Matlab求解线性方程组、非线性方程组
数学建模常用方法MATLAB求解

数学建模常用方法MATLAB求解数学建模是通过数学方法对实际问题进行数学描述、分析和求解的过程。
MATLAB是一款功能强大的数学软件,广泛用于数学建模中的问题求解。
在数学建模中,常用的方法有数值求解、优化求解和符号计算。
下面将介绍MATLAB在数学建模中常用的方法和求解示例。
1.数值求解方法:数值求解是利用数值计算方法来近似求解实际问题的数学模型。
MATLAB提供了许多数值求解函数,如方程求根、解线性方程组、曲线拟合、积分和微分等。
以方程求根为例,可以使用fsolve函数来求解非线性方程。
示例:求解非线性方程sin(x)=0.5```matlabx0=0;%初始点x = fsolve(fun,x0);```2.优化求解方法:优化求解是在给定约束条件下,寻找使目标函数取得最优值的变量值。
MATLAB提供了许多优化求解函数,如线性规划、二次规划、非线性规划、整数规划等。
以线性规划为例,可以使用linprog函数来求解线性规划问题。
示例:求解线性规划问题,目标函数为max(3*x1+4*x2),约束条件为x1>=0、x2>=0和2*x1+3*x2<=6```matlabf=[-3,-4];%目标函数系数A=[2,3];%不等式约束的系数矩阵b=6;%不等式约束的右端向量lb = zeros(2,1); % 变量下界ub = []; % 变量上界x = linprog(f,A,b,[],[],lb,ub);```3.符号计算方法:符号计算是研究数学符号的计算方法,以推导或计算数学表达式为主要任务。
MATLAB提供了符号计算工具箱,可以进行符号计算、微积分、代数运算、求解方程等。
以符号计算为例,可以使用syms函数来定义符号变量,并使用solve函数求解方程。
示例:求解二次方程ax^2+bx+c=0的根。
```matlabsyms x a b c;eqn = a*x^2 + b*x + c == 0;sol = solve(eqn, x);```以上是MATLAB在数学建模中常用的方法和求解示例,通过数值求解、优化求解和符号计算等方法,MATLAB可以高效地解决各种数学建模问题。
matlab高斯赛德尔迭代法

标题:深入探讨MATLAB中的高斯-赛德尔迭代法一、概述MATLAB是一种强大的数学计算软件,被广泛应用于科学、工程和金融等领域。
在数值分析中,迭代法是解决非线性方程组和矩阵方程组的重要方法之一。
高斯-赛德尔迭代法是其中的一种,其在求解线性方程组时具有较好的收敛性和效率。
本文将深入探讨MATLAB中高斯-赛德尔迭代法的原理和实现方法。
二、高斯-赛德尔迭代法原理高斯-赛德尔迭代法是一种求解线性方程组的迭代法。
给定线性方程组Ax=b,其中A为系数矩阵,b为常数向量,迭代法的基本思想是通过不断逼近方程组的解x。
高斯-赛德尔迭代法的迭代公式如下:\[ x^{(k+1)} = D^{-1} (b - (L+U)x^{(k)}) \]其中,D、L和U分别为系数矩阵A的对角线、严格下三角部分和严格上三角部分。
迭代法的初始值可以任意选择,通常选取一个与解接近的初值,然后通过迭代逼近真实解。
三、MATLAB中高斯-赛德尔迭代法的实现MATLAB提供了丰富的数值计算函数和工具箱,使得高斯-赛德尔迭代法的实现变得非常简单。
下面我们将介绍如何在MATLAB中使用高斯-赛德尔迭代法求解线性方程组。
1. 设置参数在使用高斯-赛德尔迭代法之前,我们首先需要设置一些参数,如系数矩阵A、常数向量b、迭代步数等。
在MATLAB中可以通过定义变量来实现这些参数的设置。
2. 编写迭代函数接下来,我们需要编写高斯-赛德尔迭代法的迭代函数。
通过编写一个MATLAB函数来实现迭代公式的计算和迭代过程的控制。
3. 调用函数求解完成迭代函数的编写后,我们就可以通过调用该函数来求解线性方程组。
在MATLAB中,可以使用循环语句控制迭代步数,并在每一步更新迭代值,直到满足收敛条件为止。
四、案例分析为了更好地理解高斯-赛德尔迭代法在MATLAB中的应用,我们以一个具体的案例来进行分析和实践。
假设我们需要求解以下线性方程组:\[ \begin{cases} 4x_1 - x_2 + x_3 = 8 \\ -x_1 + 4x_2 - x_3 = 9 \\2x_1 - x_2 + 5x_3 = 7 \end{cases} \]我们可以通过MATLAB编写高斯-赛德尔迭代法的函数,并调用该函数来求解以上线性方程组。
实验五(线性方程组的数值解法和非线性方程求解)

1大学数学实验 实验报告 | 2014/4/5一、 实验目的1、学习用Matlab 软件数值求解线性代数方程组,对迭代法的收敛性和解的稳定性作初步分析;2、通过实例学习用线性代数方程组解决简化问题。
二、 实验内容项目一:种群的繁殖与稳定收获:种群的数量因繁殖而增加,因自然死亡而减少,对于人工饲养的种群(比如家畜)而言,为了保证稳定的收获,各个年龄的种群数量应维持不变。
种群因雌性个体的繁殖而改变,为方便起见以下种群数量均指其中的雌性。
种群年龄记作k=1,2,…,n ,当年年龄k 的种群数量记作x k ,繁殖率记作b k (每个雌性个体1年的繁殖的数量),自然存活率记作s k (s k =1−d k ,d k 为1年的死亡率),收获量记作ℎk ,则来年年龄k 的种群数量x ̌k 应该为x ̌k =∑b k n k=1x k , x ̌k+1=s k x k −ℎk , (k=1,2,…,n -1)。
要求各个年龄的种群数量每年维持不变就是要求使得x ̌k =x k , (k=1,2,…,n -1).(1) 如果b k , s k 已知,给定收获量ℎk ,建立求各个年龄的稳定种群数量x k 的模型(用矩阵、向量表示).(2) 设n =5,b 1=b 2=b 5=0,b 3=5,b 4=3,s 1=s 4=0.4,s 2=s 3=0.6,如要求ℎ1~ℎ5为500,400,200,100,100,求x 1~x 5.(3) 要使ℎ1~ℎ5均为500,如何达到?问题分析:该问题属于简单的种群数量增长模型,在一定的条件(存活率,繁殖率等)下为使各年龄阶段的种群数量保持不变,各个年龄段的种群数量将会满足一定的要求,只要找到种群数量与各个参量之间的关系,建立起种群数量恒定的方程就可以求解出各年龄阶段的种群数量。
模型建立:根据题目中的信息,令x ̌k =x k ,得到方程组如下:{x ̌1=∑b k nk=1x k =x 1x ̌k+1=s k x k −ℎk =x k+1整理得到:{−x 1∑b k nk=1x k =0−x k+1+s k x k =ℎk2 大学数学实验 实验报告 | 2014/4/52写成系数矩阵的形式如下:A =[b 1−1b 2b 3s 1−100s 2−1…b n−1b n0000⋮⋱⋮000000000⋯00−10s n−1−1]令h =[0, ℎ1,ℎ2,ℎ3,…,ℎn−2,ℎn−1]Tx =[x n , x n−1,…,x 1]T则方程组化为矩阵形式:Ax =h ,即为所求模型。
非线性方程组求解的牛顿迭代法用MATLAB实现

非线性方程组求解的牛顿迭代法用MATLAB实现首先,我们需要定义非线性方程组。
假设我们要求解方程组:```f1(x1,x2)=0f2(x1,x2)=0```其中,`x1`和`x2`是未知数,`f1`和`f2`是非线性函数。
我们可以将这个方程组表示为向量的形式:```F(x)=[f1(x1,x2);f2(x1,x2)]=[0;0]```其中,`F(x)`是一个列向量。
为了实现牛顿迭代法,我们需要计算方程组的雅可比矩阵。
雅可比矩阵是由方程组的偏导数组成的矩阵。
对于方程组中的每个函数,我们可以计算其对每个变量的偏导数,然后将这些偏导数组成一个矩阵。
在MATLAB中,我们可以使用`jacobi`函数来计算雅可比矩阵。
以下是一个示例函数的定义:```matlabfunction J = jacobi(x)x1=x(1);x2=x(2);J = [df1_dx1, df1_dx2; df2_dx1, df2_dx2];end```其中,`x`是一个包含未知数的向量,`df1_dx1`和`df1_dx2`是`f1`对`x1`和`x2`的偏导数,`df2_dx1`和`df2_dx2`是`f2`对`x1`和`x2`的偏导数。
下一步是实现牛顿迭代法。
牛顿迭代法的迭代公式为:```x(k+1)=x(k)-J(x(k))\F(x(k))```其中,`x(k)`是第`k`次迭代的近似解,`\`表示矩阵的求逆操作。
在MATLAB中,我们可以使用如下代码来实现牛顿迭代法:```matlabfunction x = newton_method(x_initial)max_iter = 100; % 最大迭代次数tol = 1e-6; % 收敛阈值x = x_initial; % 初始解for k = 1:max_iterF=[f1(x(1),x(2));f2(x(1),x(2))];%计算F(x)J = jacobi(x); % 计算雅可比矩阵 J(x)delta_x = J \ -F; % 计算增量 delta_xx = x + delta_x; % 更新 xif norm(delta_x) < tolbreak; % 达到收敛条件,停止迭代endendend```其中,`x_initial`是初始解的向量,`max_iter`是最大迭代次数,`tol`是收敛阈值。
Matlab解方程(方程组)

Matlab 解方程这里系统的介绍一下关于使用Matlab求解方程的一系列问题,网络上关于Matlab求解方程的文章数不胜数,但是我大体浏览了一下,感觉很多文章都只是零散的介绍了一点,都只给出了一部分Matlab函数例子,以至于刚接触的人面对不同文章中的不同函数一脸茫然,都搞不清楚这些函数各自的用途,也不知道在什么样的情况下该选择哪个函数来求解方程,在使用Matlab解方程时会很纠结。
不知道读者是否有这样的感觉,反正我刚开始接触时就是这样的感觉,面对网络搜索到一系列函数都好想知道他们之间是个什么关系。
所谓的方程就是含有未知数的等式,解方程就是找出使得等式成立时的未知数的数值。
求方程的解可以转换成不同形式,比如求函数的零点、多项式的根。
方程分类很多,按照未知数个数分为一元、二元、多元方程;按照未知数组合形式分为线性方程和非线性方程;按照非零项次数是否一致分为齐次方程和非齐次方程。
线性方程就是方程中未知数次数是一次的,未知数之间不存在指、对、2及以上幂次的关系,线性方程又分为一元线性方程,也就是一元一次方程;多元线性方程,也就是多元一次方程,多以线性方程组的形式出现(包括齐次线性方程组和非齐次线性方程组)。
在Matlab中求解方程的函数主要有roots、solve、fzero、和fsolve函数等,接下来详细的介绍一下各个Matlab函数的使用方法和使用场合。
一、直接求解法(线性方程组)直接求解法不需要借助任何的Matlab函数,主要用于求解线性方程组,也就是未知数次数是一次的方程组,包括齐次线性方程组合非齐次线性方程组。
当然既然可以求解方程组自然也就可以求解单个方程。
主要针对A x=b形式的方程,其中A是未知数系数矩阵,x是未知数列向量,b是常数列向量,当b=0时就是齐次线性方程组,b ≠0时是非齐次线性方程组。
用左除法,x=A\b例:求解线性方程组的解12341242341234251357926640x x x x x x x x x x x x x x +-+=⎧⎪-+=-⎪⎨+-=⎪⎪+--=⎩解:即直接利用b 左除以A 。
matlab 方程组 解

matlab 方程组解一、概述Matlab是一种强大的数学计算软件,它可以用来解决各种数学问题,包括解方程组。
在Matlab中,求解方程组是一个非常重要的功能,因为很多实际问题都可以转化为方程组的形式。
本文将详细介绍如何使用Matlab求解线性方程组和非线性方程组。
二、线性方程组1. 线性方程组的定义线性方程组是指各个未知量的次数都不超过1次的代数方程组。
例如:2x + 3y = 54x - 5y = 6就是一个包含两个未知量x和y的线性方程组。
2. Matlab中求解线性方程组方法在Matlab中,可以使用“\”或者“inv()”函数来求解线性方程组。
其中,“\”表示矩阵左除,即Ax=b时,求解x=A\b;“inv()”函数表示矩阵求逆,即Ax=b时,求解x=inv(A)*b。
例如,在Matlab中求解以下线性方程组:2x + 3y = 54x - 5y = 6可以使用以下代码:A=[2,3;4,-5];b=[5;6];x=A\b输出结果为:x =1.00001.0000其中,“A”为系数矩阵,“b”为常数矩阵,“x”为未知量的解。
三、非线性方程组1. 非线性方程组的定义非线性方程组是指各个未知量的次数超过1次或者存在乘积项、幂项等非线性因素的代数方程组。
例如:x^2 + y^2 = 25x*y - 3 = 0就是一个包含两个未知量x和y的非线性方程组。
2. Matlab中求解非线性方程组方法在Matlab中,可以使用“fsolve()”函数来求解非线性方程组。
该函数需要输入一个函数句柄和初始值向量,输出未知量的解向量。
例如,在Matlab中求解以下非线性方程组:x^2 + y^2 = 25x*y - 3 = 0可以使用以下代码:fun=@(x)[x(1)^2+x(2)^2-25;x(1)*x(2)-3];x0=[1;1];[x,fval]=fsolve(fun,x0)输出结果为:Local minimum found.Optimization completed because the size of the gradient is less thanthe default value of the function tolerance.<stopping criteria details>ans =1.60561.8708其中,“fun”为函数句柄,表示要求解的非线性方程组,“x0”为初始值向量,“[x,fval]”为输出结果,其中“x”表示未知量的解向量,“fval”为函数值。
matlab实验 非线性方程(组)求解

数学实验报告Matlab的简单应用——非线性方程(组)求解姓名班级学号学院2013年5月12日一、实验目的1.熟悉MATLAB软件中非线性方程(组)的求解命令及其用法。
2.掌握求非线性方程近似根的常用数值方法——迭代法。
3.了解分叉与混沌概念。
二、实验问题1.利用弦截法编程对方程x^5+x-1=0进行求解实验,并与二分法、牛顿切线法进行比较;2.方程f(x)=x^2+x-4=0在(0,4)内有唯一的实根,现构造以下三种迭代函数:(1)g1(x)=4-x^2,迭代初值x0=4;(2)g2(x)=4/(1+x),迭代初值x0=4;(3)g3(x)=x-(x^2+x-4)/(2x+1),迭代初值x0=4;分别用给出的3种迭代函数构造迭代数列x(k+1)=g1(x(k)),i=1,2,3,观察这些迭代数列是否收敛,若收敛能否收敛到方程f(x)=0的解。
除此之外,你还能构造出其他收敛的迭代吗?4.分别取不同的参数值r,做迭代数列x(n+1)=rx(n)(1-x(n)),n=0,1,2……,观察分叉与混沌现象。
步骤1:首先,分别取参数r为0,0.3,0.6,0.9,1.2,1.5,1.8,2.1,2.4,2.7, 3.0,3.3,3.6,3.9等14个值,按迭代序列迭代150步,分别产生14个迭代序列{x(k)},k=0,1,…,150;其次,分别取这14个迭代序列的后50个迭代值(x100,x101,…,x150),画在以r为横坐标的同一坐标面rox上,每一个r取值对应的迭代值点为一列。
步骤2:对(1)中图进行观察分析,容易发现:(1)当r为0,0.3,0.6,0.9,1.2,1.5,1.8,2.1,2.4,2.7时,每个r对应的50个迭代值凝聚在一点,这说明对这些r的取值所产生的迭代序列是收敛的。
(2)当r为3,3.3时,r对应的50个迭代值凝聚在两个点,这说明这些r值所对应的迭代序列不收敛,但凝聚在两个点附近;同时也说明当r在2.7和3之间取值时,对应的迭代序列从收敛到不收敛,轨道由一只分为两支开始出现分叉现象。
MATLAB课件:ch8_linear_and_nonlinear_equations

2
线性方程组直接解法
• 关于线性方程组的直接解法,如Gauss消去法 、选主元消去法、平方根法、追赶法等等, 在MATLAB中,只需用“\”就解决问题。它 内部实际包含着许许多多的自适应算法,如 对超定方程用最小二乘法,对欠定方程时它 将给出范数最小的一个解,解三对角阵方程 组时用追赶法等等。 格式: x=A\b
• 例:解方程组
0.4096x1 + 0.1234x2 + 0.3678x3 + 0.2943x4 = 0.4043
00..23264465xx11
+ +
0.3872 0.1920
x2 x2
+ +
0.4015x3 0.3781x3
+ +
0.1129x4 0.0643x4
= 0.1150 = 0.4240
0.1784x1 + 0.4002x2 + 0.2786x3 + 0.3927x4 = −0.2557
>> A=[.4096,.1234,.3678,.2943;.2246,.3872,.4015,.1129; .3645,.1920,.3781,.0643;.1784,.4002,.2786,.3927];
>> b=[0.4043 0.1550 0.4240 -0.2557]'; >> x = A\b; >> x’ ans =
-0.1819 -1.6630 2.2172 -0.4467
非线性方程数值解
• 格式: 最简求解语句 x=fsolve(Fun, x0) 一般求解语句 [x, f, flag, out]=fsolve(Fun, x0, OPTION)
matlab求解非线性方程组

非线性方程组求解1.mulStablePoint用不动点迭代法求非线性方程组的一个根function [r,n]=mulStablePoint(F,x0,eps)%非线性方程组:f%初始解:a%解的精度:eps%求得的一组解:r%迭代步数:nif nargin==2eps=1.0e-6;endx0 = transpose(x0);n=1;tol=1;while tol>epsr= subs(F,findsym(F),x0); %迭代公式tol=norm(r-x0); %注意矩阵的误差求法,norm为矩阵的欧几里德范数n=n+1;x0=r;if(n>100000) %迭代步数控制disp('迭代步数太多,可能不收敛!');return;endend2.mulNewton用牛顿法法求非线性方程组的一个根function [r,n]=mulNewton(F,x0,eps)if nargin==2eps=1.0e-4;endx0 = transpose(x0);Fx = subs(F,findsym(F),x0);var = findsym(F);dF = Jacobian(F,var);dFx = subs(dF,findsym(dF),x0);r=x0-inv(dFx)*Fx;n=1;tol=1;while tol>epsx0=r;Fx = subs(F,findsym(F),x0);dFx = subs(dF,findsym(dF),x0);r=x0-inv(dFx)*Fx; %核心迭代公式tol=norm(r-x0);n=n+1;if(n>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endend3.mulDiscNewton用离散牛顿法法求非线性方程组的一个根function [r,m]=mulDiscNewton(F,x0,h,eps)format long;if nargin==3eps=1.0e-8;endn = length(x0);fx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-fx)/h(i);endr=transpose(x0)-inv(J)*fx;m=1;tol=1;while tol>epsxs=r;fx = subs(F,findsym(F),xs);J = zeros(n,n);for i=1:nx1 = xs;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-fx)/h(i);endr=xs-inv(J)*fx; %核心迭代公式tol=norm(r-xs);m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endendformat short;4.mulMix用牛顿-雅可比迭代法求非线性方程组的一个根function [r,m]=mulMix(F,x0,h,l,eps)if nargin==4eps=1.0e-4;endn = length(x0);J = zeros(n,n);Fx = subs(F,findsym(F),x0);for i=1:nx1 = x0;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-Fx)/h(i);endD = diag(diag(J));C =D - J;inD = inv(D);H = inD*C;Hm = eye(n,n);for i=1:l-1Hm = Hm + power(H,i);enddr = Hm*inD*Fx;r = transpose(x0)-dr; m=1;tol=1;while tol>epsx0=r;Fx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-Fx)/h(i);endD = diag(diag(J));C =D - J;inD = inv(D);H = inD*C;Hm = eye(n,n);for i=1:l-1Hm = Hm + power(H,i);enddr = Hm*inD*Fx;r = x0-dr; %核心迭代公式tol=norm(r-x0);m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endend5.mulNewtonSOR用牛顿-SOR迭代法求非线性方程组的一个根function [r,m]=mulNewtonSOR(F,x0,w,h,l,eps)if nargin==5eps=1.0e-4;endn = length(x0);J = zeros(n,n);Fx = subs(F,findsym(F),x0);for i=1:nx1 = x0;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-Fx)/h(i);endD = diag(diag(J));L = -tril(J-D);U = -triu(J-D);inD = inv(D-w*L);H = inD*(D - w*D+w*L);;Hm = eye(n,n);for i=1:l-1Hm = Hm + power(H,i);enddr = w*Hm*inD*Fx;r = transpose(x0)-dr;m=1;tol=1;while tol>epsx0=r;Fx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-Fx)/h(i);endD = diag(diag(J));L = -tril(J-D);U = -triu(J-D);inD = inv(D-w*L);H = inD*(D - w*D+w*L);;Hm = eye(n,n);for i=1:l-1Hm = Hm + power(H,i);enddr = w*Hm*inD*Fx;r = x0-dr; %核心迭代公式tol=norm(r-x0);m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endend6.mulDNewton用牛顿下山法求非线性方程组的一个根function [r,m]=mulDNewton(F,x0,eps)%非线性方程组:F%初始解:x0%解的精度:eps%求得的一组解:r%迭代步数:nif nargin==2eps=1.0e-4;endx0 = transpose(x0);dF = Jacobian(F);m=1;tol=1;while tol>epsttol=1;w=1;Fx = subs(F,findsym(F),x0);dFx = subs(dF,findsym(dF),x0);F1=norm(Fx);while ttol>=0 %下面的循环是选取下山因子w的过程r=x0-w*inv(dFx)*Fx; %核心的迭代公式Fr = subs(F,findsym(F),r);ttol=norm(Fr)-F1;w=w/2;endtol=norm(r-x0);m=m+1;x0=r;if(m>100000) %迭代步数控制disp('迭代步数太多,可能不收敛!');return;endend7.mulGXF1用两点割线法的第一种形式求非线性方程组的一个根function [r,m]=mulGXF1(F,x0,x1,eps)format long;if nargin==3eps=1.0e-4;endx0 = transpose(x0);x1 = transpose(x1);n = length(x0);fx = subs(F,findsym(F),x0);fx1 = subs(F,findsym(F),x1);h = x0 - x1;J = zeros(n,n);for i=1:nxt = x1;xt(i) = x0(i);J(:,i) = (subs(F,findsym(F),xt)-fx1)/h(i);endr=x1-inv(J)*fx1;m=1;tol=1;while tol>epsx0 = x1;x1 = r;fx = subs(F,findsym(F),x0);fx1 = subs(F,findsym(F),x1);h = x0 - x1;J = zeros(n,n);for i=1:nxt = x1;xt(i) = x0(i);J(:,i) = (subs(F,findsym(F),xt)-fx1)/h(i);endr=x1-inv(J)*fx1;tol=norm(r-x1);m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endendformat short;8.mulGXF2用两点割线法的第二种形式求非线性方程组的一个根function [r,m]=mulGXF2(F,x0,x1,eps)format long;if nargin==3eps=1.0e-4;endx0 = transpose(x0);x1 = transpose(x1);n = length(x0);fx = subs(F,findsym(F),x0);fx1 = subs(F,findsym(F),x1);h = x0 - x1;J = zeros(n,n);xt = x1;xt(1) = x0(1);J(:,1) = (subs(F,findsym(F),xt)-subs(F,findsym(F),x1))/h(1);for i=2:nxt = x1;xt(1:i) = x0(1:i);xt_m = x1;xt_m(1:i-1) = x0(1:i-1);J(:,i) = (subs(F,findsym(F),xt)-subs(F,findsym(F),xt_m))/h(i);endr=x1-inv(J)*fx1;m=1;tol=1;while tol>epsx0 = x1;x1 = r;fx = subs(F,findsym(F),x0);fx1 = subs(F,findsym(F),x1);h = x0 - x1;J = zeros(n,n);xt = x1;xt(1) = x0(1);J(:,1) = (subs(F,findsym(F),xt)-subs(F,findsym(F),x1))/h(1);for i=2:nxt = x1;xt(1:i) = x0(1:i);xt_m = x1;xt_m(1:i-1) = x0(1:i-1);J(:,i) = (subs(F,findsym(F),xt)-subs(F,findsym(F),xt_m))/h(i);endr=x1-inv(J)*fx1;tol=norm(r-x1);m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endendformat short;9.mulVNewton用拟牛顿法求非线性方程组的一组解function [r,m]=mulVNewton(F,x0,A,eps)%方程组:F%方程组的初始解:x0% 初始A矩阵:A%解的精度:eps%求得的一组解:r%迭代步数:mif nargin==2A=eye(length(x0)); %A取为单位阵eps=1.0e-4;elseif nargin==3eps=1.0e-4;endendx0 = transpose(x0);Fx = subs(F, findsym(F),x0);r=x0-A\Fx;m=1;tol=1;while tol>epsx0=r;Fx = subs(F, findsym(F),x0);r=x0-A\Fx;y=r-x0;Fr = subs(F, findsym(F),r);z= Fr-Fx;A1=A+(z-A*y)*transpose(y)/norm(y); %调整A A=A1;m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endtol=norm(r-x0);end10.mulRank1用对称秩1算法求非线性方程组的一个根function [r,n]=mulRank1(F,x0,A,eps)if nargin==2l = length(x0);A=eye(l); %A取为单位阵eps=1.0e-4;elseif nargin==3eps=1.0e-4;endendfx = subs(F,findsym(F),x0);r=transpose(x0)-inv(A)*fx;n=1;tol=1;while tol>epsx0=r;fx = subs(F,findsym(F),x0);r=x0-inv(A)*fx;y=r-x0;fr = subs(F,findsym(F),r);z = fr-fx;A1=A+ fr *transpose(fr)/(transpose(fr)*y); %调整A A=A1;n=n+1;if(n>100000) %迭代步数控制disp('迭代步数太多,可能不收敛!');return;endtol=norm(r-x0);end11.mulDFP用D-F-P算法求非线性方程组的一组解function [r,n]=mulDFP(F,x0,A,eps)if nargin==2l = length(x0);B=eye(l); %A取为单位阵eps=1.0e-4;elseif nargin==3eps=1.0e-4;endendfx = subs(F,findsym(F),x0);r=transpose(x0)-B*fx;n=1;tol=1;while tol>epsx0=r;fx = subs(F,findsym(F),x0);r=x0-B*fx;y=r-x0;fr = subs(F,findsym(F),r);z = fr-fx;B1=B+ y*y'/(y'*z)-B*z*z'*B/(z'*B*z); %调整AB=B1;n=n+1;if(n>100000) %迭代步数控制disp('迭代步数太多,可能不收敛!');return;endtol=norm(r-x0);end12.mulBFS用B-F-S算法求非线性方程组的一个根function [r,n]=mulBFS(F,x0,B,eps)if nargin==2l = length(x0);B=eye(l); %B取为单位阵eps=1.0e-4;elseif nargin==3eps=1.0e-4;endendfx = subs(F,findsym(F),x0);r=transpose(x0)-B*fx;n=1;tol=1;while tol>epsx0=r;fx = subs(F,findsym(F),x0);r=x0-B*fx;y=r-x0;fr = subs(F,findsym(F),r);z = fr-fx;u = 1 + z'*B*z/(y'*z);B1= B+ (u*y*y'-B*z*y'-y*z'*B)/(y'*z); %调整B B=B1;n=n+1;if(n>100000) %迭代步数控制disp('迭代步数太多,可能不收敛!');return;endtol=norm(r-x0);end13.mulNumYT用数值延拓法求非线性方程组的一组解function [r,m]=mulNumYT(F,x0,h,N,eps)format long;if nargin==4eps=1.0e-8;endn = length(x0);fx0 = subs(F,findsym(F),x0);x0 = transpose(x0);J = zeros(n,n);for k=0:N-1fx = subs(F,findsym(F),x0);for i=1:nx1 = x0;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-fx)/h(i);endinJ = inv(J);r=x0-inJ*(fx-(1-k/N)*fx0);x0 = r;endm=1;tol=1;while tol>epsxs=r;fx = subs(F,findsym(F),xs);J = zeros(n,n);for i=1:nx1 = xs;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-fx)/h(i);endr=xs-inv(J)*fx; %核心迭代公式tol=norm(r-xs);m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endendformat short;14.DiffParam1用参数微分法中的欧拉法求非线性方程组的一组解function r=DiffParam1(F,x0,h,N)%非线性方程组:f%初始解:x0%数值微分增量步大小:h%雅可比迭代参量:l%解的精度:eps%求得的一组解:r%迭代步数:nx0 = transpose(x0);n = length(x0);ht = 1/N;Fx0 = subs(F,findsym(F),x0);for k=1:NFx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-Fx)/h(i);endinJ = inv(J);r = x0 - ht*inJ*Fx0;x0 = r;end15.DiffParam2用参数微分法中的中点积分法求非线性方程组的一组解function r=DiffParam2(F,x0,h,N)%非线性方程组:f%初始解:x0%数值微分增量步大小:h%雅可比迭代参量:l%解的精度:eps%求得的一组解:r%迭代步数:nx0 = transpose(x0);n = length(x0);ht = 1/N;Fx0 = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nxt = x0;xt(i) = xt(i)+h(i);J(:,i) = (subs(F,findsym(F),xt)-Fx0)/h(i);endinJ = inv(J);x1 = x0 - ht*inJ*Fx0;for k=1:Nx2 = x1 + (x1-x0)/2;Fx2 = subs(F,findsym(F),x2);J = zeros(n,n);for i=1:nxt = x2;xt(i) = xt(i)+h(i);J(:,i) = (subs(F,findsym(F),xt)-Fx2)/h(i);endinJ = inv(J);r = x1 - ht*inJ*Fx0;x0 = x1;x1 = r;end16.mulFastDown用最速下降法求非线性方程组的一组解function [r,m]=mulFastDown(F,x0,h,eps)format long;if nargin==3eps=1.0e-8;endn = length(x0);x0 = transpose(x0);m=1;tol=1;while tol>epsfx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h;J(:,i) = (subs(F,findsym(F),x1)-fx)/h;endlamda = fx/sum(diag(transpose(J)*J));r=x0-J*lamda; %核心迭代公式fr = subs(F,findsym(F),r);tol=dot(fr,fr);x0 = r;m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endendformat short;17.mulGSND用高斯牛顿法求非线性方程组的一组解function [r,m]=mulGSND(F,x0,h,eps)format long;if nargin==3eps=1.0e-8;endn = length(x0);x0 = transpose(x0);m=1;tol=1;while tol>epsfx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h;J(:,i) = (subs(F,findsym(F),x1)-fx)/h;endDF = inv(transpose(J)*J)*transpose(J);r=x0-DF*fx; %核心迭代公式tol=norm(r-x0);x0 = r;m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endendformat short;18.mulConj用共轭梯度法求非线性方程组的一组解function [r,m]=mulConj(F,x0,h,eps)format long;if nargin==3eps=1.0e-6;endn = length(x0);x0 = transpose(x0);fx0 = subs(F,findsym(F),x0);p0 = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)*(1+h);p0(:,i) = -(subs(F,findsym(F),x1)-fx0)/h;endm=1;tol=1;while tol>epsfx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h;J(:,i) = (subs(F,findsym(F),x1)-fx)/h;endlamda = fx/sum(diag(transpose(J)*J));r=x0+p0*lamda; %核心迭代公式fr = subs(F,findsym(F),r);Jnext = zeros(n,n);for i=1:nx1 = r;x1(i) = x1(i)+h;Jnext(:,i) = (subs(F,findsym(F),x1)-fr)/h;endabs1 = transpose(Jnext)*Jnext;abs2 = transpose(J)*J;v = abs1/abs2;if (abs(det(v)) < 1)p1 = -Jnext+p0*v;elsep1 = -Jnext;endtol=norm(r-x0);p0 = p1;x0 = r;m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endendformat short;19.mulDamp用阻尼最小二乘法求非线性方程组的一组解function [r,m]=mulDamp(F,x0,h,u,v,eps)format long;if nargin==5eps=1.0e-6;endFI = transpose(F)*F/2;n = length(x0);x0 = transpose(x0);m=1;tol=1;while tol>epsj = 0;fx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h;afx = subs(F,findsym(F),x1);J(:,i) = (afx-fx)/h;endFIx = subs(FI,findsym(FI),x0);for i=1:nx2 = x0;x2(i) = x2(i)+h;gradFI(i,1) = (subs(FI,findsym(FI),x2)-FIx)/h;ends=0;while s==0A = transpose(J)*J+u*eye(n,n);p = -A\gradFI;r = x0 + p;FIr = subs(FI,findsym(FI),r);if FIr<FIxif j == 0u = u/v;j = 1;elses=1;endelseu = u*v;j = 1;if norm(r-x0)<epss=1;endendendx0 = r;tol = norm(p);m=m+1;if(m>100000) %迭代步数控制disp('迭代步数太多,可能不收敛!');return;endendformat short;。
Matlab中常用的数学函数解析

Matlab中常用的数学函数解析Matlab是一个强大的数值计算和可视化软件,它提供了丰富的数学函数,方便用户进行各种数学运算和分析。
在本文中,我们将解析一些常用的Matlab数学函数,介绍其用法和应用场景。
一、求解方程和优化问题在科学和工程领域,求解方程和优化问题是常见的任务。
Matlab提供了许多函数用于这些目的,其中最常用的是solve和fmincon函数。
1. solve函数solve函数用于求解代数方程或方程组。
例如,我们想求解一个一元二次方程2x^2 + 3x - 5 = 0的根,可以使用solve函数:```syms xeqn = 2*x^2 + 3*x - 5 == 0;sol = solve(eqn, x);```solve函数返回一个包含根的结构体sol,我们可以通过sol.x获得根的值。
当然,solve函数也可以求解多元方程组。
2. fmincon函数fmincon函数是Matlab中的一个优化函数,用于求解有约束的最小化问题。
例如,我们希望找到一个函数f(x)的最小值,同时满足一些约束条件,可以使用fmincon函数:```x0 = [0.5, 0.5]; % 初始解A = [1, 2]; % 不等式约束系数矩阵b = 1; % 不等式约束右侧常数lb = [0, 0]; % 变量下界ub = [1, 1]; % 变量上界nonlcon = @mycon; % 非线性约束函数options = optimoptions('fmincon', 'Algorithm', 'sqp'); % 优化选项[x, fval] = fmincon(@myfun, x0, A, b, [], [], lb, ub, nonlcon, options);```其中,myfun为目标函数,mycon为非线性约束函数。
fmincon函数返回最优解x和最小值fval。
第7章 MATLAB解方程与函数极值

Jacobi迭代法的 迭代法的MATLAB函数文件 函数文件Jacobi.m如下: 如下: 迭代法的 函数文件 如下 function [y,n]=jacobi(A,b,x0,eps) if nargin==3 eps=1.0e-6; elseif nargin<3 error return end D=diag(diag(A)); %求A的对角矩阵 求 的对角矩阵 L=-tril(A,-1); %求A的下三角阵 求 的下三角阵 U=-triu(A,1); %求A的上三角阵 求 的上三角阵 B=D\(L+U); f=D\b; y=B*x0+f; n=1; %迭代次数 迭代次数 while n y=B*x0+f; n=n+1; end
迭代法求解下列线性方程组。 例7-6 用Gauss-Serdel迭代法求解下列线性方程组。设迭代 迭代法求解下列线性方程组 初值为0,迭代精度为10 初值为 ,迭代精度为 -6。 在命令中调用函数文件gauseidel.m,命令如下: 在命令中调用函数文件 ,命令如下: A=[10,-1,0;-1,10,-2;0,-2,10]; b=[9,7,6]'; [x,n]=gauseidel(A,b,[0,0,0]',1.0e-6)
分解求解例7-1中的线性方程组 例7-4 用Cholesky分解求解例 中的线性方程组。 分解求解例 中的线性方程组。 命令如下: 命令如下: A=[2,1,-5,1;1,-5,0,7;0,2,1,-1;1,6,-1,-4]; b=[13,-9,6,0]'; R=chol(A) ??? Error using ==> chol Matrix must be positive definite 命令执行时,出现错误信息,说明A为非正定矩阵。 命令执行时,出现错误信息,说明 为非正定矩阵。 为非正定矩阵
matlab实现牛顿迭代法求解非线性方程组

matlab实现牛顿迭代法求解非线性方程组已知非线性方程组如下3*x1-cos(x2*x3)-1/2=0x1^2-81*(x2+0.1)^2+sin(x3)+1.06=0exp(-x1*x2)+20*x3+(10*pi-3)/3=0求解要求精度达到0.00001 ————————————————————————————————首先建立函数fun储存方程组编程如下将fun.m保存到工作路径中:function f=fun(x);%定义非线性方程组如下%变量x1 x2 x3%函数f1 f2 f3syms x1 x2 x3f1=3*x1-cos(x2*x3)-1/2;f2=x1^2-81*(x2+0.1)^2+sin(x3)+1.06;f3=exp(-x1*x2)+20*x3+(10*pi-3)/3;f=[f1 f2 f3]; ————————————————————————————————建立函数dfun用来求方程组的雅克比矩阵将dfun.m保存到工作路径中:function df=dfun(x);%用来求解方程组的雅克比矩阵储存在dfun中f=fun(x);df=[diff(f,'x1');diff(f,'x2');diff(f,'x3')];df=conj(df'); ————————————————————————————————编程牛顿法求解非线性方程组将newton.m保存到工作路径中:function x=newton(x0,eps,N);con=0;%其中x0为迭代初值eps为精度要求N为最大迭代步数con用来记录结果是否收敛for i=1:N;f=subs(fun(x0),{'x1' 'x2' 'x3'},{x0(1) x0(2) x0(3)});df=subs(dfun(x0),{'x1' 'x2' 'x3'},{x0(1) x0(2) x0(3)});x=x0-f/df;for j=1: length(x0);il(i,j)=x(j);endif norm(x-x0)<epscon=1;break;endx0=x;end%以下是将迭代过程写入txt文档文件名为iteration.txtfid=fopen('iteration.txt','w');fprintf(fid,'iteration');for j=1:length(x0)fprintf(fid,' x%d',j);endfor j=1:ifprintf(fid,'\n%6d ',j);for k=1:length(x0)fprintf(fid,' %10.6f',il(j,k));endendif con==1fprintf(fid,'\n计算结果收敛!');endif con==0fprintf(fid,'\n迭代步数过多可能不收敛!');endfclose(fid); ————————————————————————————————运行程序在matlab中输入以下内容newton([0.1 0.1 -0.1],0.00001,20) ————————————————————————————————输出结果——————————————————————————————————————————在iteration中查看迭代过程 iteration x1 x2 x3.mulStablePoint用不动点迭代法求非线性方程组的一个根function [r,n]=mulStablePoint(F,x0,eps)%非线性方程组:f%初始解:a%解的精度:eps%求得的一组解:r%迭代步数:nif nargin==2eps=1.0e-6;endx0 = transpose(x0);n=1;tol=1;while tol>epsr= subs(F,findsym(F),x0); %迭代公式tol=norm(r-x0); %注意矩阵的误差求法,norm为矩阵的欧几里德范数n=n+1;x0=r;if(n>100000) %迭代步数控制disp('迭代步数太多,可能不收敛!');return;endendx0=[0 0 0];[r,n,data]=budong(x0);disp('不动点计算结果为')x1=[1 1 1];x2=[2 2 2];[x,n,data]=new_ton(x0);disp(’初始值为0,牛顿法计算结果为:’)[x,n,data]=new_ton(x1);disp('初始值为1,牛顿法计算结果为:')[x,n,data]=new_ton(x2);disp ('初始值为2,牛顿法计算结果为:')budong.mfunction[r,n,data]=budong(x0, tol)if nargin=-1tol=1e-3:endx1=budong fun(x0);n=1;while(norm(x1-x0))tol)&(n500)x0=x1;x1=budong_fun(x0);n=n+1:data(:,n)=x1;endr=x1:new_ton.mfunction [x,n,data]=new_ton(x0, tol)if nargin=-1tol=1e-8;endx1=x0-budong_fun(x0)/df1(x0);n=1;while (norm(x1-x0))tol)x0=x1;x1=x0-budong_fun(x0)/df1(x0);n=n+1;data(:,n)=x1;endx=x1;budong_fun.mfunction f=budong_fun(x)f(1)=3* x(1)-cos(x(2)*x(3))-1/2;f(2)=x(1)^2-81*(x(2)+0.1)^2+sin(x(3))+1.06; f(3)=exp(-x(1)*x(2))+20* x(3)+10* pi/3-1;f=[f(1)*f(2)*f(3)];df1.mfunction f=df1(x)f=[3sin(x(2)*x(3))*x(3) sin(x(2)*x(3))*x(2) 2* x(1)-162*(x(2)+0.1)cos(x(3))exp(-x(1)*x(2))*(-x(2))exp(-x(1)*x(2))*(-x(1))20]; 结果:不动点计算结果为r=1.0e+012*NaN -Inf 5.6541初始值为0,牛顿法计算结果为:x=0.5000 -0.0000 -0.5236初始值为1,牛顿法计算结果为:x=0.5000 0.0000 -0.5236初始值为2,牛顿法计算结果为:x=0.5000 0.0000 -0.5236。
matlab中fsolve函数的用法

matlab中fsolve函数的用法在MATLAB中,fsolve函数用于求解非线性方程组。
它的基本语法如下:[x, fval, exitflag] = fsolve(fun, x0)其中,fun是一个函数句柄,表示要求解的非线性方程组。
x0是一个初始猜测值,表示方程组的解的初始估计。
x是求解得到的方程组的解向量。
fval是方程组在x处的函数值向量。
exitflag是一个整数,表示求解的终止条件。
以下是一些使用fsolve函数的例子,用于说明其用法:1.求解一元非线性方程:```matlabx0=1;[x, fval, exitflag] = fsolve(fun, x0);```在这个例子中,我们定义了一个匿名函数fun,表示非线性方程2*sin(x) - x = 0。
然后我们使用初始猜测值x0 = 1来调用fsolve函数求解方程。
得到的解存储在x变量中,函数值存储在fval变量中。
2.求解多元非线性方程组:```matlabx0=[1;2];[x, fval, exitflag] = fsolve(fun, x0);```在这个例子中,我们定义了一个匿名函数fun,表示非线性方程组{x1^2 + x2^2 - 1 = 0, x1 - x2 = 0}。
然后我们使用初始猜测向量x0 = [1; 2]来调用fsolve函数求解方程组。
得到的解存储在x变量中,函数值存储在fval变量中。
3.使用辅助函数求解方程:```matlabx0=1;[x, fval, exitflag] = fsolve(fun, x0);function y = myfun(x)y=x^2-2;end```在这个例子中,我们定义了一个辅助函数myfun,表示非线性方程x^2 - 2 = 0。
然后我们使用初始猜测值x0 = 1来调用fsolve函数求解方程。
得到的解存储在x变量中,函数值存储在fval变量中。
需要注意的是,fsolve函数对于非线性方程组的求解是基于数值方法的,所以有时候可能无法找到方程组的解,或者找到的解可能是局部最优解。
matlab求线性方程组的解

matlab求线性方程组的解求解线性方程分为两种方法–直接法和迭代法常见的方法一共有8种直接法Gauss消去法Cholesky分解法迭代法Jacobi迭代法Gauss-Seidel迭代法超松弛迭代法共轭梯度法Bicg迭代法Bicgstab迭代法这里我从计算代码的角度来解释一下,代码按以下顺序给出。
把方程组直接带入已知条件,就可以得到答案。
适用条件Gauss消去法:求解中小规模线性方程(阶数不过1000),一般用于求系数矩阵稠密而且没有任何特殊结构的线性方程组Cholesky分解法:对称正定方程优先使用,系数矩阵A是n 阶对称正定矩阵Jacobi迭代法非奇异线性方程组,分量的计算顺序没有关系Gauss-Seidel迭代法与Jacobi迭代法相似,但计算的分量不能改变超松弛迭代法Jacobi迭代法和Gauss-Seidel迭代法的加速版,由Gauss-Seidel迭代法改进而来,速度较快共轭梯度法需要确定松弛参数w,只有系数矩阵具有较好的性质时才可以找到最佳松弛因子。
但好处是不用确定任何参数,他是对称正定线性方程组的方法也是求解大型稀疏线性方程组最热门的方法Bicg迭代法本质是用双共轭梯度求解线性方程组的方法,对求解的方程没有正定性要求Bicgstab迭代法本质是用稳定双共轭梯度求解线性方程组的方法,对求解的方程没有正定性要求Gauss消去法第一、二个函数ltri、utri是一定要掌握的,后面的几乎每个函数都要用到ltri简单来说,当Ly=bb,L(非奇异下三角矩阵)已知求yfunction y =ltri(L,b)n=size(b,1);y=zeros(n,1);for j =1:n-1y(j)=b(j)/L(j,j);b(j+1:n)=b(j+1:n)-y(j)*L(j+1:n,j); endy(n)=b(n)/L(n,n);utri简单来说,当Ux=yy,U(非奇异上三角矩阵)已知求xfunction x =utri(U,y)n=size(y,1);x=zeros(n,1);for j = n:-1:2x(j)=y(j)/U(j,j);y(1:j-1)=y(1:j-1)-x(j)*U(1:j-1,j);endx(1)=y(1)/U(1,1);gauss算法,计算时粘贴过去就好function[L,U]=gauss(A)n=size(A,1);for k =1:n-1A(k+1:n,k)=A(k+1:n,k)/A(k,k);A(k+1:n,k+1:n)=A(k+1:n,k +1:n)-A(k+1:n,k)*A(k,k+1:n);endL=tril(A,-1)+eye(n);U=triu(A);使用例子已经知道一个线性方程组,这里我就不写出数学形式了,A是系数矩阵,直接把上面写好的函数复制过来在运算就可以。
matlab多项式运算和方程组的求解

二、多项式(1)多项式的表达式和创建MATLAB中使用一维向量来表示多项式,将多项式的系数按照降幂次序存放在向量中。
例如:多项式2X4+3X3+5X2+1可以用向量[2 3 5 0 1]来表示。
例2-1,输入多项式3x4-10x3+15x+1000在命令窗口输入:p=[3 -10 0 15 1000]输出结果如下:(2)多项式求根1、多项式的根找出多项式的根,即使多项式为零的值,MATLAB提供了特定的函数roots求解多项式的根。
例2-2,求解多项式3x4-10x3+15x+1000的根。
在命令窗口输入:输出的结果如下:2、由根创建多项式在MATLAB中,无论是一个多项式,还是它的根,都是以向量形式存储的,按照惯例,多项式是行向量,根是列向量。
因此当我们给出一个多项式时,MATLAB 也可以构造出相应的多项式,这个过程需要使用函数poly。
例2-3输入及结果(3)多项式四则运算1,多项式的加法MATLAB并未提供一个特别的函数,如果两个多项式向量大小相同,那么多项式相加时就和标准的数组加法相同。
例2-4在命令窗口输入:a=[1 3 5 7 9];b=[1 2 4 6 8];c=a+b输出结果:C(x)=2x4+5x3+9x2+13x+172、多项式的乘法运算在MATLAB中,函数conv支持多项式乘法(运算法则为执行两个数组的卷积)。
例2-5在命令窗口输入:a=[1 3 5 7 9]; b=[1 2 4 6 8];c=conv(a,b)输出的结果如下:C(x)=x8+5x7+15x6+35x5+69x4+100x3+118x2+110x+72PS:conv指令只能进行两个多项式的乘法,两个以上的多项式的乘法需要重复使用conv。
3、多项式的除法运算在MATLAB中,由函数deconv完成的。
例2-6在命令窗口输入:c=[1 5 15 35 69 100 118 110 72];b=[1 2 4 6 8]; [a,r]=deconv (c,b)输出的结果:(4)多项式微分1、多项式的导数MATLAB为多项式求导提供了函数polyder。
MATLAB解方程与函数极值

(2) QR分解 对矩阵X进行QR分解,就是把X分解为一个正交矩阵Q和 一个上三角矩阵R的乘积形式。QR分解只能对方阵进 行。 [Q,R]=qr(X):产生一个一个正交矩阵Q和一个上三角矩 阵R,使之满足X=QR。 [Q,R,E]=qr(X):产生一个一个正交矩阵Q、一个上三角 矩阵R以及一个置换矩阵E,使之满足XE=QR。 实现QR分解后,线性方程组Ax=b的解x=R\(Q\b)或 x=E(R\(Q\b))。
例7-3 用QR分解求解例7-1中的线性方程组。 命令如下: A=[2,1,-5,1;1,-5,0,7;0,2,1,-1;1,6,-1,-4]; b=[13,-9,6,0]'; [Q,R]=qr(A); x=R\(Q\b) 或采用QR分解的第2种格式,命令如下: [Q,R,E]=qr(A); x=E*(R\(Q\b))
Jacobi迭代法的MATLAB函数文件Jacobi.m如下: function [y,n]=jacobi(A,b,x0,eps) if nargin==3 eps=1.0e-6; elseif nargin<3 error return end D=diag(diag(A)); %求A的对角矩阵 L=-tril(A,-1); %求A的下三角阵 U=-triu(A,1); %求A的上三角阵 B=D\(L+U); f=D\b; y=B*x0+f; n=1; %迭代次数 while norm(y-x0)>=eps x0=y; y=B*x0+f; n=n+1; end
求解 Ly b y L \ b 汇总 A LL Ax b LLx b x L \ ( L \ b) 求解 x L \ y Lx y
例7-4 用Cholesky分解求解例7-1中的线性方程组。 命令如下: A=[2,1,-5,1;1,-5,0,7;0,2,1,-1;1,6,-1,-4]; b=[13,-9,6,0]'; R=chol(A) ??? Error using ==> chol Matrix must be positive definite 命令执行时,出现错误信息,说明A为非正定矩 阵。
Matlab求解线性方程组、非线性方程组

Matlab求解线性方程组、非线性方程组姓名:罗宝晶学号:1012208015 专业:材料学院高分子系第一部分数值计算Matlab求解线性方程组AX=B或XA=B在MATLAB中,求解线性方程组时,主要采用除法运算符“/”和“\”。
如:X=A\B表示求矩阵方程AX=B的解;X=B/A表示矩阵方程XA=B的解。
对方程组X=A\B,要求A和B用相同的行数,X和B有相同的列数,它的行数等于矩阵A的列数,方程X=B/A同理。
如果矩阵A不是方阵,其维数是m×n,则有:m=n 恰定方程,求解精确解;m>n 超定方程,寻求最小二乘解;m<n 不定方程,寻求基本解,其中至多有m个非零元素。
针对不同的情况,MATLAB将采用不同的算法来求解。
一.恰定方程组恰定方程组由n个未知数的n个方程构成,方程有唯一的一组解,其一般形式可用矩阵,向量写成如下形式:Ax=b 其中A是方阵,b是一个列向量;在线性代数中,最常用的方程组解法有:(1)利用Cramer公式来求解法;(2)利用矩阵求逆解法,即x=A-1b;(3)利用Gaussian消去法;(4)利用Lu法求解。
一般来说,对维数不高,条件数不大的矩阵,上面四种解法所得的结果差别不大。
前三种解法的真正意义是在其理论上,而不是实际的数值计算。
MATLAB 中,出于对算法稳定性的考虑,行列式及逆的计算大都在Lu分解的基础上进行。
在MATLAB中,求解这类方程组的命令十分简单,直接采用表达式:x=A\b。
在MATLAB的指令解释器在确认变量A非奇异后,就对它进行Lu分解,并最终给出解x;若矩阵A的条件数很大,MATLAB会提醒用户注意所得解的可靠性。
如果矩阵A是奇异的,则Ax=b的解不存在,或者存在但不唯一;如果矩阵A接近奇异时,MATLAB将给出警告信息;如果发现A是奇异的,则计算结果为inf,并且给出警告信息;如果矩阵A是病态矩阵,也会给出警告信息。
此外还要注意:在求解方程时,尽量不要用inv(A)*b命令,而应采用A\b的解法。
《MATLAB程序设计教程(第二版)》第6章__MATLAB解方程与最优化问题求解

6.1.2 迭代解法 迭代解法非常适合求解大型系数矩阵的方程组。在数 值分析中,迭代解法主要包括 Jacobi迭代法、 Gauss-Serdel迭代法、超松弛迭代法和两步迭代法。
1.Jacobi迭代法 对于线性方程组Ax=b,如果A为非奇异方阵,即 aii≠0(i=1,2,…,n),则可将A分解为A=D-L-U,其中 D为对角阵,其元素为A的对角元素,L与U为A的 下三角阵和上三角阵,于是Ax=b化为: x=D-1(L+U)x+D-1b 与之对应的迭代公式为: x(k+1)=D-1(L+U)x(k)+D-1b 这就是Jacobi迭代公式。如果序列{x(k+1)}收敛于x, 则x必是方程Ax=b的解。
(3) Cholesky分解 如果矩阵X是对称正定的,则Cholesky分解将矩阵X分 解成一个下三角矩阵和上三角矩阵的乘积。设上三 角矩阵为R,则下三角矩阵为其转置,即X=R'R。
MATLAB函数chol(X)用于对矩阵X进行Cholesky分解, 其调用格式为: R=chol(X):产生一个上三角阵R,使R'R=X。若X为非 对称正定,则输出一个出错信息。 [R,p]=chol(X):这个命令格式将不输出出错信息。当X 为对称正定的,则p=0,R与上述格式得到的结果相 同;否则p为一个正整数。如果X为满秩矩阵,则R 为一个阶数为q=p-1的上三角阵,且满足 R'R=X(1:q,1:q)。 实现Cholesky分解后,线性方程组Ax=b变成R‘Rx=b, 所以x=R\(R’\b)。
Gauss-Serdel迭代法的MATLAB函数文件gauseidel.m 如下:
function [y,n]=gauseidel(A,b,x0,eps) if nargin==3 eps=1.0e-6; elseif nargin<3 error return end D=diag(diag(A)); %求A的对角矩阵 L=-tril(A,-1); %求A的下三角阵 U=-triu(A,1); %求A的上三角阵 G=(D-L)\U; f=(D-L)\b; y=G*x0+f; n=1; %迭代次数 while norm(y-x0)>=eps x0=y; y=G*x0+f; n=n+1; end
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Matlab求解线性方程组、非线性方程组姓名:罗宝晶学号:15 专业:材料学院高分子系第一部分数值计算Matlab求解线性方程组AX=B或XA=B在MATLAB中,求解线性方程组时,主要采用除法运算符“/”和“\”。
如:X=A\B表示求矩阵方程AX=B的解;X=B/A表示矩阵方程XA=B的解。
对方程组X=A\B,要求A和B用相同的行数,X和B有相同的列数,它的行数等于矩阵A的列数,方程X=B/A同理。
如果矩阵A不是方阵,其维数是m×n,则有:m=n 恰定方程,求解精确解;m>n 超定方程,寻求最小二乘解;m<n 不定方程,寻求基本解,其中至多有m个非零元素。
针对不同的情况,MATLAB将采用不同的算法来求解。
一.恰定方程组恰定方程组由n个未知数的n个方程构成,方程有唯一的一组解,其一般形式可用矩阵,向量写成如下形式:Ax=b 其中A是方阵,b是一个列向量;在线性代数中,最常用的方程组解法有:(1)利用Cramer公式来求解法;(2)利用矩阵求逆解法,即x=A-1b;(3)利用Gaussian消去法;(4)利用Lu法求解。
一般来说,对维数不高,条件数不大的矩阵,上面四种解法所得的结果差别不大。
前三种解法的真正意义是在其理论上,而不是实际的数值计算。
MATLAB 中,出于对算法稳定性的考虑,行列式及逆的计算大都在Lu分解的基础上进行。
在MATLAB中,求解这类方程组的命令十分简单,直接采用表达式:x=A\b。
在MATLAB的指令解释器在确认变量A非奇异后,就对它进行Lu分解,并最终给出解x;若矩阵A的条件数很大,MATLAB会提醒用户注意所得解的可靠性。
如果矩阵A是奇异的,则Ax=b的解不存在,或者存在但不唯一;如果矩阵A接近奇异时,MATLAB将给出警告信息;如果发现A是奇异的,则计算结果为inf,并且给出警告信息;如果矩阵A是病态矩阵,也会给出警告信息。
此外还要注意:在求解方程时,尽量不要用inv(A)*b命令,而应采用A\b的解法。
因为后者的计算速度比前者快、精度高,尤其当矩阵A的维数比较大时。
另外,除法命令的适用行较强,对于非方阵A,也能给出最小二乘解。
二.超定方程组对于方程组Ax=b,A为n×m矩阵,如果A列满秩,且n>m。
则方程组没有精确解,此时称方程组为超定方程组。
线性超定方程组经常遇到的问题是数据的曲线拟合。
对于超定方程,在MATLAB中,利用左除命令(x=A\b)来寻求它的最小二乘解;还可以用广义逆来求,即x=pinv(A),所得的解不一定满足Ax=b,x只是最小二乘意义上的解。
左除的方法是建立在奇异值分解基础之上,由此获得的解最可靠;广义逆法是建立在对原超定方程直接进行householder变换的基础上,其算法可靠性稍逊与奇异值求解,但速度较快;例子:求解超定方程组A=[2 -1 3;3 1 -5;4 -1 1;1 3 -13]A=2 -1 33 1 -54 -1 11 3 -13b=[3 0 3 -6]’;rank(A)ans=3x1=A\bx1=1.00002.00001.0000x2=pinv(A)*bx2=1.00002.00001.0000A*x1-bans=1.0e-014-0.0888-0.0888-0.1332可见x1并不是方程Ax=b的精确解,用x2=pinv(A)*b所得的解与x1相同。
二.欠定方程组欠定方程组未知量个数多于方程个数,但理论上有无穷个解。
MATLAB将寻求一个基本解,其中最多只能有m个非零元素。
特解由列主元qr分解求得。
例子:解欠定方程组A=[1 -2 1 1;1 -2 1 -1;1 -2 1 5]A=1 -2 1 11 -2 1 -11 -2 1 -11 -2 1 5b=[1 -1 5]’x1=A\bWarning:Rank deficient,rank=2 tol=4.6151e-015x1=1.0000x2=pinv(A)*bx2=-0.00000.00001.0000四.方程组的非负最小二乘解在某些条件下,所求的线性方程组的解出现负数是没有意义的。
虽然方程组可以得到精确解,但却不能取负值解。
在这种情况下,其非负最小二乘解比方程的精确解更有意义。
在MATLAB中,求非负最小二乘解常用函数nnls,其调用格式为:(1)X=nnls(A,b)返回方程Ax=b的最小二乘解,方程的求解过程被限制在x 的条件下;(2)X=nnls(A,b,TOL)指定误差TOL来求解,TOL的默认值为TOL=max(size(A))*norm(A,1)*eps,矩阵的-1范数越大,求解的误差越大;(3)[X,W]=nnls(A,b) 当x(i)=0时,w(i)<0;当下x(i)>0时,w(i)0,同时返回一个双向量w。
例子:求方程组的非负最小二乘解A=[3.4336 -0.5238 0.6710-0.5238 3.2833 -0.73020.6710 -0.7302 4.0261];b=[-1.000 1.5000 2.5000];[X,W]=nnls(A,b)X=0.65630.6998W=-3.6820-0.0000-0.0000x1=A\bx1=-0.35690.57440.7846A*X-bans=1.12580.1437-0.1616ans=1.0e-0.15-0.22200.4441下面再举几个用MATLAB解方程的例子1、对于多项式p(x)=x3-6x2-72x-27,求多项式p(x)=0的根,可用多项式求根函数roots(p),其中p为多项式系数向量,即>>p =[1,-6,-72,-27]p =1.00 -6.00 -72.00 -27.00p是多项式的MATLAB描述方法,我们可用poly2str(p,'x')函数,来显示多项式的形式:>>px=poly2str(p,'x')px =x^3 - 6 x^2 - 72 x – 27多项式的根解法如下:>> format rat %以有理数显示>> r=roots(p)r =2170/179-648/113-769/19802、在MATLAB中,求解用符号表达式表示的代数方程可由函数solve实现,其调用格式为:solve(s,v):求解符号表达式s的代数方程,求解变量为v。
例如,求方程(x+2)x=2的解,解法如下:>> x=solve('(x+2)^x=2','x')x =.1得到符号解,具有缺省精度。
如果需要指定精度的解,则:>> x=vpa(x,3)x =.6983、使用fzero或fsolve函数,可以求解指定位置(如x0)的一个根,格式为:x=fzero(fun,x0)或x=fsolve(fun,x0)。
例如,求方程0.8x+atan(x)- =0在x0=2附近一个根,解法如下:>> fu=@(x)0.8*x+atan(x)-pi;>> x=fzero(fu,2)x =2.4482或>> x=fsolve('0.8*x+atan(x)-pi',2)x =2.4482当然了,对于该方程也可以用第二种方法求解:>> x=solve('0.8*x+atan(x)-pi','x')x =2.对于第一个例子,也可以用第三种方法求解:>> F=@(x)x^3-6*x^2-72*x-27F =@(x)x^3-6*x^2-72*x-27>> x=fzero(F,10)x =12.1229对于第二个例子,也可以用第三种方法:>> FUN=@(x)(x+2)^x-2FUN =@(x)(x+2)^x-2>> x=fzero(FUN,1)x =0.6983综上所述,可将常用的matlab解方程组的方法总结如下:1、对于代数方程组Ax=b(A为系数矩阵,非奇异)的求解,MATLAB中有两种方法:(1)x=inv(A)*b —采用求逆运算解方程组;(2)x=A\b —采用左除运算解方程组。
例:x1+2x2=82x1+3x2=13>>A=[1,2;2,3];b=[8;13];>>x=inv(A)*bx =2.003.00>>x=A\bx =2.003.00;即二元一次方程组的解x1和x2分别是2和3。
2、用matlab解多次的方程组,有符号解法,方法是:先解出符号解,然后用vpa(F,n)求出n位有效数字的数值解.具体步骤如下:第一步:定义变量syms x y z ...;第二步:求解[x,y,z,...]=solve('eqn1','eqn2',...,'eqnN','var1','var2',...'varN');第三步:求出n位有效数字的数值解x=vpa(x,n);y=vpa(y,n);z=vpa(z,n);...。
如:解二(多)元二(高)次方程组:x^2+3*y+1=0y^2+4*x+1=0解法如下:>>syms x y;>>[x,y]=solve('x^2+3*y+1=0','y^2+4*x+1=0');>>x=vpa(x,4);>>y=vpa(y,4);结果是:x =1.635+3.029*i1.635-3.029*i-.283-2.987y =1.834-3.301*i1.834+3.301*i-.3600-3.307。
二元二次方程组,共4个实数根。
3、用matlab解高次方程组(非符号方程组)基本方法是:solve(s1,s2,…,sn,v1,v2,…,vn),即求表达式s1,s2,…,sn组成的方程组,求解变量分别v1,v2,…,vn。
具体例子如下:x^2 + x*y + y = 3x^2 - 4*x + 3 = 0解法:>> [x,y] = solve('x^2 + x*y + y = 3','x^2 - 4*x + 3 = 0')运行结果为x =1 3y =1 -3/2即x等于1和3;y等于1和-1.5或>>[x,y] = solve('x^2 + x*y + y = 3','x^2 - 4*x + 3= 0','x','y')x =1 3y =1 -3/2结果一样,二元二方程都是4个实根。