广东省2020年中考数学模拟试题(含答案)
2020年广东省中考数学模拟试卷数学1-含答案(教研室.密 )
2020年广东省中考数学模拟试卷说明:1.本试卷共4页,满分120分.考试时间100分钟.2.试卷的选择题和非选择题都在答题卡上作答,不能答在试卷上;要作图(含辅助线) 或画表,先用铅笔画,再用黑色字迹的钢笔或签字笔描黑.一、选择题(本大题共10小题,每小题3分,共30分)1.3-的相反数是 ( ). A . -3 B . 3 C . 13-D . 132.下列图形中,是中心对称图形,但不是轴对称图形的是 ( ).A .B .C .D .3.某公司开发一个新的项目,总投入约91 000 000 000元,此数据用科学记数法表示为( ).A . 79.110⨯元 B. 89.110⨯元 C. 111091.0⨯元 D. 109.110⨯元 4.下列运算正确的是( ).A .3a +2b =5abB .a 3·a 2=a 6C .a 3÷a 2=aD .(3a )2=3a 2 5.如图,已知直线AB ∥CD ,∠C =100°,∠A =30°,则∠E 的 度数为( ).A .30°B .60°C .70°D .100° 6.下列一元二次方程中,有两个相等实数根的是( ).A .9x 2-6x +1=0B .2x 2-4x +3=0C .x 2-8=0D .5x +2=3x 2 7.某校篮球队13名同学的身高如下表:身高/cm 175 180 182 185 188 人数/个15421则该校篮球队A .182,180 B .180,180 C .180,182 D .188,182 8. 若一个多边形的内角和等于720°,则这个多边形的边数是 ( ).A .5B .6C .7D .8 9.如图,点A 、B 、C 在⊙O 上,∠ACB =30°,则sin ∠AOB 的值是. A . B .C .D .10.如图,正方形ABCD 的边长为4,点P 、Q 分别是CD 、AD 的中点,动点E 从A 向点B 运动,到点B 时停止运动;同时,动点F 从点P 出发,沿P →D →Q 运动,点E 、F 的运动速度相同.设点E的运动路程为x,△AEF的面积为y,能大致刻画y与x的函数关系的图象是().二、填空题(本大题共6小题,每小题4分,共24分)11.分解因式:23xy x-= .12.不等式组⎪⎩⎪⎨⎧<-≥+.321,01xxx的解集是__________.13. 一次函数y kx b=+与正比例函数3y x=的图象平行且经过点(1,﹣1),则b的值为.14. 在半径为2cm的圆中,圆心角为120o的扇形的弧长是cm.15. 如图,在⊙O中,CD⊥AB于E,若∠BAD=30°,且BE=2,则CD=.16. 如图,在圆心角为90°的扇形OAB中,半径OA=4,C为的中点,D,E分别是OA,OB的中点,则图中阴影部分的面积为.第15题图第16题图三、解答题(一)(本大题共3小题,每小题6分,共18分)17.计算:(3.14-π)0-12-|-3|+4sin 60° .18.先化简,再求值:212)211(2+++÷+-xxxx,其中3=x.19.如图:△ABC中,∠C=90°,AC<BC,D为BC上一点,且到A、B两点的距离相等. (1)用直尺和圆规,作出点D的位置(不写作法,只保留作图痕迹);(2)连接AD,若∠B=37°,求∠CAD的度数.·20.阅读对学生的成长有着深远的影响,某中学为了解学生每周课余阅读的时间,在本校随机抽取了若干名学生进行调查,并依据调查结果绘制了以下不完整的统计图表.请根据图表中的信息,解答下列问题:(1)表中的a =______,b =______,中位数落在________组,将频数分布直方图补全; (2)估计该校2000名学生中,每周课余阅读时间不足0.5小时的学生大约有多少名? (3)E 组的4人中,有1名男生和3名女生,该校计划在E 组学生中随机选出2人向全校同学作读书心得报告,则抽取的2名学生刚好是1名男生和1名女生的概率为___________.21.A 、B 两地相距80千米,甲由A 地去B 地,1小时后,乙用1.5倍的速度从A 地出发追甲,追到B 地时,甲已早到20分钟,求甲、乙的速度分别为多少?22.如图,山坡上有一根旗杆AB ,旗杆底部B 点到山脚C 点的距离BC 为6 3 m,斜坡BC 的坡度i =1∶ 3.小明在山脚的平地F 处测量旗杆的高,点C 到测角仪EF 的水平距离CF =1 m ,从E 处测得旗杆顶部A 的仰角为45°,旗杆底部B 的仰角为20°.(1)求坡角∠BCD ;(2)求旗杆AB 的高度.(参考数值:sin 20°≈0.34,cos 20°≈0.94,tan 20°≈0.36)组别 时间/时 频数(人数)频率 A 0≤t ≤0.5 6 0.15 B 0.5≤t ≤1 a 0.3 C 1≤t ≤1.5 10 0.25 D 1.5≤t ≤2 8 b E 2≤t ≤2.54 0.1 合计123.如图,已知直线12y x =与双曲线ky x=交于A 、B 两点,点B 的坐标为(4,2)--, C 为第一象限内双曲线k y x =上一点,且点C 在直线12y x =的上方.(1)求双曲线的函数解析式; (2)直接写出不等式12k x x >的解集 (3)若△AOC 的面积为6,求点C 的坐标.24.如图,AB 、CD 为⊙O 的直径,弦AE ∥CD ,连接BE 交CD 于点F ,过点E 作直线EP 与CD 的延长线交于点P ,使∠PED =∠C . (1)求证:PE 是⊙O 的切线; (2)求证:ED 平分∠BEP ; (3)若⊙O 的直径为10,tan ∠C =21,求PD 的长.4、如图,抛物线421162142+--=x x y 与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴相交于点C ,顶点为D .动点P 从A 点出发沿线段AB 以每秒2个单位长度的速度向终点B运动;同时动点Q 从B 点出发沿线段BC 以每秒1个单位长度的速度向终点C 运动.设运动的时间为t 秒.(1)写出A ,B ,C 三点的坐标和抛物线顶点D 的坐标; (2)连接PC ,求当t=3时△PQC 的面积; (3)连接AD ,当t 为何值时,PQ ∥AD ; (4)当t 为何值时,△PQB 为等腰三角形?.。
2020年广东省中考数学全真模拟试卷一含答案
2020年广东省中考数学全真模拟试卷一数学(本卷满分120分,考试时间90分钟)一、选择题(本大题共10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的.1.﹣的绝对值是()A.2B.C.﹣D.﹣22.下列图形中是中心对称图形的是()A.B.C.D.3.据统计,某住宅楼30户居民五月份最后一周每天实行垃圾分类的户数依次是:27,30,29,25,26,28,29,那么这组数据的中位数和众数分别是()A.25和30B.25和29C.28和30D.28和294.我国倡导的“一带一路”建设将促进我国与世界一些国家的互利合作,根据规划“一带一路”地区覆盖总人口为4 400 000 000人,这个数用科学记数法表示为()A.44×108B.4.4×108C.4.4×109D.4.4×10105.在平面直角坐标系中,点P(﹣3,﹣5)关于原点对称的点的坐标是()A.(3,﹣5)B.(﹣3,5)C.(3,5)D.(﹣3,﹣5)6.不等式3(x﹣1)≤5﹣x的非负整数解有()A.1个B.2个C.3个D.4个7.下列运算正确的是()A.(2a2)2=2a4B.6a8÷3a2=2a4C.2a2•a=2a3D.3a2﹣2a2=18.如图,一次函数y=k1x+b的图象与反比例函数y=的图象相交于A(2,3),B(6,1)两点,当k1x+b<时,x的取值范围为()A.x<2B.2<x<6C.x>6D.0<x<2或x>69.如图,线段AC的垂直平分线交线段AB于点D,∠A=50°,则∠BDC=()A.50°B.100°C.120°D.130°10.如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A.B.2C.D.2二、填空题(本大题共7小题,每小题4分,共28分)11.分解因式:3x2﹣6x+3=.12.一个正多边形的每个内角等于108°,则它的边数是.13.如图,已知AB∥CD,AD与BC相交于点O.若=,AD=10,则AO=.14.为创建“国家生态园林城市”,某小区在规划设计时,在小区中央设置一块面积为1200平方米的矩形绿地,并且长比宽多40米.设绿地宽为x米,根据题意,可列方程为.15.关于x的一元二次方程x2+2x+m=0有两个相等的实数根,则m的值是.16.如图,在正方形ABCD中,AD=2,把边BC绕点B逆时针旋转30°得到线段BP,连接AP并延长交CD于点E,连接PC,则三角形PCE的面积为.17.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2 019个图形共有个○.三、解答题(本大题共3小题,每小题6分,共18分)18.计算:+(﹣)﹣1+|1﹣|﹣4sin 45°.19.解分式方程:﹣1=.20.在△ABC中,∠A=90°.(1)请在图1中作出BC边上的中线(保留作图痕迹,不写作法);(2)如图2,设BC边上的中线为AD,求证:BC=2AD.四、解答题(本大题共3小题,每小题8分,共24分)21.如图,在Rt△ABC中,∠ACB=90°,D、E分别是AB、AC的中点,连接CD,过E作EF∥DC交BC的延长线于F.(1)证明:四边形CDEF是平行四边形;(2)若四边形CDEF的周长是25 cm,AC的长为5 cm,求线段AB的长度.22.如图,某市郊外景区内一条笔直的公路l经过A,B两个景点,景区管委会又开发了风景优美的景点C.经测量,C位于A的北偏东60°的方向上,C位于B 的北偏东30°的方向上,且AB=10 km.(1)求景点B与C的距离;(2)为了方便游客到景点C游玩,景区管委会准备由景点C向公路l修一条距离最短的公路,不考虑其他因素,求出这条最短公路的长(结果保留根号).23.为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计.现从该校随机抽取n名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项).并根据调查得到的数据绘制成了如图所示的两幅不完整的统计图.由图中提供的信息,解答下列问题:(1)求n的值;(2)若该校学生共有1 200人,试估计该校喜爱看电视的学生人数;(3)若调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名学生,求恰好抽到2名男生的概率.五、解答题(本大题共2小题,每小题10分,共20分)24.如图,在以线段AB为直径的⊙O上取一点C,连接AC、BC.将△ABC沿AB 翻折后得到△ABD.(1)试说明点D在⊙O上;(2)在线段AD的延长线上取一点E,使AB2=AC•AE.求证:BE为⊙O的切线;(3)在(2)的条件下,分别延长线段AE,CB相交于点F,若BC=2,AC=4,求线段EF的长.25.(1)课本情境如图,已知矩形AOBC,AB=6 cm,BC=16 cm,动点P从点A出发,以3 cm/s的速度向点O运动,直到点O为止;动点Q同时从点C出发,以2cm/s的速度向点B运动,与点P同时结束运动,出发时,点P和点Q之间的距离是10 cm;(2)逆向发散当运动时间为2 s时,P,Q两点的距离为多少?当运动时间为4 s时,P,Q两点的距离为多少?(3)拓展应用若点P沿着AO→OC→CB移动,点P,Q分别从A,C同时出发,点Q从点C移动到点B 停止时,点P随点Q的停止而停止移动,求经过多长时间△POQ的面积为12 cm2?参考答案1.B2.C3.D4.C5.C6.C7.C8.D9.B10.C11.3(x﹣1)212.五13.414.x(x+40)=1 200 15.116.9﹣517.6 05818.解:原式=2﹣3+﹣1﹣4×=2﹣3+﹣1﹣2=﹣4.19.解:两边都乘3(x﹣1),得3x﹣3(x﹣1)=2x,解得x=1.5,检验:x=1.5时,3(x﹣1)=1.5≠0,所以分式方程的解为x=1.5.20.(1)解:如图1,AD为所作.(2)证明:如图2,延长AD到E,使ED=AD,连接EB,EC,∵CD=BD,AD=ED,∴四边形ABEC为平行四边形,∵∠CAB=90°,∴四边形ABEC为矩形,∴AE=BC,∴BC=2AD.21.(1)证明:∵D,E分别是AB,AC的中点,F是BC延长线上的一点,∴ED是Rt△ABC的中位线,∴ED∥FC.BC=2DE,又EF∥DC,∴四边形CDEF是平行四边形.(2)解:∵四边形CDEF是平行四边形,∴DC=EF,∵DC是Rt△ABC斜边AB上的中线,∴AB=2DC,∴四边形DCFE的周长=AB+BC,∵四边形DCFE的周长为25 cm,AC的长5 cm,∴BC=25﹣AB,∵在Rt△ABC中,∠ACB=90°,∴AB2=BC2+AC2,即AB2=(25﹣AB)2+52,解得AB=13 cm. 22.解:(1)如图,由题意得∠CAB=30°,∠ABC=90°+30°=120°,∴∠C=180°﹣∠CAB﹣∠ABC=30°,∴∠CAB=∠C=30°,∴BC=AB=10 km,即景点B,C相距的路程为10 km.(2)如图,过点C作CE⊥AB于点E,∵BC=10 km,C位于B的北偏东30°的方向上,∴∠CBE=60°,在Rt△CBE中,CE=km.23.解:(1)n=5÷10%=50.(2)样本中喜爱看电视的人数为50﹣15﹣20﹣5=10(人),1 200×=240,所以估计该校喜爱看电视的学生人数为240人.(3)画树状图如图:共有12种等可能的结果数,其中恰好抽到2名男生的结果数为6,所以恰好抽到2名男生的概率==.24.解:(1)∵AB为⊙O的直径,∴∠C=90°,∵将△ABC沿AB翻折后得到△ABD,∴△ABC≌△ABD,∴∠ADB=∠C=90°,∴点D在以AB为直径的⊙O上.(2)∵△ABC≌△ABD,∴AC=AD,∵AB2=AC•AE,∴AB2=AD•AE,即=,∵∠BAD=∠EAB,∴△ABD∽△AEB,∴∠ABE=∠ADB=90°,∵AB为⊙O的直径,∴BE是⊙O的切线.(3)∵AD=AC=4,BD=BC=2,∠ADB=90°,∴AB===2,∵=,∴=,解得DE=1,∴BE==,∵四边形ACBD内接于⊙O,∴∠FBD=∠FAC,即∠FBE+∠DBE=∠BAE+∠BAC,又∵∠DBE+∠ABD=∠BAE+∠ABD=90°,∴∠DBE=∠BAE,∴∠FBE=∠BAC,又∠BAC=∠BAD,∴∠FBE=∠BAD,∴△FBE∽△FAB,∴=,即==,∴FB=2FE,在Rt△ACF中,∵AF2=AC2+CF2,∴(5+EF)2=42+(2+2EF)2,整理,得3EF2﹣2EF﹣5=0,解得EF=﹣1(舍去)或EF=,∴EF=.25.解:(1)设运动时间为t秒时,如图,过点P作PE⊥BC于E,由运动知,AP=3t,CQ=2t,PE=6,EQ=16﹣3t﹣2t=16﹣5t,∵点P和点Q之间的距离是10 cm,∴62+(16﹣5t)2=100,∴t=或s.故答案为s或s(2)由运动知AP=3×2=6 cm,CQ=2×2=4 cm,∴四边形APEB是矩形,∴PE=AB=6,BE=6,∴EQ=BC﹣BE﹣CQ=16﹣6﹣4=6,根据勾股定理得,当t=2 s时,P,Q两点的距离为6cm;同理:当t=4 s时,P,Q两点的距离为2cm.(3)当点P在AO上时,S△POQ===12,解得t=4.当点P在OC上时,S△POQ===12,解得t=6或﹣(舍弃).当点P在CB上时,S△POQ===12,解得t=18>8(不符合题意舍弃),综上所述,经过4 s或6 s时,△POQ的面积为12 cm2.。
2020年广东中考数学模拟试卷(含答案和解析)
24.如图,抛物线 y=ax2+2x+c(a<0)与 x 轴交于点 A 和点 B(点 A 在原点的左侧,点 B 在原点的右侧), 与 y 轴交于点 C,OB=OC=3.
(1)求该抛物线的函数解析式; (2)如图 1,连接 BC,点 D 是直线 BC 上方抛物线上的点,连接 OD,CD,OD 交 BC 于点 F,当 S△COF: S△CDF=3:2 时,求点 D 的坐标.
2020 年广东名校中考数学学科线上一模试卷(二十)
一.选择题(共 10 小题)
1.﹣2 的倒数是( )
A. 2
B. ﹣2
【答案】D
1
C.
2
1
D. ﹣
2
【解析】 【分析】
根据倒数的定义,若两个数的乘积是 1,我们就称这两个数互为倒数.
【详解】解:∵﹣2×(﹣ 1 )=1, 2
∴﹣2 的倒数是﹣ 1 . 2
【点睛】本题主要考查了平行线的性质、平行线的传递性、等边三角形的性质等知识,当然也可延长 BA 与 l2 交于点 E,运用平行线的性质及三角形外角的性质解决问题.
6.某公司销售部有 7 个职员,他们 5 月份的工资分别是 5300 元、5800 元、5300 元、5500 元、5800 元、6500
故选:D.
【点睛】主要考查倒数的定义,要求熟练掌握.需要注意的是倒数的性质:负数的倒数是负数,正数的倒
广东省2020届中考数学仿真模拟试卷 (含解析)
广东省2020届中考数学仿真模拟试卷一、选择题(本大题共10小题,共30.0分)1.−2014的相反数是()A. 2014B. 12014C. −12014D. −20142.一组数据2,4,6,4,8的中位数为()A. 2B. 4C. 6D. 83.点P(−3,−5)关于x轴对称的点为P1,则P1的坐标为()A. (−3,5)B. (3,−5)C. (−3,−5)D. (3,5)4.一个多边形有5条边,则它的内角和是()A. 540°B. 720°C. 900°D. 1080°5.式子√1−x在实数范围内有意义,则x的取值范围是()A. x≥1B. x≤1C. x≥−1D. x≤−16.如图,在△ABC中,E、D、F分别是AB、BC、CA的中点,AB=6,AC=4,则四边形AEDF的周长是()A. 10B. 20C. 30D. 407.将如图所示的抛物线向右平移1个单位长度,再向上平移3个单位长度后,得到的抛物线解析式是()A. y=(x−1)2+1B. y=(x+1)2+1C. y=2(x−1)2+1D. y=2(x+1)2+18.不等式组{12−2x<203x−6≤0的解集是()A. −4<x≤6B. x≤−4或x>2C. −4<x≤2D. 2≤x<49.如图,正方形ABCD中,AB=1,M,N分别是AD,BC边的中点,沿BQ将△BCQ折叠,若点C恰好落在MN上的点P处,则PQ的长为()A. 12B. √33C. 13D. √310.二次函数y=ax2+bx+c(a≠0)的图象如图.对称轴x=−1.下列结论:①4ac−b2<0;②4a+c<2b;③3b+2c<0.其中正确结论的个数是()A. 3个B. 2个C. 1个D. 0个二、填空题(本大题共7小题,共28.0分)11.分解因式:2ax−4ay=______.12.若单项式5x4y和25x n y m是同类项,则m+n的值为______.13.已知√2a+8+|b−√3|=0,则ab=______.14.若2x+3y的值为−2,则4x+6y+2的值为______ .BC长为半径画弧,两弧15.如图,分别以线段BC的两个端点为圆心,以大于12分别相交于D、E两点,直线DE交BC于点F,点A是直线DE上的一点,连接AB、AC,若AB=12cm,∠C=60°,则CF=______cm.16.如图,有一直径是√2米的圆形铁皮,现从中剪出一个圆周角是90°的最大扇形ABC,则:(1)AB的长为______ 米;(2)用该扇形铁皮围成一个圆锥,所得圆锥的底面圆的半径为______米.17.如图,在平面直角坐标系中,A(4,0)、B(0,−3),以点B为圆心、2为半径的⊙B上有一动点P.连接AP,若点C为AP的中点,连接OC,则OC的最小值为______.三、计算题(本大题共1小题,共6.0分)18.先化简,再求值:(x+3y)2+(x+2y)(x−2y)−2x2,其中x=2,y=−1.四、解答题(本大题共7小题,共56.0分)19.我区某校数学兴趣小组在本校学生中开展了以“垃圾分类知多少”为主题的专题调查活动,采取随机抽样的方式进行问卷调查.问卷调查的结果分为四个等级:“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,并根据调查所得到的结果绘制了如下不完整的统计图:根据以上信息解答下列问题:(1)求本次被调查的学生人数;(2)补全条形统计图;(3)若该校有学生1500人,请根据调查结果,估计这些学生中“比较了解”垃圾分类知识的人数.20.如图,∠A=∠D=90°,AB=CD,AC,BD相交于点E.求证:(1)△ABC≌△DCB;(2)△EBC是等腰三角形.21.设a,b,c是△ABC的三条边,关于x的方程12x2+√bx+c−12a=0有两个相等的实数根,方程3cx+2b=2a的根为x=0.(1)试判断△ABC的形状.(2)若a,b为方程x2+mx−3m=0的两个根,求m的值.22.如图,⊙O是△ABC的外接圆,AC是直径,弦BD=BA,EB⊥DC,交DC的延长线于点E.(1)求证:BE是⊙O的切线;(2)当sin∠BCE=34,AB=3时,求AD的长.23.为迎接“六一”儿童节,某儿童品牌玩具专卖店购进了A、B两种玩具,其中A类玩具的进价比B玩具的进价每个多3元,经调查:用900元购进A类玩具的数量与用750元购进B类玩具的数量相同(1)求A、B两类玩具的进价分别是每个多少元?(2)该玩具店共购进了A、B两类玩具共100个,若玩具店将每个A类玩具定价为30元出售,每个B类玩具定价25元出售,且全部售出后所获得利润不少于1080元,则商店至少购进A类玩具多少个?24.如图,在平面直角坐标系中,短形ABCD的顶点B、C在x轴的正半轴上,AB=8,BC=6,(x>0)的图象经过点E,分别与AB、CD交于点对角线AC、BD相交于点E,反比例函数y=kxF,G.(1)若OC=8,求k的值;(2)连接EG,若BF−BE=2,求△CEG的面积.25.如图,抛物线y=−x2+5x+n经过点A(1,0),与y轴交于点B.(1)求抛物线的解析式;(2)求抛物线的对称轴和顶点坐标;(3)P是y轴正半轴上一点,且△PAB是以AB为腰的等腰三角形,试求点P的坐标.-------- 答案与解析 --------1.答案:A解析:本题主要考查了相反数,解题的关键是熟记相反数的定义.利用相反数的定义求解即可.解:−2014的相反数是2014.故选A.2.答案:B解析:本题属于基础题,考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.解:一共5个数据,从小到大排列此数据为:2,4,4,6,8,故这组数据的中位数是4.故选B.3.答案:A解析:解:根据平面直角坐标系中对称点的规律可知,点P(−3,−5)关于x轴的对称点为P1(−3,5).故选:A.根据平面直角坐标系中对称点的规律,关于x轴对称的点,横坐标相同,纵坐标互为相反数解答即可.此题主要考查了平面直角坐标系中对称点的规律.解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数.4.答案:A解析:解:∵多边形有5条边,∴它的内角和=(5−2)×180°=540°,故选:A.根据多边形的内角和公式即可得到结论.本题考查了多边形的内角和外角,熟记多边形的内角和公式是解题的关键.5.答案:B解析:【分析】本题考查了二次根式有意义的条件,利用被开方数是非负数得出不等式是解题关键.根据被开方数是非负数,可得答案.【解答】解:由√1−x在实数范围内有意义,得1−x≥0.解得x≤1,故选:B.6.答案:A解析:本题考查了三角形中位线定理,中点的定义以及四边形周长的定义.根据三角形的中位线平行于第三边,并且等于第三边的一半,以及中点的定义可得DE=AF=12AC,DF=AE=12AB,再根据四边形的周长的定义计算即可得解.解:∵在△ABC中,E、D、F分别是AB、BC、CA的中点,∴DE=AF=12AC=2,DF=AE=12AB=3,∴四边形AEDF的周长是(2+3)×2=10.故选:A.7.答案:C解析:本题考查了二次函数图象与几何变换,利用平移规律:左加右减,上加下减是解题关键.根据平移规律,可得答案.解:根据图像可知函数解析式为:y=2x2−2,则平移后的解析式为:y=2(x−1)2+1.故选C.8.答案:C解析:本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.解:解不等式12−2x<20,得:x>−4,解不等式3x−6≤0,得:x≤2,则不等式组的解集为−4<x≤2.故选:C.9.答案:B解析:本题主要考查了折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.由折叠的性质知∠BPQ=∠C=90°,利用直角三角形中的cos∠PBN=BN:PB=1:2,可求得∠PBN=60°,∠PBQ=30°,从而求出PQ=PBtan30°=1√3.3∠PBC,BC=PB=2BN=1,∠BPQ=∠C=90°,解:∵∠CBQ=∠PBQ=12∴cos∠PBN=BN:PB=1:2,∴∠PBN=60°,∠PBQ=30°,∴PQ=PBtan30°=1√3.3故选:B.10.答案:B解析:解:∵抛物线与x轴有交点,∴△>0,∴b2−4ac>0,∴4ac−b2<0,故①正确,∵x=−2时,y>0,∴4a−2b+c>0,∴4a+c>2b,故②错误,∴对称轴x=−1,=−1,∴−b2a∴b=2a,∴y=ax2+2ax+c,∵x=1时,y<0,∴3a+c<0,∴6a+2c<0,∴3b+2c<0,故③正确.故选:B.根据二次函数的性质以及图象信息,一一判断即可.本题考查二次函数的性质,解题的关键是读懂图象信息,灵活运用所学知识解决问题,属于中考常考题型.11.答案:2a(x−2y)解析:解:2ax−4ay=2a(x−2y).故答案为:2a(x−2y).直接找出公因式2a,进而分解因式得出答案.此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.答案:5解析:解:∵单项式5x4y和25x n y m是同类项,∴n=4,m=1,∴m+n=4+1=5.故填:5.根据同类项的定义中相同字母的指数也相同,得出m、n的值,即可求出m+n的值.此题考查了同类项;同类项的定义所含字母相同;相同字母的指数相同即可求出答案.13.答案:−4√3解析:解:∵√2a+8+|b−√3|=0,∴2a+8=0,b−√3=0,解得a=−4,b=√3,ab=−4√3,故答案为−4√3.先根据非负数的性质求出a,b的值,代入求得ab的值.本题考查了非负数的性质,几个非负数的和为0,这几个数都为0.14.答案:−2解析:解:∵2x+3y=−2,∴原式=2(2x+3y)+2=2×(−2)+2=−2,故答案为:−2.将2x+3y=−2整体代入原式=2(2x+3y)+2即可得出答案.本题主要考查代数式的求值,熟练掌握整体代入的思想是解题的关键.15.答案:6解析:解:由作图可知:AE垂直平分线段BC,∴AB=AC,BF=CF,∴∠B=∠C=60°,∵AB=12cm,∠BAF=90°−60°=30°,∴BF=12AB=6(cm)故答案为:6.首先证明AB=AC,BF=CF,在Rt△ABF中求出BF即可解决问题.本题考查作图−基本作图,线段的垂直平分线的性质等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.16.答案:(1)1;(2)14解析:解:(1)∵∠BAC=90°,∴BC为⊙O的直径,即BC=√2,∴AB=√22BC=1;故答案为:1(2)设所得圆锥的底面圆的半径为r,根据题意得2πr=90⋅π⋅1180,解得r=14.故答案为:14.(1)根据圆周角定理由∠BAC=90°得BC为⊙O的直径,即BC=√2,根据等腰直角三角形的性质得AB=1;(2)由于圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,则2πr=90⋅π⋅1,然后解180方程即可.本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了圆周角定理.17.答案:1.5解析:本题考查了图形与坐标的性质、勾股定理、直角三角形斜边上的中线等于斜边的一半的性质、圆的性质、两点之间线段最短,确定出OC最小时点C的位置是解题关键,也是本题的难点.先确定点C的运动路径是:以D为圆心,以DC1为半径的圆,当O、C、D共线时,OC的长最小,先求⊙D的半径为1,说明D是AB的中点,根据直角三角形斜边中线是斜边一半可得OD=2.5,所以OC的最小值是1.5.解:当点P运动到AB的延长线上时,即如图中点P1,C1是AP1的中点,当点P在线段AB上时,C2是中点,取C1C2的中点为D,点C的运动路径是以D为圆心,以DC1为半径的圆,当O、C、D共线时,OC的长最小,设线段AB交⊙B于Q,Rt△AOB中,OA=4,OB=3,∴AB=5,∵⊙B的半径为2,∴BP1=2,AP1=5+2=7,∵C1是AP1的中点,∴AC1=3.5,AQ=5−2=3,∵C2是AQ的中点,∴AC2=C2Q=1.5,C1C2=3.5−1.5=2,即⊙D的半径为1,∵AD=1.5+1=2.5=1AB,2∴OD=1AB=2.5,2∴OC=2.5−1=1.5,故答案为:1.5.18.答案:解:原式=x²+6xy+9y²+x²−4y²−2x²=6xy+5y²当x=2,y=−1时,原式=6×2×(−1)+5×(−1)²=−12+5=−7解析:本题主要考查整式的混合运算.先算乘方及乘法,再合并同类项,最后把x、y的值代入计算.19.答案:解:(1)本次被调查的学生人数是36÷18%=200(人).答:本次被调查的学生人数是200人;(2)比较了解的人数是200−40−36−4=120(人).;=900(人).(3)比较了解垃圾分类的人数是1500×120200答:这些学生中“比较了解”垃圾分类知识的人数是900人.解析:(1)根据基本了解的人数是36,所占的百分比是18%,据此即可求得总人数;(2)利用总人数减去其它组的人数即可求得比较了解的人数,从而补全直方图;(3)利用总人数1500乘以对应的百分比即可求得.本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.20.答案:解:(1)∵∠A=∠D=90°,∴在Rt△ABC和Rt△DCB中,{BC=CBAB=DC,∴Rt△ABC≌Rt△DCB(HL).(2)∵Rt△ABC≌Rt△DCB,∴∠ACB=∠DBC,∴BE=CE,∴△EBC是等腰三角形.解析:本题考查了全等三角形的判定与性质以及等腰三角形的判定,证明三角形全等是解题的关键.(1)由“HL”可证Rt△ABC≌Rt△DCB;(2)由全等三角形的性质可得∠ACB=∠DBC,可得BE=CE,可得结论.21.答案:解:(1)∵12x2+√bx+c−12a=0有两个相等的实数根,∴△=(√b)2−4×12(c−12a)=0,整理得a+b−2c=0①,又∵3cx+2b=2a的根为x=0,∴a=b②,把②代入①得a=c,∴a=b=c,∴△ABC为等边三角形;(2)a,b是方程x2+mx−3m=0的两个根,∴方程x2+mx−3m=0有两个相等的实数根∴△=m2−4×(−3m)=0,即m2+12m=0,∴m1=0,m2=−12.当m=0时,原方程的解为x=0(不符合题意,舍去),∴m=−12.解析:(1)因为方程有两个相等的实数根即△=0,由△=0可以得到一个关于a,b的方程,再结合方程3cx+2b=2a的根为x=0,代入即可得到一关于a,b的方程,联立即可得到关于a,b的方程组,可求出a,b的关系式;(2)根据(1)求出的a,b的值,可以关于m的方程,解方程即可求出m.本题主要考查了一元二次方程的判别式与方程的解得定义,是一个比较简单的问题.22.答案:解:(1)证明:连结OB,OD,在△ABO和△DBO中,{AB=BD BO=BO OA=OD,∴△ABO≌△DBO(SSS),∴∠DBO=∠ABO,∵∠ABO=∠OAB=∠BDC,∴∠DBO=∠BDC,∴OB//ED,∵BE⊥ED,∴EB⊥BO,∴BE是⊙O的切线;(2)∵AC是直径,∴∠ABC=90°,∵∠OBA+∠OBC=∠EBC+∠OBC=90°,∴∠OBA=∠EBC,∴∠BAC=∠EBC,∵BE⊥DE,∴∠E=90°,∴∠BCE+∠EBC=∠BAC+∠ACB=90°,∵∠BAC=∠EBC,∴∠ACB=∠BCE,∵sin∠BCE=34,∴sin∠ACB=34,∵AB=3,∴AC=4,∵∠BDE=∠BAC,∴sin∠DBE=34,∵BD=AB=3,∴DE=94,∴BE=√BD2−DE2=3√74,∵∠CBE=∠BAC=∠BDC,∠E=∠E,∴△BDE∽△CBE ,∴BE CE =DE BE, ∴CE =74, ∴CD =12,∴AD =√AC 2−CD 2=3√72.解析:(1)连接OB ,OD ,证明△ABO≌△DBO ,推出OB//DE ,继而判断BE ⊥OB ,可得出结论;(2)根据圆周角定理得到∠ABC =90°,根据余角的性质得到∠ACB =∠BCE ,求得AC =4,根据勾股定理得到BE =√BD 2−DE 2=3√74,根据相似三角形的性质得到CE =74,根据勾股定理即可得到结论.本题考查了圆的切线性质与判定,全等三角形的性质与判定,锐角三角函数的定义等知识,综合程度较高,需要学生综合运用知识. 23.答案:解:(1)设B 类玩具的进价为x 元,则A 类玩具的进价是(x +3)元由题意得900x+3=750x ,解得x =15,经检验x =15是原方程的解.所以15+3=18(元)答:A 类玩具的进价是18元,B 类玩具的进价是15元;(2)设购进A 类玩具a 个,则购进B 类玩具(100−a)个,由题意得:2a +10(100−a)≥1080,解得a ≥40.答:至少购进A 类玩具40个.解析:本题考查了分式方程的应用和一元一次不等式的应用.解决本题的关键是读懂题意,找到符合题意的数量关系.准确的解分式方程或不等式是需要掌握的基本计算能力.(1)设B 的进价为x 元,则a 的进价是(x +3)元;根据用900元购进A 类玩具的数量与用750元购进B 类玩具的数量相同这个等量关系列出方程即可;(2)设购进A 类玩具a 个,则购进B 类玩具(100−a)个,结合“玩具店将每个A 类玩具定价为30元出售,每个B 类玩具定价25元出售,且全部售出后所获得利润不少于1080元”列出不等式并解答. 24.答案:解:(1)∵矩形ABCD ,AB =8,BC =6,∴∠ABC =∠BCD =90°,∴AC =BD =10,∴BE=DE=12BD=5,AE=CE=12AC=5,∴AE=DE=CE=BE=5,作EH⊥BC,垂足为H,∴BH=CH=12BC=3,∴EH=4,∵OC=8,∴OH=OC−CH=5,∴点E的坐标为(5,4),代入y=kx,得k=5×4=20;(2)∵BF−BE=2,BE=5,∴BF=7,设F(a,7),则E(a+3,4),∵反比例函数y=kx(x>0)的图象经过点E、F,∴7a=4(a+3),解得a=4,∴F(4,7),∴k=28,∴反比例函数解析式为y=28x,当x=4+6=10时,y=2810=145,∴G(10,145),∴CG=145,作EM⊥DC,垂足为M,∵EH⊥BC,∴∠EHC=∠HCM=∠CME=90°,∴四边形EHCM是矩形,∴EM=CH=3,∴S△CEG=12CG×EM=12×145×3=215.解析:本题考查了反比例函数系数k的几何意义:在反比例函数y=kx(k≠0)图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.也考查了反比例函数的性质.(1)先利用矩形的性质求出点E的坐标(5,4),然后把E点坐标代入y=kx即可求得k的值;(2)因为BF−BE=2,BE=5,所以BF=7,设F(a,7),E(a+3,4),利用反比例函数图象上点的坐标得到7a=4(a+3),解得a=4,从而得到反比例函数解析式为y=28x,然后确定G点坐标,最后利用三角形面积公式计算△CEG 的面积.25.答案:解:(1)由题意得,−1+5+n =0,解得,n =−4,∴抛物线的解析式为y =−x 2+5x −4;(2)y =−x 2+5x −4=−(x −52)2+94, 抛物线对称轴为:x =52,顶点坐标为 (52,94);(3)∵点A 的坐标为(1,0),点B 的坐标为(0,−4),∴OA =1,OB =4,在Rt △OAB 中,AB =√OA 2+OB 2=√17,①当PB =PA 时,PB =√17,∴OP =PB −OB =√17−4,此时点P 的坐标为(0,√17−4),②当PA =AB 时,OP =OB =4,此时点P 的坐标为(0,4).解析:本题考查的是待定系数法求函数解析式、定义三角形的性质,掌握待定系数法求出函数解析式的一般步骤、灵活运用分情况讨论思想是解题的关键.(1)把点A 的坐标代入解析式,计算即可;(2)利用配方法把一般式化为顶点式,根据二次函数的性质解答;(3)分PB =PA 、PA =AB 两种情况,根据等腰三角形的性质解答.。
2020年广东中考数学模拟试卷(附答案和解析)
23.如图,正方形 ABCD 的边长为 1,对角线 AC、BD 交 于点 O,E 是 BC 延长线上一点,且 AC=EC,连接 AE 交 BD 于点 P. (1)求∠DAE 的度数; (2)求 BP 的长.
第 3页 共 4页
五、解答题(三)(本大题共 2 小题,每小题 10 分,共 20 分) 24.如图,已知一次函数 y = kx+b(k ≠ 0) 的图象与 x 轴、 y 轴分别交于点 A、B 两点,且与反比例 函数 y = m (m ≠ 0) 的图象在第一象限第一象限内的部分交于点 C , CD 垂直于 x 轴于点 D ,其中
2020年广东名校中考数学学科线上一模 试卷(二)
说 明:本试卷共 4 页,满分 120 分,考试时间 90 分钟.
注意事项: 1. 选择题、填空题和解答题的答案写在答题卡上,若写在试卷上不计成绩. 2. 作图(含辅助线)和列表时用铅笔(如 2B 铅笔),要求痕迹清晰.
一、选择题(本大题共 10 个小题,每小题 3 分,共 30 分)
九年级数学答案第 3 页(共 5 页)
即1+1√2
=
√2−BP BP
∴BP=1
┅┅┅┅┅┅┅8 分
五、解答题(三)
24.(1)答: A( - 2,0) , C ( 2, 4) ┅┅┅┅┅2 分(写对一个点的坐标得 1 分)
(2) y = x +2 , y = 8 x
┅┅┅┅┅6 分 (求对一个表达式得 2 分)
四、解答题(二)(本大题共 3 小题,每小题 8 分,共 24 分)
21.如图是一块直角三角形木板,其中∠C=90°,AC=1.5m,面积为 1.5m2.一 位木匠想把它加工成一个面积最大且无拼接的正方形桌面,∠C 是这个正方形 的一个内角. (1)请你用尺规为这位木匠在图中作出符合要求的正方形; (2)求加工出的这个正方形桌面的边长.
2020广东省中考数学模拟试卷(一)(含答案和解析)
2020广东省中考数学模拟试卷(一)说明:1. 全卷共4页,满分为120分,考试用时为90分钟.2. 答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡上填写自己的准考证号、姓名、考场号、座位号.用2B铅笔把对应该号码的标号涂黑.3. 选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上.4. 非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5. 考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题共10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的.1.-16的相反数是()A.6B.-6C.16D.-162.港珠澳大桥被英国《卫报》誉为“新世界七大奇迹”之一,它是世界总体跨度最长的跨海大桥,全长55 000米.数字55 000用科学记数法表示为()A.5.5×104B.55×104C.5.5×105D.0.55×1063.已知∠α=60°32',则∠α的余角是()A.29°28'B.29°68'C.119°28'D.119°68'4.一元二次方程x2+px-2=0的一个根为x=2,则p的值为()A.1B.2C.-1D.-25.某校女子排球队12名队员的年龄分布如下表所示:年龄(岁) 13 14 15 16人数(人) 1 2 5 4则该校女子排球队12名队员年龄的众数、中位数分别是()A.13,14B.14,15C.15,15D.15,146.下列图形既是中心对称图形又是轴对称图形的是()A B C D图象的一个交点坐标为(-1,2),则另一个交点的坐7.若正比例函数y=-2x与反比例函数y=kx标为()A.(2,-1)B.(1,-2)C.(-2,-1)D.(-2,1)8.下列运算中,正确的是()A.2x·3x2=5x3B.x4+x2=x6C.(x2y)3=x6y3D.(x+1)2=x2+19.如图,AB是☉O的弦,OC⊥AB交☉O于点C,点D是☉O上一点,∠ADC=30°,则∠BOC的度数为()A.30°B.40°C.50°D.60°10.如图1,在矩形ABCD中,E是AD上一点,点P从点B沿折线BE-ED-DC运动到点C时停止;点Q从点B沿BC运动到点C时停止,速度均为每秒1个单位长度.如果点P,Q同时开始运动,设运动时间为t,△BPQ的面积为y,已知y与t的函数图象如图2所示,有以下结论:①BC=10; ②cos ∠ABE=35; ③当0≤t ≤10时,y=25t 2;④当t=12时,△BPQ 是等腰三角形; ⑤当14≤t ≤20时,y=110-5t. 其中正确的有( )A.2个B.3个C.4个D.5个二、填空题(本大题共7小题,每小题4分,共28分) 11. 因式分解:ab-7a= .12. 若一个多边形的内角和等于它的外角和,则这个多边形的边数为 .13. 一枚材质均匀的骰子,六个面的点数分别是1,2,3,4,5,6,投这个骰子,掷得点数大于4的概率是 .14. 若a-b=2,则代数式5+2a-2b 的值是 .15. 如图,数轴上A ,B 两点所表示的数分别是-4和2,点C 是线段AB 的中点,则点C 所表示的数是 .16. 观察以下一列数:3,54,79,916,1125,…,则第20个数是 .17. 将长为2、宽为a (a 大于1且小于2)的长方形纸片按如图①所示的方式折叠并压平,剪下一个边长等于长方形宽的正方形,称为第一次操作;再把剩下的长方形按如图②所示的方式折叠并压平,剪下一个边长等于此时长方形宽的正方形,称为第二次操作;如此反复操作下去……若在第n 次操作后,剩下的长方形恰为正方形,则操作终止,当n=3时,a 的值为 .三、解答题(一)(本大题共3小题,每小题6分,共18分) 18. 计算: (3-π)0-2cos 30°+|1-√3|+(12)-1.19 .先化简,再求值: x 2-1x 2-2x+1·1x+1-1x , 其中x=2.20. 小甘到文具超市去买文具.请你根据图中的对话信息,求中性笔和笔记本的单价分别是多少元?四、解答题(二)(本大题共3小题,每小题8分,共24分)21.(1)如图1,已知EK垂直平分线段BC,垂足为D,AB与EK相交于点F,连接CF.求证:∠AFE=∠CFD.(2)如图2,在Rt△GMN中,∠M=90°,P为MN的中点.①用直尺和圆规在GN边上求作点Q,使得∠GQM=∠PQN(保留作图痕迹,不要求写作法);②在①的条件下,如果∠G=60°,那么Q是GN的中点吗?为什么?22. 某校为了解八年级男生“立定跳远”成绩的情况,随机选取该年级部分男生进行测试,以下是根据测试成绩绘制的统计图表的一部分.成绩等级频数(人) 频率优秀15 0.3良好及格不及格 5(1) 被测试男生中,成绩等级为“优秀”的男生人数为人,成绩等级为“及格”的男生人数占被测试男生总人数的百分比为%;(2) 被测试男生的总人数是多少?成绩等级为“不及格”的男生人数占被测试男生总人数的百分比是多少?(3) 若该校八年级共有180名男生,根据调查结果,估计该校八年级男生成绩等级为“良好”的学生人数.23. 如图,抛物线y=12x 2-32x-2与x 轴交于A ,B 两点,与y 轴交于点C ,点D 与点C 关于x 轴对称.(1) 求点A ,B ,C 的坐标; (2) 求直线BD 的解析式;(3) 在直线BD 下方的抛物线上是否存在一点P ,使△PBD 的面积最大?若存在,求出点P 的坐标; 若不存在,请说明理由.五、解答题(三)(本大题共2小题,每小题10分,共20分)24. 如图,点O 是线段AH 上一点,AH=3,以点O 为圆心,OA 的长为半径作☉O ,过点H 作AH 的垂线交☉O 于C ,N 两点,点B 在线段CN 的延长线上,连接AB 交☉O 于点M ,以AB ,BC 为边作▱ABCD.(1) 求证:AD 是☉O 的切线;(2) 若OH=13AH ,求四边形AHCD 与☉O 重叠部分的面积; (3) 若NH=13AH ,BN=54,连接MN ,求OH 和MN 的长.25. 如图1,已知点G在正方形ABCD的对角线AC上,GE⊥BC,垂足为点E,GF⊥CD,垂足为点F.(1)证明与推断:①求证:四边形CEGF是正方形;的值是多少?②推断:AGBE(2)探究与证明:将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图2,试探究线段AG与BE 之间的数量关系,并说明理由;(3)拓展与运用:正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时,如图3,延长CG交AD于点H,若AG=6,GH=2 √2,求BC的长.参考答案1.C2.A3.A4.C5.C6.C7.B8.C9.D 10.B 11.a (b-7) 12.4 13.13 14.9 15.-1 16.41400 17.65或3218.解:原式=1-2×√32+√3-1+2=2. 19.解:原式=(x+1)(x-1)(x-1)2·1x+1-1x=1x-1-1x =x x(x-1)-x-1x(x-1)=1x(x-1), 当x=2时,原式=12×1=12. 20.解:设中性笔和笔记本的单价分别是x 元、y 元, 根据题意,得{12y +20x =11212x +20y =144,解得{x =2y =6. 答:中性笔和笔记本的单价分别是2元、6元. 21.(1)证明:∵EK 垂直平分线段BC ,∴FC=FB ,CD=BD ,∴∠CFD=∠BFD , ∵∠BFD=∠AFE ,∴∠AFE=∠CFD.(2)①解:如图,作点P 关于GN 的对称点P',连接P'M 交GN 于Q ,连接PQ ,点Q 即为所求.②解:结论:Q 是GN 的中点.理由如下:设PP'交GN 于K.∵∠G=60°,∠GMN=90°,∴∠N=30°, ∵PK ⊥KN ,∴PK=KP'=12PN , ∴PP'=PN=PM ,∴∠P'=∠PMP',∵∠NPK=∠P'+∠PMP'=60°,∴∠PMP'=30°,∴∠N=∠QMN=30°,∠G=∠GMQ=60°,∴QM=QN ,QM=QG ,∴QG=QN ,∴Q 是GN 的中点.22.解:(1)15 20(2)被测试男生的总人数为15÷0.3=50(人),成绩等级为“不及格”的男生人数占被测试男生总人数的百分比为550×100%=10%.(3)由(1)(2)可知,优秀占30%,及格占20%,不及格占10%,则良好占40%, 故该校八年级男生成绩等级为“良好”的学生人数为180×40%=72(人). 23.解:(1)解方程12x 2-32x-2=0,得x 1=-1,x 2=4, ∴A 点坐标为(-1,0),B 点坐标为(4,0).当x=0时,y=-2,∴C 点坐标为(0,-2).(2)∵点D 与点C 关于x 轴对称,∴D 点坐标为(0,2).设直线BD 的解析式为y=kx+b ,则{0=4k +b 2=b ,解得{k =-12b =2, ∴直线BD 的解析式为y=-12x+2. (3)如图,作PE ∥y 轴交BD 于E ,设P (m,12m 2-32m-2),则E (m,-12m +2),∴PE=-12m+2-(12m 2-32m-2)=-12m 2+m+4, ∴S △PBD =12·PE ·(x B -x D )=12×(-12m 2+m +4)×4 =-m 2+2m+8=-(m-1)2+9,∵-1<0,∴当m=1时,△PBD 的面积最大,面积的最大值为9, 此时,P 的坐标为(1,-3).24.(1)证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,∵∠AHC=90°,∴∠HAD=90°,即OA ⊥AD ,又∵OA 是☉O 的半径,∴AD 是☉O 的切线.(2)解:如图,连接OC ,∵OH=12OA ,AH=3,∴OH=1,OA=2, ∵在Rt △OHC 中,∠OHC=90°,OH=12OC , ∴∠OCH=30°,∴∠AOC=∠OHC+∠OCH=120°, ∴S 扇形OAC =120×π×22360=4π3, ∵CH=√22-12=√3,∴S △OHC =12×1×√3=√32, ∴四边形AHCD 与☉O 重叠部分的面积=S 扇形OAC +S △OHC =4π3+√32. (3)解:∵AH ⊥NC ,NH=13AH ,AH=3, ∴CH=NH=1.设☉O 的半径OA=OC=r ,OH=3-r ,在Rt △OHC 中,OH 2+HC 2=OC 2,∴(3-r )2+12=r 2,∴r=53,∴OH=43, 在Rt △ABH 中,AH=3,BH=54+1=94,∴AB=154, 在Rt △ACH 中,AH=3,CH=1,得AC=√10, ∵∠BMN+∠AMN=180°,∠NCA+∠AMN=180°, ∴∠BMN=∠NCA.在△BMN 和△BCA 中,∠B=∠B ,∠BMN=∠BCA ,∴△BMN ∽△BCA ,∴MN AC =BN AB ,即MN 10=54154, ∴MN=√103,∴OH=43,MN=√103. 25.(1)①证明:∵四边形ABCD 是正方形, ∴∠BCD=90°,∠BCA=45°,∵GE ⊥BC ,GF ⊥CD ,∴∠CEG=∠CFG=∠ECF=90°,∴四边形CEGF 是矩形,∠CGE=∠ECG=45°, ∴EG=EC ,∴四边形CEGF 是正方形.②解:由①知四边形CEGF 是正方形,∴∠CEG=∠B=90°,∠ECG=45°,∴GE ∥AB ,CG CE =√2,∴AG BE =CG CE=√2. (2)解:如图,连接CG ,由旋转性质知∠BCE=∠ACG=α,在Rt △CEG 和Rt △CBA 中,CE CG =cos 45°=√22,CB CA =cos 45°=√22, ∴CG CE =CA CB=√2, ∴△ACG ∽△BCE ,∴AG BE =CA CB=√2, ∴线段AG 与BE 之间的数量关系为AG=√2BE.(3)解:∵∠CEF=45°,点B ,E ,F 三点共线, ∴∠BEC=135°,∵△ACG ∽△BCE ,∴∠AGC=∠BEC=135°,∴∠AGH=45°=∠CAH , ∵∠CHA=∠AHG ,∴△AHG ∽△CHA ,∴AG AC =GH AH =AH CH, 设BC=CD=AD=a ,则AC=√2a ,由AG AC =GH AH ,得√2a =2√2AH ,∴AH=23a ,∴DH=AD -AH=13a ,∴CH=√CD 2+DH 2=√103a , 由AG AC =AH CH ,得√2a =23a √103a , 解得a=3 √5,即BC=3 √5.。
2020年广东省中考数学模拟试题与答案
2020年广东省中考数学模拟试题与答案(试卷满分120分,考试时间120分钟)一、选择题(本题共12小题。
每小题3分,共36分。
在每小题给出的四个选项中,只有一项是正确的。
)1. 张敏同学在“百度”搜索引擎中输入“中国梦,我的梦”能搜索到与之相关的结果的条数约为67 100 000,这个数67 100 000用科学记数法可表示为()A.671×105B.6.71×106C.6.71×107D.0.671×1082. 下列计算正确的是()A.a+a=a2B.(2a)3=6a3C.a3×a3=2a3D.a3÷a=a23. 将一个长方体内部挖去一个圆柱(如图所示),它的主视图是()A. B. C. D.4.任意掷一枚骰子,下列情况出现的可能性比较大的是()A.面朝上的点数是6 B.面朝上的点数是偶数C.面朝上的点数大于2 D.面朝上的点数小于25.如图,在Rt△ABC中,∠C=90°.D为边CA延长线上一点,DE∥AB,∠ADE=42°,则∠B的大小为()A.42°B.45°C.48°D.58°6.如图,在Rt△ABC中,∠B=90°,以点A为圆心,适当长为半径画弧,分别交AB、AC于点D,E,再分别以点D、E为圆心,大于DE为半径画弧,两弧交于点F,作射线AF交边BC于点G,若BG=1,AC=4,则△ACG的面积是()A.1 B.C.2 D.7.已知:点A(2016,0)、B(0,2018),以AB为斜边在直线AB下方作等腰直角△ABC,则点C 的坐标为()A.(2,2 )B.(2,﹣2 )C.(﹣1,1 )D.(﹣1,﹣1 )8.已知2是关于x的方程x2﹣(5+m)x+5m=0的一个根,并且这个方程的两个根恰好是等腰△ABC 的两条边长,则△ABC的周长为()A.9 B.12 C.9或12 D.6或12或159.下列4个点,不在反比例函数y=﹣图象上的是()A.(2,﹣3)B.(﹣3,2)C.(3,﹣2)D.( 3,2)10.如图,已知点A(﹣8,0),B(2,0),点C在直线y=﹣上,则使△ABC是直角三角形的点C的个数为()A.1 B.2 C.3 D.411.如图,AB、AC为⊙O的切线,B、C是切点,延长OB到D,使BD=OB,连接AD,如果∠DAC=78°,那么∠ADO等于()A.70°B.64°C.62°D.51°12.已知二次函数y=ax2+bx+c(a≠0)的图象如图,有下列6个结论:①abc<0;②b<a﹣c;③4a+2b+c>0;④2c<3b;⑤a+b<m(am+b),(m≠1的实数)⑥2a+b+c>0,其中正确的结论的有_______ .A.①②④⑤B.②③⑤⑥C.①②③⑤D.①③④⑥二、填空题(本题共6小题,满分18分。
广东省2020年中考数学全真模拟测试卷(含解析版答案)
广东省2020年中考全真模拟试卷数 学(全卷满分:120分 考试时间:90分钟)班级___________ 姓名___________ 学号____________ 分数____________一、单选题(每小题3分,共30分)1.- 14的绝对值是( )A .-4B .14C .4D .0.42.某网店2019年母亲节这天的营业额为221000元,将数221000用科学记数法表示为() A .62.2110⨯ B .52.2110⨯ C .322110⨯ D .60.22110⨯3.下面的图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .4.如图所示一个L 形的机器零件,这个零件从上面看到的图形是( )A .B .C .D .5.如果一组数据6,7,x ,9,5的平均数是2x ,那么这组数据的中位数为( )A .5B .6C .7D .96.化简24的结果是( ) A .4- B .4 C .4± D .27.一个正多边形,它的每一个外角都等于40°,则该正多边形是( )A .正六边形B .正七边形C .正八边形D .正九边形8.若⊙O 的半径为R ,点O 到直线l 的距离为d ,且d 与R 是方程x ²-4x+m=0的两根,且直线l 与⊙O 相切,则m 的值为( )A .1B .2C .3D .4 9.不等式组次33015x x x ->⎧⎨-≥-⎩的解集在数轴上表示正确的是( ) A . B .C .D .10.如图,在平面直角坐标系中,平行四边形ABCD 的坐标分别为A (﹣1,0)、B (0,2)、C (4,2)、D (3,0),点P 是AD 边上的一个动点,若点A 关于BP 的对称点为A ',则A 'C 的最小值为( )A 5B . 45C 51D .1二、填空题(每小题4分,共28分)11.分解因式:3x 2-12=________. 12.若2m -+|n+3|=0,则m+n 的值为________ .13.有4根细木棒,长度分别为2cm 、3cm 、4cm 、5cm ,从中任选3根,恰好能搭成一个三角形的概率是__________.14.如图,m∥n,AB⊥m,∠1=43︒,则∠2=_______15.如图,在△ABC 中,AB =AD =DC ,∠BAD =28°,则∠C =______.16.若()11,A x y ,()22,B x y 都在函数2019y x=的图象上,且120x x <<,则1y __________2y .(填“>”或“<”)17.如图,在平面直角坐标系中,111222333,,,n n n ABC A B C A B C A B C A B C ∆∆∆∆∆L 都是等腰直角三角形,点123,,,n B B B B B L 都在x 轴上,点1B 与原点重合,点123,,,A C C C L n C 都在直线14:33l y x =+上,点C 在y 轴上,1122//////////n n AB A B A B A B y L 轴, 1122n ////////C //n AC AC A C A x L 轴,若点A 的横坐标为﹣1,则点n C 的纵坐标是_____.三、解答题一(每小题6分,共18分)18.计算:()()20200112|1233π--+-.19.化简求值:22111m m m m --⎛⎫-÷ ⎪⎝⎭,其中31m =-.20.如图,在△ABC 中,∠C =90°,∠B =40°.(1)请你用尺规作图,作AD 平分∠BAC ,交BC 于点D (要求:保留作图痕迹);(2)∠ADC 的度数.四、解答题二(每小题8分,共24分)21.近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次一共调查了多少名购买者?(2)请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为度.(3)若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?22.某科技公司研发出一款多型号的智能手表,一家代理商出售该公司的A型智能手表,去年销售总额为80000元,今年A型智能手表的售价每只比去年降了600元,若售出的数量与去年相同,销售总额将比去年减少25%.A 型智能手表B 型智能手表进价 1300元/只 1500元/只售价 今年的售价 2300元/只(1)请问今年A 型智能手表每只售价多少元?(2)今年这家代理商准备新进一批A 型智能手表和B 型智能手表共100只,它们的进货价与销售价格如上表,若B 型智能手表进货量不超过A 型智能手表数量的3倍,所进智能手表可全部售完,请你设计出进货方案,使这批智能手表获利最多,并求出最大利润是多少元?23.如图,矩形ABCD 中,对角线AC 、BD 交于点O ,以AD 、OD 为邻边作平行四边形ADOE ,连接BE(1)求证:四边形AOBE 是菱形(2)若180EAO DCO ∠+∠=︒,2DC =,求四边形ADOE 的面积五、解答题三(每小题10分,共20分)24.如图,四边形ABCD内接于⊙O,对角线AC为⊙O的直径,过点C作AC的垂线交AD的延长线于点E,点F为CE的中点,连接DB,DC,DF.(1)求∠CDE的度数;(2)求证:DF是⊙O的切线;(3)若AC=25DE,求tan∠ABD的值.25.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、C两点,点A 在点C的右边,与y轴交于点B,点B的坐标为(0,﹣3),且OB=OC,点D为该二次函数图象的顶点.(1)求这个二次函数的解析式及顶点D的坐标;(2)如图,若点P为该二次函数的对称轴上的一点,连接PC、PO,使得∠CPO=90°,请求出所有符合题意的点P的坐标;(3)在对称轴上是否存在一点P,使得∠OPC为钝角,若存在,请直接写出点P的纵坐标为y p的取值范围,若没有,请说明理由.广东中考(数学)全真模拟试卷(解析版)一、单选题(每小题3分,共30分)1.- 14的绝对值是( ) A .-4 B .14 C .4 D .0.4【答案】B【解析】直接用绝对值的意义求解.【详解】−14的绝对值是14. 故选B .【点睛】此题是绝对值题,掌握绝对值的意义是解本题的关键.2.某网店2019年母亲节这天的营业额为221000元,将数221000用科学记数法表示为( )A .62.2110⨯B .52.2110⨯C .322110⨯D .60.22110⨯【答案】B【解析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】221000的小数点向左移动5位得到2.21,所以221000用科学记数法表示为2.21×105,故选B.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】D【解析】根据中心对称图形的定义旋转后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【详解】解:A此图形旋转后能与原图形重合,此图形是中心对称图形,不是轴对称图形,故此选项错误;B,此图形旋转后不能与原图形重合,此图形不是中心对称图形,也不是轴对称图形,故此选项不正确;C,此图形旋转后不能与原图形重合,此图形不是中心对称图形,是轴对称图形,故此选项错误; D,此图形旋转后能与原图形重合,此图形是中心对称图形,是轴对称图形,故此选项正确.故选:D.【点睛】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.4.如图所示一个L形的机器零件,这个零件从上面看到的图形是()A .B .C .D .【答案】B【解析】根据俯视图的概念即可得出答案【详解】解:根据俯视图的定义可得出这个零件从上面看到的图形是:故选:B .【点睛】本题考查了简单组合体的三视图,关键是培养学生的思考能力和对几何体三种视图的空间想象能力.5.如果一组数据6,7,x ,9,5的平均数是2x ,那么这组数据的中位数为( )A .5B .6C .7D .9 【答案】B【解析】直接利用平均数的求法进而得出x 的值,再利用中位数的定义求出答案.【详解】∵一组数据6,7,x ,9,5的平均数是2x ,∴679525x x ++++=⨯,解得:3x =,则从大到小排列为:3,5,6,7,9,故这组数据的中位数为:6.故选B .【点睛】此题主要考查了中位数以及平均数,正确得出x 的值是解题关键.6.化简24的结果是( ) A .4-B .4C .4±D .2【答案】B【解析】根据算术平方根的定义进行求解即可. 【详解】24=4,故选B.【点睛】本题考查了算术平方根,熟练掌握算术平方根的定义是解题的关键.7.一个正多边形,它的每一个外角都等于40°,则该正多边形是( )A .正六边形B .正七边形C .正八边形D .正九边形 【答案】D【解析】根据多边形的外角和是360°, 正多边形的每一个外角都等于40°,直接用360÷40即得.【详解】解:360÷40=9.故答案为:D.【点睛】此题考查多边形外角和定理,解题关键在于掌握运算法则8.若⊙O 的半径为R ,点O 到直线l 的距离为d ,且d 与R 是方程x ²-4x+m=0的两根,且直线l 与⊙O 相切,则m 的值为( )A .1B .2C .3D .4【答案】D【解析】先根据直线与圆的位置关系得出方程有两个相等的根,再根据△=0即可求出m的值.【详解】∵d、R是方程x2-4x+m=0的两个根,且直线L与⊙O相切,∴d=R,∴方程有两个相等的实根,∴△=16-4m=0,解得,m=4,故选D.【点睛】本题考查的是直线与圆的位置关系及一元二次方程根的判别式,熟知以上知识是解答此题的关键.9.不等式组次33015xx x->⎧⎨-≥-⎩的解集在数轴上表示正确的是()A. B.C. D.【答案】A【解析】先分别解出两个不等式的解集,然后根据“同大取大,同小取小,大小小大中间找,大大小小无处找”的规律找出不等式组的解集,再利用数轴画出解集即可.【详解】解:33015xx x-⎧⎨-≥-⎩>①②解①得x>1,解②得x≥3,∴不等式组的解集x≥3.故答案为:A.【点睛】此题考查不等式组的解集,解题关键在于分别将不等式求出解,再用数轴表示出来10.如图,在平面直角坐标系中,平行四边形ABCD 的坐标分别为A (﹣1,0)、B (0,2)、C (4,2)、D (3,0),点P 是AD 边上的一个动点,若点A 关于BP 的对称点为A ',则A 'C 的最小值为( )A .5B . 45-C .51-D .1【答案】B 【解析】由轴对称的性质可知BA =BA′,在△BA′C 中由三角形三边关系可知A′C≥BC −BA′,则可求得答案.【详解】解:连接BA′,如图:∵平行四边形ABCD 的坐标分别为A (﹣1,0)、B (0,2)、C (4,2)、D (3,0), 2222125OA OB +=+BC =4,∵若点A 关于BP 的对称点为A',∴BA′=BA 5在△BA′C中,由三角形三边关系可知:A′C≥BC﹣BA′,A′C的最小值为4故选B.【点睛】本题主要考查平行四边形及轴对称的性质,利用三角形的三边关系得到A′C≥BC−BA′是解题的关键.二、填空题(每小题4分,共28分)11.分解因式:3x2-12=________.【答案】3(x+2)(x-2)【解析】根据因式分解的定义(把一个多项式化为几个整式的积的形式),首先提取公因式3,然后运用平方差公式分解即可.【详解】解:3x2-12=3(x2-4)=3(x+2)(x-2).【点睛】此题考查提公因式法与公式法的综合运用,解题关键在于掌握运算法则12,则m+n的值为________.【答案】-1【解析】根据算术平方根的非负性,绝对值的非负性,可得m-2=0,n+3=0,解出m、n的值即可.【详解】解:由题意可得,m-2=0,n+3=0,解得m=2,n=-3,∴m+n=-1.故答案为-1.【点睛】此题考查算术平方根的非负性,绝对值的非负性,掌握运算法则是解题关键13.有4根细木棒,长度分别为2cm、3cm、4cm、5cm,从中任选3根,恰好能搭成一个三角形的概率是__________.【答案】3 4【解析】根据题意,使用列举法可得从有4根细木棒中任取3根的总共情况数目以及能搭成一个三角形的情况数目,根据概率的计算方法,计算可得答案.【详解】根据题意,从有4根细木棒中任取3根,有2、3、4;3、4、5;2、3、5;2、4、5,共4种取法,而能搭成一个三角形的有2、3、4;3、4、5,2、4、5,三种,得P=34.故其概率为:34.【点睛】本题考查概率的计算方法,使用列举法解题时,注意按一定顺序,做到不重不漏.用到的知识点为:概率=所求情况数与总情况数之比.14.如图,m∥n,AB⊥m,∠1=43 ,则∠2=_______【答案】133°【解析】试题解析:过B作直线BD∥n,则BD∥m∥n,∵AB⊥m,∠1=43˚,∴∠ABD=90°,∠DBC=∠1=43°∴∠2=∠ADB+∠1=90°+43°=133°.故填133°.15.如图,在△ABC中,AB=AD=DC,∠BAD=28°,则∠C=______.【答案】38°【解析】首先发现此图中有两个等腰三角形,根据等腰三角形的两个底角相等找到角之间的关系.结合三角形的内角和定理进行计算.【详解】∵AB=AD=DC,∠BAD=28°∴∠B=∠ADB=(180°-28°)÷2=76°.∴∠C=∠CAD=76°÷2=38°.故答案为38°.【点睛】此题主要考查等腰三角形的性质及三角形内角和定理;求得∠ADC=76°是正确解答本题的关键.16.若()11,A x y ,()22,B x y 都在函数2019y x =的图象上,且120x x <<,则1y __________2y .(填“>”或“<”)【答案】<【解析】首先根据反比例函数的解析式判定其位于一、三象限,然后根据自变量的取值范围,即可比较函数值的大小.【详解】由0k >,得反比例函数位于一、三象限,∵120x x <<∴12y y <故答案为:<.【点睛】此题主要考查反比例函数的性质,熟练掌握,即可解题.17.如图,在平面直角坐标系中,111222333,,,n n n ABC A B C A B C A B C A B C ∆∆∆∆∆L 都是等腰直角三角形,点123,,,n B B B B B L 都在x 轴上,点1B 与原点重合,点123,,,A C C C L n C 都在直线14:33l y x =+上,点C 在y 轴上,1122//////////n n AB A B A B A B y L 轴, 1122n ////////C //n AC AC A C A x L 轴,若点A 的横坐标为﹣1,则点n C 的纵坐标是_____.【答案】1232n n -- 【解析】由题意(11)A -,,可得(01)C ,,设1(,)C m m ,则1433m m =+,解得2m =,求出1C 的坐标,再设2(,2)C n n =-,则14233n n -=+,解得5n =,故求出2C 的坐标,同理可求出3C 、4C 的坐标,根据规律 即可得到n C 的纵坐标.【详解】解:由题意(11)A -,,可得(01)C ,, 设1(,)C m m ,则1433m m =+,解得2m =, ∴1(2,2)C ,设2(,2)C n n =-,则14233n n -=+,解得5n =, ∴2(5,3)C ,设3(,5)C a a -,则14533a a -=+,解得192a =, ∴3199(,)22C ,同法可得46527(,)44C ,…,n C 的纵坐标为1232n n --, 故答案为1232n n --. 【点睛】此题主要考查一次函数图像的应用,解题的关键是根据题意求出1C 、2C 、3C ,再发现规律即可求解.三、解答题一(每小题6分,共18分)18.计算:()()202001|13π--+-. 【答案】1【解析】根据零指数幂、二次根式化简、绝对值、-1的幂等实数的运算法则分别进行计算求得结果即可.【详解】解:原式111=-+1=.【点睛】本题考查了零指数幂、二次根式化简、绝对值、-1的幂等实数的运算,注意零指数幂的底数不能为零,绝对值是非负数,-1的奇数次幂是-1,-1的偶数次幂是+1.19.化简求值:22111m m m m --⎛⎫-÷ ⎪⎝⎭,其中31m =-. 【答案】3 【解析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,将m 的值代入计算即可求出值.【详解】原式()()2111m m m m m m --=⨯+-()()111m m m m m -=⨯+-11m =+ 当31m =-时,13133113m ===+-+. 【点睛】本题考查了分式的化简求值,解答此题的关键是把分式化到最简,然后代值计算.20.如图,在△ABC 中,∠C =90°,∠B =40°.(1)请你用尺规作图,作AD 平分∠BAC ,交BC 于点D (要求:保留作图痕迹);(2)∠ADC 的度数.【答案】(1)答案见解析;(2)65°.【解析】(1)分析题意,根据角平分线的作法作出∠BAC 的平分线AD 即可.(2)根据题意求出∠DAC的值,随之即可解答.【详解】(1)如图,AD为所作;(2)∵∠C=90°,∠B=40°,∴∠BAC=90°﹣40°=50°.∵AD平分∠BAC,∴∠BAD=∠BAC=25°,∴∠ADC=∠B+∠BAD=40°+25°=65°.【点睛】此题主要考查了角平分线的作法和直角三角形的性质,本题就属于尺规作图中的四种基本作图之一:作角平分线,旨在通过画图,培养学生的作图能力及动手能力,明确尺规作图的意义,体会数学作图语言和图形的和谐统一.四、解答题二(每小题8分,共24分)21.近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次一共调查了多少名购买者?(2)请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为度.(3)若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?【答案】(1)本次一共调查了200名购买者;(2)补全的条形统计图见解析,A种支付方式所对应的圆心角为108;(3)使用A和B两种支付方式的购买者共有928名.【解析】分析:(1)根据B的数量和所占的百分比可以求得本次调查的购买者的人数;(2)根据统计图中的数据可以求得选择A和D的人数,从而可以将条形统计图补充完整,求得在扇形统计图中A种支付方式所对应的圆心角的度数;(3)根据统计图中的数据可以计算出使用A和B两种支付方式的购买者共有多少名.详解:(1)56÷28%=200,即本次一共调查了200名购买者;(2)D方式支付的有:200×20%=40(人),A方式支付的有:200-56-44-40=60(人),补全的条形统计图如图所示,在扇形统计图中A种支付方式所对应的圆心角为:360°×60200=108°,(3)1600×60+56200=928(名),答:使用A和B两种支付方式的购买者共有928名.点睛:本题考查扇形统计图、条形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.22.某科技公司研发出一款多型号的智能手表,一家代理商出售该公司的A型智能手表,去年销售总额为80000元,今年A型智能手表的售价每只比去年降了600元,若售出的数量与去年相同,销售总额将比去年减少25%.(1)请问今年A型智能手表每只售价多少元?(2)今年这家代理商准备新进一批A型智能手表和B型智能手表共100只,它们的进货价与销售价格如上表,若B型智能手表进货量不超过A型智能手表数量的3倍,所进智能手表可全部售完,请你设计出进货方案,使这批智能手表获利最多,并求出最大利润是多少元?【答案】(1)今年A型智能手表每只售价1800元;(2)进货方案为新进A型手表25只,新进B型手表75只,这批智能手表获利最多,并求出最大利润是72500元.【解析】试题分析: 1)设今年A型智能手表每只售价x元,则去年售价每只为(x+600)元,由卖出的数量相同建立方程求出其解即可;(2)设今年新进A型a只,则B型(100﹣a)只,获利y元,由条件表示出W 与a之间的关系式,由a的取值范围就可以求出W的最大值.试题解析:(1)今年A型智能手表每只售价x元,去年售价每只为(x+600)元,根据题意得,72000600x + =72000(125%)x⨯-, 解得:x=1800,经检验,x=1800是原方程的根,答:今年A 型智能手表每只售价1800元;(2)设新进A 型手表a 只,全部售完利润是W 元,则新进B 型手表(100﹣a )只,根据题意得,W=(1800﹣1300)a+92300﹣1500)(100﹣a )=﹣300a+80000, ∵100﹣a≤3a,∴a≥5,∵﹣300<0,W 随a 的增大而减小,∴当a=25时,W 增大=﹣300×25+80000=72500元,此时,进货方案为新进A 型手表25只,新进B 型手表75只,答:进货方案为新进A 型手表25只,新进B 型手表75只,这批智能手表获利最多,并求出最大利润是72500元.23.如图,矩形ABCD 中,对角线AC 、BD 交于点O ,以AD 、OD 为邻边作平行四边形ADOE ,连接BE(1)求证:四边形AOBE 是菱形(2)若180EAO DCO ∠+∠=︒,2DC =,求四边形ADOE 的面积【答案】(1)见解析;(2)S 四边形ADOE =3【解析】(1) 根据矩形的性质有OA=OB=OC=OD,根据四边形ADOE是平行四边形,得到OD∥AE,AE=OD. 等量代换得到AE=OB.即可证明四边形AOBE为平行四边形.根据有一组邻边相等的平行四边形是菱形即可证明.(2)根据菱形的性质有∠EAB=∠BAO.根据矩形的性质有AB∥CD,根据平行线的性质有∠BAC=∠ACD,求出∠DCA=60°,求出AD=根据面积公式SΔADC,即可求解.【详解】(1)证明:∵矩形ABCD,∴OA=OB=OC=OD.∵平行四边形ADOE,∴OD∥AE,AE=OD.∴AE=OB.∴四边形AOBE为平行四边形.∵OA=OB,∴四边形AOBE为菱形.(2)解:∵菱形AOBE,∴∠EAB=∠BAO.∵矩形ABCD,∴AB∥CD.∴∠BAC=∠ACD,∠ADC=90°.∴∠EAB=∠BAO=∠DCA.∵∠EAO+∠DCO=180°,∴∠DCA=60°.∵DC=2,∴AD=23.∴SΔADC=1223232⨯⨯=.∴S四边形ADOE =23.【点睛】考查平行四边形的判定与性质,矩形的性质,菱形的判定与性质,解直角三角形,综合性比较强.五、解答题三(每小题10分,共20分)24.如图,四边形ABCD内接于⊙O,对角线AC为⊙O的直径,过点C作AC的垂线交AD的延长线于点E,点F为CE的中点,连接DB,DC,DF.(1)求∠CDE的度数;(2)求证:DF是⊙O的切线;(3)若AC=25DE,求tan∠ABD的值.【答案】(1)90°;(2)证明见解析;(3)2.【解析】(1)根据圆周角定理即可得∠CDE的度数;(2)连接DO,根据直角三角形的性质和等腰三角形的性质易证∠ODF=∠ODC+∠FDC=∠OCD+∠DCF=90°,即可判定DF是⊙O的切线;(3)根据已知条件易证△CDE∽△A DC,利用相似三角形的性质结合勾股定理表示出AD,DC 的长,再利用圆周角定理得出tan∠ABD的值即可.【详解】解:(1)解:∵对角线AC为⊙O的直径,∴∠ADC=90°,∴∠EDC=90°;(2)证明:连接DO,∵∠EDC=90°,F是EC的中点,∴DF=FC,∴∠FDC=∠FCD,∵OD=OC,∴∠OCD=∠ODC,∵∠OCF=90°,∴∠ODF=∠ODC+∠FDC=∠OCD+∠DCF=90°,∴DF是⊙O的切线;(3)解:如图所示:可得∠ABD=∠ACD,∵∠E+∠DCE=90°,∠DCA+∠DCE=90°,∴∠DCA=∠E,又∵∠ADC=∠CDE=90°,∴△CDE∽△ADC,∴DC DE AD DC,∴DC2=AD•DE,∴设DE=x,则,则AC2﹣AD2=AD•DE,期(25x)2﹣AD2=AD•x,整理得:AD2+AD•x﹣20x2=0,解得:AD=4x或﹣4.5x(负数舍去),则DC=22(25)(4)2x x x-=,故tan∠ABD=tan∠ACD=422AD xDC x==.25.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、C两点,点A 在点C的右边,与y轴交于点B,点B的坐标为(0,﹣3),且OB=OC,点D为该二次函数图象的顶点.(1)求这个二次函数的解析式及顶点D的坐标;(2)如图,若点P为该二次函数的对称轴上的一点,连接PC、PO,使得∠CPO=90°,请求出所有符合题意的点P的坐标;(3)在对称轴上是否存在一点P,使得∠OPC为钝角,若存在,请直接写出点P的纵坐标为y p的取值范围,若没有,请说明理由.【答案】(1)二次函数的解析式为y=x2+2x﹣3,D(﹣1,﹣4);(2)P(﹣12)或(﹣12);(32<yP2且y P≠0时,∠OPC是钝角.【解析】(1)先求出点C坐标,最后用待定系数法即可得出结论;(2)先利用同角的余角相等,判断出∠COP=∠CPQ,进而求出PQ,即可得出结论;(3)借助(2)的结论和图形,即可得出结论.【详解】解:(1)∵B(0,﹣3),∴OB=3.∵OB=OC,∴OC=3,∴C(0,﹣3),∴9303b cc-+=⎧⎨=-⎩,∴23bc=⎧⎨=-⎩,∴二次函数的解析式为y=x2+2x﹣3=﹣(x﹣1)2﹣4,∴D(﹣1,﹣4);(2)如图,过点P作PQ⊥x轴于点Q,设P(﹣1,p).∵∠COP+∠OPQ=90°,∠CPQ+∠OPQ=90°,∴∠COP=∠CPQ,∴tan∠COP=tan∠CPQ.在Rt△QOP中,tan∠COP=PQOQ.在Rt△CPQ中,tan∠CPQ=CQPQ,∴PQ CQOQ PQ=,∴PQ2=CQ×OQ=2(此处可以用射影定理,也可以判断出△CPQ∽△POQ).∵PQ>0,∴PQ2,∴p2p=2P(﹣12)或(﹣12);(3)存在这样的点P,理由:如图,由(2)知,y P=2±OPC=90°.∵y P=0时,∠OPC2y P2且y P≠0时,∠OPC是钝角.【点睛】本题是二次函数综合题,主要考查了待定系数法,锐角三角函数,同角的余角相等,求出PQ是解答本题的关键。
2020年广东省中考数学模拟试卷(解析版)
2020年广东省中考数学模拟试卷一、选择题(每小题3分,共30分)1.四个实数0、13、−3.14、2中,最小的数是()A.0B.13C.−3.14D.22.六个大小相同的正方体搭成的几何体如图所示,其俯视图是()A. B. C. D.3.某市在“扫黑除恶”专项斗争宣传活动中,共16000人参与,将16000用科学记数法表示为()人.A.1.6×105B.1.6×104C.0.16×105D.16×1034.下列图形中,既是中心对称图形,又是轴对称图形的是( )A. B. C. D.5.下列运算正确的是( )A.a2+2a=3a3B.(﹣2a3)2=4a5C.(a+2)(a﹣1)=a2+a﹣2D.(a+b)2=a2+b26.如图,在△ABC中,DE∥BC,ADDB =12,DE=4,则BC的长()A.8B.10C.12D.167.在一次数学测试中,某学校小组6名同学的成绩(单位:分)分别为65,82,86,82,76,95,关于这组数据,下列说法错误的是()A.众数是82B.中位数是82C.方差8.4D.平均数是818.如图,半径为1的⊙O与正五边形ABCDE相切于点A,C,则劣弧AC的长度为()A.25π B.23π C.34π D.45π9.如图,在矩形ABCD中,AD=5,AB=3,点E是BC上一点,且AE=AD,过点D作DF⊥AE于F.则tan∠CDF的值为()A.35B.34C.23D.4510.如图,正方形ABCD的边长为4,动点M、N同时从A点出发,点M沿AB以每秒1个单位长度的速度向中点B运动,点N沿折现ADC以每秒2个单位长度的速度向终点C运动,设运动时间为t秒,则△CMN的面积为S关于t函数的图象大致是()A. B. C. D.二、填空题(每小题4分,共28分)11.化简(π-3.14)0+|1-2 √2 |-√8+( 12)-1的结果是________12.若|a-2|+ √b−3 =0,则a2-2b=________.13.己知点A与B关于x轴对称,若点A坐标为(-3,1),则点B的坐标为________.14.如图,在正方形ABCD中,对角线BD的长为√2。
2020年广东省广州市中考数学模拟试卷 (含答案解析)
2020年广东省广州市中考数学模拟试卷一、选择题(本大题共10小题,共30.0分)1.用科学记数法表示660000的结果是()A. 66×104B. 6.6×105C. 0.66×106D. 6.6×1062.某校开设了艺术、体育、劳技、书法四门拓展性课程,要求每一位学生都要选且只能选一门课.小黄同学统计了本班50名同学的选课情况,并将结果绘制成条形统计图(如图,不完全),则选书法课的人数有()A. 12名B. 13名C. 15名D. 50名3.下列运算正确的是()A. a2·a2=2a4B. 3√2−2√2=1C. (−a2)3=a6D. (−2ab2)3=−8a3b64.如图,点D、E分别是△ABC边BA、BC的中点,AC=3,则DE的长为()A. 2B. 43C. 3 D. 325.我国传统文化中的“福禄寿喜”图(如图)由四个图案构成.这四个图案中既是轴对称图形,又是中心对称图形的是()A. B. C. D.6.一次函数y=kx+m的图象如图所示,若点(0,a),(−2,b),(1,c)都在函数的图象上,则下列判断正确的是()A. a<b<cB. c<a<bC. a<c<bD. b<a<c7.在△ABC中,AB=13cm,AC=12cm,BC=5cm,以点B为圆心,5cm为半径作⊙B,则边AC所在的直线和⊙B的位置关系()A. 相切B. 相交C. 相离D. 都有可能8.据史料记载,绵阳市安州区雎水太平桥建于清嘉庆年间,已有200余年历史.桥身为一巨型单孔圆弧,既没有用钢筋,也没有用水泥,全部由石块砌成,犹如一道彩虹横卧河面上,桥拱半径OC为13m,河面宽AB为24m,则桥高CD为()A. 15mB. 17mC. 18mD. 20m9.若一元二次方程x2−2x−m=0无实数根,则一次函数y=(m+1)x+m−1的图象不经过第()象限.A. 四B. 三C. 二D. 一10.如图,在矩形ABCD中,AB=3,BC=5,OE⊥AC交AD于E,则AE的长为()A. 4B. 3.4C. 2.5D. 2二、填空题(本大题共6小题,共18.0分)11.已知∠A的度数为30°30′30″,则∠A的补角的度数为______ .12.化简:√50−√72=______ .13.方程xx−1=x−1x+2的解是______.14.如图,在平面直角坐标系中,点A,B的坐标分别为(1,0),(4,0),点C在第一象限内,∠CAB=90°,且BC=6.将△ABC沿x轴向右平移,当点C落在直线y=√3x−2√3上时,线段BC扫过的面积为________________.15.如图,将正方形ABCD绕点A按逆时针方向旋转到正方形ABˈCˈDˈ,旋转角为α(0°<α<180°),连接BˈD、CˈD,若BˈD=CˈD,则∠α=_________.16.从地面竖直向上抛出一个小球.小球的高度ℎ(单位:m)与小球运动时间t(单位:s)之间的关系式是ℎ=24t−4t2.小球运动的高度最大为____m.三、解答题(本大题共9小题,共102.0分)17.解不等式组:{3x−4≤xx+3>12x−118.如图,点B、D、C、F在同一直线,已知AB=DE,∠B=∠EDF,BD=CF(1)求证:△ABC≌△EDF(2)若∠ACB=40°,求∠F的度数.19.如图所示,是反比例函数y=1−2k的图象的一支.根据图象回答下x列问题:(1)图象的另一支在哪个象限?常数k的取值范围是什么?(2)在这个函数图象的某一支上任意取两点A(x1,y1)和B(x2,y2).如果x1<x2,那么y1和y2有怎样的大小关系?(3)在函数y=1−2k的图象上任意取两点A(x1,y1)和B(x2,y2),且xx1<0<x2,那么y1和y2的大小关系又如何?20.某校举行了“防溺水”知识竞赛.八年级两个班各选派10名同学参加预赛,依据各参赛选手的成绩(均为整数)绘制了统计表和折线统计图(如图所示).班级八(1)班八(2)班最高分10099众数a98中位数96b平均数c94.8(1)统计表中,a=______,b=______,c=______;(2)若从两个班的预赛选手中选四名学生参加决赛,其中两个班的第一名直接进入决赛,另外两个名额在成绩为98分的学生中任选两个,求另外两个决赛名额落在不同班级的概率.(k≠0)的图21.如图,已如平行四边形OABC中,点O为坐标顶点,点A(3,0),C(1,2),函数y=kx 象经过点C.(1)求k的值及直线OB的函数表达式:(2)求四边形OABC的周长.22.某地出租车的收费标准是:起步价7元(即行驶路程不超过3km都需付费7元车费);超过3km以后,以每增加1km,加收2.4元(不足1km按1km计),某人乘坐这种出租车从甲地到乙地地共付车费19元,试求此人从甲地到乙地的路程的最大值.23.如图,在△ABC中,AC=BC,点D,E,F分别为AB,AC,BC的中点,连接DE,DF.(1)求证:四边形DFCE是菱形;(2)若∠A=75°,AC=4,求菱形DFCE的面积.24.如图,点D是等边三角形ABC外接圆的BC⏜上一点(与点B,C不重合),BE//DC交AD于点E,BC与AD相交于P.(1)求证:△BDE是等边三角形;(2)如果BD=2,CD=1,求△ABC的边长.(3)求证:CDDB =CPPB.25.在平面直角坐标系xOy中,已知抛物线y=−14x2−x+2,其顶点为A.(1)写出这条抛物线的开口方向、顶点A的坐标,并说明它的变化情况;(2)直线BC平行于x轴,交这条抛物线于B、C两点(点B在点C左侧),且cot∠ABC=2,求点B坐标.-------- 答案与解析 --------1.答案:B解析:解:660 000=6.6×105.故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.2.答案:A解析:解:选书法课的人数有50−13−15−10=12,故选:A.根据总人数减去其它三门的人数解答即可.本题考查的是条形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.3.答案:D解析:【分析】本题考查了同底数幂的乘法运算,同底数幂的乘方,二次根式的运算等知识,根据同底数幂的乘法,同底数幂的乘方,二次根式的运算性质,依次进行计算判断.【解答】解:A、a2·a2=a4,故本选项错误;B、3√2−2√2=√2,故本选项错误;C、(−a2)3=−a6,故本选项错误;D、(−2ab2)3=−8a3b6,故本选项正确.故选D.4.答案:D解析:解:∵点D、E分别是△ABC的边BA、BC的中点,∴DE是△ABC的中位线,∴DE=1AC=1.5.2故选:D.直接利用中位线的定义得出DE是△ABC的中位线,进而利用中位线的性质得出答案.此题主要考查了三角形中位线定理,正确得出DE是△ABC的中位线是解题关键.5.答案:B解析:【分析】本题主要考查的是中心对称图形与轴对称图形的有关知识,根据轴对称图形与中心对称图形的概念求解即可.【解答】解:A.不是轴对称图形,也不是中心对称图形,故错误;B.是轴对称图形,也是中心对称图形,故正确;C.是轴对称图形,不是中心对称图形,故错误;D.不是轴对称图形,也不是中心对称图形,故错误.故选B.6.答案:B解析:【分析】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.由一次函数y=kx+m的图象,可得y随x的增大而减小,进而得出a,b,c的大小关系.【解答】解:由图可得,y随x的增大而减小,∵−2<0<1,∴c<a<b.故选B.7.答案:A解析:【分析】本题考查了直线与圆的位置关系:设⊙O的半径为r,圆心O到直线l的距离为d.则直线l和⊙O相交⇔d<r;直线l和⊙O相切⇔d=r;直线l和⊙O相离⇔d>r.先利用勾股定理的逆定理得到∠ACB=90°,则点B到直线AC的距离等于5cm,然后根据直线与圆的位置关系判断边AC所在的直线和⊙B的位置关系.【解答】解:∵AB=13cm,BC=5cm,AC=12cm,∴BC2+AC2=AB2,∴△ABC为直角三角形,∠ACB=90°,∴点B到直线AC的距离等于5cm,而⊙B的半径为5cm,∴边AC所在的直线与⊙B相切.故答案为A.8.答案:C解析:【分析】本题考查了垂径定理及勾股定理,连接OA,根据垂径定理求出OD,与OC相加即为CD.【解答】解:连接OA,∵OD⊥AB,∴AD=1AB=12,2在Rt△OAD中,OD=√OA2−AD2=√132−122=5,∴CD=OD+OC=13+5=18(m)故选C.9.答案:D解析:【分析】根据判别式的意义得到△=(−2)2+4m<0,解得m<−1,然后根据一次函数的性质可得到一次函数y=(m+1)x+m−1图象经过的象限.本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2−4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一次函数图象与系数的关系.【解答】解:∵一元二次方程x2−2x−m=0无实数根,∴△<0,∴△=4−4(−m)=4+4m<0,∴m<−1,∴m+1<1−1,即m+1<0,m−1<−1−1,即m−1<−2,∴一次函数y=(m+1)x+m−1的图象不经过第一象限,故选:D.10.答案:B解析:【分析】连接CE,根据矩形的对边相等可得AD=BC=5,CD=AB=3,根据矩形的对角线互相平分可得OA=OC,然后判断出OE垂直平分AC,再根据线段垂直平分线上的点到两端点的距离相等可得AE=CE,设AE=CE=x,表示出DE,然后在Rt△CDE中,利用勾股定理列出方程求解即可.本题考查了矩形的性质,线段垂直平分线上的点到两端点的距离相等的性质,勾股定理,熟记各性质并利用勾股定理列出方程是解题的关键.【解答】如图,连接CE∵矩形ABCD中,AB=3,BC=5,∴AD=BC=5,CD=AB=3,OA=OC,∵OE⊥AC,∴OE垂直平分AC,∴AE=CE,设AE=CE=x,则DE=5−x,在Rt△CDE中,CD2+DE2=CE2,即32+(5−x)2=x2,解得x=3.4,即AE的长为3.4.故选B.11.答案:149°29′30′′解析:【分析】此题主要考查了补角,关键是掌握两角互补,和为180°.根据如果两个角的和等于180°(平角),就说这两个角互为补角.即其中一个角是另一个角的补角进行计算.【解答】解:180°−30°30′30″=149°29′30″,故答案为149°29′30″.12.答案:−√2解析:【分析】此题主要考查了二次根式的加减运算,正确化简二次根式是解题关键.首先化简二次根式,进而合并即可.【解答】解:√50−√72=5√2−6√2=−√2.故答案为:−√2.13.答案:x=14解析:解:方程xx−1=x−1x+2,去分母得:x2+2x=x2−2x+1,解得:x=14,经检验x=14是分式方程的解.故答案为:x=14.分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.14.答案:12√3解析:【分析】本题考查了一次函数的性质、平移的性质、勾股定理以及平行四边形的性质.此题难度适中,注意掌握数形结合思想与方程思想的应用.首先根据题意作出图形,则可得线段BC扫过的面积应为平行四边形BCC′B′的面积,其高是AC的长,底是点C平移的路程.则可由勾股定理求得AC的长,由点与一次函数的关系,求得A′的坐标,即可求得BB′的值,继而求得答案.【解答】解:如图所示:∵点A、B的坐标分别为(1,0)、(4,0),∴OA=1,OB=4,∴AB=3,∵∠CAB=90°,BC=6,∴AC=√BC2−AB2=3√3,∵将△ABC沿x轴向右平移,点C平移到点C′处,∴A′C′=AC=3√3,∴当y=3√3时,√3x−2√3=3√3,解得:x=5,∴OA′=5,∴BB′=AA′=OA′−OA=5−1=4,∴S▱BCC′B′=4×3√3=12√3,∴线段BC扫过的面积为12√3.故答案为12√3.15.答案:60°解析:【分析】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质.作DH⊥B′C′于H,交AD′于G,如图,根据旋转的性质得AD′=AD,∠DAD′=α,再根据等腰三角形的性质由B′D=C′D得到B′H=C′H,则AG=DG′,从而在Rt△ADG′中可计算出∠ADG=30°,于是得到∠DAG=60°,从而得到α的度数.【解答】解:作DH⊥B′C′于H,交AD′于G,如图,∵正方形ABCD绕点A按逆时针方向旋转到正方形AB′C′D′,旋转角为α,∴AD′=AD,∠DAD′=α,∵B′D=C′D,∴B′H=C′H,∵四边形AB′C′D′为正方形,∴AG=D′G′,在Rt△ADG′中,AG=12AD′=12AD,∴∠ADG=30°,∴∠DAG=60°,即α=60°.故答案为60°.16.答案:36解析:[分析]小球的高度ℎ(m)与小球运动时间t(s)的函数关系式是二次函数关系式,所以可根据求二次函数最值的方法求解.[详解]解:∵ℎ=24t −4t 2,∴当t =−b 2a =−24−4×2=3时,h 有最大值.即:ℎ=24×3−4×32=36(m).那么小球运动中的最大高度为36m .故答案为:36.[点睛]解本题的关键是把实际问题转化成数学问题,利用二次函数的性质就能求出结果,二次函数y =ax 2+bx +c 的顶点坐标是(−b 2a ,4ac−b 24a )当x 等于−b 2a 时,y 的最大值(或最小值)是4ac−b 24a .17.答案:解:{3x −4≤x①x +3>12x −1②解①得x ≤2,解②得x >−8,所以不等式组的解集为−8<x ≤2.解析:本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.分别解两个不等式得到x ≤2和x >−8,然后根据大小小大中间找确定不等式组的解集. 18.答案:证明:(1)∵BD =CF ,∴BD+CD=CF+CD即BC=DF,在△ABC和△EDF中,{AB=DE∠B=∠EDF BC=DF,∴△ABC≌△EDF(SAS);(2)∵△ABC≌△EDF,∠ACB=40°,∴∠F=40°.解析:本题主要考查全等三角形的判定与性质.(1)根据ASA可证明△ABE≌△DCF;(2)根据全等三角形的性质可得∠F=∠ACB=40°.19.答案:解:(1)由反比例函数的对称性,知图象的另一支在第二象限;根据反比例函数的性质,知1−2k<0,解得,k>12;(2)由该函数图象的性质知,当反比例函数y=1−2kx经过第二、四象限时,该函数是减函数,即y随x的增大而增大,∴当x1<x2时,y1<y2;(3)由(1)知1−2k<0.∵x1<0<x2,∴y1=1−2kx1>0,y2=1−2kx2<0,∴y1>y2.解析:(1)根据反比例函数y=kx(k≠0)的性质知,当k<0,该函数的图象经过第二、四象限;(2)根据反比例函数的单调性解答;(3)根据反比例函数图象上点的坐标特征,将A(x1,y1)和B(x2,y2)代入函数y=1−2kx,求得y1和y2的符号,然后比较它们的大小即可.本题主要考查反比例函数图象上点的坐标特征、反比例函数的性质.本题充分利用了反比例函数的图象的单调性.20.答案:96 96 94.5解析:解:(1)八(1)班的成绩为:88、89、92、92、96、96、96、98、98、100,八(2)班成绩为89、90、91、93、95、97、98、98、98、99,所以a=96、c=110×(88+89+92+92+96+96+96+98+98+100)=94.5,b=95+972=96,故答案为:96、96、94.5;(2)设(1)班学生为A1,A2,(2)班学生为B1,B2,B3,一共有20种等可能结果,其中2人来自不同班级共有12种,所以这两个人来自不同班级的概率是1220=35.(1)根据平均数和众数、中位数的定义分别求解可得;(2)先设(1)班学生为A1,A2,(2)班学生为B1,B2,B3,根据题意画出树形图,再根据概率公式列式计算即可.本题考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.21.答案:解:(1)依题意有:点C(1,2)在反比例函数y=kx(k≠0)的图象上,∴k=xy=2,∵A(3,0)∴CB=OA=3,又CB//x轴,∴B(4,2),设直线OB的函数表达式为y=ax,∴2=4a,∴a=12,∴直线OB的函数表达式为y=12x;(2)作CD⊥OA于点D,∵C(1,2),∴OC=√12+22=√5,在平行四边形OABC中,CB=OA=3,AB=OC=√5,∴四边形OABC的周长为:3+3+√5+√5=6+2√5,即四边形OABC的周长为6+2√5.解析:(1)根据函数y=kx(k≠0)的图象经过点C,可以求得k的值,再根据平行四边形的性质即可求得点B的坐标,从而可以求得直线OB的函数解析式;(2)根据题目中各点的坐标,可以求得平行四边形各边的长,从而可以求得平行四边形的周长.本题考查待定系数法求反比例函数解析式和一次函数解析式,反比例函数图象上点的坐标特征、平行四边形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.22.答案:解:设此人从甲地到乙地的路程的最大值为xkm,由题意得:(x−3)×2.4+7=19,整理得:x−3=5,解得:x=8,答:此人从甲地到乙地的路程的最大值为8km.解析:本题主要考查一元一次方程的应用,关键在于理解清楚题意,找出等量关系列出方程求解.根据题意找出等量关系:某人乘坐这种出租车从甲地到乙地共付车费=19元.设此人从甲地到乙地的路程的最大值为xkm,由于19>7,所以x>3,即:某人乘坐这种出租车从甲地到乙地需付车费:7+2.4×(x−3),根据等量关系列出方程求解即可,由于不足1km按1km收费,所以此时求出的x 的值即为最大值.23.答案:(1)证明:∵点D,E,F分别是AB,AC,BC的中点,∴DE//CF,DE=12BC,DF//CE,DF=12AC,∴四边形DECF是平行四边形,∵AC=BC,∴DE=DF,∴四边形DFCE是菱形;(2)过E作EG⊥BC于G,∵AC=BC,∠A=75°,∴∠B=∠A=75°,∴∠C=30°,∴EG=12CE=14AC=1,∴菱形DFCE的面积=2×1=2.解析:(1)根据三角形的中位线的性质和菱形的判定定理即可得到结论;(2)过E作EG⊥BC于G,根据等腰三角形和直角三角形的性质即可得到结论.本题考查了菱形的判定和性质,等腰三角形的性质,三角形的中位线的性质,菱形的面积,熟练掌握菱形的判定定理是解题的关键.24.答案:解:(1)∵△ABC是等边三角形,∴∠CBA=∠ACB=60°,∴∠ADB=∠ACB=60°、∠ADC=∠ABC=60°,∵CD//BE,∴∠CDA=∠DEB=60°,∴∠ADB=∠DEB=60°,∴△BDE是等边三角形;(2)如图,过点B作MB⊥CD,交CD延长线于点M,∵∠CDB=∠ADC+∠ADB=120°,∴∠BDM=60°,∵在Rt△BDM中,BD=2,∴DM=1、BM=√3,则CM=CD+DM=2,∴BC=√7;(3)∵CD//BE,∴△CDP∽△BEP,∴CDBE =CPPB,由(1)知BD=BE,∴CDBD =CPBP.解析:(1)由等边△ABC知∠CBA=∠ACB=60°,根据圆周角定理得∠ADB=∠ACB=60°、∠ADC=∠ABC=60°,由CD//BE知∠CDA=∠DEB=60°,据此得出∠ADB=∠DEB=60°,即可得证;(2)作MB⊥CD,交CD延长线于点M,由∠BDM=60°知在Rt△BDM中,BD=2、DM=1、BM=√3,继而由CM=CD+DM=2即可得BC=√7;(3)由CD//BE知△CDP∽△BEP,即可得CDBE =CPPB,根据BD=BE可得答案.本题考查了圆的综合题:熟练掌握圆周角定理和等边三角形的判定与性质;相似三角形的判定与性质.学会构建直角三角形,利用勾股定理计算线段的长.25.答案:解:(1)抛物线y=−14x2−x+2=−14(x+2)2+3的开口方向向下,顶点A的坐标是(−2,3),抛物线的变化情况是:在对称轴直线x=−2左侧部分是上升的,右侧部分是下降的;(2)如图,设直线BC与对称轴交于点D,则AD⊥BD.设线段AD的长为m,则BD=AD⋅cot∠ABC=2m,∴点B的坐标可表示为(−2m−2,3−m),代入y=−14x2−x+2,得3−m=−14(−2m−2)2−(−2m−2)+2.解得m1=0(舍),m2=1,∴点B的坐标为(−4,2).解析:本题是二次函数综合题,考查了二次函数的性质,二次函数的应用,利用参数求点B坐标是本题的关键.(1)由二次函数的性质可求解;(2)如图,设直线BC与对称轴交于点D,则AD⊥BD,设线段AD的长为m,则BD=AD⋅cot∠ABC=2m,可求点B坐标,代入解析式可求m的值,即可求点B坐标.。
2020年广东省中考数学全真模拟试卷(新题型)(解析版)
2020年广东省中考数学全真模拟试卷(新题型)(解析版)考试时间:90分钟;满分:120学校:___________班级:___________姓名:___________学号:___________一.选择题(共10小题,满分30分,每小题3分)1.(3分)﹣2020的相反数是()A.B.C.2020D.﹣20202.(3分)港珠澳大桥2018年10月24日上午9时正式通车,这座大桥跨越伶仃洋,东接香港,西接广东珠海和澳门,总长约55000m,集桥、岛、隧于一体,是世界最长的跨海大桥,数据55000用科学记数法表示为()A.5.5×105B.55×104C.5.5×104D.5.5×1063.(3分)如图,下列结论正确的是()A.c>a>b B.C.|a|<|b|D.abc>04.(3分)如表是我国近六年“两会”会期(单位:天)的统计结果:时间201420152016201720182019会期(天)111314131813则我国近六年“两会”会期(天)的众数和中位数分别是()A.13,11B.13,13C.13,14D.14,13.55.(3分)在Rt△ABC,∠C=90°,sin B=,则sin A的值是()A.B.C.D.6.(3分)如图,AB是⊙O的直径,CD是⊙O的弦,如果∠ACD=34°,那么∠BAD等于()A.34°B.46°C.56°D.66°7.(3分)下列运算中,计算正确的是()A.2a+3a=5a2B.(3a2)3=27a6C.x6÷x2=x3D.(a+b)2=a2+b28.(3分)甲、乙两位同学做中国结,已知甲每小时比乙少做6个,甲做30个所用的时间与乙做45个所用的时间相等,求甲每小时做中国结的个数.如果设甲每小时做x个,那么可列方程为()A.=B.=C.=D.=9.(3分)如图,以正方形ABCD的顶点A为坐标原点,直线AB为x轴建立直角坐标系,对角线AC与BD相交于点E,P为BC上一点,点P坐标为(a,b),则点P绕点E顺时针旋转90°得到的对应点P′的坐标是()A.(a﹣b,a)B.(b,a)C.(a﹣b,0)D.(b,0)10.(3分)已知一元二次方程ax2+bx+c=0(a≠0)中,下列说法:①若a+b+c=0,则b2﹣4ac>0;②若方程两根为﹣1和2,则2a+c=0;③若方程ax2+c=0有两个不相等的实根,则方程ax2+bx+c=0必有两个不相等的实根;④若b=2a+c,则方程有两个不相等的实根.其中正确的有()A.①②③B.①②④C.②③④D.①②③④二.填空题(共7小题,满分28分,每小题4分)11.(4分)因式分解:x2﹣9=.12.(4分)在平面直角坐标系中点P(﹣2,3)关于x轴的对称点在第象限.13.(4分)一个正数a的平方根分别是2m﹣1和﹣3m+,则这个正数a为.14.(4分)已知反比例函数y=(k是常数,k≠1)的图象有一支在第二象限,那么k 的取值范围是.15.(4分)在一个不透明的布袋中装有4个白球和n个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球,摸到白球的概率是,则n=.16.(4分)如图,AB是半圆的直径,∠BAC=20°,D是的中点,则∠DAC的度数是.17.(4分)如图,在平面直角坐标系中,抛物线y=ax2﹣2ax+(a>0)与y轴交于点A,过点A作x轴的平行线交抛物线于点M.P为抛物线的顶点.若直线OP交直线AM于点B,且M为线段AB的中点,则a的值为.三.解答题(共8小题,满分62分)18.(6分)计算:2sin30°﹣(π﹣)0+|﹣1|+()﹣119.(6分)先化简,再求值(﹣)÷,其中a,b满足a+b﹣=0.20.(6分)如图,在△ABC中,∠ABC=90°.(1)作∠ACB的平分线交AB边于点O,再以点O为圆心,OB的长为半径作⊙O;(要求:不写做法,保留作图痕迹)(2)判断(1)中AC与⊙O的位置关系,直接写出结果.21.(8分)如图,在△ABC中,过点C作CD∥AB,E是AC的中点,连接DE并延长,交AB于点F,交CB的延长线于点G,连接AD,CF.(1)求证:四边形AFCD是平行四边形.(2)若GB=3,BC=6,BF=,求AB的长.22.(8分)2019年4月23日是第二十四个“世界读书日“.某校组织读书征文比赛活动,评选出一、二、三等奖若干名,并绘成如图所示的条形统计图和扇形统计图(不完整),请你根据图中信息解答下列问题:(1)求本次比赛获奖的总人数,并补全条形统计图;(2)求扇形统计图中“二等奖”所对应扇形的圆心角度数;(3)学校从甲、乙、丙、丁4位一等奖获得者中随机抽取2人参加“世界读书日”宣传活动,请用列表法或画树状图的方法,求出恰好抽到甲和乙的概率.23.(8分)在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.销售量y(千克)…34.83229.628…售价x(元/千克)…22.62425.226…(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?24.(10分)如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC,AC分别交于D,E两点,过点D作DH⊥AC于点H.(1)判断DH与⊙O的位置关系,并说明理由;(2)求证:H为CE的中点;(3)若BC=10,cos C=,求AE的长.25.(10分)如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B,与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.(1)求二次函数的表达式;(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标;(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N 从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)﹣2020的相反数是()A.B.C.2020D.﹣2020【分析】直接利用相反数的定义得出答案.【解答】解:﹣2020的相反数是:2020.故选:C.2.(3分)港珠澳大桥2018年10月24日上午9时正式通车,这座大桥跨越伶仃洋,东接香港,西接广东珠海和澳门,总长约55000m,集桥、岛、隧于一体,是世界最长的跨海大桥,数据55000用科学记数法表示为()A.5.5×105B.55×104C.5.5×104D.5.5×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:55000=5.5×104,故选:C.3.(3分)如图,下列结论正确的是()A.c>a>b B.C.|a|<|b|D.abc>0【分析】A、根据数轴上的数右边的总比左边的大,可得结论;B、根据0<b<1<c,可得结论;C、根据数轴上数a表示的点离原点比较远,可得|a|>|b|;D、根据a<0,b>0,c>0,可得结论.【解答】解:A、由数轴得:a<b<c,故选项A不正确;B、∵0<b<1<c,∴>,故选项B正确;C、由数轴得:|a|>|b|,故选项C不正确;D、∵a<0,b>0,c>0,∴abc<0,故选项D不正确;故选:B.4.(3分)如表是我国近六年“两会”会期(单位:天)的统计结果:时间201420152016201720182019会期(天)111314131813则我国近六年“两会”会期(天)的众数和中位数分别是()A.13,11B.13,13C.13,14D.14,13.5【分析】根据中位数和众数的定义解答.第3和第4个数的平均数就是中位数,13出现的次数最多.【解答】解:由表知这组数据的众数13,中位数为=13,故选:B.5.(3分)在Rt△ABC,∠C=90°,sin B=,则sin A的值是()A.B.C.D.【分析】根据互余两角三角函数的关系:sin2A+sin2B=1解答.【解答】解:∵在Rt△ABC,∠C=90°,∴∠A+∠B=90°,∴sin2A+sin2B=1,sin A>0,∵sin B=,∴sin A==.故选:B.6.(3分)如图,AB是⊙O的直径,CD是⊙O的弦,如果∠ACD=34°,那么∠BAD等于()A.34°B.46°C.56°D.66°【分析】由AB是⊙O的直径,根据直径所对的圆周角是直角,可求得∠ADB=90°,又由∠ACD=34°,可求得∠ABD的度数,再根据直角三角形的性质求出答案.【解答】解:∵AB是⊙O的直径,∴∠ADB=90°,∵∠ACD=34°,∴∠ABD=34°∴∠BAD=90°﹣∠ABD=56°,故选:C.7.(3分)下列运算中,计算正确的是()A.2a+3a=5a2B.(3a2)3=27a6C.x6÷x2=x3D.(a+b)2=a2+b2【分析】直接利用合并同类项法则以及积的乘方运算法则、完全平方公式分别化简得出答案.【解答】解:A、2a+3a=5a,故此选项错误;B、(3a2)3=27a6,正确;C、x6÷x2=x4,故此选项错误;D、(a+b)2=a2+2ab+b2,故此选项错误;故选:B.8.(3分)甲、乙两位同学做中国结,已知甲每小时比乙少做6个,甲做30个所用的时间与乙做45个所用的时间相等,求甲每小时做中国结的个数.如果设甲每小时做x个,那么可列方程为()A.=B.=C.=D.=【分析】根据甲乙的工作时间,可列方程.【解答】解:设甲每小时做x个,乙每小时做(x+6)个,根据甲做30个所用时间与乙做45个所用时间相等,得,故选:A.9.(3分)如图,以正方形ABCD的顶点A为坐标原点,直线AB为x轴建立直角坐标系,对角线AC与BD相交于点E,P为BC上一点,点P坐标为(a,b),则点P绕点E顺时针旋转90°得到的对应点P′的坐标是()A.(a﹣b,a)B.(b,a)C.(a﹣b,0)D.(b,0)【分析】如图,连接PE,点P绕点E顺时针旋转90°得到的对应点P′在x轴上,根据正方形的性质得到∠ABC=90°,∠AEB=90°,AE=BE,∠EAP′=∠EBP=45°,由点P坐标为(a,b),得到BP=b,根据全等三角形的性质即可得到结论.【解答】解:如图,连接PE,点P绕点E顺时针旋转90°得到的对应点P′在x轴上,∵四边形ABCD是正方形,∴∠ABC=90°,∴∠AEB=90°,AE=BE,∠EAP′=∠EBP=45°,∵点P坐标为(a,b),∴BP=b,∵∠PEP′=90°,∴∠AEP′=∠PEB,在△AEP′与△BEP中,,∴△AEP′≌△BEP(ASA),∴AP′=BP=b,∴点P′的坐标是(b,0),故选:D.10.(3分)已知一元二次方程ax2+bx+c=0(a≠0)中,下列说法:①若a+b+c=0,则b2﹣4ac>0;②若方程两根为﹣1和2,则2a+c=0;③若方程ax2+c=0有两个不相等的实根,则方程ax2+bx+c=0必有两个不相等的实根;④若b=2a+c,则方程有两个不相等的实根.其中正确的有()A.①②③B.①②④C.②③④D.①②③④【分析】①观察条件,知是当x=1时,有a+b+c=0,因而方程有根.②把x=﹣1和2代入方程,建立两个等式,即可得到2a+c=0.③方程ax2+c=0有两个不相等的实根,则△=﹣4ac>0,左边加上b2就是方程ax2+bx+c=0的△,由于加上了一个非负数,所以△>0.④把b=2a+c代入△,就能判断根的情况.【解答】解:①当x=1时,有若a+b+c=0,即方程有实数根了,∴△≥0,故错误;②把x=﹣1代入方程得到:a﹣b+c=0 (1)把x=2代入方程得到:4a+2b+c=0 (2)把(2)式减去(1)式×2得到:6a+3c=0,即:2a+c=0,故正确;③方程ax2+c=0有两个不相等的实数根,则它的△=﹣4ac>0,∴b2﹣4ac>0而方程ax2+bx+c=0的△=b2﹣4ac>0,∴必有两个不相等的实数根.故正确;④若b=2a+c则△=b2﹣4ac=(2a+c)2﹣4ac=4a2+c2,∵a≠0,∴4a2+c2>0故正确.②③④都正确,故选C.二.填空题(共7小题,满分28分,每小题4分)11.(4分)因式分解:x2﹣9=(x+3)(x﹣3).【分析】原式利用平方差公式分解即可.【解答】解:原式=(x+3)(x﹣3),故答案为:(x+3)(x﹣3).12.(4分)在平面直角坐标系中点P(﹣2,3)关于x轴的对称点在第三象限.【分析】应先判断出所求的点的横纵坐标,进而判断所在的象限.【解答】解:点P(﹣2,3)满足点在第二象限的条件.关于x轴的对称点的横坐标与P 点的横坐标相同,是﹣2;纵坐标互为相反数,是﹣3,则P关于x轴的对称点是(﹣2,﹣3),在第三象限.故答案是:三13.(4分)一个正数a的平方根分别是2m﹣1和﹣3m+,则这个正数a为4.【分析】直接利用平方根的定义得出2m﹣1+(﹣3m+)=0,进而求出m的值,即可得出答案.【解答】解:根据题意,得:2m﹣1+(﹣3m+)=0,解得:m=,∴正数a=(2×﹣1)2=4,故答案为:4.14.(4分)已知反比例函数y=(k是常数,k≠1)的图象有一支在第二象限,那么k 的取值范围是k<1.【分析】由于反比例函数y=的图象有一支在第二象限,可得k﹣1<0,求出k的取值范围即可.【解答】解:∵反比例函数y=的图象有一支在第二象限,∴k﹣1<0,解得k<1.故答案为:k<1.15.(4分)在一个不透明的布袋中装有4个白球和n个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球,摸到白球的概率是,则n=8.【分析】根据白球的概率公式=列出方程求解即可.【解答】解:不透明的布袋中的球除颜色不同外,其余均相同,共有n+4个球,其中白球4个,根据古典型概率公式知:P(白球)==,解得:n=8,故答案为:8.16.(4分)如图,AB是半圆的直径,∠BAC=20°,D是的中点,则∠DAC的度数是35°.【分析】首先连接BC,由AB是半圆的直径,根据直径所对的圆周角是直角,可得∠C =90°,继而求得∠B的度数,然后由D是的中点,根据弧与圆周角的关系,即可求得答案.【解答】解:连接BC,∵AB是半圆的直径,∴∠C=90°,∵∠BAC=20°,∴∠B=90°﹣∠BAC=70°,∵D是的中点,∴∠DAC=∠B=35°.故答案为:35°.17.(4分)如图,在平面直角坐标系中,抛物线y=ax2﹣2ax+(a>0)与y轴交于点A,过点A作x轴的平行线交抛物线于点M.P为抛物线的顶点.若直线OP交直线AM于点B,且M为线段AB的中点,则a的值为2.【分析】先根据抛物线解析式求出点A坐标和其对称轴,再根据对称性求出点M坐标,利用点M为线段AB中点,得出点B坐标;用含a的式子表示出点P坐标,写出直线OP 的解析式,再将点B坐标代入即可求解出a的值.【解答】解:∵抛物线y=ax2﹣2ax+(a>0)与y轴交于点A,∴A(0,),抛物线的对称轴为x=1∴顶点P坐标为(1,﹣a),点M坐标为(2,)∵点M为线段AB的中点,∴点B坐标为(4,)设直线OP解析式为y=kx(k为常数,且k≠0)将点P(1,)代入得=k∴y=()x将点B(4,)代入得=()×4解得a=2故答案为:2.三.解答题(共8小题,满分62分)18.(6分)计算:2sin30°﹣(π﹣)0+|﹣1|+()﹣1【分析】直接利用特殊角的三角函数值以及零指数幂的性质和负指数幂的性质分别化简得出答案.【解答】解:原式=2×﹣1+﹣1+2=1+.19.(6分)先化简,再求值(﹣)÷,其中a,b满足a+b﹣=0.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把已知等式变形后代入计算即可求出值.【解答】解:原式=•=,由a+b﹣=0,得到a+b=,则原式=2.20.(6分)如图,在△ABC中,∠ABC=90°.(1)作∠ACB的平分线交AB边于点O,再以点O为圆心,OB的长为半径作⊙O;(要求:不写做法,保留作图痕迹)(2)判断(1)中AC与⊙O的位置关系,直接写出结果.【分析】(1)首先利用角平分线的作法得出CO,进而以点O为圆心,OB为半径作⊙O 即可;(2)利用角平分线的性质以及直线与圆的位置关系进而求出即可.【解答】解:(1)如图所示:;(2)相切;过O点作OD⊥AC于D点,∵CO平分∠ACB,∴OB=OD,即d=r,∴⊙O与直线AC相切,21.(8分)如图,在△ABC中,过点C作CD∥AB,E是AC的中点,连接DE并延长,交AB于点F,交CB的延长线于点G,连接AD,CF.(1)求证:四边形AFCD是平行四边形.(2)若GB=3,BC=6,BF=,求AB的长.(1)由E是AC的中点知AE=CE,由AB∥CD知∠AFE=∠CDE,据此根据“AAS”【分析】即可证△AEF≌△CED,从而得AF=CD,结合AB∥CD即可得证;(2)证△GBF∽△GCD得=,据此求得CD=,由AF=CD及AB=AF+BF可得答案.【解答】解:(1)∵E是AC的中点,∴AE=CE,∵AB∥CD,∴∠AFE=∠CDE,在△AEF和△CED中,∵,∴△AEF≌△CED(AAS),∴AF=CD,又AB∥CD,即AF∥CD,∴四边形AFCD是平行四边形;(2)∵AB∥CD,∴△GBF∽△GCD,∴=,即=,解得:CD=,∵四边形AFCD是平行四边形,∴AF=CD=,∴AB=AF+BF=+=6.22.(8分)2019年4月23日是第二十四个“世界读书日“.某校组织读书征文比赛活动,评选出一、二、三等奖若干名,并绘成如图所示的条形统计图和扇形统计图(不完整),请你根据图中信息解答下列问题:(1)求本次比赛获奖的总人数,并补全条形统计图;(2)求扇形统计图中“二等奖”所对应扇形的圆心角度数;(3)学校从甲、乙、丙、丁4位一等奖获得者中随机抽取2人参加“世界读书日”宣传活动,请用列表法或画树状图的方法,求出恰好抽到甲和乙的概率.【分析】(1)由一等奖人数及其所占百分比可得总人数,总人数减去一等奖、三等奖人数求出二等奖人数即可补全图形;(2)用360°乘以二等奖人数所占百分比可得答案;(3)画出树状图,由概率公式即可解决问题.【解答】解:(1)本次比赛获奖的总人数为4÷10%=40(人),二等奖人数为40﹣(4+24)=12(人),补全条形图如下:(2)扇形统计图中“二等奖”所对应扇形的圆心角度数为360°×=108°;(3)树状图如图所示,∵从四人中随机抽取两人有12种可能,恰好是甲和乙的有2种可能,∴抽取两人恰好是甲和乙的概率是=.23.(8分)在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.销售量y(千克)…34.83229.628…售价x(元/千克)…22.62425.226…(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?【分析】(1)根据表格内的数据,利用待定系数法可求出y与x之间的函数关系式,再代入x=23.5即可求出结论;(2)根据总利润=每千克利润×销售数量,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【解答】解:(1)设y与x之间的函数关系式为y=kx+b,将(22.6,34.8)、(24,32)代入y=kx+b,,解得:,∴y与x之间的函数关系式为y=﹣2x+80.当x=23.5时,y=﹣2x+80=33.答:当天该水果的销售量为33千克.(2)根据题意得:(x﹣20)(﹣2x+80)=150,解得:x1=35,x2=25.∵20≤x≤32,∴x=25.答:如果某天销售这种水果获利150元,那么该天水果的售价为25元.24.(10分)如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC,AC分别交于D,E两点,过点D作DH⊥AC于点H.(1)判断DH与⊙O的位置关系,并说明理由;(2)求证:H为CE的中点;(3)若BC=10,cos C=,求AE的长.【分析】(1)连结OD、AD,如图,先利用圆周角定理得到∠ADB=90°,则根据等腰三角形的性质得BD=CD,再证明OD为△ABC的中位线得到OD∥AC,加上DH⊥AC,所以OD⊥DH,然后根据切线的判定定理可判断DH为⊙O的切线;(2)连结DE,如图,有圆内接四边形的性质得∠DEC=∠B,再证明∠DEC=∠C,然后根据等腰三角形的性质得到CH=EH;(3)利用余弦的定义,在Rt△ADC中可计算出AC=5,在Rt△CDH中可计算出CH =,则CE=2CH=2,然后计算AC﹣CE即可得到AE的长.【解答】(1)解:DH与⊙O相切.理由如下:连结OD、AD,如图,∵AB为直径,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴BD=CD,而AO=BO,∴OD为△ABC的中位线,∴OD∥AC,∵DH⊥AC,∴OD⊥DH,∴DH为⊙O的切线;(2)证明:连结DE,如图,∵四边形ABDE为⊙O的内接四边形,∴∠DEC=∠B,∵AB=AC,∴∠B=∠C,∴∠DEC=∠C,∵DH⊥CE,∴CH=EH,即H为CE的中点;(3)解:在Rt△ADC中,CD=BC=5,∵cos C==,∴AC=5,在Rt△CDH中,∵cos C==,∴CH=,∴CE=2CH=2,∴AE=AC﹣CE=5﹣2=3.25.(10分)如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B,与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.(1)求二次函数的表达式;(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标;(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N 从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.【分析】(1)代入A(1,0)和C(0,3),解方程组即可;(2)求出点B的坐标,再根据勾股定理得到BC,当△PBC为等腰三角形时分三种情况进行讨论:①CP=CB;②BP=BC;③PB=PC;(3)设AM=t则DN=2t,由AB=2,得BM=2﹣t,S△MNB=×(2﹣t)×2t=﹣t2+2t,运用二次函数的顶点坐标解决问题;此时点M在D点,点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处.【解答】解:(1)把A(1,0)和C(0,3)代入y=x2+bx+c,解得:b=﹣4,c=3,∴二次函数的表达式为:y=x2﹣4x+3;(2)令y=0,则x2﹣4x+3=0,解得:x=1或x=3,∴B(3,0),∴BC=3,点P在y轴上,当△PBC为等腰三角形时分三种情况进行讨论:如图1,①当CP=CB时,PC=3,∴OP=OC+PC=3+3或OP=PC﹣OC=3﹣3∴P1(0,3+3),P2(0,3﹣3);②当BP=BC时,OP=OB=3,∴P3(0,﹣3);③当PB=PC时,∵OC=OB=3∴此时P与O重合,∴P4(0,0);综上所述,点P的坐标为:(0,3+3)或(0,3﹣3)或(0,﹣3)或(0,0);(3)如图2,设A运动时间为t,由AB=2,得BM=2﹣t,则DN=2t,∴S△MNB=×(2﹣t)×2t=﹣t2+2t=﹣(t﹣1)2+1,即当M(2,0)、N(2,2)或(2,﹣2)时△MNB面积最大,最大面积是1.。
广东2020中考数学综合模拟测试卷2(含答案)
2020 广东省初中毕业生学业模拟考试数学试题(含答案全解全析)第Ⅰ卷(选择题, 共 30分)一、选择题( 本大题共10 小题 , 每题3分,共30 分 ) 在每题列出的四个选项中, 只有一个是正确的.1. 在1,0,2,-3 这四个数中, 最大的数是( )A.1B.0C.2D.-32. 在以下交通标记图中, 既是轴对称图形, 又是中心对称图形的是( )3. 计算 3a-2a 的结果正确的选项是 ()A.1B.aC.-aD.-5a4. 把 x3-9x 分解因式 , 结果正确的选项是( )A.x(x 2-9)B.x(x-3) 2C.x(x+3) 2D.x(x+3)(x-3)5. 一个多边形的内角和是900°,这个多边形的边数是()A.10B.9C.8D.76.一个不透明的布袋里装有7 个只有颜色不一样的球 , 此中 3 个红球 ,4 个白球 , 从布袋中随机摸出 1 个球 , 摸出的球是红球的概率为( )A. B. C. D.7.如图 , 在?ABCD中 , 以下说法必定正确的选项是 ()A.AC=BDB.AC⊥BDC.AB=CDD.AB=BC8. 若对于x 的一元二次方程x2-3x+m=0 有两个不相等的实数根, 则实数m的取值范围是( )A.m>B.m<C.m=D.m<-9. 一个等腰三角形的两边长分别为 3 和 7, 则它的周长为 ()A.17B.15C.13D.13 或 1710. 二次函数2的大概图象如下图, 对于该二次函数, 以下说法错误的是y=ax +bx+c(a ≠0)()A. 函数有最小值B. 对称轴是直线x=C.当 x< 时 ,y 随 x 的增大而减少D.当 -1<x<2 时 ,y>0第Ⅱ卷 ( 非选择题 , 共 90 分)二、填空题 ( 本大题共 6 小题 , 每题 4 分 , 共 24 分 ) 请将以下各题的正确答案填写在相应的地点上 .11. 计算 :2x 3÷x=.12. 据报导 , 截止 2013 年 12 月我国网民规模达618 000 000 人 . 将 618 000 000 用科学记数法表示为.13. 如图 , 在△ ABC中, 点 D,E 分别是 AB,AC的中点 , 若 BC=6,则 DE=.14. 如图 , 在☉ O中 , 已知半径为5, 弦 AB的长为 8, 那么圆心O到 AB的距离为.15. 不等式组的解集是.-16. 如图 , △ABC绕点 A按顺时针旋转45°获得△ AB'C', 若∠BAC=90°,AB=AC= , 则图中暗影部分的面积等于.三、解答题 ( 一 ) (本大题共3小题,每题 6分,共 18分)17. 计算 : +|-4|+(-1) -0-.18. 先化简 , 再求值 : 2 此中 x= - .·(x -1),-19. 如图 , 点 D 在△ ABC的 AB边上 , 且∠ACD=∠ A.(1)作∠ BDC的均分线 DE,交 BC于点 E( 用尺规作图法 , 保存作图印迹 , 不要求写作法 );(2)在 (1) 的条件下 , 判断直线 DE与直线 AC的地点关系 ( 不要求证明 ).四、解答题 ( 二) (本大题共 3 小题 , 每题 7 分, 共 21 分)20.如图 , 某数学兴趣小组想丈量一棵树 CD的高度 . 他们先在点 A处测得树顶 C的仰角为 30°,而后沿 AD方向前行 10 m,抵达 B 点 , 在 B 处测得树顶 C 的仰角为 60 ° (A、B、D 三点在同向来线上 ). 请你依据他们的丈量数据计算这棵树CD 的高度 ( 结果精准到0.1 m).( 参照数据:≈1.414,≈1.732)21.某商场销售的一款空调机每台的标价是1 635 元 , 在一次促销活动中 , 按标价的八折销售 ,仍可盈余9%.(1) 求这款空调机每台的进价;收益率收益售价-进价进价进价(2) 在此次促销活动中, 商场销售了这款空调机100 台 , 问盈余多少元?22. 某高校学生会发现同学们就餐时节余饭菜许多, 浪费严重 , 于是准备在校内倡议“光盘行动”, 让同学们珍惜粮食. 为了让同学们理解此次活动的重要性, 校学生会在某天午饭后, 随机检查了部分同学这餐饭菜的节余状况, 并将结果统计后绘制成了如图 1 和图 2 所示的不完好的统计图 .(1) 此次被检查的同学共有名;(2)把条形统计图 ( 图 1) 增补完好 ;(3) 校学生会经过数据剖析, 预计此次被检查的全部同学一餐浪费的食品能够供200 人食用一餐 . 据此估量 , 该校 18 000 名学生一餐浪费的食品可供多少人食用一餐.五、解答题 ( 三 ) (本大题共 3 小题,每题 9 分,共 27 分)23.如图,已知 A- ,B(-1,2) 是一次函数y=kx+b(k ≠0) 与反比率函数 y= (m≠0,x<0) 图象的两个交点 ,AC⊥ x 轴于点 C,BD⊥ y 轴于点 D.(1) 依据图象直接回答: 在第二象限内 , 当 x 取何值时 , 一次函数的值大于反比率函数的值?(2)求一次函数的分析式及 m的值 ;(3)P 是线段 AB上一点 , 连接 PC,PD,若△ PCA与△PDB的面积相等 , 求点 P 的坐标 .24.如图 , ☉ O是△ABC的外接圆 ,AC 是直径 . 过点 O作线段 OD⊥ AB 于点 D, 延伸 DO交☉ O于点P, 过点 P 作 PE⊥ AC于点 E, 作射线 DE交 BC的延伸线于点F, 连接 PF.(1) 若∠POC=60°,AC=12, 求劣弧的长(结果保存π );(2)求证 :OD=OE;(3)求证 :PF 是☉ O的切线 .25.如图 , 在△ ABC中 ,AB=AC,AD⊥ BC于点 D,BC=10cm,AD=8cm. 点 P 从点 B 出发 , 在线段 BC上以每秒 3 cm的速度向点 C匀速运动 , 与此同时 , 垂直于 AD的直线 m从底边 BC出发 , 以每秒 2 cm 的速度沿DA方向匀速平移, 分别交 AB、 AC、 AD于点 E、 F、H. 当点 P 抵达点 C 时 , 点 P 与直线 m同时停止运动. 设运动时间为t 秒(t>0).(1)当 t=2 时 , 连接 DE,DF.求证 : 四边形 AEDF是菱形 ;(2)在整个运动过程中 , 所形成的△ PEF的面积蓄在最大值 . 当△ PEF的面积最大时 , 求线段 BP 的长 ;(3)能否存在某一时刻 t, 使△ PEF是直角三角形 ?若存在 , 恳求出现在 t 的值 ; 若不存在 , 请说明原因 .答案全解全析:一、选择题1.C ∵ - 3<0<1<2,∴2最大 . 应选 C.2.C A项既不是轴对称图形 , 也不是中心对称图形, 故 A 项错误 ;B 项既不是轴对称图形 , 也不是中心对称图形 , 故 B 项错误 ;C 项既是轴对称图形, 又是中心对称图形 , 故 C项正确 ;D 项是轴对称图形 , 但不是中心对称图形,故 D项错误.应选 C.评析此题考察了轴对称图形和中心对称图形的判断, 属简单题 .3.B 利用归并同类项的法例可知3a-2a=(3-2)a=a, 应选 B.4.D x3-9x=x(x 2-9)=x(x+3)(x-3). 应选 D.5.D 设这个多边形的边数为x, 则 180×(x -2)=900, 解得 x=7, 应选 D.6.B 由于随机摸出一球的全部等可能的结果共有7 种 , 此中摸出一个红球的等可能的结果有 3 种 , 因此摸出的球是红球的概率为,应选 B.7.C 利用平行四边形的性质可知, 只有 C 项必定正确 . 应选 C.8.B ∵ 一元二次方程有两个不相等的实数根, ∴(-3) 2- 4m>0,∴m< . 应选 B.9.A ∵ 三角形为等腰三角形, 且三角形随意两边之和大于第三边, ∴三角形的三边长分别为3,7,7, ∴周长为 17. 应选 A.10.D ∵ 抛物线的张口向上, ∴函数有最小值 , 故 A项正确 ;∵抛物线与 x 轴交于 (-1,0) 、(2,0) 两点 , ∴抛物线的对称轴是直线x= , 故 B 项正确 ; ∵抛物线的张口向上 , 对称轴为直线x= , ∴当 x< 时 ,y 随 x 的增大而减少 , 故 C项正确 ;∵当 -1<x<2 时 ,y<0, 故 D 项错误 . 应选 D.评析此题考察了二次函数的图象和性质及“数形联合”思想 , 考察了学生剖析问题、解决问题的能力 , 属于较难题 .二、填空题11.答案 2x2分析2x 3÷x=2(x 3÷x)=2x 2.12. 答案 6.18 ×10 8分析618 000 8000=6.18 × 10.13.答案 3分析∵D、 E 分别是 AB、 AC的中点 , ∴ DE是△ABC的中位线 , ∴ DE=BC=3.14.答案 3分析作 OC⊥ AB 于 C, 连接 OA,则 AC= AB=4, 又 OA=5,∴OC= -=-=3.15. 答案1<x<4分析由 2x<8, 得 x<4; 由 4x-1>x+2, 得 x>1, ∴不等式组的解集为1<x<4.16. 答案-1解析设 AC'与BC 的交点为 D,B'C' 与AB 的交点为E, 则 AD=AE=AC·cos45°=1. ∵AC'=AC=2 2 2 2-1. , ∴C'D= - 1, ∴S暗影 = AE- C'D = ×1- ×(-1) =评析此题考察了等腰直角三角形的性质、三角形的面积以及图形的旋转, 属较难题 .三、解答题 ( 一) (本解答题参照答案只供给一种解法, 考生选择其余解法只需答案正确, 相应给分 .)17.分析原式 =3+4+1-2(4 分 )=6.(6 分 )18.分析原式==2(x+1)+(x-1)(3分) =3x+1.(4分)--·(x+1)(x-1)(2分)当 x=-时,原式=3×-+1=.(6分)19.分析 (1) 作图正确 ( 实线、虚线均可 ),结论 :DE 即为所求 .(3分)( 考生没有结论, 但作图正确给满分)(2)DE ∥ AC.(6 分 )四、解答题 ( 二) (本解答题参照答案只供给一种解法,考生选择其余解法只需答案正确,相应给分 .)20.分析∵∠ CAB=30°, ∠CBD=60°,∴∠ACB=60° - 30°=30°, ∴∠ CAB=∠ACB,∴B C=AB=10.(3 分 )在 Rt △ CBD中 ,sin 60 °= ,∴CD=BC·sin 60°=10×=5≈8.7(m).答: 这棵树高约8.7 m.(7 分)21. 分析(1) 设这款空调机每台的进价是x 元 ,(1分)依据题意 , 得 1 635 × 0.8-x=9%·x,(3分)解得 x=1 200.答: 该款空调机每台的进价是 1 200 元.(5分)(2)100 ×1 200×9%=10800( 元 ).答: 商场盈余 10 800 元 .(7 分 )22. 分析 (1)1 000.(2 分 )(2) 剩少许饭菜的人数为 :1 000-(400+250+150)=200.( 补全条形统计图正确 3 分 )(5 分 )(3)×18 000=3 600( 人 ).答: 预计可供 3 600 人食用一餐 .(7分)五、解答题 ( 三) (本解答题参照答案只供给一种解法, 考生选择其余解法只需答案正确, 相应给分 .)23. 分析(1)-4<x<-1.(2 分 )(2) 将 A - ,B(-1,2)- 分别代入 y=kx+b, 得-解得 k= ,b=.∴一次函数的分析式为y= x+ .(4分) 将 B(-1,2)代入y=中,得=2,-∴m=-2.(6分)(3)∵点 P在线段 AB上 ,∴设 P 的坐标为.(7 分)∵S PCA=S PDB,△△∴ × ×(a+4)=×1×-, 解得 a=- ,(8分)∴a+ = × - + = .∴点 P 的坐标是 - .(9 分)24.分析 (1) ∵AC 是☉ O的直径 ,∴OC= AC= ×12=6.(1分)∴劣弧的长为=2π .(3分)(2) 证明 : ∵OD⊥ AB,PE⊥ AC,∴∠ ODA=∠OEP=90°.(4分)又∵ OA=OP, ∠AOD=∠POE,∴△ AOD≌△ POE,(5 分 )∴O D=OE.(6 分 )(3) 证明 : 连接 PA.∵OD=OE,∴∠ ODE=∠OED.∵∠ POC=∠ODE+∠ OED,∴∠ POC=2∠ OED.又∵∠ POC=2∠ PAC, ∴∠PAC=∠ OED.∴PA∥ DF,(7 分 )∴∠ PAD=∠FDB.∵OD⊥AB,∴AD=BD.∵AC是☉ O的直径 ,∴∠ DBF=∠ADP=90°.∴△ PAD≌△ FDB,∴P A=FD.∴四边形 PADF是平行四边形 .(8分)∴P F∥ AD,∴∠ FPD=∠ADP=90°,即 OP⊥PF,∵OP是☉ O的半径 ,∴P F 是☉O的切线 .(9 分 )25. 分析(1) 证明 : 如图 1, 当 t=2 时 ,HD=2t=4.∵A D=8,∴HD= AD.(1 分 )∵E F⊥ AD,AD⊥BC,∴EF∥ BC,图 1 ∴E,F 分别是 AB,AC的中点 .∵A B=AC,AD⊥ BC,∴D是 BC的中点 ,∴DE∥ AC,DF∥ AB,∴四边形 AEDF是平行四边形 .(2分)又∵ AD⊥EF,∴四边形 AEDF是菱形 .(3分)图 2 (2) 如图 2, ∵EF∥BC,∴ △ AEF∽△ ABC,∴= ,∴= - ,∴E F=10- t.(4 分)∴S PEF= EF·DH=-·2t=- t 2 +10t△=- (t-2)2+10.(5分)∴当 S△PEF取最大值时 ,t=2.此时 ,BP=3t=3× 2=6(cm).(6分)(3) 存在 .①如图 3, 若∠PEF=90°,则 PE∥ AD.图 3 ∴△ BEP∽△ BAD,∴=,∴=,∴t=0.∵当 t=0 时, △ EPF不存在 ,∴t=0 不合题意 , 舍去 .(7 分 )②如图 4, 若∠EPF=90°,在 Rt△ EPF中 ,图 4 连接 PH, ∵H是 EF 的中点 ,∴PH= EF= -=5- t.2 2 2=HD+DP,在 Rt △ HDP中 , ∵ HP∴ - =(2t) 2+(5-3t) 2.解得 t=0 或 t= .由① 知 ,t=0不合题意,舍去,∴t= .(8 分)③如图 5,图 5 若∠ PFE=90 °,则PF∥ AD.∴△ CPF∽△ CDA,∴=,∴=-,解得 t=.综上所述 , 当 t=或时,△ PEF是直角三角形.(9分)。
2020广东中考数学模拟试卷(新题型)含答案
2020广东中考数学模拟试卷(新题型)(考试时间:90分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
5.考试范围:广东中考全部内容。
第Ⅰ卷一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是( ) A .B .C .D .2.下列事件中是必然事件的为( ) A .三点确定一个圆B .抛掷一枚骰子,朝上的一面点数恰好是5C .四边形有一个外接圆D .圆的切线垂直于过切点的半径 3.下列式子正确的是( ) A .336a a a += B .325()a a =C .2224(6)12ab a b =D .65a a a ÷=4.如图,电线杆CD 的高度为h ,两根拉线AC 与BC 互相垂直(A 、D 、B 在同一条直线上),设CAB α∠=,那么拉线BC 的长度为( )A .sin hαB .cos hαC .tan hαD .cot hα5.在平面直角坐标系中,一次函数21y x =-+的图象经过11(1,)P y -,22(2,)P y 两点,则( ) A .12y y >B .12y y <C .12y y =D .12y y …6.袋中有3个红球,4个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋中摸出1个球,则摸出白球的概率是( ) A .17B .37C .47D .347.如图1,该几何体是由5个棱长为1个单位长度的正方体摆放而成,将正方体A 向右平移2个单位长度后(如图2),所得几何体的视图( )A .主视图改变,俯视图改变B .主视图不变,俯视图不变C .主视图改变,俯视图不变D .主视图不变,俯视图改变8.已知a ,b 是一元二次方程2310x x +-=的两个根,则代数式22a b +的值是( ) A .1B .9C .7D .119.如图,在宽为20米、长为32米的矩形地面上修筑同样宽的道路(图中阴影部分),余下部分种植草坪.要使草坪的面积为540平方米,设道路的宽x 米.则可列方程为( )A .32203220540x x ⨯--=B .(32)(20)540x x --=C .3220540x x +=D .2(32)(20)540x x x --+=10.如图,ABC ∆为等边三角形,以AB 为边向ABC ∆外侧作ABD ∆,使得120ADB ∠=︒,再以点C 为旋转中心把CBD ∆沿着顺时针旋转至CAE ∆,则下列结论:①D 、A 、E 三点共线;②CDE ∆为等边三角形;③DC 平分BDA ∠;④DC DB DA =+,其中正确的有( )A .4个B .3个C .2个D .1个第Ⅱ卷二、填空题(本大题共7小题,每小题4分,共28分) 11.抛物线21(2)42y x =-+-的顶点坐标 .12.如果一个正多边形的每个外角都等于72︒,那么它是正 边形.13.如图,A 是反比例函数图象上一点,过点A 作AB y ⊥轴于点B ,点P 在x 轴上,ABP ∆的面积为8,则这个反比例函数的解析式为 .14.如果210a a --=,那么221a a += . 15.已知正六边形边长为4,则它的内切圆面积为 .16.如图,数轴上点A 表示的数为a ,化简:a = .17.已知整数1a ,2a ,3a ,4a ,⋯满足下列条件:10a =,21|1|a a =-+,32|2|a a =-+,43|3|a a =-+,⋯依此类推,则2020a 的值为 .三、解答题(一)(本大题共3小题,每小题6分,共18分)18.先化简,再求值22169(2)11x x xx x-++-÷+-,其中3x=.19.如图,已知AF DC=,//BC EF,E B∠=∠,求证:EF BC=.20.某中学为了相应国家发展足球的战略方针,激发学生对足球的兴趣,特举办全员参与的“足球比赛”,赛后,全校随机抽查部分学生,其成绩(百分制)整理分为5组,并制成频数分布表和扇形统计图,请根据所提供的信总解答下列问题:(1)频数分布表中的m=,n=.(2)样本中位数所在成绩的级别是,扇形统计图中,E组所对应的扇形圆心角的度数是.(3)若该校共有2000名学生,请你估计“足球比赛”成绩不少于80分的大约有多少人?四、解答题(二)(本大题共3小题,每小题8分,共24分)21.某电脑销售商试销某一品牌电脑(出厂为3000元/台)以4000元/台销售时,平均每月可销售100台,现为了扩大销售,销售商决定降价销售,在原来1月份平均销售量的基础上,经2月份的市场调查,3月份调整价格后,月销售额达到576000元.已知电脑价格每台下降100元,月销售量将上升10台.(1)求1月份到3月份销售额的月平均增长率;(2)求3月份时该电脑的销售价格. 22.如图,反比例函数my x=的图象与一次函数y kx b =+的图象交于A ,B 两点,点A 的坐标为(2,6),点B 的坐标为(,1)n .(1)求反比例函数与一次函数的表达式;(2)点E 为y 轴上一个动点,若10AEB S ∆=,求点E 的坐标.23.如图,点O 为Rt ABC ∆斜边AB 上的一点,以OA 为半径的O 与BC 切于点D ,与AC 交于点E ,连接AD .(1)求证:AD 平分BAC ∠;(2)若60BAC ∠=︒,2OA =,求阴影部分的面积(结果保留)π.五、解答题(三)(本大题共2小题,每小题10分,共20分) 24.如图,抛物线252y ax bx =++与x轴交于点(5,0)A -,(1,0)B ,顶点为D ,与y 轴交于点C . (1)求抛物线的表达式及D 点坐标;(2)在直线AC 上方的抛物线上是否存在点E ,使得2ECA CAB ∠=∠,如果存在这样的点E ,求出ACE ∆面积,如果不存在,请说明理由.25.如图,在ABC ∆中,AB BC =,90ABC ∠=︒,D 是AB 上一动点,连接CD ,以CD 为直径的M 交AC 于点E ,连接BM 并延长交AC 于点F ,交M 于点G ,连接BE . (1)求证:点B 在M 上.(2)当点D 移动到使CD BE ⊥时,求:BC BD 的值.(3)当点D 到移动到使30CG =︒时,求证:222AE CF EF +=.2020广东中考数学模拟试卷(新题型) (考试时间:90分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
2020年广东省中考数学模拟试卷(含答案和解析)
第 10 题
A.
B.
二、填空题(本大题共 7 小题,每小题 4 分,共 28 分)
C.
D.
11.若 x 1 有意义,则 x 的取值范围为
即 x2﹣3x+1=0,
解得 x1=
,x2=
<1,应舍去,
∴x=
,
┉┉┉┉ 9 分
∴y=4﹣x=
,
即点 P1 坐标为(
,
).
┉┉┉┉ 1Байду номын сангаас 分
②若以 CD 为底边,则 P1D=P1C,法二: 直线 CD 的解析式为:y=x+3,CD 线段中点 M 为(0.5,3.5) 则利用互相垂直的两条直线的 k 相乘等于-1 得 MP1 的解析式为:y=4﹣x, 同上可得 P1 坐标
为坐标原点、AB 所在直线为 x 轴建立的平面直角坐标系中,将△ABC
绕点 B 顺时针旋转,使点 A 旋转至 y 轴正半轴上的 A′处,则图中
阴影部分面积为__________ .
第 16 题
17.将一些形状相同的小五角星如下图所示的规律摆放,据此规律,第 10 个图形有
个五角星.
三、解答题一(本大题共 3 小题,每小题 6 分,共 18 分)
三、解答题(一)
18、解:原式
= 2 3 +1−9−4× 3 2
=2 +1﹣9﹣2 =﹣8
┉┉┉┉┉┉ 4 分
┉┉┉┉┉ 5 分 ┉┉┉┉┉ 6 分
16. π 17. 120
广东省2020年中考数学模拟试卷--解析版
广东省2020年中考数学模拟试卷一、选择题(本大题10小题,每小题3分,共30分,在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑)1.(3分)在,﹣3,0,﹣这四个数中,最大的是()A.B.﹣3 C.0 D.﹣2.(3分)近年来,中国高铁发展迅速,高铁技术不断走出国门,成为展示我国实力的新名片.现在中国高速铁路营运里程已达到35000公里,继续高居世界第一将35000用科学记数法表示应为()A.×104B.35×103C.×103D.×1053.(3分)如图所示的几何体左视图是()A.B.C.D.4.(3分)一组数据3、﹣2、0、1、4的中位数是()A.0 B.1 C.﹣2 D.45.(3分)下列图形既是轴对称图形,又是中心对称图形的是()A.B.C.D.6.(3分)用不等式表示图中的解集,其中正确的是()A.x≥﹣2 B.x≤﹣2 C.x<﹣2 D.x>﹣27.(3分)如图,在△ABC中,D、E分别是AB、AC的中点,若△ADE的面积是a,则四边形BDEC的面积是()A.a B.2a C.3a D.4a8.(3分)已知如图DC∥EG,∠C=40°,∠A=70°,则∠AFE的度数为()A.140°B.110°C.90°D.30°(3分)如果关于x的一元二次方程x2﹣x+m﹣1=0有实数根,那么m的取值范围是()9.A.m>2 B.m≥3 C.m<5 D.m≤510.(3分)如图,等边△ABC的边长为2cm,点P从点A出发,以1cm/s的速度沿AC向点C运动,到达点C停止;同时点Q从点A出发,以2cm/s的速度沿AB﹣BC向点C运动,到达点C停止,设△APQ的面积为y(cm2),运动时间为x(s),则下列最能反映y与x 之间函数关系的图象是()A.B.C.D.二、填空题(共7小题,每小题4分,满分28分)11.(4分)如图⊙O中,∠BAC=74°,则∠BOC=.12.(4分)分解因式:3y2﹣12=.13.(4分)若一个正数的平方根是2a﹣1和﹣a+2,则这个正数是.14.(4分)已知x、y满足+|y+2|=0,则x2﹣4y的平方根为.15.(4分)矩形ABCD中,AB=6,以AB为直径在矩形内作半圆,与DE相切于点E(如图),延长DE交BC于F,若BF=,则阴影部分的面积为.16.(4分)如图,已知等边△OA1B1,顶点A1在双曲线y=(x>0)上,点B1的坐标为(2,0).过B1作B1A2∥OA1交双曲线于点A2,过A2作A2B2∥A1B1交x轴于点B2,得到第二个等边△B1A2B2;过B2作B2A3∥B1A2交双曲线于点A3,过A3作A3B3∥A2B2交x轴于点B3,得到第三个等边△B2A3B3;以此类推,…,则点B6的坐标为.17.(4分)如图,在矩形ABCD中,AB=2,AD=,在边CD上有一点E,使EB平分∠AEC.若P为BC边上一点,且BP=2CP,连接EP并延长交AB的延长线于F.给出以下五个结论:①点B平分线段AF;②PF=DE;③∠BEF=∠FEC;④S矩形ABCD=4S△BPF;⑤△AEB是正三角形.其中正确结论的序号是.三、解答题(一)(本大题共3小题,共18分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)18.(6分)计算:﹣(π﹣)0+|﹣6|+()﹣2.19.(6分)化简求值:(1+)÷﹣,a取﹣1,0,1,2中的一个数.20.(6分)如图,BD是菱形ABCD的对角线,∠A=30°.(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,连接BF,求∠DBF的度数.四、解答题(二)(本大题共3小题,共24分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)21.(8分)2019年12月1日阜阳高铁正式运行,在高铁的建设中,某段轨道的铺设若由甲乙两工程队合做,12天可以完成,共需工程费用27720元,已知乙队单独完成这项工程所需时间是甲队单独完成这项工程所需时间的倍,且甲队每天的工程费用比乙队多250元.(1)求甲、乙两队单独完成这项工程各需多少天(2)若工程管理部门决定从这两个队中选一个队单独完成此项工程,从节约资金的角度考虑,应选择哪个工程队请说明理由.22.(8分)八年级(1)班研究性学习小组为研究全校同学课外阅读情况,在全校随机邀请了部分同学参与问卷调查,统计同学们一个月阅读课外书的数量,并绘制了以下统计图.请根据图中信息解决下列问题:(1)共有名同学参与问卷调查;(2)补全条形统计图和扇形统计图;(3)全校共有学生1500人,请估计该校学生一个月阅读2本课外书的人数约为多少.23.(8分)如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC于点E.(1)求证:△DCE≌△BFE;(2)若CD=,DB=2,求BE的长.五、解答题(三)(本大题共2小题,共20分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)24.(10分)如图,已知AB是圆O的直径,F是圆O上一点,∠BAF的平分线交⊙O于点E,交⊙O的切线BC于点C,过点E作ED⊥AF,交AF的延长线于点D.(1)求证:DE是⊙O的切线;(2)若DE=3,CE=2,①求的值;②若点G为AE上一点,求OG+EG最小值.25.(10分)如图1,抛物线y=a(x+2)(x﹣6)(a>0)与x轴交于C,D两点(点C在点D的左边),与y轴负半轴交于点A.(1)若△ACD的面积为16.①求抛物线解析式;②S为线段OD上一点,过S作x轴的垂线,交抛物线于点P,将线段SC,SP绕点S顺时针旋转任意相同的角到SC1,SP1的位置,使点C,P的对应点C1,P1都在x轴上方,C1C 与P1S交于点M,P1P与x轴交于点N.求的最大值;(2)如图2,直线y=x﹣12a与x轴交于点B,点M在抛物线上,且满足∠MAB=75°的点M有且只有两个,求a的取值范围.参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分,在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑)1.(3分)在,﹣3,0,﹣这四个数中,最大的是()A.B.﹣3 C.0 D.﹣【分析】根据正数大于0,0大于负数,正数大于负数,比较即可【解答】解:∵﹣3<﹣<0<∴最大为故选:A.2.(3分)近年来,中国高铁发展迅速,高铁技术不断走出国门,成为展示我国实力的新名片.现在中国高速铁路营运里程已达到35000公里,继续高居世界第一将35000用科学记数法表示应为()A.×104B.35×103C.×103D.×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:35000=×104.故选:A.3.(3分)如图所示的几何体左视图是()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看是一个矩形中间为虚线,故选:C.4.(3分)一组数据3、﹣2、0、1、4的中位数是()A.0 B.1 C.﹣2 D.4【分析】将这组数据从小到大重新排列后为﹣2,0,1,3,4;最中间的数1即中位数【解答】解:将这组数据从小到大重新排列后为﹣2,0,1,3,4;.所以中位数为1.故选:B.5.(3分)下列图形既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故此选项不合题意;B、不是轴对称图形,是中心对称图形,故此选项不合题意;C、是轴对称图形,不是中心对称图形,故此选项不合题意;D、是轴对称图形,是中心对称图形,故此选项符合题意;故选:D.6.(3分)用不等式表示图中的解集,其中正确的是()A.x≥﹣2 B.x≤﹣2 C.x<﹣2 D.x>﹣2【分析】因为表示不等式的解集的折线向右延伸,且表示﹣2的点是空心圆点,所以x >﹣2.【解答】解:∵表示不等式的解集的折线向右延伸,且表示﹣2的点是空心圆点∴x>﹣2故选:D.7.(3分)如图,在△ABC中,D、E分别是AB、AC的中点,若△ADE的面积是a,则四边形BDEC的面积是()A.a B.2a C.3a D.4a【分析】由D、E分别是AB、AC的中点,可得出DE∥BC、BC=2DE,进而可得出△ADE∽△ABC,根据相似三角形的性质可得出S△ABC=4a,再根据S△BDEC=S△ABC﹣S△ADE即可求出四边形BDEC的面积.【解答】解:∵D、E分别是AB、AC的中点,∴DE∥BC,BC=2DE,∴△ADE∽△ABC,∴=()2=4,∴S△ABC=4a,∴S△BDEC=S△ABC﹣S△ADE=3a.故选:C.8.(3分)已知如图DC∥EG,∠C=40°,∠A=70°,则∠AFE的度数为()A.140°B.110°C.90°D.30°【分析】先根据三角形外角的性质可求∠ABD,再根据平行线的性质可求∠AFE的度数.【解答】解:∵∠C=40°,∠A=70°,∴∠ABD=40°+70°=110°,∵DC∥EG,∴∠AFE=110°.故选:B.9.(3分)如果关于x的一元二次方程x2﹣x+m﹣1=0有实数根,那么m的取值范围是()A.m>2 B.m≥3 C.m<5 D.m≤5【分析】若一元二次方程有实数根,则根的判别式△=b2﹣4ac≥0,建立关于m的不等式,求出m的取值范围.【解答】解:∵关于x的一元二次方程x2﹣x+m﹣1=0有实数根,a=1,b=﹣1,c=m﹣1,∴△=b2﹣4ac=(﹣1)2﹣4×1×(m﹣1)≥0,解得m≤5.故选:D.10.(3分)如图,等边△ABC的边长为2cm,点P从点A出发,以1cm/s的速度沿AC向点C运动,到达点C停止;同时点Q从点A出发,以2cm/s的速度沿AB﹣BC向点C运动,到达点C停止,设△APQ的面积为y(cm2),运动时间为x(s),则下列最能反映y与x 之间函数关系的图象是()A.B.C.D.【分析】根据点Q的位置分两种情况讨论,当点Q在AB上运动时,求得y与x之间函数解析式,当点Q在BC上运动时,求得y与x之间函数解析式,最后根据分段函数的图象进行判断即可.【解答】解:由题得,点Q移动的路程为2x,点P移动的路程为x,∠A=∠C=60°,AB=BC=2,①如图,当点Q在AB上运动时,过点Q作QD⊥AC于D,则AQ=2x,DQ=x,AP=x,∴△APQ的面积y=×x×x=(0<x≤1),即当0<x≤1时,函数图象为开口向上的抛物线的一部分,故(A)、(B)排除;②如图,当点Q在BC上运动时,过点Q作QE⊥AC于E,则CQ=4﹣2x,EQ=2﹣x,AP=x,∴△APQ的面积y=×x×(2﹣x)=﹣+x(1<x≤2),即当1<x≤2时,函数图象为开口向下的抛物线的一部分,故(C)排除,而(D)正确;故选:D.二、填空题(共7小题,每小题4分,满分28分)11.(4分)如图⊙O中,∠BAC=74°,则∠BOC=148°.【分析】直接利用圆周角定理求解.【解答】解:∠BOC=2∠BAC=2×74°=148°.故答案为148°.12.(4分)分解因式:3y2﹣12=3(y+2)(y﹣2).【分析】先提公因式,在利用平方差公式因式分解.【解答】解:3y2﹣12=3(y2﹣4)=3(y+2)(y﹣2),故答案为:3(y+2)(y﹣2).13.(4分)若一个正数的平方根是2a﹣1和﹣a+2,则这个正数是9 .【分析】首先根据整数有两个平方根,它们互为相反数可得2a﹣1﹣a+2=0,解方程可得a,然后再求出这个正数即可.【解答】解:由题意得:2a﹣1﹣a+2=0,解得:a=﹣1,2a﹣1=﹣3,﹣a+2=3,则这个正数为9,故答案为:9.14.(4分)已知x、y满足+|y+2|=0,则x2﹣4y的平方根为±3 .【分析】根据非负数的性质,求出x、y的值,代入原式可得答案.【解答】解:∵+|y+2|=0,∴x﹣1=0,y+2=0,∴x=1,y=﹣2,∴x2﹣4y=1+8=9,∴x2﹣4y的平方根为±3,故答案为:±3.15.(4分)矩形ABCD中,AB=6,以AB为直径在矩形内作半圆,与DE相切于点E(如图),延长DE交BC于F,若BF=,则阴影部分的面积为9﹣3π.【分析】连接OF、OE、OD,如图,在Rt△OBF中利用三角函数的定义求出∠OFB=60°,再利用切线的性质和切线长定理得到∠OFE=∠OFB=60°,OE⊥DF,所以∠BFE=120°,则∠ADE=60°,同样可得∠ADO=∠EDO=30°,利用含30度的直角三角形三边的关系求出AD=OA=3,所以S△ADO=;接着计算出∠AOE=120°,于是得到S扇形AO =3π,然后利用阴影部分的面积=四边形AOED的面积﹣扇形AOE的面积进行计算即可.【解答】解:连接OF、OE、OD,如图,在Rt△OBF中,∵tan∠OFB===,∴∠OFB=60°,∵BF⊥AB,∴BF为切线,∵DF为切线,∴∠OFE=∠OFB=60°,OE⊥DF,∴∠BFE=120°,∵BC∥AD,∴∠ADE=60°,∵AD⊥AB,∴AD为切线,而DE为切线,∴∠ADO=∠EDO=30°,在Rt△AOD中,AD=OA=3,∴S△ADO=×3×3=;∵∠AOE=180°﹣∠ADE=120°,∴S扇形AOE==3π,∴阴影部分的面积=四边形AOED的面积﹣扇形AOE的面积=2×﹣3π=9﹣3π.故答案为9﹣3π.16.(4分)如图,已知等边△OA1B1,顶点A1在双曲线y=(x>0)上,点B1的坐标为(2,0).过B1作B1A2∥OA1交双曲线于点A2,过A2作A2B2∥A1B1交x轴于点B2,得到第二个等边△B1A2B2;过B2作B2A3∥B1A2交双曲线于点A3,过A3作A3B3∥A2B2交x轴于点B3,得到第三个等边△B2A3B3;以此类推,…,则点B6的坐标为(2,0).【分析】根据等边三角形的性质以及反比例函数图象上点的坐标特征分别求出B2、B3、B4的坐标,得出规律,进而求出点B6的坐标.【解答】解:如图,作A2C⊥x轴于点C,设B1C=a,则A2C=a,OC=OB1+B1C=2+a,A2(2+a,a).∵点A2在双曲线y=(x>0)上,∴(2+a)?a=,解得a=﹣1,或a=﹣﹣1(舍去),∴OB2=OB1+2B1C=2+2﹣2=2,∴点B2的坐标为(2,0);作A3D⊥x轴于点D,设B2D=b,则A3D=b,OD=OB2+B2D=2+b,A3(2+b,b).∵点A3在双曲线y=(x>0)上,∴(2+b)?b=,解得b=﹣+,或b=﹣﹣(舍去),∴OB3=OB2+2B2D=2﹣2+2=2,∴点B3的坐标为(2,0);同理可得点B4的坐标为(2,0)即(4,0);以此类推…,∴点B n的坐标为(2,0),∴点B6的坐标为(2,0).故答案为(2,0).17.(4分)如图,在矩形ABCD中,AB=2,AD=,在边CD上有一点E,使EB平分∠AEC.若P为BC边上一点,且BP=2CP,连接EP并延长交AB的延长线于F.给出以下五个结论:①点B平分线段AF;②PF=DE;③∠BEF=∠FEC;④S矩形ABCD=4S△BPF;⑤△AEB是正三角形.其中正确结论的序号是①②③⑤.【分析】由角平分线的定义和矩形的性质可证明∠AEB=∠ABE,可求得AE=AB=2,在Rt△ADE中可求得DE=1,则EC=1,又可证明△PEC∽△PBF,可求得BF=2,可判定①;在Rt△PBF中可求得PF,可判定②;在Rt△BCE中可求得BE=2,可得∠BEF=∠F,可判定③;容易计算出S矩形ABCD和S△BPF;可判定④;由AE=AB=BE可判定⑤;可得出答案.【解答】解:∵四边形ABCD为矩形,∴AB∥CD,∴∠CEB=∠ABE,又∵BE平分∠AEC,∴∠AEB=∠CEB,∴∠AEB=∠ABE,∴AE=AB=2,在Rt△ADE中,AD=,AE=2,由勾股定理可求得DE=1,∴CE=CD﹣DE=2﹣1=1,∵DC∥AB,∴△PCE∽△PBF,∴=,即==,∴BF=2,∴AB=BF,∴点B平分线段AF,故①正确;∵BC=AD=,∴BP=,在Rt△BPF中,BF=2,由勾股定理可求得PF===,∵DE=1,∴PF=DE,故②正确;在Rt△BCE中,EC=1,BC=,由勾股定理可求得BE=2,∴BE=BF,∴∠BEF=∠F,又∵AB∥CD,∴∠FEC=∠F,∴∠BEF=∠FEC,故③正确;∵AB=2,AD=,∴S矩形ABCD=AB?AD=2×=2,∵BF=2,BP=,∴S△BPF=BF?BP=×2×=,∴4S△BPF=,∴S矩形ABCD=≠4S△BPF,故④不正确;由上可知AB=AE=BE=2,∴△AEB为正三角形,故⑤正确;综上可知正确的结论为:①②③⑤.故答案为:①②③⑤.三、解答题(一)(本大题共3小题,共18分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)18.(6分)计算:﹣(π﹣)0+|﹣6|+()﹣2.【分析】直接利用零指数幂的性质以及负指数幂的性质以及算术平方根的定义分别化简得出答案.【解答】解:原式=2﹣1+6+4=11.19.(6分)化简求值:(1+)÷﹣,a取﹣1,0,1,2中的一个数.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分后计算得到最简结果,把a=2代入计算即可求出值.【解答】解:原式=?﹣=﹣=﹣,则当a=2时,原式有意义,原式=﹣1.20.(6分)如图,BD是菱形ABCD的对角线,∠A=30°.(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,连接BF,求∠DBF的度数.【分析】(1)分别以A、B为圆心,大于AB长为半径画弧,过两弧的交点作直线即可;(2)利用菱形的性质得AD∥BC,∠ABD=∠CBD=75°,则∠ABC=150°,再利用平行线的性质得∠A=180°﹣∠ABC=180°﹣150°=30°,接着根据线段垂直平分线的性质得AF=BF,则∠A=∠FBA=30°,然后计算∠ABD﹣∠FBA即可.【解答】解:(1)如图所示,直线EF即为所求;(2)∵四边形ABCD是菱形,∴∠ABD=∠DBC,DA∥CB,∴∠ABC+∠A=180°.又∵∠A=30°,∴∠ABC=150°.∴∠ABD=∠DBC=75°,∵EF垂直平分线段AB,∴AF=FB.∴∠A=∠FBA=30°.∴∠DBF=∠ABD﹣∠FBA=75°﹣30°=45°.四、解答题(二)(本大题共3小题,共24分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)21.(8分)2019年12月1日阜阳高铁正式运行,在高铁的建设中,某段轨道的铺设若由甲乙两工程队合做,12天可以完成,共需工程费用27720元,已知乙队单独完成这项工程所需时间是甲队单独完成这项工程所需时间的倍,且甲队每天的工程费用比乙队多250元.(1)求甲、乙两队单独完成这项工程各需多少天(2)若工程管理部门决定从这两个队中选一个队单独完成此项工程,从节约资金的角度考虑,应选择哪个工程队请说明理由.【分析】(1)设甲工程队单独完成这项工程需要x天,则乙工程队单独完成这项工程需要天,根据甲工程队完成的工作量+乙工程队完成的工作量=整项工程,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设甲工程队每天的费用是y元,则乙工程队每天的费用是(y﹣250)元,根据甲、乙两工程队合作12天共需费用27720元,即可得出关于y的一元一次方程,解之即可得出两队每天所需费用,再求出两队单独完成这些工程所需总费用,比较后即可得出结论.【解答】解:(1)设甲工程队单独完成这项工程需要x天,则乙工程队单独完成这项工程需要天,依题意,得:+=1,解得:x=20,经检验,x=20是原分式方程的解,且符合题意,∴=30.答:甲工程队单独完成这项工程需要20天,乙工程队单独完成这项工程需30天;(2)设甲工程队每天的费用是y元,则乙工程队每天的费用是(y﹣250)元,依题意,得:12y+12(y﹣250)=27720,解得:y=1280,∴y﹣250=1030.甲工程队单独完成共需要费用:1280×20=25600(元),乙工程队单独完成共需要费用:1030×30=30900(元).∵25600<30900,∴甲工程队单独完成需要的费用低,应选甲工程队单独完成.22.(8分)八年级(1)班研究性学习小组为研究全校同学课外阅读情况,在全校随机邀请了部分同学参与问卷调查,统计同学们一个月阅读课外书的数量,并绘制了以下统计图.请根据图中信息解决下列问题:(1)共有100 名同学参与问卷调查;(2)补全条形统计图和扇形统计图;(3)全校共有学生1500人,请估计该校学生一个月阅读2本课外书的人数约为多少.【分析】(1)由读书1本的人数及其所占百分比可得总人数;(2)总人数乘以读4本的百分比求得其人数,减去男生人数即可得出女生人数,用读2本的人数除以总人数可得对应百分比;(3)总人数乘以样本中读2本人数所占比例.【解答】解:(1)参与问卷调查的学生人数为(8+2)÷10%=100人,故答案为:100;(2)读4本的女生人数为100×15%﹣10=5人,读2本人数所占百分比为×100%=38%,补全图形如下:(3)估计该校学生一个月阅读2本课外书的人数约为1500×38%=570人.23.(8分)如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC于点E.(1)求证:△DCE≌△BFE;(2)若CD=,DB=2,求BE的长.【分析】(1)由矩形的性质可知AB=DC,∠A=∠C=90°,由翻折的性质可知∠AB=BF,∠A=∠F=90°,于是可得到∠F=∠C,BF=DC,然后依据AAS可证明△DCE≌△BFE;(2)先依据勾股定理求得BC的长,由全等三角形的性质可知BE=DE,最后再△EDC中依据勾股定理可求得ED的长,从而得到BE的长.【解答】(1)∵四边形ABCD为矩形,∴AB=CD,∠A=∠C=90°∵由翻折的性质可知∠F=∠A,BF=AB,∴BF=DC,∠F=∠C.在△DCE与△BEF中,∴△DCE≌△BFE.(2)在Rt△BDC中,由勾股定理得:BC==3.∵△DCE≌△BFE,∴BE=DE.设BE=DE=x,则EC=3﹣x.在Rt△CDE中,CE2+CD2=DE2,即(3﹣x)2+()2=x2.解得:x=2.∴BE=2.五、解答题(三)(本大题共2小题,共20分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)24.(10分)如图,已知AB是圆O的直径,F是圆O上一点,∠BAF的平分线交⊙O于点E,交⊙O的切线BC于点C,过点E作ED⊥AF,交AF的延长线于点D.(1)求证:DE是⊙O的切线;(2)若DE=3,CE=2,①求的值;②若点G为AE上一点,求OG+EG最小值.【分析】(1)根据切线的判定,连接过切点E的半径OE,利用等腰三角形和平行线性质即能证得OE⊥DE.(2)①观察DE所在的△ADE与CE所在的△BCE的关系,由等角的余角相等易证△ADE ∽△BEC,即得的值.②先利用的值和相似求出圆的直径,发现∠BAC=30°;利用30°所对直角边等于斜边一半,给EG构造以EG为斜边且有30°的直角三角形,把EG 转化到EP,再从P出发构造PQ=OG,最终得到三点成一直线时线段和最短的模型.【解答】(1)证明:连接OE∵OA=OE∴∠OAE=∠OEA∵AE平分∠BAF∴∠OAE=∠EAF∴∠OEA=∠EAF∴OE∥AD∵ED⊥AF∴∠D=90°∴∠OED=180°﹣∠D=90°∴OE⊥DE∴DE是⊙O的切线(2)解:①连接BE∵AB是⊙O直径∴∠AEB=90°∴∠BED=∠D=90°,∠BAE+∠ABE=90°∵BC是⊙O的切线∴∠ABC=∠ABE+∠CBE=90°∴∠BAE=∠CBE∵∠DAE=∠BAE∴∠DAE=∠CBE∴△ADE∽△BEC∴∵DE=3,CE=2∴②过点E作EH⊥AB于H,过点G作GP∥AB交EH于P,过点P作PQ∥OG交AB于Q ∴EP⊥PG,四边形OGPQ是平行四边形∴∠EPG=90°,PQ=OG∵∴设BC=2x,AE=3x∴AC=AE+CE=3x+2∵∠BEC=∠ABC=90°,∠C=∠C∴△BEC∽△ABC∴∴BC2=AC?CE即(2x)2=2(3x+2)解得:x1=2,x2=﹣(舍去)∴BC=4,AE=6,AC=8∴sin∠BAC=,∴∠BAC=30°∴∠EGP=∠BAC=30°∴PE=EG∴OG+EG=PQ+PE∴当E、P、Q在同一直线上(即H、Q重合)时,PQ+PE=EH最短∵EH=AE=3∴OG+EG的最小值为325.(10分)如图1,抛物线y=a(x+2)(x﹣6)(a>0)与x轴交于C,D两点(点C在点D的左边),与y轴负半轴交于点A.(1)若△ACD的面积为16.①求抛物线解析式;②S为线段OD上一点,过S作x轴的垂线,交抛物线于点P,将线段SC,SP绕点S顺时针旋转任意相同的角到SC1,SP1的位置,使点C,P的对应点C1,P1都在x轴上方,C1C 与P1S交于点M,P1P与x轴交于点N.求的最大值;(2)如图2,直线y=x﹣12a与x轴交于点B,点M在抛物线上,且满足∠MAB=75°的点M有且只有两个,求a的取值范围.【分析】(1)①由题意,令y=0,解得C(﹣2,0),D(6,0)得CD=8,令x=0,解得y=﹣12a,且a>0,A(0,﹣12a),即OA=12a,由S△ACD==48a=16,解得:,所求抛物线的解析式为=;②由于∠SP1P﹣∠SC1C=∠SCC1,且∠MSC=∠NSP1∴△MSC∽△NSP1得,设S(t,0)(0≤t≤6),则SP=,SC=t+2,可得t =0时,最大值为2;(2)分两种情况讨论,①由直线y=x﹣12a与x轴交于点B得B(12a,0),OA=OB=12a,∠OAB=∠OBA=45°,当点N在y轴的左侧时,此时∠MAO=30°得直线AM的解析式为:得点M的横坐标为得;②当点M在y轴的右侧时,过点B作x轴的垂线与①中直线AE关于AB的对称直线交于点F,易证:△EBA≌△FBA,得∠BAF=75°,BF=BE=,∠FBO=90°,得直线AF的解析式为:,点G横坐标为,点A关于抛物线对称轴x =2的对称点的坐标为:(4,﹣12a),则,得a>,因此满足∠MAB =75°的点M有且只有两个,则a的取值范围为:.【解答】解:(1)①由题意,令y=0,解得x1=﹣2,x2=6∴C(﹣2,0),D(6,0)∴CD=8.令x=0,解得y=﹣12a,且a>0∴A(0,﹣12a),即OA=12a∴S△ACD==48a=16,解得:所求抛物线的解析式为=②由题意知,∠SP1P﹣∠SC1C=∠SCC1,且∠MSC=∠NSP1∴△MSC∽△NSP1∴设S(t,0)(0≤t≤6),则SP=,SC=t+2∴∵0≤t≤6∴t=0时,最大值为2;(2)由题意,直线y=x﹣12a与x轴交于点B得B(12a,0),OA=OB=12a,∠OAB=∠OBA=45°如图2当点M在y轴的左侧时,此时∠MAO=30°设直线AM与x轴交于点E,则OE=∴又∵A(0,﹣12a),∴直线AM的解析式为:由得:解得:∴点M的横坐标为∵②当点M在y轴的右侧时,过点B作x轴的垂线与①中直线AE关于AB的对称直线交于点F,易证:△EBA≌△FBA,得∠BAF=75°,BF=BE=,∠FBO=90°∴∴直线AF的解析式为:由,解得:∴点G横坐标为,点A关于抛物线对称轴x=2的对称点的坐标为:(4,﹣12a),则,得a>,故要使满足∠MAB=75°的点M有且只有两个,则a的取值范围为:.。
广东省2020年中考数学模拟试题及答案
广东省2020年中考数学模拟试题及答案注意事项:1.考生务必将自己的姓名、准考证号填涂在试卷和答题卡的规定位置。
2.考生必须把答案写在答题卡上,在试卷上答题一律无效。
考试结束后,本试卷和答题卡一并交回。
3.本试卷满分120分,考试时间120分钟。
一、选择题(本题共12小题。
每小题3分,共36分。
在每小题给出的四个选项中,只有一项是正确的。
)1.下列计算正确的是()A.x2﹣3x2=﹣2x4B.(﹣3x2)2=6x2C.x2y•2x3=2x6y D.6x3y2÷(3x)=2x2y22.据统计,截止2019年2月,我市实际居住人口约4210000人,4210000这个数用科学记数法表示为()A.42.1×105B.4.21×105C.4.21×106D.4.21×1073.如右图是某个几何体的侧面展开图,则该几何体是()A.三棱锥B.四棱锥C.三棱柱D.四棱柱4.一元二次方程2x2﹣2x﹣1=0的较大实数根在下列哪两个相邻的整数之间()A.4,3 B.3,2 C.2,1 D.1,05.小明和同学做“抛掷质地均匀的硬币试验”获得的数据如表:若抛掷硬币的次数为1000,则“正面朝上”的频数最接近()A.20 B.300 C.500 D.8006.下列图形中既是轴对称图形,又是中心对称图形的是()A. B.C. D.7.关于一次函数y=5x﹣3的描述,下列说法正确的是()A.图象经过第一、二、三象限B.向下平移3个单位长度,可得到y=5xC.函数的图象与x轴的交点坐标是(0,﹣3)D.图象经过点(1,2)8.如右图,AB∥CD,直线MN与AB、CD分别交于点E、F,FG平分∠EFD,EG⊥FG于点G,若∠CFN=110°,则∠BEG=()A.20°B.25°C.35°D.40°9.下列计算正确的有()个。
①(﹣2a2)3=﹣6a6②(x﹣2)(x+3)=x2﹣6 ③(x﹣2)2=x2﹣4④﹣2m3+m3=﹣m3⑤﹣16=﹣1.A.0 B.1 C.2 D.310.小李双休日爬山,他从山脚爬到山顶的过程中,中途休息了一段时间,设他从山脚出发后所用的时间为t分钟,所走的路程为s米,s与t之间的函数关系式如图所示,下列说法错误的是()A.小李中途休息了20分钟B.小李休息前爬山的速度为每分钟70米C.小李在上述过程中所走的路程为6600米D.小李休息前爬山的平均速度大于休息后爬山的平均速度11. 如图,四边形ABCD是⊙O的内接四边形,∠B=70°,则∠D的度数是()A. 110°B. 90°C. 70°D. 50°12.图1是用钢丝制作的一个几何探究工具,其中△ABC内接于⊙G,AB是⊙G的直径,AB=6,AC=2.现将制作的几何探究工具放在平面直角坐标系中(如图2),然后点A在射线OX上由点O开始向右滑动,点B在射线OY上也随之向点O滑动(如图3),当点B滑动至与点O重合时运动结束.在整个运动过程中,点C运动的路程是()A.4 B.6 C.4﹣2 D.10﹣4二、填空题(本题共6小题,满分18分。
2020年广东省中考数学模拟试卷(含两套,附解析)
2020中考模拟卷一(含两套)数 学(考试时间:90分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
5.考试范围:广东中考全部内容。
第Ⅰ卷一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.6的相反数是 A .16B .16-C .6-D .6【答案】C .【解析】6的相反数是6-,故选C .2.一条数学信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为 A .62.1810⨯ B .52.1810⨯C .621.810⨯D .521.810⨯【答案】A .【解析】将数据2180000用科学记数法表示为62.1810⨯.故选A . 3.观察下列图形,是中心对称图形的是A .B .C .D .【答案】D.【解析】A 、不是中心对称图形,故本选项错误;B 、不是中心对称图形,故本选项错误; C 、不是中心对称图形,故本选项错误;D 、是中心对称图形,故本选项正确.故选D .4.下列数据:75,80,85,85,85,则这组数据的众数和中位数是( ) A .75,80 B .85,85 C .80,85 D .80,75【答案】B .【解析】此组数据中85出现了3次,出现次数最多,所以此组数据的众数是85;将此组数据按从小到大依次排列为:75,80,85,85,85,此组数据个数是奇数个,所以此组数据的中位数是85;故选B .5.在平面直角坐标系中,点(3,2)-所在的象限是 A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】B .【解析】点(3,2)-所在的象限在第二象限.故选B . 6.下列运算正确的是A .236a a a =gB .32a a a -=C .842a a a ÷=D =【答案】B .【解析】A 、235a a a =g ,故此选项错误;B 、32a a a -=,正确;C 、844a a a ÷=,故此选项错误;D B .7.如图,//a b ,180∠=︒,则2∠的大小是A .80︒B .90︒C .100︒D .110︒【答案】C .【解析】//a b Q ,12180∴∠+∠=︒,又180∠=︒Q ,2100∴∠=︒,故选C . 8.二元一次方程组22x y x y +=⎧⎨-=-⎩的解是A .02x y =⎧⎨=⎩B .02x y =⎧⎨=-⎩C .20x y =⎧⎨=⎩D .20x y =⎧⎨=⎩【答案】A .【解析】22x y x y +=⎧⎨-=-⎩①②,①+②得;20x =,解得:0x =,把0x =代入①得:2y =,则方程组的解为02x y =⎧⎨=⎩,故选A .9.如图,一把直尺,60︒的直角三角板和光盘如图摆放,A 为60︒角与直尺交点,3AB =,则光盘的直径是A .3B .C .6D .【答案】D .【解析】设三角板与圆的切点为C ,连接OA 、OB ,由切线长定理知3AB AC ==,OA 平分BAC ∠,60OAB ∴∠=︒,在Rt ABO ∆中,tan OB AB OAB =∠=∴光盘的直径为,故选D .10.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,下列结论:①0abc >;②20a b +>;③240b ac ->;④0a b c -+>,其中正确的个数是A .1B .2C .3D .4【答案】D .【解析】①Q 抛物线对称轴是y 轴的右侧,0ab ∴<,Q 与y 轴交于负半轴,0c ∴<,0abc ∴>,故①正确;②0a >Q ,12bx a=-<,2b a ∴-<,20a b ∴+>,故②正确; ③Q 抛物线与x 轴有两个交点,240b ac ∴->,故③正确; ④当1x =-时,0y >,0a b c ∴-+>,故④正确.故选D .第Ⅱ卷二、填空题(本大题共7小题,每小题4分,共28分) 11.分解因式:29a -=__________. 【答案】(3)(3)a a +-.【解析】29(3)(3)a a a -=+-.故答案为:(3)(3)a a +-. 12.不等式20190x ->的解集是__________. 【答案】2019x >. 【解析】20190x ->, 移项得,2019x >, 故答案为2019x >.13.2018年5月13日,中国首艘国产航空母舰首次执行海上试航任务,共排水量超过6万吨,将数60000用科学记数法表示应为__________. 【答案】4610⨯.【解析】460000610=⨯,故答案为:4610⨯.14=__________. 【答案】4.【解析】2416=Q ,∴4=,故答案为4.15.一个多边形的内角和等于900︒,则这个多边形是__________边形. 【答案】七.【解析】设多边形为n 边形,由题意,得 (2)180900n -︒=g ,解得7n =, 故答案为:七. 16.观察以下一列数:3,54,79,916,1125,⋯则第20个数是__________.【答案】41400. 【解析】观察数列得:第n 个数为221n n +,则第20个数是41400,故答案为:41400. 17.如图,四边形ACDF 是正方形,CEA ∠和ABF ∠都是直角且点E ,A ,B 三点共线,4AB =,则阴影部分的面积是__________.【答案】8.【解析】Q 四边形ACDF 是正方形,AC AF ∴=,90CAF ∠=︒,90EAC FAB ∴∠+∠=︒, 90ABF ∠=︒Q ,90AFB FAB ∴∠+∠=︒,EAC AFB ∴∠=∠,在CAE ∆和AFB ∆中,CAE AFBAEC FBA AC AF ∠=∠⎧⎪∠=∠⎨⎪=⎩,CAE AFB ∴∆≅∆,4EC AB ∴==,∴阴影部分的面积182AB CE =⨯⨯=,故答案为:8. 三、解答题(一)(本大题共3小题,每小题6分,共18分) 18.计算:20190(1)|)π-++.【解析】原式11=-.19.先化简,再求值:22212()11a a a a a a+-÷-+-,其中a . 【答案】2aa +,原式5=- 【解析】原式212[](1)(1)(1)(1)(1)a a a a a a a a a -+=-÷+-+--1(1)(1)(1)2a a a a a a +-=+-+g2aa =+,当a原式5===-20.已知平行四边形ABCD .(1)尺规作图:作BAD ∠的平分线交直线BC 于点E ,交DC 延长线于点F (要求:尺规作图,保留作图痕迹,不写作法); (2)在(1)的条件下,求证:CE CF =.【答案】(1)作图见解析;(2)证明见解析. 【解析】(1)如图所示,AF 即为所求;(2)Q 四边形ABCD 是平行四边形,//AB DC ∴,//AD BC ,12∴∠=∠,34∠=∠.AF Q 平分BAD ∠,13∴∠=∠,24∴∠=∠,CE CF ∴=.四、解答题(二)(本大题共3小题,每小题7分,共21分)21.坐火车从上海到娄底,高铁1329G 次列车比快车575K 次列车要少9小时,已知上海到娄底的铁路长约1260千米,1329G 的平均速度是575K 的2.5倍. (1)求575K 的平均速度;(2)高铁1329G 从上海到娄底只需几小时? 【答案】(1)84千米/小时;(2)6小时.【解析】(1)设575K 的平均速度为x 千米/小时,则1329G 的平均速度是2.5x 千米/小时, 由题意得,1260126092.5x x=+, 解得,84x =,检验:当84x =时,2.50x ≠,84x =是原方程的根,答:575K 的平均速度为84千米/小时; (2)高铁1329G 从上海到娄底需要:1260684 2.5=⨯(小时),答:高铁1329G 从上海到娄底只需6小时.22.如图,矩形ABCD 中,过对角线BD 中点O 的直线分别交AB ,CD 边于点E 、F . (1)求证:四边形BEDF 是平行四边形;(2)只需添加一个条件,即__________,可使四边形BEDF 为菱形.【答案】(1)证明见解析;(2)EF BD ⊥或DE BE =或EDO FDO ∠=∠(答案不唯一). 【解析】(1)Q 四边形ABCD 是平行四边形,O 是BD 的中点, //AB DC ∴,OB OD =,OBE ODF ∴∠=∠,又BOE DOF ∠=∠Q ,()BOE DOF ASA ∴∆≅∆,EO FO ∴=,∴四边形BEDF 是平行四边形;(2)EF BD ⊥或DE BE =或EDO FDO ∠=∠. Q 四边形BEDF 是平行四边形,EF BD ⊥Q ,∴平行四边形BEDF 是菱形.故答案为:EF BD ⊥或DE BE =或EDO FDO ∠=∠(答案不唯一).23.有四张正面分别标有数字1,2,3-,4-的不透明卡片,它们除了数字之外其余全部相同,将它们背面朝上,洗匀后从四张卡片中随机地抽取一张不放回,将该卡片上的数字记为m ,再随机地抽取一张,将卡片上的数字记为n .(1)请用画树状图或列表法写出(,)m n 所有的可能情况;(2)求所选的m ,n 能使一次函数y mx n =+的图象经过第一、三、四象限的概率. 【答案】(1)答案见解析;(2)13.【解析】(1)画树状图如下:则(,)m n 所有的可能情况是(1,2)(1,3)(1-,4)(2-,1)(2,3)(2-,4)(3--,1)(3-,2)(3-,4)(4--,1)(4-,2);(4,3)--.(2)所选的m ,n 能使一次函数y mx n =+的图象经过第一、三、四象限的情况有: (1,3)(1-,4)(2-,3)(2-,4)-共4种情况,则能使一次函数y mx n =+的图象经过第一、三、四象限的概率是41123=. 五、解答题(三)(本大题共2小题,每小题10分,共20分)24.如图,AB 是O e 的直径,点E 为线段OB 上一点(不与O 、B 重合),作EC OB ⊥,交O e 于点C ,作直径CD ,过点C 的切线交DB 的延长线于点P ,作AF PC ⊥于点F ,连接CB .(1)求证:AC 平分FAB ∠; (2)求证:2BC CE CP =g ; (3)若34CE CP =,O e 的面积为12π,求PF 的长.【答案】(1)证明见解析;(2)证明见解析;(3)7PF =. 【解析】(1)CP Q 是O e 的切线,OC CP ∴⊥, AF PC ⊥Q ,//OC AF ∴,FAC ACO ∴∠=∠, OA OC =Q ,OAC ACO ∴∠=∠, FAC OAC ∴∠=∠,即AC 平分FAB ∠;(2)证明:AB Q 是O e 的直径, 90ACB ∴∠=︒,即90CAB ABC ∠+∠=︒,EC OB ⊥Q ,90ECB ABC ∴∠+∠=︒,CAB ECB ∴∠=∠, CP Q 是O e 的切线,CAB BCP ∴∠=∠,ECB BCP ∴∠=∠, CD Q 是O e 的直径,90CBD ∴∠=︒, CEB CBP ∴∠=∠,又ECB BCP ∠=∠,CEB CBP ∴∆∆∽,∴CE CBCB CP=,即2BC CE CP =g ; (3)解:设3CE x =, Q34CE CP =,4CP x ∴=,2BC CE CP =Q g ,BC ∴=,由勾股定理得,BE ,O Q e 的面积为12π,O ∴e 的半径为AB = 90ACB ∠=︒Q ,CE AB ⊥,2BC BE AB ∴=g ,即2)=g 1x =,则3CE =,4CP =,AC Q 平分FAB ∠,AF PC ⊥,EC OB ⊥,3CF CE ∴==, 7PF CF CP ∴=+=.25.已知抛物线21()22y a x =--,顶点为A ,且经过点3(,2)2B -,点5(,2)2C .(1)求抛物线的解析式;(2)如图1,直线AB 与x 轴相交于点M ,y 轴相交于点E ,抛物线与y 轴相交于点F ,在直线AB 上有一点P ,若OPM MAF ∠=∠,求POE ∆的面积;(3)如图2,点Q 是折线A B C --上一点,过点Q 作//QN y 轴,过点E 作//EN x 轴,直线QN 与直线EN 相交于点N ,连接QE ,将QEN ∆沿QE 翻折得到1QEN ∆,若点1N 落在x 轴上,请直接写出Q 点的坐标.【答案】(1)21()22y x =--;(2)POE ∆的面积为115或13;(3)点Q 的坐标为5(4-,3)2或(,2)或,2).【解析】(1)把点3(,2)2B -代入21()22y a x =--,解得:1a =,∴抛物线的解析式为:21()22y x =--;(2)由21()22y x =--知1(2A ,2)-,设直线AB 解析式为:y kx b =+,代入点A ,B 的坐标, 得:122322k b k b⎧-=+⎪⎪⎨⎪=-+⎪⎩,解得:21k b =-⎧⎨=-⎩,∴直线AB 的解析式为:21y x =--,易求(0,1)E -,7(0,)4F -,1(,0)2M -,若OPM MAF ∠=∠,//OP AF ∴,OPE FAE ∴∆∆∽,∴14334OP OE FA FE ===,∴43OP FA ===设点(,21)P t t --解得1215t =-,223t =-, POE ∆Q 的面积1||2OE t =g g ,POE ∴∆的面积为115或13. (3)若点Q 在AB 上运动,如图1,设(,21)Q a a --,则NE a =-、2QN a =-, 由翻折知2QN QN a '==-、N E NE a '==-, 由90QN E N ∠'=∠=︒易知QRN ∆'∽△N SE ',∴QR RN QN N S ES EN ''=='',即21221QR a a ES a ---===-,2QR ∴=、212a ES --=, 由NE ES NS QR +==可得2122a a ---+=,解得:54a =-,5(4Q ∴-,3)2;若点Q 在BC 上运动,且Q 在y 轴左侧,如图2,设NE a =,则N E a '=,易知2RN '=、1SN '=、3QN QN '==,QR ∴=SE a ,在Rt SEN ∆'中,222)1a a -+=,解得:a =,(Q ∴,2); 若点Q 在BC 上运动,且点Q 在y 轴右侧,如图3,设NE a =,则N E a '=,易知2RN '=、1SN '=、3QN QN '==,QR ∴=SE a ,在Rt SEN ∆'中,222)1a a -+=,解得:a =,Q ∴2).综上,点Q 的坐标为5(4-,3)2或(,2)或2).2020中考模拟卷二数 学(考试时间:90分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
2020年广东省中考数学模拟卷1-答案
备战2020中考全真模拟卷04数 学(考试时间:90分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
5.考试范围:广东中考全部内容。
第Ⅰ卷一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.7-的相反数是 A .7- B .17-C .7D .1【答案】C .【解析】7-的相反数为7,故选C .2.地球的表面积约为2510000000km ,将510000000用科学记数法表示为 A .90.5110⨯ B .85.110⨯C .95.110⨯D .75110⨯【答案】B .【解析】8510000000 5.110=⨯,故选B . 3.下列图形中,是中心对称图形的是 A .B .C .D .【答案】B .【解析】A 、不是中心对称图形,是轴对称图形,故本选项错误;B 、是中心对称图形,不是轴对称图形,故本选项正确;C 、不是中心对称图形,是轴对称图形,故本选项错误;D 、不是中心对称图形,是轴对称图形,故本选项错误.故选B .4.某车间需加工一批零件,车间20名工人每天加工零件数如表所示:每天加工零件数的中位数和众数为 A .6,5 B .6,6 C .5,5 D .5,6【答案】A .【解析】由表知数据5出现了6次,次数最多,所以众数为5;因为共有20个数据, 所以中位数为第10、11个数据的平均数,即中位数为6662+=,故选A . 5.若点(,)P a b 在第三象限,则(,)M ab a --应在 A .第一象限 B .第二象限C .第三象限D .第四象限【答案】B .【解析】Q 点(,)P a b 在第三象限,0a ∴<,0b <,0a ∴->,0ab -<,∴点(,)M ab a --在第二象限.故选B .6.下列各式计算正确的是A .32523a a a +=B .=C .6243()()0a a ÷=D .3249()a a a =g【答案】B .【解析】A 、3a 和22a 不是同类项,不能合并,故本选项错误;B 、项正确;C 、6243()()1a a ÷=,原式计算错误,故本选项错误;D 、32410()a a a =g ,原式计算错误,故本选项错误.故选B .7.如图,直线//a b ,直角三角形如图放置,90DCB ∠=︒,若165B ∠+∠=︒,则2∠的度数为A .20︒B .25︒C .30︒D .35︒【答案】B .【解析】由三角形的外角性质可得,3165B ∠=∠+∠=︒,//a b Q ,90DCB ∠=︒,2180390180659025∴∠=︒-∠-︒=︒-︒-︒=︒.故选B .8.由方程组213x m y m+=⎧⎨-=⎩,可得x 与y 的关系是A .24x y +=-B .24x y -=-C .24x y +=D .24x y -=【答案】C .【解析】213x m y m +=⎧⎨-=⎩①②,把②代入①得:231x y +-=,整理得:24x y +=,故选C .9.如图,AB 是O e 的直径,点C 为O e 外一点,CA 、CD 是O e 的切线,A 、D 为切点,连接BD 、AD .若48ACD ∠=︒,则DBA ∠的大小是( )A .32︒B .48︒C .60︒D .66︒【答案】D .【解析】CA Q 、CD 是O e 的切线,CA CD ∴=, 48ACD ∠=︒Q ,66CAD CDA ∴∠=∠=︒,CA AB ⊥Q ,AB 是直径,90ADB CAB ∴∠=∠=︒, 90DBA DAB ∴∠+∠=︒,90CAD DAB ∠+∠=︒, 66DBA CAD ∴∠=∠=︒,故选D .10.如图,是二次函数2y ax bx c =++的图象,①0abc >;②0a b c ++<;③420a b c -+<;④240ac b -<,其中正确结论的序号是A .①②③B .①③C .②④D .③④【答案】D .【解析】由图象可得,0a <,0b >,0c >,0abc ∴<,故①错误;当1x =时,0y a b c =++>,故②错误;当2x =-时,420y a b c =-+<,故③正确; 函数图象与x 轴有两个交点,则240b ac ->,故240ac b -<,故④正确,故选D .第Ⅱ卷二、填空题(本大题共7小题,每小题4分,共28分) 11.分解因式:29x -=__________. 【答案】(3)(3)x x +-.【解析】29(3)(3)x x x -=+-.故答案为:(3)(3)x x +-. 12.关于x 的不等式(32)2a x -<的解为232x a >-,则a 的取值范围是__________. 【答案】23a <. 【解析】Q 关于x 的不等式(32)2a x -<的解为232x a >-,320a ∴-<,解得:23a <,故答案为:23a <.13.定义运算“※”,规定x ※2y ax by =+,其中a ,b 为常数,且1※25=,2※16=,则2※3=__________. 【答案】10.【解析】根据题意得:2546a b a b +=⎧⎨+=⎩,解得:12a b =⎧⎨=⎩,则2※34610=+=.故答案为:10.14.算术平方根等于它本身的数是__________. 【答案】0和1.【解析】算术平方根等于它本身的数是0和1.15.一个多边形的每个外角都等于72︒,则这个多边形的边数为__________.【答案】5.【解析】多边形的边数是:360725÷=.故答案为:5.16.观察下列一组数:37911,1,,,2101726--,⋯,根据该组数的排列规律,可推出第10个数是__________.【答案】21101-. 【解析】由分析知:第10个数为21101-,故答案为:21101-. 17.如图,在Rt ABC ∆中,90C ∠=︒,5AC =,以AB 为一边向三角形外作正方形ABEF ,正方形的中心为O,OC =BC 边的长为__________.【答案】3.【解析】作EQ x ⊥轴,以C 为坐标原点建立直角坐标系,CB 为x 轴,CA 为y 轴,则(0,5)A . 设(,0)B x ,由于O 点为以AB 一边向三角形外作正方形ABEF 的中心,AB BE ∴=,90ABE ∠=︒, 90ACB ∠=︒Q ,90BAC ABC ∴∠+∠=︒,90ABC EBQ ∠+∠=︒,BAC EBQ ∴∠=∠,在ABC ∆和BEQ ∆中,90ACB BQE BAC EBQ AB EB ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,()ACB BQE AAS ∴∆≅∆,5AC BQ ∴==,BC EQ =,设BC EQ x ==,O ∴为AE 中点,OM ∴为梯形ACQE 的中位线,52xOM +∴=, 又1522x CM CQ +==Q ,O ∴点坐标为5(2x +,5)2x+,根据题意得:OC =3x =,则3BC =.故答案为:3.三、解答题(一)(本大题共3小题,每小题6分,共18分)18.计算:01)|3|+-. 【解析】原式132=+-2=.19.先化简,再求值:82(2)224x x x x x +-+÷--,其中12x =-. 【解析】原式24482(2)()222x x x x x x x -+-=+--+g2(2)2(2)22x x x x +-=-+g 2(2)x =+ 24x =+,当12x =-时,原式12()42=⨯-+14=-+3=.20.如图,在平行四边形ABCD 中,E 是AD 边上一点,且AE AB =,连接BE .(1)尺规作图:作A ∠的平分线AF 交BC 于F ,交BE 于G (不需要写作图过程,保留作图痕迹); (2)若8BE =,5AB =,求AF 的长.【解析】(1)射线AF 如图所示.(2)AE AB =Q ,AF 平分BAE ∠, AG BE ∴⊥,4EG BG ∴==,在Rt AGB ∆中,5AB =Q ,4BG =,3AG ∴==,Q 四边形ABCD 是平行四边形,//AD BC ∴,EFA BAG AFB ∴∠=∠=∠,BA BF ∴=, BG AF ⊥Q ,3AG GF ∴==,6AF ∴=.四、解答题(二)(本大题共3小题,每小题7分,共21分) 21.列方程解应用题:中华优秀传统文化是中华民族的“根”和“魂”,是我们必须世代传承的文化根脉、文化基因.为传承优秀传统文化,某校为各班购进《三国演义》和《水浒传》连环画若干套,其中每套《三国演义》连环画的价格比每套《水浒传》连环画的价格贵60元,用4800元购买《水浒传》连环画的套数是用3600元购买《三国演义》连环画套数的2倍,求每套《水浒传》连环画的价格.【解析】设每套《水浒传》连环画的价格为x 元,则每套《三国演义》连环画的价格为(60)x +元. 由题意,得48003600260x x =⨯+ 解得120x =经检验,120x =是原方程的解,且符合题意. 答:每套《水浒传》连环画的价格为120元.22.如图,矩形ABCD 中ABD ∠,CDB ∠的平分线BE ,DF 分别交边AD ,BC 于点E ,F . (1)求证:四边形BEDF 为平行四边形;(2)当ABE ∠的度数是__________时,四边形BEDF 是菱形.【解析】(1)Q 四边形ABCD 是矩形, //AB DC ∴、//AD BC ,ABD CDB ∴∠=∠,BE Q 平分ABD ∠、DF 平分BDC ∠,12EBD ABD ∴∠=∠,12FDB BDC ∠=∠,EBD FDB ∴∠=∠,//BE DF ∴,又//AD BC Q ,∴四边形BEDF 是平行四边形; (2)当30ABE ∠=︒时,四边形BEDF 是菱形,BE Q 平分ABD ∠,260ABD ABE ∴∠=∠=︒,30EBD ABE ∠=∠=︒,Q 四边形ABCD 是矩形,90A ∴∠=︒,9030EDB ABD ∴∠=︒-∠=︒,30EDB EBD ∴∠=∠=︒,EB ED ∴=,又Q 四边形BEDF 是平行四边形,∴四边形BEDF 是菱形, 故答案为:30︒.23.有三张正面分别写有数字1-,1,2的卡片,它们除数字不同无其它差别,现将这三张卡片背面朝上洗匀后.(1)随机抽取一张,求抽到数字2的概率;(2)先随机抽取一张,以其正面数字作为k 值,将卡片放回再随机抽一张,以其正面的数字作为b 值,请你用恰当的方法表示所有可能的结果,并求出直线y kx b =+的图象不经过第四象限的概率. 【解析】(1)Q 共有3张卡片,分别写有数字1-,1,2,P ∴(抽到数字12)3=;(2)列表如下:可能出现的结果有9种,使得直线y kx b =+的图象不经过第四象限的结果有4种,既(1,1),(2,1),(1,2),(2,2),所以P (图象不经过第四象限)49=. 五、解答题(三)(本大题共2小题,每小题10分,共20分)24.如图1,已知AB 是O e 的直径,AC 是O e 的弦,过O 点作OF AB ⊥交O e 于点D ,交AC 于点E ,交BC 的延长线于点F ,点G 是EF 的中点,连接CG (1)判断CG 与O e 的位置关系,并说明理由; (2)求证:22OB BC BF =g ;(3)如图2,当2DCE F ∠=∠,3CE =, 2.5DG =时,求DE 的长.【解析】(1)CG 与O e 相切,理由如下: 如图1,连接CE ,AB Q 是O e 的直径,90ACB ACF ∴∠=∠=︒,Q 点G 是EF 的中点,GF GE GC ∴==,AEO GEC GCE ∴∠=∠=∠, OA OC =Q ,OCA OAC ∴∠=∠, OF AB ⊥Q ,90OAC AEO ∴∠+∠=︒, 90OCA GCE ∴∠+∠=︒,即OC GC ⊥, CG ∴与O e 相切;(2)90AOE FCE ∠=∠=︒Q ,AEO FEC ∠=∠,OAE F ∴∠=∠, 又B B ∠=∠Q ,ABC FBO ∴∆∆∽,∴BC ABBO BF=,即BO AB BC BF =g g , 2AB BO =Q ,22OB BC BF ∴=g ;(3)由(1)知GC GE GF ==, F GCF ∴∠=∠,2EGC F ∴∠=∠,又2DCE F ∠=∠Q ,EGC DCE ∴∠=∠, DEC CEG ∠=∠Q ,ECD EGC ∴∆∆∽,∴EC EDEG EC=,3CE =Q , 2.5DG =,∴32.53DEDE =+,整理,得:2 2.590DE DE +-=,解得:2DE =或 4.5DE =-(舍),故2DE =.25.如图①,在平面直角坐标系中,二次函数213y x bx c =-++的图象与坐标轴交于A ,B ,C 三点,其中点A 的坐标为(3,0)-,点B 的坐标为(4,0),连接AC ,BC .动点P 从点A 出发,在线段AC 上以每秒1个单位长度的速度向点C 作匀速运动;同时,动点Q 从点O 出发,在线段OB 上以每秒1个单位长度的速度向点B 作匀速运动,当其中一点到达终点时,另一点随之停止运动,设运动时间为t 秒.连接PQ . (1)填空:b =__________,c =__________;(2)在点P ,Q 运动过程中,APQ ∆可能是直角三角形吗?请说明理由;(3)点M 在抛物线上,且AOM ∆的面积与AOC ∆的面积相等,求出点M 的坐标.【解析】(1)设抛物线的解析式为(3)(4)y a x x =+-. 将13a =-代入得:211433y x x =-++,13b ∴=,4c =.(2)在点P 、Q 运动过程中,APQ ∆不可能是直角三角形. 理由如下:连结QC .Q 在点P 、Q 运动过程中,PAQ ∠、PQA ∠始终为锐角,11 ∴当APQ ∆是直角三角形时,则90APQ ∠=︒.将0x =代入抛物线的解析式得:4y =,(0,4)C ∴.AP OQ t ==Q ,5PC t ∴=-,Q 在Rt AOC ∆中,依据勾股定理得:5AC =在Rt COQ ∆中,依据勾股定理可知:2216CQ t =+在Rt CPQ ∆中依据勾股定理可知:222PQ CQ CP =-,在Rt APQ ∆中,222AQ AP PQ -= 2222CQ CP AQ AP ∴-=-,即2222(3)16(5)t t t t +-=+--解得: 4.5t =,Q 由题意可知:04t 剟4.5t ∴=不合题意,即APQ ∆不可能是直角三角形.(3 )AO Q 是AOM ∆与AOC ∆的公共边∴点M 到AO 的距离等于点C 到AO 的距离即点M 到AO 的距离等于CO所以M 的纵坐标为4或4-把4y =代入211433y x x =-++得2114433x x -++=,解得10x =,21x =,把4y =-代入211433y x x =-++得2114433x x -++=-,解得1x,2x =,(1,4)M或M 4)-或M 4)-.。
广东省2020年中考数学模拟试卷(含答案)
2020年广东省中考数学模拟试卷一、选择题(本大题10小题,每小题3分,共30分,在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑)1.在0.3,﹣3,0,﹣这四个数中,最大的是()A.0.3 B.﹣3 C.0 D.﹣2.近年来,中国高铁发展迅速,高铁技术不断走出国门,成为展示我国实力的新名片.现在中国高速铁路营运里程已达到35000公里,继续高居世界第一将35000用科学记数法表示应为()A.3.5×104B.35×103C.3.5×103D.0.35×1053.如图所示的几何体的左视图是()A.B.C.D.4.一组数据3、﹣2、0、1、4的中位数是()A.0 B.1 C.﹣2 D.45.下列图形既是轴对称图形,又是中心对称图形的是()A.B.C.D.6.用不等式表示图中的解集,其中正确的是()A.x≥﹣2 B.x≤﹣2 C.x<﹣2 D.x>﹣27.如图,在△ABC中,D、E分别是AB、AC的中点,若△ADE的面积是a,则四边形BDEC的面积是()A.a B.2a C.3a D.4a8.已知如图DC∥EG,∠C=40°,∠A=70°,则∠AFE的度数为()A.140°B.110°C.90°D.30°9.如果关于x的一元二次方程x2﹣x+m﹣1=0有实数根,那么m的取值范围是()A.m>2 B.m≥3 C.m<5 D.m≤510.如图,等边△ABC的边长为2cm,点P从点A出发,以1cm/s的速度沿AC向点C运动,到达点C停止;同时点Q从点A出发,以2cm/s的速度沿AB﹣BC向点C运动,到达点C停止,设△APQ的面积为y(cm2),运动时间为x(s),则下列最能反映y与x之间函数关系的图象是()A.B.C.D.二、填空题(共7小题,每小题4分,满分28分)11.如图⊙O中,∠BAC=74°,则∠BOC=.12.分解因式:3y2﹣12=.13.若一个正数的平方根是2a﹣1和﹣a+2,则这个正数是.14.已知x、y满足+|y+2|=0,则x2﹣4y的平方根为.15.矩形ABCD中,AB=6,以AB为直径在矩形内作半圆,与DE相切于点E(如图),延长DE交BC于F,若BF=,则阴影部分的面积为.16.如图,已知等边△OA1B1,顶点A1在双曲线y=(x>0)上,点B1的坐标为(2,0).过B1作B1A2∥OA1交双曲线于点A2,过A2作A2B2∥A1B1交x轴于点B2,得到第二个等边△B1A2B2;过B2作B2A3∥B1A2交双曲线于点A3,过A3作A3B3∥A2B2交x轴于点B3,得到第三个等边△B2A3B3;以此类推,…,则点B6的坐标为.17.如图,在矩形ABCD中,AB=2,AD=,在边CD上有一点E,使EB平分∠AEC.若P为BC边上一点,且BP=2CP,连接EP并延长交AB的延长线于F.给出以下五个结论:①点B平分线段AF;②PF=DE;③∠BEF=∠FEC;④S矩形ABCD=4S△BPF;⑤△AEB是正三角形.其中正确结论的序号是.三、解答题(一)(本大题共3小题,共18分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)18.计算:﹣(π﹣3.14)0+|﹣6|+()﹣2.19.化简求值:(1+)÷﹣,a取﹣1,0,1,2中的一个数.20.如图,BD是菱形ABCD的对角线,∠A=30°.(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,连接BF,求∠DBF的度数.四、解答题(二)(本大题共3小题,共24分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)21.2019年12月1日阜阳高铁正式运行,在高铁的建设中,某段轨道的铺设若由甲乙两工程队合做,12天可以完成,共需工程费用27720元,已知乙队单独完成这项工程所需时间是甲队单独完成这项工程所需时间的1.5倍,且甲队每天的工程费用比乙队多250元.(1)求甲、乙两队单独完成这项工程各需多少天?(2)若工程管理部门决定从这两个队中选一个队单独完成此项工程,从节约资金的角度考虑,应选择哪个工程队?请说明理由.22.八年级(1)班研究性学习小组为研究全校同学课外阅读情况,在全校随机邀请了部分同学参与问卷调查,统计同学们一个月阅读课外书的数量,并绘制了以下统计图.请根据图中信息解决下列问题:(1)共有名同学参与问卷调查;(2)补全条形统计图和扇形统计图;(3)全校共有学生1500人,请估计该校学生一个月阅读2本课外书的人数约为多少.23.如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC于点E.(1)求证:△DCE≌△BFE;(2)若CD=,DB=2,求BE的长.五、解答题(三)(本大题共2小题,共20分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)24.如图,已知AB是圆O的直径,F是圆O上一点,∠BAF的平分线交⊙O于点E,交⊙O的切线BC于点C,过点E作ED⊥AF,交AF的延长线于点D.(1)求证:DE是⊙O的切线;(2)若DE=3,CE=2,①求的值;②若点G为AE上一点,求OG+EG最小值.25.如图1,抛物线y=a(x+2)(x﹣6)(a>0)与x轴交于C,D两点(点C在点D的左边),与y轴负半轴交于点A.(1)若△ACD的面积为16.①求抛物线解析式;②S为线段OD上一点,过S作x轴的垂线,交抛物线于点P,将线段SC,SP绕点S顺时针旋转任意相同的角到SC1,SP1的位置,使点C,P的对应点C1,P1都在x轴上方,C1C与P1S交于点M,P1P与x 轴交于点N.求的最大值;(2)如图2,直线y=x﹣12a与x轴交于点B,点M在抛物线上,且满足∠MAB=75°的点M有且只有两个,求a的取值范围.参考答案及评分标准一.选择题(共10小题,30分)1.A;2.A;3.A;4.B;5.D;6.D;7.C;8.B;9.D;10.D;二.填空题(共7小题,28分)11.148°;12.3(y+2)(y﹣2);13.9;14.±3;15.9﹣3π;16.(2,0);17.①②③⑤;三.解答题(一)(共3小题,18分)18.解:原式=2﹣1+6+4······················4分=11.························6分19.解:原式=•﹣············3分=﹣·························4分=﹣,··························5分则当a=2时,原式有意义,原式=﹣1.·············6分20.解:(1)如图所示,直线EF即为所求;············3分(2)∵四边形ABCD是菱形,∴∠ABD=∠DBC,DA∥CB,∴∠ABC+∠A=180°.····················4分又∵∠A=30°,∴∠ABC=150°.∴∠ABD=∠DBC=75°,···················5分∵EF垂直平分线段AB,∴AF=FB.∴∠A=∠FBA=30°.∴∠DBF=∠ABD﹣∠FBA=75°﹣30°=45°.············6分四.解答题(二)(共3小题,24分)21.解:(1)设甲工程队单独完成这项工程需要x天,则乙工程队单独完成这项工程需要1.5x天,依题意,得:+=1,··················2分解得:x=20,····························3分经检验,x=20是原分式方程的解,且符合题意,∴1.5x=30.····························4分答:甲工程队单独完成这项工程需要20天,乙工程队单独完成这项工程需30天;(2)设甲工程队每天的费用是y元,则乙工程队每天的费用是(y﹣250)元,依题意,得:12y+12(y﹣250)=27720,···············5分解得:y=1280,·························6分∴y﹣250=1030.甲工程队单独完成共需要费用:1280×20=25600(元),乙工程队单独完成共需要费用:1030×30=30900(元)·········7分∵25600<30900,∴甲工程队单独完成需要的费用低,应选甲工程队单独完成.······8分22.解:(1)参与问卷调查的学生人数为(8+2)÷10%=100人,故答案为:100;··························2分(2)读4本的女生人数为100×15%﹣10=5人,············3分读2本人数所占百分比为×100%=38%,············4分补全图形如下:··························7分(3)估计该校学生一个月阅读2本课外书的人数约为1500×38%=570人.···8分23.解:(1)∵四边形ABCD为矩形,∴AB=CD,∠A=∠C=90°·····················1分∵由翻折的性质可知∠F=∠A,BF=AB,∴BF=DC,∠F=∠C.······················2分在△DCE与△BEF中,∴△DCE≌△BFE.·························4分(2)在Rt△BDC中,由勾股定理得:BC==3.·······5分∵△DCE≌△BFE,∴BE=DE.····························6分设BE=DE=x,则EC=3﹣x.在Rt△CDE中,CE2+CD2=DE2,即(3﹣x)2+()2=x2.·······7分解得:x=2.∴BE=2.···························8分五.解答题(三)(共2小题,20分)24.(1)证明:连接OE∵OA=OE∴∠OAE=∠OEA∵AE平分∠BAF∴∠OAE=∠EAF························1分∴∠OEA=∠EAF∴OE∥AD∵ED⊥AF∴∠D=90°∴∠OED=180°﹣∠D=90°···················2分∴OE⊥DE∴DE是⊙O的切线·······················3分(2)解:①连接BE∵AB是⊙O直径∴∠AEB=90°∴∠BED=∠D=90°,∠BAE+∠ABE=90°·············4分∵BC是⊙O的切线∴∠ABC=∠ABE+∠CBE=90°∴∠BAE=∠CBE·························5分∵∠DAE=∠BAE∴∠DAE=∠CBE∴△ADE∽△BEC·························6分∴∵DE=3,CE=2∴····························7分②过点E作EH⊥AB于H,过点G作GP∥AB交EH于P,过点P作PQ∥OG交AB于Q ∴EP⊥PG,四边形OGPQ是平行四边形∴∠EPG=90°,PQ=OG······················8分∵∴设BC=2x,AE=3x∴AC=AE+CE=3x+2∵∠BEC=∠ABC=90°,∠C=∠C∴△BEC∽△ABC∴∴BC2=AC•CE即(2x)2=2(3x+2)解得:x1=2,x2=﹣(舍去)···················9分∴BC=4,AE=6,AC=8∴sin∠BAC=,∴∠BAC=30°∴∠EGP=∠BAC=30°∴PE=EG∴OG+EG=PQ+PE∴当E、P、Q在同一直线上(即H、Q重合)时,PQ+PE=EH最短∵EH=AE=3∴OG+EG的最小值为3······················10分25.解:(1)①由题意,令y=0,解得x1=﹣2,x2=6∴C(﹣2,0),D(6,0)∴CD=8.····························1分令x=0,解得y=﹣12a,且a>0∴A(0,﹣12a),即OA=12a∴S△ACD==48a=16,解得:所求抛物线的解析式为=·········2分②由题意知,∠SP1P﹣∠SC1C=∠SCC1,且∠MSC=∠NSP1∴△MSC∽△NSP1∴··························3分设S(t,0)(0≤t≤6),则SP=,SC=t+2∴∵0≤t≤6∴t=0时,最大值为2;······················4分(2)由题意,直线y=x﹣12a与x轴交于点B得B(12a,0),OA=OB=12a,∠OAB=∠OBA=45°如图2当点M在y轴的左侧时,此时∠MAO=30°设直线AM与x轴交于点E,则OE=∴··························5分又∵A(0,﹣12a),∴直线AM的解析式为:··················6分由得:解得:························7分∴点M的横坐标为∵②当点M在y轴的右侧时,过点B作x轴的垂线与①中直线AE关于AB的对称直线交于点F,易证:△EBA≌△FBA,得∠BAF=75°,BF=BE=,∠FBO=90°∴························8分∴直线AF的解析式为:由,解得:∴点G横坐标为,·························9分点A关于抛物线对称轴x=2的对称点的坐标为:(4,﹣12a),则,得a>,······················10分故要使满足∠MAB=75°的点M有且只有两个,则a的取值范围为:.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广东省2020年中考数学模拟试题一、选择题(本题共10题,每小题3分,共30分)1.方程4x -1=3的解是 ( )A .x =1B .x =-1C .x =-2D .x =22.已知,a b 满足方程组51234a b a b +=⎧⎨-=⎩,则a b +的值为( ) A . 4- B . 4 C . 2- D . 23.已知 3243x y k x y k +=,⎧⎨-=+,⎩ 如果x 与y 互为相反数,那么 ( )A .k =0B .34k =-C .32k =- D .34k =4.不等式组 221x x -≤,⎧⎨-<⎩ 的解集在数轴上表示正确的是( )5.某种商品进价100元,标价150元出售,但销量较小.为了促销,商场决定打折销售,若为了保证利润率不低于5%,那么最低可以打 ( )A .6折B .7折C .8折D .9折6.某商品的标价为200元,8折销售仍赚40元,则商品进价为( )元.A . 140B . 120C . 160D . 1007.已知2是关于x 的方程2230x mx m -+=的一个根,并且这个方程的两个根恰好是等腰三角形ABC 的两条边长,则三角形ABC 的周长为( )A . 10B . 14C . 10或14D . 8或108.关于x 的一元二次方程22(1)10a x x a -++-=的一个根是0,则a 值为( )A .1B .-1C .3D .4 9.若实数x ,y 满足(x +y +2)(x +y -1)=0,则x +y 的值为 ( )A .1B .-2C .2或-1D .-2或1 10.一元二次方程2104x x ++=的根的情况是( ) A . 有两个不相等的实数根 B . 有两个相等的实数根C . 无实数根D . 无法确定根的情况二、填空题(本题共6题,每小题4分,共24分)11.已知x =1是方程x -1=k -2x 的解,那么k = .12.若2(2)0m -+=,则mn = .13.某学校准备用5000元购买文学名著和辞典作为科技创新节奖品,其中名著每套65元,辞典每本35元,现已购买名著40套,最多还能购买辞典 本.14.某工厂第一季度的一月份生产电视机1万台,第一季度生产电视机的总台数是3.31万台,则二月份、三月份生产电视机平均增长率是 .15.使不等式12x -≥与37<8x -同时成立的x 的整数值是 .16.菱形的两条对角线长分别是方程x 2-14x +48=0的两实根,则菱形的面积为_ __.三、解答题(一)(本题共3题,每小题6分,共18分)17.解方程组2375 3.x y x y -=,⎧⎨+=-⎩ ① ② 18.解方程:542332x x x +=--.19.解不等式组303(1)2(21)1x x x -≤,⎧⎨---<,⎩ ① ②并把解集在数轴上表示出来.四、解答题(二)(本题共3题,每小题7分,共21分)20.已知关于x 的方程2220x x a ++-=.(1)若该方程有两个不相等的实数根,求实数a 的取值范围;(2)当该方程的一个根为1时,求a的值及方程的另一根.21.下表为深圳市居民每月用水收费标准,(单位:元/m3).(1)某用户用水10立方米,共交水费23元,求a的值;(2)在(1)的前提下,该用户5月份交水费71元,请问该用户用水多少立方米?22.某地区2013年投入教育经费2500万元,2015年投入教育经费3025万元.(1)求2013年至2015年该地区投入教育经费的年平均增长率;(2)根据(1)所得的年平均增长率,预计2016年该地区将投入教育经费多少万元.五、解答题(三)(本题共3题,每小题9分,共27分)23.某景点的门票价格如下表:某校七年级(1)、(2)两班计划去游览该景点,其中(1)班人数少于50人,(2)班人数多于50人且少于100人.如果两班都以班为单位单独购票,则一共支付1118元,如果两班联合起来作为一个团体购票,则只需花费816元.(1)两个班各有多少名学生?(2)团体购票与单独购票相比较,两个班各节约了多少钱?24.某电器商场销售A,B两种型号计算器,两种计算器的进货价格分别为每台30元,40元.商场销售5 台A型号和1台B型号计算器,可获利润76元;销售6台A型号和3台B型号计算器,可获利润120元.(1)求商场销售A,B两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格)(2)商场准备用不多于2500元的资金购进A,B两种型号计算器共70台,问最少需要购进A型号的计算器多少台?25.某汽车销售公司销售的汽车价格全在11万元以上,最近推出两种分期付款购车活动:①首付款满11万元,减1万元;②首付款满10万元,分期交付的余款可享受八折优惠.(1)小王看中了一款汽车,交了首付款后,还有12万余款需要分期交付,设他每月付款p万元,n个月结清余款,用关于p的代数式表示n;(2)设小王看中的汽车的价格为x万元,他应该采取哪种付款方式最省钱?请说明理由; (3)已知小王分期付款的能力是每月0.2万元,若不考虑其他因素,只希望早点结清余款,他该怎样选择?请说明理由.模拟试题答案考察内容:方程(组)与不等式(组)一、选择题(本题共10题,每小题3分,共30分)1.A 2.B . 3.C 4.C 5.B 6.B 7.B 8.B 9.D 10.B二、填空题(本题共6题,每小题4分,共24分)11.2 12.-16 13.68 14.10% 15.3,4 16.24三、解答题(一)(本题共3题,每小题6分,共18分)17.解:由②2⨯得2x +10y =-6, ③①-③得-13y =13,解得y =-1,代入②,解得x =2.故原方程组的解为21x y =,⎧⎨=-.⎩18.解:去分母,得()()()()3252342332x x x x x -+-=--,去括号,得22321015245224x x x x x -+-=-+,移项、合并同类项,得2720130x x -+=,因式分解,得()()17130x x --=,解得12131,7x x ==. 经检验,12131,7x x == 是原方程的解,∴原方程的解为12131,7x x == . 19.解:解①得3x ≤,解②得x >-2. 所以原不等式组的解集为23x -<≤.在数轴上表示为四、解答题(二)(本题共3题,每小题7分,共21分)20.解:(1)∵关于x 的方程2220x x a ++-=有两个不相等的实数根,∴()2242>0a ∆=--,解得,<3a . (2)∵该方程的一个根为1,∴1220a ++-=,解得,1a =-.∴原方程为2230x x +-=,解得121,3x x ==- .∴1a =-,方程的另一根为3-.21.解:(1)由题意,得1023a =,解得 2.3a =,∴a 的值为2.3.(2)设该用户用水x 立方米,若22x ≤,则2.371x =,解得2030>2223x =,舍去. 若>22x ,则()()2.322 2.3 1.12271x ⨯++-=,解得28x =,适合.答:用户用水28立方米.22.解:(1)设2013年至2015年该地区投入教育经费的年平均增长率为x ,根据题意,得()2250013025x +=,解得,120.1, 2.1x x ==- (舍去), ∴年平均增长率为0.110%=.答:2013年至2015年该地区投入教育经费的年平均增长率为10%.(2)()3025110%3327.5+=,答:2016年该地区将投入教育经费3327.5万元.五、解答题(三)(本题共3题,每小题9分,共27分)23.解:(1)设七年级(1)班有x 人、七年级(2)班有y 人,由题意,得,,解得:. 答:七年级(1)班有49人、七年级(2)班有53人;(2)七年级(1)班节省的费用为:(12﹣8)×49=196元,七年级(2)班节省的费用为:(12﹣10)×53=106元24.解:(1)设A ,B 型号的计算器的销售价格分别是x 元,y 元,得:5(30)(40)766(30)3(40)120-+-=⎧⎨-+-=⎩x y x y ,解得4256=⎧⎨=⎩x y . 答:A ,B 两种型号计算器的销售价格分别为42元,56元.(2)设最少需要购进A 型号的计算a 台,得则30a+40(70-a )≤2500,解得30≥a .答:最少需要购进A 型号的计算器30台.25.解: (1)由题意可得12p n ,=.(2)由题意可知,第①种方式中,应实付款(x -1)万元,第②种方式中,应实付款0.8(x -10)+10=(0.8x +2)万元,则(x -1)-(0.8x +2)=0.2x -3, 令0.2x -3=0,解得x =15.∴当汽车价格11<x <15时,采取第①种方式较省钱;当汽车价格x =15时,两种方式一样;当汽车价格x >15时,采取第②种方式较省钱.(3)小王采取第①种优惠方式所购汽车的价格x (万元)与结清余款所需的月数1n 之间的关系为x -11-1=0.12n ,即1n =5x -60.小王采取第②种优惠方式所购汽车的价格x (万元)与结清余款所需的月数2n 之间的关系为0.8(x -10)=0.22n ,即2440n x =-. 则12(560)(440)20n n x x x -=---=-,令x -20=0,解得x =20,当x =20时1240n n ,==.∴当汽车价格在11~20万元之间时,采取第①种方式可早点结清余款;当汽车价格等于20万元时,两种方式都需要40个月才能结清余款;当汽车价格大于20万元时,采取第②种方式可早点结清余款.。