 粘贴(Paste)- 删除(Delete)3. 视图(View)- 缩放(Increase Zoom)- 缩小(Decrease Zoom)- 适应视图(Fit View)- 剖面视图(Section View)- 窗口(Window)- 标尺(Ruler)4. 插入(Insert)- 几何体(Geometry)- 网格(Mesh)- 装配(Assembly)- 边界条件(Boundary Conditions) - 加载(Loads)- 材料(Materials)5. 模型(Model)- 几何体(Geometry)- 网格(Mesh)- 求解(Solve)- 后处理(Postprocessing)- 优化(Optimization)- 网络计算(CFD)6. 工具(Tools)- 设置(Options)- 命令(Command)- 定义(Definition)- 计算器(Calculator)- 脚本(Script)- 存档(Archive)7. 窗口(Window)- 图形(Graphics)- 网格(Meshing)- 场景(Scene)- 后处理(Postprocessing)- 信息(Information)- 动画(Animation)8. 帮助(Help)- ANSYS帮助(ANSYS Help)- 教程(Tutorial)- 论坛(Forum)- 联系技术支持(Contact Technical Support)- 关于(About)以上仅是ANSYS Workbench菜单中的一部分选项,还有其他选项和功能可以根据具体需求进行探索和使用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Chapter 27:Turbo PostprocessingThis tutorial is divided into the following sections:27.1. Introduction27.2. Prerequisites27.3. Problem Description27.4. Setup and Solution27.5. Summary27.1. IntroductionThis tutorial demonstrates the multistage turbomachinery postprocessing capabilities of ANSYS FLUENT.In this example, you will read the case and data files (without doing the calculation) and perform a numberof turbomachinery-specific postprocessing operations.This tutorial demonstrates how to do the following:•Define the topology of a turbomachinery model while using theta min and theta max.•Create surfaces for the display of 3D data.•Revolve 3D geometry to display a 360-degree image.•Report multistage turbomachinery quantities.•Display averaged contours for turbomachinery.•Display 2D contours for turbomachinery.•Display averaged XY plots for turbomachinery.27.2. PrerequisitesThis tutorial is written with the assumption that you have completed Introduction to Using ANSYS FLUENT: Fluid Flow and Heat Transfer in a Mixing Elbow (p.111) and that you are familiar with the ANSYS FLUENT navigation pane and menu structure.27.3. Problem DescriptionThe problem considered in this tutorial is an axial compressor shown schematically in Figure 27.1 (p.1008). The model comprises a single 3D sector of the compressor to take advantage of the circumferential periodicity in the problem.The flow of air through the compressor is simulated and the postprocessing capabilities of ANSYS FLUENT are used to display realistic, full 360-degree images of the solution obtained.Chapter 27:Turbo PostprocessingFigure 27.1 Problem Schematic27.4. Setup and SolutionThe following sections describe the setup and solution steps for this tutorial:27.4.1. Preparation27.4.2. Step 1: Mesh27.4.3. Step 2: General Settings27.4.4. Step 3: Defining the Turbomachinery Topology27.4.5. Step 4: Isosurface Creation27.4.6. Step 5: Contours27.4.7. Step 6: Reporting Turbo Quantities27.4.8. Step 7: Averaged Contours27.4.9. Step 8: 2D Contours27.4.10. Step 9: Averaged XY Plots27.4.1. Preparation1.Download turbo_postprocess.zip from the ANSYS Customer Portal or the User Services Centerto your working folder (as described in Preparation (p.4) of Introduction to Using ANSYS FLUENT inANSYS Workbench: Fluid Flow and Heat Transfer in a Mixing Elbow (p.1)).2.Unzip turbo_postprocess.zip.turbo.cas.gz and turbo.dat.gz can be found in the turbo_postprocess folder after unzipping the file.e FLUENT Launcher to start the 3D version of ANSYS FLUENT.For more information about FLUENT Launcher, see Starting ANSYS FLUENT Using FLUENT Launcher in the User’s Guide.The Display Options are enabled by default.Therefore, after you read in the case and data files, the mesh willbe displayed in the embedded graphics window.27.4.2. Step 1: Mesh1.Read the case and data files(turbo.cas.gz and turbo.dat.gz ).File →Read →Case & Data...When you select turbo.cas.gz ,turbo.dat.gz will be read automatically.27.4.3. Step 2: General SettingsGeneral1.Display the mesh.General →Display...a.Retain the default Edges option in the Options group box.b.Select Outline in the Edge Type list.c.Deselect all the surfaces from the Surfaces selection list and click the Outline button.d.Click Display .e.Rotate the view by clicking the Rotate Viewicon () in the toolbar, press the left mouse buttonand drag the mouse.To zoom in or out, press the Zoom In/Outbutton and press the leftmouse button and move the mouse up and down.To obtain an isometric display, select the Iso-metric view iconin the toolbar.f.Close the Mesh Display dialog box.27.4.3. Step 2: General SettingsChapter 27:Turbo PostprocessingExtraYou can use the right mouse button to check which zone number corresponds to each boundary.If you click the right mouse button on one of the boundaries displayed in the graphics window,its zone number, name, type, and other variables will be printed in the console.This feature isespecially useful when you have several zones of the same type and you want to distinguishbetween them quickly.27.4.4. Step 3: Defining the Turbomachinery TopologyYou will define the topologies of the flow domain in order to establish a turbomachinery-specific coordinate system. This coordinate system is used in subsequent postprocessing functions. Specifically, you will select the boundary zones that comprise the hub, shroud, inlet, outlet, and periodics.The boundaries may consist of more than one zone.The topologies that you define will be saved to the case file when you save the current model.Thus, if you read the saved case back into ANSYS FLUENT, you do not need to set up the topology again.For more information on defining turbomachinery topologies, see Defining the Turbomachinery Topologyin the User’s Guide.Turbo Topology...Define→1.Specify the surfaces representing the hub.a.Retain the default selection of Hub in the Boundaries group box.b.Select the surface that represent the hub (rotor-hub) in the Surfaces selection list.2.Specify the surfaces representing the casing.27.4.4. Step 3: Defining the Turbomachinery Topologya.Select Casing in the Boundaries group box.b.Select rotor-shroud in the Surfaces selection list.3.Specify the surfaces representing theta periodic.Theta periodic are all rotationally periodic boundary conditions surfaces (periodic boundary condition type) which border the turbo topology on the lateral (pitchwise) boundaries.a.Select Theta Periodic in the Boundaries group box.b.Select rotor-periodic-wall-1 and rotor-periodic-wall-2 in the Surfaces selection list.4.Specify the surfaces representing theta min.a.Select Theta Min in the Boundaries group box.b.Select rotor-blade-suction in the Surfaces selection list.Theta Min and Theta Max are all walls which may border the turbo topology on the lateral (pitchwise) boundaries.The “min” and “max” are determined by the right hand rule about the axis of rotation. Specifically, using the right hand rule, the min surfaces would have the minimum pitchwise coordinate and the max surfaces would have the maximum pitchwise coordinate.5.Specify the surfaces representing theta max.a.Select Theta Max in the Boundaries group box.b.Select rotor-blade-pressure in the Surfaces selection list.6.Specify the surface representing the inlet.a.Select Inlet in the Boundaries group box.b.Select rotor-inlet in the Surfaces selection list.7.Specify the surface representing the outlet.a.Select Outlet in the Boundaries group box.b.Select rotor-outlet in the Surfaces selection list.8.Retain the default name of new-topology-1 for the Turbo Topology Name.9.Click Define to set all the turbomachinery boundaries.Create a second topology to represent the stator.10.Specify the surfaces representing the hub.a.Select Hub in the Boundaries group box.b.Select the surface that represent the hub (stator-hub) in the Surfaces selection list.TipScroll down the Surfaces list to locate the surfaces representing the hub.11.Specify the surfaces representing the casing.a.Select Casing in the Boundaries group box.b.Select stator-shroud in the Surfaces selection list.12.Specify the surfaces representing theta periodic.a.Select Theta Periodic in the Boundaries group box.Chapter 27:Turbo Postprocessingb.Select stator-periodic-wall-1and stator-periodic-wall-2 in the Surfaces selection list.13.Specify the surfaces representing theta min.a.Select Theta Min in the Boundaries group box.b.Select stator-blade-suction in the Surfaces selection list.14.Specify the surfaces representing theta max.a.Select Theta Max in the Boundaries group box.b.Select stator-blade-pressure in the Surfaces selection list.15.Specify the surface representing the inlet.a.Select Inlet in the Boundaries group box.b.Select stator-inlet in the Surfaces selection list.16.Specify the surface representing the outlet.a.Select Outlet in the Boundaries group box.b.Select stator-outlet in the Surfaces selection list.17.Retain the default name of new-topology-2 for the Turbo Topology Name.18.Click Define to set all the turbomachinery boundaries.19.Close the Turbo Topology dialog box.ANSYS FLUENT will inform you that the turbomachinery postprocessing functions have been enabled, and the Turbo menu will appear in ANSYS FLUENT menu bar at the top of the console.You can define any number of turbo topologies in the Turbo Topology dialog box.This is especially useful when you have a model comprising multiple blade rows and you need to define more than one blade row simultaneously. Each topology can be assigned a specific name and accessed using the drop-down list in the Turbo Topology dialog box.For more information on defining turbomachinery topologies, see Defining the Turbomachinery Topologyin the User’s Guide.NoteYou can display the selected surfaces by clicking the Display button in the Turbo Topologydialog box.This is useful as a graphical check to ensure that all relevant surfaces have been selec-ted.27.4.5. Step 4: Isosurface CreationTo display results in a 3D model, you will need surfaces on which the data can be displayed. ANSYS FLUENT creates surfaces for all boundary zones automatically. In a general application, you may want to define additional surfaces for viewing results.The turbo postprocessing capabilities of ANSYS FLUENT allow you to define more complex surfaces, specific to the application and the particular topology that you defined. In this step, you will create surfaces of iso-meridional (marching along the streamwise direction) and spanwise (distance between the huband the shroud) coordinates in the compressor.1.Create surfaces of constant meridional coordinate.Surface→Iso-Surface...27.4.5. Step 4: Isosurface Creationa.Select Mesh... and Meridional Coordinate from the Surface of Constant drop-down lists.b.Enter 0.2 in the Iso-Values text field.c.Enter meridional-0.2 for New Surface Name.d.Click Create.NoteThe isovalues you enter for these turbo-specific surfaces are expressed as a percentageof the entire domain (i.e., you just defined a surface of meridional coordinate equal to20% of the path along the duct).e.Similarly, define surfaces of meridional coordinates equal to 0.4, 0.6, and 0.8.2.Create surfaces of constant spanwise coordinate.a.Select Mesh... and Spanwise Coordinate from the Surface of Constant drop-down lists.b.Enter 0.25 in the Iso-Values text field.c.Enter spanwise-0.25 for New Surface Name .d.Click Create .e.Similarly, define surfaces of spanwise coordinates equal to 0.5 and 0.75.3.Close the Iso-Surface dialog box.27.4.6. Step 5: ContoursGraphics and Animations→Contours →Set Up...1.Display filled contours of pressure on the meridional isosurfaces (Figure 27.2 (p.1016)).Chapter 27:Turbo Postprocessing27.4.6. Step 5: Contoursa.Make sure Filled is enabled in the Options group box.b.Retain the selection of Pressure...and Static Pressure from the Contours of drop-down lists.c.Select rotor-inlet,meridional-0.2,meridional-0.4,meridional-0.6,meridional-0.8, and rotor-outlet from the Surfaces selection list.d.Enable Draw Mesh in the Options group box.The Mesh Display dialog box will open.i.Retain the current settings and close the Mesh Display dialog box.e.Click Display.f.Rotate and zoom the display using the left and middle mouse buttons, respectively, to obtain theview shown in Figure 27.2 (p.1016).In Figure 27.2 (p.1016), you can observe the buildup of static pressure along the duct.Chapter 27:Turbo PostprocessingFigure 27.2 Filled Contours of Pressure on the Meridional Isosurfaces2.Display filled contours of Mach number (Figure 27.3 (p.1017)).a.Select Velocity... and Mach Number from the Contours of drop-down lists.b.Click Display.In Figure 27.3 (p.1017), you can observe locations at which the flow becomes slightly supersonic, about halfway through the duct.27.4.6. Step 5: ContoursFigure 27.3 Filled Contours of Mach Number on the Meridional Isosurfaces3.Display filled contours of Mach number on the spanwise isosurfaces (Figure 27.4 (p.1018)).a.Deselect all surfaces in the Surfaces selection list.b.Select spanwise-0.25,spanwise-0.5, and spanwise-0.75 from the Surfaces selection list.c.Click Display.The display in Figure 27.4 (p.1018) allows you to further study the variation of the Mach number inside the duct.You may want to explore using different combinations of surfaces to display the same oradditional variables.Figure 27.4 Filled Contours of Mach Number on the Spanwise Isosurfaces4.Display a 360-degree image of the Mach number contours on the hub and blade wall surfaces.a.Deselect all surfaces in the Surfaces selection list.b.Select rotor-hub ,rotor-blade-pressure and rotor-blade-suction from the Surfaces selection list.c.Click Display .d.Display the full 360-degree geometry.Graphics and Animations →Views...Chapter 27:Turbo Postprocessing27.4.6. Step 5: Contoursdialog box.i.Click the Define... button to open the Graphics Periodicity ArrayA.Select fluid-rotor in the Cell Zones list.This will select all the surfaces in the Associated Surfaces list.The default value for Number of Repeats is set to 16.The display is updated to give a full, 360 degree view.B.Click Set and close the Graphics Periodicity dialog box.The display will be updated to show the entire geometry (see Figure 27.5 (p.1020)).Chapter 27:Turbo PostprocessingFigure 27.5 Filled Contours of Mach Number on the 0.5 Spanwise Isosurfaceii.Close the Views dialog box.5.Close the Contours dialog box.NoteThis step demonstrated a typical view-manipulation task. See Postprocessing (p.961) for furtherexamples of postprocessing features.27.4.7. Step 6: Reporting Turbo QuantitiesThe turbomachinery report provides some tabulated information specific to the application and the defined topo-logy.For details, see Generating Reports of Turbomachinery Data in the User’s Guide.Turbo→Report...1.Retain the default selection of Mass-Weighted in the Averages list.2.Select new-topology-1 from the Turbo Topology drop down list.3.Click Compute .4.Close the Turbo Report dialog box.27.4.8. Step 7: Averaged ContoursTurbo averaged contours are generated as projections of the values of a variable averaged in the circumferential direction and visualized on an - plane.1.Disable the periodic repeats.Graphics and Animations →Views...a.Click the Define... button to open the Graphics Periodicity dialog box.i.Click Reset .27.4.8. Step 7: Averaged ContoursChapter 27:Turbo Postprocessingii.Close the Graphics Periodicity dialog box.b.Close the Views dialog box.2.Display filled contours of averaged static pressure (Figure 27.6 (p.1023)).Averaged Contours...Turbo→a.Retain the default selection of Pressure... and Static Pressure from the Contours of drop-downlists.b.Click Display.c.Close the Turbo Averaged Contours dialog box.Figure 27.6 Filled Contours of Averaged Static Pressure27.4.9. Step 8: 2D ContoursIn postprocessing a turbomachinery solution, it is often preferable to display contours on constant spanwise co-ordinates and then, project these contours onto a plane.This permits easier evaluation of the contours, especially for surfaces that are highly three-dimensional. ANSYS FLUENT allows you to display contours in this manner using the Turbo 2D Contours dialog box.1.Display 2D contours of Mach number (Figure 27.7 (p.1024)).Turbo →2D Contours...27.4.9. Step 8: 2D ContoursChapter 27:Turbo Postprocessinga.Select new-topology-1 from the Turbo Topology drop down list.b.Select Velocity... and Mach Number from the Contours of drop-down lists.c.Enter 0.5 for Normalised Spanwise Coordinates.NoteFor highly curved edges, if a surface is created very close to the curved edge the res-ulting surface may have some void spaces in it.d.Click Display.e the mouse to obtain the view shown in Figure 27.7 (p.1024).Figure 27.7 2D Contours of Mach Number on Surface of Spanwise Value 0.5f.Close the Turbo 2D Contours dialog box.27.4.10. Step 9: Averaged XY PlotsIn addition to displaying data on different combinations of complex 3D and flattened surfaces, the turbo postpro-cessing capabilities of ANSYS FLUENT allow you to display XY plots of averaged variables, relevant to the specific topology of a turbomachinery problem. In particular, you will be able to plot circumferentially-averaged valuesof variables as a function of either the spanwise coordinate or the meridional coordinate.1.Plot temperature as a function of the meridional coordinate (Figure 27.8 (p.1025)).Turbo→Averaged XY Plot...27.4.10. Step 9: Averaged XY Plotsa.Select Temperature... and Static Temperature from the Y Axis Function drop-down lists.b.Select Meridional Distance from the X Axis Function drop-down list.c.Enter 0.9 for the Fractional Distance.d.Click Plot.e.Close the Turbo Averaged XY Plot dialog box.Figure 27.8 Averaged XY Plot of Static Temperature on Spanwise Surface of 0.9 IsovalueChapter 27:Turbo Postprocessing27.5. SummaryThis tutorial demonstrated the use of some of the turbomachinery-specific postprocessing features of ANSYS FLUENT.These features can be accessed once you define the topology of the problem. More extensive general-purpose postprocessing features are demonstrated in Postprocessing (p.961). For additional inform-ation, see "Displaying Graphics" in the User’s Guide. Note that ANSYS CFD-Post also offers advanced post-processing tools for turbomachinery.The tutorial describing these tools is available in the CFD-Post Tutorials.。