2018年广东省中考数学试题含答案解析
2018年广东省深圳市中考数学试卷(含答案解析版)
2018年广东省深圳市中考数学试卷(含答案解析版)12.(3.00分)(2018•深圳)如图,A、B是函数y=12x上两点,P为一动点,作PB∥y轴,PA∥x轴,下列说法正确的是()①△AOP≌△BOP;②S△AOP =S△BOP;③若OA=OB,则OP平分∠AOB;④若S△BOP=4,则S△ABP=16A.①③B.②③C.②④D.③④二、填空题(每题3分,满分12分,将答案填在答题纸上)13.(3.00分)(2018•湘西州)分解因式:a2﹣9= .14.(3.00分)(2018•深圳)一个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率:.15.(3.00分)(2018•深圳)如图,四边形ACDF是正方形,∠CEA和∠ABF都是直角且点E,A,B三点共线,AB=4,则阴影部分的面积是.16.(3.00分)(2018•深圳)在Rt△ABC中,∠C=90°,AD平分∠CAB,BE平分∠ABC,AD、BE相交于点F,且AF=4,EF=√2,则AC= .三、解答题(本大题共7小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(5.00分)(2018•深圳)计算:(12)﹣1﹣2sin45°+|﹣√2|+(2018﹣π)0.18.(6.00分)(2018•深圳)先化简,再求值:(xx−1−1)÷x2+2x+1x2−1,其中x=2.19.(7.00分)(2018•深圳)某学校为调查学生的兴趣爱好,抽查了部分学生,并制作了如下表格与条形统计图:频数频率体育400.4科技25a艺术b0.15其它200.2请根据上图完成下面题目:(1)总人数为人,a= ,b= .(2)请你补全条形统计图.(3)若全校有600人,请你估算一下全校喜欢艺术类学生的人数有多少?20.(8.00分)(2018•深圳)已知菱形的一个角与三角形的一个角重合,然后它的对角顶点在这个重合角的对边上,这个菱形称为这个三角形的亲密菱形,如图,在△CFE中,CF=6,CE=12,∠FCE=45°,以点C为圆心,以任意长为半径作AD,再分别以点A和点D为圆心,大于12AD长为半径作弧,交EF于点B,AB∥CD.(1)求证:四边形ACDB为△FEC的亲密菱形;(2)求四边形ACDB的面积.21.(8.00分)(2018•深圳)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?22.(9.00分)(2018•深圳)如图在⊙O中,BC=2,AB=AC,点D为AC上的动点,且cosB=√10 10.(1)求AB的长度;(2)求AD•AE的值;(3)过A点作AH⊥BD,求证:BH=CD+DH.23.(9.00分)(2018•深圳)已知顶点为A抛物线y=a(x−12)2−2经过点B(−32,2),点C(52,2).(1)求抛物线的解析式;(2)如图1,直线AB与x轴相交于点M,y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若∠OPM=∠MAF,求△POE的面积;(3)如图2,点Q是折线A﹣B﹣C上一点,过点Q作QN∥y轴,过点E作EN∥x轴,直线QN与直线EN相交于点N,连接QE,将△QEN沿QE翻折得到△QEN1,若点N1落在x轴上,请直接写出Q点的坐标.2018年广东省深圳市中考数学试卷参考答案与试题解析一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3.00分)(2018•深圳)6的相反数是()A.﹣6 B.−16 C.16D.6【考点】14:相反数.【专题】1 :常规题型.【分析】直接利用相反数的定义进而分析得出答案.【解答】解:6的相反数是:﹣6.故选:A.【点评】此题主要考查了相反数的定义,正确把握相关定义是解题关键.2.(3.00分)(2018•深圳)260000000用科学记数法表示为()A.0.26×109B.2.6×108C.2.6×109D.26×107【考点】1I:科学记数法—表示较大的数.【专题】1 :常规题型.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:260000000用科学记数法表示为2.6×108.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3.00分)(2018•深圳)图中立体图形的主视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【专题】55:几何图形.【分析】根据主视图是从正面看的图形解答.【解答】解:从正面看,共有两层,下面三个小正方体,上面有两个小正方体,在右边两个.故选:B.【点评】本题考查了三视图,关键是根据学生的思考能力和对几何体三种视图的空间想象能力进行解答.4.(3.00分)(2018•深圳)观察下列图形,是中心对称图形的是()A.B.C.D.【考点】R5:中心对称图形.【专题】27 :图表型.【分析】根据中心对称图形的概念对各选项分析判断即可得解【解答】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项正确;D、是中心对称图形,故本选项错误.故选:D.【点评】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.(3.00分)(2018•深圳)下列数据:75,80,85,85,85,则这组数据的众数和极差是()A.85,10 B.85,5 C.80,85 D.80,10【考点】W5:众数;W6:极差.【专题】1 :常规题型.【分析】根据一组数据中出现次数最多的数据叫做众数,极差是指一组数据中最大数据与最小数据的差进行计算即可.【解答】解:众数为85,极差:85﹣75=10,故选:A.【点评】此题主要考查了众数和极差,关键是掌握众数定义,掌握极差的算法.6.(3.00分)(2018•深圳)下列运算正确的是()A.a2•a3=a6 B.3a﹣a=2a C.a8÷a4=a2D.√a+√b=√ab【考点】35:合并同类项;46:同底数幂的乘法;48:同底数幂的除法;78:二次根式的加减法.【专题】1 :常规题型.【分析】直接利用二次根式加减运算法则以及同底数幂的乘除运算法则、合并同类项法则分别计算得出答案.【解答】解:A、a2•a3=a5,故此选项错误;B、3a﹣a=2a,正确;C、a8÷a4=a4,故此选项错误;D、√a+√b无法计算,故此选项错误.故选:B.【点评】此题主要考查了二次根式加减运算以及同底数幂的乘除运算、合并同类项,正确掌握运算法则是解题关键.7.(3.00分)(2018•深圳)把函数y=x向上平移3个单位,下列在该平移后的直线上的点是()A.(2,2)B.(2,3)C.(2,4)D.(2,5)【考点】F8:一次函数图象上点的坐标特征;F9:一次函数图象与几何变换.【专题】53:函数及其图象.【分析】根据平移的性质得出解析式,进而解答即可.【解答】解:∵该直线向上平移3的单位,∴平移后所得直线的解析式为:y=x+3;把x=2代入解析式y=x+3=5,故选:D.【点评】本题考查的是一次函数的图象与几何变换,熟知一次函数图象平移的法则是解答此题的关键.8.(3.00分)(2018•深圳)如图,直线a,b被c,d所截,且a∥b,则下列结论中正确的是()A.∠1=∠2 B.∠3=∠4 C.∠2+∠4=180°D.∠1+∠4=180°【考点】JA:平行线的性质.【专题】551:线段、角、相交线与平行线.【分析】依据两直线平行,同位角相等,即可得到正确结论.【解答】解:∵直线a,b被c,d所截,且a∥b,∴∠3=∠4,故选:B.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.9.(3.00分)(2018•深圳)某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x 个,小房间有y 个.下列方程正确的是( )A .{x +y =708x +6y =480 B .{x +y =706x +8y =480 C .{x +y =4806x +8y =70D .{x +y =4808x +6y =70【考点】99:由实际问题抽象出二元一次方程组.【专题】1 :常规题型.【分析】根据题意可得等量关系:①大房间数+小房间数=70;②大房间住的学生数+小房间住的学生数=480,根据等量关系列出方程组即可.【解答】解:设大房间有x 个,小房间有y 个,由题意得:{x +y =708x +6y =480,故选:A .【点评】此题主要考查了由实际问题抽象出二元二一方程组,关键是正确理解题意,找出题目中的等量关系.10.(3.00分)(2018•深圳)如图,一把直尺,60°的直角三角板和光盘如图摆放,A 为60°角与直尺交点,AB=3,则光盘的直径是( )A .3B .3√3C .6D .6√3【考点】MC :切线的性质.【专题】1 :常规题型;55A :与圆有关的位置关系.【分析】设三角板与圆的切点为C ,连接OA 、OB ,由切线长定理得出AB=AC=3、∠OAB=60°,根据OB=ABtan∠OAB可得答案.【解答】解:设三角板与圆的切点为C,连接OA、OB,由切线长定理知AB=AC=3,OA平分∠BAC,∴∠OAB=60°,在Rt△ABO中,OB=ABtan∠OAB=3√3,∴光盘的直径为6√3,故选:D.【点评】本题主要考查切线的性质,解题的关键是掌握切线长定理和解直角三角形的应用.11.(3.00分)(2018•深圳)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确是()A.abc>0B.2a+b<0C.3a+c<0D.ax2+bx+c﹣3=0有两个不相等的实数根【考点】H4:二次函数图象与系数的关系;HA:抛物线与x轴的交点.【专题】53:函数及其图象.【分析】根据抛物线开口方向得a<0,由抛物线对称轴为直线x=﹣b2a,得到b>0,由抛物线与y轴的交点位置得到c>0,进而解答即可.【解答】解:∵抛物线开口方向得a<0,由抛物线对称轴为直线x=﹣b2a,得到b>0,由抛物线与y轴的交点位置得到c>0,A、abc<0,错误;B、2a+b>0,错误;C、3a+c<0,正确;D、ax2+bx+c﹣3=0无实数根,错误;故选:C.【点评】本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线开口向上;当a<0时,抛物线开口向下;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左侧;当a与b异号时(即ab <0),对称轴在y轴右侧;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2﹣4ac>0时,抛物线与x 轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.12.(3.00分)(2018•深圳)如图,A、B是函数y=12x上两点,P为一动点,作PB∥y轴,PA∥x轴,下列说法正确的是()①△AOP≌△BOP;②S△AOP =S△BOP;③若OA=OB,则OP平分∠AOB;④若S△BOP=4,则S△ABP=16A.①③B.②③C.②④D.③④【考点】GB:反比例函数综合题.【专题】15 :综合题.【分析】由点P 是动点,进而判断出①错误,设出点P 的坐标,进而得出AP ,BP ,利用三角形面积公式计算即可判断出②正确,利用角平分线定理的逆定理判断出③正确,先求出矩形OMPN=4,进而得出mn=4,最后用三角形的面积公式即可得出结论.【解答】解:∵点P 是动点,∴BP 与AP 不一定相等,∴△BOP 与△AOP 不一定全等,故①不正确;设P (m ,n ),∴BP ∥y 轴,∴B (m ,12m), ∴BP=|12m ﹣n|,∴S △BOP =12|12m ﹣n|×m=12|12﹣mn|∵PA ∥x 轴,∴A (12n ,n ),∴AP=|12n ﹣m|,∴S △AOP =12|12n ﹣m|×n=12|12﹣mn|,∴S △AOP =S △BOP ,故②正确;如图,过点P 作PF ⊥OA 于F ,PE ⊥OB 于E ,∴S △AOP =12OA ×PF ,S △BOP =12OB ×PE ,∵S △AOP =S △BOP ,∴OB ×PE=OA ×PE ,∵OA=OB ,∴PE=PF ,∵PE ⊥OB ,PF ⊥OA ,∴OP 是∠AOB 的平分线,故③正确;如图1,延长BP 交x 轴于N ,延长AP 交y 轴于M ,∴AM ⊥y 轴,BN ⊥x 轴,∴四边形OMPN 是矩形,∵点A ,B 在双曲线y=12x上,∴S △AMO =S △BNO =6, ∵S △BOP =4,∴S △PMO =S △PNO =2,∴S 矩形OMPN =4,∴mn=4, ∴m=4n, ∴BP=|12m﹣n|=|3n ﹣n|=2|n|,AP=|12n﹣m|=8|n|,∴S △APB=12AP ×BP=12×2|n|×8|n|=8,故④错误;∴正确的有②③,故选:B .【点评】此题是反比例函数综合题,主要考查了反比例函数的性质,三角形面积公式,角平分线定理逆定理,矩形的判定和性质,正确作出辅助线是解本题的关键.二、填空题(每题3分,满分12分,将答案填在答题纸上)13.(3.00分)(2018•湘西州)分解因式:a2﹣9= (a+3)(a﹣3).【考点】54:因式分解﹣运用公式法.【分析】直接利用平方差公式分解因式进而得出答案.【解答】解:a2﹣9=(a+3)(a﹣3).故答案为:(a+3)(a﹣3).【点评】此题主要考查了公式法分解因式,熟练应用平方差公式是解题关键.14.(3.00分)(2018•深圳)一个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率:12.【考点】X4:概率公式.【专题】17 :推理填空题.【分析】根据题意可知正六面体的骰子六个面三个奇数、三个偶数,从而可以求得相应的概率.【解答】解:个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率为:3 6=1 2,故答案为:1 2.【点评】本题考查概率公式,解答本题的关键是明确题意,求出相应的概率.15.(3.00分)(2018•深圳)如图,四边形ACDF是正方形,∠CEA和∠ABF都是直角且点E,A,B三点共线,AB=4,则阴影部分的面积是8 .【考点】KD:全等三角形的判定与性质;LE:正方形的性质.【专题】11 :计算题.【分析】根据正方形的性质得到AC=AF ,∠CAF=90°,证明△CAE ≌△AFB ,根据全等三角形的性质得到EC=AB=4,根据三角形的面积公式计算即可.【解答】解:∵四边形ACDF 是正方形,∴AC=AF ,∠CAF=90°,∴∠EAC+∠FAB=90°, ∵∠ABF=90°, ∴∠AFB+∠FAB=90°, ∴∠EAC=∠AFB , 在△CAE 和△AFB 中,{∠CAE =∠AFB∠AEC =∠FBA AC =AF ,∴△CAE ≌△AFB ,∴EC=AB=4,∴阴影部分的面积=12×AB ×CE=8,故答案为:8.【点评】本题考查的是正方形的性质、全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.16.(3.00分)(2018•深圳)在Rt △ABC 中,∠C=90°,AD 平分∠CAB ,BE 平分∠ABC ,AD 、BE 相交于点F ,且AF=4,EF=√2,则AC= 8√105.【考点】IJ :角平分线的定义;KQ :勾股定理;T5:特殊角的三角函数值.【专题】11 :计算题.【分析】先求出∠EFG=45°,进而利用勾股定理即可得出FG=EG=1,进而求出AE ,最后判断出△AEF ∽△AFC ,即可得出结论.【解答】解:如图,∵AD ,BE 是分别是∠BAC 和∠ABC 的平分线,∴∠1=∠2,∠3=∠4, ∵∠ACB=90°,∴2(∠2+∠4)=90°,∴∠2+∠4=45°,∴∠EFG=∠2+∠4=45°,过点E 作EG ⊥AD 于G ,在Rt △EFG 中,EF=√2,∴FG=EG=1,∵AF=4,∴AG=AF ﹣FG=3,根据勾股定理得,AE=√AG 2+EG 2=√10,连接CF ,∵AD 平分∠CAB ,BE 平分∠ABC , ∴CF 是∠ACB 的平分线,∴∠ACF=45°=∠AFE ,∵∠CAF=∠FAE ,∴△AEF ∽△AFC , ∴AE AF =AF AC, ∴AC=AF 2AE =√10=8√105,故答案为8√105.【点评】此题主要考查了角平分线定义,勾股定理,相似三角形的判定和性质,求出AE 是解本题的关键.三、解答题(本大题共7小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(5.00分)(2018•深圳)计算:(12)﹣1﹣2sin45°+|﹣√2|+(2018﹣π)0.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【专题】1 :常规题型.【分析】直接利用特殊角的三角函数值以及零指数幂的性质和负指数幂的性质分别化简得出答案.【解答】解:原式=2﹣2×√22+√2+1=3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(6.00分)(2018•深圳)先化简,再求值:(xx−1−1)÷x2+2x+1x2−1,其中x=2.【考点】6D:分式的化简求值.【专题】11 :计算题.【分析】根据分式的运算法则即可求出答案,【解答】解:原式=x−x+1x−1⋅(x+1)(x−1)(x+1)2=1x+1把x=2代入得:原式=1 3【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.19.(7.00分)(2018•深圳)某学校为调查学生的兴趣爱好,抽查了部分学生,并制作了如下表格与条形统计图:频数频率体育400.4科技25a艺术b0.15其它200.2请根据上图完成下面题目:(1)总人数为100 人,a= 0.25 ,b= 15 .(2)请你补全条形统计图.(3)若全校有600人,请你估算一下全校喜欢艺术类学生的人数有多少?【考点】V5:用样本估计总体;V7:频数(率)分布表;VC:条形统计图.【专题】1 :常规题型;542:统计的应用.【分析】(1)根据“频率=频数÷总数”求解可得;(2)根据频数分布表即可补全条形图;(3)用总人数乘以样本中“艺术”类频率即可得.【解答】解:(1)总人数为40÷0.4=100人,a=25÷100=0.25、b=100×0.15=15,故答案为:100、0.25、15;(2)补全条形图如下:(3)估算全校喜欢艺术类学生的人数有600×0.15=90人.【点评】此题主要考查了条形统计图的应用以及利用样本估计总体,根据题意求出样本总人数是解题关键.20.(8.00分)(2018•深圳)已知菱形的一个角与三角形的一个角重合,然后它的对角顶点在这个重合角的对边上,这个菱形称为这个三角形的亲密菱形,如图,在△CFE中,CF=6,CE=12,∠FCE=45°,以点C为圆心,以任意长为半径作AD,再分别以点A和点D为圆心,大于12AD长为半径作弧,交EF于点B,AB∥CD.(1)求证:四边形ACDB为△FEC的亲密菱形;(2)求四边形ACDB的面积.【考点】N3:作图—复杂作图;S9:相似三角形的判定与性质;T5:特殊角的三角函数值.【专题】1 :常规题型.【分析】(1)根据折叠和已知得出AC=CD,AB=DB,∠ACB=∠DCB,求出AC=AB,根据菱形的判定得出即可;(2)根据相似三角形的性质得出比例式,求出菱形的边长和高,根据菱形的面积公式求出即可.【解答】(1)证明:∵由已知得:AC=CD,AB=DB,由已知尺规作图痕迹得:BC是∠FCE的角平分线,∴∠ACB=∠DCB,又∵AB∥CD,∴∠ABC=∠DCB,∴∠ACB=∠ABC,∴AC=AB,又∵AC=CD,AB=DB,∴AC=CD=DB=BA ∴四边形ACDB 是菱形,∵∠ACD 与△FCE 中的∠FCE 重合,它的对角∠ABD 顶点在EF 上,∴四边形ACDB 为△FEC 的亲密菱形;(2)解:设菱形ACDB 的边长为x ,∵四边形ABCD 是菱形,∴AB ∥CE ,∴∠FAB=∠FCE ,∠FBA=∠E ,△EAB ∽△FCE则:FA FC =AB CE ,即x 12=6−x 6,解得:x=4,过A 点作AH ⊥CD 于H 点,∵在Rt △ACH 中,∠ACH=45°,∴AH =AC√2=2√2,∴四边形ACDB 的面积为:4×2√2=8√2.【点评】本题考查了菱形的性质和判定,解直角三角形,相似三角形的性质和判定等知识点,能求出四边形ABCD 是菱形是解此题的关键.21.(8.00分)(2018•深圳)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?【考点】B7:分式方程的应用;C9:一元一次不等式的应用.【专题】34 :方程思想;522:分式方程及应用;524:一元一次不等式(组)及应用.【分析】(1)设第一批饮料进货单价为x元,则第二批饮料进货单价为(x+2)元,根据单价=总价÷单价结合第二批饮料的数量是第一批的3倍,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设销售单价为m元,根据获利不少于1200元,即可得出关于m的一元一次不等式,解之取其最小值即可得出结论.【解答】解:(1)设第一批饮料进货单价为x元,则第二批饮料进货单价为(x+2)元,根据题意得:3•1600x=6000x+2,解得:x=8,经检验,x=8是分式方程的解.答:第一批饮料进货单价为8元.(2)设销售单价为m元,根据题意得:200(m﹣8)+600(m﹣10)≥1200,解得:m≥11.答:销售单价至少为11元.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,列出关于m的一元一次不等式.22.(9.00分)(2018•深圳)如图在⊙O中,BC=2,AB=AC,点D为AC上的动点,且cosB=√10 10.(1)求AB的长度;(2)求AD•AE的值;(3)过A点作AH⊥BD,求证:BH=CD+DH.【考点】MR:圆的综合题.【专题】15 :综合题;559:圆的有关概念及性质.【分析】(1)作AM垂直于BC,由AB=AC,利用三线合一得到CM等于BC的一半,求出CM的长,再由cosB的值,利用锐角三角函数定义求出AB的长即可;(2)连接DC,由等边对等角得到一对角相等,再由圆内接四边形的性质得到一对角相等,根据一对公共角,得到三角形EAC与三角形CAD相似,由相似得比例求出所求即可;(3)在BD上取一点N,使得BN=CD,利用SAS得到三角形ACD与三角形ABN全等,由全等三角形对应边相等及等量代换即可得证.【解答】解:(1)作AM⊥BC,∵AB=AC,AM⊥BC,BC=2BM,∴CM=12BC=1,∵cosB=BMAB=√1010,在Rt△AMB中,BM=1,∴AB=BMcosB=√10;(2)连接DC,∵AB=AC,∴∠ACB=∠ABC,∵四边形ABCD内接于圆O,∴∠ADC+∠ABC=180°,∵∠ACE+∠ACB=180°,∴∠ADC=∠ACE,∵∠CAE公共角,∴△EAC∽△CAD,∴AC AD =AE AC,∴AD•AE=AC 2=10;(3)在BD 上取一点N ,使得BN=CD ,在△ABN 和△ACD 中{AB =AC∠3=∠1BN =CD,∴△ABN ≌△ACD (SAS ),∴AN=AD ,∵AN=AD ,AH ⊥BD , ∴NH=HD ,∵BN=CD ,NH=HD ,∴BN+NH=CD+HD=BH .【点评】此题属于圆的综合题,涉及的知识有:圆周角定理,圆内接四边形的性质,全等三角形的判定与性质,以及相似三角形的判定与性质,熟练掌握各自的性质是解本题的关键.23.(9.00分)(2018•深圳)已知顶点为A 抛物线y =a(x −12)2−2经过点B(−32,2),点C(52,2).(1)求抛物线的解析式;(2)如图1,直线AB 与x 轴相交于点M ,y 轴相交于点E ,抛物线与y 轴相交于点F ,在直线AB 上有一点P ,若∠OPM=∠MAF ,求△POE 的面积;(3)如图2,点Q 是折线A ﹣B ﹣C 上一点,过点Q 作QN ∥y 轴,过点E 作EN ∥x 轴,直线QN 与直线EN 相交于点N ,连接QE ,将△QEN 沿QE 翻折得到△QEN 1,若点N 1落在x 轴上,请直接写出Q 点的坐标.【考点】HF :二次函数综合题.【专题】15 :综合题;537:函数的综合应用.【分析】(1)将点B 坐标代入解析式求得a 的值即可得;(2)由∠OPM=∠MAF 知OP ∥AF ,据此证△OPE ∽△FAE 得OP FA=OE FE=134=43,即OP=43FA ,设点P (t ,﹣2t ﹣1),列出关于t 的方程解之可得;(3)分点Q 在AB 上运动、点Q 在BC 上运动且Q 在y 轴左侧、点Q 在BC 上运动且点Q 在y 轴右侧这三种情况分类讨论即可得.【解答】解:(1)把点B(−32,2)代入y =a(x −12)2−2,解得:a=1,∴抛物线的解析式为:y =(x −12)2−2;(2)由y =(x −12)2−2知A (12,﹣2),设直线AB 解析式为:y=kx+b ,代入点A ,B 的坐标,得:{−2=12k +b 2=−32k +b,解得:{k =−2b =−1,∴直线AB 的解析式为:y=﹣2x ﹣1,易求E (0,1),F(0,−74),M(−12,0),若∠OPM=∠MAF , ∴OP ∥AF ,∴△OPE ∽△FAE ,∴OP FA =OE FE =134=43,∴OP =43FA =43√(12−6)2+(−2+74)2=√53,设点P (t ,﹣2t ﹣1),则:√t 2+(−2t −1)2=√53解得t 1=−215,t 2=−23,由对称性知;当t 1=−215时,也满足∠OPM=∠MAF ,∴t 1=−215,t 2=−23都满足条件,∵△POE 的面积=12OE ⋅|l|,∴△POE 的面积为115或13.(3)若点Q 在AB 上运动,如图1,设Q (a ,﹣2a ﹣1),则NE=﹣a 、QN=﹣2a ,由翻折知QN′=QN=﹣2a 、N′E=NE=﹣a ,由∠QN′E=∠N=90°易知△QRN′∽△N′SE,∴QR N′S =RN′ES =QN′EN′,即QR 1=−2a−1ES =−2a −a=2,∴QR=2、ES=−2a−12,由NE+ES=NS=QR 可得﹣a+−2a−12=2,解得:a=﹣54,∴Q (﹣54,32);若点Q 在BC 上运动,且Q 在y 轴左侧,如图2,设NE=a ,则N′E=a,易知RN′=2、SN′=1、QN′=QN=3,∴QR=√5、SE=√5﹣a ,在Rt △SEN′中,(√5﹣a )2+12=a 2,解得:a=3√55,∴Q (﹣3√55,2);若点Q 在BC 上运动,且点Q 在y 轴右侧,如图3,第31页(共31页)设NE=a ,则N′E=a,易知RN′=2、SN′=1、QN′=QN=3,∴QR=√5、SE=√5﹣a ,在Rt △SEN′中,(√5﹣a )2+12=a 2, 解得:a=3√55, ∴Q (3√55,2).综上,点Q 的坐标为(﹣54,32)或(﹣3√55,2)或(3√55,2). 【点评】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、相似三角形的判定与性质、翻折变换的性质及勾股定理等知识点.。
2018年广东省广州市中考数学试卷含答案解析(Word版)
广东省广州市2018年中考数学试题一、选择题1.四个数0,1,,中,无理数的是()A.B.1C.D.02.如图所示的五角星是轴对称图形,它的对称轴共有()A.1 条B.3 条C.5 条D.无数条3. 如图所示的几何体是由4 个相同的小正方体搭成的,它的主视图是()A. B. C. D.4.下列计算正确的是()A.B.C.D.5.如图,直线AD,BE 被直线BF 和AC 所截,则∠1 的同位角和∠5 的内错角分别是()A.∠4,∠2B.∠2,∠6C.∠5,∠4D.∠2,∠46.甲袋中装有2 个相同的小球,分别写有数字1 和2,乙袋中装有2 个相同的小球,分别写有数字1 和2,从两个口袋中各随机取出1 个小球,取出的两个小球上都写有数字2 的概率是()A. B. C. D.7.如图,AB 是圆O 的弦,OC⊥AB,交圆O 于点C,连接OA,OB,BC,若∠ABC=20°,则∠AOB 的度数是()A.40°B.50°C.70°D.80°8.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十三两,问金、银各重几何?”意思是:甲袋中装有黄金9 枚(每枚黄金重量相同),乙袋中装有白银11 枚(每枚黄金重量相同),称重两袋相等,两袋互相交换1 枚后,甲袋比乙袋轻了13 辆(袋子重量忽略不计),问黄金、白银每枚各重多少两?设每枚黄金重x 辆,每枚白银重y 辆,根据题意得()A.B.C.D.9.一次函数和反比例函数在同一直角坐标系中大致图像是()A.B.C.D.10.在平面直角坐标系中,一个智能机器人接到如下指令,从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m,其行走路线如图所示,第1 次移动到,第2 次移动到……,第n 次移动到,则△的面积是()A.504B.C.D.二、填空题11.已知二次函数,当x>0 时,y 随x 的增大而________(填“增大”或“减小”)12. 如图,旗杆高AB=8m ,某一时刻,旗杆影子长BC=16m ,则tanC=________ 。
2018年广东省中山市中考数学试卷(试卷+答案+解析)
d2018年广东省中山市中考数学试卷一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)四个实数0、、﹣3.14、2中,最小的数是( )13A .0B .C .﹣3.14D .2132.(3分)据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为( )A .1.442×107B .0.1442×107C .1.442×108D .0.1442×1083.(3分)如图,由5个相同正方体组合而成的几何体,它的主视图是( )A.B.C.D.4.(3分)数据1、5、7、4、8的中位数是( )A .4B .5C .6D .75.(3分)下列所述图形中,是轴对称图形但不是中心对称图形的是( )A .圆B .菱形C .平行四边形D .等腰三角形6.(3分)不等式3x ﹣1≥x +3的解集是( )A .x ≤4B .x ≥4C .x ≤2D .x ≥27.(3分)在△ABC 中,点D 、E 分别为边AB 、AC 的中点,则△ADE 与△ABC 的面积之比为( )A .B .C .D .121314168.(3分)如图,AB ∥CD ,则∠DEC =100°,∠C =40°,则∠B 的大小是( )A .30°B .40°C .50°D .60°9.(3分)关于x 的一元二次方程x 2﹣3x +m =0有两个不相等的实数根,则实数m 的取值范围是( )A .m <B .m ≤C .m >D .m ≥9494949410.(3分)如图,点P 是菱形ABCD 边上的一动点,它从点A 出发沿在A →B →C →D 路径匀速运动到点D ,设△PAD 的面积为y ,P 点的运动时间为x ,则y 关于x 的函数图象大致为( )h A.B.C.D. 二、填空题(共6小题,每小题3分,满分18分)11.(3分)同圆中,已知所对的圆心角是100°,则所对的圆周角是 .AB AB 12.(3分)分解因式:x 2﹣2x +1= .13.(3分)一个正数的平方根分别是x +1和x ﹣5,则x = .14.(3分)已知+|b ﹣1|=0,则a +1= .a ‒b 15.(3分)如图,矩形ABCD 中,BC =4,CD =2,以AD 为直径的半圆O 与BC 相切于点E ,连接BD ,则阴影部分的面积为 .(结果保留π)16.(3分)如图,已知等边△OA 1B 1,顶点A 1在双曲线y =(x >0)上,点B 1的坐标为(2,0).过B 1作B 1A 2∥OA 1交双曲线于点3x A 2,过A 2作A 2B 2∥A 1B 1交x 轴于点B 2,得到第二个等边△B 1A 2B 2;过B 2作B 2A 3∥B 1A 2交双曲线于点A 3,过A 3作A 3B 3∥A 2B 2交x 轴于点B 3,得到第三个等边△B 2A 3B 3;以此类推,…,则点B 6的坐标为 .三、解答题17.(6分)计算:|﹣2|﹣20180+()﹣11218.(6分)先化简,再求值:•,其中a =.2a 2a +4a 2‒16a 2‒4a 3219.(6分)如图,BD 是菱形ABCD的对角线,∠CBD =75°,(1)请用尺规作图法,作AB 的垂直平分线EF ,垂足为E ,交AD 于F ;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF ,求∠DBF 的度数.20.(7分)某公司购买了一批A 、B 型芯片,其中A 型芯片的单价比B 型芯片的单价少9元,已知该公司用3120元购买A 型芯片的条数与用4200元购买B 型芯片的条数相等.(1)求该公司购买的A 、B 型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A 型芯片?21.(7分)某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图1和图2所示的不完整统计图.(1)被调查员工的人数为 人:(2)把条形统计图补充完整;的员工有多少人?(3)若该企业有员工10000人,请估计该企业某周的工作量完成情况为“剩少量”22.(7分)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△ADE≌△CED;是等腰三角形.(2)求证:△DEF23.(9分)如图,已知顶点为C(0,﹣3)的抛物线y=ax2+b(a≠0)与x轴交于A,B两点,直线y=x+m过顶点C和点B.(1)求m的值;(2)求函数y=ax2+b(a≠0)的解析式;的坐标;若不存在,请说明理由.(3)抛物线上是否存在点M,使得∠MCB=15°?若存在,求出点M24.(9分)如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC、OD交于点E.(1)证明:OD∥BC;(2)若tan∠ABC=2,证明:DA与⊙O相切;的长.(3)在(2)条件下,连接BD交⊙O于点F,连接EF,若BC=1,求EF25.(9分)已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB绕点O顺时针旋转60°,如图1,连接BC.(1)填空:∠OBC= °;(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M,N同时从点O出发,在△OCB边上运动,M沿O→C→B路径匀速运动,N沿O→B→C路径匀速运动,当两点相遇时运动停止,已知点M的运动速度为1.5单位/秒,点N的运动速度为1单位/秒,设运动时间为x秒,△OMN的面积为y,求当x为何值时y 取得最大值?最大值为多少?2018年广东省中山市中考数学试卷参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)四个实数0、、﹣3.14、2中,最小的数是( )13A .0B .C .﹣3.14D .213【考点】2A :实数大小比较.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:根据实数比较大小的方法,可得﹣3.14<0<<2,13所以最小的数是﹣3.14.故选:C . 2.(3分)据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为( )A .1.442×107B .0.1442×107C .1.442×108D .0.1442×108【考点】1I :科学记数法—表示较大的数.【分析】根据科学记数法的表示方法可以将题目中的数据用科学记数法表示,本题得以解决.【解答】解:14420000=1.442×107,故选:A . 3.(3分)如图,由5个相同正方体组合而成的几何体,它的主视图是( )A.B.C.D.【考点】U 2:简单组合体的三视图.【分析】根据主视图是从物体正面看所得到的图形解答即可.【解答】解:根据主视图的定义可知,此几何体的主视图是B 中的图形,故选:B . 4.(3分)数据1、5、7、4、8的中位数是( )A .4B .5C .6D .7【考点】W 4:中位数.【分析】根据中位数的定义判断即可;【解答】解:将数据重新排列为1、4、5、7、8,则这组数据的中位数为5故选:B . 5.(3分)下列所述图形中,是轴对称图形但不是中心对称图形的是( )A .圆B .菱形C .平行四边形D .等腰三角形【考点】P 3:轴对称图形;R 5:中心对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A 、是轴对称图形,也是中心对称图形,故此选项错误;B 、是轴对称图形,也是中心对称图形,故此选项错误;C 、不是轴对称图形,是中心对称图形,故此选项错误;D 、是轴对称图形,不是中心对称图形,故此选项正确.故选:D . 6.(3分)不等式3x ﹣1≥x +3的解集是( )A .x ≤4B .x ≥4C .x ≤2D .x ≥2【考点】C 6:解一元一次不等式.【分析】根据解不等式的步骤:①移项;②合并同类项;③化系数为1即可得.【解答】解:移项,得:3x ﹣x ≥3+1,合并同类项,得:2x ≥4,系数化为1,得:x ≥2,故选:D . 7.(3分)在△ABC 中,点D 、E 分别为边AB 、AC 的中点,则△ADE 与△ABC 的面积之比为( )A .B .C .D .12131416【考点】KX :三角形中位线定理;S 9:相似三角形的判定与性质.【分析】由点D 、E 分别为边AB 、AC 的中点,可得出DE 为△ABC 的中位线,进而可得出DE ∥BC 及△ADE ∽△ABC ,再利用相似三角形的性质即可求出△ADE 与△ABC 的面积之比.【解答】解:∵点D 、E 分别为边AB 、AC 的中点,∴DE 为△ABC 的中位线,∴DE ∥BC ,∴△ADE ∽△ABC ,∴=()2=.S △ADES △ABC DE BC 14故选:C .8.(3分)如图,AB ∥CD ,则∠DEC =100°,∠C =40°,则∠B 的大小是( )A .30°B .40°C .50°D .60°【考点】JA :平行线的性质.【分析】依据三角形内角和定理,可得∠D =40°,再根据平行线的性质,即可得到∠B =∠D =40°.【解答】解:∵∠DEC =100°,∠C =40°,∴∠D =40°,又∵AB ∥CD ,∴∠B =∠D =40°,故选:B . 9.(3分)关于x 的一元二次方程x 2﹣3x +m =0有两个不相等的实数根,则实数m 的取值范围是( )A .m <B .m ≤C .m >D .m ≥94949494【考点】AA :根的判别式.【分析】根据一元二次方程的根的判别式,建立关于m 的不等式,求出m 的取值范围即可.【解答】解:∵关于x 的一元二次方程x 2﹣3x +m =0有两个不相等的实数根,∴△=b 2﹣4ac =(﹣3)2﹣4×1×m >0,∴m <.94故选:A . 10.(3分)如图,点P 是菱形ABCD 边上的一动点,它从点A 出发沿在A →B →C →D 路径匀速运动到点D ,设△PAD 的面积为y ,P 点的运动时间为x ,则y 关于x 的函数图象大致为( )A.B.C.D.【考点】E 7:动点问题的函数图象.【分析】设菱形的高为h ,即是一个定值,再分点P 在AB 上,在BC 上和在CD 上三种情况,利用三角形的面积公式列式求出相应的函数关系式,然后选择答案即可.【解答】解:分三种情况:①当P 在AB 边上时,如图1,设菱形的高为h ,y =AP •h ,12∵AP 随x 的增大而增大,h 不变,∴y 随x 的增大而增大,故选项C 不正确;②当P 在边BC 上时,如图2,y =AD •h ,12AD 和h 都不变,∴在这个过程中,y 不变,故选项A 不正确;③当P 在边CD 上时,如图3,y =PD •h ,12∵PD 随x 的增大而减小,h 不变,∴y 随x 的增大而减小,∵P 点从点A 出发沿在A →B →C →D 路径匀速运动到点D ,∴P 在三条线段上运动的时间相同,故选项D 不正确;故选:B .a e二、填空题(共6小题,每小题3分,满分18分)11.(3分)同圆中,已知所对的圆心角是100°,则所对的圆周角是 50° .AB AB【考点】M5:圆周角定理.【分析】直接利用圆周角定理求解.【解答】解:弧AB所对的圆心角是100°,则弧AB所对的圆周角为50°.故答案为50°.12.(3分)分解因式:x2﹣2x+1= (x﹣1)2 .【考点】54:因式分解﹣运用公式法.【分析】直接利用完全平方公式分解因式即可.【解答】解:x2﹣2x+1=(x﹣1)2.13.(3分)一个正数的平方根分别是x+1和x﹣5,则x= 2 .【考点】21:平方根.【分析】根据正数的两个平方根互为相反数列出关于x的方程,解之可得.【解答】解:根据题意知x+1+x﹣5=0,解得:x=2,故答案为:2.14.(3分)已知+|b﹣1|=0,则a+1= 2 .a‒b【考点】16:非负数的性质:绝对值;23:非负数的性质:算术平方根.【分析】直接利用非负数的性质结合绝对值的性质得出a,b的值进而得出答案.【解答】解:∵+|b﹣1|=0,a‒b∴b﹣1=0,a﹣b=0,解得:b=1,a=1,故a+1=2.故答案为:2.15.(3分)如图,矩形ABCD中,BC=4,CD=2,以AD为直径的半圆O与BC相切于点E,连接BD,则阴影部分的面积为 π .(结果保留π)me ah【考点】LB :矩形的性质;MC :切线的性质;MO :扇形面积的计算.【分析】连接OE ,如图,利用切线的性质得OD =2,OE ⊥BC ,易得四边形OECD 为正方形,先利用扇形面积公式,利用S正方形OECD ﹣S 扇形EOD 计算由弧DE 、线段EC 、CD 所围成的面积,然后利用三角形的面积减去刚才计算的面积即可得到阴影部分的面积.【解答】解:连接OE ,如图,∵以AD 为直径的半圆O 与BC 相切于点E ,∴OD =2,OE ⊥BC ,易得四边形OECD 为正方形,∴由弧DE 、线段EC 、CD 所围成的面积=S 正方形OECD ﹣S扇形EOD =22﹣=4﹣π,90⋅π⋅22360∴阴影部分的面积=×2×4﹣(4﹣π)=π.12故答案为π.16.(3分)如图,已知等边△OA 1B 1,顶点A 1在双曲线y =(x >0)上,点B 1的坐标为(2,0).过B 1作B 1A 2∥OA 1交双曲线于点3x A 2,过A 2作A 2B 2∥A 1B 1交x 轴于点B 2,得到第二个等边△B 1A 2B 2;过B 2作B 2A 3∥B 1A 2交双曲线于点A 3,过A 3作A 3B 3∥A 2B 2交x 轴于点B 3,得到第三个等边△B 2A 3B 3;以此类推,…,则点B 6的坐标为 (2,0) .6【考点】G 6:反比例函数图象上点的坐标特征;KK :等边三角形的性质.【分析】根据等边三角形的性质以及反比例函数图象上点的坐标特征分别求出B 2、B 3、B 4的坐标,得出规律,进而求出点B 6的坐标.【解答】解:如图,作A 2C ⊥x 轴于点C ,设B 1C =a ,则A 2C =a ,3OC =OB 1+B 1C =2+a ,A 2(2+a ,a ).3∵点A 2在双曲线y =(x >0)上,3x ∴(2+a )•a =,33解得a =﹣1,或a =﹣﹣1(舍去),22∴OB 2=OB 1+2B 1C =2+2﹣2=2,22∴点B 2的坐标为(2,0);2作A 3D ⊥x 轴于点D ,设B 2D =b ,则A 3D =b ,3OD =OB 2+B 2D =2+b ,A 2(2+b ,b ).223i n∵点A 3在双曲线y =(x >0)上,3x ∴(2+b )•b =,233解得b =﹣+,或b =﹣﹣(舍去),2323∴OB 3=OB 2+2B 2D =2﹣2+2=2,2233∴点B 3的坐标为(2,0);3同理可得点B 4的坐标为(2,0)即(4,0);4…,∴点B n 的坐标为(2,0),n ∴点B 6的坐标为(2,0).6故答案为(2,0).6 三、解答题17.(6分)计算:|﹣2|﹣20180+()﹣112【考点】2C :实数的运算;6E :零指数幂;6F :负整数指数幂.【分析】直接利用负指数幂的性质以及零指数幂的性质、绝对值的性质进而化简得出答案.【解答】解:原式=2﹣1+2=3. 18.(6分)先化简,再求值:•,其中a =.2a 2a +4a 2‒16a 2‒4a 32【考点】6D :分式的化简求值.【分析】原式先因式分解,再约分即可化简,继而将a 的值代入计算.【解答】解:原式=•2a 2a +4(a +4)(a ‒4)a (a ‒4)=2a ,当a =时,32原式=2×=.323 19.(6分)如图,BD 是菱形ABCD 的对角线,∠CBD =75°,(1)请用尺规作图法,作AB 的垂直平分线EF ,垂足为E ,交AD 于F ;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF ,求∠DBF 的度数.【考点】KG :线段垂直平分线的性质;L 8:菱形的性质;N 2:作图—基本作图.【分析】(1)分别以A 、B为圆心,大于AB长为半径画弧,过两弧的交点作直线即可;12(2)根据∠DBF =∠ABD ﹣∠ABF 计算即可;【解答】解:(1)如图所示,直线EF即为所求;(2)∵四边形ABCD 是菱形,∴∠ABD =∠DBC =∠ABC =75°,DC ∥AB ,∠A =∠C .12∴∠ABC =150°,∠ABC +∠C =180°,∴∠C =∠A =30°,∵EF 垂直平分线段AB ,∴AF =FB ,∴∠A =∠FBA =30°,∴∠DBF =∠ABD ﹣∠FBE =45°. 20.(7分)某公司购买了一批A 、B 型芯片,其中A 型芯片的单价比B 型芯片的单价少9元,已知该公司用3120元购买A 型芯片的条数与用4200元购买B 型芯片的条数相等.(1)求该公司购买的A 、B 型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A 型芯片?【考点】B 7:分式方程的应用.【分析】(1)设B 型芯片的单价为x 元/条,则A 型芯片的单价为(x ﹣9)元/条,根据数量=总价÷单价结合用3120元购买A 型芯片的条数与用4200元购买B 型芯片的条数相等,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设购买a 条A 型芯片,则购买(200﹣a )条B 型芯片,根据总价=单价×数量,即可得出关于a 的一元一次方程,解之即可得出结论.【解答】解:(1)设B 型芯片的单价为x 元/条,则A 型芯片的单价为(x ﹣9)元/条,根据题意得:=,3120x ‒94200x 解得:x =35,经检验,x =35是原方程的解,∴x ﹣9=26.答:A 型芯片的单价为26元/条,B 型芯片的单价为35元/条.(2)设购买a 条A 型芯片,则购买(200﹣a )条B 型芯片,根据题意得:26a +35(200﹣a )=6280,解得:a =80.答:购买了80条A 型芯片. 21.(7分)某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图1和图2所示的不完整统计图.(1)被调查员工的人数为 800 人:(2)把条形统计图补充完整;(3)若该企业有员工10000人,请估计该企业某周的工作量完成情况为“剩少量”的员工有多少人?【考点】V 5:用样本估计总体;VB :扇形统计图;VC :条形统计图.【分析】(1)由“不剩”的人数及其所占百分比可得答案;(2)用总人数减去其它类型人数求得“剩少量”的人数,据此补全图形即可;(3)用总人数乘以样本中“剩少量”人数所占百分比可得.【解答】解:(1)被调查员工人数为400÷50%=800人,故答案为:800;(2)“剩少量”的人数为800﹣(400+80+40)=280人,补全条形图如下:(3)估计该企业某周的工作量完成情况为“剩少量”的员工有10000×=3500人.280800 22.(7分)如图,矩形ABCD 中,AB >AD ,把矩形沿对角线AC 所在直线折叠,使点B 落在点E 处,AE 交CD 于点F ,连接DE .(1)求证:△ADE ≌△CED ;(2)求证:△DEF 是等腰三角形.【考点】KD :全等三角形的判定与性质;LB :矩形的性质;PB :翻折变换(折叠问题).【分析】(1)根据矩形的性质可得出AD =BC 、AB =CD ,结合折叠的性质可得出AD =CE 、AE =CD ,进而即可证出△ADE ≌△CED (SSS );(2)根据全等三角形的性质可得出∠DEF =∠EDF ,利用等边对等角可得出EF =DF ,由此即可证出△DEF 是等腰三角形.【解答】证明:(1)∵四边形ABCD 是矩形,∴AD =BC ,AB =CD .由折叠的性质可得:BC =CE ,AB =AE ,m∴AD =CE ,AE =CD .在△ADE 和△CED 中,,{AD =CE AE =CDDE =ED ∴△ADE ≌△CED (SSS ).(2)由(1)得△ADE ≌△CED ,∴∠DEA =∠EDC ,即∠DEF =∠EDF ,∴EF =DF ,∴△DEF 是等腰三角形.23.(9分)如图,已知顶点为C (0,﹣3)的抛物线y =ax 2+b (a ≠0)与x 轴交于A ,B 两点,直线y =x +m 过顶点C 和点B .(1)求m 的值;(2)求函数y =ax 2+b (a ≠0)的解析式;(3)抛物线上是否存在点M ,使得∠MCB =15°?若存在,求出点M 的坐标;若不存在,请说明理由.【考点】HF :二次函数综合题.【分析】(1)把C (0,﹣3)代入直线y =x +m 中解答即可;(2)把y =0代入直线解析式得出点B 的坐标,再利用待定系数法确定函数关系式即可;(3)分M 在BC 上方和下方两种情况进行解答即可.【解答】解:(1)将(0,﹣3)代入y =x +m ,可得:m =﹣3;(2)将y =0代入y =x ﹣3得:x =3,所以点B 的坐标为(3,0),将(0,﹣3)、(3,0)代入y =ax 2+b 中,可得:,{b =‒39a +b =0解得:,{a =13b =‒3所以二次函数的解析式为:y =x 2﹣3;13(3)存在,分以下两种情况:i m①若M 在B 上方,设MC 交x 轴于点D ,则∠ODC =45°+15°=60°,∴OD =OC •tan 30°=,3设DC 为y =kx ﹣3,代入(,0),可得:k =,33联立两个方程可得:,{y =3x ‒3y =13x 2‒3解得:,{x 1=0y 1=‒3,{x 2=33y 2=6所以M 1(3,6);3②若M 在B 下方,设MC 交x 轴于点E ,则∠OEC =45°﹣15°=30°,∴OE =OC •tan 60°=3,3设EC 为y =kx ﹣3,代入(3,0)可得:k =,333联立两个方程可得:,{y =33x ‒3y =13x 2‒3解得:,{x 1=0y 1=‒3,{x 2=3y 2=‒2所以M 2(,﹣2),3综上所述M 的坐标为(3,6)或(,﹣2).33 24.(9分)如图,四边形ABCD 中,AB =AD =CD ,以AB 为直径的⊙O 经过点C ,连接AC 、OD 交于点E .(1)证明:OD ∥BC ;(2)若tan ∠ABC =2,证明:DA 与⊙O 相切;(3)在(2)条件下,连接BD 交⊙O 于点F ,连接EF ,若BC =1,求EF 的长.【考点】MR :圆的综合题.【分析】(1)连接OC ,证△OAD ≌△OCD 得∠ADO =∠CDO ,由AD =CD 知DE ⊥AC ,再由AB 为直径知BC ⊥AC ,从而得OD ∥BC ;(2)根据tan ∠ABC =2可设BC =a 、则AC =2a 、AD =AB ==,证OE 为中位线知OE =a 、AE =CE =AC =a ,进一步AC 2+BC 25a 1212求得DE ==2a ,再△AOD 中利用勾股定理逆定理证∠OAD =90°即可得;AD 2‒AE 2(3)先证△AFD ∽△BAD 得DF •BD =AD 2①,再证△AED ∽△OAD 得OD •DE =AD 2②,由①②得DF •BD =OD •DE ,即=,结DF OD DEBD 合∠EDF =∠BDO知△EDF ∽△BDO ,据此可得=,结合(2)可得相关线段的长,代入计算可得.EF OB DEBD【解答】解:(1)连接OC ,在△OAD 和△OCD 中,∵,{OA =OC AD =CD OD =OD ∴△OAD ≌△OCD (SSS ),∴∠ADO =∠CDO ,又AD =CD ,∴DE ⊥AC ,∵AB 为⊙O 的直径,∴∠ACB =90°,∴∠ACB =90°,即BC ⊥AC ,∴OD ∥BC ;(2)∵tan ∠ABC ==2,ACBC ∴设BC =a 、则AC =2a ,∴AD =AB ==,AC 2+BC 25a ∵OE ∥BC ,且AO =BO ,∴OE =BC =a ,AE =CE =AC =a ,121212在△AED 中,DE ==2a ,AD 2‒AE 2在△AOD中,AO 2+AD 2=()2+(a )2=a 2,OD 2=(OE +DE )2=(a +2a )2=a 2,5a2525412254∴AO 2+AD 2=OD 2,∴∠OAD =90°,则DA 与⊙O 相切;(3)连接AF ,∵AB 是⊙O 的直径,∴∠AFD =∠BAD =90°,∵∠ADF =∠BDA ,∴△AFD ∽△BAD ,∴=,即DF •BD =AD 2①,DF AD ADBD 又∵∠AED =∠OAD =90°,∠ADE =∠ODA ,∴△AED ∽△OAD ,∴=,即OD •DE =AD 2②,AD OD DEAD 由①②可得DF •BD =OD •DE ,即=,DF OD DEBD 又∵∠EDF =∠BDO ,∴△EDF ∽△BDO ,∵BC =1,∴AB =AD =、OD =、ED =2、BD =、OB =,5521052t i e a∴=,即=,EF OB DEBD EF52210解得:EF =.22 25.(9分)已知Rt △OAB ,∠OAB =90°,∠ABO =30°,斜边OB =4,将Rt △OAB 绕点O 顺时针旋转60°,如图1,连接BC .(1)填空:∠OBC = 60 °;(2)如图1,连接AC ,作OP ⊥AC ,垂足为P ,求OP 的长度;(3)如图2,点M ,N 同时从点O 出发,在△OCB 边上运动,M 沿O →C →B 路径匀速运动,N 沿O →B →C 路径匀速运动,当两点相遇时运动停止,已知点M 的运动速度为1.5单位/秒,点N 的运动速度为1单位/秒,设运动时间为x 秒,△OMN 的面积为y ,求当x 为何值时y 取得最大值?最大值为多少?【考点】RB :几何变换综合题.【分析】(1)只要证明△OBC 是等边三角形即可;(2)求出△AOC 的面积,利用三角形的面积公式计算即可;(3)分三种情形讨论求解即可解决问题:①当0<x ≤时,M在OC 上运动,N 在OB 上运动,此时过点N 作NE ⊥OC 且交OC83于点E .②当<x ≤4时,M 在BC 上运动,N 在OB 上运动.83③当4<x ≤4.8时,M 、N 都在BC 上运动,作OG ⊥BC 于G .【解答】解:(1)由旋转性质可知:OB =OC ,∠BOC =60°,∴△OBC 是等边三角形,∴∠OBC =60°.故答案为60.(2)如图1中,∵OB =4,∠ABO =30°,∴OA =OB =2,AB =OA =2,1233∴S △AOC =•OA •AB =×2×2=2,121233∵△BOC 是等边三角形,∴∠OBC =60°,∠ABC =∠ABO +∠OBC =90°,∴AC ==2,AB 2+BC 27∴OP ===.2S △AOC AC 43272217an (3)①当0<x ≤时,M在OC 上运动,N 在OB 上运动,此时过点N 作NE ⊥OC 且交OC 于点E .83则NE =ON •sin 60°=x ,32∴S △OMN =•OM •NE =×1.5x ×x ,121232∴y =x 2.338∴x =时,y有最大值,最大值=.83833②当<x ≤4时,M 在BC 上运动,N 在OB 上运动.83作MH ⊥OB 于H .则BM =8﹣1.5x ,MH =BM •sin 60°=(8﹣1.5x ),32∴y =×ON ×MH =﹣x 2+2x .123383当x =时,y取最大值,y <,83833③当4<x ≤4.8时,M 、N 都在BC 上运动,作OG ⊥BC 于G .MN =12﹣2.5x ,OG =AB =2,3∴y =•MN •OG =12﹣x ,123532当x =4时,y 有最大值,最大值=2,3综上所述,y 有最大值,最大值为.833 。
2018年广东省广州市中考数学试卷解析版
2018年广东省广州市中考数学试卷解析版一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,有一项是符合题目要求的)1.四个数0,1,√2,12中,无理数的是( ) A .√2B .1C .12D .0 【解答】解:0,1,12是有理数,√2是无理数,故选:A .2.如图所示的五角星是轴对称图形,它的对称轴共有( )A .1条B .3条C .5条D .无数条【解答】解:五角星的对称轴共有5条,故选:C .3.如图所示的几何体是由4个相同的小正方体搭成的,它的主视图是( )A .B .C .D .【解答】解:从正面看第一层是三个小正方形,第二层右边一个小正方形,故选:B .4.下列计算正确的是( )A .(a +b )2=a 2+b 2B .a 2+2a 2=3a 4C .x 2y ÷1y =x 2(y ≠0)D .(﹣2x 2)3=﹣8x 6【解答】解:(A )原式=a 2+2ab +b 2,故A 错误;(B )原式=3a 2,故B 错误;(C )原式=x 2y 2,故C 错误;故选:D .5.如图,直线AD ,BE 被直线BF 和AC 所截,则∠1的同位角和∠5的内错角分别是( )A .∠4,∠2B .∠2,∠6C .∠5,∠4D .∠2,∠4【解答】解:∠1的同位角是∠2,∠5的内错角是∠6,故选:B .6.甲袋中装有2个相同的小球,分别写有数字1和2;乙袋中装有2个相同的小球,分别写有数字1和2.从两个口袋中各随机取出1个小球,取出的两个小球上都写有数字2的概率是( )A .12B .13C .14D .16 【解答】解:如图所示:,一共有4种可能,取出的两个小球上都写有数字2的有1种情况,故取出的两个小球上都写有数字2的概率是:14. 故选:C .7.如图,AB 是⊙O 的弦,OC ⊥AB ,交⊙O 于点C ,连接OA ,OB ,BC ,若∠ABC =20°,则∠AOB 的度数是( )A .40°B .50°C .70°D .80°【解答】解:∵∠ABC =20°,∴∠AOC =40°,∵AB 是⊙O 的弦,OC ⊥AB ,∴∠AOC =∠BOC =40°,∴∠AOB =80°,故选:D .8.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x 两,每枚白银重y 两,根据题意得( )A .{11x =9y (10y +x)−(8x +y)=13B .{10y +x =8x +y 9x +13=11yC .{9x =11y (8x +y)−(10y +x)=13D .{9x =11y (10y +x)−(8x +y)=13【解答】解:设每枚黄金重x 两,每枚白银重y 两,由题意得:{9x =11y (10y +x)−(8x +y)=13, 故选:D .9.一次函数y =ax +b 和反比例函数y =a−b x 在同一直角坐标系中的大致图象是( )A.B.C.D.【解答】解:图A、B直线y=ax+b经过第一、二、三象限,∴a>0、b>0,∵y=0时,x=−ba,即直线y=ax+b与x轴的交点为(−ba,0)由图A、B的直线和x轴的交点知:−ba>−1,即b<a,所以b﹣a<0∴a﹣b>0,此时双曲线在第一、三象限.故选项B 不成立,选项A 正确.图C 、D 直线y =ax +b 经过第二、一、四象限,∴a <0,b >0,此时a ﹣b <0,双曲线位于第二、四象限,故选项C 、D 均不成立;故选:A .10.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m .其行走路线如图所示,第1次移动到A 1,第2次移动到A 2,…,第n 次移动到A n .则△OA 2A 2018的面积是( )A .504m 2B .10092m 2C .10112m 2D .1009m 2【解答】解:由题意知OA 4n =2n ,∵2018÷4=504…2,∴OA 2017=20162+1=1009, ∴A 2A 2018=1009﹣1=1008,则△OA 2A 2018的面积是12×1×1008=504m 2, 故选:A .二、填空题(本大题共6小题,每小题3分,满分18分.)11.已知二次函数y =x 2,当x >0时,y 随x 的增大而 增大 (填“增大”或“减小”).【解答】解:∵二次函数y =x 2,开口向上,对称轴为y 轴,∴当x >0时,y 随x 的增大而增大.故答案为:增大.12.如图,旗杆高AB =8m ,某一时刻,旗杆影子长BC =16m ,则tan C = 12 .【解答】解:∵旗杆高AB =8m ,旗杆影子长BC =16m ,∴tan C =AB BC =816=12, 故答案为:1213.方程1x =4x+6的解是 x =2 .【解答】解:去分母得:x +6=4x ,解得:x =2,经检验x =2是分式方程的解,故答案为:x =214.如图,若菱形ABCD 的顶点A ,B 的坐标分别为(3,0),(﹣2,0),点D 在y 轴上,则点C 的坐标是 (﹣5,4) .【解答】解:∵菱形ABCD 的顶点A ,B 的坐标分别为(3,0),(﹣2,0),点D 在y 轴上,∴AB =5,∴AD =5,∴由勾股定理知:OD =√AD 2−OA 2=√52−32=4,∴点C 的坐标是:(﹣5,4).故答案为:(﹣5,4).15.如图,数轴上点A表示的数为a,化简:a+√a2−4a+4=2.【解答】解:由数轴可得:0<a<2,则a+√a2−4a+4=a+√(2−a)2=a+(2﹣a)=2.故答案为:2.16.如图,CE是▱ABCD的边AB的垂直平分线,垂足为点O,CE与DA的延长线交于点E.连接AC,BE,DO,DO与AC交于点F,则下列结论:①四边形ACBE是菱形;②∠ACD=∠BAE;③AF:BE=2:3;④S四边形AFOE:S△COD=2:3.其中正确的结论有①②④.(填写所有正确结论的序号)【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵EC垂直平分AB,∴OA=OB=12AB=12DC,CD⊥CE,∵OA∥DC,∴EA ED =EO EC =OA CD =12, ∴AE =AD ,OE =OC ,∵OA =OB ,OE =OC ,∴四边形ACBE 是平行四边形,∵AB ⊥EC ,∴四边形ACBE 是菱形,故①正确,∵∠DCE =90°,DA =AE ,∴AC =AD =AE ,∴∠ACD =∠ADC =∠BAE ,故②正确,∵OA ∥CD ,∴AF CF =OA CD =12, ∴AF AC =AF BE =13,故③错误, 设△AOF 的面积为a ,则△OFC 的面积为2a ,△CDF 的面积为4a ,△AOC 的面积=△AOE 的面积=3a ,∴四边形AFOE 的面积为4a ,△ODC 的面积为6a∴S 四边形AFOE :S △COD =2:3.故④正确,故答案为①②④.三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤.)17.(9分)解不等式组:{1+x >02x −1<3. 【解答】解:{1+x >0①2x −1<3②, 解不等式①,得x >﹣1,解不等式②,得x <2,不等式①,不等式②的解集在数轴上表示,如图,原不等式组的解集为﹣1<x <2.18.(9分)如图,AB 与CD 相交于点E ,AE =CE ,DE =BE .求证:∠A =∠C .【解答】证明:在△AED 和△CEB 中,{AE =CE ∠AED =∠CEB DE =BE,∴△AED ≌△CEB (SAS ),∴∠A =∠C (全等三角形对应角相等).19.(10分)已知T =a 2−9a(a+3)2+6a(a+3). (1)化简T ;(2)若正方形ABCD 的边长为a ,且它的面积为9,求T 的值.【解答】解:(1)T =a 2−9a(a+3)2+6(a+3)a(a+3)2=(a+3)2a(a+3)2=1a ; (2)由正方形的面积为9,得到a =3,则T =13.20.(10分)随着移动互联网的快速发展,基于互联网的共享单车应运而生.为了解某小区居民使用共享单车的情况,某研究小组随机采访该小区的10位居民,得到这10位居民一周内使用共享单车的次数分别为:17,12,15,20,17,0,7,26,17,9.(1)这组数据的中位数是 16 ,众数是 17 ;(2)计算这10位居民一周内使用共享单车的平均次数;(3)若该小区有200名居民,试估计该小区居民一周内使用共享单车的总次数.【解答】解:(1)按照大小顺序重新排列后,第5、第6个数分别是15和17,所以中位数是(15+17)÷2=16,17出现3次最多,所以众数是17,故答案是16,17;(2)110×(0+7+9+12+15+17×3+20+26)=14,答:这10位居民一周内使用共享单车的平均次数是14次;(3)20×14=280(次)答:该小区居民一周内使用共享单车的总次数为280次.21.(12分)友谊商店A型号笔记本电脑的售价是a元/台.最近,该商店对A型号笔记本电脑举行促销活动,有两种优惠方案.方案一:每台按售价的九折销售;方案二:若购买不超过5台,每台按售价销售;若超过5台,超过的部分每台按售价的八折销售.某公司一次性从友谊商店购买A型号笔记本电脑x台.(1)当x=8时,应选择哪种方案,该公司购买费用最少?最少费用是多少元?(2)若该公司采用方案二购买更合算,求x的取值范围.【解答】解:设购买A型号笔记本电脑x台时的费用为w元,(1)当x=8时,方案一:w=90%a×8=7.2a,方案二:w=5a+(8﹣5)a×80%=7.4a,∴当x=8时,应选择方案一,该公司购买费用最少,最少费用是7.2a元;(2)∵若该公司采用方案二购买更合算,∴x>5,方案一:w=90%ax=0.9ax,方案二:当x>5时,w=5a+(x﹣5)a×80%=5a+0.8ax﹣4a=a+0.8ax,则0.9ax>a+0.8ax,x>10,∴x的取值范围是x>10.22.(12分)设P(x,0)是x轴上的一个动点,它与原点的距离为y1.(1)求y1关于x的函数解析式,并画出这个函数的图象;(2)若反比例函数y2=kx的图象与函数y1的图象相交于点A,且点A的纵坐标为2.①求k的值;②结合图象,当y1>y2时,写出x的取值范围.【解答】解:(1)由题意y1=|x|.函数图象如图所示:(2)①当点A在第一象限时,由题意A(2,2),∴2=k 2,∴k=4.同法当点A在第二象限时,k=﹣4,②观察图象可知:当k>0时,x>2时,y1>y2或x<0时,y1>y2.当k<0时,x<﹣2时,y1>y2或x>0时,y1>y2.23.(12分)如图,在四边形ABCD中,∠B=∠C=90°,AB>CD,AD=AB+CD.(1)利用尺规作∠ADC的平分线DE,交BC于点E,连接AE(保留作图痕迹,不写作法);(2)在(1)的条件下,①证明:AE⊥DE;②若CD=2,AB=4,点M,N分别是AE,AB上的动点,求BM+MN的最小值.【解答】解:(1)如图,∠ADC的平分线DE如图所示.(2)①解法一:在DA上截取DG=CD,连接GE,由(1)知∠GDE=∠CDE,又DE=DE,∴△GDE≌△CDE,∴∠DGE=∠C=90°,∠DEC=∠DEC,在△AGE和△ABE中,∠AGE=∠ABE=90°,而AD=AG+DG=AB+CD,DG=CD,∴AG=AB,又AE=AE,∴Rt△AEG≌Rt△AEB∴∠AEG=∠AEB,∴∠DEG+∠AEG=∠DEC+∠AEB=90°,即∠AED=90°,故AE⊥DE.解法二:延长DE交AB的延长线于F.∵CD∥AF,∴∠CDE=∠F,∵∠CDE=∠ADE,∴∠ADF=∠F,∴AD=AF,∵AD=AB+CD=AB+BF,∴CD=BF,∵∠DEC=∠BEF,∴△DEC≌△FEB,∴DE =EF ,∵AD =AF ,∴AE ⊥DE .②作点B 关于AE 的对称点K ,连接EK ,作KH ⊥AB 于H ,DG ⊥AB 于G .连接MK .∵AD =AF ,DE =EF ,∴AE 平分∠DAF ,则△AEK ≌△AEB ,∴AK =AB =4,在Rt △ADG 中,DG =√AD 2−AG 2=4√2,∵KH ∥DG ,∴KH DG =AK AD , ∴4√2=46, ∴KH =8√23, ∵MB =MK ,∴MB +MN =KM +MN ,∴当K 、M 、N 共线,且与KH 重合时,KM +MN 的值最小,最小值为KH 的长, ∴BM +MN 的最小值为8√23.24.(14分)已知抛物线y=x2+mx﹣2m﹣4(m>0).(1)证明:该抛物线与x轴总有两个不同的交点;(2)设该抛物线与x轴的两个交点分别为A,B(点A在点B的右侧),与y轴交于点C,A,B,C三点都在⊙P上.①试判断:不论m取任何正数,⊙P是否经过y轴上某个定点?若是,求出该定点的坐标;若不是,说明理由;②若点C关于直线x=−m2的对称点为点E,点D(0,1),连接BE,BD,DE,△BDE的周长记为l,⊙P的半径记为r,求lr的值.【解答】解:(1)令y=0,∴x2+mx﹣2m﹣4=0,∴△=m2﹣4[﹣2m﹣4]=m2+8m+16,∵m>0,∴△>0,∴该抛物线与x轴总有两个不同的交点;(2)令y=0,∴x2+mx﹣2m﹣4=0,∴(x﹣2)[x+(m+2)]=0,∴x=2或x=﹣(m+2),∴A(2,0),B(﹣(m+2),0),∴OA=2,OB=m+2,令x=0,∴y=﹣2(m+2),∴C(0,﹣2(m+2)),∴OC=2(m+2),①通过定点(0,1)理由:如图,∵点A,B,C在⊙P上,∴∠OCB=∠OAF,在Rt△BOC中,tan∠OCB=OBOC=m+22(m+2)=12,在Rt△AOF中,tan∠OAF=OFOA=OF2=12,∴OF=1,∴点F的坐标为(0,1);②如图1,由①知,点F(0,1),∵D(0,1),∴点D在⊙P上,∵点E是点C关于抛物线的对称轴的对称点,∴∠DCE=90°,∵⊙P是△ABC的外接圆,∴点P在抛物线的对称轴上,∴点E在⊙P上,∴DE是⊙P的直径,∴∠DBE=90°,∵∠BED=∠OCB,∴tan∠BED=1 2,设BD=n,在Rt△BDE中,tan∠BED=BDBE=n BE=12,∴BE=2n,根据勾股定理得,DE=√BD2+BE2=√5n,∴l=BD+BE+DE=(3+√5)n,r=12DE=√52n,∴lr =√5)n√52n=10+6√55.25.(14分)如图,在四边形ABCD中,∠B=60°,∠D=30°,AB=BC.(1)求∠A+∠C的度数;(2)连接BD,探究AD,BD,CD三者之间的数量关系,并说明理由;(3)若AB=1,点E在四边形ABCD内部运动,且满足AE2=BE2+CE2,求点E运动路径的长度.【解答】解:(1)如图1中,在四边形ABCD中,∵∠A+∠B+∠C+∠D=360°,∠B=60°,∠D=30°,∴∠A+∠C=360°﹣60°﹣30°=270°.(2)如图2中,结论:DB2=DA2+DC2.理由:连接BD.以BD为边向下作等边三角形△BDQ.∵∠ABC=∠DBQ=60°,∴∠ABD=∠CBQ,∵AB=BC,DB=BQ,∴△ABD≌△CBQ(SAS),∴AD=CQ,∠A=∠BCQ,∵∠A+∠BCD=∠BCQ+∠BCD=270°,∴∠DCQ=90°,∴DQ2=DC2+CQ2,∵CQ=DA,DQ=DB,∴DB2=DA2+DC2.(3)如图3中,连接AC,将△ACE绕点A顺时针旋转60°得到△ABR,连接RE.则△AER是等边三角形,∵EA2=EB2+EC2,EA=RE,EC=RB,∴RE2=RB2+EB2,∴∠EBR=90°,∴∠RAE+∠RBE=150°,∴∠ARB+∠AEB=∠AEC+∠AEB=210°,∴∠BEC=150°,∴点E的运动轨迹在O为圆心的圆上,在⊙O上取一点K,连接KB,KC,OB,OC,∵∠K+∠BEC=180°,∴∠K=30°,∠BOC=60°,∵OB=OC,∴△OBC是等边三角形,∴OB=OC=BC=1,∴点E的运动路径=60⋅π⋅1180=π3.2018年广东省广州市中考数学试卷一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,有一项是符合题目要求的)1.四个数0,1,√2,12中,无理数的是( )A .√2B .1C .12D .02.如图所示的五角星是轴对称图形,它的对称轴共有( )A .1条B .3条C .5条D .无数条3.如图所示的几何体是由4个相同的小正方体搭成的,它的主视图是( )A .B .C .D .4.下列计算正确的是( )A .(a +b )2=a 2+b 2B .a 2+2a 2=3a 4C .x 2y ÷1y =x 2(y ≠0)D .(﹣2x 2)3=﹣8x 65.如图,直线AD ,BE 被直线BF 和AC 所截,则∠1的同位角和∠5的内错角分别是()A .∠4,∠2B .∠2,∠6C .∠5,∠4D .∠2,∠46.甲袋中装有2个相同的小球,分别写有数字1和2;乙袋中装有2个相同的小球,分别写有数字1和2.从两个口袋中各随机取出1个小球,取出的两个小球上都写有数字2的概率是( )A .12B .13C .14D .16 7.如图,AB 是⊙O 的弦,OC ⊥AB ,交⊙O 于点C ,连接OA ,OB ,BC ,若∠ABC =20°,则∠AOB 的度数是( )A .40°B .50°C .70°D .80°8.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x 两,每枚白银重y 两,根据题意得( )A .{11x =9y (10y +x)−(8x +y)=13B .{10y +x =8x +y 9x +13=11yC .{9x =11y (8x +y)−(10y +x)=13D .{9x =11y (10y +x)−(8x +y)=139.一次函数y =ax +b 和反比例函数y =a−b x在同一直角坐标系中的大致图象是( ) A .B .C .D .10.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m .其行走路线如图所示,第1次移动到A 1,第2次移动到A 2,…,第n 次移动到A n .则△OA 2A 2018的面积是( )A .504m 2B .10092m 2C .10112m 2D .1009m 2二、填空题(本大题共6小题,每小题3分,满分18分.)11.已知二次函数y =x 2,当x >0时,y 随x 的增大而 (填“增大”或“减小”).12.如图,旗杆高AB =8m ,某一时刻,旗杆影子长BC =16m ,则tan C = .13.方程1x =4x+6的解是 .14.如图,若菱形ABCD 的顶点A ,B 的坐标分别为(3,0),(﹣2,0),点D 在y 轴上,则点C 的坐标是 .15.如图,数轴上点A 表示的数为a ,化简:a +√a 2−4a +4= .16.如图,CE 是▱ABCD 的边AB 的垂直平分线,垂足为点O ,CE 与DA 的延长线交于点E .连接AC ,BE ,DO ,DO 与AC 交于点F ,则下列结论:①四边形ACBE 是菱形;②∠ACD =∠BAE ;③AF :BE =2:3;④S 四边形AFOE :S △COD =2:3.其中正确的结论有 .(填写所有正确结论的序号)三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤.)17.(9分)解不等式组:{1+x >02x −1<3. 18.(9分)如图,AB 与CD 相交于点E ,AE =CE ,DE =BE .求证:∠A =∠C .19.(10分)已知T=a2−9a(a+3)2+6a(a+3).(1)化简T;(2)若正方形ABCD的边长为a,且它的面积为9,求T的值.20.(10分)随着移动互联网的快速发展,基于互联网的共享单车应运而生.为了解某小区居民使用共享单车的情况,某研究小组随机采访该小区的10位居民,得到这10位居民一周内使用共享单车的次数分别为:17,12,15,20,17,0,7,26,17,9.(1)这组数据的中位数是,众数是;(2)计算这10位居民一周内使用共享单车的平均次数;(3)若该小区有200名居民,试估计该小区居民一周内使用共享单车的总次数.21.(12分)友谊商店A型号笔记本电脑的售价是a元/台.最近,该商店对A型号笔记本电脑举行促销活动,有两种优惠方案.方案一:每台按售价的九折销售;方案二:若购买不超过5台,每台按售价销售;若超过5台,超过的部分每台按售价的八折销售.某公司一次性从友谊商店购买A型号笔记本电脑x台.(1)当x=8时,应选择哪种方案,该公司购买费用最少?最少费用是多少元?(2)若该公司采用方案二购买更合算,求x的取值范围.22.(12分)设P(x,0)是x轴上的一个动点,它与原点的距离为y1.(1)求y1关于x的函数解析式,并画出这个函数的图象;(2)若反比例函数y2=kx的图象与函数y1的图象相交于点A,且点A的纵坐标为2.①求k的值;②结合图象,当y1>y2时,写出x的取值范围.23.(12分)如图,在四边形ABCD中,∠B=∠C=90°,AB>CD,AD=AB+CD.(1)利用尺规作∠ADC的平分线DE,交BC于点E,连接AE(保留作图痕迹,不写作法);(2)在(1)的条件下,①证明:AE⊥DE;②若CD=2,AB=4,点M,N分别是AE,AB上的动点,求BM+MN的最小值.24.(14分)已知抛物线y=x2+mx﹣2m﹣4(m>0).(1)证明:该抛物线与x轴总有两个不同的交点;(2)设该抛物线与x轴的两个交点分别为A,B(点A在点B的右侧),与y轴交于点C,A,B,C三点都在⊙P上.①试判断:不论m取任何正数,⊙P是否经过y轴上某个定点?若是,求出该定点的坐标;若不是,说明理由;②若点C关于直线x=−m2的对称点为点E,点D(0,1),连接BE,BD,DE,△BDE的周长记为l,⊙P的半径记为r,求lr的值.25.(14分)如图,在四边形ABCD中,∠B=60°,∠D=30°,AB=BC.(1)求∠A+∠C的度数;(2)连接BD,探究AD,BD,CD三者之间的数量关系,并说明理由;(3)若AB=1,点E在四边形ABCD内部运动,且满足AE2=BE2+CE2,求点E运动路径的长度.。
2018年广东省中考数学试题(带答案解析)
2018年广东省中考数学试卷一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)四个实数0、、﹣3.14、2中,最小的数是()A.0 B.C.﹣3.14 D.22.(3分)据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为()A.1.442×107B.0.1442×107C.1.442×108D.0.1442×1083.(3分)如图,由5个相同正方体组合而成的几何体,它的主视图是()A.B.C.D.4.(3分)数据1、5、7、4、8的中位数是()A.4 B.5 C.6 D.75.(3分)下列所述图形中,是轴对称图形但不是中心对称图形的是()A.圆 B.菱形C.平行四边形 D.等腰三角形6.(3分)不等式3x﹣1≥x+3的解集是()A.x≤4 B.x≥4 C.x≤2 D.x≥27.(3分)在△ABC中,点D、E分别为边AB、AC的中点,则△ADE与△ABC的面积之比为()A.B.C.D.8.(3分)如图,AB∥CD,则∠DEC=100°,∠C=40°,则∠B的大小是()A.30°B.40°C.50°D.60°9.(3分)关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围是()A.m<B.m≤C.m>D.m≥10.(3分)如图,点P是菱形ABCD边上的一动点,它从点A出发沿在A→B→C→D路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为()A.B.C.D.二、填空题(共6小题,每小题3分,满分18分)11.(3分)同圆中,已知弧AB所对的圆心角是100°,则弧AB所对的圆周角是.12.(3分)分解因式:x2﹣2x+1= .13.(3分)一个正数的平方根分别是x+1和x﹣5,则x= .14.(3分)已知+|b﹣1|=0,则a+1= .15.(3分)如图,矩形ABCD中,BC=4,CD=2,以AD为直径的半圆O与BC相切于点E,连接BD,则阴影部分的面积为.(结果保留π)16.(3分)如图,已知等边△OA1B1,顶点A1在双曲线y=(x>0)上,点B1的坐标为(2,0).过B1作B1A2∥OA1交双曲线于点A2,过A2作A2B2∥A1B1交x轴于点B2,得到第二个等边△B 1A2B2;过B2作B2A3∥B1A2交双曲线于点A3,过A3作A3B3∥A2B2交x轴于点B3,得到第三个等边△B2A3B3;以此类推,…,则点B6的坐标为.三、解答题(一)17.(6分)计算:|﹣2|﹣20180+()﹣118.(6分)先化简,再求值:•,其中a=.19.(6分)如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.20.(7分)某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A、B型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A型芯片?21.(7分)某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图1和图2所示的不完整统计图.(1)被调查员工人数为人:(2)把条形统计图补充完整;(3)若该企业有员工10000人,请估计该企业某周的工作量完成情况为“剩少量”的员工有多少人?22.(7分)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△ADE≌△CED;(2)求证:△DEF是等腰三角形.23.(9分)如图,已知顶点为C(0,﹣3)的抛物线y=ax2+b(a≠0)与x轴交于A,B两点,直线y=x+m过顶点C和点B.(1)求m的值;(2)求函数y=ax2+b(a≠0)的解析式;(3)抛物线上是否存在点M,使得∠MCB=15°?若存在,求出点M的坐标;若不存在,请说明理由.24.(9分)如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC,OD 交于点E.(1)证明:OD∥BC;(2)若tan∠ABC=2,证明:DA与⊙O相切;(3)在(2)条件下,连接BD交于⊙O于点F,连接EF,若BC=1,求EF的长.25.(9分)已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB绕点O顺时针旋转60°,如题图1,连接BC.(1)填空:∠OBC= °;(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M,N同时从点O出发,在△OCB边上运动,M沿O→C→B路径匀速运动,N 沿O→B→C路径匀速运动,当两点相遇时运动停止,已知点M的运动速度为1.5单位/秒,点N的运动速度为1单位/秒,设运动时间为x秒,△OMN的面积为y,求当x为何值时y 取得最大值?最大值为多少?2018年广东省中考数学试卷参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)四个实数0、、﹣3.14、2中,最小的数是()A.0 B.C.﹣3.14 D.2【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:根据实数比较大小的方法,可得﹣3.14<0<<2,所以最小的数是﹣3.14.故选:C.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.(3分)据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为()A.1.442×107B.0.1442×107C.1.442×108D.0.1442×108【分析】根据科学记数法的表示方法可以将题目中的数据用科学记数法表示,本题得以解决.【解答】解:14420000=1.442×107,故选:A.【点评】本题考查科学记数法﹣表示较大的数,解答本题的关键是明确科学记数法的表示方法.3.(3分)如图,由5个相同正方体组合而成的几何体,它的主视图是()A.B.C.D.【分析】根据主视图是从物体正面看所得到的图形解答即可.【解答】解:根据主视图的定义可知,此几何体的主视图是B中的图形,故选:B.【点评】本题考查的是简单几何体的三视图的作图,主视图、左视图、俯视图是分别从物体正面、侧面和上面看所得到的图形.4.(3分)数据1、5、7、4、8的中位数是()A.4 B.5 C.6 D.7【分析】根据中位数的定义判断即可;【解答】解:将数据重新排列为1、4、5、7、8,则这组数据的中位数为5故选:B.【点评】本题考查了确定一组数据的中位数的能力.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.5.(3分)下列所述图形中,是轴对称图形但不是中心对称图形的是()A.圆 B.菱形C.平行四边形 D.等腰三角形【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,也是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项正确.故选:D.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.6.(3分)不等式3x﹣1≥x+3的解集是()A.x≤4 B.x≥4 C.x≤2 D.x≥2【分析】根据解不等式的步骤:①移项;②合并同类项;③化系数为1即可得.【解答】解:移项,得:3x﹣x≥3+1,合并同类项,得:2x≥4,系数化为1,得:x≥2,故选:D.【点评】本题主要考查解一元一次不等式,解题的关键是掌握解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.7.(3分)在△ABC中,点D、E分别为边AB、AC的中点,则△ADE与△ABC的面积之比为()A.B.C.D.【分析】由点D、E分别为边AB、AC的中点,可得出DE为△ABC的中位线,进而可得出DE ∥BC及△ADE∽△ABC,再利用相似三角形的性质即可求出△ADE与△ABC的面积之比.【解答】解:∵点D、E分别为边AB、AC的中点,∴DE为△ABC的中位线,∴DE∥BC,∴△ADE∽△ABC,∴=()2=.故选:C.【点评】本题考查了相似三角形的判定与性质以及三角形中位线定理,利用三角形的中位线定理找出DE∥BC是解题的关键.8.(3分)如图,AB∥CD,则∠DEC=100°,∠C=40°,则∠B的大小是()A.30°B.40°C.50°D.60°【分析】依据三角形内角和定理,可得∠D=40°,再根据平行线的性质,即可得到∠B=∠D=40°.【解答】解:∵∠DEC=100°,∠C=40°,∴∠D=40°,又∵AB∥CD,∴∠B=∠D=40°,故选:B.【点评】本题考查了平行线性质的应用,运用两直线平行,内错角相等是解题的关键.9.(3分)关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围是()A.m<B.m≤C.m>D.m≥【分析】根据一元二次方程的根的判别式,建立关于m的不等式,求出m的取值范围即可.【解答】解:∵关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,∴△=b2﹣4ac=(﹣3)2﹣4×1×m>0,∴m<.故选:A.【点评】此题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.10.(3分)如图,点P是菱形ABCD边上的一动点,它从点A出发沿在A→B→C→D路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为()A.B.C.D.【分析】设菱形的高为h,即是一个定值,再分点P在AB上,在BC上和在CD上三种情况,利用三角形的面积公式列式求出相应的函数关系式,然后选择答案即可.【解答】解:分三种情况:①当P在AB边上时,如图1,设菱形的高为h,y=AP•h,∵AP随x的增大而增大,h不变,∴y随x的增大而增大,故选项C不正确;②当P在边BC上时,如图2,y=AD•h,AD和h都不变,∴在这个过程中,y不变,故选项A不正确;③当P在边CD上时,如图3,y=PD•h,∵PD随x的增大而减小,h不变,∴y随x的增大而减小,∵P点从点A出发沿在A→B→C→D路径匀速运动到点D,∴P在三条线段上运动的时间相同,故选项D不正确;故选:B.【点评】本题考查了动点问题的函数图象,菱形的性质,根据点P的位置的不同,分三段求出△PAD的面积的表达式是解题的关键.二、填空题(共6小题,每小题3分,满分18分)11.(3分)同圆中,已知弧AB所对的圆心角是100°,则弧AB所对的圆周角是50°.【分析】直接利用圆周角定理求解.【解答】解:弧AB所对的圆心角是100°,则弧AB所对的圆周角为50°.故答案为50°.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.12.(3分)分解因式:x2﹣2x+1= (x﹣1)2.【分析】直接利用完全平方公式分解因式即可.【解答】解:x2﹣2x+1=(x﹣1)2.【点评】本题考查了公式法分解因式,运用完全平方公式进行因式分解,熟记公式是解题的关键.13.(3分)一个正数的平方根分别是x+1和x﹣5,则x= 2 .【分析】根据正数的两个平方根互为相反数列出关于x的方程,解之可得.【解答】解:根据题意知x+1+x﹣5=0,解得:x=2,故答案为:2.【点评】本题主要考查的是平方根的定义和性质,熟练掌握平方根的定义和性质是解题的关键.14.(3分)已知+|b﹣1|=0,则a+1= 2 .【分析】直接利用非负数的性质结合绝对值的性质得出a,b的值进而得出答案.【解答】解:∵+|b﹣1|=0,∴b﹣1=0,a﹣b=0,解得:b=1,a=1,故a+1=2.故答案为:2.【点评】此题主要考查了非负数的性质以及绝对值的性质,正确得出a,b的值是解题关键.15.(3分)如图,矩形ABCD中,BC=4,CD=2,以AD为直径的半圆O与BC相切于点E,连接BD,则阴影部分的面积为π.(结果保留π)【分析】连接OE,如图,利用切线的性质得OD=2,OE⊥BC,易得四边形OECD为正方形,先利用扇形面积公式,利用S正方形OECD ﹣S扇形EOD计算由弧DE、线段EC、CD所围成的面积,然后利用三角形的面积减去刚才计算的面积即可得到阴影部分的面积.【解答】解:连接OE,如图,∵以AD为直径的半圆O与BC相切于点E,∴OD=2,OE⊥BC,易得四边形OECD为正方形,∴由弧DE、线段EC、CD所围成的面积=S正方形OECD ﹣S扇形EOD=22﹣=4﹣π,∴阴影部分的面积=×2×4﹣(4﹣π)=π.故答案为π.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了矩形的性质和扇形的面积公式.16.(3分)如图,已知等边△OA1B1,顶点A1在双曲线y=(x>0)上,点B1的坐标为(2,0).过B1作B1A2∥OA1交双曲线于点A2,过A2作A2B2∥A1B1交x轴于点B2,得到第二个等边△B 1A2B2;过B2作B2A3∥B1A2交双曲线于点A3,过A3作A3B3∥A2B2交x轴于点B3,得到第三个等边△B2A3B3;以此类推,…,则点B6的坐标为(2,0).【分析】根据等边三角形的性质以及反比例函数图象上点的坐标特征分别求出B2、B3、B4的坐标,得出规律,进而求出点B6的坐标.【解答】解:如图,作A2C⊥x轴于点C,设B1C=a,则A2C=a,OC=OB1+B1C=2+a,A2(2+a,a).∵点A2在双曲线y=(x>0)上,∴(2+a)•a=,解得a=﹣1,或a=﹣﹣1(舍去),∴OB2=OB1+2B1C=2+2﹣2=2,∴点B2的坐标为(2,0);作A3D⊥x轴于点D,设B2D=b,则A3D=b,OD=OB2+B2D=2+b,A2(2+b,b).∵点A3在双曲线y=(x>0)上,∴(2+b)•b=,解得b=﹣+,或b=﹣﹣(舍去),∴OB3=OB2+2B2D=2﹣2+2=2,∴点B3的坐标为(2,0);同理可得点B4的坐标为(2,0)即(4,0);…,∴点Bn的坐标为(2,0),∴点B6的坐标为(2,0).故答案为(2,0).【点评】本题考查了反比例函数图象上点的坐标特征,等边三角形的性质,正确求出B2、B 3、B4的坐标进而得出点Bn的规律是解题的关键.三、解答题(一)17.(6分)计算:|﹣2|﹣20180+()﹣1【分析】直接利用负指数幂的性质以及零指数幂的性质、绝对值的性质进而化简得出答案.【解答】解:原式=2﹣1+2=3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(6分)先化简,再求值:•,其中a=.【分析】原式先因式分解,再约分即可化简,继而将a的值代入计算.【解答】解:原式=•=2a,当a=时,原式=2×=.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法则.19.(6分)如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.【分析】(1)分别以A、B为圆心,大于AB长为半径画弧,过两弧的交点作直线即可;(2)根据∠DBF=∠ABD﹣∠ABF计算即可;【解答】解:(1)如图所示,直线EF即为所求;(2)∵四边形ABCD是菱形,∴∠ABD=∠DBC=∠ABC=75°,DC∥AB,∠A=∠C.∴∠ABC=150°,∠ABC+∠C=180°,∴∠C=∠A=30°,∵EF垂直平分线线段AB,∴AF=FB,∴∠A=∠FBA=30°,∴∠DBF=∠ABD﹣∠FBE=45°.【点评】本题考查作图﹣基本作图,线段的垂直平分线的性质,菱形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于常考题型.20.(7分)某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A、B型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A型芯片?【分析】(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x﹣9)元/条,根据数量=总价÷单价结合用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购买a条A型芯片,则购买(200﹣a)条B型芯片,根据总价=单价×数量,即可得出关于a的一元一次方程,解之即可得出结论.【解答】解:(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x﹣9)元/条,根据题意得:=,解得:x=35,经检验,x=35是原方程的解,∴x﹣9=26.答:A型芯片的单价为26元/条,B型芯片的单价为35元/条.(2)设购买a条A型芯片,则购买(200﹣a)条B型芯片,根据题意得:26a+35(200﹣a)=6280,解得:a=80.答:购买了80条A型芯片.【点评】本题考查了分式方程的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出一元一次方程.21.(7分)某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图1和图2所示的不完整统计图.(1)被调查员工人数为800 人:(2)把条形统计图补充完整;(3)若该企业有员工10000人,请估计该企业某周的工作量完成情况为“剩少量”的员工有多少人?【分析】(1)由“不剩”的人数及其所占百分比可得答案;(2)用总人数减去其它类型人数求得“剩少量”的人数,据此补全图形即可;(3)用总人数乘以样本中“剩少量”人数所占百分比可得.【解答】解:(1)被调查员工人数为400÷50%=800人,故答案为:800;(2)“剩少量”的人数为800﹣(400+80+20)=300人,补全条形图如下:(3)估计该企业某周的工作量完成情况为“剩少量”的员工有10000×=3500人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了用样本估计总体.22.(7分)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△ADE≌△CED;(2)求证:△DEF是等腰三角形.【分析】(1)根据矩形的性质可得出AD=BC、AB=CD,结合折叠的性质可得出AD=CE、AE=CD,进而即可证出△ADE≌△CED(SSS);(2)根据全等三角形的性质可得出∠DEF=∠EDF,利用等边对等角可得出EF=DF,由此即可证出△DEF是等腰三角形.【解答】证明:(1)∵四边形ABCD是矩形,∴AD=BC,AB=CD.由折叠的性质可得:BC=CE,AB=AE,∴AD=CE,AE=CD.在△ADE和△CED中,,∴△ADE≌△CED(SSS).(2)由(1)得△ADE≌△CED,∴∠DEA=∠EDC,即∠DEF=∠EDF,∴EF=DF,∴△DEF是等腰三角形.【点评】本题考查了全等三角形的判定与性质、翻折变换以及矩形的性质,解题的关键是:(1)根据矩形的性质结合折叠的性质找出AD=CE、AE=CD;(2)利用全等三角形的性质找出∠DEF=∠EDF.23.(9分)如图,已知顶点为C(0,﹣3)的抛物线y=ax2+b(a≠0)与x轴交于A,B两点,直线y=x+m过顶点C和点B.(1)求m的值;(2)求函数y=ax2+b(a≠0)的解析式;(3)抛物线上是否存在点M,使得∠MCB=15°?若存在,求出点M的坐标;若不存在,请说明理由.【分析】(1)把C(0,﹣3)代入直线y=x+m中解答即可;(2)把y=0代入直线解析式得出点B的坐标,再利用待定系数法确定函数关系式即可;(3)分M在BC上方和下方两种情况进行解答即可.【解答】解:(1)将(0,﹣3)代入y=x+m,可得:m=﹣3;(2)将y=0代入y=x﹣3得:x=3,所以点B的坐标为(3,0),将(0,﹣3)、(3,0)代入y=ax2+b中,可得:,解得:,所以二次函数的解析式为:y=x2﹣3;(3)存在,分以下两种情况:①若M在B上方,设MC交x轴于点D,则∠ODC=45°+15°=60°,∴OD=OC•tan30°=,设DC为y=kx﹣3,代入(,0),可得:k=,联立两个方程可得:,解得:,(3,6);所以M1②若M在B下方,设MC交x轴于点E,则∠OEC=45°﹣15°=30°,∴OE=OC•tan60°=3,设EC为y=kx﹣3,代入(3,0)可得:k=,联立两个方程可得:,解得:,(,﹣2),所以M2综上所述M的坐标为(3,6)或(,﹣2).【点评】此题主要考查了二次函数的综合题,需要掌握待定系数法求二次函数解析式,待定系数法求一次函数解析式等知识是解题关键.24.(9分)如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC,OD 交于点E.(1)证明:OD∥BC;(2)若tan∠ABC=2,证明:DA与⊙O相切;(3)在(2)条件下,连接BD交于⊙O于点F,连接EF,若BC=1,求EF的长.【分析】(1)连接OC,证△OAD≌△OCD得∠ADO=∠CDO,由AD=CD知DE⊥AC,再由AB为直径知BC⊥AC,从而得OD∥BC;(2)根据tan∠ABC=2可设BC=a、则AC=2a、AD=AB==,证OE为中位线知OE=a、AE=CE=AC=a,进一步求得DE==2a,再△AOD中利用勾股定理逆定理证∠OAD=90°即可得;(3)先证△AFD∽△BAD得DF•BD=AD2①,再证△AED∽△OAD得OD•DE=AD2②,由①②得DF•BD=OD•DE,即=,结合∠EDF=∠BDO知△EDF∽△BDO,据此可得=,结合(2)可得相关线段的长,代入计算可得.【解答】解:(1)连接OC,在△OAD和△OCD中,∵,∴△OAD≌△OCD(SSS),∴∠ADO=∠CDO,又AD=CD,∴DE⊥AC,∵AB为⊙O的直径,∴∠ACB=90°,∴∠ACB=90°,即BC⊥AC,∴OD∥BC;(2)∵tan∠ABC==2,∴设BC=a、则AC=2a,∴AD=AB==,∵OE∥BC,且AO=BO,∴OE=BC=a,AE=CE=AC=a,在△AED中,DE==2a,在△AOD中,AO2+AD2=()2+(a)2=a2,OD2=(OF+DF)2=(a+2a)2=a2,∴AO2+AD2=OD2,∴∠OAD=90°,则DA与⊙O相切;(3)连接AF,∵AB是⊙O的直径,∴∠AFD=∠BAD=90°,∵∠ADF=∠BDA,∴△AFD∽△BAD,∴=,即DF•BD=AD2①,又∵∠AED=∠OAD=90°,∠ADE=∠ODA,∴△AED∽△OAD,∴=,即OD•DE=AD2②,由①②可得DF•BD=OD•DE,即=,又∵∠EDF=∠BDO,∴△EDF∽△BDO,∵BC=1,∴AB=AD=、OD=、ED=2、BD=、OB=,∴=,即=,解得:EF=.【点评】本题主要考查圆的综合问题,解题的关键是掌握等腰三角形的性质、全等三角形的判定与性质、相似三角形的判定与性质及勾股定理逆定理等知识点.25.(9分)已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB绕点O顺时针旋转60°,如题图1,连接BC.(1)填空:∠OBC= 60 °;(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M,N同时从点O出发,在△OCB边上运动,M沿O→C→B路径匀速运动,N 沿O→B→C路径匀速运动,当两点相遇时运动停止,已知点M的运动速度为1.5单位/秒,点N的运动速度为1单位/秒,设运动时间为x秒,△OMN的面积为y,求当x为何值时y 取得最大值?最大值为多少?【分析】(1)只要证明△OBC是等边三角形即可;(2)求出△AOC的面积,利用三角形的面积公式计算即可;(3)分三种情形讨论求解即可解决问题:①当0<x≤时,M在OC上运动,N在OB上运动,此时过点N作NE⊥OC且交OC于点E.②当<x≤4时,M在BC上运动,N在OB上运动.③当4<x≤4.8时,M、N都在BC上运动,作OG⊥BC于G.【解答】解:(1)由旋转性质可知:OB=OC,∠BOC=60°,∴△OBC是等边三角形,∴∠OBC=60°.故答案为60.(2)如图1中,∵OB=4,∠ABO=30°,∴OA=OB=2,AB=OA=2,=•OA•AB=×2×2=2,∴S△AOC∵△BOC是等边三角形,∴∠OBC=60°,∠ABC=∠ABO+∠OBC=90°,∴AC==2,∴OP===.(3)①当0<x≤时,M在OC上运动,N在OB上运动,此时过点N作NE⊥OC且交OC于点E.则NE=ON•sin60°=x,=•OM•NE=×1.5x×x,∴S△OMN∴y=x2.∴x=时,y有最大值,最大值=.②当<x≤4时,M在BC上运动,N在OB上运动.作MH⊥OB于H.则BM=8﹣1.5x,MH=BM•sin60°=(8﹣1.5x),∴y=×ON×MH=﹣x2+2x.当x=时,y取最大值,y<,③当4<x≤4.8时,M、N都在BC上运动,作OG⊥BC于G.MN=12﹣2.5x,OG=AB=2,∴y=•MN•OG=12﹣x,当x=4时,y有最大值,最大值=2,综上所述,y有最大值,最大值为.【点评】本题考查几何变换综合题、30度的直角三角形的性质、等边三角形的判定和性质、三角形的面积等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.。
广东省2018年中考数学试题及答案解析(WORD版)
2018年广东省初中毕业生学业考试数学说明:1、全卷共6页,满分为120 分,考试用时为100分钟。
2、答卷前,考生务必用黑色字迹得签字笔或钢笔在答题卡填写自己得准考证号、姓名、考场号、座位号。
用2B铅笔把对应该号码得标号涂黑。
3、选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项得答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其她答案,答案不能答在试题上。
4、非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来得答案,然后再这写上新得答案;不准使用铅笔与涂改液。
不按以上要求作答得答案无效。
5、考生务必保持答题卡得整洁。
考试结束时,将试卷与答题卡一并交回。
一、选择题(本大题10小题,每小题3分,共30分)在每小题列出得四个选项中,只有一个就是正确得,请把答题卡上对应题目所选得选项涂黑.1.四个实数、、、中,最小得数就是A. B. C. D.2.据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约人次,将数用科学记数法表示为A. B. C. D.3.如图,由个相同正方体组合而成得几何体,它得主视图就是A. B. C. D.4.数据、、、、得中位数就是A. B. C. D.5.下列所述图形中,就是轴对称图形但不就是...中心对称图形得就是A.圆B.菱形C.平行四边形D.等腰三角形6.不等式得解集就是A. B. C. D.7.在△中,点、分别为边、得中点,则与△得面积之比为A. B. C. D.8.如图,∥,则,,则得大小就是A.30°B.40°C.50°D.60°9.关于得一元二次方程有两个不相等得实数根,则实数得取值范围为A. B. C. D.10.如图,点就是菱形边上得一动点,它从点出发沿路径匀速运动到点,设△得面积为,点得运动时间为,则关于得函数图象大致为11.同圆中,已知弧AB所对得圆心角就是,则弧AB所对得圆周角就是、12.分解因式: 、13.一个正数得平方根分别就是,则x= 、14.已知,则、15、如图,矩形中,,以为直径得半圆O与相切于点,连接,则阴影部分得面积为、(结果保留π)16、如图,已知等边△,顶点在双曲线上,点得坐标为(2,0)、过作交双曲线于点,过作交x轴于点,得到第二个等边△;过作交双曲线于点,过作交x轴于点,得到第三个等边△;以此类推,…,则点得坐标为三、解答题(一)17.计算:18.先化简,再求值:19.如图,就是菱形得对角线,,(1)请用尺规作图法,作得垂直平分线,垂足为,交于;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接,求得度数、20.某公司购买了一批A、B型芯片,其中A型芯片得单价比B型芯片得单价少9元,已知该公司用3120元购买A型芯片得条数与用4200元购买B型芯片得条数相等。
2018年广东省中考数学试题及参考答案案
2018年广东省初中学业水平考试数学一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(2018广东中考,1,3分,★☆☆)四个实数0,13,-3.14,2中,最小的数是()A.0 B.13C.-3.14 D.22.(2018广东中考,2,3分,★☆☆)据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14 420 000人次,将数14 420 000用科学记数法表示为()A.1.442×107B.0.1442×107C.1.442×108 D.0.1442×1083.(2018广东中考,3,3分,★☆☆)如图,是由5个相同正方体组合而成的几何体,它的主视图是()A.B.C.D.4.(2018广东中考,4,3分,★☆☆)数据1,5,7,4,8的中位数是()A.4 B.5 C.6 D.75.(2018广东中考,5,3分,★☆☆)下列图形中,是轴对称图形但不是..中心对称图形的是()A.圆B.菱形C.平行四边形D.等腰三角形6.(2018广东中考,6,3分,★☆☆)不等式3x-1≥x+3的解集是()A.x≤4 B.x≥4 C.x≤2 D.x≥27.(2018广东中考,7,3分,★☆☆)在△ABC中,点D,E分别为边AB,AC的中点,则△ADE与△ABC的面积之比为()A.12B.13C.14D.168.(2018广东中考,8,3分,★☆☆)如图,AB∥CD,且∠DEC=100°,∠C=40°,则∠B的大小是()A.30°B.40°C.50°D.60°9.(2018广东中考,9,3分,★★☆)关于x的一元二次方程x2-3x+m=0有两个不相等的实数根,则实数m的取值范围是()A.m<94B.m≤94C.m>94D.m≥9410.(2018广东中考,10,3分,★★☆)如图,点P是菱形ABCD边上的一动点,它从点A出发沿A→B→C→D路径匀速运动到点D.设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为()A.B.C.D.二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.(2018广东中考,11,4分,★☆☆)同圆中,已知AB所对的圆心角是100°,则AB 所对的圆周角是度.12.(2018广东中考,12,4分,★☆☆)分解因式:x2-2x+1=.13.(2018广东中考,13,4分,★☆☆)一个正数的平方根分别是x+1和x-5,则x=.14.(2018广东中考,14,4a b+|b-1|=0,则a+1=.15.(2018广东中考,15,4分,★★☆)如图,矩形ABCD中,BC=4,CD=2,以AD为直径的半圆O与BC相切于点E,连接BD,则阴影部分的面积为.(结果保留π)16.(2018广东中考,16,4分,★★★)如图,已知等边△OA1B1,顶点A1在双曲线y=3 x(x>0)上,点B1的坐标为(2,0).过B1作B1A2∥OA1交双曲线于点A2,过A2作A2B2∥A1B1交x轴于点B2,得到第二个等边△B1A2B2;过B2作B2A3∥B1A2交双曲线于点A3,过A3作A3B3∥A2B2交x轴于点B3,得到第三个等边△B2A3B3;以此类推,…,则点B6的坐标为.三、解答题(一)(本大题3小题,每小题6分,共18分)17.(2018广东中考,17,6分,★☆☆)计算:|-2|-20180+(12)-1.18.(2018广东中考,18,6分,★☆☆)先化简,再求值:22221644a aa a a,其中a3.19.(2018广东中考,19,6分,★☆☆)如图,BD是菱形ABCD的对角线,∠CBD=75°.(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,连接BF,求∠DBF的度数.四、解答题(二)(本大题3小题,每小题7分,共21分)20.(2018广东中考,20,7分,★☆☆)某公司购买了一批A,B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A,B型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A型芯片?21.(2018广东中考,21,7分,★☆☆)某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图1和图2所示的不完整的统计图.(1)被调查员工人数为人:(2)把条形统计图补充完整;(3)若该企业有员工10 000人,请估计该企业某周的工作量完成情况为“剩少量”的员工有多少人?22.(2018广东中考,22,7分,★☆☆)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△ADE≌△CED;(2)求证:△DEF是等腰三角形.五、解答题(三)(本大题3小题,每小题9分,共27分)23.(2018广东中考,23,9分,★★☆)如图,已知顶点为C(0,-3)的抛物线y=ax2+b(a≠0)与x轴交于A,B两点,直线y=x+m过顶点C和点B.(1)求m的值;(2)求函数y=ax2+b(a≠0)的解析式;(3)抛物线上是否存在点M,使得∠MCB=15°?若存在,求出点M的坐标;若不存在,请说明理由.24.(2018广东中考,24,9分,★★★)如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC,OD交于点E.(1)求证:OD∥BC;(2)若tan∠ABC=2,求证:DA与⊙O相切;(3)在(2)的条件下,连接BD,交⊙O于点F,连接EF,若BC=1,求EF的长.25.(2018广东中考,25,9分,★★★)如图1,已知Rt△OAB中,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB绕点O顺时针旋转60°得到△ODC,连接BC.(1)填空:∠OBC=°;(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M,N同时从点O出发,在△OCB边上运动,点M沿O→C→B路径匀速运动,点N沿O→B→C路径匀速运动,当两点相遇时运动停止.已知点M的运动速度为1.5个单位长度/秒,点N的运动速度为1个单位长度/秒.设运动时间为x秒,△OMN的面积为y,求当x为何值时,y取得最大值?最大值为多少?2018年广东省初中学业水平考试数学试题答案全解全析1.答案:C解析:根据有理数比较大小的方法,可得-3.14<0<13<2,所以最小的数是-3.14.考查内容:有理数大小比较.命题意图:本题主要考查有理数大小比较能力,难度较低.2.答案:A解析:14 420 000=1.442×107.考查内容:科学记数法—表示较大的数.命题意图:本题主要考查用科学记数法记数的能力,难度较低.归纳总结:用科学记数法表示数的关键是确定a和n的值:a是只有一位整数的数,即1≤a <10;n是整数,n的绝对值等于从原数到a,小数点移动的位数;当用来表示较大数时,n 是正整数;当用来表示较小数时,n是负整数.3.答案:B解析:从正面看应得到第一层由3个正方形,第二层的最左边有1个正方形,故选B.考查内容:简单组合体的三视图.命题意图:本题主要考查三视图的判断能力,难度较低.4.答案:B解析:将数据重新排列为1,4,5,7,8,处在最中间位置的数是5,则这组数据的中位数为5.考查内容:中位数.命题意图:本题主要考查统计量的计算,难度较低.5.答案:D解析:圆和菱形都是轴对称图形,也是中心对称图形;平行四边形是中心对称图形,不是轴对称图形;等腰三角形是轴对称图形但不是中心对称图形.故选D.考查内容:中心对称图形;轴对称图形.命题意图:本题主要考查中心对称图形与轴对称图形的识别,难度较低.6.答案:D解析:移项,得3x-x≥3+1;合并同类项,得2x≥4;系数化为1,得x≥2.故选D.考查内容:解一元一次不等式.命题意图:本题主要考查解一元一次不等式的能力,难度较低.7.答案:C解析:∵点D,E分别为边AB,AC的中点,∴DE为△ABC的中位线.∴DE∥BC,DE=12 BC,∴△ADE∽△ABC,∴2ADEABCS DES BC⎛⎫= ⎪⎝⎭△△=14.故选C.考查内容:相似三角形的判定与性质;三角形中位线定理.命题意图:本题主要考查相似三角形的判定与性质的应用,三角形中位线定理的应用,难度较低.8.答案:B解析:∵∠DEC=100°,∠C=40°,∴∠D=180°﹣∠DEC﹣∠C =40°.又∵AB∥CD,∴∠B=∠D=40°. 故选B.考查内容:平行线的性质;三角形内角和定理.命题意图:本题主要考查平行线的性质及三角形内角和定理的应用,难度较低.9.答案:A解析:∵关于x的一元二次方程x2-3x+m=0有两个不相等的实数根,∴△=(-3)2-4×1×m>0,∴m<94.故选A.考查内容:一元二次方程的根的判别式.命题意图:本题主要考查一元二次方程的根的判别式的应用,难度中等.归纳总结:解此类题的方法是利用一元二次方程根的判别式的意义,列方程或不等式求得有关字母的取值或取值范围. 注意若二次项的系数含有字母,所求字母的取值还必须满足二次项系数不为0的条件.10.答案:B解析:易知菱形各边上的高相等,且是定值,点P的运动速度也是定值.设菱形的高为h,分三种情况:①当P在AB边上时,如图1,y=12AP•h,y随AP的变化而变化,即y是x的一次函数,且y随x的增大而增大.②当P在边BC上时,如图2,y=12AD•h,易知y为定值.③当P在边CD上时,如图3,y=12PD•h,y随PD的变化而变化,即y是x的一次函数,且y随x的增大而减小.对比各选项中的图象,可知选B.考查内容:动点问题的函数图象.命题意图:本题主要考查动点问题的函数图象的判断,难度中等.11.答案:50解析:根据圆周角定理可知,在同圆或等圆中,同弧或等弧所对的圆周角是其所对的圆心角的一半,AB所对的圆心角是100°,则AB所对的圆周角为50°.考查内容:圆周角定理.命题意图:本题主要考查圆周角定理的理解,难度较低.12.答案:(x-1)2解析:x2-2x+1=(x-1)2.考查内容:因式分解.命题意图:本题主要考查因式分解的能力,难度较低.13.答案:2解析:根据题意知x+1+x-5=0,解得x=2.考查内容:平方根的性质.命题意图:本题主要考查平方根的性质的应用,方程思想,难度较低.14.答案:2解析:∵a b+|b-1|=0,∴a-b=0,b-1=0,解得b=1,a=1.∴a+1=2.考查内容:非负数的性质:算术平方根;绝对值.命题意图:本题主要考查算术平方根及绝对值非负性的应用,难度较低.15.答案:π解析:连接OE,如图.∵以AD为直径的半圆O与BC相切于点E,∴OD=2,OE⊥BC.易得四边形OECD为正方形,∴由DE,线段EC,CD所围成的面积=S正方形OECD-S扇形EOD=22-2902360π⋅⋅=4-π,∴阴影部分的面积=12×2×4-(4-π)=π.一题多解:如图,连接OE,交BD于点F,易知四边形ABEO,四边形OECD都是正方形,则OD=BE=2,∠BEF=∠DOF=90°.∵AD∥BC,∴∠ODF=∠EBF,∴△DOF≌△BEF,∴S△DOF=S△BEF,∴S阴影=S扇形DOE=2902360π⋅⋅=π.考查内容:切线的性质;矩形的性质;扇形面积的计算.命题意图:本题主要考查与扇形面积有关的不规则阴影面积的计算能力,转化思想,难度中等.16.答案:(26,0)解析:如图,作A2C⊥x轴于点C,设B1C=a,则A2C=3a,OC=OB1+B1C=2+a,A2(2+a3).∵点A2在双曲线y 3(x>0)上,∴(2+a)33解得a21,或a=21(舍去),∴OB2=OB1+2B1C=2+22,∴点B2的坐标为(20);同理可得点B3的坐标为(30);点B4的坐标为(40)即(4,0);…,∴点B n的坐标为(n0),∴点B6的坐标为(60).考查内容:反比例函数图象上点的坐标特征;等边三角形的性质;规律探索.命题意图:本题主要考查与反比例函数有关的规律探索能力,等边三角形性质的应用,17.解析:原式=2-1+2=3.考查内容:实数的运算;零指数幂;负整数指数幂.命题意图:本题主要考查实数的运算,难度较低.18.解析:原式=244244a aaa a a=2a.当a=32时,原式=2×32=3.考查内容:分式的化简求值.命题意图:本题主要考查分式的运算能力,求代数式值的运算,难度较低.19.解析:(1)如图所示,直线EF即为所求.(2)∵四边形ABCD是菱形,∴∠ABD=∠DBC=12∠ABC=75°,AD∥BC.∴∠ABC=150°,∠ABC+∠A=180°,∴∠A=30°.∵EF垂直平分线段AB,∴AF=FB,∴∠FBA=∠A=30°.∴∠DBF=∠ABD-∠FBE=45°.考查内容:作图—基本作图;线段垂直平分线的性质;菱形的性质.命题意图:本题主要考查基本尺规作图的能力,线段垂直平分线的性质的应用,菱形的性质的应用,难度较低.20.解析:(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x-9)元/条,根据题意,得312042009x x.经检验x=35是所列方程的解,且符合题意.∴x-9=26.答:A型芯片的单价为26元/条,B型芯片的单价为35元/条.(2)设购买a条A型芯片,则购买(200-a)条B型芯片,根据题意,得26a+35(200-a)=6280.解得a=80.答:购买了80条A型芯片.考查内容:分式方程的应用;一元一次方程的应用.命题意图:本题主要考查列一元一次方程及分式方程解决实际问题的能力,难度较低.21.解析:(1)800.(2)“剩少量”的人数为800-(400+80+40)=280.补全条形图如下:(3)10000×280800=3500(人).所以估计该企业某周的工作量完成情况为“剩少量”的员工约有3500人.考查内容:条形统计图;用样本估计总体;扇形统计图.命题意图:本题主要考查用统计图描述数据的能力,样本估计总体思想,难度较低.22.解析:(1)证明:∵四边形ABCD是矩形,∴AD=BC,AB=CD.由折叠的性质可得BC=CE,AB=AE.∴AD=CE,AE=CD.在△ADE和△CED中,AD CE AE CD DE ED=⎧⎪=⎨⎪=⎩,,,∴△ADE≌△CED(SSS).(2)由(1)得△ADE≌△CED,∴∠DEA=∠EDC,即∠DEF=∠EDF.∴EF=DF,∴△DEF是等腰三角形.考查内容:翻折变换(折叠问题);全等三角形的判定与性质;矩形的性质.命题意图:本题主要考查全等三角形的性质与判定的应用,矩形性质的应用,轴对称的性质的应用,推理证明能力,动手操作能力,难度较低.23.解析:(1)将C(0,-3)代入y=x+m,可得m=-3.(2)将y=0代入y=x-3,解得x=3,所以点B的坐标为(3,0).将(0,-3),(3,0)代入y=ax2+b中,可得390.ba b=-⎧⎨+=⎩,解得133.ab⎧=⎪⎨⎪=-⎩,所以二次函数的解析式为y=13x2-3.(3)存在,分以下两种情况:①若点M在BC上方,设MC交x轴于点D,则∠ODC=45°+15°=60°,∴OD=OC3D30).设直线DC的解析式为y=kx-330),可得.k3则直线DC的解析式为3-3.联立两个函数解析式可得2331 3.3x y y x ⎧=-⎪⎨=-⎪⎩, 解得1103.x y =⎧⎨=-⎩,(不合题意,舍去),22336.x y ⎧=⎪⎨=⎪⎩,所以M 1(33,6).②若点M 在BC 下方,设MC 交x 轴于点E ,则∠OEC =45°-15°=30°, ∴OE =OC •tan60°=33,∴E (33,0).设直线EC 的解析式为y =kx -3,代入(33,0)可得k =33. ∴则直线EC 的解析式为y=33x -3. 联立两个函数解析式可得23331 3.3y x y x ⎧=-⎪⎪⎨⎪=-⎪⎩, 解得3303.x y =⎧⎨=-⎩,(不合题意,舍去),4432.x y ⎧=⎪⎨=-⎪⎩,所以M 2(3,-2).综上所述点M 的坐标为(33,6)或(3,-2). 考查内容:二次函数与一次函数的图象、解析式.命题意图:本题主要考查二次函数与一次函数的有关知识的掌握与应用,难度中等. 24.解析:(1)连接OC ,在△OAD 和△OCD 中,∵OA OC AD CD OD OD =⎧⎪=⎨⎪=⎩,,,∴△OAD ≌△OCD (SSS ). ∴∠ADO =∠CDO .又AD=CD,∴DE⊥AC.∵AB为⊙O的直径,∴∠ACB=90°. ∴∠ACB=∠AEO=90°,∴OD∥BC.(2)∵tan∠ABC=ACBC=2,∴设BC=a,则AC=2a.∴AD=AB=22AC BC=5a.∵OE∥BC,且AO=BO,∴OE=12BC=12a,AE=CE=12AC=a.在△AED中,DE=22AD AE=2a.在△AOD中,AO2+AD2=(52a)2+(5a)2=254a2,OD2=(OF+DF)2=(12a+2a)2=254a2,∴AO2+AD2=OD2,∴∠OAD=90°,则DA与⊙O相切.(3)连接AF.∵AB是⊙O的直径,∴∠AFD=∠BAD=90°. ∵∠ADF=∠BDA,∴△AFD∽△BAD.∴DF ADAD BD,即DF•BD=AD2. ①又∵∠AED=∠OAD=90°,∠ADE=∠ODA,∴△AED∽△OAD,∴AD DEOD AD,即OD•DE=AD2. ②由①②可得DF•BD=OD•DE,即DF DE OD BD.又∵∠EDF=∠BDO,∴△EDF∽△BDO.∴EF DE OB BD.∵BC =1,∴AB =AD =5,OD =52,ED =2,BD =10,OB =52. ∴25102EF . 解得EF =22. 考查内容:切线的性质与判定;圆的性质;相似的性质与判定;锐角三角函数.命题意图:本题主要考查圆、相似、锐角三角函数等知识的综合运用能力,推理证明能力,计算能力,方程思想,难度较大. 25.解析:(1)60.解法提示:由旋转性质可知:OB =OC ,∠BOC =60°, ∴△OBC 是等边三角形. ∴∠OBC =60°. (2)如图1中,∵OB =4,∠ABO =30°, ∴OA =12OB =2,AB 33 由(1)得,∠OBC =60°, ∴∠AOB =∠OBC =60°, ∴AO ∥BC , ∴S △AOC =12•OA •AB =12×2×33 ∵△BOC 是等边三角形,∴∠OBC =60°,∠ABC =∠ABO +∠OBC =90°. ∴AC =22AB BC 7 ∴OP =C 243221727AO S AC△.(3)①当0<x≤83时,点M在OC上运动,点N在OB上运动,此时过点N作NE⊥OC于点E(如图2).则NE=ON·sin60°=32x.∴S△OMN=12·OM·NE=12×1.5x×32x,∴y=338x2.∴x=83时,y有最大值,y最大值=833.②当83≤x≤4时,点M在BC上运动,点N在OB上运动.作MH⊥OB于点H(如图3).则BM=8-1.5x,MH=BM•sin60°=32(8-1.5x),∴y=12×ON×MH=1338222x x⎛⎫⋅-⋅⎪⎝⎭=-338x2+23x=-338(x-83)2+833.∴当x=83时,y取最大值,y最大值=833.③当4≤x≤4.8时,点M,N都在BC上运动,作OG⊥BC于点G(如图4).MN =12-2.5x ,OG =AB∴y =12·MN ·OG =()112 2.52x -⋅x ,∴当x =4时,y 有最大值,y 最大值综上所述,当x =83时,y考查内容:动态几何问题;直角三角形;等边三角形;锐角三角函数;二次函数;一次函数. 命题意图:本题主要考查几何知识与函数知识的综合应用能力,包括直角三角形,等边三角形,锐角三角函数,一次函数,二次函数等;动态几何问题的处理能力,分类讨论思想,面积法等,难度较大.。
2018年广东省东莞市中考数学试卷(试卷+答案+解析)
2018年广东省东莞市中考数学试卷题目题卡上对应题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答一、选择黑.所选的选项涂1.(3 分)四个实数0、、﹣3.14、2 中,最小的数是( )A.0 B.C.﹣3.14 D.22.(3 分)据有关部门统计,2018 年“五一小长假”期间,广东各大景点共接待游客约14420000 人次,将数14420000 用科学记()数法表示为7 B.0.1442 ×107 C.1.442 ×108 D.0.1442 ×108A.1.442 ×103.(3 分)如图,由5个相同正方体组合而成的几何体,它的主视图是( )A.B.C.D.4.(3 分)数据1、5、7、4、8 的中位数是( )A.4 B.5 C.6D.75.(3 分)下列所述图形中,是轴对称图形但不是中心对称图形的是( )A.圆B.菱形C.平行四边形D.等腰三角形6.(3 分)不等式3x﹣1≥x+3 的解集是( )A.x≤4B.x≥4C.x≤2D.x≥27.(3 分)在△ABC 中,点D、E 分别为边AB、AC 的中点,则△ADE 与△ABC 的面积之比为( )A.B.C.D.8.(3 分)如图,AB∥CD ,则∠DEC =100°,∠C=40°,则∠B 的大小是( )A.30°B.40°C.50°D.60°29.(3 分)关于x 的一元二次方程x﹣3x+m=0 有两个不相等的实数根,则实数m 的取值范围是( )A.m<B.m≤C.m>D.m≥10.(3 分)如图,点P 是菱形ABCD 边上的一动点,它从点 A 出发沿在A→B→C→D 路径匀速运动到点D,设△PAD 的面积为y,P 点的运动时间为x,则y关于x 的函数图象大致为( )A.B.C.D.第1 页(共17 页)二、填空题(共6小题,每小题3分,满分18分)11.(3分)同圆中,已知所对的圆心角是100,°则所对的圆周角是.12.(3分)分解因式:x2﹣2x+1=.13.(3分)一个正数的平方根分别是x+1和x﹣5,则x=.14.(3分)已知+|b﹣1|=0,则a+1=.15.(3分)如图,矩形ABCD中,BC=4,CD=2,以AD为直径的半圆O与BC相切于点E,连接B D,则阴影部分的面积为.(结果保留π)16.(3分)如图,已知等边△OA1B1,顶点A1在双曲线y=(x>0)上,点B1的坐标为(2,0).过B1作B1A2∥OA1交双曲线于点A2,过A2作A2B2∥A1B1交x轴于点B2,得到第二个等边△B1A2B2;过B2作B2A3∥B1A2交双曲线于点A3,过A3作A3B3∥A2B2交x轴于点B3,得到第三个等边△B2A3B3;以此类推,⋯,则点B6的坐标为.三、解答题17.(6分)计算:|﹣2|﹣20180+()﹣118.(6分)先化简,再求值:?,其中a=.19.(6分)如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接B F,求∠DBF的度数.20.(7分)某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A、B型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A型芯片?21.(7分)某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图1和图2所示的不完整统计图.(1)被调查员工的人数为人:(2)把条形统计图补充完整;(3)若该企业有员工10000人,请估计该企业某周的工作量完成情况为“剩少量”的员工有多少人?第2页(共17页)22.(7分)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△ADE≌△CED;(2)求证:△DEF是等腰三角形.23.(9分)如图,已知顶点为C(0,﹣3)的抛物线y=ax2+b(a≠0)与x轴交于A,B两点,直线y=x+m过顶点C和点B.(1)求m的值;(2)求函数y=ax2+b(a≠0)的解析式;(3)抛物线上是否存在点M,使得∠MCB=15°?若存在,求出点M的坐标;若不存在,请说明理由.24.(9分)如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接A C、OD交于点E.(1)证明:OD∥BC;(2)若tan∠ABC=2,证明:DA与⊙O相切;(3)在(2)条件下,连接B D交⊙O于点F,连接E F,若BC=1,求EF的长.25.(9分)已知Rt△OAB,∠O AB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB绕点O顺时针旋转60°,如图1,连接B C.(1)填空:∠OBC=°;(2)如图1,连接A C,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M,N同时从点O出发,在△OCB边上运动,M沿O→C→B路径匀速运动,N沿O→B→C路径匀速运动,当第3页(共17页)两点相遇时运动停止,已知点M的运动速度为 1.5单位/秒,点N的运动速度为1单位/秒,设运动时间为x秒,△OMN的面积为y,求当x为何值时y取得最大值?最大值为多少?第4页(共17页)2018年广东省东莞市中考数学试卷参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3 分)四个实数0、、﹣3.14、2 中,最小的数是( )A.0 B.C.﹣3.14 D.2【考点】2A:实数大小比较.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:根据实数比较大小的方法,可得﹣3.14<0<<2,所以最小的数是﹣ 3.14.故选:C.2.(3 分)据有关部门统计,2018 年“五一小长假”期间,广东各大景点共接待游客约14420000 人次,将数14420000 用科学记数法表示为( )7 A.1.442 ×107B.0.1442 ×108C.1.442 ×108D.0.1442 ×10【考点】1I:科学记数法—表示较大的数.【分析】根据科学记数法的表示方法可以将题目中的数据用科学记数法表示,本题得以解决.7【解答】解:14420000=1.442 10 ×,故选:A.3.(3 分)如图,由 5 个相同正方体组合而成的几何体,它的主视图是( )A.B.C.D.【考点】U2:简单组合体的三视图.【分析】根据主视图是从物体正面看所得到的图形解答即可.【解答】解:根据主视图的定义可知,此几何体的主视图是 B 中的图形,故选:B.4.(3 分)数据1、5、7、4、8 的中位数是( )A.4 B.5 C.6D.7【考点】W4:中位数.【分析】根据中位数的定义判断即可;【解答】解:将数据重新排列为1、4、5、7、8,则这组数据的中位数为 5故选:B.5.(3 分)下列所述图形中,是轴对称图形但不是中心对称图形的是( )A.圆B.菱形C.平行四边形D.等腰三角形【考点】P3:轴对称图形;R5:中心对称图形.第5 页(共17 页)【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,也是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项正确.故选:D.6.(3 分)不等式3x﹣1≥x+3 的解集是( )A.x≤4B.x≥4C.x≤2D.x≥2【考点】C6:解一元一次不等式.【分析】根据解不等式的步骤:①移项;②合并同类项;③化系数为1即可得.【解答】解:移项,得:3x﹣x≥3+,1合并同类项,得:2x≥4,系数化为1,得:x≥2,故选:D.7.(3 分)在△ABC 中,点D、E 分别为边A B、AC 的中点,则△ADE 与△ABC 的面积之比为()A.B.C.D.【考点】KX :三角形中位线定理;S9:相似三角形的判定与性质.【分析】由点D、E 分别为边A B、AC 的中点,可得出DE为△ABC 的中位线,进而可得出DE∥BC 及△ADE∽△ABC,再利用相似三角形的性质即可求出△ADE 与△ABC 的面积之比.【解答】解:∵点D、E 分别为边A B、AC 的中点,∴DE为△ABC 的中位线,∴DE∥BC,∴△ADE ∽△ABC,∴△△2=( ) = .故选:C.8.(3 分)如图,AB∥CD ,则∠DEC =100°,∠C=40°,则∠B 的大小是( )A.30°B.40°C.50°D.60°【考点】JA:平行线的性质.【分析】依据三角形内角和定理,可得∠D =40 °,再根据平行线的性质,即可得到∠B=∠D=40 °.【解答】解:∵∠DEC =100 °,∠C=40 °,∴∠D =40°,又∵AB∥CD ,∴∠B=∠D=40°,故选:B.第6 页(共17 页)2﹣实数m的取值范围是()3x+m=0有两个不相等的实数根,则9.(3分)关于x的一元二次方程xA.m<B.m≤C.m>D.m≥【考点】AA:根的判别式..【分析】根据一元二次方程的根的判别式,建立关于m的不等式,求出m的取值范围即可23x+m=0有两个不相等的实数根,【解答】解:∵关于x的一元二次方程x﹣∴△=b2﹣4ac=(﹣3)2﹣4×1×m>0,∴m<.故选:A.10.(3分)如图,点P是菱形ABCD边上的一动点,它从点A出发沿在A→B→C→D路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为()A.B.C.D.【考点】E7:动点问题的函数图象.【分析】设菱形的高为h,即是一个定值,再分点P在AB上,在BC上和在CD上三种情况,利用三角形的面积公式列式求出相应的函数关系式,然后选择答案即可.【解答】解:分三种情况:①当P在AB边上时,如图1,设菱形的高为h,y=AP?h,∵AP随x的增大而增大,h不变,∴y随x的增大而增大,C不正确;故选项②当P在边BC上时,如图2,y=AD?h,AD和h都不变,∴在这个过程中,y不变,A不正确;故选项③当P在边CD上时,如图3,y=PD?h,∵PD随x的增大而减小,h不变,∴y随x的增大而减小,∵P点从点A出发沿在A→B→C→D路径匀速运动到点D,∴P在三条线段上运动的时间相同,D不正确;故选项故选:B.第7页(共17页)二、填空题(共6小题,每小题3分,满分18分)11.(3分)同圆中,已知所对的圆心角是100,°则所对的圆周角是50°.【考点】M5:圆周角定理.【分析】直接利用圆周角定理求解.【解答】解:弧AB所对的圆心角是100°,则弧AB所对的圆周角为50°.故答案为50°.2212.(3分)分解因式:x﹣2x+1=(x﹣1).【考点】54:因式分解﹣运用公式法.【分析】直接利用完全平方公式分解因式即可.22【解答】解:x﹣2x+1=(x﹣1).13.(3分)一个正数的平方根分别是x+1和x﹣5,则x=2.【考点】21:平方根.【分析】根据正数的两个平方根互为相反数列出关于x的方程,解之可得.【解答】解:根据题意知x+1+x﹣5=0,解得:x=2,故答案为:2.14.(3分)已知+|b﹣1|=0,则a+1=2.【考点】16:非负数的性质:绝对值;23:非负数的性质:算术平方根.【分析】直接利用非负数的性质结合绝对值的性质得出a,b的值进而得出答案.【解答】解:∵+|b﹣1|=0,∴b﹣1=0,a﹣b=0,解得:b=1,a=1,故a+1=2.故答案为:2.15.(3分)如图,矩形ABCD中,BC=4,CD=2,以AD为直径的半圆O与BC相切于点E,连接BD,则阴影部分的面积为π.(结果保留π)第8页(共17页)【考点】LB:矩形的性质;MC:切线的性质;MO:扇形面积的计算.O E,如图,利用切线的性质得OD=2,OE⊥BC,易得四边形OECD为正方形,先利用扇形面积公式,利用S 【分析】连接E C、CD所围成的面积,然后利用三角形的面积减去刚才计算的面积即可得到阴影部正方形OECD﹣S扇形EOD计算由弧DE、线段分的面积.【解答】解:连接O E,如图,∵以AD为直径的半圆O与BC相切于点E,∴OD=2,OE⊥BC,易得四边形OECD为正方形,2﹣=4﹣π,∴由弧DE、线段E C、CD所围成的面积=S正方形OECD﹣S扇形EOD=2∴阴影部分的面积=×2×4﹣(4﹣π)=π.故答案为π.16.(3分)如图,已知等边△OA1B1,顶点A1在双曲线y=(x>0)上,点B1的坐标为(2,0).过B1作B1A2∥OA1交双曲线于点A2,过A2作A2B2∥A1B1交x轴于点B2,得到第二个等边△B1A2B2;过B2作B2A3∥B1A2交双曲线于点A3,过A3作A3B3∥A2B2交x轴于点B3,得到第三个等边△B2A3B3;以此类推,⋯,则点B6的坐标为(2,0).;KK:等边三角形的性质.【考点】G6:反比例函数图象上点的坐标特征【分析】根据等边三角形的性质以及反比例函数图象上点的坐标特征求出B2、B3、B4的坐标,得出规律,进而求出点B6分别的坐标.【解答】解:如图,作A2C⊥x轴于点C,设B1C=a,则A2C=a,OC=OB1+B1C=2+a,A2(2+a,a).∵点A2在双曲线y=(x>0)上,∴(2+a)?a=,解得a=﹣1,或a=﹣1(舍去),∴OB2=OB1+2B1C=2+2﹣2=2,∴点B2的坐标为(2,0);作A3D⊥x轴于点D,设B2D=b,则A3D=b,OD=OB2+B2D=2+b,A2(2+b,b).∵点A3在双曲线y=(x>0)上,第9页(共17页)∴(2+b)?b=,解得b=﹣+,或b=﹣(舍去),∴OB3=OB2+2B2D=2﹣2+2=2,∴点B3的坐标为(2,0);同理可得点B4的坐标为(2,0)即(4,0);⋯,∴点B n的坐标为(2,0),∴点B6的坐标为(2,0).故答案为(2,0).三、解答题17.(6分)计算:|﹣2|﹣20180+()﹣1【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂.答案.【分析】直接利用负指数幂的性质以及零指数幂的性质、绝对值的性质进而化简得出1+2【解答】解:原式=2﹣=3.18.(6分)先化简,再求值:?,其中a=.【考点】6D:分式的化简求值.【分析】原式先因式分解,再约分即可化简,继而将a的值代入计算.【解答】解:原式=?=2a,当a=时,原式=2×=.19.(6分)如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.【考点】KG:线段垂直平分线的性质;L8:菱形的性质;N2:作图—基本作图.【分析】(1)分别以A、B为圆心,大于AB长为半径画弧,过两弧的交点作直线即可;(2)根据∠DBF=∠ABD﹣∠ABF计算即可;【解答】解:(1)如图所示,直线EF即为所求;第10页(共17页)(2)∵四边形ABCD是菱形,∴∠ABD=∠DBC=∠ABC=75°,DC∥AB,∠A=∠C.∴∠ABC=150°,∠ABC+∠C=180°,∴∠C=∠A=30°,∵EF垂直平分线段AB,∴AF=FB,∴∠A=∠FBA=30°,∴∠DBF=∠ABD﹣∠FBE=45°.20.(7分)某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A、B型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A型芯片?【考点】B7:分式方程的应用.【分析】(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x﹣9)元/条,根据数量=总价÷单价结合用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购买a条A型芯片,则购买(200﹣a)条B型芯片,根据总价=单价×数量,即可得出关于a的一元一次方程,解之即可得出结论.【解答】解:(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x﹣9)元/条,根据题意得:=,解得:x=35,经检验,x=35是原方程的解,∴x﹣9=26.答:A型芯片的单价为26元/条,B型芯片的单价为35元/条.(2)设购买a条A型芯片,则购买(200﹣a)条B型芯片,根据题意得:26a+35(200﹣a)=6280,解得:a=80.答:购买了80条A型芯片.21.(7分)某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图1和图2所示的不完整统计图.(1)被调查员工的人数为800人:(2)把条形统计图补充完整;(3)若该企业有员工10000人,请估计该企业某周的工作量完成情况为“剩少量”的员工有多少人?第11页(共17页)【考点】V5:用样本估计总体;VB:扇形统计图;VC:条形统计图.【分析】(1)由“不剩”的人数及其所占百分比可得答案;(2)用总人数减去其它类型人数求得“剩少量”的人数,据此补全图形即可;(3)用总人数乘以样本中“剩少量”人数所占百分比可得.【解答】解:(1)被调查员工人数为400÷50%=800人,故答案为:800;(2)“剩少量”的人数为800﹣(400+80+40)=280人,:补全条形图如下(3)估计该企业某周的工作量完成情况为“剩少量”的员工有10000×=3500人.22.(7分)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△ADE≌△CED;(2)求证:△DEF是等腰三角形.题).【考点】KD:全等三角形的判定与性质;LB:矩形的性质;PB:翻折变换(折叠问△ADE≌△【分析】(1)根据矩形的性质可得出A D=BC、AB=CD,结合折叠的性质可得出A D=CE、AE=CD,进而即可证出CED(SSS);(2)根据全等三角形的性质可得出∠DEF=∠EDF,利用等边对等角可得出E F=DF,由此即可证出△DEF是等腰三角形.【解答】证明:(1)∵四边形ABCD是矩形,∴AD=BC,AB=CD.由折叠的性质可得:BC=CE,AB=AE,∴AD=CE,AE=CD.第12页(共17页)在△ADE和△CED中,,∴△ADE≌△CED(SSS).(2)由(1)得△ADE≌△CED,∴∠DEA=∠EDC,即∠DEF=∠EDF,∴EF=DF,∴△DEF是等腰三角形.23.(9分)如图,已知顶点为C(0,﹣3)的抛物线y=ax2+b(a≠0)与x轴交于A,B两点,直线y=x+m过顶点C和点B.(1)求m的值;(2)求函数y=ax2+b(a≠0)的解析式;(3)抛物线上是否存在点M,使得∠MCB=15°?若存在,求出点M的坐标;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)把C(0,﹣3)代入直线y=x+m中解答即可;(2)把y=0代入直线解析式得出点B的坐标,再利用待定系数法确定函数关系式即可;(3)分M在BC上方和下方两种情况进行解答即可.【解答】解:(1)将(0,﹣3)代入y=x+m,可得:m=﹣3;(2)将y=0代入y=x﹣3得:x=3,所以点B的坐标为(3,0),将(0,﹣3)、(3,0)代入y=ax2+b中,可得:,解得:,2所以二次函数的解析式为:y=x﹣3;(3)存在,分以下两种情况:17页)第13页(共①若M在B上方,设M C交x轴于点D,则∠ODC=45°+15°=60°,∴OD=OC?tan30°=,设DC为y=kx﹣3,代入(,0),可得:k=,联立两个方程可得:,解得:,,所以M1(3,6);②若M在B下方,设M C交x轴于点E,则∠OEC=45°﹣15°=30°,∴OE=OC?tan60°=3,设EC为y=kx﹣3,代入(3,0)可得:k=,联立两个方程可得:,解得:,,所以M2(,﹣2),综上所述M的坐标为(3,6)或(,﹣2).24.(9分)如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接A C、OD交于点E.(1)证明:OD∥BC;(2)若tan∠ABC=2,证明:DA与⊙O相切;(3)在(2)条件下,连接B D交⊙O于点F,连接E F,若BC=1,求EF的长.【考点】MR:圆的综合题.【分析】(1)连接O C,证△OAD≌△OCD得∠A DO=∠CDO,由AD=CD知DE⊥AC,再由AB为直径知BC⊥AC,从而得OD∥BC;(2)根据tan∠ABC=2可设B C=a、则A C=2a、AD=AB==,证OE为中位线知OE=a、AE=CE=AC=a,进一步求得DE==2a,再△AOD中利用勾股定理逆定理证∠OAD=90°即可得;2①,再证△AED∽△OAD得OD?DE=AD2②,由①②得DF?BD=OD?DE,即=,结(3)先证△AFD∽△BAD得DF?BD=AD合∠EDF=∠BDO知△EDF∽△BDO,据此可得=,结合(2)可得相关线段的长,代入计算可得.【解答】解:(1)连接O C,第14页(共17页)在△OAD和△OCD中,∵,∴△OAD≌△OCD(SSS),∴∠ADO=∠CDO,又AD=CD,∴DE⊥AC,∵AB为⊙O的直径,∴∠ACB=90°,∴∠ACB=90°,即BC⊥AC,∴OD∥BC;(2)∵tan∠ABC==2,∴设B C=a、则A C=2a,∴AD=AB==,∵OE∥BC,且AO=BO,∴OE=BC=a,AE=CE=AC=a,在△AED中,DE==2a,在△AOD中,AO2+AD2=()2+(a)2=a2,OD2=(OE+DE)2=(a+2a)2=a2,∴AO2+AD2=OD2,∴∠OAD=90°,则DA与⊙O相切;(3)连接A F,∵AB是⊙O的直径,∴∠AFD=∠BAD=90°,∵∠ADF=∠BDA,∴△AFD∽△BAD,2①,∴=,即DF?BD=AD又∵∠AED=∠OAD=90°,∠ADE=∠ODA,∴△AED∽△OAD,2②,∴=,即OD?DE=AD由①②可得DF?BD=OD?DE,即=,又∵∠EDF=∠BDO,∴△EDF∽△BDO,∵BC=1,∴AB=AD=、OD=、ED=2、BD=、OB=,∴=,即=,第15页(共17页)解得:EF= .25.(9 分)已知Rt△OAB,∠O AB=90°,∠ABO=30°,斜边OB =4,将Rt△OAB 绕点O 顺时针旋转60°,如图1,连接B C.(1)填空:∠OBC= 60 °;(2)如图1,连接A C,作OP⊥AC,垂足为P,求OP 的长度;(3)如图2,点M,N 同时从点O 出发,在△OCB 边上运动,M 沿O→C→B 路径匀速运动,N 沿O→B→C 路径匀速运动,当/秒,设运动时间为x 秒,△OMN 的面/秒,点N 的运动速度为 1 单位两点相遇时运动停止,已知点M 的运动速度为 1.5 单位?积为y,求当x 为何值时y 取得最大值?最大值为多少.【考点】RB:几何变换综合题△OBC 是等边三角形即可;【分析】(1)只要证明(2)求出△AOC 的面积,利用三角形的面积公式计算即可;(3)分三种情形讨论求解即可解决问题:①当0<x≤时,M 在OC 上运动,N 在OB 上运动,此时过点N 作NE⊥OC 且交OC 于点E.②当<x≤4时,M 在BC 上运动,N 在OB 上运动.③当4<x≤4.8时,M、N 都在BC 上运动,作OG⊥BC 于G.【解答】解:(1)由旋转性质可知:OB=OC,∠BOC=60 °,∴△OBC 是等边三角形,∴∠OBC =60°.故答案为60.(2)如图1中,∵OB =4,∠ABO =30°,∴OA= OB=2,AB= OA=2 ,∴S△AOC= ?OA?AB =×2×2 =2 ,∵△BOC 是等边三角形,∴∠OBC =60°,∠ABC=∠ABO +∠OBC =90°,∴AC= =2 ,△∴OP== = .(3)①当0<x≤时,M 在OC 上运动,N 在OB 上运动,此时过点N 作NE⊥OC 且交OC 于点E.则NE =ON ?sin60 °=x,第16 页(共17 页)∴S△OMN=?OM?NE=×1.5x×x,2.∴y=x∴x=时,y有最大值,最大值=.②当<x≤4时,M在BC上运动,N在OB上运动.1.5x),1.5x,MH=BM?sin60°=(8﹣作MH⊥OB于H.则B M=8﹣2+2x.∴y=×ON×MH=﹣x当x=时,y取最大值,y<,③当4<x≤4.8时,M、N都在BC上运动,作OG⊥BC于G.MN=12﹣2.5x,OG=AB=2,∴y=?MN?OG=12﹣x,当x=4时,y有最大值,最大值=2,综上所述,y有最大值,最大值为.第17页(共17页)。
广东省2018年中考数学试题(有答案)【精品】.doc
2018年广东中考数学试题一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.四个实数0、13、 3.14-、2中,最小的数是 A .0 B .13C . 3.14-D .2 2.据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为A .71.44210⨯B .70.144210⨯C .81.44210⨯D .80.144210⨯3.如图,由5个相同正方体组合而成的几何体,它的主视图是A .B .C .D .4.数据1、5、7、4、8的中位数是A .4B .5C .6D .75.下列所述图形中,是轴对称图形但不是..中心对称图形的是 A .圆 B .菱形 C .平行四边形 D .等腰三角形6.不等式313x x -≥+的解集是A .4x ≤B .4x ≥C .2x ≤D .2x ≥7.在△ABC 中,点D 、E 分别为边AB 、AC 的中点,则ADE 与△ABC 的面积之比为 A .12 B .13 C .14 D .168.如图,AB ∥CD ,则100DEC ∠=︒,40C ∠=︒,则B ∠的大小是 A .30° B .40° C .50° D .60°9.关于x 的一元二次方程230x x m -+=有两个不相等的实数根,则实数m 的取值范围为A .94m <B .94m ≤C .94m >D .94m ≥ 10.如图,点P 是菱形ABCD 边上的一动点,它从点A 出发沿A B C D →→→路径匀速运动到点D ,设△PAD 的面积为y ,P 点的运动时间为x ,则y 关于x 的函数图象大致为11. 同圆中,已知弧AB 所对的圆心角是 100,则弧AB 所对的圆周角是 .12. 分解因式:=+-122x x . 13. 一个正数的平方根分别是51-+x x 和,则x= .14. 已知01=-+-b b a ,则=+1a .15.如图,矩形ABCD 中,2,4==CD BC ,以AD 为直径的半圆O 与BC 相切于点E ,连接BD ,则阴影部分的面积为 .(结果保留π)16.如图,已知等边△11B OA ,顶点1A 在双曲线)0(3>=x xy 上,点1B 的坐标为(2,0).过1B 作121//OA A B 交双曲线于点2A ,过2A 作1122//B A B A 交x 轴于点2B ,得到第二个等边△221B A B ;过2B 作2132//A B A B 交双曲线于点3A ,过3A 作2233//B A B A 交x 轴于点3B ,得到第三个等边△332B A B ;以此类推,…,则点6B 的坐标为三、解答题(一)17.计算:1-0212018-2-⎪⎭⎫ ⎝⎛+18.先化简,再求值:.2341642222=--⋅+a a a a a a ,其中19.如图,BD 是菱形ABCD 的对角线,︒=∠75CBD ,(1)请用尺规作图法,作AB 的垂直平分线EF ,垂足为E ,交AD 于F ;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF ,求DBF ∠的度数.20.某公司购买了一批A 、B 型芯片,其中A 型芯片的单价比B 型芯片的单价少9元,已知该公司用3120元购买A 型芯片的条数与用4200元购买B 型芯片的条数相等。
(完整版)2018年广东省中考数学试卷及解析
2018年广东省中考数学试卷及解析一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)四个实数0、、﹣3.14、2中,最小的数是()A.0 B.C.﹣3.14 D.22.(3分)据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为()A.1.442×107B.0.1442×107 C.1.442×108D.0.1442×1083.(3分)如图,由5个相同正方体组合而成的几何体,它的主视图是()A.B.C.D.4.(3分)数据1、5、7、4、8的中位数是()A.4 B.5 C.6 D.75.(3分)下列所述图形中,是轴对称图形但不是中心对称图形的是()A.圆B.菱形C.平行四边形D.等腰三角形6.(3分)不等式3x﹣1≥x+3的解集是()A.x≤4 B.x≥4 C.x≤2 D.x≥27.(3分)在△ABC中,点D、E分别为边AB、AC的中点,则△ADE与△ABC的面积之比为()A.B.C.D.8.(3分)如图,AB∥CD,则∠DEC=100°,∠C=40°,则∠B的大小是()A.30°B.40°C.50°D.60°9.(3分)关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围是()A.m<B.m≤C.m>D.m≥10.(3分)如图,点P是菱形ABCD边上的一动点,它从点A出发沿在A→B→C→D 路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为()A.B.C.D.二、填空题(共6小题,每小题3分,满分18分)11.(3分)同圆中,已知弧AB所对的圆心角是100°,则弧AB所对的圆周角是.12.(3分)分解因式:x2﹣2x+1=.13.(3分)一个正数的平方根分别是x+1和x﹣5,则x=.14.(3分)已知+|b﹣1|=0,则a+1=.15.(3分)如图,矩形ABCD中,BC=4,CD=2,以AD为直径的半圆O与BC相切于点E,连接BD,则阴影部分的面积为.(结果保留π)16.(3分)如图,已知等边△OA1B1,顶点A1在双曲线y=(x>0)上,点B1的坐标为(2,0).过B1作B1A2∥OA1交双曲线于点A2,过A2作A2B2∥A1B1交x 轴于点B2,得到第二个等边△B1A2B2;过B2作B2A3∥B1A2交双曲线于点A3,过A3作A3B3∥A2B2交x轴于点B3,得到第三个等边△B2A3B3;以此类推,…,则点B6的坐标为.三、解答题(一)17.(6分)计算:|﹣2|﹣20180+()﹣118.(6分)先化简,再求值:•,其中a=.19.(6分)如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.20.(7分)某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A、B型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A型芯片?21.(7分)某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图1和图2所示的不完整统计图.(1)被调查员工人数为人:(2)把条形统计图补充完整;(3)若该企业有员工10000人,请估计该企业某周的工作量完成情况为“剩少量”的员工有多少人?22.(7分)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△ADE≌△CED;(2)求证:△DEF是等腰三角形.23.(9分)如图,已知顶点为C(0,﹣3)的抛物线y=ax2+b(a≠0)与x轴交于A,B两点,直线y=x+m过顶点C和点B.(1)求m的值;(2)求函数y=ax2+b(a≠0)的解析式;(3)抛物线上是否存在点M,使得∠MCB=15°?若存在,求出点M的坐标;若不存在,请说明理由.24.(9分)如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC,OD交于点E.(1)证明:OD∥BC;(2)若tan∠ABC=2,证明:DA与⊙O相切;(3)在(2)条件下,连接BD交于⊙O于点F,连接EF,若BC=1,求EF的长.25.(9分)已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB 绕点O顺时针旋转60°,如题图1,连接BC.(1)填空:∠OBC=°;(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M,N同时从点O出发,在△OCB边上运动,M沿O→C→B路径匀速运动,N沿O→B→C路径匀速运动,当两点相遇时运动停止,已知点M 的运动速度为1.5单位/秒,点N的运动速度为1单位/秒,设运动时间为x秒,△OMN的面积为y,求当x为何值时y取得最大值?最大值为多少?2018年广东省中考数学试卷参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)四个实数0、、﹣3.14、2中,最小的数是()A.0 B.C.﹣3.14 D.2【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:根据实数比较大小的方法,可得﹣3.14<0<<2,所以最小的数是﹣3.14.故选:C.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.(3分)据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为()A.1.442×107B.0.1442×107 C.1.442×108D.0.1442×108【分析】根据科学记数法的表示方法可以将题目中的数据用科学记数法表示,本题得以解决.【解答】解:14420000=1.442×107,故选:A.【点评】本题考查科学记数法﹣表示较大的数,解答本题的关键是明确科学记数法的表示方法.3.(3分)如图,由5个相同正方体组合而成的几何体,它的主视图是()A.B.C.D.【分析】根据主视图是从物体正面看所得到的图形解答即可.【解答】解:根据主视图的定义可知,此几何体的主视图是B中的图形,故选:B.【点评】本题考查的是简单几何体的三视图的作图,主视图、左视图、俯视图是分别从物体正面、侧面和上面看所得到的图形.4.(3分)数据1、5、7、4、8的中位数是()A.4 B.5 C.6 D.7【分析】根据中位数的定义判断即可;【解答】解:将数据重新排列为1、4、5、7、8,则这组数据的中位数为5故选:B.【点评】本题考查了确定一组数据的中位数的能力.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.5.(3分)下列所述图形中,是轴对称图形但不是中心对称图形的是()A.圆B.菱形C.平行四边形D.等腰三角形【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,也是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项正确.故选:D.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.6.(3分)不等式3x﹣1≥x+3的解集是()A.x≤4 B.x≥4 C.x≤2 D.x≥2【分析】根据解不等式的步骤:①移项;②合并同类项;③化系数为1即可得.【解答】解:移项,得:3x﹣x≥3+1,合并同类项,得:2x≥4,系数化为1,得:x≥2,故选:D.【点评】本题主要考查解一元一次不等式,解题的关键是掌握解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.7.(3分)在△ABC中,点D、E分别为边AB、AC的中点,则△ADE与△ABC的面积之比为()A.B.C.D.【分析】由点D、E分别为边AB、AC的中点,可得出DE为△ABC的中位线,进而可得出DE∥BC及△ADE∽△ABC,再利用相似三角形的性质即可求出△ADE与△ABC的面积之比.【解答】解:∵点D、E分别为边AB、AC的中点,∴DE为△ABC的中位线,∴DE∥BC,∴△ADE∽△ABC,∴=()2=.故选:C.【点评】本题考查了相似三角形的判定与性质以及三角形中位线定理,利用三角形的中位线定理找出DE∥BC是解题的关键.8.(3分)如图,AB∥CD,则∠DEC=100°,∠C=40°,则∠B的大小是()A.30°B.40°C.50°D.60°【分析】依据三角形内角和定理,可得∠D=40°,再根据平行线的性质,即可得到∠B=∠D=40°.【解答】解:∵∠DEC=100°,∠C=40°,∴∠D=40°,又∵AB∥CD,∴∠B=∠D=40°,故选:B.【点评】本题考查了平行线性质的应用,运用两直线平行,内错角相等是解题的关键.9.(3分)关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围是()A.m<B.m≤C.m>D.m≥【分析】根据一元二次方程的根的判别式,建立关于m的不等式,求出m的取值范围即可.【解答】解:∵关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,∴△=b2﹣4ac=(﹣3)2﹣4×1×m>0,∴m<.故选:A.【点评】此题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.10.(3分)如图,点P是菱形ABCD边上的一动点,它从点A出发沿在A→B→C→D 路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为()A.B.C.D.【分析】设菱形的高为h,即是一个定值,再分点P在AB上,在BC上和在CD 上三种情况,利用三角形的面积公式列式求出相应的函数关系式,然后选择答案即可.【解答】解:分三种情况:①当P在AB边上时,如图1,设菱形的高为h,y=AP•h,∵AP随x的增大而增大,h不变,∴y随x的增大而增大,故选项C不正确;②当P在边BC上时,如图2,y=AD•h,AD和h都不变,∴在这个过程中,y不变,故选项A不正确;③当P在边CD上时,如图3,y=PD•h,∵PD随x的增大而减小,h不变,∴y随x的增大而减小,∵P点从点A出发沿在A→B→C→D路径匀速运动到点D,∴P在三条线段上运动的时间相同,故选项D不正确;故选:B.【点评】本题考查了动点问题的函数图象,菱形的性质,根据点P的位置的不同,分三段求出△PAD的面积的表达式是解题的关键.二、填空题(共6小题,每小题3分,满分18分)11.(3分)同圆中,已知弧AB所对的圆心角是100°,则弧AB所对的圆周角是50°.【分析】直接利用圆周角定理求解.【解答】解:弧AB所对的圆心角是100°,则弧AB所对的圆周角为50°.故答案为50°.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.12.(3分)分解因式:x2﹣2x+1=(x﹣1)2.【分析】直接利用完全平方公式分解因式即可.【解答】解:x2﹣2x+1=(x﹣1)2.【点评】本题考查了公式法分解因式,运用完全平方公式进行因式分解,熟记公式是解题的关键.13.(3分)一个正数的平方根分别是x+1和x﹣5,则x=2.【分析】根据正数的两个平方根互为相反数列出关于x的方程,解之可得.【解答】解:根据题意知x+1+x﹣5=0,解得:x=2,故答案为:2.【点评】本题主要考查的是平方根的定义和性质,熟练掌握平方根的定义和性质是解题的关键.14.(3分)已知+|b﹣1|=0,则a+1=2.【分析】直接利用非负数的性质结合绝对值的性质得出a,b的值进而得出答案.【解答】解:∵+|b﹣1|=0,∴b﹣1=0,a﹣b=0,解得:b=1,a=1,故a+1=2.故答案为:2.【点评】此题主要考查了非负数的性质以及绝对值的性质,正确得出a ,b 的值是解题关键.15.(3分)如图,矩形ABCD 中,BC=4,CD=2,以AD 为直径的半圆O 与BC 相切于点E ,连接BD ,则阴影部分的面积为 π .(结果保留π)【分析】连接OE ,如图,利用切线的性质得OD=2,OE ⊥BC ,易得四边形OECD 为正方形,先利用扇形面积公式,利用S 正方形OECD ﹣S 扇形EOD 计算由弧DE 、线段EC 、CD 所围成的面积,然后利用三角形的面积减去刚才计算的面积即可得到阴影部分的面积.【解答】解:连接OE ,如图,∵以AD 为直径的半圆O 与BC 相切于点E ,∴OD=2,OE ⊥BC ,易得四边形OECD 为正方形,∴由弧DE 、线段EC 、CD 所围成的面积=S 正方形OECD ﹣S 扇形EOD =22﹣=4﹣π,∴阴影部分的面积=×2×4﹣(4﹣π)=π.故答案为π.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了矩形的性质和扇形的面积公式.16.(3分)如图,已知等边△OA 1B 1,顶点A 1在双曲线y=(x >0)上,点B 1的坐标为(2,0).过B 1作B 1A 2∥OA 1交双曲线于点A 2,过A 2作A 2B 2∥A 1B 1交x轴于点B2,得到第二个等边△B1A2B2;过B2作B2A3∥B1A2交双曲线于点A3,过A3作A3B3∥A2B2交x轴于点B3,得到第三个等边△B2A3B3;以此类推,…,则点B6的坐标为(2,0).【分析】根据等边三角形的性质以及反比例函数图象上点的坐标特征分别求出B2、B3、B4的坐标,得出规律,进而求出点B6的坐标.【解答】解:如图,作A2C⊥x轴于点C,设B1C=a,则A2C=a,OC=OB1+B1C=2+a,A2(2+a,a).∵点A2在双曲线y=(x>0)上,∴(2+a)•a=,解得a=﹣1,或a=﹣﹣1(舍去),∴OB2=OB1+2B1C=2+2﹣2=2,∴点B2的坐标为(2,0);作A3D⊥x轴于点D,设B2D=b,则A3D=b,OD=OB2+B2D=2+b,A2(2+b,b).∵点A3在双曲线y=(x>0)上,∴(2+b)•b=,解得b=﹣+,或b=﹣﹣(舍去),∴OB3=OB2+2B2D=2﹣2+2=2,∴点B3的坐标为(2,0);同理可得点B4的坐标为(2,0)即(4,0);…,∴点B n的坐标为(2,0),∴点B6的坐标为(2,0).故答案为(2,0).【点评】本题考查了反比例函数图象上点的坐标特征,等边三角形的性质,正确求出B2、B3、B4的坐标进而得出点B n的规律是解题的关键.三、解答题(一)17.(6分)计算:|﹣2|﹣20180+()﹣1【分析】直接利用负指数幂的性质以及零指数幂的性质、绝对值的性质进而化简得出答案.【解答】解:原式=2﹣1+2=3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(6分)先化简,再求值:•,其中a=.【分析】原式先因式分解,再约分即可化简,继而将a的值代入计算.【解答】解:原式=•=2a,当a=时,原式=2×=.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法则.19.(6分)如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.【分析】(1)分别以A、B为圆心,大于AB长为半径画弧,过两弧的交点作直线即可;(2)根据∠DBF=∠ABD﹣∠ABF计算即可;【解答】解:(1)如图所示,直线EF即为所求;(2)∵四边形ABCD是菱形,∴∠ABD=∠DBC=∠ABC=75°,DC∥AB,∠A=∠C.∴∠ABC=150°,∠ABC+∠C=180°,∴∠C=∠A=30°,∵EF垂直平分线线段AB,∴AF=FB,∴∠A=∠FBA=30°,∴∠DBF=∠ABD﹣∠FBE=45°.【点评】本题考查作图﹣基本作图,线段的垂直平分线的性质,菱形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于常考题型.20.(7分)某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A、B型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A型芯片?【分析】(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x﹣9)元/条,根据数量=总价÷单价结合用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购买a条A型芯片,则购买(200﹣a)条B型芯片,根据总价=单价×数量,即可得出关于a的一元一次方程,解之即可得出结论.【解答】解:(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x﹣9)元/条,根据题意得:=,解得:x=35,经检验,x=35是原方程的解,∴x﹣9=26.答:A型芯片的单价为26元/条,B型芯片的单价为35元/条.(2)设购买a条A型芯片,则购买(200﹣a)条B型芯片,根据题意得:26a+35(200﹣a)=6280,解得:a=80.答:购买了80条A型芯片.【点评】本题考查了分式方程的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出一元一次方程.21.(7分)某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图1和图2所示的不完整统计图.(1)被调查员工人数为800人:(2)把条形统计图补充完整;(3)若该企业有员工10000人,请估计该企业某周的工作量完成情况为“剩少量”的员工有多少人?【分析】(1)由“不剩”的人数及其所占百分比可得答案;(2)用总人数减去其它类型人数求得“剩少量”的人数,据此补全图形即可;(3)用总人数乘以样本中“剩少量”人数所占百分比可得.【解答】解:(1)被调查员工人数为400÷50%=800人,故答案为:800;(2)“剩少量”的人数为800﹣(400+80+20)=300人,补全条形图如下:(3)估计该企业某周的工作量完成情况为“剩少量”的员工有10000×=3500人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了用样本估计总体.22.(7分)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△ADE≌△CED;(2)求证:△DEF是等腰三角形.【分析】(1)根据矩形的性质可得出AD=BC、AB=CD,结合折叠的性质可得出AD=CE、AE=CD,进而即可证出△ADE≌△CED(SSS);(2)根据全等三角形的性质可得出∠DEF=∠EDF,利用等边对等角可得出EF=DF,由此即可证出△DEF是等腰三角形.【解答】证明:(1)∵四边形ABCD是矩形,∴AD=BC,AB=CD.由折叠的性质可得:BC=CE,AB=AE,∴AD=CE,AE=CD.在△ADE和△CED中,,∴△ADE≌△CED(SSS).(2)由(1)得△ADE≌△CED,∴∠DEA=∠EDC,即∠DEF=∠EDF,∴EF=DF,∴△DEF是等腰三角形.【点评】本题考查了全等三角形的判定与性质、翻折变换以及矩形的性质,解题的关键是:(1)根据矩形的性质结合折叠的性质找出AD=CE、AE=CD;(2)利用全等三角形的性质找出∠DEF=∠EDF.23.(9分)如图,已知顶点为C(0,﹣3)的抛物线y=ax2+b(a≠0)与x轴交于A,B两点,直线y=x+m过顶点C和点B.(1)求m的值;(2)求函数y=ax2+b(a≠0)的解析式;(3)抛物线上是否存在点M,使得∠MCB=15°?若存在,求出点M的坐标;若不存在,请说明理由.【分析】(1)把C(0,﹣3)代入直线y=x+m中解答即可;(2)把y=0代入直线解析式得出点B的坐标,再利用待定系数法确定函数关系式即可;(3)分M在BC上方和下方两种情况进行解答即可.【解答】解:(1)将(0,﹣3)代入y=x+m,可得:m=﹣3;(2)将y=0代入y=x﹣3得:x=3,所以点B的坐标为(3,0),将(0,﹣3)、(3,0)代入y=ax2+b中,可得:,解得:,所以二次函数的解析式为:y=x2﹣3;(3)存在,分以下两种情况:①若M在B上方,设MC交x轴于点D,则∠ODC=45°+15°=60°,∴OD=OC•tan30°=,设DC为y=kx﹣3,代入(,0),可得:k=,联立两个方程可得:,解得:,所以M1(3,6);②若M在B下方,设MC交x轴于点E,则∠OEC=45°﹣15°=30°,∴OE=OC•tan60°=3,设EC为y=kx﹣3,代入(3,0)可得:k=,联立两个方程可得:,解得:,所以M2(,﹣2),综上所述M的坐标为(3,6)或(,﹣2).【点评】此题主要考查了二次函数的综合题,需要掌握待定系数法求二次函数解析式,待定系数法求一次函数解析式等知识是解题关键.24.(9分)如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC,OD交于点E.(1)证明:OD∥BC;(2)若tan∠ABC=2,证明:DA与⊙O相切;(3)在(2)条件下,连接BD交于⊙O于点F,连接EF,若BC=1,求EF的长.【分析】(1)连接OC,证△OAD≌△OCD得∠ADO=∠CDO,由AD=CD知DE⊥AC,再由AB为直径知BC⊥AC,从而得OD∥BC;(2)根据tan∠ABC=2可设BC=a、则AC=2a、AD=AB==,证OE 为中位线知OE=a、AE=CE=AC=a,进一步求得DE==2a,再△AOD 中利用勾股定理逆定理证∠OAD=90°即可得;(3)先证△AFD∽△BAD得DF•BD=AD2①,再证△AED∽△OAD得OD•DE=AD2②,由①②得DF•BD=OD•DE,即=,结合∠EDF=∠BDO知△EDF∽△BDO,据此可得=,结合(2)可得相关线段的长,代入计算可得.【解答】解:(1)连接OC,在△OAD和△OCD中,∵,∴△OAD≌△OCD(SSS),∴∠ADO=∠CDO,又AD=CD,∴DE⊥AC,∵AB为⊙O的直径,∴∠ACB=90°,∴∠ACB=90°,即BC⊥AC,∴OD∥BC;(2)∵tan∠ABC==2,∴设BC=a、则AC=2a,∴AD=AB==,∵OE∥BC,且AO=BO,∴OE=BC=a,AE=CE=AC=a,在△AED中,DE==2a,在△AOD中,AO2+AD2=()2+(a)2=a2,OD2=(OF+DF)2=(a+2a)2=a2,∴AO2+AD2=OD2,∴∠OAD=90°,则DA与⊙O相切;(3)连接AF,∵AB是⊙O的直径,∴∠AFD=∠BAD=90°,∵∠ADF=∠BDA,∴△AFD∽△BAD,∴=,即DF•BD=AD2①,又∵∠AED=∠OAD=90°,∠ADE=∠ODA,∴△AED∽△OAD,∴=,即OD•DE=AD2②,由①②可得DF•BD=OD•DE,即=,又∵∠EDF=∠BDO,∴△EDF∽△BDO,∵BC=1,∴AB=AD=、OD=、ED=2、BD=、OB=,∴=,即=,解得:EF=.【点评】本题主要考查圆的综合问题,解题的关键是掌握等腰三角形的性质、全等三角形的判定与性质、相似三角形的判定与性质及勾股定理逆定理等知识点.25.(9分)已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB 绕点O顺时针旋转60°,如题图1,连接BC.(1)填空:∠OBC=60°;(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M,N同时从点O出发,在△OCB边上运动,M沿O→C→B路径匀速运动,N沿O→B→C路径匀速运动,当两点相遇时运动停止,已知点M 的运动速度为1.5单位/秒,点N的运动速度为1单位/秒,设运动时间为x秒,△OMN的面积为y,求当x为何值时y取得最大值?最大值为多少?【分析】(1)只要证明△OBC是等边三角形即可;(2)求出△AOC的面积,利用三角形的面积公式计算即可;(3)分三种情形讨论求解即可解决问题:①当0<x≤时,M在OC上运动,N 在OB上运动,此时过点N作NE⊥OC且交OC于点E.②当<x≤4时,M在BC上运动,N在OB上运动.③当4<x≤4.8时,M、N都在BC上运动,作OG⊥BC于G.【解答】解:(1)由旋转性质可知:OB=OC,∠BOC=60°,∴△OBC是等边三角形,∴∠OBC=60°.故答案为60.(2)如图1中,∵OB=4,∠ABO=30°,∴OA=OB=2,AB=OA=2,=•OA•AB=×2×2=2,∴S△AOC∵△BOC是等边三角形,∴∠OBC=60°,∠ABC=∠ABO+∠OBC=90°,∴AC==2,∴OP===.(3)①当0<x≤时,M在OC上运动,N在OB上运动,此时过点N作NE⊥OC且交OC于点E.则NE=ON•sin60°=x,∴S=•OM•NE=×1.5x×x,△OMN∴y=x2.∴x=时,y有最大值,最大值=.②当<x≤4时,M在BC上运动,N在OB上运动.作MH⊥OB于H.则BM=8﹣1.5x,MH=BM•sin60°=(8﹣1.5x),∴y=×ON×MH=﹣x2+2x.当x=时,y取最大值,y<,③当4<x≤4.8时,M、N都在BC上运动,作OG⊥BC于G.MN=12﹣2.5x,OG=AB=2,∴y=•MN•OG=12﹣x,当x=4时,y有最大值,最大值=2,综上所述,y有最大值,最大值为.【点评】本题考查几何变换综合题、30度的直角三角形的性质、等边三角形的判定和性质、三角形的面积等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.。
2018年广东省中考数学试卷及详细参考答案
2018年广东省中考数学试卷一、选择题(本大题共5小题,每小题3分,共15分)在每个小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(2018•广东)﹣5的绝对值是()A. 5 B.﹣5 C.D.﹣2.(2018•广东)地球半径约为6400000米,用科学记数法表示为()A.0.64×107B.6.4×106C.64×105D.640×1043.(2018•广东)数据8、8、6、5、6、1、6的众数是()A.1B.5C.6D.84.(2018•广东)如图所示几何体的主视图是()A.B.C.D.5.(2018•广东)已知三角形两边的长分别是4和10,则此三角形第三边的长可能是()A.5B.6C.11 D.16二、填空题(每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上.6.(2018•广东)分解因式:2x2﹣10x=_________.7.(2018•广东)不等式3x﹣9>0的解集是_________.8.(2018•广东)如图,A、B、C是⊙O上的三个点,∠ABC=25°,则∠AOC的度数是_________.9.(2018•广东)若x,y为实数,且满足|x﹣3|+=0,则()2018的值是_________.10.(2018•广东)如图,在▱ABCD中,AD=2,AB=4,∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是_________(结果保留π).三、解答题(一)(每小题6分,共30分)11.(2018•广东)计算:﹣2sin45°﹣(1+)0+2﹣1.12.(2018•广东)先化简,再求值:(x+3)(x﹣3)﹣x(x﹣2),其中x=4.13.(2018•广东)解方程组:.14.(2018•广东)如图,在△ABC中,AB=AC,∠ABC=72°.(1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.15.(2018•广东)已知:如图,在四边形ABCD中,AB∥CD,对角线AC、BD相交于点O,BO=DO.求证:四边形ABCD是平行四边形.四、解答题(二)(本大题共4小题,每小题7分,共28分)16.(2018•广东)据媒体报道,我国2018年公民出境旅游总人数约5000万人次,2018年公民出境旅游总人数约7200万人次,若2018年、2018年公民出境旅游总人数逐年递增,请解答下列问题:(1)求这两年我国公民出境旅游总人数的年平均增长率;(2)如果2018年仍保持相同的年平均增长率,请你预测2018年我国公民出境旅游总人数约多少万人次?17.(2018•广东)如图,直线y=2x﹣6与反比例函数y=的图象交于点A(4,2),与x轴交于点B.(1)求k的值及点B的坐标;(2)在x轴上是否存在点C,使得AC=AB?若存在,求出点C的坐标;若不存在,请说明理由.18.(2018•广东)如图,小山岗的斜坡AC的坡度是tanα=,在与山脚C距离200米的D处,测得山顶A的仰角为26.6°,求小山岗的高AB(结果取整数:参考数据:sin26.6°=0.45,cos26.6°=0.89,tan26.6°=0.50).19.(2018•广东)观察下列等式:第1个等式:a1==×(1﹣);第2个等式:a2==×(﹣);第3个等式:a3==×(﹣);第4个等式:a4==×(﹣);…请解答下列问题:(1)按以上规律列出第5个等式:a5=_________=_________;(2)用含有n的代数式表示第n个等式:a n=_________=_________(n为正整数);(3)求a1+a2+a3+a4+…+a100的值.五、解答题(三)(本大题共3小题,每小题9分,共27分)20.(2018•广东)有三张正面分别写有数字﹣2,﹣1,1的卡片,它们的背面完全相同,将这三张卡片北背面朝上洗匀后随机抽取一张,以其正面的数字作为x的值,放回卡片洗匀,再从三张卡片中随机抽取一张,以其正面的数字作为y的值,两次结果记为(x,y).(1)用树状图或列表法表示(x,y)所有可能出现的结果;(2)求使分式+有意义的(x,y)出现的概率;(3)化简分式+,并求使分式的值为整数的(x,y)出现的概率.21.(2018•广东)如图,在矩形纸片ABCD中,AB=6,BC=8.把△BCD沿对角线BD折叠,使点C 落在C′处,BC′交AD于点G;E、F分别是C′D和BD上的点,线段EF交AD于点H,把△FDE沿EF折叠,使点D落在D′处,点D′恰好与点A重合.(1)求证:△ABG≌△C′DG;(2)求tan∠ABG的值;(3)求EF的长.22.(2018•广东)如图,抛物线y=x2﹣x﹣9与x轴交于A、B两点,与y轴交于点C,连接BC、AC.(1)求AB和OC的长;(2)点E从点A出发,沿x轴向点B运动(点E与点A、B不重合),过点E作直线l平行BC,交AC于点D.设AE的长为m,△ADE的面积为s,求s关于m的函数关系式,并写出自变量m的取值范围;(3)在(2)的条件下,连接CE,求△CDE面积的最大值;此时,求出以点E为圆心,与BC相切的圆的面积(结果保留π).2018年广东省中考数学试卷参考答案与试题解析一、选择题(本大题共5小题,每小题3分,共15分)在每个小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(2018•广东)﹣5的绝对值是()A.5B.﹣5 C.D.﹣考点:绝对值。
2018年广东省深圳市中考数学试卷含答案解析
广东省深圳市2018年中考数学试卷(解析版)一、选择题1. ( 2分 ) 6的相反数是( )A.B.C.D. 6【答案】A【考点】相反数及有理数的相反数【解析】【解答】解:∵6的相反数为-6,故答案为:A.【分析】相反数:数值相同,符号相反的两个数,由此即可得出答案.2. ( 2分 ) 260000000用科学计数法表示为( )A. B.C.D.【答案】B【考点】科学记数法—表示绝对值较大的数 【解析】【解答】解:∵260 000 000=2.6×108.故答案为:B.【分析】科学计数法:将一个数字表示成 a ×10的n 次幂的形式,其中1≤|a|<10,n 为整数,由此即可得出答案.3. ( 2分 ) 图中立体图形的主视图是( ) A. B.C.D.【答案】B【考点】简单几何体的三视图【解析】【解答】解:∵从物体正面看,最底层是三个小正方形,第二层从右往左有两个小正方形,故答案为:B.【分析】视图:从物体正面观察所得到的图形,由此即可得出答案.4. ( 2分 ) 观察下列图形,是中心对称图形的是( )A. B.C. D.【答案】D【考点】中心对称及中心对称图形【解析】【解答】解:A.等边三角形为轴对称图形,有三条对称轴,但不是中心对称图形,A不符合题意;B.五角星为轴对称图形,有五条对称轴,但不是中心对称图形,B不符合题意;C.爱心为轴对称图形,有一条对称轴,但不是中心对称图形,C不符合题意;D.平行四边形为中心对称图形,对角线的交点为对称中心,D符合题意;故答案为:D.【分析】中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心,由此即可得出答案。
5. ( 2分 ) 下列数据:,则这组数据的众数和极差是( ) A.B.C.D.【答案】A【考点】极差、标准差,众数【解析】【解答】解:∵85出现了三次,∴众数为:85,又∵最大数为:85,最小数为:75,∴极差为:85-75=10.故答案为:A.【分析】众数:一组数据中出现次数最多数;极差:一组数据中最大数与最小数的差;由此即可得出答案.6. ( 2分 ) 下列运算正确的是( )A. B.C. D.【答案】B【考点】同底数幂的乘法,同底数幂的除法,同类二次根式,同类项【解析】【解答】解:A.∵a .a =a ,故错误,A不符合题意;B.∵3a-a=2a,故正确,B符合题意;C.∵a8÷a4=a4,故错误,C不符合题意;D. 与不是同类二次根式,故不能合并,D不符合题意;故答案为:B.【分析】A.根据同底数幂相乘,底数不变,指数相加即可判断对错;B.根据同类项定义:所含字母相同,并且相同字母指数相同,由此得不是同类项;C.根据同底数幂相除,底数不变,指数相减即可判断对错;D.同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式,由此即可判断对错.7. ( 2分 ) 把函数y=x向上平移3个单位,下列在该平移后的直线上的点是( )A. B.C.D.【答案】D【考点】一次函数图象与几何变换【解析】【解答】解:∵函数y=x向上平移3个单位,∴y=x+3,∴当x=2时,y=5,即(2,5)在平移后的直线上,故答案为:D.【分析】根据平移的性质得平移后的函数解析式,再将点的横坐标代入得出y值,一一判断即可得出答案.8. ( 2分 ) 如图,直线被所截,且,则下列结论中正确的是( )A. B.C. D.【答案】B【考点】平行线的性质【解析】【解答】解:∵a∥b,∴∠3=∠4.故答案为:B.【分析】根据两直线平行,同位角相等,由此即可得出答案.9. ( 2分 ) 某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有个,小房间有个.下列方程正确的是( )A.B.C.D.【答案】A【考点】二元一次方程组的其他应用【解析】【解答】解:依题可得:故答案为:A.【分析】根据一共70个房间得x+y=70;大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满得8x+6y=480,从而得一个二元一次方程组.10. ( 2分 ) 如图,一把直尺,的直角三角板和光盘如图摆放,为角与直尺交点,,则光盘的直径是( )A.3B.C.D.【答案】D【考点】切线的性质,锐角三角函数的定义,切线长定理【解析】【解答】解:设光盘切直角三角形斜边于点C,连接OC、OB、OA(如图),∵∠DAC=60°,∴∠BAC=120°.又∵AB、AC为圆O的切线,∴AC=AB,∠BAO=∠CAO=60°,在Rt△AOB中,∵AB=3,∴tan∠BAO= ,∴OB=AB×tan∠60°=3 ,∴光盘的直径为6 .故答案为:D.【分析】设光盘切直角三角形斜边于点C,连接OC、OB、OA(如图),根据邻补角定义得∠BAC=120°,又由切线长定理AC=AB,∠BAO=∠CAO=60°;在Rt△AOB中,根据正切定义得tan∠BAO= ,代入数值即可得半径OB长,由直径是半径的2倍即可得出答案.11. ( 2分 ) 二次函数的图像如图所示,下列结论正确是( )A. B. C.D. 有两个不相等的实数根【答案】C【考点】二次函数图象与系数的关系【解析】【解答】解:A.∵抛物线开口向下,∴a<0,∵抛物线与y轴的正半轴相交,∴c>0,∵对称轴- 在y轴右侧,∴b>0,∴abc<0,故错误,A不符合题意;B. ∵对称轴- =1,即b=-2a,∴2a+b=0,故错误,B不符合题意;C. ∵当x=-1时,y<0,即a-b+c<0,又∵b=-2a,∴3a+c<0,故正确,C符合题意;D.∵ax2+bx+c-3=0,∴ax2+bx+c=3,即y=3,∴x=1,∴此方程只有一个根,故错误,D不符合题意;故答案为:C.【分析】A.根据抛物线开口向下得a<0;与y轴的正半轴相交得c>0;对称轴在y轴右侧得b>0,从而可知A错误;B.由图像可知对称轴为2,即b=-2a,从而得出B错误;C.由图像可知当x=-1时,a-b+c<0,将b=-2a代入即可知C正确;D.由图像可知当y=3时,x=1,故此方程只有一个根,从而得出D错误.12. ( 2分 ) 如图,是函数上两点,为一动点,作轴,轴,下列说法正确的是( )①;②;③若,则平分;④若,则A. ①③B. ②③ C. ②④ D. ③④【答案】B【考点】反比例函数系数k的几何意义,三角形的面积,角的平分线判定【解析】【解答】解:设P(a,b),则A(,b),B(a, ),①∴AP= -a,BP= -b,∵a≠b,∴AP≠BP,OA≠OB,∴△AOP和△BOP不一定全等,故①错误;②∵S△AOP= ·AP·y A= ·(-a)·b=6- ab,S△BOP= ·BP·x B= ·(-b)·a=6- ab,∴S△AOP=S△BOP.故②正确;③作PD⊥OB,PE⊥OA,∵OA=OB,S△AOP=S△BOP.∴PD=PE,∴OP平分∠AOB,故③正确;④∵S△BOP=6- ab=4,∴ab=4,∴S△ABP= ·BP·AP= ·(-b)·(-a),=-12+ + ab,=-12+18+2,=8.故④错误;故答案为:B.【分析】设P(a,b),则A(,b),B(a, ),①根据两点间距离公式得AP= -a,BP= -b,因为不知道a和b是否相等,所以不能判断AP与BP,OA与OB,是否相等,所以△AOP和△BOP不一定全等,故①错误;②根据三角形的面积公式可得S△AOP=S△BOP=6- ab,故②正确;③作PD⊥OB,PE⊥OA,根据S△AOP=S△BOP.底相等,从而得高相等,即PD=PE,再由角分线的判定定理可得OP平分∠AOB,故③正确;④根据S△BOP=6- ab=4,求得ab=4,再由三角形面积公式得S△ABP= ·BP·AP,代入计算即可得④错误;二、填空题13. ( 1分 ) 分解因式:________.【答案】【考点】因式分解﹣运用公式法【解析】【解答】a2-9=a2-32=(a+3)(a-3).故答案为(a+3)(a-3).【分析】观察此多项式的特点,没有公因式,符合平方差公式的特点,即可求解。
2018年广东省中考数学试卷及详细答案
2018年广东省中考数学试卷一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)四个实数0、、﹣3.14、2中,最小的数是()A.0 B.C.﹣3.14 D.22.(3分)据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为()A.1.442×107B.0.1442×107 C.1.442×108D.0.1442×1083.(3分)如图,由5个相同正方体组合而成的几何体,它的主视图是()A.B.C.D.4.(3分)数据1、5、7、4、8的中位数是()A.4 B.5 C.6 D.75.(3分)下列所述图形中,是轴对称图形但不是中心对称图形的是()A.圆B.菱形C.平行四边形D.等腰三角形6.(3分)不等式3x﹣1≥x+3的解集是()A.x≤4 B.x≥4 C.x≤2 D.x≥27.(3分)在△ABC中,点D、E分别为边AB、AC的中点,则△ADE与△ABC的面积之比为()A.B.C.D.8.(3分)如图,AB∥CD,则∠DEC=100°,∠C=40°,则∠B的大小是()A.30°B.40°C.50°D.60°9.(3分)关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围是()A.m<B.m≤C.m>D.m≥10.(3分)如图,点P是菱形ABCD边上的一动点,它从点A出发沿在A→B→C→D 路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为()A.B.C.D.二、填空题(共6小题,每小题3分,满分18分)11.(3分)同圆中,已知弧AB所对的圆心角是100°,则弧AB所对的圆周角是.12.(3分)分解因式:x2﹣2x+1=.13.(3分)一个正数的平方根分别是x+1和x﹣5,则x=.14.(3分)已知+|b﹣1|=0,则a+1=.15.(3分)如图,矩形ABCD中,BC=4,CD=2,以AD为直径的半圆O与BC相切于点E,连接BD,则阴影部分的面积为.(结果保留π)16.(3分)如图,已知等边△OA1B1,顶点A1在双曲线y=(x>0)上,点B1的坐标为(2,0).过B1作B1A2∥OA1交双曲线于点A2,过A2作A2B2∥A1B1交x 轴于点B2,得到第二个等边△B1A2B2;过B2作B2A3∥B1A2交双曲线于点A3,过A3作A3B3∥A2B2交x轴于点B3,得到第三个等边△B2A3B3;以此类推,…,则点B6的坐标为.三、解答题(一)17.(6分)计算:|﹣2|﹣20180+()﹣118.(6分)先化简,再求值:•,其中a=.19.(6分)如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.20.(7分)某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A、B型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A型芯片?21.(7分)某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图1和图2所示的不完整统计图.(1)被调查员工人数为人:(2)把条形统计图补充完整;(3)若该企业有员工10000人,请估计该企业某周的工作量完成情况为“剩少量”的员工有多少人?22.(7分)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△ADE≌△CED;(2)求证:△DEF是等腰三角形.23.(9分)如图,已知顶点为C(0,﹣3)的抛物线y=ax2+b(a≠0)与x轴交于A,B两点,直线y=x+m过顶点C和点B.(1)求m的值;(2)求函数y=ax2+b(a≠0)的解析式;(3)抛物线上是否存在点M,使得∠MCB=15°?若存在,求出点M的坐标;若不存在,请说明理由.24.(9分)如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC,OD交于点E.(1)证明:OD∥BC;(2)若tan∠ABC=2,证明:DA与⊙O相切;(3)在(2)条件下,连接BD交于⊙O于点F,连接EF,若BC=1,求EF的长.25.(9分)已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB 绕点O顺时针旋转60°,如题图1,连接BC.(1)填空:∠OBC=°;(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M,N同时从点O出发,在△OCB边上运动,M沿O→C→B路径匀速运动,N沿O→B→C路径匀速运动,当两点相遇时运动停止,已知点M 的运动速度为1.5单位/秒,点N的运动速度为1单位/秒,设运动时间为x秒,△OMN的面积为y,求当x为何值时y取得最大值?最大值为多少?2018年广东省中考数学试卷参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)四个实数0、、﹣3.14、2中,最小的数是()A.0 B.C.﹣3.14 D.2【解答】解:根据实数比较大小的方法,可得﹣3.14<0<<2,所以最小的数是﹣3.14.故选:C.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.(3分)据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为()A.1.442×107B.0.1442×107 C.1.442×108D.0.1442×108【解答】解:14420000=1.442×107,故选:A.【点评】本题考查科学记数法﹣表示较大的数,解答本题的关键是明确科学记数法的表示方法.3.(3分)如图,由5个相同正方体组合而成的几何体,它的主视图是()A.B.C.D.【解答】解:根据主视图的定义可知,此几何体的主视图是B中的图形,故选:B.【点评】本题考查的是简单几何体的三视图的作图,主视图、左视图、俯视图是分别从物体正面、侧面和上面看所得到的图形.4.(3分)数据1、5、7、4、8的中位数是()A.4 B.5 C.6 D.7【解答】解:将数据重新排列为1、4、5、7、8,则这组数据的中位数为5故选:B.【点评】本题考查了确定一组数据的中位数的能力.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.5.(3分)下列所述图形中,是轴对称图形但不是中心对称图形的是()A.圆B.菱形C.平行四边形D.等腰三角形【解答】解:A、是轴对称图形,也是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项正确.故选:D.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.6.(3分)不等式3x﹣1≥x+3的解集是()A.x≤4 B.x≥4 C.x≤2 D.x≥2【解答】解:移项,得:3x﹣x≥3+1,合并同类项,得:2x≥4,系数化为1,得:x≥2,故选:D.【点评】本题主要考查解一元一次不等式,解题的关键是掌握解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.7.(3分)在△ABC中,点D、E分别为边AB、AC的中点,则△ADE与△ABC的面积之比为()A.B.C.D.【解答】解:∵点D、E分别为边AB、AC的中点,∴DE为△ABC的中位线,∴DE∥BC,∴△ADE∽△ABC,∴=()2=.故选:C.【点评】本题考查了相似三角形的判定与性质以及三角形中位线定理,利用三角形的中位线定理找出DE∥BC是解题的关键.8.(3分)如图,AB∥CD,则∠DEC=100°,∠C=40°,则∠B的大小是()A.30°B.40°C.50°D.60°【解答】解:∵∠DEC=100°,∠C=40°,∴∠D=40°,又∵AB∥CD,∴∠B=∠D=40°,故选:B.【点评】本题考查了平行线性质的应用,运用两直线平行,内错角相等是解题的关键.9.(3分)关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围是()A.m<B.m≤C.m>D.m≥【解答】解:∵关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,∴△=b2﹣4ac=(﹣3)2﹣4×1×m>0,∴m<.故选:A.【点评】此题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.10.(3分)如图,点P是菱形ABCD边上的一动点,它从点A出发沿在A→B→C→D 路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为()A.B.C.D.【解答】解:分三种情况:①当P在AB边上时,如图1,设菱形的高为h,y=AP•h,∵AP随x的增大而增大,h不变,∴y随x的增大而增大,故选项C不正确;②当P在边BC上时,如图2,y=AD•h,AD和h都不变,∴在这个过程中,y不变,故选项A不正确;③当P在边CD上时,如图3,y=PD•h,∵PD随x的增大而减小,h不变,∴y随x的增大而减小,∵P点从点A出发沿在A→B→C→D路径匀速运动到点D,∴P在三条线段上运动的时间相同,故选项D不正确;故选:B.【点评】本题考查了动点问题的函数图象,菱形的性质,根据点P的位置的不同,分三段求出△PAD的面积的表达式是解题的关键.二、填空题(共6小题,每小题3分,满分18分)11.(3分)同圆中,已知弧AB所对的圆心角是100°,则弧AB所对的圆周角是50°.【解答】解:弧AB所对的圆心角是100°,则弧AB所对的圆周角为50°.故答案为50°.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.12.(3分)分解因式:x2﹣2x+1=(x﹣1)2.【解答】解:x2﹣2x+1=(x﹣1)2.【点评】本题考查了公式法分解因式,运用完全平方公式进行因式分解,熟记公式是解题的关键.13.(3分)一个正数的平方根分别是x+1和x﹣5,则x=2.【解答】解:根据题意知x+1+x﹣5=0,解得:x=2,故答案为:2.【点评】本题主要考查的是平方根的定义和性质,熟练掌握平方根的定义和性质是解题的关键.14.(3分)已知+|b ﹣1|=0,则a +1= 2 . 【解答】解:∵+|b ﹣1|=0,∴b ﹣1=0,a ﹣b=0,解得:b=1,a=1,故a +1=2.故答案为:2.【点评】此题主要考查了非负数的性质以及绝对值的性质,正确得出a ,b 的值是解题关键.15.(3分)如图,矩形ABCD 中,BC=4,CD=2,以AD 为直径的半圆O 与BC 相切于点E ,连接BD ,则阴影部分的面积为 π .(结果保留π)【解答】解:连接OE ,如图,∵以AD 为直径的半圆O 与BC 相切于点E ,∴OD=2,OE ⊥BC ,易得四边形OECD 为正方形,∴由弧DE 、线段EC 、CD 所围成的面积=S 正方形OECD ﹣S 扇形EOD =22﹣=4﹣π,∴阴影部分的面积=×2×4﹣(4﹣π)=π.故答案为π.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了矩形的性质和扇形的面积公式.16.(3分)如图,已知等边△OA1B1,顶点A1在双曲线y=(x>0)上,点B1的坐标为(2,0).过B1作B1A2∥OA1交双曲线于点A2,过A2作A2B2∥A1B1交x 轴于点B2,得到第二个等边△B1A2B2;过B2作B2A3∥B1A2交双曲线于点A3,过A3作A3B3∥A2B2交x轴于点B3,得到第三个等边△B2A3B3;以此类推,…,则点B6的坐标为(2,0).【解答】解:如图,作A2C⊥x轴于点C,设B1C=a,则A2C=a,OC=OB1+B1C=2+a,A2(2+a,a).∵点A2在双曲线y=(x>0)上,∴(2+a)•a=,解得a=﹣1,或a=﹣﹣1(舍去),∴OB2=OB1+2B1C=2+2﹣2=2,∴点B2的坐标为(2,0);作A3D⊥x轴于点D,设B2D=b,则A3D=b,OD=OB2+B2D=2+b,A2(2+b,b).∵点A3在双曲线y=(x>0)上,∴(2+b)•b=,解得b=﹣+,或b=﹣﹣(舍去),∴OB3=OB2+2B2D=2﹣2+2=2,∴点B3的坐标为(2,0);同理可得点B4的坐标为(2,0)即(4,0);…,∴点B n的坐标为(2,0),∴点B6的坐标为(2,0).故答案为(2,0).【点评】本题考查了反比例函数图象上点的坐标特征,等边三角形的性质,正确求出B2、B3、B4的坐标进而得出点B n的规律是解题的关键.三、解答题(一)17.(6分)计算:|﹣2|﹣20180+()﹣1【解答】解:原式=2﹣1+2=3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(6分)先化简,再求值:•,其中a=.【解答】解:原式=•=2a,当a=时,原式=2×=.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法则.19.(6分)如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.【解答】解:(1)如图所示,直线EF即为所求;(2)∵四边形ABCD是菱形,∴∠ABD=∠DBC=∠ABC=75°,DC∥AB,∠A=∠C.∴∠ABC=150°,∠ABC+∠C=180°,∴∠C=∠A=30°,∵EF垂直平分线线段AB,∴AF=FB,∴∠A=∠FBA=30°,∴∠DBF=∠ABD﹣∠FBE=45°.【点评】本题考查作图﹣基本作图,线段的垂直平分线的性质,菱形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于常考题型.20.(7分)某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A、B型芯片的单价各是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A型芯片?【解答】解:(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x﹣9)元/条,根据题意得:=,解得:x=35,经检验,x=35是原方程的解,∴x﹣9=26.答:A型芯片的单价为26元/条,B型芯片的单价为35元/条.(2)设购买a条A型芯片,则购买(200﹣a)条B型芯片,根据题意得:26a+35(200﹣a)=6280,解得:a=80.答:购买了80条A型芯片.【点评】本题考查了分式方程的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出一元一次方程.21.(7分)某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图1和图2所示的不完整统计图.(1)被调查员工人数为800人:(2)把条形统计图补充完整;(3)若该企业有员工10000人,请估计该企业某周的工作量完成情况为“剩少量”的员工有多少人?【解答】解:(1)被调查员工人数为400÷50%=800人,故答案为:800;(2)“剩少量”的人数为800﹣(400+80+20)=300人,补全条形图如下:(3)估计该企业某周的工作量完成情况为“剩少量”的员工有10000×=3500人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了用样本估计总体.22.(7分)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△ADE≌△CED;(2)求证:△DEF是等腰三角形.【解答】证明:(1)∵四边形ABCD是矩形,∴AD=BC,AB=CD.由折叠的性质可得:BC=CE,AB=AE,∴AD=CE,AE=CD.在△ADE和△CED中,,∴△ADE≌△CED(SSS).(2)由(1)得△ADE≌△CED,∴∠DEA=∠EDC,即∠DEF=∠EDF,∴EF=DF,∴△DEF是等腰三角形.【点评】本题考查了全等三角形的判定与性质、翻折变换以及矩形的性质,解题的关键是:(1)根据矩形的性质结合折叠的性质找出AD=CE、AE=CD;(2)利用全等三角形的性质找出∠DEF=∠EDF.23.(9分)如图,已知顶点为C(0,﹣3)的抛物线y=ax2+b(a≠0)与x轴交于A,B两点,直线y=x+m过顶点C和点B.(1)求m的值;(2)求函数y=ax2+b(a≠0)的解析式;(3)抛物线上是否存在点M,使得∠MCB=15°?若存在,求出点M的坐标;若不存在,请说明理由.【解答】解:(1)将(0,﹣3)代入y=x+m,可得:m=﹣3;(2)将y=0代入y=x﹣3得:x=3,所以点B的坐标为(3,0),将(0,﹣3)、(3,0)代入y=ax2+b中,可得:,解得:,所以二次函数的解析式为:y=x2﹣3;(3)存在,分以下两种情况:①若M在B上方,设MC交x轴于点D,则∠ODC=45°+15°=60°,∴OD=OC•tan30°=,设DC为y=kx﹣3,代入(,0),可得:k=,联立两个方程可得:,解得:,所以M1(3,6);②若M在B下方,设MC交x轴于点E,则∠OEC=45°﹣15°=30°,∴OE=OC•tan60°=3,设EC为y=kx﹣3,代入(3,0)可得:k=,联立两个方程可得:,解得:,所以M2(,﹣2),综上所述M的坐标为(3,6)或(,﹣2).【点评】此题主要考查了二次函数的综合题,需要掌握待定系数法求二次函数解析式,待定系数法求一次函数解析式等知识是解题关键.24.(9分)如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC,OD交于点E.(1)证明:OD∥BC;(2)若tan∠ABC=2,证明:DA与⊙O相切;(3)在(2)条件下,连接BD交于⊙O于点F,连接EF,若BC=1,求EF的长.【解答】解:(1)连接OC,在△OAD和△OCD中,∵,∴△OAD≌△OCD(SSS),∴∠ADO=∠CDO,又AD=CD,∴DE⊥AC,∵AB为⊙O的直径,∴∠ACB=90°,∴∠ACB=90°,即BC⊥AC,∴OD∥BC;(2)∵tan∠ABC==2,∴设BC=a、则AC=2a,∴AD=AB==,∵OE∥BC,且AO=BO,∴OE=BC=a,AE=CE=AC=a,在△AED中,DE==2a,在△AOD中,AO2+AD2=()2+(a)2=a2,OD2=(OF+DF)2=(a+2a)2=a2,∴AO2+AD2=OD2,∴∠OAD=90°,则DA与⊙O相切;(3)连接AF,∵AB是⊙O的直径,∴∠AFD=∠BAD=90°,∵∠ADF=∠BDA,∴△AFD∽△BAD,∴=,即DF•BD=AD2①,又∵∠AED=∠OAD=90°,∠ADE=∠ODA,∴△AED∽△OAD,∴=,即OD•DE=AD2②,由①②可得DF•BD=OD•DE,即=,又∵∠EDF=∠BDO,∴△EDF∽△BDO,∵BC=1,∴AB=AD=、OD=、ED=2、BD=、OB=,∴=,即=,解得:EF=.【点评】本题主要考查圆的综合问题,解题的关键是掌握等腰三角形的性质、全等三角形的判定与性质、相似三角形的判定与性质及勾股定理逆定理等知识点.25.(9分)已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB 绕点O顺时针旋转60°,如题图1,连接BC.(1)填空:∠OBC=60°;(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M,N同时从点O出发,在△OCB边上运动,M沿O→C→B路径匀速运动,N沿O→B→C路径匀速运动,当两点相遇时运动停止,已知点M 的运动速度为1.5单位/秒,点N的运动速度为1单位/秒,设运动时间为x秒,△OMN的面积为y,求当x为何值时y取得最大值?最大值为多少?【解答】解:(1)由旋转性质可知:OB=OC,∠BOC=60°,∴△OBC是等边三角形,∴∠OBC=60°.故答案为60.(2)如图1中,∵OB=4,∠ABO=30°,∴OA=OB=2,AB=OA=2,=•OA•AB=×2×2=2,∴S△AOC∵△BOC是等边三角形,∴∠OBC=60°,∠ABC=∠ABO+∠OBC=90°,∴AC==2,∴OP===.(3)①当0<x≤时,M在OC上运动,N在OB上运动,此时过点N作NE⊥OC且交OC于点E.则NE=ON•sin60°=x,=•OM•NE=×1.5x×x,∴S△OMN∴y=x2.∴x=时,y有最大值,最大值=.②当<x≤4时,M在BC上运动,N在OB上运动.作MH⊥OB于H.则BM=8﹣1.5x,MH=BM•sin60°=(8﹣1.5x),∴y=×ON×MH=﹣x2+2x.当x=时,y取最大值,y<,③当4<x≤4.8时,M、N都在BC上运动,作OG⊥BC于G.MN=12﹣2.5x,OG=AB=2,∴y=•MN•OG=12﹣x,当x=4时,y有最大值,最大值=2,综上所述,y有最大值,最大值为.【点评】本题考查几何变换综合题、30度的直角三角形的性质、等边三角形的判定和性质、三角形的面积等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)四个实数0、、﹣、2中,最小的数是()A.0 B.C.﹣D.22.(3分)据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约人次,将数用科学记数法表示为()A.×107B.×107C.×108D.×1083.(3分)如图,由5个相同正方体组合而成的几何体,它的主视图是()A.B.C.D.4.(3分)数据1、5、7、4、8的中位数是()A.4 B.5 C.6 D.75.(3分)下列所述图形中,是轴对称图形但不是中心对称图形的是()A.圆B.菱形C.平行四边形D.等腰三角形6.(3分)不等式3x﹣1≥x+3的解集是()A.x≤4 B.x≥4 C.x≤2 D.x≥27.(3分)在△ABC中,点D、E分别为边AB、AC的中点,则△ADE与△ABC的面积之比为()A.B.C.D.8.(3分)如图,AB∥CD,则∠DEC=100°,∠C=40°,则∠B的大小是()A.30°B.40°C.50°D.60°9.(3分)关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围是()A.m<B.m≤C.m>D.m≥10.(3分)如图,点P是菱形ABCD边上的一动点,它从点A出发沿在A→B→C→D 路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为()A.B.C.D.二、填空题(共6小题,每小题3分,满分18分)11.(3分)同圆中,已知弧AB所对的圆心角是100°,则弧AB所对的圆周角是.12.(3分)分解因式:x2﹣2x+1=.13.(3分)一个正数的平方根分别是x+1和x﹣5,则x=.14.(3分)已知+|b﹣1|=0,则a+1=.15.(3分)如图,矩形ABCD中,BC=4,CD=2,以AD为直径的半圆O与BC相切于点E,连接BD,则阴影部分的面积为.(结果保留π)16.(3分)如图,已知等边△OA1B1,顶点A1在双曲线y=(x>0)上,点B1的坐标为(2,0).过B1作B1A2∥OA1交双曲线于点A2,过A2作A2B2∥A1B1交x 轴于点B2,得到第二个等边△B1A2B2;过B2作B2A3∥B1A2交双曲线于点A3,过A3作A3B3∥A2B2交x轴于点B3,得到第三个等边△B2A3B3;以此类推,…,则点B6的坐标为.三、解答题(一)17.(6分)计算:|﹣2|﹣20180+()﹣118.(6分)先化简,再求值:•,其中a=.19.(6分)如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.20.(7分)某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A、B型芯片的单价各是多少元(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A型芯片21.(7分)某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图1和图2所示的不完整统计图.(1)被调查员工人数为人:(2)把条形统计图补充完整;(3)若该企业有员工10000人,请估计该企业某周的工作量完成情况为“剩少量”的员工有多少人22.(7分)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△ADE≌△CED;(2)求证:△DEF是等腰三角形.23.(9分)如图,已知顶点为C(0,﹣3)的抛物线y=ax2+b(a≠0)与x轴交于A,B两点,直线y=x+m过顶点C和点B.(1)求m的值;(2)求函数y=ax2+b(a≠0)的解析式;(3)抛物线上是否存在点M,使得∠MCB=15°若存在,求出点M的坐标;若不存在,请说明理由.24.(9分)如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC,OD交于点E.(1)证明:OD∥BC;(2)若tan∠ABC=2,证明:DA与⊙O相切;(3)在(2)条件下,连接BD交于⊙O于点F,连接EF,若BC=1,求EF的长.25.(9分)已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB 绕点O顺时针旋转60°,如题图1,连接BC.(1)填空:∠OBC=°;(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M,N同时从点O出发,在△OCB边上运动,M沿O→C→B路径匀速运动,N沿O→B→C路径匀速运动,当两点相遇时运动停止,已知点M 的运动速度为单位/秒,点N的运动速度为1单位/秒,设运动时间为x秒,△OMN 的面积为y,求当x为何值时y取得最大值最大值为多少2018年广东省中考数学试卷参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)四个实数0、、﹣、2中,最小的数是()A.0 B.C.﹣D.2【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:根据实数比较大小的方法,可得﹣<0<<2,所以最小的数是﹣.故选:C.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.(3分)据有关部门统计,2018年“五一小长假”期间,广东各大景点共接待游客约人次,将数用科学记数法表示为()A.×107B.×107C.×108D.×108【分析】根据科学记数法的表示方法可以将题目中的数据用科学记数法表示,本题得以解决.【解答】解:=×107,故选:A.【点评】本题考查科学记数法﹣表示较大的数,解答本题的关键是明确科学记数法的表示方法.3.(3分)如图,由5个相同正方体组合而成的几何体,它的主视图是()A.B.C.D.【分析】根据主视图是从物体正面看所得到的图形解答即可.【解答】解:根据主视图的定义可知,此几何体的主视图是B中的图形,故选:B.【点评】本题考查的是简单几何体的三视图的作图,主视图、左视图、俯视图是分别从物体正面、侧面和上面看所得到的图形.4.(3分)数据1、5、7、4、8的中位数是()A.4 B.5 C.6 D.7【分析】根据中位数的定义判断即可;【解答】解:将数据重新排列为1、4、5、7、8,则这组数据的中位数为5故选:B.【点评】本题考查了确定一组数据的中位数的能力.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.5.(3分)下列所述图形中,是轴对称图形但不是中心对称图形的是()A.圆B.菱形C.平行四边形D.等腰三角形【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,也是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项正确.故选:D.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.6.(3分)不等式3x﹣1≥x+3的解集是()A.x≤4 B.x≥4 C.x≤2 D.x≥2【分析】根据解不等式的步骤:①移项;②合并同类项;③化系数为1即可得.【解答】解:移项,得:3x﹣x≥3+1,合并同类项,得:2x≥4,系数化为1,得:x≥2,故选:D.【点评】本题主要考查解一元一次不等式,解题的关键是掌握解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.7.(3分)在△ABC中,点D、E分别为边AB、AC的中点,则△ADE与△ABC的面积之比为()A.B.C.D.【分析】由点D、E分别为边AB、AC的中点,可得出DE为△ABC的中位线,进而可得出DE∥BC及△ADE∽△ABC,再利用相似三角形的性质即可求出△ADE与△ABC的面积之比.【解答】解:∵点D、E分别为边AB、AC的中点,∴DE为△ABC的中位线,∴DE∥BC,∴△ADE∽△ABC,∴=()2=.故选:C.【点评】本题考查了相似三角形的判定与性质以及三角形中位线定理,利用三角形的中位线定理找出DE∥BC是解题的关键.8.(3分)如图,AB∥CD,则∠DEC=100°,∠C=40°,则∠B的大小是()A.30°B.40°C.50°D.60°【分析】依据三角形内角和定理,可得∠D=40°,再根据平行线的性质,即可得到∠B=∠D=40°.【解答】解:∵∠DEC=100°,∠C=40°,∴∠D=40°,又∵AB∥CD,∴∠B=∠D=40°,故选:B.【点评】本题考查了平行线性质的应用,运用两直线平行,内错角相等是解题的关键.9.(3分)关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围是()A.m<B.m≤C.m>D.m≥【分析】根据一元二次方程的根的判别式,建立关于m的不等式,求出m的取值范围即可.【解答】解:∵关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,∴△=b2﹣4ac=(﹣3)2﹣4×1×m>0,∴m<.故选:A.【点评】此题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.10.(3分)如图,点P是菱形ABCD边上的一动点,它从点A出发沿在A→B→C→D 路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为()A.B.C.D.【分析】设菱形的高为h,即是一个定值,再分点P在AB上,在BC上和在CD 上三种情况,利用三角形的面积公式列式求出相应的函数关系式,然后选择答案即可.【解答】解:分三种情况:①当P在AB边上时,如图1,设菱形的高为h,y=AP•h,∵AP随x的增大而增大,h不变,∴y随x的增大而增大,故选项C不正确;②当P在边BC上时,如图2,y=AD•h,AD和h都不变,∴在这个过程中,y不变,故选项A不正确;③当P在边CD上时,如图3,y=PD•h,∵PD随x的增大而减小,h不变,∴y随x的增大而减小,∵P点从点A出发沿在A→B→C→D路径匀速运动到点D,∴P在三条线段上运动的时间相同,故选项D不正确;故选:B.【点评】本题考查了动点问题的函数图象,菱形的性质,根据点P的位置的不同,分三段求出△PAD的面积的表达式是解题的关键.二、填空题(共6小题,每小题3分,满分18分)11.(3分)同圆中,已知弧AB所对的圆心角是100°,则弧AB所对的圆周角是50°.【分析】直接利用圆周角定理求解.【解答】解:弧AB所对的圆心角是100°,则弧AB所对的圆周角为50°.故答案为50°.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.12.(3分)分解因式:x2﹣2x+1=(x﹣1)2.【分析】直接利用完全平方公式分解因式即可.【解答】解:x2﹣2x+1=(x﹣1)2.【点评】本题考查了公式法分解因式,运用完全平方公式进行因式分解,熟记公式是解题的关键.13.(3分)一个正数的平方根分别是x+1和x﹣5,则x=2.【分析】根据正数的两个平方根互为相反数列出关于x的方程,解之可得.【解答】解:根据题意知x+1+x﹣5=0,解得:x=2,故答案为:2.【点评】本题主要考查的是平方根的定义和性质,熟练掌握平方根的定义和性质是解题的关键.14.(3分)已知+|b﹣1|=0,则a+1=2.【分析】直接利用非负数的性质结合绝对值的性质得出a,b的值进而得出答案.【解答】解:∵+|b﹣1|=0,∴b﹣1=0,a﹣b=0,解得:b=1,a=1,故a+1=2.故答案为:2.【点评】此题主要考查了非负数的性质以及绝对值的性质,正确得出a ,b 的值是解题关键.15.(3分)如图,矩形ABCD 中,BC=4,CD=2,以AD 为直径的半圆O 与BC 相切于点E ,连接BD ,则阴影部分的面积为 π .(结果保留π)【分析】连接OE ,如图,利用切线的性质得OD=2,OE ⊥BC ,易得四边形OECD 为正方形,先利用扇形面积公式,利用S 正方形OECD ﹣S 扇形EOD 计算由弧DE 、线段EC 、CD 所围成的面积,然后利用三角形的面积减去刚才计算的面积即可得到阴影部分的面积.【解答】解:连接OE ,如图,∵以AD 为直径的半圆O 与BC 相切于点E ,∴OD=2,OE ⊥BC ,易得四边形OECD 为正方形, ∴由弧DE 、线段EC 、CD 所围成的面积=S 正方形OECD ﹣S 扇形EOD =22﹣=4﹣π,∴阴影部分的面积=×2×4﹣(4﹣π)=π.故答案为π.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了矩形的性质和扇形的面积公式.16.(3分)如图,已知等边△OA 1B 1,顶点A 1在双曲线y=(x >0)上,点B 1的坐标为(2,0).过B 1作B 1A 2∥OA 1交双曲线于点A 2,过A 2作A 2B 2∥A 1B 1交x轴于点B2,得到第二个等边△B1A2B2;过B2作B2A3∥B1A2交双曲线于点A3,过A3作A3B3∥A2B2交x轴于点B3,得到第三个等边△B2A3B3;以此类推,…,则点B6的坐标为(2,0).【分析】根据等边三角形的性质以及反比例函数图象上点的坐标特征分别求出B2、B3、B4的坐标,得出规律,进而求出点B6的坐标.【解答】解:如图,作A2C⊥x轴于点C,设B1C=a,则A2C=a,OC=OB1+B1C=2+a,A2(2+a,a).∵点A2在双曲线y=(x>0)上,∴(2+a)•a=,解得a=﹣1,或a=﹣﹣1(舍去),∴OB2=OB1+2B1C=2+2﹣2=2,∴点B2的坐标为(2,0);作A3D⊥x轴于点D,设B2D=b,则A3D=b,OD=OB2+B2D=2+b,A2(2+b,b).∵点A3在双曲线y=(x>0)上,∴(2+b)•b=,解得b=﹣+,或b=﹣﹣(舍去),∴OB3=OB2+2B2D=2﹣2+2=2,∴点B3的坐标为(2,0);同理可得点B4的坐标为(2,0)即(4,0);…,∴点B n的坐标为(2,0),∴点B6的坐标为(2,0).故答案为(2,0).【点评】本题考查了反比例函数图象上点的坐标特征,等边三角形的性质,正确求出B2、B3、B4的坐标进而得出点B n的规律是解题的关键.三、解答题(一)17.(6分)计算:|﹣2|﹣20180+()﹣1【分析】直接利用负指数幂的性质以及零指数幂的性质、绝对值的性质进而化简得出答案.【解答】解:原式=2﹣1+2=3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(6分)先化简,再求值:•,其中a=.【分析】原式先因式分解,再约分即可化简,继而将a的值代入计算.【解答】解:原式=•=2a,当a=时,原式=2×=.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法则.19.(6分)如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF,求∠DBF的度数.【分析】(1)分别以A、B为圆心,大于AB长为半径画弧,过两弧的交点作直线即可;(2)根据∠DBF=∠ABD﹣∠ABF计算即可;【解答】解:(1)如图所示,直线EF即为所求;(2)∵四边形ABCD是菱形,∴∠ABD=∠DBC=∠ABC=75°,DC∥AB,∠A=∠C.∴∠ABC=150°,∠ABC+∠C=180°,∴∠C=∠A=30°,∵EF垂直平分线线段AB,∴AF=FB,∴∠A=∠FBA=30°,∴∠DBF=∠ABD﹣∠FBE=45°.【点评】本题考查作图﹣基本作图,线段的垂直平分线的性质,菱形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于常考题型.20.(7分)某公司购买了一批A、B型芯片,其中A型芯片的单价比B型芯片的单价少9元,已知该公司用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等.(1)求该公司购买的A、B型芯片的单价各是多少元(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条A型芯片【分析】(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x﹣9)元/条,根据数量=总价÷单价结合用3120元购买A型芯片的条数与用4200元购买B型芯片的条数相等,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购买a条A型芯片,则购买(200﹣a)条B型芯片,根据总价=单价×数量,即可得出关于a的一元一次方程,解之即可得出结论.【解答】解:(1)设B型芯片的单价为x元/条,则A型芯片的单价为(x﹣9)元/条,根据题意得:=,解得:x=35,经检验,x=35是原方程的解,∴x﹣9=26.答:A型芯片的单价为26元/条,B型芯片的单价为35元/条.(2)设购买a条A型芯片,则购买(200﹣a)条B型芯片,根据题意得:26a+35(200﹣a)=6280,解得:a=80.答:购买了80条A型芯片.【点评】本题考查了分式方程的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出一元一次方程.21.(7分)某企业工会开展“一周工作量完成情况”调查活动,随机调查了部分员工一周的工作量剩余情况,并将调查结果统计后绘制成如图1和图2所示的不完整统计图.(1)被调查员工人数为800人:(2)把条形统计图补充完整;(3)若该企业有员工10000人,请估计该企业某周的工作量完成情况为“剩少量”的员工有多少人【分析】(1)由“不剩”的人数及其所占百分比可得答案;(2)用总人数减去其它类型人数求得“剩少量”的人数,据此补全图形即可;(3)用总人数乘以样本中“剩少量”人数所占百分比可得.【解答】解:(1)被调查员工人数为400÷50%=800人,故答案为:800;(2)“剩少量”的人数为800﹣(400+80+20)=300人,补全条形图如下:(3)估计该企业某周的工作量完成情况为“剩少量”的员工有10000×=3500人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了用样本估计总体.22.(7分)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△ADE≌△CED;(2)求证:△DEF是等腰三角形.【分析】(1)根据矩形的性质可得出AD=BC、AB=CD,结合折叠的性质可得出AD=CE、AE=CD,进而即可证出△ADE≌△CED(SSS);(2)根据全等三角形的性质可得出∠DEF=∠EDF,利用等边对等角可得出EF=DF,由此即可证出△DEF是等腰三角形.【解答】证明:(1)∵四边形ABCD是矩形,∴AD=BC,AB=CD.由折叠的性质可得:BC=CE,AB=AE,∴AD=CE,AE=CD.在△ADE和△CED中,,∴△ADE≌△CED(SSS).(2)由(1)得△ADE≌△CED,∴∠DEA=∠EDC,即∠DEF=∠EDF,∴EF=DF,∴△DEF是等腰三角形.【点评】本题考查了全等三角形的判定与性质、翻折变换以及矩形的性质,解题的关键是:(1)根据矩形的性质结合折叠的性质找出AD=CE、AE=CD;(2)利用全等三角形的性质找出∠DEF=∠EDF.23.(2018.广东.23)如图,已知顶点为C(0,﹣3)的抛物线y=ax2+b(a≠0)与x轴交于A,B两点,直线y=x+m过顶点C和点B.(1)求m的值;(2)求函数y=ax2+b(a≠0)的解析式;(3)抛物线上是否存在点M,使得∠MCB=15°若存在,求出点M的坐标;若不存在,请说明理由.【分析】(1)把C(0,﹣3)代入直线y=x+m中解答即可;(2)把y=0代入直线解析式得出点B的坐标,再利用待定系数法确定函数关系式即可;(3)分M在BC上方和下方两种情况进行解答即可.【解答】解:(1)将(0,﹣3)代入y=x+m,可得:m=﹣3;(2)将y=0代入y=x﹣3得:x=3,所以点B的坐标为(3,0),将(0,﹣3)、(3,0)代入y=ax2+b中,可得:,解得:,所以二次函数的解析式为:y=x2﹣3;(3)存在,分以下两种情况:①若M在B上方,设MC交x轴于点D,则∠ODC=45°+15°=60°,∴OD=OC•tan30°=,设DC为y=kx﹣3,代入(,0),可得:k=,联立两个方程可得:,解得:,所以M1(3,6);②若M在B下方,设MC交x轴于点E,则∠OEC=45°﹣15°=30°,∴OE=OC•tan60°=3,设EC为y=kx﹣3,代入(3,0)可得:k=,联立两个方程可得:,解得:,所以M2(,﹣2),综上所述M的坐标为(3,6)或(,﹣2).【点评】此题主要考查了二次函数的综合题,需要掌握待定系数法求二次函数解析式,待定系数法求一次函数解析式等知识是解题关键.24.(9分)如图,四边形ABCD中,AB=AD=CD,以AB为直径的⊙O经过点C,连接AC,OD交于点E.(1)证明:OD∥BC;(2)若tan∠ABC=2,证明:DA与⊙O相切;(3)在(2)条件下,连接BD交于⊙O于点F,连接EF,若BC=1,求EF的长.【分析】(1)连接OC,证△OAD≌△OCD得∠ADO=∠CDO,由AD=CD知DE⊥AC,再由AB为直径知BC⊥AC,从而得OD∥BC;(2)根据tan∠ABC=2可设BC=a、则AC=2a、AD=AB==,证OE 为中位线知OE=a、AE=CE=AC=a,进一步求得DE==2a,再△AOD 中利用勾股定理逆定理证∠OAD=90°即可得;(3)先证△AFD∽△BAD得DF•BD=AD2①,再证△AED∽△OAD得OD•DE=AD2②,由①②得DF•BD=OD•DE,即=,结合∠EDF=∠BDO知△EDF∽△BDO,据此可得=,结合(2)可得相关线段的长,代入计算可得.【解答】解:(1)连接OC,在△OAD和△OCD中,∵,∴△OAD≌△OCD(SSS),∴∠ADO=∠CDO,又AD=CD,∴DE⊥AC,∵AB为⊙O的直径,∴∠ACB=90°,∴∠ACB=90°,即BC⊥AC,∴OD∥BC;(2)∵tan∠ABC==2,∴设BC=a、则AC=2a,∴AD=AB==,∵OE∥BC,且AO=BO,∴OE=BC=a,AE=CE=AC=a,在△AED中,DE==2a,在△AOD中,AO2+AD2=()2+(a)2=a2,OD2=(OF+DF)2=(a+2a)2=a2,∴AO2+AD2=OD2,∴∠OAD=90°,则DA与⊙O相切;(3)连接AF,∵AB是⊙O的直径,∴∠AFD=∠BAD=90°,∵∠ADF=∠BDA,∴△AFD∽△BAD,∴=,即DF•BD=AD2①,又∵∠AED=∠OAD=90°,∠ADE=∠ODA,∴△AED∽△OAD,∴=,即OD•DE=AD2②,由①②可得DF•BD=OD•DE,即=,又∵∠EDF=∠BDO,∴△EDF∽△BDO,∵BC=1,∴AB=AD=、OD=、ED=2、BD=、OB=,∴=,即=,解得:EF=.【点评】本题主要考查圆的综合问题,解题的关键是掌握等腰三角形的性质、全等三角形的判定与性质、相似三角形的判定与性质及勾股定理逆定理等知识点.25.(2018.广东.25)已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt △OAB绕点O顺时针旋转60°,如题图1,连接BC.(1)填空:∠OBC=60°;(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M,N同时从点O出发,在△OCB边上运动,M沿O→C→B路径匀速运动,N沿O→B→C路径匀速运动,当两点相遇时运动停止,已知点M 的运动速度为单位/秒,点N的运动速度为1单位/秒,设运动时间为x秒,△OMN 的面积为y,求当x为何值时y取得最大值最大值为多少【分析】(1)只要证明△OBC是等边三角形即可;(2)法一:求出△AOC的面积,利用三角形的面积公式计算即可;法二:利用△APO∽△CBA,即可求出OP的长;(3)分三种情形讨论求解即可解决问题:①当0<x≤8/3时,M在OC上运动,N在OB上运动,此时过点N作NE⊥OC且交OC于点E.②当8/3<x≤4时,M 在BC上运动,N在OB上运动.③当4<x≤时,M、N都在BC上运动,作OG⊥BC于G.【解答】解:(1)由旋转性质可知:OB=OC,∠BOC=60°,∴△OBC是等边三角形,∴∠OBC=60°.故答案为60.(2)如图1中,法一:∵OB=4,∠ABO=30°,AOC22AOB1OA=OB=23OA=2321S=OA AB21=223=2326090AB+BC=272S43221OP=AC727BOCOBCABC ABO OBC⋅⋅⨯⨯∴∠=︒∠=∠+∠=︒∴△△∴,,∴,△是等边三角形,,,,∴法二:易证△APO∽△CBA,OP AO=AB AC=2327221OP=.7∴,即,解得(3)①当0<x≤8/3时,M在OC上运动,N在OB上运动,此时过点N作NE ⊥OC且交OC于点E.OMN23NE=ON sin,1S=OM NE213= 1.5,2233y.88833xx xxx y⋅⋅⋅⨯⨯==△则∴∴∴时,②当8/3<x≤4时,M在BC上运动,N在OB上运动.作MH ⊥OB于H .则BM=8﹣, ()2MH=BM sin 60?3=8-1.5,21y 23323.88333x ON MH x x x y ⋅=⨯⨯=-+=∴当时,取最大值;③当4<x ≤时,M 、N 都在BC 上运动,作OG ⊥BC 于G .MN=12-2.5,3,12533,4383x OG AB y MN OG x x y y ===⋅⋅==∴当时,有最大值,综上所述,【反思】本题考查几何变换综合题、30度的直角三角形的性质、等边三角形的判定和性质、三角形的面积以及三角形相似等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.*。