无模成形技术简介
无模金属板料成形技术(单点渐进式成形)7.7
无锡市澳富特精密快速成形科技有限公司
Page 6
单点渐进式成形技术简介
无模金属板料的成形技术是国际上一种先进的柔性加工工艺。该工艺不需 要专用模具,具有生产周期短、成本低的优点。特别适合于小批量、多品种、 复杂金属板材零件的生产。
以汽车工业为例,汽车覆盖件是汽车关键零部件中的关键领件,随着汽车 市场的竞争日趋激烈,汽车生产已经呈现出多品种、换型周期短的特点。按传 统工艺,开发一个车型全套的覆盖件模具一般需上亿元的投入,而且需要一年 以上的制造周期。
无锡市澳富特精密快速成形科技有限公司
Page 13
无模板料成形技术应用前景
在当今世界,随着生产力水平的提高,制造业需要成千 上万各类模具以生产出形状各异的产品及零部件。尤其是 在飞机、轮船、汽车等产品的覆盖件制造上,更需要大量 的模具,其制造和调试除要花费巨额资金外,加工周期也 往往需要几个月甚至十几个月。而且产品一旦换型,模具 也必须随之更换,从而严重制约了制造业的发展。而无模 成形技术就是要成为万能板材成形机,不用模具就能生产
无锡市澳富特精密快速成形科技有限公司
Page 3
技术介绍
4
传统的金属板料成形方式
传统的金属板料成形方式 冷冲压等板料成形方法在汽车等工业中占有重要地位; 广泛应用于汽车覆盖件的大批量生产; 除需要大型冲压机床外,模具要求高,造价昂贵,制造周期长。
无锡市澳富特精密快速成形科技有限公司
Page 5
单点渐进式成形的成形方法
无模金属板料成形技术(单点渐进式成形)
——无锡澳富特精密快速成型科技有限公司
公司介绍
2
公司介绍
澳富特(AFT)公司是无锡市2009年度的530重点项目之一,是致力于 金属板材快速成型技术的高科技公司。 该项目技术独步于国内,具有国际领先水平,并已拥有多项发明专利及 实用新型专利等自主知识产权,公司还在继续申请国内外的相关专利。 正在与上海交通大学、华中科技大学、哈尔滨理工大学、江苏大学等建 立产学研平台,开展联合攻关,加速拓宽该项目技术的应用领域及该项目 技术的不断升级。 该项目得到了无锡市及新区科技局的重视和大力支持。
无模多点成形技术——板材成形的新理念
无模多点成形技术
1 无 模 多 点成 形 技术 的基 本原 理 与技 术 特点 .
板材成形的新理念
财 力 ,显 著地 缩 短 产 品生 产 周 期 ,降低 生 产 成 本 ,
吉林大学辊锻工艺研究所 (305 李 东平 李东 成 102 )
( )优 化变 形 路 径 2
通 过基 本 体调 整 ,实 时 控
制变形 曲 面 ,随 意 改 变 板 材 的 变 形 路 径 和 受 力 状 态 ,提 高材 料成 形 极 限 ,实 现难 加 工材 料 的塑 性 变
( )实 现 无 回 弹 成 形 可 采 用 反 复 成 形 新 技 3
形 ,扩 大加 工 范 围 。
高 、质 量好 ,并且 显 著提 高生 产 效 率 。
调 的基 本 体
( 冲
头) ,通 过对 各 个 基
本体 的实 时控 制,
构 造 出 所 需 形 状 的
成 形 面 ,取 代 传 统 的模 具 来 实 现 板 材 三 维 曲 面 的ቤተ መጻሕፍቲ ባይዱ快 速 无
一
图 1 多点成形原理 示意 图
无模 多 点 成形 技 术 是 由 吉林 大学 李 明哲 教 授在 提 高产 品 的竞 争 力 。与模 具 成形 法 相 比 ,不但 节 省
日本 做博 士 后 研 究工 作 期 间命 名 的一 项 金属 板 材三 巨 额加 工 、制 造模 具 的 费用 ,而且 节 省大 量 的修 模
维 曲 面 成 形 的 先 进 制 造 技术 。 其基 本 原 理是 利 用 一 系 列 规 则 排 列 的 、高 度 可 与 调模 时 间 ;与手 工 成形 方 法相 比 ,成 形 件 的精 度
<2 10 0
无模拉伸成型
水 …………………. …….
油 ………………….
…………………. ………………….
成型方法
滚筒形式 …..
热源固定 ………... 连续无模拉伸机
…… …… ……
按热源状况分类
卷筒形式
热源移动
……..
伺服电机 转换系统
拉伸设备
材料试验机ຫໍສະໝຸດ 成型设备图4 连续无模拉伸机
M是液压马达,E是联轴节,B是 涡轮减速器,G1-5是齿轮,W是链 轮,C是链条,D是卷筒,R1-2是滚 轮,S是压簧,Co是冷却器,H是 感应线圈,Gu是导板。
无模拉伸成型
2013年10月28日
主要内容
概述
工艺特点
成型原理
典型实例
成型方法 和设备
概述
• 一种不采用模具而进行金属成形的新工艺。 • 无模拉伸研究在国外始于七十年代。 • 目前世界上只有少数几个国家对此工艺进行了理论和实 验研究,例如日本、英国、苏联等。 • 从文献上看,利用无模拉伸成形工艺可以生产棒材、管 材、阶梯棒或管、锥形棒或管、波形棒或管、复合棒或管等。
成型原理
图1 无模拉伸的两种典型布置。A1和A2分别表示变形前后坯料的断 面积,V1为棒料拉伸速度,V2为热源移动速度。
成型原理
图2 连续拉伸成形原理图
成型方法
电阻加热(交流、直流)
燃烧气体加热(氧—乙炔)
按加热方法分类
等离子电弧加热
感应加热(高频、低频)
成型方法
气体
按冷却方法分类
液体
空气 热空气 …………………. 慢冷却 惰性气体 …………………. 氦气 二氧化碳气体 …………………. 急冷却
成型原理
无模多点数字化成形技术与装备
1无模多点数字化成形技术与装备多点数字化成形是一种先进的板类件三维曲面成形技术。
该技术利用计算机控制很多可调整高度的基本体,形成所需的成形曲面,代替模具实现板材快速、柔性成形。
具有实现无模成形、改善变形条件、无回弹成形、小设备成形大型件、CAD/CAM/CAT一体化等特点。
多点数字化成形设备特别适用于尺寸多变、批量不大的大型板材曲面零件的生产,使生产简单化、柔性化,实现零件的快速制造。
多点成形设备的加工范围广、零件的成形精度高、成形质量好,可广泛用于飞机蒙皮、船体外板、车辆覆盖件、医学工程、压力容器、建筑装饰、城市雕塑等领域中各种曲面零件的制造。
传统的模具成形方式制造成本高,手工加工的质量难以保证。
多点成形设备不需模具,功能全、性能好,市场前景非常广阔。
用户购置该设备后,可节省大量的模具材料及模具制造费用,并可提高工效数十倍,缩短研制及生产周期,对产品的更新换代做出快速响应,取得显著的经济效益。
2多点数字化拉形技术多点数字化拉形技术是将传统的整体拉形模具离散成规则排列的基本体点阵,形成数字化控制的多点模具,实现不同形状蒙皮件的数字化制造。
吉林大学已经开发出尺寸为1200×800mm的多点数字化拉形装置,成形出多种合格的蒙皮件,取得了良好的效果。
该装置由1536个基本体单元构成,具有八轴伺服控制系统,可同时调整6个基本体单元。
这是目前正在运行的欧盟第六框架协议计划“基于多点成形方法的飞机蒙皮制造用数字化调整装置”国际合作项目的重要成果之一。
3液态道路沥青软包装成套设备及新型沥青包装袋液态道路沥青软包装技术是“七五”国家重点科技攻关项目,于1991年2月通过国家鉴定验收,并获国家科技攻关成果二等奖。
94年获交通部科技进步二等奖,95年获国家科技进步三等奖,该项目92年列入交通部重点推广项目,93年列入国家重点推广项目,它完美地解决了长期困扰我国的道路沥青包装、贮藏和运输的一大难题。
液态道路沥青软包装线是将温度在≤200℃时的道路沥青,灌装在特种材料经过特殊工艺加工制成的软包装复合袋中的机械设备。
无模成型技术
摘要:金属板料成形在制造业中有着广泛的应用,但传统的金属板料加工工艺都离不开模具,采用模具成形生产周期长,而且缺乏柔性,产品变化时就需要重新更换模具,这就延长了新产品的开发周期。
而现代社会产品的更新换代非常迅速,如何快速、低成本和高质量地开发出新产品,是企业生存和发展的关键。
因此一些新型的无模成形技术应运而生,如:喷丸成形、数字化渐进成形、无模多点成形、激光热应力成形、激光冲压成形等。
这些技术都是在数控系统的支撑下,实现板料的无模成形,具有很大的柔性。
他们克服了模具成形的不足,节省了模具制造费用与时间,特别适合新产品的开发和小批量生产。
1 喷丸成形喷丸成形是利用高速弹丸撞击金属板料的一个表面,使受撞击表面及其下一层金属产生塑性变形,导致面内产生残余应力,在此应力作用下逐步使板料达到要求外形的一种成形方法。
[1]目前其主要应用在航空航天领域,如波音和空中客车等飞机制造公司在其现代客机的生产中,都已采用了喷丸成形方法。
其主要优点是:(1)零件长度不受喷丸成形方法的限制,现代飞机蒙皮零件的长度已达32m,若采用其他方法,设备投资将急剧增加。
(2)工艺装备简单,无需成形模具,只需简单的夹具。
准备周期短,固定投资少。
(3)在进行成形的同时,可对板料起到强化作用。
(4)可对变厚度的板料进行成形。
(5)既可成形单曲率外形,又可成形双曲率外形,如机翼上下气动弯折区或非直母线区。
[2]喷丸成形的工艺方法有弯曲喷丸、延伸喷丸和预应力喷丸3种,其成形机理十分复杂。
由于影响成形过程的因素较多,使得喷丸成形工艺参数的选择仍要依靠庞大的实验数据库和操作经验,采用试喷渐进的方法来确定,耗时费资。
在采用CNC喷丸成形后,这一问题更需解决。
西北工业大学的康小明等人提出喷丸成形CAD/CAM/CAE系统,以机翼整体壁板全信息模型及喷丸成形数据库为基础,解决了喷丸成形的参数选取问题;对喷丸成形进行运动模拟,简化了喷丸成形的数控编程工作;对喷丸成形进行有限元模拟,增强了对这一复杂过程的预见。
无模成型 ppt课件
2.2多点成形系统的构成
• 一个基本的多点成形系统由三大部分组成,即CAD/ CAM软件、计算机控制系 统及多点成形主机(如图3)。CAD软件系统根据成形件的目标形状进行几何造 型、成形工艺计算等,将数据文件传给控制系统,控制系统根据这些数据控制 压力机的调整机构,构造基本体群成形面,然后控制加载机构成形出所需的零 件产品。
反复成形的过程如图7所示,首先使变形超过目标形状, 然后反向变形并超过目标 形状,再正向变形;以目标形状为中心循环反复成形,直至收敛于目标形状。
3.4 多道成形工艺
• 对于变形量很大的零件,可逐次改变多点模具的成形面形状,进行多道次成形。 其基本思想是将一个较大的目标变形量分成多步,逐渐实现。通过多道次的成形, 将一步步的小变形,最终累积到所需的大变形。
无模成型
无模多点成形* 无模单点成形 无模拉伸成型 3D打印(不叙述) 激光热应力成形*
激光冲压成形 喷丸成形* 爆炸成形 总结
多点成形的研究背景 多点成形的概念 多点成形的几种成形工艺 多点成形技术应用实例 多点成形缺陷分析及消除方法 多点成形技术的发展趋势
一、多点成形的研究背景
随着我国制造业的飞速发展,需要不断研发新型产品,提高更新换代速度, 因此,对三维曲面件的需求会越来越大。特别是在航空航天、船舶舰艇、各 种车辆及建筑雕塑等许多军用与民用制造领域,都需要使用大量的各种材质 的三维曲面板类件。传统的三维曲面件成形方法通常要采用模具成形或手工 制造方式来实现,但模具成形不仅制造费用昂贵、加工周期长,而且不利于 产品的更新换代、制约着制造业的快速发展;而手工成形又存在质量差、效 率低、劳动强度大等缺点。传统的三维曲面件成形方法已无法满足现代制造 业高速发展的要求。因此,多点成形技术成为热门研究课题,是现代制造领 域的重要发展方向。
金属板材无模成形
类型多样的金属板材无模成形技术1.金属板材无模成形简介金属板材无模成形是指使用非模具的成形工具强迫金属板材发生渐进的塑性变形,最终得到所需零件的加工方法。
由于市场需求的多样化,机械和控制技术的进步,促使金属板材无模成形有了较快的开展,国内外许多企业学者进展了大量的研究。
目前比拟典型的板材无模成形方法有成形锤渐进成形、旋压成形、多点成形和数字化渐进成形等。
通过不同的板材成形方法来了解各种成形技术的开展及其优缺点。
2.无模成形的类型及特点2.1CNC成形锤渐进成形法[1]该方法使用刚性冲头和弹性下模,对板材各局部区域分别打击成形,逐步成形为所需形状的加工工艺。
成形锤渐进成形法成形方法简单,成形速度较快,但是该技术只能成形形状比拟简单的工件,而且成形后留下大量的锤击压痕点,影响制品的外表质量,因而还必须进展后续处理。
成形锤渐进成形示意图2.2喷丸成形[2]喷丸成形是利用高速弹丸撞击金属板材的一个外表,使受撞击外表及其下一层金属产生塑性变形,导致面内产生剩余应力,在此应力作用下逐步使板材到达要求外形的一种成形方法。
目前其主要应用在航空航天领域,如波音和空中客车等飞机制造公司在其现代客机的生产中,都已采用了喷丸成形方法。
喷丸成形的主要优点:〔1〕零件长度不受喷丸成形方法的限制,现代飞机蒙皮零件的长度已达32 m,假设采用其他方法,设备投资将急剧增加;〔2〕工艺装备简单,无需成形模具,只需简单的夹具,准备周期短,固定投资少;〔3〕在进展成形的同时,可对板料起到强化作用;〔4〕可对变厚度的板料进展成形;〔5〕既可成形单曲率外形,又可成形双曲率外形,如机翼上下气动弯折区或非直母线区。
A380飞机超临界外翼下翼面整体壁板长度30余m、厚度30余mm,是迄今采用喷丸成形技术所获得的长度最长、厚度最大的构件,代表了国际喷丸成形工艺技术的最新成果。
2.3 旋压成形[3-5]旋压成形是一种将金属坯料装在芯模的顶部,旋轮通过轴向运动和径向运动,使旋转坯料在旋轮滚压作用下产生局部连续塑性变形,最终获得所要求的薄壁回转体零件的塑性加工方法。
数字化无模铸造精密成型技术
四、无模铸造工艺流程
无模铸造工艺是一个包含CAD/CAM、数控、材料、喷射、工艺参数设置及 后处理的集成制造过程,可概括为以下几个过程: (1)前处理过程:首先规划和设计铸型,即确定工艺参数、选取最优加工方向、 设计浇注系统等,将产品/零件的CAD模型转换成铸型的CAD模型。然后由铸 型CAD数据得到分层截面轮廓数据,再以层面信息产生控制信息。 (2)造型过程:原砂存储及铺砂机构将原砂均匀铺撒在砂箱表面并由压滚压实, 喷射装置将树脂和固化剂喷射在每一层铺好压实的型砂上,粘结剂与催化剂 发生胶联反应,粘接剂和催化剂共同作用的地方型砂被固化在一起,其他地 方型砂仍为颗粒态干砂。固化完一层后再粘接下一层,所有层面粘接完之后 就可以得到一个三维实体铸型。 (3)后处理过程:清理出铸型中间未固化的干砂就可以得到一个有一定壁厚的铸 型,在砂型的内表面涂敷或浸渍涂料。
低
约叁拾万元左右
专业技能要求普通, 专业技能要Fra bibliotek普通,培训一周即可进行操作
专业技能要求高, 专业技能要求高,一般有一定工作经验才能独立工作
工艺 和 制造 特性
1、无需模具,铸型一次成形。 、无需模具,铸型一次成形。 2、可实现一体化造型,减少设计约束和机加工量, 、可实现一体化造型,减少设计约束和机加工量, 铸件尺寸精度易控制。 铸件尺寸精度易控制。 3、型、芯同时成型,提高定位精度。 芯同时成型,提高定位精度。 、 4、无需拔模斜度,减轻铸件重量。 、无需拔模斜度,减轻铸件重量。 5、可以制作任意形状的铸件,尤其是制作复杂以 、可以制作任意形状的铸件, 及含有自由曲面的铸件,而且精度高。 及含有自由曲面的铸件,而且精度高。 6、完美体现设计者意图,提高发动机的效率。 、完美体现设计者意图,提高发动机的效率。 7、设计有问题修改三维图即可重新制作。 、设计有问题修改三维图即可重新制作。
金属板材无模成形技术发展综述
图1 成形锤成形法
无模多点成形技术,是把模具曲面离散成有限个高度分别可调的基本单元,用多个基本单元代替传统
图2 多点成形技术 图3 多点成形技术加工马鞍形曲面解成为一系列二维局部塑性成形,实现手段一般是在数控铣床上利用成形工具压头旋转压延逐层依次成形
,该系
图5 AMINO公司单点渐进成形系统及成形的零件
比利时Duflou教授在CNC加工中心上用单点渐误差补偿的方法做出了改进
图6 零件3D设计图 图7零件实物照片加拿大皇后大学的Jeswiet等人设计试验台,用
图8 双边渐进成形技术
以上这些渐进成形技术都是基于CNC机床,并利用高速旋转的球形或半球形工具头,对工件进行渐进塑性成形。
针对这种工作方式,还有许多学者对成。
弯扭构件无模多点成形技术简介
图3 无模多点成形模具成形过程
五、无模成形的计算机曲面造型
1、打开多点成形CAD-CAM软件,并输入工件名称、曲面造型方 法、板厚及回弹系数。
无模成形的计算机曲面造型
2、根据加工图确定坐标总点数
无模成形的计算机曲面造型源自3、将弯扭板件的三维空间坐标拷贝至多点成形CAD-CAM软件。
无模成形的计算机曲面造型
图1多点成形曲面
二、模具成形与无模多点成形的比较
各冲头的行程可分别调节,改变各冲头的位置就改变字成形曲面, 也就是相当于重新构造了成形模具,体现了多点成形的柔性特点;而 整体模具的造型单一,需一种产品一种模具。
上模
工件
上冲头
可变成形面
下模
下冲头
( a)整体模具成形
(b)多点成形
三、无模多点成形系统的基本构成
CAD 软 件系统 计算机控 制系统 多点成 形主机 成形 件
图2 多点成形系统的基本构成
四、无模多点成形模具成形过程
该套多点成形设备的主要成形方法是:成形前把冲头 调整到所需的适当位置,使各冲头形成构件曲面的包络面。
在成形过程中各冲头间无相运动。如图3所示。
(a)成形开始
(b)成形过程中
(c)成形结束
弯扭板件的装配效果图
一、无模多点成形的成形原理
无模多点成形就是将多点成形技术和计 算机技术结合为一体的先进制造技术, 实际上是一种数控模具成形 。多点成 形是金属板材三维曲面成形的新技术, 其原理是将传统的整体模具离散成一系 列规则排列、高度可调的基本体(即冲 头)。在整体模具成形中,板材由模具 曲面来成形,而多点成形中则由基本体 群冲头的成形曲面来完成,如图1所示。 该技术利用一系列规则排列的、高度可 调的基本体,通过对各基本体运动的实 时控制,自由地构造出成形面,实现板 材的三维曲面成形。它是对三维曲面扳 类件传统生产方式的重大创新。
无需模具的成形工艺
无需模具的成形工艺无模具成形技术是一种将材料加工成特定形状的方法,不需要使用传统的模具来进行成型。
这种成形工艺具有诸多优点,如灵活性高、快速、成本低等,因此在各种领域都有广泛的应用。
以下是一些常见的无模具成形技术:1. 压缩成型:压缩成型是一种将粉末或颗粒材料置于两个模具之间,并通过施加压力使其成形的方法。
这种成形工艺可以用于制造陶瓷制品、金属制品、复合材料等。
压缩成型具有生产效率高、能耗低、成品质量好等优点。
2. 注塑成型:注塑成型是一种将熔化的塑料注入到模具中,在模具中冷却硬化后,取出成品的工艺。
传统的注塑成型需要使用模具,但无模具成形技术可以通过特殊的喷射造型机和材料,将熔化的塑料喷射到模具表面,从而实现无模具成型。
3. 三维打印:三维打印是一种通过逐层添加材料来制造物体的技术。
它可以直接将计算机设计的三维模型转化为实体,而无需传统模具。
三维打印工艺具有快速、精确、灵活性高的优点,被广泛应用于航空航天、医疗器械、汽车制造等领域。
4. 化学成形:化学成形是一种通过在材料表面施加化学反应,使其发生体积变化来实现成形的方法。
这种成形工艺适用于聚合物材料、橡胶材料等。
通过控制反应速率和条件,可以精确控制材料的形状和尺寸。
5. 拉伸成形:拉伸成形是一种通过施加力将材料拉长或挤压来实现成形的技术。
这种成形工艺适用于金属材料的加工。
通过控制拉伸方向、速度和温度等参数,可以实现各种复杂形状的金属制品成形。
6. 微纳加工:微纳加工是一种利用微米或纳米级别的加工工艺来制造微观或纳米级别的结构和器件的技术。
这种加工技术可以通过光刻、电子束曝光、离子束雕刻、原子力显微镜等方式实现。
微纳加工可以制造出特殊的形状和结构,广泛应用于集成电路、纳米器件、微流体等领域。
无模具成形技术在产品设计、制造和研发中具有重要的意义。
它不仅可以缩短产品开发周期,降低制造成本,还可以促进创新和个性化定制。
随着材料科学、制造工艺和机械设备的不断发展,无模具成形技术将有更广阔的应用前景。
科技成果——数字化无模铸造精密成形技术
科技成果——数字化无模铸造精密成形技术适用范围机械行业通用机械行业汽车、工程机械、船舶、电力、交通、航空航天等领域复杂零部件行业现状铸造行业的能耗约占机械工业能耗的25%-30%(仅指铸造系统单独使用的能源而言,不计各种原材料能耗);整个机械制造行业的GDP 能耗为每万元0.18tce,而铸造业约为每万元0.8tce。
目前,我国铸造行业的能源利用率是仅为17%,铸造生产的综合能耗是发达国家的2倍,节能潜力很大。
然而,我国铸造行业清洁生产与环境保护意识差,能耗大。
据统计,中国制造业的铸件生产过程中材料和能源的投入约占产值的55%-70%。
每生产1t合格铸铁件的能耗为450-650kgce,国外为300-400kgce;生产1t合格铸钢件的能耗为700-800kgce,国外为500-800kgce。
同时,传统铸造中的铸型制造需要通过木模或金属模翻制而成,存在拔模工序多,制模周期长,成本高、原材料浪费大、废弃物排放多等问题,且产品设计发生改动,需要重新制造模具,严重影响关键零部件开发速度和成本,造成资源的重复浪费。
目前应用该技术可实现节能量2万tce/a,减排约5万tCO2/a。
成果简介1、技术原理数字化无模铸造精密成形技术是一种全新的铸型制造方法。
铸型制造是砂型铸造的关键工艺,决定铸件的质量和开发速度。
本技术基本原理为:首先根据铸型三维CAD模型进行分模,并结合加工参数进行砂型切削路径规划;对规划好的路径模拟仿真,确保不会发生刀具干涉和砂型破坏;将砂坯置于加工平台上加工,产生的废砂被喷嘴吹出的气体排除。
最后将加工的砂型单元砍合组装成铸型、浇注,得到合格金属件。
不需要木模(金属模)等模具多工序翻制砂型,不需要拔模斜度和工艺补正量,减少了零部件设计中加工余量,节约了木材和金属消耗、降低了铸件能耗,实现了铸型设计、加工、组装过程数字化及工艺模拟和铸型数字化制造的无缝连接,实现了铸件生产的数字化、精密化、柔性化、自动化、绿色化。
数控无模成形机
压零件的成形加工要求,推动我国新型材料成形技术的发
展,打破国外技术垄断,填补我国在数控压力成形机领域 的产品空白,为开发环境友好型数字化成形设备提供示范, 并迅速普及应用。同时提高我国装备制造业和相关汽车、 航空、航天等产业的制造水平,提高我国重大装备制造业
数控三维板材无模成形复合机床
东莞华中科技大学制造工程研究院 东莞华科京隆成形装备科技有限公司
胡小虎 361771046@
(一)设备简介
三维板材快速成形复合机床是一 种可用于金属实体加工和金属板料 成形的一种复合加工设备,采用 CNC控制,可实现金属实体的切削 加工和金属板材的无模快速成形, 具有以下几大特点: 可实现金属实体三维立体切削加 工; 可实现金属板材全无模、半模或 简易支撑工具等三种成形方式; CNC控制,柔性好,通过改变程 序就可改变成形形状; 可实现普通冲压无法实现的复杂 成形过程; 减少模具费用,降低生产成本。
的国际竞争力。
伺服压力机的应用
汽车冲压件
精密冲压件
照明金属件
家电产品相关零件
其它车辆
公司其他产品及技术介绍
伺服压力机产品 液压半模成形技术
液压半模成形技术
普通成形法
成形中
成形完
液压成形法
成形中 成形完
压边圈 调节阀゙ 上模
压边圈3
上模
下模 下模R
下模
计算机 控制
材料
2 1
水圧
材料
液压阀
液压室
计算机 控制
(二)工作原理
基于压力点运动形成点、线、面的成形工艺。
(二)工作原理
无模多点成形技术简介
无模多点成形技术简介一、基本概念无模多点成形就是将多点成形技术和计算机技术结合为一体的先进制造技术。
该技术利用一系列规则排列的、高度可调的基本体,通过对各基本体运动的实时控制,自由地构造出成形面,实现板材的三维曲面成形。
它是对三维曲面扳类件传统生产方式的重大创新。
板材无模多点成形系统是以计算机辅助设计与辅助制造技术为主要手段的柔性成形设备,其工作原理是把传统的冲压实体模具分解为很多离散的小模具单元(亦称基本体),利用一系列规则排列的高度可调的基本体,通过对各个基本体运动的实时控制,自由地构造出成形曲面,代替模具实现板材三维曲面的快速无模成形。
这种成形方式是对三维曲面板类件传统生产方式的重大创新。
二、技术特点·实现无模成形:取代传统的整体模具,节省模具设计、制造、调试和保存所需人力、物力和财力,显著地缩短产品生产周期,降低生产成本,提高产品的竞争力。
与模具成形法相比,不但节省巨额加工、制造模具的费用,而且节省大量的修模与调模时间:与手工成形方法相比,成形的产品精度高、质量好,并且显著提高生产效率。
·优化变形路径:通过基本体调整,实时控制变形曲面,随意改变板材的变形路径和受力状态,提高材料成形极限,实现难加工材料的塑性变形,扩大加工范围。
·实现无回弹成形:可采用反复成形新技术,消除材料内部的残余应力,并实现少无回弹成形/保证工件的成形精度。
·小设备成形大型件:采用分段成形新技术,连续逐次成形超过设备工作台尺寸数倍的大型工件。
·易于实现自动化:曲面造型、工艺计算。
压力机控制、工件测试等整个过程全部采用计算机技术,实现CAD/CAM/CAT一体化生产,工作效率高,劳动强度小,极大地改善劳动者作业环境。
三、技术发展概况多点成形的研究起源于日本。
70年代日本造船协会西冈等人试制了多点压力机,进行船体外板自动成形的研究,但因关键技术未能解决好,多点压机的制造费用太高,未能实用化。
无模具成型技术在制造行业中的应用
无模具成型技术在制造行业中的应用随着制造业的快速发展,技术和设备层出不穷,人们对于制造行业的要求也越来越高。
而无模具成型技术则是制造行业中一个比较新颖的技术,但随着人们对于环保和材料节约的要求提高,无模具成型技术在制造行业中应用的范围也在逐渐扩大。
无模具成型技术又被称为“零模”技术,主要是利用数控加工中的成型工艺,加之一些特殊的加工工具,将材料生产成成型的产品,无需使用模具。
这种技术的最大好处在于生产工艺简单,且高度自动化。
与传统意义上的制造方式相比,无模具成型技术无需耗费大量成本来制造模具,节约了成本和时间,大大提高了工作效率和生产效益。
在现代制造业中,使用无模具成型技术可以实现多种多样的成型过程,如铸造、锻造、压力成型等多种成型类型的生产过程。
无论是高速铝合金的铸造过程,还是大型零件的快速成型过程,均可以适用于无模具成型技术。
由于无需制造模具,且生产过程高度自动化,所以无模具成型技术在制造过程的节约成本和提高生产效率方面具有非常明显的优势。
当然,无模具成型技术的应用不仅仅局限于节约成本和提高生产效率,它还可以带来一些其他的好处。
例如在生产过程中,无模具成型技术可以轻松地实现数据的收集和处理,通过这些数据的分析和处理,可以不断改进产品质量,为制造业提供更好的保障。
此外,无模具成型技术还可以带来环保的好处,因为该技术下,生产过程中使用的材料和资源数量都会大大降低,从而减少了对环境的影响。
这对于现代制造业而言,是非常重要的优势之一。
总的来说,无模具成型技术在现代制造业中的应用十分广泛。
它可以提高制造业的生产效率,降低成本,提高产品质量,也可以减少对环境的影响。
在随着制造业的发展,无模具成型技术必将发挥更加重要的作用,为制造业的创新和发展提供更加坚实的基础。
数字化无模铸造精密成型技术
技术实践中的挑战与解决方案
技术成熟度
目前该技术尚未完全成熟,仍需进一步研究和探索。解决方案是 加强技术研发,提高技术成熟度。
高精度要求
在精密铸造过程中,如何保证高精度是一个挑战。解决方案是采用 先进的精密铸造工艺和设备,提高铸造精度。
成本问题
目前数字化无模铸造精密成型技术的成本相对较高。解决方案是通 过优化工艺、提高生产效率等方式降低成本。
该技术利用计算机辅助设计软件进行产品设计和模拟,通过3D打印技术制造出无模 具的原型,再利用精密铸造工艺将原型转化为最终产品。
数字化无模铸造技术可应用于各种金属材料的精密铸造,如铝合金、不锈钢、钛合 金等,广泛应用于航空、汽车、医疗器械等领域。
3D打印技术在无模铸造中的应用
3D打印技术是数字化无模铸造中的关 键环节,通过该技术可快速制造出无 模具的原型,实现了从设计到制造的 高效转化。
该技术利用计算机辅助设计(CAD)软件进行产品设计和建模, 并通过数字化控制系统对铸造过程进行精确控制,避免了传统 铸造工艺中需要使用大量模具的问题。
技术背景和发展历程
技术背景
随着计算机技术和数字化技术的发展,传统的铸造工艺逐渐无法满足现代制造业 对高精度、高效率、低成本的需求。数字化无模铸造精密成型技术的出现,为解 决这一问题提供了有效途径。
发展历程
数字化无模铸造精密成型技术自20世纪90年代开始发展,经历了从初步探索、技 术研发、试验验证到实际应用的不同阶段。随着技术的不断进步和应用范围的扩 大,该技术在航空、汽车、能源、医疗器械等领域得到了广泛应用。
02 数字化无模铸造技术原理
数字化无模铸造技术概述
数字化无模铸造技术是一种先进的精密成型技术,通过数字化设计和制造技术,实 现了快速、高效、低成本的精密铸造生产。
消失模铸造成型及涂料技术
消失模铸造成型及涂料技术消失模铸造成型技术是一种先进的金属制造工艺,它结合了3D 打印技术和传统铸造工艺,逐渐成为制造业中广泛应用的一种新兴技术。
该技术通过使用可燃性材料制作模具,然后在模具中注入熔融金属,待金属冷却凝固后,将模具燃烧殆尽,从而得到最终产品。
消失模铸造成型技术具有以下几个显著优势。
首先,相比传统铸造工艺,消失模铸造成型技术可以实现更加复杂形状的产品制造,因为3D打印技术可以灵活地打印出复杂的模具形状。
其次,消失模铸造成型技术可以大幅减少产品制造周期,因为模具制作和燃烧的过程相对快速。
此外,该技术还可以实现高精度的产品制造,并且可以在一次铸造中同时制造多个产品,提高生产效率。
除了消失模铸造成型技术,涂料技术也是金属制造领域的一个重要技术。
涂料技术可以为金属制品提供保护、装饰和功能性改善等多种功能。
目前,涂料技术已经发展出多种类型的涂料,如防腐涂料、耐磨涂料、耐高温涂料等,以满足不同应用领域的需求。
在消失模铸造成型技术中,涂料技术可以用于模具表面的处理。
通过在模具表面涂覆特定的涂料,可以提高模具的耐火性和耐热性,从而延长模具的使用寿命。
此外,涂料还可以提供模具表面的平滑度和光洁度,确保最终产品的质量。
在金属制品的制造过程中,涂料技术也发挥着重要作用。
通过在金属制品表面涂覆不同的涂料,可以提供防腐、防氧化、防腐蚀等功能,延长产品的使用寿命。
同时,涂料还可以为金属制品赋予不同的颜色和装饰效果,提升产品的价值和美观度。
综上所述,消失模铸造成型技术和涂料技术都是金属制造领域中重要的技术。
消失模铸造成型技术通过结合3D打印和传统铸造工艺,实现了复杂形状产品的制造,并提高了生产效率和产品质量。
而涂料技术则可以为金属制品提供保护、装饰和功能性改善等多种功能。
这两个技术的结合应用,将进一步拓展金属制造领域的发展空间。
无模多点成形
数字化成性理论报告金属板材三维曲面类零件因其面积比重量轻、材料省、受力状态好,往往作为主要零部件,在民用产品、军用产品以及现代高技术产品等许多制造领域广为应用。
这些三维曲面类零件一般都是由轧制的二维平板坯料成形出来的,其传统的成形方法主要有整体模具成形与手工成形。
但是由于模具制造费用昂贵,主要应用于大批量生产。
而大尺寸、小批量的零件只能采用手工成形方法,如在造船行业,每一块船体外板形状都各不相同,并且都非批量生产,因此,广泛采用的是线加热成形方法(即水火加工方法)。
但是手工成形方法成形质量差、生产效率低,而且劳动强度极大。
无模多点成形((Multi-point Forming,简称MPF)【1】是板料三维曲面数字化成形新技术,其基本原理是有一系列规则排列的基本体点阵代替整体式冲压模具(即实现无模化),通过数字化调形系统调整基本体单元高度形成所需要的成形面,实现板料的无模、快速、柔性化成形。
上图为多点成形示意图,与模具成形相比在模具成形中,板件由模具的形面来成形;而多点成形时则由基本体单元的包络面(或称成形曲面)来完成。
多点成形方法与传统模具成形方法的主要区别就是它具有“柔性”特点,即可控制各基本体单元的高度。
利用这个特点,既可以在成形前也可在成形过程中改变基本体的相对位移状态,从而不仅可以实现无模成形,还可以改变被成形件的变形路径及受力状态,达到不同的成形结果。
多点成形设备的这种柔性加工特点,比传统模具成形能为工件提供更多的变形路径,从而能够实现如分段成形、多道成形、闭环成形等诸多特色加工工艺。
目前,经过二十多年的研究,多点成形技术由早期的探索性研究与试验阶段进入了实际应用阶段,在与多点成形工艺相关的基础研究与开发应用方面实现了分段成形、多道成形、闭环成形及薄板成形等多种工艺方法,并且应用于实际生产中。
板料多点成形按成形原理可分为四种基本方式:多点模具成形、多点压力机成形、半多点模具成形及半多点压力机成形。
先进陶瓷快速无模成型8种工艺简介
立志当早,存高远
先进陶瓷快速无模成型8 种工艺简介
固体无模成型技术突破了传统成型思想的限制,是一项基于生长型的成型方法。
这项以计算机为依托的成型技术,综合运用了机械、电子、材料等学科的知识,被称为自数控技术以来,制造技术最大的突破。
其成型过程是先由CAD 软件设计出所需零件的计算机三维实体模型,即电子模型;然后按工艺要求将其按一定厚度分解成一系列二维截面,即把原来的三维电子模型变成二维平面信息;再将分层后的数据进行一定的处理,加入加工参数,生成数控代码,在计算机控制下,外围加工设备以平面方式有顺序地连续加工出每个薄层并叠加形成三维部件。
这样就把复杂的三维成型问题变成了一系列简单的平面成型。
实践表明,该技术在缩短产品开发周期,降低开发成本的效果是极其明显的。
综合来看,这种技术具有以下显著的优点:高度柔性、技术的高度集成、快速性、自由成型制造、材料的广泛性。
下面着重介绍8 种典型的陶瓷快速无模成型工艺。
1、激光选区烧结成型(SLS)
在SLS 中,首先将粉料辅在工作平台上,然后利用计算机控制的激光束扫描特定区域的粉末,使该区域的粉末受热熔融从而逐层粘结固化。
当这一层扫描完毕后,添加新一层的粉料,继续重复上述工作,最终形成三维部件。
一般经SLS 加工的陶瓷坯体致密化程度较低,需要后续的烧结处理。
2、三维打印成型(3DP)
3DP 的成型过程与SLS 相似,只是将SLS 中的激光变成喷墨打印机喷射结合剂。
该技术制造致密的陶瓷部件具有较大的难度,但在制造多孔的陶瓷部件(如金属陶瓷复合材料的多孔坯体或陶瓷模具等)方面具有较大的优越性。
3、熔融沉积成型(FDC)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
无模成形技术简介1.引言无模成形是以计算机为主要手段,利用多点成形或增量成形的方法,实现板料的无模具塑性成形的先进智能化制造技术。
金属板料成形在制造业中有着十分重要的地位,该技术广泛应用于航空航天、船舶工业、汽车覆盖件和家电等生产行业,但传统的金属板料加工工艺都离不开模具,采用模具成形生产周期长,而且缺乏柔性,产品变化时就需要重新更换模具,这就延长了新产品的开发周期。
而现代社会产品的更新换代非常迅速,如何快速、低成本和高质量地开发出新产品,是企业生存和发展的关键。
为此,国内外许多学者都在致力于板料塑性成形新技术的研究,努力实现金属板料快速高效的柔性冲压和无模成形,以适应现代制造业产品快速更新的市场竞争需要。
2.研究概况国内外许多学者都对板料塑性成形新技术进行了大量的研究,从无模多点成形和数字化渐进成形到喷丸成形、爆炸成形、激光热应力成形和激光冲击成形等,并取得了一定的成果。
2.1 无模多点成形无模多点成形是利用高度可调节的数控液压加载单元(基本群体)形成离散曲面,来替代传统模具进行三维曲面成形的方法,是一种多点压延加工技术。
此法特别适合于多品种小批量生产,体现了敏捷制造的理念。
目前已在高速列车流线型车头制作、船舶外板成形、建筑内外饰板成形及医学工程等领域,得到广泛应用。
与传统模具成形方法相比,其主要区别就是他具有“柔性”,可以在成形前也可在成形过程中改变基本体的相对位移状态,从而改变被成形件的变形路径及受力状态,以达到不同的成形效果。
图2-1 为传统模具成形与多点成形的比较。
图 2-2 为多点模具成形的过程。
图 2-1 模具成形与多点成形的比较图 2-2 多点模具成形过程20 世纪 70 年代,日本造船界开始研究多点成形压力机,并成功应用于船体外板的曲面成形。
此后许多学者为开发多点成形技术进行了大量的探讨与研究,制作了不同的样机,但大多只能进行变形量较小的整体变形。
吉林大学李明哲等人对无模多点成形技术进行了较为系统的研究,已自主设计并制造了具有国际领先水平的无模多点成形设备,2002 年底,李教授组建了产学研实体:长春瑞光科技有限公司。
目前,公司已有的多台产品投入到工程使用中,表 2-1 给出了产品的具体型号。
表 2-1 长春瑞光科技有限公司产品具体型号YAM-4 型1000KN 多点成形压力机1.总成形力: 1000KN2.基本体调整量: 100 mm3.有效成形尺寸: 500x400 mm4.可加工板材厚度: 2~8 mmYAM-3 型 630KN 薄板多点成形压力机1.总成形力: 630KN2.基本体调整量: 100mm3.有效成形尺寸:400×320mm4.可加工板材厚度: 0.5~3.0mmYAM-3 型 630KN 薄板多点成形压力机1.总成形力: 630KN2.基本体调整量: 100mm3.有效成形尺寸:400×320mm4.可加工板材厚度: 0.5~3.0mmYAM-5 型 2000KN 多点成形压力1.总成形力: 2000KN2.基本体调整量: 200mm3.有效成形尺寸:840×600mm4.可加工板材厚度: 2.0~10.0mm小型多点成形压力机1.总成形力: 100 KN2.基本体调整量: 50mm3.有效成形尺寸: 140x140mm4.可加工板材厚度: 0.3~3.0mmYAM-8 型 3150kN 快速调形多点成形压力机1.总成形力: 3150KN2.基本体调整量: 300mm3.有效成形尺寸:1000×720 mm4.一次调形时间: 3~5 分钟5.可加工板材厚度: 3.0~15.0 mmSM150 型鸟巢工程用多点成形压力机1.最大成形力: 15000KN2.基本体群布置:9×93.一次成形尺寸:1350×1350 mm该公司的产品目前已应用于许多行业,以应用领域如下:(1)列车流线型车头覆盖件成形长春轨道客车股份有限公司使用无模多点成形系统生产出44 种成形难度大的高速列车车头覆盖件,节省了巨额模具费用。
按原工艺方案生产新车型的模具需6~8 个月时间,采用多点成形技术后,仅用几天的时间就完成了一台新型高速列车车头覆盖件的成形,大大缩短了新产品的开发周期,提高了成形效率与成形质量。
同时,显著地降低了工人的劳动强度,改善了工作环境。
唐山机车车辆厂定制的多点成形系统也已通过验收,即将投入 300 公里动车组的生产中。
图2-3 为采用多点成形压力机生产的高速列车流线型车头的拼焊制造过程。
图 2-3 高速列车流线型车头的拼焊制造过程(2)钛合金板成形我国新一代潜艇的外板用钛合金材料,成形后的回弹极大,用传统的方法很难成形,采用多点成形设备较好地解决了钛合金成形问题。
洛阳 725 所已利用该设备加工了数件潜艇钛合金外板,缩短了生产周期。
图 2-4 为潜艇外壳的部分成形件。
图 2-4 潜艇外壳(钛合金)的部分成形件(3)医学工程中的钛网板塑形在医学工程中,人脑受损伤后,颅骨缺损部位需要植入钛网板进行修补。
采用多点成形技术,很好地解决了钛板塑形问题。
这项技术首先根据 CT 断层照片完成颅骨修补部位的三维重建,然后进行修复体的数字设计、模拟装配、优化工艺参数,最后将设计好的修复体数据直接传输到无模多点成形设备上制造出修复体。
图 2-5 为医学中用到的钛网板。
图 2-5 钛网板颅骨修复体(4)弯扭板件鸟巢建筑工程在施工时遇到多项技术难题,其中一大难题就是鸟巢建筑中大量使用的大型弯扭箱形钢构件需要成形。
由于各构件的弯扭形状与尺寸都不一样,所用钢板的厚度从10mm 变化到 60mm ,且形状各异,成形相当困难。
如采用模具成形,模具费用高昂,而采用水火弯板手工成形则不易保证成形精度,且工人劳动强度大。
采用多点成形技术圆满解决了上述问题,不仅实现了与传统整体模具成形相同的效果,节约了高额模具费用,还显著提高了成形效率。
图2-6 为鸟巢工程用钢构件制造过程。
图 2-6 鸟巢工程用钢构件制造过程2.2 数字化渐进成形数字化渐进成形是 20 世纪 90 年代日本学者松原茂夫提出的金属板料成形新方法,将零件复杂的三维形状沿Z 轴方向离散化,即分解成一系列二维断面层,并用工具头在这些二维断面层上局部进行等高线塑性加工,达到所要求的形状,实现了板料设计制造一体化的柔性快速制造,其成形原理如图2-7 所示。
图 2-7 渐进成形示意图加工是在三轴联动的数控成形机上进行的,工作时,在计算机控制下成形工具头先走到指定位置,并设定下压量,然后根据控制系统的指令,按照第一层截面轮廓的要求,以走等高线的方式对板材施行渐进塑性加工,并形成所需第一层轮廓后;成形工具头再压下设定高度,按第二层截面轮廓要求运动,并形成第二层轮廓。
如此重复直到整个工件成形完毕。
金属板材数字化渐进成形的整个工作过程并不复杂,以汽车覆盖件车门的成形为例,其过程如下:(1)首先在计算机上用三维 CAD 软件建立工件的三维数字模型。
(2)进行成形工艺分析、工艺规划,制造工艺辅助装置。
(3)用专用的切片软件对三维模型进行分层( 切片) 处理,并进行成形路径规划。
(4)生成成形轨迹文件,进行成形速度规划,最终对加工轨迹源文件进行处理并产生NC 代码。
(5)将 NC 代码输入控制用计算机,控制板料成形机成形出所需工件形状。
(6)对成形件进行后续处理,形成最终产品。
日本 AMINO 公司已研制出样机,并用此方法生产出薄壳样件,如图2-8 所示。
图 2-8 AMNIO 公司生产的样机及薄壳样件华中科技大学快速制造中心与湖北省三环集团黄石锻压机床有限公司合作研制了国内第一台数控无模成形机 ,并开发了相应的系统控制软件 ,该设备的最大加工范围为800mm×500mm×300mm ,通过一系列的工艺实验及汽车覆盖件的产品试制,取得了良好的效果。
图 2-9 为开发的样机及成形零件。
华中科技大学对汽车覆盖件的数字化渐进成形工艺展开了研究,加工了汽车门及翼子板等部件,图2-10 所示为车辆工业中的各种数字化渐进成形零件。
本田汽车公司已经利用数字化渐进成形技术进行了概念车覆盖件的成形,并已投入设计生产。
图 2-9 开发的样机及成形的样件图 2-10 车辆工业中数字化渐进成形零件数字化渐进成形的技术特点是无须一一对应的模具,零件的结构和形状也相应不受约束。
因而极大地降低了新产品开发的周期和成本。
所以对于飞机、卫星等多品种小批量的产品以及汽车新型样车试制、家用电器等新产品的开发,都具有潜在的经济价值,而且该方法所能成形的零件复杂程度比传统成形工艺高。
目前数字化渐进成形技术还仅限于实验室研究阶段。
其存在的主要问题是:(1)成形零件的尺寸精度差,其曲率半径受到工具球头半径的限制,不能很小,而且划痕严重,表面质量较差。
(2)由于工具压头在板材上作干摩擦滑动,阻力大,易起皱和拉裂。
(3)由于受到模芯的结构影响,成形零件的尺寸受到限制,不能太小。
2.3 喷丸成形喷丸成形是一种借助高速弹丸流撞击金属构件表面,使构件产生变形的金属成形方法,喷丸成形是一种无模成形工艺,是大中型飞机金属机翼整体壁板首选的成形方法,其原理如图 2-11 所示。
按照驱动弹丸运动的方式,喷丸成形分为叶轮式喷丸成形和气动式喷丸成形,两者没有本质区别;按照喷打方式,喷丸成形分为单面喷丸成形和双面喷丸成形,双面喷丸成形主要用于复杂型面构件的成形;根据喷丸成形时构件是否承受弹性外力,喷丸成形分为自由状态喷丸成形和预应力喷丸成形,预应力喷丸成形可以获得更大的喷丸变形量和更复杂的构件外型。
目前大型机翼整体壁板喷丸成形技术已经被美国金属改进公司和美国波音公司等少数几家公司垄断。
国内飞豹、枭龙、歼 10 、ARJ21 等飞机机翼整体壁板也采用了喷丸成形工艺。
图 2-11 喷丸成形原理示意图喷丸成形的主要优点是:(1)零件长度不受喷丸成形方法的限制,现代飞机蒙皮零件的长度已达30 多米,若采用其他方法,设备投资将急剧增加。
(2)工艺装备简单,无需成形模具,只需简单的夹具,准备周期短,固定投资少。
(3)在进行成形的同时,可对板料起到强化作用。
(4)可对变厚度的板料进行成形。
(5)既可成形单曲率外形,又可成形双曲率外形,如机翼上下气动弯折区或非直母线区。
波音系列客机和空客系列客机的金属机翼整体壁板喷丸成形是喷丸成形技术成功应用的典型代表。
如图 2-12 所示,A380 飞机超临界外翼下翼面整体壁板长度30 余米、厚度30 余毫米,是迄今采用喷丸成形技术所获得的长度最长、厚度最大的构件,代表了国际喷丸成形工艺技术的最新成果。
在国内,开展喷丸成形技术研发已近40 年,历经机械控制喷丸和数控喷丸等发展阶段,20 世纪90 年代以来迈入数控喷丸成形时代,之后数控喷丸成形成功运用到第三代飞机等机翼整体壁板,以研制成功ARJ21 飞机超临界外翼下翼面整体壁板为标志,国内首次实现真正意义上的喷丸成形。