圆周运动整理好的题型全面

合集下载

圆周运动题型总汇 超全

圆周运动题型总汇   超全

圆周运动练习题1.下列关于圆周运动的说法正确的是A.做匀速圆周运动的物体,所受的合外力一定指向圆心B.做匀速圆周运动的物体,其加速度可能不指向圆心C.作圆周运动的物体,其加速度不一定指向圆心D.作圆周运动的物体,所受合外力一定与其速度方向垂直2.关于匀速圆周运动,下列说法正确的是A.匀速圆周运动就是匀速运动B.匀速圆周运动是匀加速运动C.匀速圆周运动是一种变加速运动D.匀速圆周运动的物体处于平衡状态3.下列关于离心现象的说法正确的是A.当物体所受的离心力大于向心力时产生离心现象B.做匀速圆周运动的物体,当它所受的一切力都消失时,它将做背离圆心的圆周运动C.做匀速圆周运动的物体,当它所受的一切力都突然消失时,它将沿切线做直线运动D.做匀速圆周运动的物体,当它所受的一切力都突然消失时,它将做曲线运动4.下列关于向心力的说法中,正确的是A.做匀速圆周运动的质点会产生一个向心力B.做匀速圆周运动的质点所受各力中包括一个向心力C.做匀速圆周运动的质点所受各力的合力是向心力D.做匀速圆周运动的质点所受的向心力大小是恒定不变的5.关于物体做圆周运动的说法正确的是A.匀速圆周运动是匀速运动B.物体在恒力作用下不可能做匀速圆周运动C.向心加速度越大,物体的角速度变化越快D.匀速圆周运动中向心加速度是一恒量6.关于向心力的说法正确的是A.向心力不改变做圆周运动物体速度的大小B.做匀速圆周运动的物体受到的向心力即为物体受到的合力C.做匀速圆周运动的物体的向心力是不变的D.物体由于做圆周运动而产生了一个向心力7.下列说法正确的是A.因为物体做圆周运动,所以才产生向心力B.因为物体有向心力存在,所以才迫使物体不断改变运动速度方向而做圆周运动C.因为向心力的方向与线速度方向垂直,所以向心力对做圆周运动的物体不做功D.向心力是圆周运动物体所受的合外力8.小球m用细线通过光滑水平板上的光滑小孔与砝码M相连,且正在做匀速圆周运动。

高考物理生活中圆周运动常见题型及答题技巧及练习题(含答案)含解析

高考物理生活中圆周运动常见题型及答题技巧及练习题(含答案)含解析

高考物理生活中的圆周运动常有题型及答题技巧及练习题( 含答案 ) 含分析一、高中物理精讲专题测试生活中的圆周运动1.有一水平搁置的圆盘,上边放一劲度系数为k 的弹簧,如下图,弹簧的一端固定于轴O 上,另一端系一质量为m 的物体 A,物体与盘面间的动摩擦因数为μ,开始时弹簧未发生形变,长度为l.设最大静摩擦力大小等于滑动摩擦力.求:(1)盘的转速ω多大时,物体 A 开始滑动?(2)当转速迟缓增大到 2 ω时, A 仍随圆盘做匀速圆周运动,弹簧的伸长量△x 是多少?【答案】( 1)g3mgl ( 2)4 mgl kl【分析】【剖析】(1)物体 A 随圆盘转动的过程中,若圆盘转速较小,由静摩擦力供给向心力;当圆盘转速较大时,弹力与摩擦力的协力供给向心力.物体 A 刚开始滑动时,弹簧的弹力为零,静摩擦力达到最大值,由静摩擦力供给向心力,依据牛顿第二定律求解角速度ω0 .(2)当角速度达到 2 ω0时,由弹力与摩擦力的协力供给向心力,由牛顿第二定律和胡克定律求解弹簧的伸长量△x.【详解】若圆盘转速较小,则静摩擦力供给向心力,当圆盘转速较大时,弹力与静摩擦力的协力供给向心力.(1)当圆盘转速为 n0时, A 马上开始滑动,此时它所受的最大静摩擦力供给向心力,则有:μmg= mlω02,解得:ω0=g .l即当ω0g时物体 A 开始滑动.=l(2)当圆盘转速达到 2 ω0时,物体遇到的最大静摩擦力已不足以供给向心力,需要弹簧的弹力来增补,即:μmg +k△x= mrω12,r=l+△x解得: Vx=3 mglkl 4 mg【点睛】当物体有关于接触物体刚要滑动时,静摩擦力达到最大,这是常常用到的临界条件.此题重点是剖析物体的受力状况.2.如下图,带有1 圆滑圆弧的小车A 的半径为R,静止在圆滑水平面上.滑块 C 置于4木板 B 的右端, A、 B、 C 的质量均为m, A、 B 底面厚度同样.现 B、 C 以同样的速度向右匀速运动, B 与 A 碰后即粘连在一同, C 恰巧能沿 A 的圆弧轨道滑到与圆心等高处.则: (已知重力加快度为g)(1)B、C 一同匀速运动的速度为多少?(2)滑块 C 返回到 A 的底端时AB 整体和 C 的速度为多少?【答案】(1)v023gR( 2)v12 3gR,v253gR 33【分析】此题考察动量守恒与机械能相联合的问题.(1)设 B、 C 的初速度为v , AB 相碰过程中动量守恒,设碰后AB 整体速度 u,由mv02mu ,解得 u v0 2C 滑到最高点的过程:mv02mu3mu1mv0212mu213mu 2mgR222解得v0 2 3gR(2)C从底端滑到顶端再从顶端滑究竟部的过程中,知足水平方向动量守恒、机械能守恒,有 mv02mu mv12mv21mv0212mu21mv1212mv222222解得:v123gR ,v253gR333.图示为一过山车的简略模型,它由水平轨道和在竖直平面内的圆滑圆形轨道构成,BC 分别是圆形轨道的最低点和最高点,其半径R=1m,一质量 m=1kg 的小物块(视为质点)从左側水平轨道上的 A 点以大小 v0= 12m/ s 的初速度出发,经过竖直平面的圆形轨道后,停在右边水平轨道上的 D 点.已知 A、B 两点间的距离 L1= 5. 75m,物块与水平轨道写的动摩擦因数0. 2,取 g= 10m/ s2,圆形轨道间不互相重叠,求:(1)物块经过 B 点时的速度大小 v B;(2)物块抵达 C 点时的速度大小 v C;(3) BD 两点之间的距离 L2,以及整个过程中因摩擦产生的总热量Q【答案】 (1) 11m / s (2) 9m / s(3) 72J【分析】【剖析】【详解】(1)物块从 A 到 B 运动过程中,依据动能定理得:mgL11mv B21mv0222解得: v B 11m / s(2)物块从 B 到 C 运动过程中,依据机械能守恒得:1mv B21mv C2mg·2R 22解得: v C 9m / s(3)物块从 B 到 D 运动过程中,依据动能定理得:mgL201mv B2 2解得: L2 30.25m对整个过程,由能量守恒定律有:Q1mv0202解得: Q=72J【点睛】选用研究过程,运用动能定理解题.动能定理的长处在于合用任何运动包含曲线运动.知道小滑块能经过圆形轨道的含义以及要使小滑块不可以离开轨道的含义.4.如下图,一个固定在竖直平面上的圆滑半圆形管道,管道里有一个直径略小于管道内径的小球,小球在管道内做圆周运动,从 B 点离开后做平抛运动,经过0.3s 后又恰巧与倾0R 1m ,小球可看作质点且其质量为角为45的斜面垂直相碰.已知半圆形管道的半径为m1kg ,g 10m / s2,求:(1)小球在斜面上的相碰点 C 与 B 点的水平距离;(2)小球经过管道上 B 点时对管道的压力大小和方向.【答案】( 1)0.9m;( 2)1N【分析】【剖析】(1)依据平抛运动时间求得在 C 点竖直分速度,而后由速度方向求得v,即可依据平抛运动水平方向为匀速运动求得水平距离;(2)对小球在 B 点应用牛顿第二定律求得支持力N B的大小和方向.【详解】(1)依据平抛运动的规律,小球在 C 点竖直方向的分速度v y=gt=10m/s水均分速度v x=v y tan450=10m/s则B 点与 C 点的水平距离为: x=v x t=10m(2)依据牛顿运动定律,在 B 点v2N B+mg=mR解得N B=50N依据牛顿第三定律得小球对轨道的作使劲大小N, =N B=50N方向竖直向上【点睛】该题考察竖直平面内的圆周运动与平抛运动,小球恰巧垂直与倾角为45°的斜面相遇到是解题的重点,要正确理解它的含义.要注意小球经过 B 点时,管道对小球的作使劲可能向上,也可能向下,也可能没有,要依据小球的速度来剖析.5.如下图,圆滑水平面 AB 与竖直面内的半圆形导轨在 B 点相接,导轨半径为 R.一个质量为 m 的物体将弹簧压缩至 A 点后由静止开释,在弹力作用下物体获取某一直右速度后离开弹簧,当它经过 B 点进入导轨瞬时对导轨的压力为其重力的7 倍,以后向上运动恰能达成半个圆周运动抵达 C 点.试求:(1)弹簧开始时的弹性势能.(2)物体从 B 点运动至 C 点战胜阻力做的功.(3)物体走开 C 点后落回水平面时的速度大小.【答案】 (1)3mgR (2)0.5mgR (3) 5 mgR2【分析】试题剖析:( 1)物块抵达 B 点瞬时,依据向心力公式有:解得:弹簧对物块的弹力做的功等于物块获取的动能,因此有(2)物块恰能抵达 C 点,重力供给向心力,依据向心力公式有:因此:物块从 B 运动到 C,依据动能定理有:解得:(3)从 C点落回水平面,机械能守恒,则:考点:此题考察向心力,动能定理,机械能守恒定律评论:此题学生会剖析物块在 B 点的向心力,能娴熟运用动能定理,机械能守恒定律解有关问题.6.如图为某种鱼饵自动投放器中的投饵管装置表示图,其下半部AB 是一长为2R 的竖直细管,上半部BC 是半径为R 的四分之一圆弧弯管,管口沿水平方向,AB 管内有一原长为R、下端固定的轻质弹簧.投饵时,每次总将弹簧长度压缩到0.5R后锁定,在弹簧上段放置一粒鱼饵,排除锁定,弹簧可将鱼饵弹射出去.设质量为m 的鱼饵抵达管口 C 时,对管壁的作使劲恰巧为零.不计鱼饵在运动过程中的机械能损失,且锁定和排除锁准时,均不改变弹簧的弹性势能.已知重力加快度为g.求:(1)质量为 m 的鱼饵抵达管口 C 时的速度大小v1;(2)弹簧压缩到0.5R 时的弹性势能E p;(3)已知地面欲睡面相距 1.5R,若使该投饵管绕AB 管的中轴线OO 。

高考数学圆周运动综合复习(含知识点和例题详解)

高考数学圆周运动综合复习(含知识点和例题详解)

圆周运动一、描述述圆周运动物理量:1、线速度=矢量方向――切向理解:单位时间内通过的弧长匀速圆周运动不匀速,是角速度不变的运动可理解为前面学过的即时速度2、角速度=矢量方向――不要求单位:rad / s 弧度/ 秒理解:单位时间内转过的角度3线速度和角速度是从两个不同的角度去描速同一个运动的快慢3、周期和频率周期(T)――物体运动一周所用的时间频率(f)――单位时间内完成多少个圆周,周期倒数(Hz S-1)转速(n)――单位时间内转过的圈数(r/s r/min)【例1】如图所示装置中,三个轮的半径分别为r、2r、4r,b点到圆心的距离为r,求图中a、b、c、d各点的线速度之比、角速度之比、加速度之比。

解析:v a= v c,而v b∶v c∶v d =1∶2∶4,所以v a∶ v b∶v c∶v d =2∶1∶2∶4;ωa∶ωb=2∶1,而ωb=ωc=ωd,所以ωa∶ωb∶ωc∶ωd=2∶1∶1∶1;再利用a=vω,可得a a∶a b∶a c∶a d=41∶2∶4二、向心力和加速度1、大小F=m ω2 r2、方向:把力分工—切线方向,改变速度大小半径方向,改变速度方向,充当向心力注意:区分匀速圆周运动和非匀速圆周运动的力的不同3、来源:一个力、某个力的分力、一些力的合力时间弧长tsv=时间角度tϕω=fT1=rvmF2=向心加速度a :(1)大小:a = 2 f 2r (2)方向:总指向圆心,时刻变化 (3)物理意义:描述线速度方向改变的快慢。

三、应用举例(临界或动态分析问题)提供的向心力 需要的向心力= 圆周运动 > 近心运动< 离心运动 =0 切线运动1、火车转弯如果车轮与铁轨间无挤压力,则向心力完全由重力和支持力提供,v 增加,外轨挤压,如果v 减小,内轨挤压问题:飞机转弯的向心力的来源2、汽车过拱桥mg sin θ = f如果在最高点,那么此时汽车不平衡,mg ≠N说明:F =mv 2 / r 同样适用于变速圆周运动,F 和v补充 : (抛体运动)3、圆锥问题ππω442222===r Tr r v rv m 2rv mmg 2tan =ααtan gr v =⇒rvm N mg 2cos =-θrv m N mg 2=-rv m mg N 2=-θωωθωθθtan tan cos sin 22r g rgr m N mgN =⇒=⇒==例:小球在半径为R 的光滑半球内做水平面内的匀速圆周运动,试分析图中的θ(小球与半球球心连线跟竖直方向的夹角)与线速度v 、周期T 的关系。

专题09 圆周运动七大常考模型(解析版)

专题09 圆周运动七大常考模型(解析版)

2020年高考物理一轮复习热点题型归纳与变式演练专题09 圆周运动七大常考模型【专题导航】目录题型一水平面内圆盘模型的临界问题 (1)热点题型二竖直面内圆周运动的临界极值问题 (3)球—绳模型或单轨道模型 (4)球—杆模型或双轨道模型 (6)热点题型三斜面上圆周运动的临界问题 (8)热点题型四圆周运动的动力学问题 (9)圆锥摆模型 (9)车辆转弯模型 (11)【题型演练】 (13)【题型归纳】题型一水平面内圆盘模型的临界问题1.与摩擦力有关的临界极值问题物体间恰好不发生相对滑动的临界条件是物体间恰好达到最大静摩擦力.(1)如果只是摩擦力提供向心力,则最大静摩擦力F m=mv2r,静摩擦力的方向一定指向圆心.(2)如果除摩擦力以外还有其他力,如绳两端连接物体随水平面转动,其中一个物体存在一个恰不向内滑动的临界条件和一个恰不向外滑动的临界条件,分别为静摩擦力达到最大且静摩擦力的方向沿半径背离圆心和沿半径指向圆心.2.与弹力有关的临界极值问题(1)压力、支持力的临界条件是物体间的弹力恰好为零.(2)绳上拉力的临界条件是绳恰好拉直且其上无弹力或绳上拉力恰好为最大承受力.【例1】(多选)如图所示,两个可视为质点的、相同的木块A和B放在转盘上,两者用长为L的细绳连接,木块与转盘的最大静摩擦力均为各自重力的K倍,A放在距离转轴L处,整个装置能绕通过转盘中心的转轴O1O2转动,开始时,绳恰好伸直但无弹力,现让该装置从静止开始转动,使角速度缓慢增大,以下说法正确的是()A.当ω>2Kg3L时,A、B相对于转盘会滑动B.当ω>Kg2L,绳子一定有弹力C.ω在Kg2L<ω<2Kg3L范围内增大时,B所受摩擦力变大D.ω在0<ω<2Kg3L范围内增大时,A所受摩擦力一直变大【答案】ABD【解析】当A、B所受摩擦力均达到最大值时,A、B相对转盘即将滑动,Kmg+Kmg=mω2L+mω2·2L,解得:ω=2Kg3L,A项正确;当B所受静摩擦力达到最大值后,绳子开始有弹力,即:Kmg=m·2L·ω2,解得ω=Kg2L,可知当ω>Kg2L时,绳子有弹力,B项正确;当ω>Kg2L时,B已达到最大静摩擦力,则ω在Kg2L<ω<2Kg3L范围内增大时,B受到的摩擦力不变,C项错误;ω在0<ω<2Kg3L范围内,A相对转盘是静止的,A所受摩擦力为静摩擦力,所以F f-F T=mLω2,当ω增大时,静摩擦力也增大,D项正确.【变式1】(多选)(2019·重庆市江津中学月考)摩擦传动是传动装置中的一个重要模型,如图所示的两个水平放置的轮盘靠摩擦力传动,其中O、O′分别为两轮盘的轴心,已知两个轮盘的半径比r甲∶r乙=3∶1,且在正常工作时两轮盘不打滑.今在两轮盘上分别放置两个同种材料制成的完全相同的滑块A、B,两滑块与轮盘间的动摩擦因数相同,两滑块距离轴心O、O′的间距R A=2R B.若轮盘乙由静止开始缓慢地转动起来,且转速逐渐增加,则下列叙述正确的是()A.滑块A和B在与轮盘相对静止时,角速度之比为ω甲∶ω乙=1∶3B.滑块A和B在与轮盘相对静止时,向心加速度的比值为a A∶a B=2∶9C.转速增加后滑块B先发生滑动D.转速增加后两滑块一起发生滑动【答案】ABC【解析】由题意可知两轮盘边缘的线速度v大小相等,由v=ωr,r甲∶r乙=3∶1,可得ω甲∶ω乙=1∶3,所以滑块相对轮盘滑动前,A、B的角速度之比为1∶3,故A正确;滑块相对盘开始滑动前,根据加速度公式:a =Rω2,又R A∶R B=2∶1,ωA:ωB=1∶3,所以A、B的向心加速度之比为a A∶a B=2∶9,故B正确;滑块的最大静摩擦力分别为F f A=μm A g,F f B=μm B g,则最大静摩擦力之比为F f A∶F f B=m A∶m B;转动中所受的静摩擦力之比为F f A′∶F f B′=m A a A∶m B a B=m A∶4.5m B,由上可得滑块B先达到最大静摩擦力而先开始滑动,故C正确,D错误.【变式2】(多选)(2019·广东省惠州市第二次调研)如图所示,在匀速转动的水平圆盘上,沿半径方向放着用细绳相连的质量均为m的两个物体A和B,它们分居圆心两侧,与圆心距离分别为R A=r,R B=2r,与盘间的动摩擦因数μ相同,当圆盘转速缓慢加快到两物体刚好要发生滑动时,最大静摩擦力等于滑动摩擦力,则下列说法正确的是()A.此时绳子张力为3μmg B.此时A所受摩擦力方向沿半径指向圆内C.此时圆盘的角速度为2μgr D.此时烧断绳子,A仍相对盘静止,B将做离心运动【答案】AC【解析】两物体A和B随着圆盘转动时,合外力提供向心力,则F=mω2r,B的半径比A的半径大,所以B所需向心力大,细绳拉力相等,所以当圆盘转速加快到两物体刚好还未发生滑动时,B的静摩擦力方向指向圆心,A的最大静摩擦力方向指向圆外,有相对圆盘沿半径指向圆内的运动趋势,根据牛顿第二定律得:F T-μmg=mω2r,F T+μmg=mω2·2r,解得:F T=3μmg,ω=2μgr,故A、C正确,B错误.烧断细绳瞬间A物体所需的向心力为2μmg,此时烧断细绳,A的最大静摩擦力不足以提供向心力,则A做离心运动,故D错误.热点题型二竖直面内圆周运动的临界极值问题1.竖直面内圆周运动两类模型一是无支撑(如球与绳连接、沿内轨道运动的过山车等),称为“轻绳模型”,二是有支撑(如球与杆连接、在弯管内的运动等),称为“轻杆模型”.2.竖直平面内圆周运动的两种模型特点及求解方法球—绳模型或单轨道模型【例2】(多选)(2019·哈尔滨三中期中)如图所示,长为L的细绳一端拴一质量为m小球,另一端固定在O 点,绳的最大承受能力为11mg,在O点正下方O′点有一小钉,先把绳拉至水平再释放小球,为使绳不被拉断且小球能以O′为轴完成竖直面完整的圆周运动,则钉的位置到O点的距离为()A.最小为25L B.最小为35L C.最大为45L D.最大为910L【答案】BC【解析】当小球恰好到达圆周运动的最高点时小球的转动半径为r,重力提供向心力,则有mg=mv2r,根据机械能守恒定律可知,mg(L-2r)=12mv2,联立解得:r=25L,故钉的位置到O点的距离为L-25L=35L;当小球转动时,恰好达到绳子的最大拉力时,即F=11mg,此时一定处在最低点,设半径为R,则有:11mg-mg =m v 20R ,根据机械能守恒定律可知,mgL =12mv 20,联立解得:R =15L ,故此时离最高点距离为45L ,则可知,距离最小为35L ,距离最大为45L ,故B 、C 正确,A 、D 错误.【变式1】(2019·福州质检)如图所示,长均为L 的两根轻绳,一端共同系住质量为m 的小球,另一端分别固定在等高的A 、B 两点,A 、B 两点间的距离也为L .重力加速度大小为g .现使小球在竖直平面内以AB 为轴做圆周运动,若小球在最高点速率为v 时,两根轻绳的拉力恰好均为零,则小球在最高点速率为2v 时,每根轻绳的拉力大小为( )A .3mgB .433mg C .3mg D .23mg【答案】A【解析】小球在运动过程中,A 、B 两点与小球所在位置构成等边三角形,由此可知,小球圆周运动的半径R =L ·sin 60°=32L ,两绳与小球运动半径方向间的夹角为30°,由题意,小球在最高点的速率为v 时,mg =m v 2R ,当小球在最高点的速率为2v 时,应有:F +mg =m (2v )2R ,可解得:F =3mg .由2F T cos 30°=F ,可得两绳的拉力大小均为F T =3mg ,A 项正确.【变式2】(2018·甘肃省兰州一中模拟)如图甲所示,用一轻质绳拴着一质量为m 的小球,在竖直平面内做圆周运动(不计一切阻力),小球运动到最高点时绳对小球的拉力为F T ,小球在最高点的速度大小为v ,其F T -v 2图象如图乙所示,则( )A .轻质绳长为mb aB .当地的重力加速度为a mC .当v 2=c 时,轻质绳最高点拉力大小为acb +a D .若v 2=b ,小球运动到最低点时绳的拉力为6a【答案】 ABD【解析】 在最高点,F T +mg =m v 2L ,解得:F T =m v 2L -mg ,可知纵截距的绝对值为a =mg ,g =am,图线的斜率k =a b =m L ,解得绳子的长度L =mb a ,故A 、B 正确;当v 2=c 时,轻质绳的拉力大小为:F T =m cL -mg=ac b -a ,故C 错误;当v 2=b 时拉力为零,到最低点时根据动能定理得:2mgL =12mv 22-12mv 2,根据牛顿第二定律:F T ′-mg =m v 22L,联立以上可得拉力为:F T ′=6mg =6a ,故D 正确.【变式2】如图所示,半径为R 的光滑半圆轨道竖直放置,一小球以某一速度进入半圆轨道,通过最高点P 时,对轨道的压力为其重力的一半,不计空气阻力,则小球落地点到P 点的水平距离为( )A.2RB.3RC.5RD.6R【答案】D【解析】小球从P 点飞出后,做平抛运动,设做平抛运动的时间为t ,则2R =12gt 2,解得t =2Rg,在最高点P 时,有mg +12mg =m v 2R ,解得v =3gR2,因此小球落地点到P 点的水平距离为x =vt =6R ,选项D 正确.球—杆模型或双轨道模型【例3】(2019·烟台模拟)一轻杆一端固定质量为m 的小球,以另一端O 为圆心,使小球在竖直面内做半径 为R 的圆周运动,如图所示,则下列说法正确的是( )A .小球过最高点时,杆所受到的弹力可以等于零B .小球过最高点的最小速度是gRC .小球过最高点时,杆对球的作用力一定随速度增大而增大D .小球过最高点时,杆对球的作用力一定随速度增大而减小 【答案】A【解析】轻杆可对小球产生向上的支持力,小球经过最高点的速度可以为零,当小球过最高点的速度v =gR 时,杆所受的弹力等于零,A 正确,B 错误;若v <gR ,则杆在最高点对小球的弹力竖直向上,mg -F =m v 2R ,随v 增大,F 减小,若v >gR ,则杆在最高点对小球的弹力竖直向下,mg +F =m v 2R ,随v 增大,F 增大,故C 、D 均错误.【变式1】(2019·山东省济南一中期中)一轻杆一端固定质量为m 的小球,以另一端O 为圆心,使小球在竖直面内做半径为R 的圆周运动,如图所示,则下列说法正确的是( )A .小球过最高点时,杆所受到的弹力可以等于零B .小球过最高点的最小速度是gRC .小球过最高点时,杆对球的作用力一定随速度增大而增大D .小球过最高点时,杆对球的作用力一定随速度增大而减小 【答案】 A【解析】 当小球到达最高点弹力为零时,有mg =m v 2R ,解得v =gR ,即当速度v =gR 时,轻杆所受的弹力为零,所以A 正确.小球通过最高点的最小速度为零,所以B 错误.小球在最高点,若v <gR ,则有:mg -F =m v 2R ,轻杆的作用力随着速度的增大先减小后反向增大,若v >gR ,则有:mg +F =m v 2R ,轻杆的作用力随着速度增大而增大,所以C 、D 错误.【变式2】如图所示,一个固定在竖直平面上的光滑半圆形管道,管道里有一个直径略小于管道内径的小球,小球在管道内做圆周运动,从B 点脱离后做平抛运动,经过0.3 s 后又恰好与倾角为45°的斜面垂直相碰.已知半圆形管道的半径为R =1 m ,小球可看做质点且其质量为m =1 kg ,g 取10 m/s 2.则( )A .小球在斜面上的相碰点C 与B 点的水平距离是0.9 m B .小球在斜面上的相碰点C 与B 点的水平距离是1.9 m C .小球经过管道的B 点时,受到管道的作用力F N B 的大小是1 ND .小球经过管道的B 点时,受到管道的作用力F N B 的大小是2 N 【答案】AC.【解析】根据平抛运动的规律,小球在C 点的竖直分速度v y =gt =3 m/s ,水平分速度v x =v y tan 45°=3 m/s ,则B 点与C 点的水平距离为x =v x t =0.9 m ,选项A 正确,B 错误;在B 点设管道对小球的作用力方向向下,根据牛顿第二定律,有F N B +mg =m v 2BR ,v B =v x =3 m/s ,解得F N B =-1 N ,负号表示管道对小球的作用力方向向上,选项C 正确,D 错误.热点题型三 斜面上圆周运动的临界问题在斜面上做圆周运动的物体,因所受的控制因素不同,如静摩擦力控制、轻绳控制、轻杆控制,物体的受力情况和所遵循的规律也不相同.【例4】(2019·江西吉安一中段考)如图所示,一倾斜的匀质圆盘绕垂直于盘面的固定对称轴以恒定角速度ω转动,盘面上离转轴距离2.5 m 处有一小物体与圆盘始终保持相对静止,物体与盘面间的动摩擦因数为32(设最大静摩擦力等于滑动摩擦力),盘面与水平面的夹角为30°,g 取10 m/s 2,则ω的最大值是( )A. 5 rad/sB. 3 rad/s C .1.0 rad/s D .0.5 rad/s 【答案】C【解析】 当物体转到圆盘的最低点,所受的静摩擦力沿斜面向上达到最大时,角速度最大,由牛顿第二定律得:μmg cos 30°-mg sin 30°=mω2rω=g (μcos 30°-sin 30°)r=10×(32×32-12)2.5rad/s =1.0 rad/s ,故选项C 正确.【变式】.(2019·沈阳东北育才中学模拟)如图所示,在倾角θ=30°的光滑斜面上,长为L 的细线一端固定, 另一端连接质量为m 的小球,小球在斜面上做圆周运动,A 、B 分别是圆弧的最高点和最低点,若小球在A 、 B 点做圆周运动的最小速度分别为v A 、v B ,重力加速度为g ,则 ( )A .v A =0B .v A =gLC .v B =1210gL D .v B =3gL【答案】C【解析】在A 点,对小球,临界情况是绳子的拉力为零,小球靠重力沿斜面方向的分力提供向心力,根据牛顿第二定律得:mg sin θ=m v 2AL,解得A 点的最小速度为:v A =12gL ,对AB 段过程研究,根据机械能守恒得:12mv 2A +mg ·2L sin 30°=12mv 2B ,解得B 点的最小速度为:v B =5gL 2=1210gL ,故C 正确,A 、B 、D 错误.热点题型四 圆周运动的动力学问题 1.向心力的来源向心力是按力的作用效果命名的,可以是重力、弹力、摩擦力等各种力,也可以是几个力的合力或某个力的分力,因此在受力分析中要避免再另外添加一个向心力. 2.运动模型 圆锥摆模型1.结构特点:一根质量和伸长可以不计的轻细线,上端固定,下端系一个可以视为质点的摆球在水平面内做匀速圆周运动,细绳所掠过的路径为圆锥表面。

高考物理生活中的圆周运动常见题型及答题技巧及练习题(含答案)含解析

高考物理生活中的圆周运动常见题型及答题技巧及练习题(含答案)含解析

高考物理生活中的圆周运动常见题型及答题技巧及练习题(含答案)含解析一、高中物理精讲专题测试生活中的圆周运动1.光滑水平面AB 与竖直面内的圆形导轨在B 点连接,导轨半径R =0.5 m ,一个质量m =2 kg 的小球在A 处压缩一轻质弹簧,弹簧与小球不拴接.用手挡住小球不动,此时弹簧弹性势能Ep =49 J ,如图所示.放手后小球向右运动脱离弹簧,沿圆形轨道向上运动恰能通过最高点C ,g 取10 m/s 2.求:(1)小球脱离弹簧时的速度大小; (2)小球从B 到C 克服阻力做的功;(3)小球离开C 点后落回水平面时的动能大小. 【答案】(1)7/m s (2)24J (3)25J 【解析】 【分析】 【详解】(1)根据机械能守恒定律 E p =211m ?2v ① v 12Epm=7m/s ② (2)由动能定理得-mg ·2R -W f =22211122mv mv - ③ 小球恰能通过最高点,故22v mg m R= ④ 由②③④得W f =24 J(3)根据动能定理:22122k mg R E mv =-解得:25k E J =故本题答案是:(1)7/m s (2)24J (3)25J 【点睛】(1)在小球脱离弹簧的过程中只有弹簧弹力做功,根据弹力做功与弹性势能变化的关系和动能定理可以求出小球的脱离弹簧时的速度v;(2)小球从B 到C 的过程中只有重力和阻力做功,根据小球恰好能通过最高点的条件得到小球在最高点时的速度,从而根据动能定理求解从B 至C 过程中小球克服阻力做的功; (3)小球离开C 点后做平抛运动,只有重力做功,根据动能定理求小球落地时的动能大小2.如图所示,BC 为半径r 225=m 竖直放置的细圆管,O 为细圆管的圆心,在圆管的末端C 连接倾斜角为45°、动摩擦因数μ=0.6的足够长粗糙斜面,一质量为m =0.5kg 的小球从O 点正上方某处A 点以v 0水平抛出,恰好能垂直OB 从B 点进入细圆管,小球过C 点时速度大小不变,小球冲出C 点后经过98s 再次回到C 点。

2025年新高考物理-圆周运动(解析版)

2025年新高考物理-圆周运动(解析版)

圆周运动1.高考真题考点分布题型考点考查考题统计选择题描述圆周运动的基本物理量2024年辽宁卷计算题圆锥摆模型2024年江西卷实验题水平圆盘模型2024年海南卷2.命题规律及备考策略【命题规律】高考对圆周运动基本规律的考查较为频繁,大多联系实际生活。

圆周运动的临界问题的单独考查不是太常见,大多在综合性的计算题中出现的比较频繁,并且会结合有关的功能关系。

【备考策略】1.掌握圆周运动各个物理量之间的关系。

2.能够分析圆周运动的向心力的来源,并会处理有关锥摆模型、转弯模型、圆盘模型的动力学问题。

3.掌握水平面内圆盘模型的动力学分析及临界条件。

4.掌握竖直面内圆周运动的基本规律,并能够联系实际问题做出相应问题的分析。

【命题预测】重点关注竖直面内圆周运动规律在综合性问题中的应用。

一、匀速圆周运动及其描述1.匀速圆周运动(1)定义:做圆周运动的物体,若在相等的时间内通过的圆弧长相等,就是匀速圆周运动。

(2)特点:加速度大小不变,方向始终指向圆心,是变加速运动。

(3)条件:合外力大小不变、方向始终与速度方向垂直且指向圆心。

2.描述匀速圆周运动的物理量及其关系(1)线速度:v=ΔsΔt =2πrT,描述物体圆周运动快慢的物理量。

(2)角速度:ω=ΔθΔt =2πT,描述物体绕圆心转动快慢的物理量。

(3)周期和频率:T=2πrv,T=1f,描述物体绕圆心转动快慢的物理量。

(4)向心加速度:a n=rω2=v2r =ωv=4π2T2r,描述速度方向变化快慢的物理量。

二、匀速圆周运动的向心力1.向心力的来源向心力是按力的作用效果命名的,可以是重力、弹力、摩擦力等各种力,也可以是几个力的合力或某个力的分力,因此在受力分析中要避免再另外添加一个向心力。

2.向心力的确定(1)确定圆周运动的轨道所在的平面,确定圆心的位置。

(2)分析物体的受力情况,所有的力沿半径方向指向圆心的合力,就是向心力。

3.向心力的公式:F n=ma n=m v2r =mω2r=m4π2T2r。

高中物理高考物理生活中圆周运动解题技巧及经典题型及练习题(含)

高中物理高考物理生活中圆周运动解题技巧及经典题型及练习题(含)

高中物理高考物理生活中的圆周运动解题技巧及经典题型及练习题( 含答案 )一、高中物理精讲专题测试生活中的圆周运动1.如下图,半径R=2.5m 的竖直半圆圆滑轨道在 B 点与水平面光滑连结,一个质量m=0.50kg 的小滑块 (可视为质点 )静止在 A 点 .一刹时冲量使滑块以必定的初速度从 A 点开始运动 ,经 B 点进入圆轨道,沿圆轨道运动到最高点C,并从 C 点水平飞出 ,落在水平面上的 D 点 .经丈量 ,D、B 间的距离s1=10m,A、B 间的距离s2=15m,滑块与水平面的动摩擦因数重力加快度.求 :,(1)滑块经过 C 点时的速度大小 ;(2)滑块刚进入圆轨道时 ,在 B 点轨道对滑块的弹力 ;(3)滑块在 A 点遇到的刹时冲量的大小 .【答案】( 1)(2) 45N(3)【分析】【详解】(1)设滑块从 C 点飞出时的速度为v c,从 C 点运动到 D 点时间为t滑块从 C 点飞出后,做平抛运动,竖直方向:2R= gt2水平方向: s1=v c t解得: v c=10m/s(2)设滑块经过 B 点时的速度为v B,依据机械能守恒定律mv B2= mv c2+2mgR解得: v B=10m/s设在 B 点滑块受轨道的压力为解得: N=45NN,依据牛顿第二定律: N-mg=m(3)设滑块从 A 点开始运动时的速度为A2B2- mvA2v,依据动能定理; -μ mgs= mv解得: v A设滑块在 A 点遇到的冲量大小为I,依据动量定理I=mv A解得: I=8.1kg?m/s ;【点睛】此题综合考察动能定理、机械能守恒及牛顿第二定律,在解决此类问题时,要注意剖析物体运动的过程,选择正确的物理规律求解.2. 如下图,一轨道由半径 R 2m 的四分之一竖直圆弧轨道AB 和水平直轨道 BC 在 B 点光滑连结而成.现有一质量为m 1Kg 的小球从 A 点正上方 R处的 O 点由静止开释,小2球经过圆弧上的 B 点时,轨道对小球的支持力大小F N18N ,最后从 C 点水平飞离轨 道,落到水平川面上的 P . B 点与地面间的高度 h3.2m ,小球与 BC段轨道间的动 点 已知 摩擦因数 0.2 ,小球运动过程中可视为质点 . (不计空气阻力,g 取 10 m/s 2). 求:(1)小球运动至 B 点时的速度大小 v B(2)小球在圆弧轨道 AB 上运动过程中战胜摩擦力所做的功 W f(3)水平轨道 BC 的长度 L 多大时,小球落点P 与 B 点的水平距最大.【答案】( 1) v B =4?m / s ( 2) W f =22?J (3) L【分析】试题剖析: ( 1)小球在 B 点遇到的重力与支持力的协力供给向心力,由此即可求出 B 点的速度;( 2)依据动能定理即可求出小球在圆弧轨道上战胜摩擦力所做的功;( 3)联合平抛运动的公式,即可求出为使小球落点P 与 B 点的水平距离最大时BC 段的长度 .(1)小球在 B 点遇到的重力与支持力的协力供给向心力,则有: F Nmg m v B 2R解得: v B 4m / s(2)从 O 到 B 的过程中重力和阻力做功,由动能定理可得:mg RRW f 1 mv B 2 022解得: W f22J(3)由 B 到 C 的过程中,由动能定理得:mgL BC1mv C21mv B 222解得: L BCv B 2v C 22g从 C 点到落地的时间:t 02hgB 到 P 的水平距离:Lv B2v C22v C t0g代入数据,联立并整理可得:L 41v C24v C45由数学知识可知,当 v C 1.6m / s时, P 到 B 的水平距离最大,为:【点睛】该题联合机械能守恒考察平抛运动以及竖直平面内的圆周运动,解题的重点就是对每一个过程进行受力剖析,依据运动性质确立运动的方程,再依据几何关系求出最大值.3.如下图,物体 A 置于静止在圆滑水平面上的平板小车 B 的左端,物体在 A 的上方 O 点用细线悬挂一小球C(可视为质点 ),线长 L= 0.8m .现将小球 C 拉至水平无初速度开释,并在最低点与物体 A 发生水公正碰,碰撞后小球 C 反弹的速度为2m/s.已知 A、 B、 C的质量分别为 m A= 4kg、 m B= 8kg 和 m C=1kg, A、 B 间的动摩擦因数μ=, A、 C碰撞时间极短,且只碰一次,取重力加快度g= 10m/s 2.(1)求小球 C 与物体 A 碰撞前瞬时遇到细线的拉力大小;(2)求 A、 C 碰撞后瞬时 A 的速度大小;(3)若物体 A 未从小车 B 上掉落,小车 B 的最小长度为多少?【答案】 (1)30 N(2)1.5 m/s(3)0.375 m【分析】【详解】(1)小球下摆过程机械能守恒,由机械能守恒定律得:m0gl 1002 2m v代入数据解得: v0= 4m/s ,对小球,由牛顿第二定律得:v02 F﹣m0g=m0l代入数据解得: F=30N(2)小球 C 与 A 碰撞后向左摇动的过程中机械能守恒,得:1mv C2mgh 2因此: v C2gh 2 100.2 2m/s小球与 A 碰撞过程系统动量守恒,以小球的初速度方向为正方向,由动量守恒定律得:m0v0=﹣ m0v c+mv A代入数据解得: v A=(3)物块 A 与木板 B 互相作用过程,系统动量守恒,以A 的速度方向为正方向,由动量守恒定律得: mv A =( m+M )v代入数据解得: v =1 2 1 2由能量守恒定律得: μmgxmv A2(m+M ) v2代入数据解得: x =;4. 如下图,一质量 M =4kg 的小车静置于圆滑水平川面上,左边用固定在地面上的销钉挡住。

专题09 圆周运动七大常考模型(解析版)

专题09 圆周运动七大常考模型(解析版)

专题09 圆周运动七大常考模型(解析版)2020年高考物理一轮复热点题型归纳与变式演练专题09 圆周运动七大常考模型专题导航】目录题型一水平面内圆盘模型的临界问题在水平面内,圆盘绕自身的对称轴做匀速圆周运动时,当圆盘上一点的速度等于圆盘上任意一点的速度时,该点所在的半径为临界半径。

此时,圆盘上该点所受的向心力最大,达到极限值。

热点题型二竖直面内圆周运动的临界极值问题在竖直面内,圆周运动的临界问题与水平面内的类似,但由于竖直面内的向心力方向不再垂直于重力方向,因此需要通过分解向心力和重力的合力来求解临界速度和临界半径。

球-绳模型或单轨道模型球-绳模型指的是一个质量为m的小球通过一根质量忽略不计的细绳悬挂在竖直方向上,并绕着一个半径为R的竖直圆周做匀速圆周运动的模型。

单轨道模型则是一个质量为m 的小球沿着一个半径为R的水平圆周滑行的模型。

这两个模型的分析方法类似,都需要通过分解合力来求解运动的参数。

球-杆模型或双轨道模型球-杆模型指的是一个质量为m的小球沿着一个质量忽略不计的细杆滚动的模型。

双轨道模型则是一个质量为m的小球沿着两个半径分别为R1和R2的圆轨道滚动的模型。

这两个模型的分析方法也类似,都需要通过分解合力来求解运动的参数。

热点题型三斜面上圆周运动的临界问题在斜面上,圆周运动的临界问题与水平面内的类似,但由于斜面的存在,需要通过分解合力来求解临界速度和临界半径。

热点题型四圆周运动的动力学问题圆周运动的动力学问题主要涉及到角加速度、角速度和角位移等参数的计算。

在这类问题中,需要利用牛顿第二定律和角动量守恒定律等物理定律来分析运动状态。

圆锥摆模型圆锥摆模型指的是一个质量为m的小球通过一根质量忽略不计的细绳悬挂在竖直方向上,并绕着一个半径为R的圆锥面做匀速圆周运动的模型。

在分析这种模型时,需要考虑到向心力和重力的合力方向与竖直方向的夹角,以及圆锥面的倾角等因素。

车辆转弯模型车辆转弯模型主要涉及到车辆在转弯时所受的向心力和摩擦力等因素。

(完整版)圆周运动题型总结

(完整版)圆周运动题型总结

一.角速度 线速度 周期之间的关系1.做匀速圆周运动的物体,10s 内沿半径是20m 的圆周运动了100m ,试求物体做匀速圆周运动时:(1)线速度的大小; (2)角速度的大小; (3)周期的大小.【答案】(1);(2);(3)10/m s 0.5/rad s 12.56s2.如图所示,两个小球固定在一根长为l 的杆的两端,绕杆上的O 点做圆周运动,当小球A 的速度为v A 时,小球B 的速度为v B .则轴心O 到小球B 的距离是( )A .B A B v l v v + B .A A Bv l v v + C . D .A B A v v L v +A BB v v Lv +【答案】A 3.转笔(Pen Spinning )是一项用不同的方法与技巧、以手指来转动笔的休闲活动,如图所示.转笔深受广大中学生的喜爱,其中也包含了许多的物理知识,假设某转笔高手能让笔绕其上的某一点O 做匀速圆周运动,下列有关该同学转笔中涉及到的物理知识的叙述正确的是( )A .笔杆上的点离O 点越近的,角速度越大B .笔杆上的点离O 点越近的,做圆周运动的向心加速度越大C .笔杆上的各点做圆周运动的向心力是由万有引力提供的D .若该同学使用中性笔,笔尖上的小钢珠有可能因快速的转动做离心运动被甩走【答案】D 二.传动装置4.如图所示,A 、B 是两个靠摩擦传动且接触面没有相对滑动的靠背轮,A 是主动轮,B 是从动轮,它们的半径RA =2R B , a 和b 两点在轮的边缘,c 和d 分别是A 、B 两轮半径的中点,下列判断正确的有 A .v a = 2 v b B .ωb = 2ωaC .v c = v aD .a c =a d【答案】B5.某变速箱中有甲、乙、丙三个齿轮,如图所示,其半径分别为r 1、r 2、r 3,若甲轮的角速度为ω,则丙轮边缘上某点的向心加速度为A .B.C.D.3221r r ω12223r r ω22223r r ω3221r r r ω【答案】A6.如图所示的皮带传动装置中,轮A 和B 同轴,A 、B 、C 分别是三个轮边缘的质点,且RA=RC=2RB ,若传动过程中皮带不打滑,则下列说法正确的是( )A .A 点与C 点的线速度大小相同B .B 点与C 点的角速度相同C .A 点的向心加速度大小是B 点的2倍D .B 点的运行周期大于C 点的运行周期【答案】C7.一部机器由电动机带动,机器皮带轮的半径是电动机皮带轮半径的3倍(如图),皮带与两轮之间不发生滑动。

专题一 11 圆周运动(知识点完整归纳)

专题一 11 圆周运动(知识点完整归纳)

11 圆周运动1.两种传动方式(1)皮带传动(摩擦传动、齿轮传动):两轮边缘线速度大小相等. (2)同轴转动:轮上各点角速度相等. 2.匀速圆周运动(1)常见模型:物体随水平平台转动、火车或汽车转弯、圆锥摆模型、天体的运动、带电粒子在匀强磁场中的运动等.(2)向心力:由合外力提供,只改变速度的方向,不改变速度的大小. (3)动力学规律:F 向=ma =m v 2r =mrω2=mr 4π2T 2=mr 4π2n 2=mωv .3.竖直平面内的非匀速圆周运动(1)轻绳(圆轨道内侧)模型:物体能做完整圆周运动的条件是在最高点F +mg =m v 2R ≥mg ,即v ≥gR ,物体在最高点的最小速度(临界速度)为gR .(2)拱形桥模型:在最高点有mg -F =m v 2R <mg ,即v <gR ;在最高点,当v ≥gR 时,物体将离开桥面做平抛运动.(3)细杆(管形轨道)模型:在最高点的临界条件是v =0,当0<v <gR 时物体受到的弹力向上;当v >gR 时物体受到的弹力向下;当v =gR 时物体受到的弹力为零. (4)常利用动能定理来建立最高点和最低点的速度联系.1.两类临界问题(1)与摩擦力有关的临界极值图1由摩擦力及其他力的合力提供向心力,发生相对滑动的临界条件是静摩擦力达到最大值,如图1,小物体随倾斜圆盘匀速转动的最大角速度,就是在最下端时摩擦力达到最大静摩擦力,由μmg cos 30°-mg sin 30°=mω2r ,可求得ω的最大值. (2)与弹力有关的临界极值压力、支持力的临界条件是物体间的弹力恰好为零;绳上拉力的临界条件是绳恰好拉直且无弹力或绳上拉力恰好为最大承受力. 2.两个结论(1)如图2,在同一水平面上做匀速圆周运动(圆锥摆)的两个小球,由mg tan θ=mω2h tan θ,知角速度(周期)相同.图2(2)如图3,小球能沿粗糙半圆周从P 经最低点Q 到R ,由于机械能的损失,在前半程的速度(摩擦力)总是大于后半程等高处的速度(摩擦力),P 到Q 克服摩擦力所做的功大于Q 到R 克服摩擦力所做的功.图3示例1 (描述圆周运动的物理量)(多选)(2019·江苏卷·6)如图4所示,摩天轮悬挂的座舱在竖直平面内做匀速圆周运动.座舱的质量为m ,运动半径为R ,角速度大小为ω,重力加速度为g ,则座舱( )图4A .运动周期为2πR ωB .线速度的大小为ωRC .受摩天轮作用力的大小始终为mgD .所受合力的大小始终为mω2R答案 BD解析 由题意可知座舱运动周期为T =2πω,线速度为v =ωR ,受到的合力为F =mω2R ,选项B 、D 正确,A 错误;座舱的重力为mg ,座舱做匀速圆周运动受到的向心力(即合力)大小不变,方向时刻变化,故座舱受摩天轮的作用力大小时刻在改变,选项C 错误.示例2 (水平面内圆周运动的临界问题)(多选)(2014·全国卷Ⅰ·20)如图5所示,两个质量均为m 的小木块a 和b (可视为质点)放在水平圆盘上,a 与转轴OO ′的距离为l ,b 与转轴的距离为2l ,木块与圆盘的最大静摩擦力为木块所受重力的k 倍,重力加速度大小为g .若圆盘从静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,下列说法正确的是( )图5A .b 一定比a 先开始滑动B .a 、b 所受的摩擦力始终相等C .ω=kg2l是b 开始滑动的临界角速度 D .当ω=2kg3l时,a 所受摩擦力的大小为kmg 答案 AC解析 小木块a 、b 做圆周运动时,由静摩擦力提供向心力,即F f =mω2R .当角速度增加时,静摩擦力增大,当增大到最大静摩擦力时,发生相对滑动,对木块a :F f a =mωa 2l ,当F f a =kmg 时,kmg =mωa 2l ,ωa =kgl;对木块b :F f b =mωb 2·2l ,当F f b =kmg 时,kmg =mωb 2·2l ,ωb =kg2l,所以b 先达到最大静摩擦力,选项A 正确;两木块滑动前转动的角速度相同,则F f a =mω2l ,F f b =mω2·2l ,F f a <F f b ,选项B 错误;当ω=kg2l时b 刚开始滑动,选项C 正确;当ω=2kg 3l 时,a 没有滑动,则F f a =mω2l =23kmg ,选项D 错误. 示例3 (竖直面内的圆周运动)(2020·全国卷Ⅰ·16)如图6,一同学表演荡秋千.已知秋千的两根绳长均为10 m ,该同学和秋千踏板的总质量约为50 kg.绳的质量忽略不计.当该同学荡到秋千支架的正下方时,速度大小为8 m/s ,此时每根绳子平均承受的拉力约为( )图6A .200 NB .400 NC .600 ND .800 N答案 B解析 取该同学与踏板为研究对象,到达最低点时,受力如图所示,设每根绳子中的平均拉力为F .由牛顿第二定律知:2F -mg =m v 2r ,代入数据得F =405 N ,故每根绳子平均承受的拉力约为405 N ,选项B 正确.示例4 (拋体与圆周的结合)(2018·全国卷Ⅲ·25改编)如图7所示,在竖直平面内,一半径为R 的光滑圆弧轨道ABC 和水平轨道P A 在A 点相切,BC 为圆弧轨道的直径,O 为圆心,OA 和OB 之间的夹角为α,sin α=35.一质量为m 的小球沿水平轨道向右运动,经A 点沿圆弧轨道通过C 点,落至水平轨道;在整个过程中,除受到重力及轨道作用力外,小球还一直受到一水平恒力的作用.已知小球在C 点所受合力的方向指向圆心,且此时小球对轨道的压力恰好为零.重力加速度大小为g .求:图7(1)水平恒力的大小和小球到达C 点时速度的大小; (2)小球从C 点落至水平轨道所用的时间. 答案 (1)34mg5gR 2 (2)355Rg解析 (1)设水平恒力的大小为F 0,小球到达C 点时所受合力的大小为F .由力的合成法则有F 0mg=tan α① F 2=(mg )2+F 02②设小球到达C 点时的速度大小为v ,由牛顿第二定律得 F =m v 2R③由①②③式和题给数据得F 0=34mg ④v =5gR2⑤ (2)小球离开C 点后在竖直方向上做初速度不为零的匀加速运动,加速度大小为g .设小球在竖直方向的初速度为v ⊥,从C 点落至水平轨道上所用时间为t .由运动学公式有v ⊥t +12gt 2=CD ○10 v ⊥=v sin α⑪又CD =R (1+cos α)⑫ 由⑤⑦⑩⑪⑫式和题给数据得 t =355R g。

高中物理必修二第六章圆周运动题型总结及解题方法(带答案)

高中物理必修二第六章圆周运动题型总结及解题方法(带答案)

高中物理必修二第六章圆周运动题型总结及解题方法单选题1、如图所示是利用两个大小不同的齿轮来达到改变转速的自行车传动结构的示意图。

已知大齿轮的齿数为48个,小齿轮的齿数为16个,后轮直径约为小齿轮直径的10倍.假设脚踏板在1s内转1圈,下列说法正确的是()A.小齿轮在1s内也转1圈B.大齿轮边缘与小齿轮边缘的线速度之比为3:1C.后轮与小齿轮的角速度之比为10:1D.后轮边缘与大齿轮边缘的线速度之比为10:1答案:DAB.齿轮的齿数与半径成正比,因此大齿轮的半径是小齿轮半径的3倍,大齿轮与小齿轮是链条传动,边缘点线速度大小相等,令大齿轮为A,小齿轮为B,后轮边缘为C,故v A:v B=1:1又r A:r B=3:1根据v=ωr可知,大齿轮与小齿轮的角速度之比ωA:ωB=r B:r A=1:3所以脚踏板在1s内转1圈,小齿轮在1s内转3圈,故AB错误;CD.B、C两点为同轴转动,所以ωB:ωC=1:1根据v=ωr可知,后轮边缘上C点的线速度与小齿轮边缘上B点的线速度之比v C:v B=r C:r B=10:1故C错误,D正确。

故选D。

2、某同学经过长时间的观察后发现,路面出现水坑的地方,如果不及时修补,水坑很快会变大,善于思考的他结合学过的物理知识,对这个现象提出了多种解释,则下列说法中不合理的解释是()A.车辆上下颠簸过程中,某些时刻处于超重状态B.把坑看作凹陷的弧形,车对坑底的压力比平路大C.车辆的驱动轮出坑时,对地的摩擦力比平路大D.坑洼路面与轮胎间的动摩擦因数比平直路面大答案:DA.车辆上下颠簸过程中,可能在某些时刻加速度向上,则汽车处于超重状态,A正确,不符合题意;B.把坑看作凹陷的弧形,根据牛顿第二定律有F N−mg=m v2 R则根据牛顿第三定律,把坑看作凹陷的弧形,车对坑底的压力比平路大,B正确,不符合题意;C.车辆的驱动轮出坑时,对地的摩擦力比平路大,C正确,不符合题意;D.动摩擦因数由接触面的粗糙程度决定,而坑洼路面可能比平直路面更光滑则动摩擦因数可能更小,D错误,符合题意。

圆周运动专题汇编(必须掌握经典题目)有答案

圆周运动专题汇编(必须掌握经典题目)有答案

r m 高一期末考试题目 圆周运动专题汇编一、选择题[共53题]1、如图所示,用长为L 的细绳拴着质量为m 的小球在竖直平面内做圆周运动,则( )A .小球在最高点时所受向心力一定为重力B .小球在最高点时绳子的拉力不可能为零C .若小球刚好能在竖直面内做圆周运动,则其在最高点速率是gLD .小球在圆周最低点时拉力可能等于重力C2、在质量为M 的电动机的飞轮上,固定着一个质量为m 的重物,重物到转轴的距离为r ,如图所示,为了使放在地面上的电动机不会跳起,电动机飞轮的角速度不能超过( )A .g mrm M + B .g mr m M + C .g mr m M - D .mr Mg A3.关于匀速圆周运动的向心加速度,下列说法正确的是:A .大小不变,方向变化B .大小变化,方向不变C .大小、方向都变化D .大小、方向都不变A4.同一辆汽车以同样大小的速度先后开上平直的桥和凸形桥,在桥的中央处有:A .车对两种桥面的压力一样大B .车对平直桥面的压力大C .车对凸形桥面的压力大D .无法判断B5、洗衣机的脱水筒在转动时有一衣物附在筒壁上,如图所示,则此时:A .衣物受到重力、筒壁的弹力和摩擦力的作用B .衣物随筒壁做圆周运动的向心力是由摩擦力提供的C .筒壁对衣物的摩擦力随转速增大而减小D .筒壁对衣物的摩擦力随转速增大而增大A6、关于物体做匀速圆周运动的正确说法是A .速度大小和方向都改变B .速度的大小和方向都不变C .速度的大小改变,方向不变D .速度的大小不变,方向改变B7、如图所示,一光滑的圆锥内壁上,一个小球在水平面内做匀速圆周运动,如果要让小球的运动轨迹离锥顶远些,则下列各物理量中,不会引起变化的是( )A .小球运动的线速度B .小球运动的角速度C .小球的向心加速度D .小球运动的周期C8、如图所示,汽车以速度v通过一圆弧式的拱桥顶端时,则汽车 ( )A.的向心力由它的重力提供B.的向心力由它的重力和支持力的合力提供,方向指向圆心C.受重力、支持力、牵引力、摩擦力和向心力的作用D.以上均不正确B9、如图,质量为M的物体内有光滑圆形轨道,现有一质量为m的小滑块沿该圆形轨道在竖直面内作圆周运动。

第六章-圆周运动章末复习-知识点和题型总结-2023年高一物理期末高效复习专题

第六章-圆周运动章末复习-知识点和题型总结-2023年高一物理期末高效复习专题

第六章:圆周运动章末复习知识点一:匀速圆周运动及其描述一、匀速圆周运动1.圆周运动:物体的运动轨迹是圆的运动.2.匀速圆周运动:质点沿圆周运动,如果在相等的时间内通过的圆弧长度相等,这种运动就叫匀速圆周运动.二、匀速圆周运动的线速度、角速度和周期1.线速度(1)定义式:v=Δs Δt.如果Δt取的足够小,v就为瞬时线速度.此时Δs的方向就与半径垂直,即沿该点的切线方向.(2)线速度的方向:质点在圆周某点的线速度方向沿圆周上该点的切线方向.(3)物理意义:描述质点沿圆周运动的快慢.2.角速度:半径转过的角度Δφ与所用时间Δt的比值,即ω=ΔφΔt(如图所示).国际单位是弧度每秒,符号是rad/s.3.转速与周期(1)转速n:做圆周运动的物体单位时间内转过的圈数,常用符号n表示.(2)周期T:做匀速圆周运动的物体运动一周所用的时间叫做周期,用符号T 表示.(3)转速与周期的关系:若转速的单位是转每秒(r/s),则转速与周期的关系为T=1n .4.匀速圆周运动的特点(1)线速度的大小处处相等.(2)由于匀速圆周运动的线速度方向时刻在改变,所以它是一种变速运动.这里的“匀速”实质上指的是“匀速率”而不是“匀速度三、描述圆周运动的各物理量之间的关系1.线速度与周期的关系:v=2πr T.2.角速度与周期的关系:ω=2πT.3.线速度与角速度的关系:v=ωr.知识点二、同轴转动和皮带传动1.同轴转动(1)角速度(周期)的关系:ωA=ωB,T A=T B.(2)线速度的关系:vAvB=rR.2.皮带(齿轮)传动(1)线速度的关系:v A=v B(2)角速度(周期)的关系:ωAωB=rR、TATB=Rr.知识点三、向心力1.定义:物体做匀速圆周运动时所受合力方向始终指向圆心,这个指向圆心的合力就叫做向心力.2.大小:F=mω2r=m v2 r.3.方向:总是沿半径指向圆心,方向时刻改变.4.效果力向心力是根据力的作用效果来命名的,凡是产生向心加速度的力,不管属于哪种性质,都是向心力.二:向心力的来源物体做圆周运动时,向心力由物体所受力中沿半径方向的力提供.几种常见的实例如下:实例向心力示意图用细线拴住的小球在竖直面内转动至最高点时绳子的拉力和重力的合力提供向心力,F向=F+G用细线拴住小球在光滑水平面内做匀速圆周运动线的拉力提供向心力,F向=F T物体随转盘做匀速圆周运动,且相对转盘静止转盘对物体的静摩擦力提供向心力,F向=F f小球在细线作用下,在水平面内做圆周运动重力和细线的拉力的合力提供向心力,F向=F合知识点四:向心加速度的方向及意义1.物理意义描述线速度改变的快慢,只表示线速度的方向变化的快慢,不表示其大小变化的快慢.2.方向总是沿着圆周运动的半径指向圆心,即方向始终与运动方向垂直,方向时刻改变.3.圆周运动的性质不论向心加速度a n的大小是否变化,a n的方向是时刻改变的,所以圆周运动的向心加速度时刻发生改变,圆周运动一定是非匀变速曲线运动.“匀速圆周运动中”的“匀速”应理解为“匀速率”.4.变速圆周运动的向心加速度做变速圆周运动的物体,加速度一般情况下不指向圆心,该加速度有两个分量:一是向心加速度,二是切向加速度.向心加速度表示速度方向变化的快慢,切向加速度表示速度大小变化的快慢.所以变速圆周运动中,向心加速度的方向也总是指向圆心.二:向心加速度的公式和应用1.公式a n =v2r=ω2r=4π2T2r=4π2n2r=4π2f2r=ωv.2.向心加速度的大小与半径的关系(1)当半径一定时,向心加速度的大小与角速度的平方成正比,也与线速度的平方成正比.随频率的增大或周期的减小而增大.(2)当角速度一定时,向心加速度与运动半径成正比.(3)当线速度一定时,向心加速度与运动半径成反比.(4)a n与r的关系图象:如图5­5­2所示.由a n­r图象可以看出:a n与r成正比还是反比,要看ω恒定还是v恒定.图5­5­2知识点五:生活在的圆周运动一:火车转弯问题1.轨道分析火车在转弯过程中,运动轨迹是一圆弧,由于火车转弯过程中重心高度不变,故火车轨迹所在的平面是水平面,而不是斜面.火车的向心加速度和向心力均沿水平面指向圆心.图5­7­32.向心力分析如图5­7­3所示,火车速度合适时,火车受重力和支持力作用,火车转弯所需的向心力完全由重力和支持力的合力提供,合力沿水平方向,大小F=mg tan θ.3.规定速度分析若火车转弯时只受重力和支持力作用,不受轨道压力,则mg tan θ=m v 2 0R,可得v0=gR tan θ(R为弯道半径,θ为轨道所在平面与水平面的夹角,v0为转弯处的规定速度).4.轨道压力分析(1)当火车行驶速度v等于规定速度v0时,所需向心力仅由重力和弹力的合力提供,此时火车对内外轨道无挤压作用.(2)当火车行驶速度v与规定速度v0不相等时,火车所需向心力不再仅由重力和弹力的合力提供,此时内外轨道对火车轮缘有挤压作用,具体情况如下:①当火车行驶速度v>v0时,外轨道对轮缘有侧压力.②当火车行驶速度v<v0时,内轨道对轮缘有侧压力.二:拱形桥汽车过凸形桥(最高点)汽车过凹形桥(最低点) 受力分析牛顿第二定律求向心力 F n =mg -F N =m v 2rF n =F N -mg =m v 2r牛顿第三定律求压力F 压=F N =mg -m v 2rF 压=F N =mg +m v 2r讨论v 增大,F 压减小;当v 增大到rg 时,F 压=0v 增大,F 压增大 超、失重汽车对桥面压力小于自身重力,汽车处于失重状态汽车对桥面压力大于自身重力,汽车处于超重状态知识点六:离心运动1.离心运动的实质离心现象的本质是物体惯性的表现.做圆周运动的物体,由于惯性,总是有沿着圆周切线飞出去的趋向,之所以没有飞出去,是因为受到向心力的作用.从某种意义上说,向心力的作用是不断地把物体从圆周运动的切向方向拉回到圆周上来.2.离心运动的条件做圆周运动的物体,提供向心力的外力突然消失或者合外力不能提供足够大的向心力.3.离心运动、近心运动的判断如图5­7­8所示,物体做圆周运动是离心运动还是近心运动,由实际提供的向心力F n 与所需向心力⎝ ⎛⎭⎪⎫m v 2r 或mr ω2的大小关系决定.图5­7­8(1)若F n =mr ω2(或m v 2r)即“提供”满足“需要”,物体做圆周运动.(2)若F n>mrω2(或m v2r)即“提供”大于“需要”,物体做半径变小的近心运动.(3)若F n<mrω2(或m v2r)即“提供”不足,物体做离心运动.由以上关系进一步分析可知:原来做圆周运动的物体,若速率不变,所受向心力减少(或向心力不变,速率变大)物体将做离心运动;若速度大小不变,所受向心力增大(或向心力不变,速率减小)物体将做近心运动.知识点七.竖直平面的圆周运动1.“绳模型”如上图所示,小球在竖直平面内做圆周运动过最高点情况。

圆周运动题型总结(合集5篇)

圆周运动题型总结(合集5篇)

圆周运动题型总结(合集5篇)第一篇:圆周运动题型总结1.如图,长均为L的两根轻绳,一端共同系住质量为m的小球,另一端分别固定在等高的A.B两点,A、B两点间的距离也为L.重力加速度大小为g.今使小球在竖直平面内以AB为轴做圆周运动,若小球在最高点速率为v时,两根绳的拉力恰好均为零,则小球在最高点速率为2v时,每根绳的拉力大小为()A.B.C.3mg D.故选:A.2.如图甲所示,一长为R的轻绳,一端穿在过O点的水平转轴上,另一端固定一质量未知的小球,整个装置绕O点在竖直面内转动,小球通过最高点时,绳对小球的拉力F与其速度平方v2的关系如图乙所示,图线与纵轴的交点坐标为a,下列判断正确的是()A.利用该装置可以得出重力加速度,且g=RaB.绳长不变,用质量较大的球做实验,得到的图线斜率更大C.绳长不变,用质量较小的球做实验,得到的图线斜率更大D.绳长不变,用质量较小的球做实验,图线a点的位置不变解答:CD.3.质量为m 的小球由轻绳a和b分别系于一轻质木架上的A点和C点。

如图所示,当轻杆绕轴BC以角速度ω匀速转动时,小球在水平面内做匀速圆周运动,绳a在竖直方向,绳b在水平方向,当小球运动到图示位置时,绳b被烧断的同时木架停止转动,则()A.绳a对小球拉力不变B.绳a对小球拉力增大C.小球一定前后摆动D.小球可能在竖直平面内做圆周运动解答:A.绳b被烧断前,小球在竖直方向没有位移,加速度为零,a绳中张力等于重力,在绳b被烧断瞬间,a绳中张力与重力的合力提供小球的向心力,而向心力竖直向上,绳a的张力大于重力,即张力突然增大,故A错误,B正确;C.小球原来在水平面内做匀速圆周运动,绳b被烧断后,若角速度ω较小,小球原来的速度较小,小球在垂直于平面ABC的竖直平面内摆动,若角速度ω较大,小球原来的速度较大,小球可能在垂直于平面ABC的竖直平面内做圆周运动,故C错误,D正确。

故选:BDA、B两球的质量分别为m1与m2,用一劲度系数为k的弹簧相连,一长为l1的细线与A球相连,置于水平光滑桌面上,细线的另一端栓在竖直轴上,如图所示。

圆周运动归纳、总结、训练(含答案)

圆周运动归纳、总结、训练(含答案)

匀速圆周运动归纳、总结、训练(含答案)【知识回顾、方法点拨】考点一、基本概念匀速圆周运动定义:任意相等时间内通过的弧长都相等的圆周运动—理想化模型。

1. 线速度(矢量):(1)t s v /=(比值法定义)单位—m/s(2) 方向:圆周轨迹的切线方向 2. 角速度:(1)t /ϕω=(比值法定义)单位—弧度/秒,(rad/s ) 3. 周期T(s)频率f(Hz) T=1/f转速n(r/s 或r/min):当单位时间取秒时,转速n 与频率f 在数值上相等 关系:T=1/n 4.关系: 22n t T φπωπ=== ωππR Rn T Rt sv ====22ωR v =,同一转动物体上,角速度相等;同一皮带轮连接的轮边缘上线速度相等。

匀速圆周运动速率大小不变,并不是匀速运动而是变速运动。

匀速圆周运动中,角速度是恒定不变的. 匀速圆周运动的条件引入:物体做曲线运动的条件:切向力改变速度大小,法向力改变速度方向。

条件:(1)初速度0v ;(2)2222224,4vF v F F mR mm R m n R m v RTπωπω⊥====⋅⋅=⋅=⋅合合向5、向心加速度、向心力 r f r Tr rva 22222)2(4ππω====r f m r Tmr m rvmma F 22222)2(4ππω=====向心加速度是描述线速度方向变化快慢的物理量,产生向心加速度的力叫向心力。

向心力和向心加速度方向都时刻在改变(圆周运动一定是非匀变速运动)。

2a r ω=,ω相同时,a 与r 成正比;2va r=,v 相同时,a 与r 成反比;r 相同时,a 与ω2成正比,与v 2成反比。

(1)因为v 、ω的大小均不变,所以向心加速度的大小也就不变,但由于a 的方向始终垂直于速度在旋转变化,所以向心加速度不是恒量而是变量.匀速圆周运动不是匀加速运动而是变加速运动. (2)向心力只改变速度的方向,不改变速度的大小。

圆周运动经典题型归纳

圆周运动经典题型归纳

圆周运动经典题型归纳一、圆周运动基本物理量与传动装置1.共轴传动一个圆环以竖直直径AB为轴匀速转动,环上M、N两点的角速度之比为MN/MA=1/2,周期之比为2/1,线速度之比为1/2.2.皮带传动在某一皮带传动装置中,主动轮的半径为r1,从动轮的半径为r2.已知主动轮做顺时针转动,转速为n,转动过程中皮带不打滑。

从动轮的转速为n,因为皮带传动中,主动轮和从动轮的线速度相等。

3.齿轮传动如图所示,A、B两个齿轮的齿数分别是z1、z2,各自固定在过O1、O2的轴上,其中过O1的轴与电动机相连接,此轴每分钟转速为n1.求B齿轮的转速n2,A、B两齿轮的半径之比,以及在时间t内,A、B两齿轮转过的角度之比。

4.混合题型在图示的传动装置中,B、C两轮固定在一起绕同一轴转动,A、B两轮用皮带传动,三轮半径关系是rA=rC=2rB。

若皮带不打滑,则A、B、C轮边缘的a、b、c三点的角速度之比ωa:ωb:ωc=1:2:1,线速度之比va:vb:vc=1:2:2.二、向心力来源1.由重力、弹力或摩擦力中某一个力提供洗衣机的甩干桶竖直放置,桶的内径为20厘米,工作被甩的衣物贴在桶壁上,衣物与桶壁的动摩擦因数为μ。

若不使衣物滑落下去,甩干桶的转速至少为sqrt(5gμR),其中g为重力加速度,R为桶的半径。

2.在匀速转动的水平盘上,沿半径方向放着三个物体A、B、C,Ma=Mc=2Mb,他们与盘间的摩擦因数相等。

他们到转轴的距离的关系为Ra<Rb<Rc。

当转盘的转速逐渐增大时,先开始滑动的物体是B,沿半径向外滑动。

3.一质量为m的小球,用长的细线拴住在竖直面内作圆周运动。

当小球恰好能通过最高点时的速度为sqrt(2gh),细线的拉力为mg+mv^2/R,其中g为重力加速度,h为最高点的高度,v为小球在最高点的速度,R为圆周运动的半径。

4.向心力由几个力的合力提供1)由重力和弹力的合力提供半径为R的半球型碗底的光滑内表面,质量为m的小球正以角速度ω,在一水平面内作匀速圆周运动。

圆周运动的题型归纳--一中

圆周运动的题型归纳--一中

圆周运动题型总结题型一:圆周运动各物理量的关系1、如图所示,转轴O1上固定有两个半径为R和r的轮,用皮带传动O2轮,O2轮的半径是r ´,若O1每秒转了5转,R=1m,r=r´=0.5m,则(l)大轮转动的角速度多大?(2)图中A、C两点的线速度大小分别是多少?1.答案:31.4rad/s v A=15.7m/s v C=31.4m/s2.如图所示,A、B两轮半径之比为1:3,两轮边缘挤压在一起,在两轮转动中,接触点不存在打滑的现象,则两轮边缘的线速度大小之比等于______。

两轮的转数之比等于______,A轮半径中点与B轮边缘的角速度大小之比等于______。

2.答案:1∶1 、3∶1、3∶13、如图所示,一种向自行车车灯供电的小发电机的上端有一半径r0=1.0cm的摩擦小轮,小轮与自行车车轮的边缘接触.当车轮转动时,因摩擦而带动小轮转动,从而为发电机提供动力.自行车车轮的半径R1=35cm,小齿轮的半径R2=4.0cm,大齿轮的半径R3=10.0cm.求大齿轮的转速n l和摩擦小轮的转速n2之比.(假定摩擦小轮与自行车车轮之间无相对滑动)3.答案:2:1754、图示为一种“滚轮——平盘无级变速器”的示意图,它由固定于主动轴上的平盘和可随从动轴移动的圆柱形滚轮组成.由于摩擦的作用,当平盘转动时,滚轮就会跟随转动.如果滚轮不打滑,那么主动轴转速n1、从动轴转速n2、滚轮半径r以及滚轮中心距离主动轴轴线的距离x之间的关系是( )A.n2=n1xrB.n2=n1rxC.n2=n1x2r2D.n2=n1xr解析:滚轮与平盘接触处的线速度相等,故有:ω1x=ω2r,即2πn1x=2πn2r可得:n2=n1x r .4.答案:A5、如图所示,A 、B 是两个圆盘,它们能绕共同的轴以相同的角速度转动,两盘相距为L.有一颗子弹以一定速度垂直盘面射向A 盘后又穿过B 盘,子弹分别在A 、B 盘上留下的弹孔所在的半径之间的夹角为θ.现测得转轴的转速为n r/min ,求子弹飞行的速度.(设在子弹穿过A 、B 两盘过程中,两盘转动均未超过一周)题型二:圆周运动的应用(圆周运动的动力学问题)1、如图所示,固定的锥形漏斗内壁是光滑的,内壁上有两个质量相 等的小 球A 和B ,在各自不同的水平面做匀速圆周运动,以下关系正确的是( B ) A.角速度 ωA >ωB B. 线速度v A >v B C. 向心加速度a A >a B D. 支持力N A >N B 1.答案:B2、如图所示,在绕竖直轴匀速转动的水平圆盘盘面上,离轴心r=20cm 处放置一小物块A ,其质量为m =2kg ,A 与盘面间相互作用的静摩擦力的最大值为其重力的k 倍(k =0.5),试求⑴当圆盘转动的角速度ω=2rad/s 时, 物块与圆盘间的摩擦力大小多大?方向如何?⑵欲使A 与盘面间不发生相对滑动,则圆盘转动的最大角速度多大?(取g=10m/s 2解:(1)f=mr ω2=1.6N …① 方向为指向圆心。

2023年圆周运动知识点及题型简单已整理

2023年圆周运动知识点及题型简单已整理

描述圆周运动旳物理量及互相关系匀速圆周运动1、定义:物体运动轨迹为圆称物体做圆周运动。

2、分类:⑴匀速圆周运动:质点沿圆周运动,假如在任意相等旳时间里通过旳圆弧长度相等,就叫做匀速圆周运动。

物体在大小恒定而方向总跟速度旳方向垂直旳外力作用下所做旳曲线运动。

⑵变速圆周运动:假如物体受到约束,只能沿圆形轨道运动,而速率不停变化——如小球被绳或杆约束着在竖直平面内运动,是变速率圆周运动.合力旳方向并不总跟速度方向垂直. 3、描述匀速圆周运动旳物理量(1)轨道半径(r ):对于一般曲线运动,可以理解为曲率半径。

(2)线速度(v ): ①定义:质点沿圆周运动,质点通过旳弧长S 和所用时间t 旳比值,叫做匀速圆周运动旳线速度。

②定义式:ts v③线速度是矢量:质点做匀速圆周运动某点线速度旳方向就在圆周该点切线方向上,实际上,线速度是速度在曲线运动中旳另一称谓,对于匀速圆周运动,线速度旳大小等于平均速率。

(3)角速度(ω,又称为圆频率):①定义:质点沿圆周运动,质点和圆心旳连线转过旳角度跟所用时间旳比值叫做匀速圆周运动旳角速度。

N ②大小:Ttπϕω2== (φ是t 时间内半径转过旳圆心角)③单位:弧度每秒(rad/s )④物理意义:描述质点绕圆心转动旳快慢(4)周期(T ):做匀速圆周运动旳物体运动一周所用旳时间叫做周期。

(5)频率(f ,或转速n ):物体在单位时间内完毕旳圆周运动旳次数。

各物理量之间旳关系:r t r v f T t rf Tr t s v ωθππθωππ==⇒⎪⎪⎭⎪⎪⎬⎫======2222 注意:计算时,均采用国际单位制,角度旳单位采用弧度制。

(6)圆周运动旳向心加速度①定义:做匀速圆周运动旳物体所具有旳指向圆心旳加速度叫向心加速度。

②大小:r rv a n 22ω==(尚有其他旳表达形式,如:()r f r T v a n 2222ππω=⎪⎭⎫ ⎝⎛==)③方向:其方向时刻变化且时刻指向圆心。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆周运动11.如图所示,靠摩擦传动做匀速转动的大、小两轮接触面互不打滑,大轮半径是小轮半径的2倍.A、B分别为大、小轮边缘上的点,C为大轮上一条半径的中点.则()A.两轮转动的角速度相等B大轮转动的角速度是小轮的2倍C.质点加速度a A=2a BD.质点加速度a B=4a C2.如果在和各放一个物体随地球自转做匀速圆周运动,则这两个物体具有大小相同的是()A.线速度B.角速度C.加速度D.周期3.如图所示,小球Q在竖直平面做匀速圆周运动,当Q球转到与O同一水平线时,有另一小球P在距圆周最高点为h处开始自由下落,要使两球在圆周最高点相碰,则Q球的角速度ω应满足什么条件?4.下列关于圆周运动的说确的是A.做匀速圆周运动的物体,所受的合外力一定指向圆心B.做匀速圆周运动的物体,其加速度可能不指向圆心C.作圆周运动的物体,其加速度不一定指向圆心D.作圆周运动的物体,所受合外力一定与其速度方向垂直5.关于匀速圆周运动,下列说确的是A.匀速圆周运动就是匀速运动B.匀速圆周运动是匀加速运动C.匀速圆周运动是一种变加速运动D.匀速圆周运动的物体处于平衡状态6、如图所示,为一在水平面做匀速圆周运动的圆锥摆,关于摆球A的受力情况,下列说法中正确的是:A.摆球A受重力、拉力和向心力的作用B.摆球A受拉力和向心力的作用C.摆球A受拉力和重力的作用D.摆球A受重力和向心力的作用7.如图所示,一圆盘可绕通过圆盘中心O且垂直于盘面的竖直轴转动,在圆盘上放置一小木块A,它随圆盘一起做匀速圆周运动。

则关于木块A的受力,下列说确的是()A.木块A受重力、支持力和向心力B.木块A受重力、支持力和静摩擦力,静摩擦力的方向指向圆心C.木块A受重力、支持力和静摩擦力,静摩擦力的方向与木块运动方向相反D.木块A受重力、支持力和静摩擦力,静摩擦力的方向与木块运动方向相同8.绳子的一端拴一重物,以手握住绳子另一端,使重物在水平面做匀速圆周运动,下列判断中正确的是A.每秒转数相同时,绳短的容易断B.线速度大小相等时,绳短的容易断C.旋转周期相同时,绳短的容易断D.线速度大小相等时,绳长的容易断9、物体m用线通过光滑的水平板间小孔与砝码M相连,并且正在做匀速圆周运动,如图5所示,如果减少M 的重量,则物体m 的轨道半径r ,角速度ω,线速度v 的大小变化情况是A. r 不变. v 变小B. r 增大,ω减小C. r 减小,v 不变D. r 减小,ω不变10.如图所示,光滑的水平圆盘中心0处有一个小孔,用细绳穿过小孔,绳两端各系一个小球A 和B ,两球质量相等,圆盘上的A 球做半径为r=20cm的匀速圆周运动,要使B 球保持静止状态,求A 球的角速度ω应是多大?(g取9.8m /s 2)11.如图,细绳一端系着M=0.6kg 的物体,静止在水平面,另一端通过光滑小孔吊着质量m=0.3kg 的物体,M 的中心与圆孔相距0.2m , 并知M 和水平面间的最大静磨擦力为2N ,平面绕中心轴转动,角速度ω在什么围m 会处于静止状态?(g=10m/s 2)12.如图所示,细绳一端系着质量m=0.1 kg 的小物块A ,置于光滑水平台面上;另一端通过光滑小孔O 与质量M=0.5 kg 的物体B 相连,B 静止于水平地面上.当A 以O 为圆心做半径r =0.2m 的匀速圆周运动时,地面对B 的支持力F N =3.0N ,求物块A 的速度和角速度的大小.(g=10m/s 2)13. 如图所示,在匀速转动的圆筒壁上,有一物体随圆筒一起转动而未滑动。

当圆筒的角速度 增大以后,下列说确的是( )(A)物体所受弹力增大,摩擦力也增大了;(B)物体所受弹力增大,摩擦力减小了;(C)物体所受弹力和摩擦力都减小了;(D)物体所受弹力增大,摩擦力不变14甲、乙两名溜冰运动员,面对面拉着弹簧秤做圆周运动的溜冰表演,如图所示.已知M 甲=80kg,M 乙=40 kg,两人相距0.9 m,弹簧秤的示数为96 N,下列判断正确的是 ( )A.两人的线速相同,约为40 m/sB.两人的角速相同,约为2 rad/sC.两人的运动半径相同,都中0.45 mD.两人的运动半径不同,甲为0.3 m,乙为0.6 m15.如图所示,一个壁光滑的圆锥筒的轴线垂直于水平面,圆锥筒固定ABMm不动,有两个质量相同的小球A和小球B紧贴圆锥筒壁分别在水平面做匀速圆周运动,则下列说法中正确的是A.A球的线速度必定小于B球的线速度B.A球的角速度必定大于B球的角速度C.A球运动的周期必定大于B球的周期D.A球对筒壁的压力必定大于B球对筒壁的压力16游客乘坐过山车,在圆弧轨道最低点处获得的向心加速度达到20 m/s2,g取10 m/s2,那么在此位置座椅对游客的作用力相当于游客重力的 ( )A.1倍B.2 倍C.3倍D.4倍17由飞往美国洛杉矾的飞机在飞越太平洋上空的过程中,如果保持飞行速度的大小不变和距离海平面的高度不变,则以下说确的是(C)A.飞机做的是匀速直线运动B.飞机上的乘客对座椅的压力略大于地球对乘客的引力C.飞机上的乘客对座椅的压力略小于地球对乘客的引力D.飞机上的乘客对座椅的压力为零18在长度为L的细线的下端拴一个质量为m的小球,捏住细线的上端,使小球在水平面做半径为R的匀速圆周运动,试求:①.小球所受的向心力的大小②.小球向心加速度的大小③.小球做圆周运动的线速度的大小④.小球做圆周运动的角速度的大小⑤.小球做圆周运动的周期的大小19.如图所示,已知水平杆长L1=0.1米,绳长L2=0.2米,小球m的质量m=0.3千克,整个装置可绕竖直轴转动,当该装置以某一角速度转动时,绳子与竖直方向成30°角.g取10m/s2,求:(1)试求该装置转动的角速度;(2)此时绳的力是多大?20.有一辆质量为800kg的小汽车驶上圆弧半径为50m的拱桥。

(1)汽车到达桥顶时速度为5m/s,汽车对桥的压力是多大?(2)汽车以多大速度经过桥顶时恰好对桥没有压力而腾空?(3)汽车对地面的压力过小是不安全的。

因此从这个角度讲,汽车过桥时的速度不能过大。

对于同样的车速,拱桥圆弧的半径大些比较安全,还是小些比较安全?(4)如果拱桥的半径增加到与地球半径R一样,汽车要在桥面腾空,速度要多大?(g=10m/s R=6400km)21.质量为m 的小木块从半径为R 的半球形的碗口下滑到碗的最低点的过程中,如果由于磨擦力的作用使木块的速率不变,那么( )A.因为速率不变,所以木块的加速度为零B.木块下滑过程中所受的合外力越来越大C.木块下滑过程中所受的磨擦力大小不变D.木块下滑过程中的加速度大小不变,方向始终指向球心22.如图,一质量为m 的木块,从光滑的半球形的碗边开始下滑,在木块下滑过程中( )A .它的加速度方向指向球心B .它所受合力就是向心力C .它所受向心力不断增大D .它对碗的压力不断减小23.如图5-43所示,质量为m 的物体从半径为R 的半球形碗边向碗底滑动,滑到最低点时的速度为v ,若物体与碗的动摩擦因数为μ,则物体滑到最低点时受到的摩擦力的大小是 BA .μmgB .)(2R v g m +μC .)(2R v g m -μD .Rmv 2μ 24.一辆卡车在丘陵地匀速行驶 ,地形如图所示,由于轮胎太旧,途中爆胎,爆胎可能性最大的地段应是( )A .a 处B .b 处C .c 处D .d 处25 铁路转弯处的弯道半径r 是根据地形决定的.弯道处要求外轨比轨高,其外轨高度差h的设计不仅与r 有关,还与火车在弯道上的行驶速率v 有关.下列说确的是( )A .v 一定时,r 越小则要求h 越大B .v 一定时,r 越大则要求h 越大C .r 一定时,v 越小则要求h 越大D .r 一定时,v 越大则要求h 越大26.如图所示,质量为m 的小球A 、B 分别固定在轻杆的中点和端点,当杆在光滑水平面上绕O 点匀速转动时,求杆OA 段与AB 段对球的拉力之比。

19.3:227.如图3所示,水平的木板B 托着木块A 一起在竖直平面做匀速圆周运动,从水平位置a 沿逆时针方向运动到最高点b 的过程中(B 、D )A .B 对A 的支持力越来越大B .B 对A 的支持力越来越小C .B 对A 的摩擦力越来越大D .B 对A 的摩擦力越来越小28.半径为R 的光滑半圆球固定在水平面上,如图所示.顶部有一小物体甲,今给它一个水平初速度v 0=gR ,物体甲将 A .沿球面下滑至M 点B .先沿球面下滑至某点N ,然后便离开球面做斜下抛运动C .按半径大于R 的新的圆弧轨道做圆周运动D .立即离开半圆球做平抛运动圆周运动21.有一辆质量为800kg 的小汽车驶上圆弧半径为50m 的拱桥。

(1)汽车到达桥顶时速度为5m/s ,汽车对桥的压力是多大?(2)汽车以多大速度经过桥顶时恰好对桥没有压力而腾空?(3)汽车对地面的压力过小是不安全的。

因此从这个角度讲,汽车过桥时的速度不能过大。

对于同样的车速,拱桥圆弧的半径大些比较安全,还是小些比较安全?(4)如果拱桥的半径增加到与地球半径R 一样,汽车要在桥面腾空,速度要多大? (g=10m/s R=6400km )2.皮带传送机传送矿石的速度v 大小恒定,在轮缘A 处矿石和皮带恰好分离,如图所示,则通过A 点的半径OA 和竖直方向OB 的夹角θ为 ( )A.Rg 2sin v arc B.Rg 2cot v arcC.Rg v 2arctan D.Rgv 2arccos 3.铁路在弯道处的外轨道高低是不同的,已知外轨道对水平面倾角为θ(图),弯道处的圆弧半径为R ,若质量为m 的火车转弯时速度小于 Rgtg ,则A .轨对侧车轮轮缘有挤压;B .外轨对外侧车轮轮缘有挤压;C .这时铁轨对火车的支持力等于mg/cos θ;D .这时铁轨对火车的支持力大于mg/cos θ4.铁路转弯处的弯道半径r 是根据地形决定的.弯道处要求外轨比轨高,其外轨高度差h 的设计不仅与r 有关,还与火车在弯道上的行驶速率v 有关.下列说确的是()A .v 一定时,r 越小则要求h 越大B .v 一定时,r 越大则要求h 越大图 1 C .r 一定时,v 越小则要求h 越大 D .r 一定时,v 越大则要求h 越大5.由飞往美国洛杉矾的飞机在飞越太平洋上空的过程中,如果保持飞行速度的大小不变和距离海平面的高度不变,则以下说确的是()A .飞机做的是匀速直线运动B .飞机上的乘客对座椅的压力略大于地球对乘客的引力C .飞机上的乘客对座椅的压力略小于地球对乘客的引力D .飞机上的乘客对座椅的压力为零6.如图所示,质量为m 的小球A 、B 分别固定在轻杆的中点和端点,当杆在光滑水平面上绕O 点匀速转动时,求杆OA 段与AB 段对球的拉力之比。

相关文档
最新文档