2020年广东省中考数学模拟试卷

合集下载

2020年广东中考数学模拟试卷(含答案和解析)

2020年广东中考数学模拟试卷(含答案和解析)
10.如图,在四边形 ABCD 中,AD∥BC,AB=CD,∠B=60°,AD=2,BC=8,点 P 从点 B 出发沿折线 BA﹣AD﹣DC 匀速运动,同时,点 Q 从点 B 出发沿折线 BC﹣CD 匀速运动,点 P 与点 Q 的速度相同,当 二者相遇时,运动停止,设点 P 运动的路程为 x,△BPQ 的面积为 y,则 y 关于 x 的函数图象大致是( )
24.如图,抛物线 y=ax2+2x+c(a<0)与 x 轴交于点 A 和点 B(点 A 在原点的左侧,点 B 在原点的右侧), 与 y 轴交于点 C,OB=OC=3.
(1)求该抛物线的函数解析式; (2)如图 1,连接 BC,点 D 是直线 BC 上方抛物线上的点,连接 OD,CD,OD 交 BC 于点 F,当 S△COF: S△CDF=3:2 时,求点 D 的坐标.
2020 年广东名校中考数学学科线上一模试卷(二十)
一.选择题(共 10 小题)
1.﹣2 的倒数是( )
A. 2
B. ﹣2
【答案】D
1
C.
2
1
D. ﹣
2
【解析】 【分析】
根据倒数的定义,若两个数的乘积是 1,我们就称这两个数互为倒数.
【详解】解:∵﹣2×(﹣ 1 )=1, 2
∴﹣2 的倒数是﹣ 1 . 2
【点睛】本题主要考查了平行线的性质、平行线的传递性、等边三角形的性质等知识,当然也可延长 BA 与 l2 交于点 E,运用平行线的性质及三角形外角的性质解决问题.
6.某公司销售部有 7 个职员,他们 5 月份的工资分别是 5300 元、5800 元、5300 元、5500 元、5800 元、6500
故选:D.
【点睛】主要考查倒数的定义,要求熟练掌握.需要注意的是倒数的性质:负数的倒数是负数,正数的倒

2020-2021学年广东省中考数学模拟试卷及答案解析

2020-2021学年广东省中考数学模拟试卷及答案解析

广东省中考数学模拟试卷一、选择题(每题3分,共30分)1.由几个大小相同的正方体组成的几何体如图所示,则它的俯视图为()A.B.C.D.2.下列图形是中心对称图形的是()A. B. C.D.3.将抛物线y=x2平移得到抛物线y=(x+2)2,则这个平移过程正确的是()A.向左平移2个单位B.向右平移2个单位C.向上平移2个单位D.向下平移2个单位4.关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围为()A.B.C.D.5.如图,为估算某河的宽度,在河对岸边选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上.若测得BE=20m,EC=10m,CD=20m,则河的宽度AB=()A.60 m B.40 m C.30 m D.20 m6.在某次聚会上,每两人都握了一次手,所有人共握手10次,设有x人参加这次聚会,则列出方程正确的是()A.x(x﹣1)=10 B.=10 C.x(x+1)=10 D.=107.如图,AB是⊙O的直径,AC是⊙O的切线,连接OC交⊙O于点D,连接BD,∠C=40°.则∠ABD的度数是()A.30°B.25°C.20°D.15°8.如图,圆锥体的高h=2cm,底面半径r=2cm,则圆锥体的全面积为()cm2.A.4πB.8πC.12πD.(4+4)π9.如图,将含60°角的直角三角板ABC绕顶点A顺时针旋转45°度后得到△AB′C′,点B经过的路径为弧BB′,若∠BAC=60°,AC=1,则图中阴影部分的面积是()A.B.C.D.π10.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是()A.c>﹣1 B.b>0 C.2a+b≠0 D.9a+c>3b二、填空题(每题4分,共24分)11.计算:cos245°+tan30°•sin60°= .12.如图,在平面直角坐标系中,点O为坐标原点,点P在第一象限,⊙P与x轴交于O,A两点,点A的坐标为(6,0),⊙P的半径为,则点P的坐标为.13.如图,把一张三角形纸片ABC沿中位线DE剪开后,在平面上将△ADE绕着点E 顺时针旋转180°,点D运动到点F的位置,则S△ADE:S四边形DBCF是.14.如图,将长为8cm的铁丝尾相接围成半径为2cm的扇形,则S扇形= cm2.15.如图,边长为1的小正方形网格中,⊙O的圆心在格点上,则∠AED的余弦值是.16.如图,是一次函数y=kx+b与反比例函数y=的图象,则关于x的方程kx+b=的解为.三、解答题(每题6分,共18分)17.解方程:(2x+1)2=2x+1.18.如图,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,点A、B 的坐标分别是A(3,2)、B(1,3).△AOB绕点O逆时针旋转90°后得到△A1OB1.(1)画出旋转后的图形;(2)求A1旋转经过的路程.19.甲乙两名同学做摸牌游戏.他们在桌上放了一副扑克牌中的4张牌,牌面分别是J,Q,K,K.将牌面全部朝下.(1)若随机从中抽出一张牌,牌面是K的概率为(2)若从这4张牌中随机取1张牌记下结果放回,洗匀后再随机取1张牌,若两次取出的牌中都没有K,则甲获胜,否则乙获胜.你认为甲乙两人谁获胜的可能性大?用列表或画树状图的方法说明理由.四、解答题(每题7分,共21分)20.雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长率速度,第四天该单位能收到多少捐款?21.小明家所在居民楼的对面有一座大厦AB,AB=80米,为测量这座居民楼与大厦之间的距离,小明从自己家的窗户C处测得大厦顶部A的仰角为37°,大厦底部B 的俯角为48°.求小明家所在居民楼与大厦的距离CD的长度.(结果保留整数)(参考数据:)22.如图,AB是⊙O的直径,点E是上的一点,∠DBC=∠BED.(1)求证:BC是⊙O的切线;(2)已知AD=3,CD=2,求BC的长.五、解答题(每题9分,共27分)23.如图,等边△OAB和等边△AFE的一边都在x轴上,双曲线y=(k>0)经过边OB的中点C和AE的中点D.已知等边△OAB的边长为4.(1)求该双曲线所表示的函数解析式;(2)求等边△AEF的边长.24.用如图(1)两个直角三角形BC=EF=3,∠B=45°,∠E=30°,拼接如图(2),使得BC和ED重合,在BC边上有一动点P.(1)在图(2),当点P运动到∠CFB的平分线上时,连接AP,求线段AP的长;(2)在图(2),当点P在运动的过程中出现PA=FC时,求∠PAB的度数(3)当点P运动到什么位置时,以A、P、F、Q为顶点的平行四边形的顶点Q恰好在边FC上?求出此时四边形APFQ的面积.25.如图,抛物线y=(x﹣3)2﹣1与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为D.(1)求点A,B,D的坐标;(2)连接CD,过原点O作OE⊥CD,垂足为H,OE与抛物线的对称轴交于点E,连接AE,AD,求证:∠AEO=∠ADC;(3)以(2)中的点E为圆心,1为半径画圆,在对称轴右侧的抛物线上有一动点P,过点P作⊙E的切线,切点为Q,当PQ的长最小时,求点P的坐标,并直接写出点Q的坐标.参考答案与试题解析一、选择题(每题3分,共30分)1.由几个大小相同的正方体组成的几何体如图所示,则它的俯视图为()A.B.C.D.【考点】简单组合体的三视图.【分析】根据俯视图是从上边看得到的图形,可得答案.【解答】解:从上边看第二层是三个小正方形,第一层左边一个小正方形,故选:A.2.下列图形是中心对称图形的是()A. B. C.D.【考点】中心对称图形.【分析】根据中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、是中心对称图形,故本选项正确.故选D.3.将抛物线y=x2平移得到抛物线y=(x+2)2,则这个平移过程正确的是()A.向左平移2个单位B.向右平移2个单位C.向上平移2个单位D.向下平移2个单位【考点】二次函数图象与几何变换.【分析】根据图象左移加,可得答案.【解答】解:将抛物线y=x2平移得到抛物线y=(x+2)2,则这个平移过程正确的是向左平移了2个单位,故选:A.4.关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围为()A.B.C.D.【考点】根的判别式.【分析】先根据判别式的意义得到△=(﹣3)2﹣4m>0,然后解不等式即可.【解答】解:根据题意得△=(﹣3)2﹣4m>0,解得m<.故选:B.5.如图,为估算某河的宽度,在河对岸边选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上.若测得BE=20m,EC=10m,CD=20m,则河的宽度AB=()A.60 m B.40 m C.30 m D.20 m【考点】相似三角形的应用.【分析】求出△ABE和△DCE相似,根据相似三角形对应边成比例列式计算即可得解.【解答】解:∵AB⊥BC,CD⊥BC,∴∠ABE=∠DCE=90°,又∵∠AEB=∠DEC,∴△ABE∽△DCE,∴=,即=,解得AB=40m.故选B.6.在某次聚会上,每两人都握了一次手,所有人共握手10次,设有x人参加这次聚会,则列出方程正确的是()A.x(x﹣1)=10 B.=10 C.x(x+1)=10 D.=10【考点】由实际问题抽象出一元二次方程.【分析】如果有x人参加了聚会,则每个人需要握手(x﹣1)次,x人共需握手x(x ﹣1)次;而每两个人都握了一次手,因此要将重复计算的部分除去,即一共握手:次;已知“所有人共握手10次”,据此可列出关于x的方程.【解答】解:设x人参加这次聚会,则每个人需握手:x﹣1(次);依题意,可列方程为:=10;故选B.7.如图,AB是⊙O的直径,AC是⊙O的切线,连接OC交⊙O于点D,连接BD,∠C=40°.则∠ABD的度数是()A.30°B.25°C.20°D.15°【考点】切线的性质;三角形内角和定理;三角形的外角性质;等腰三角形的性质.【分析】根据切线的性质求出∠OAC,结合∠C=40°求出∠AOC,根据等腰三角形性质求出∠B=∠BDO,根据三角形外角性质求出即可.【解答】解:∵AC是⊙O的切线,∴∠OAC=90°,∵∠C=40°,∴∠AOC=50°,∵OB=OD,∴∠ABD=∠BDO,∵∠ABD+∠BDO=∠AOC,∴∠ABD=25°,故选:B.8.如图,圆锥体的高h=2cm,底面半径r=2cm,则圆锥体的全面积为()cm2.A.4πB.8πC.12πD.(4+4)π【考点】圆锥的计算.【分析】表面积=底面积+侧面积=π×底面半径2+底面周长×母线长÷2.【解答】解:底面圆的半径为2,则底面周长=4π,∵底面半径为2cm、高为2cm,∴圆锥的母线长为4cm,∴侧面面积=×4π×4=8π;底面积为=4π,全面积为:8π+4π=12πcm2.故选:C.9.如图,将含60°角的直角三角板ABC绕顶点A顺时针旋转45°度后得到△AB′C′,点B经过的路径为弧BB′,若∠BAC=60°,AC=1,则图中阴影部分的面积是()A.B.C.D.π【考点】扇形面积的计算;旋转的性质.【分析】图中S阴影=S扇形ABB′+S△AB′C′﹣S△ABC.【解答】解:如图,∵在Rt△ABC中,∠ACB=90°,∠BAC=60°,AC=1,∴BC=ACtan60°=1×=,AB=2∴S△ABC=AC•BC=.根据旋转的性质知△ABC≌△AB′C′,则S△ABC=S△AB′C′,AB=AB′.∴S阴影=S扇形ABB′+S△AB′C′﹣S△ABC==.故选:A.10.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是()A.c>﹣1 B.b>0 C.2a+b≠0 D.9a+c>3b【考点】二次函数图象与系数的关系.【分析】由抛物线与y轴的交点在点(0,﹣1)的下方得到c<﹣1;由抛物线开口方向得a>0,再由抛物线的对称轴在y轴的右侧得a、b异号,即b<0;根据抛物线的对称性得到抛物线对称轴为直线x=﹣,若x=1,则2a+b=0,故可能成立;由于当x=﹣3时,y>0,所以9a﹣3b+c>0,即9a+c>3b.【解答】解:∵抛物线与y轴的交点在点(0,﹣1)的下方.∴c<﹣1;故A错误;∵抛物线开口向上,∴a>0,∵抛物线的对称轴在y轴的右侧,∴x=﹣>0,∴b<0;故B错误;∵抛物线对称轴为直线x=﹣,∴若x=1,即2a+b=0;故C错误;∵当x=﹣3时,y>0,∴9a﹣3b+c>0,即9a+c>3b.故选:D.二、填空题(每题4分,共24分)11.计算:cos245°+tan30°•sin60°= 1 .【考点】特殊角的三角函数值.【分析】将cos45°=,tan30°=,sin60°=代入即可得出答案.【解答】解:cos245°+tan30°•sin60°=+×==1.故答案为:1.12.如图,在平面直角坐标系中,点O为坐标原点,点P在第一象限,⊙P与x轴交于O,A两点,点A的坐标为(6,0),⊙P的半径为,则点P的坐标为(3,2).【考点】垂径定理;坐标与图形性质;勾股定理.【分析】过点P作PD⊥x轴于点D,连接OP,先由垂径定理求出OD的长,再根据勾股定理求出PD的长,故可得出答案.【解答】解:过点P作PD⊥x轴于点D,连接OP,∵A(6,0),PD⊥OA,∴OD=OA=3,在Rt△OPD中,∵OP=,OD=3,∴PD===2,∴P(3,2).故答案为:(3,2).13.如图,把一张三角形纸片ABC沿中位线DE剪开后,在平面上将△ADE绕着点E 顺时针旋转180°,点D运动到点F的位置,则S△ADE:S四边形DBCF是1:4 .【考点】相似三角形的判定与性质;三角形中位线定理;旋转的性质.【分析】由题意可知DE∥BC,所以△ADE∽△ABC,利用相似三角形的性质可得到S△ADE:S▱BCED=1:3,又因为S△ADE=S△CEF,进而可得到S△ADE:S▱DBCF的比值.【解答】解:∵DE是△ABC中位线,∴DE∥BC,∴△ADE∽△ABC,∴AD:AB=DE:BC=1:2,∴S△ADE=:S△ABC=1:4,∴S△ADE:S▱BCED=1:3,∵将△ADE绕着点E顺时针旋转180°得到△CEF,∴△ADE≌△CEF,∴S△ADE=S△CEF,∴S△ADE:S▱DBCF=1:4,故答案为:1:4.14.如图,将长为8cm的铁丝尾相接围成半径为2cm的扇形,则S扇形= 4 cm2.【考点】扇形面积的计算.【分析】根据扇形的面积公式S扇形=×弧长×半径,求出面积即可.【解答】解:由题可知,弧长=8﹣2×2=4cm,∴扇形的面积=×4×2=4cm2,故答案为:4.15.如图,边长为1的小正方形网格中,⊙O的圆心在格点上,则∠AED的余弦值是.【考点】圆周角定理;勾股定理;锐角三角函数的定义.【分析】根据同弧所对的圆周角相等得到∠ABC=∠AED,在直角三角形ABC中,利用锐角三角函数定义求出cos∠ABC的值,即为cos∠AED的值.【解答】解:∵∠AED与∠ABC都对,∴∠AED=∠ABC,在Rt△ABC中,AB=2,AC=1,根据勾股定理得:BC=,则cos∠AED=cos∠ABC==.故答案为:16.如图,是一次函数y=kx+b与反比例函数y=的图象,则关于x的方程kx+b=的解为1或﹣2 .【考点】反比例函数的图象;一次函数的图象.【分析】根据一次函数y=kx+b与反比例函数y=的图象交于点(1,2),(﹣2,﹣1),求出k,b的值,代入方程kx+b=,求得方程的解.【解答】解:一次函数y=kx+b与反比例函数y=的图象交于点(1,2),(﹣2,﹣1),则一次函数y=kx+b过点(1,2),又过点(﹣2,﹣1),故k=1,b=1,即y=x+1.关于x的方程kx+b=可化为x+1=,它的解为1或﹣2.故答案为:1或﹣2.三、解答题(每题6分,共18分)17.解方程:(2x+1)2=2x+1.【考点】解一元二次方程﹣因式分解法.【分析】因式分解法求解可得.【解答】解:∵(2x+1)2﹣(2x+1)=0,∴(2x+1)(2x+1﹣1)=0,即2x(2x+1)=0,则x=0或2x+1=0,解得:x=0或x=﹣.18.如图,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,点A、B 的坐标分别是A(3,2)、B(1,3).△AOB绕点O逆时针旋转90°后得到△A1OB1.(1)画出旋转后的图形;(2)求A1旋转经过的路程.【考点】作图﹣旋转变换.【分析】(1)利用网格特点和旋转的性质画出A、B的对应点A1、B1,从而得到△OA1B1;(2)由于点A所走过的路线是以点O为圆心,OA为半径,圆心角为90°所对的弧,然后根据弧长公式求解.【解答】解:(1)如图,△A1OB1为所作;(2)OA==,所以A1旋转经过的路程长==π.19.甲乙两名同学做摸牌游戏.他们在桌上放了一副扑克牌中的4张牌,牌面分别是J,Q,K,K.将牌面全部朝下.(1)若随机从中抽出一张牌,牌面是K的概率为(2)若从这4张牌中随机取1张牌记下结果放回,洗匀后再随机取1张牌,若两次取出的牌中都没有K,则甲获胜,否则乙获胜.你认为甲乙两人谁获胜的可能性大?用列表或画树状图的方法说明理由.【考点】列表法与树状图法.【分析】(1)随机从中抽出一张牌,一共有四种可能,牌面是K的有两种可能,由此可知随机从中抽出一张牌牌面是K的概率=.(2)分别求出甲获胜与乙获胜的概率,进行比较,即可得出结论.【解答】解:(1)∵随机从中抽出一张牌,一共有四种可能,牌面是K的有两种可能,∴随机从中抽出一张牌,牌面是K的概率==.故答案为(2)乙获胜的可能性大.理由如下,进行一次游戏所有可能出现的结果如下表:从上表可以看出,一次游戏可能出现的结果共有16种,而且每种结果出现的可能性相等,其中两次取出的牌中都没有K的有(J,J),(J,Q),(Q,J),(Q,Q)等4种结果.∵P(两次取出的牌中都没有K)=.∴P(甲获胜)=,P(乙获胜)=.∵<,∴乙获胜的可能性大.四、解答题(每题7分,共21分)20.雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长率速度,第四天该单位能收到多少捐款?【考点】一元二次方程的应用.【分析】(1)解答此题利用的数量关系是:第一天收到捐款钱数×(1+每次增长的百分率)2=第三天收到捐款钱数,设出未知数,列方程解答即可;(2)第三天收到捐款钱数×(1+每次增长的百分率)=第四天收到捐款钱数,依此列式子解答即可.【解答】解:(1)设捐款增长率为x,根据题意列方程得,10000×(1+x)2=12100,解得x1=0.1,x2=﹣2.1(不合题意,舍去);答:捐款增长率为10%.(2)12100×(1+10%)=13310元.答:第四天该单位能收到13310元捐款.21.小明家所在居民楼的对面有一座大厦AB,AB=80米,为测量这座居民楼与大厦之间的距离,小明从自己家的窗户C处测得大厦顶部A的仰角为37°,大厦底部B 的俯角为48°.求小明家所在居民楼与大厦的距离CD的长度.(结果保留整数)(参考数据:)【考点】解直角三角形的应用﹣仰角俯角问题.【分析】利用所给角的三角函数用CD表示出AD、BD;根据AB=AD+BD=80米,即可求得居民楼与大厦的距离.【解答】解:设CD=x米.在Rt△ACD中,,则,∴;在Rt△BCD中,tan48°=,则,∴.∵AD+BD=AB,∴,解得:x≈43.答:小明家所在居民楼与大厦的距离CD大约是43米.22.如图,AB是⊙O的直径,点E是上的一点,∠DBC=∠BED.(1)求证:BC是⊙O的切线;(2)已知AD=3,CD=2,求BC的长.【考点】切线的判定;相似三角形的判定与性质.【分析】(1)AB是⊙O的直径,得∠ADB=90°,从而得出∠BAD=∠DBC,即∠ABC=90°,即可证明BC是⊙O的切线;(2)可证明△ABC∽△BDC,则=,即可得出BC=.【解答】(1)证明:∵AB是⊙O的切直径,∴∠ADB=90°,又∵∠BAD=∠BED,∠BED=∠DBC,∴∠BAD=∠DBC,∴∠BAD+∠ABD=∠DBC+∠ABD=90°,∴∠ABC=90°,∴BC是⊙O的切线;(2)解:∵∠BAD=∠DBC,∠C=∠C,∴△ABC∽△BDC,∴=,即BC2=AC•CD=(AD+CD)•CD=10,∴BC=.五、解答题(每题9分,共27分)23.如图,等边△OAB和等边△AFE的一边都在x轴上,双曲线y=(k>0)经过边OB的中点C和AE的中点D.已知等边△OAB的边长为4.(1)求该双曲线所表示的函数解析式;(2)求等边△AEF的边长.【考点】反比例函数综合题.【分析】(1)过点C作CG⊥OA于点G,根据等边三角形的性质求出OG、CG的长度,从而得到点C的坐标,再利用待定系数法求反比例函数解析式列式计算即可得解;(2)过点D作DH⊥AF于点H,设AH=a,根据等边三角形的性质表示出DH的长度,然后表示出点D的坐标,再把点D的坐标代入反比例函数解析式,解方程得到a的值,从而得解.【解答】解:(1)过点C作CG⊥OA于点G,∵点C是等边△OAB的边OB的中点,∴OC=2,∠AOB=60°,∴OG=1,CG=OG•tan60°=1•=,∴点C的坐标是(1,),由=,得:k=,∴该双曲线所表示的函数解析式为y=;(2)过点D作DH⊥AF于点H,设AH=a,则DH=a.∴点D的坐标为(4+a,),∵点D是双曲线y=上的点,由xy=,得(4+a)=,即:a2+4a﹣1=0,解得:a1=﹣2,a2=﹣﹣2(舍去),∴AD=2AH=2﹣4,∴等边△AEF的边长是2AD=4﹣8.24.用如图(1)两个直角三角形BC=EF=3,∠B=45°,∠E=30°,拼接如图(2),使得BC和ED重合,在BC边上有一动点P.(1)在图(2),当点P运动到∠CFB的平分线上时,连接AP,求线段AP的长;(2)在图(2),当点P在运动的过程中出现PA=FC时,求∠PAB的度数(3)当点P运动到什么位置时,以A、P、F、Q为顶点的平行四边形的顶点Q恰好在边FC上?求出此时四边形APFQ的面积.【考点】四边形综合题.【分析】(1)如答图1所示,过点A作AG⊥BC于点G,构造Rt△APG,利用勾股定理求出AP的长度;(2)如答图2所示,符合条件的点P有两个.解直角三角形,利用特殊角的三角函数值求出角的度数;(3)先判断出AP∥FQ,进而得出AP⊥BC,即可求出AP=BP=CP=,最后用四边形的面积公式即可得出结论.【解答】解:(1)依题意画出图形,如答图1所示:由题意,得∠CFB=60°,FP为角平分线,则∠CFP=30°,∴CF=BC•tan30°=3×=,∴CP=CF•tan∠CFP==1.过点A作AG⊥BC于点G,则AG=BC=,∴PG=CG﹣CP=﹣1=.在Rt△APG中,由勾股定理得:AP==.(2)由(1)可知,FC=.如答图2所示,以点A为圆心,以FC=长为半径画弧,与BC交于点P1、P2,则AP1=AP2=.过点A过AG⊥BC于点G,则AG=BC=.在Rt△AGP1中,cos∠P1AG==;∴∠P1AG=30°,∴∠P1AB=45°﹣30°=15°;同理求得,∠P2AG=30°,∠P2AB=45°+30°=75°.∴∠PAB的度数为15°或75°.(3)如答图3,∵以A、P、F、Q为顶点的平行四边形的顶点Q恰好在边FC上,∴AP∥QF,∴∠APC=∠BCF,∵∠BCF=90°,∴∠APC=90°,在R△ABC中,∠ABC=45°,BC=3,∴AC=AB=,∴AP=BP=CP=BC=,∴S平行四边形APFQ=AP×PC=×=,即:点P运动到BC中点的位置时,以A、P、F、Q为顶点的平行四边形的顶点Q恰好在边FC上,且面积是.25.如图,抛物线y=(x﹣3)2﹣1与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为D.(1)求点A,B,D的坐标;(2)连接CD,过原点O作OE⊥CD,垂足为H,OE与抛物线的对称轴交于点E,连接AE,AD,求证:∠AEO=∠ADC;(3)以(2)中的点E为圆心,1为半径画圆,在对称轴右侧的抛物线上有一动点P,过点P作⊙E的切线,切点为Q,当PQ的长最小时,求点P的坐标,并直接写出点Q的坐标.【考点】二次函数综合题.【分析】(1)根据二次函数性质,求出点A、B、D的坐标;(2)如何证明∠AEO=∠ADC?如答图1所示,我们观察到在△EFH与△ADF中:∠EHF=90°,有一对对顶角相等;因此只需证明∠EAD=90°即可,即△ADE为直角三角形,由此我们联想到勾股定理的逆定理.分别求出△ADE三边的长度,再利用勾股定理的逆定理证明它是直角三角形,由此问题解决;(3)依题意画出图形,如答图2所示.由⊙E的半径为1,根据切线性质及勾股定理,得PQ2=EP2﹣1,要使切线长PQ最小,只需EP长最小,即EP2最小.利用二次函数性质求出EP2最小时点P的坐标,并进而求出点Q的坐标.【解答】方法一:(1)解:顶点D的坐标为(3,﹣1).令y=0,得(x﹣3)2﹣1=0,解得:x1=3+,x2=3﹣,∵点A在点B的左侧,∴A(3﹣,0),B(3+,0).(2)证明:如答图1,过顶点D作DG⊥y轴于点G,则G(0,﹣1),GD=3.令x=0,得y=,∴C(0,).∴CG=OC+OG=+1=,∴tan∠DCG=.设对称轴交x轴于点M,则OM=3,DM=1,AM=3﹣(3﹣)=.由OE⊥CD,易知∠EOM=∠DCG.∴tan∠EOM=tan∠DCG==,解得EM=2,∴DE=EM+DM=3.在Rt△AEM中,AM=,EM=2,由勾股定理得:AE=;在Rt△ADM中,AM=,DM=1,由勾股定理得:AD=.∵AE2+AD2=6+3=9=DE2,∴△ADE为直角三角形,∠EAD=90°.设AE交CD于点F,∵∠AEO+∠EFH=90°,∠ADC+AFD=90°,∠EFH=∠AFD(对顶角相等),∴∠AEO=∠ADC.(3)解:依题意画出图形,如答图2所示:由⊙E的半径为1,根据切线性质及勾股定理,得PQ2=EP2﹣1,要使切线长PQ最小,只需EP长最小,即EP2最小.设点P坐标为(x,y),由勾股定理得:EP2=(x﹣3)2+(y﹣2)2.∵y=(x﹣3)2﹣1,∴(x﹣3)2=2y+2.∴EP2=2y+2+(y﹣2)2=(y﹣1)2+5当y=1时,EP2有最小值,最小值为5.将y=1代入y=(x﹣3)2﹣1,得(x﹣3)2﹣1=1,解得:x1=1,x2=5.又∵点P在对称轴右侧的抛物线上,∴x1=1舍去.∴P(5,1).∵△EQ2P为直角三角形,∴过点Q2作x轴的平行线,再分别过点E,P向其作垂线,垂足分别为M点和N点.由切割线定理得到Q2P=Q1P=2,EQ2=1设点Q2的坐标为(m,n)则在Rt△MQ2E和Rt△Q2NP中建立勾股方程,即(m﹣3)2+(n﹣2)2=1①,(5﹣m)2+(n﹣1)2=4②①﹣②得n=2m﹣5③将③代入到①得到m1=3(舍,为Q1)m2=再将m=代入③得n=,∴Q2(,)此时点Q坐标为(3,1)或(,).方法二:(1)略.(2)∵C(0,),D(3,﹣1),∴KCD=,∵OE⊥CD,∴K CD×K OE=﹣1,∴K OE=,∴l OE:y=x,把x=3代入,得y=2,∴E(3,2),∵A(3﹣,0),D(3,﹣1),∴K EA==,∵K AD=,∴K EA×K AD=﹣1,∴EA⊥AD,∠EHD=∠EAD,∵∠EFH=∠AFD,∴∠AEO=∠ADC.(3)由⊙E的半径为1,得PQ2=EP2﹣1,要使切线长PQ最小,只需EP长最小,即EP2最小,设点P坐标为(x,y),EP2=(x﹣3)2+(y﹣2)2,∵y=(x﹣3)2﹣1,∴(x﹣3)2=2y+2,∴EP2=2y+2+(y﹣2)2=(y﹣1)2+5,∴当y=1时,EP2有最小值,将y=1代入y=(x﹣3)2﹣1得:x1=1,x2=5,又∵点P在对称轴右侧的抛物线上,∴x1=1舍去,∴P(5,1),显然Q1(3,1),∵Q1Q2被EP垂直平分,垂足为H,∴K Q1Q2×K EP=﹣1,∴K EP==﹣,K Q1Q2=2,∵Q1(3,1),∴l Q1Q2:y=2x﹣5,∵l EP:y=﹣x+,∴x=,y=,∴H(,),∵H为Q1Q2的中点,∴H x=,H Y=,∴Q2(x)=2×﹣3=,Q2(Y)=2×﹣1=,∴Q2(,).。

广东省2020届中考数学仿真模拟试卷 (含解析)

广东省2020届中考数学仿真模拟试卷 (含解析)

广东省2020届中考数学仿真模拟试卷一、选择题(本大题共10小题,共30.0分)1.−2014的相反数是()A. 2014B. 12014C. −12014D. −20142.一组数据2,4,6,4,8的中位数为()A. 2B. 4C. 6D. 83.点P(−3,−5)关于x轴对称的点为P1,则P1的坐标为()A. (−3,5)B. (3,−5)C. (−3,−5)D. (3,5)4.一个多边形有5条边,则它的内角和是()A. 540°B. 720°C. 900°D. 1080°5.式子√1−x在实数范围内有意义,则x的取值范围是()A. x≥1B. x≤1C. x≥−1D. x≤−16.如图,在△ABC中,E、D、F分别是AB、BC、CA的中点,AB=6,AC=4,则四边形AEDF的周长是()A. 10B. 20C. 30D. 407.将如图所示的抛物线向右平移1个单位长度,再向上平移3个单位长度后,得到的抛物线解析式是()A. y=(x−1)2+1B. y=(x+1)2+1C. y=2(x−1)2+1D. y=2(x+1)2+18.不等式组{12−2x<203x−6≤0的解集是()A. −4<x≤6B. x≤−4或x>2C. −4<x≤2D. 2≤x<49.如图,正方形ABCD中,AB=1,M,N分别是AD,BC边的中点,沿BQ将△BCQ折叠,若点C恰好落在MN上的点P处,则PQ的长为()A. 12B. √33C. 13D. √310.二次函数y=ax2+bx+c(a≠0)的图象如图.对称轴x=−1.下列结论:①4ac−b2<0;②4a+c<2b;③3b+2c<0.其中正确结论的个数是()A. 3个B. 2个C. 1个D. 0个二、填空题(本大题共7小题,共28.0分)11.分解因式:2ax−4ay=______.12.若单项式5x4y和25x n y m是同类项,则m+n的值为______.13.已知√2a+8+|b−√3|=0,则ab=______.14.若2x+3y的值为−2,则4x+6y+2的值为______ .BC长为半径画弧,两弧15.如图,分别以线段BC的两个端点为圆心,以大于12分别相交于D、E两点,直线DE交BC于点F,点A是直线DE上的一点,连接AB、AC,若AB=12cm,∠C=60°,则CF=______cm.16.如图,有一直径是√2米的圆形铁皮,现从中剪出一个圆周角是90°的最大扇形ABC,则:(1)AB的长为______ 米;(2)用该扇形铁皮围成一个圆锥,所得圆锥的底面圆的半径为______米.17.如图,在平面直角坐标系中,A(4,0)、B(0,−3),以点B为圆心、2为半径的⊙B上有一动点P.连接AP,若点C为AP的中点,连接OC,则OC的最小值为______.三、计算题(本大题共1小题,共6.0分)18.先化简,再求值:(x+3y)2+(x+2y)(x−2y)−2x2,其中x=2,y=−1.四、解答题(本大题共7小题,共56.0分)19.我区某校数学兴趣小组在本校学生中开展了以“垃圾分类知多少”为主题的专题调查活动,采取随机抽样的方式进行问卷调查.问卷调查的结果分为四个等级:“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,并根据调查所得到的结果绘制了如下不完整的统计图:根据以上信息解答下列问题:(1)求本次被调查的学生人数;(2)补全条形统计图;(3)若该校有学生1500人,请根据调查结果,估计这些学生中“比较了解”垃圾分类知识的人数.20.如图,∠A=∠D=90°,AB=CD,AC,BD相交于点E.求证:(1)△ABC≌△DCB;(2)△EBC是等腰三角形.21.设a,b,c是△ABC的三条边,关于x的方程12x2+√bx+c−12a=0有两个相等的实数根,方程3cx+2b=2a的根为x=0.(1)试判断△ABC的形状.(2)若a,b为方程x2+mx−3m=0的两个根,求m的值.22.如图,⊙O是△ABC的外接圆,AC是直径,弦BD=BA,EB⊥DC,交DC的延长线于点E.(1)求证:BE是⊙O的切线;(2)当sin∠BCE=34,AB=3时,求AD的长.23.为迎接“六一”儿童节,某儿童品牌玩具专卖店购进了A、B两种玩具,其中A类玩具的进价比B玩具的进价每个多3元,经调查:用900元购进A类玩具的数量与用750元购进B类玩具的数量相同(1)求A、B两类玩具的进价分别是每个多少元?(2)该玩具店共购进了A、B两类玩具共100个,若玩具店将每个A类玩具定价为30元出售,每个B类玩具定价25元出售,且全部售出后所获得利润不少于1080元,则商店至少购进A类玩具多少个?24.如图,在平面直角坐标系中,短形ABCD的顶点B、C在x轴的正半轴上,AB=8,BC=6,(x>0)的图象经过点E,分别与AB、CD交于点对角线AC、BD相交于点E,反比例函数y=kxF,G.(1)若OC=8,求k的值;(2)连接EG,若BF−BE=2,求△CEG的面积.25.如图,抛物线y=−x2+5x+n经过点A(1,0),与y轴交于点B.(1)求抛物线的解析式;(2)求抛物线的对称轴和顶点坐标;(3)P是y轴正半轴上一点,且△PAB是以AB为腰的等腰三角形,试求点P的坐标.-------- 答案与解析 --------1.答案:A解析:本题主要考查了相反数,解题的关键是熟记相反数的定义.利用相反数的定义求解即可.解:−2014的相反数是2014.故选A.2.答案:B解析:本题属于基础题,考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.解:一共5个数据,从小到大排列此数据为:2,4,4,6,8,故这组数据的中位数是4.故选B.3.答案:A解析:解:根据平面直角坐标系中对称点的规律可知,点P(−3,−5)关于x轴的对称点为P1(−3,5).故选:A.根据平面直角坐标系中对称点的规律,关于x轴对称的点,横坐标相同,纵坐标互为相反数解答即可.此题主要考查了平面直角坐标系中对称点的规律.解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数.4.答案:A解析:解:∵多边形有5条边,∴它的内角和=(5−2)×180°=540°,故选:A.根据多边形的内角和公式即可得到结论.本题考查了多边形的内角和外角,熟记多边形的内角和公式是解题的关键.5.答案:B解析:【分析】本题考查了二次根式有意义的条件,利用被开方数是非负数得出不等式是解题关键.根据被开方数是非负数,可得答案.【解答】解:由√1−x在实数范围内有意义,得1−x≥0.解得x≤1,故选:B.6.答案:A解析:本题考查了三角形中位线定理,中点的定义以及四边形周长的定义.根据三角形的中位线平行于第三边,并且等于第三边的一半,以及中点的定义可得DE=AF=12AC,DF=AE=12AB,再根据四边形的周长的定义计算即可得解.解:∵在△ABC中,E、D、F分别是AB、BC、CA的中点,∴DE=AF=12AC=2,DF=AE=12AB=3,∴四边形AEDF的周长是(2+3)×2=10.故选:A.7.答案:C解析:本题考查了二次函数图象与几何变换,利用平移规律:左加右减,上加下减是解题关键.根据平移规律,可得答案.解:根据图像可知函数解析式为:y=2x2−2,则平移后的解析式为:y=2(x−1)2+1.故选C.8.答案:C解析:本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.解:解不等式12−2x<20,得:x>−4,解不等式3x−6≤0,得:x≤2,则不等式组的解集为−4<x≤2.故选:C.9.答案:B解析:本题主要考查了折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.由折叠的性质知∠BPQ=∠C=90°,利用直角三角形中的cos∠PBN=BN:PB=1:2,可求得∠PBN=60°,∠PBQ=30°,从而求出PQ=PBtan30°=1√3.3∠PBC,BC=PB=2BN=1,∠BPQ=∠C=90°,解:∵∠CBQ=∠PBQ=12∴cos∠PBN=BN:PB=1:2,∴∠PBN=60°,∠PBQ=30°,∴PQ=PBtan30°=1√3.3故选:B.10.答案:B解析:解:∵抛物线与x轴有交点,∴△>0,∴b2−4ac>0,∴4ac−b2<0,故①正确,∵x=−2时,y>0,∴4a−2b+c>0,∴4a+c>2b,故②错误,∴对称轴x=−1,=−1,∴−b2a∴b=2a,∴y=ax2+2ax+c,∵x=1时,y<0,∴3a+c<0,∴6a+2c<0,∴3b+2c<0,故③正确.故选:B.根据二次函数的性质以及图象信息,一一判断即可.本题考查二次函数的性质,解题的关键是读懂图象信息,灵活运用所学知识解决问题,属于中考常考题型.11.答案:2a(x−2y)解析:解:2ax−4ay=2a(x−2y).故答案为:2a(x−2y).直接找出公因式2a,进而分解因式得出答案.此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.答案:5解析:解:∵单项式5x4y和25x n y m是同类项,∴n=4,m=1,∴m+n=4+1=5.故填:5.根据同类项的定义中相同字母的指数也相同,得出m、n的值,即可求出m+n的值.此题考查了同类项;同类项的定义所含字母相同;相同字母的指数相同即可求出答案.13.答案:−4√3解析:解:∵√2a+8+|b−√3|=0,∴2a+8=0,b−√3=0,解得a=−4,b=√3,ab=−4√3,故答案为−4√3.先根据非负数的性质求出a,b的值,代入求得ab的值.本题考查了非负数的性质,几个非负数的和为0,这几个数都为0.14.答案:−2解析:解:∵2x+3y=−2,∴原式=2(2x+3y)+2=2×(−2)+2=−2,故答案为:−2.将2x+3y=−2整体代入原式=2(2x+3y)+2即可得出答案.本题主要考查代数式的求值,熟练掌握整体代入的思想是解题的关键.15.答案:6解析:解:由作图可知:AE垂直平分线段BC,∴AB=AC,BF=CF,∴∠B=∠C=60°,∵AB=12cm,∠BAF=90°−60°=30°,∴BF=12AB=6(cm)故答案为:6.首先证明AB=AC,BF=CF,在Rt△ABF中求出BF即可解决问题.本题考查作图−基本作图,线段的垂直平分线的性质等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.16.答案:(1)1;(2)14解析:解:(1)∵∠BAC=90°,∴BC为⊙O的直径,即BC=√2,∴AB=√22BC=1;故答案为:1(2)设所得圆锥的底面圆的半径为r,根据题意得2πr=90⋅π⋅1180,解得r=14.故答案为:14.(1)根据圆周角定理由∠BAC=90°得BC为⊙O的直径,即BC=√2,根据等腰直角三角形的性质得AB=1;(2)由于圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,则2πr=90⋅π⋅1,然后解180方程即可.本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了圆周角定理.17.答案:1.5解析:本题考查了图形与坐标的性质、勾股定理、直角三角形斜边上的中线等于斜边的一半的性质、圆的性质、两点之间线段最短,确定出OC最小时点C的位置是解题关键,也是本题的难点.先确定点C的运动路径是:以D为圆心,以DC1为半径的圆,当O、C、D共线时,OC的长最小,先求⊙D的半径为1,说明D是AB的中点,根据直角三角形斜边中线是斜边一半可得OD=2.5,所以OC的最小值是1.5.解:当点P运动到AB的延长线上时,即如图中点P1,C1是AP1的中点,当点P在线段AB上时,C2是中点,取C1C2的中点为D,点C的运动路径是以D为圆心,以DC1为半径的圆,当O、C、D共线时,OC的长最小,设线段AB交⊙B于Q,Rt△AOB中,OA=4,OB=3,∴AB=5,∵⊙B的半径为2,∴BP1=2,AP1=5+2=7,∵C1是AP1的中点,∴AC1=3.5,AQ=5−2=3,∵C2是AQ的中点,∴AC2=C2Q=1.5,C1C2=3.5−1.5=2,即⊙D的半径为1,∵AD=1.5+1=2.5=1AB,2∴OD=1AB=2.5,2∴OC=2.5−1=1.5,故答案为:1.5.18.答案:解:原式=x²+6xy+9y²+x²−4y²−2x²=6xy+5y²当x=2,y=−1时,原式=6×2×(−1)+5×(−1)²=−12+5=−7解析:本题主要考查整式的混合运算.先算乘方及乘法,再合并同类项,最后把x、y的值代入计算.19.答案:解:(1)本次被调查的学生人数是36÷18%=200(人).答:本次被调查的学生人数是200人;(2)比较了解的人数是200−40−36−4=120(人).;=900(人).(3)比较了解垃圾分类的人数是1500×120200答:这些学生中“比较了解”垃圾分类知识的人数是900人.解析:(1)根据基本了解的人数是36,所占的百分比是18%,据此即可求得总人数;(2)利用总人数减去其它组的人数即可求得比较了解的人数,从而补全直方图;(3)利用总人数1500乘以对应的百分比即可求得.本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.20.答案:解:(1)∵∠A=∠D=90°,∴在Rt△ABC和Rt△DCB中,{BC=CBAB=DC,∴Rt△ABC≌Rt△DCB(HL).(2)∵Rt△ABC≌Rt△DCB,∴∠ACB=∠DBC,∴BE=CE,∴△EBC是等腰三角形.解析:本题考查了全等三角形的判定与性质以及等腰三角形的判定,证明三角形全等是解题的关键.(1)由“HL”可证Rt△ABC≌Rt△DCB;(2)由全等三角形的性质可得∠ACB=∠DBC,可得BE=CE,可得结论.21.答案:解:(1)∵12x2+√bx+c−12a=0有两个相等的实数根,∴△=(√b)2−4×12(c−12a)=0,整理得a+b−2c=0①,又∵3cx+2b=2a的根为x=0,∴a=b②,把②代入①得a=c,∴a=b=c,∴△ABC为等边三角形;(2)a,b是方程x2+mx−3m=0的两个根,∴方程x2+mx−3m=0有两个相等的实数根∴△=m2−4×(−3m)=0,即m2+12m=0,∴m1=0,m2=−12.当m=0时,原方程的解为x=0(不符合题意,舍去),∴m=−12.解析:(1)因为方程有两个相等的实数根即△=0,由△=0可以得到一个关于a,b的方程,再结合方程3cx+2b=2a的根为x=0,代入即可得到一关于a,b的方程,联立即可得到关于a,b的方程组,可求出a,b的关系式;(2)根据(1)求出的a,b的值,可以关于m的方程,解方程即可求出m.本题主要考查了一元二次方程的判别式与方程的解得定义,是一个比较简单的问题.22.答案:解:(1)证明:连结OB,OD,在△ABO和△DBO中,{AB=BD BO=BO OA=OD,∴△ABO≌△DBO(SSS),∴∠DBO=∠ABO,∵∠ABO=∠OAB=∠BDC,∴∠DBO=∠BDC,∴OB//ED,∵BE⊥ED,∴EB⊥BO,∴BE是⊙O的切线;(2)∵AC是直径,∴∠ABC=90°,∵∠OBA+∠OBC=∠EBC+∠OBC=90°,∴∠OBA=∠EBC,∴∠BAC=∠EBC,∵BE⊥DE,∴∠E=90°,∴∠BCE+∠EBC=∠BAC+∠ACB=90°,∵∠BAC=∠EBC,∴∠ACB=∠BCE,∵sin∠BCE=34,∴sin∠ACB=34,∵AB=3,∴AC=4,∵∠BDE=∠BAC,∴sin∠DBE=34,∵BD=AB=3,∴DE=94,∴BE=√BD2−DE2=3√74,∵∠CBE=∠BAC=∠BDC,∠E=∠E,∴△BDE∽△CBE ,∴BE CE =DE BE, ∴CE =74, ∴CD =12,∴AD =√AC 2−CD 2=3√72.解析:(1)连接OB ,OD ,证明△ABO≌△DBO ,推出OB//DE ,继而判断BE ⊥OB ,可得出结论;(2)根据圆周角定理得到∠ABC =90°,根据余角的性质得到∠ACB =∠BCE ,求得AC =4,根据勾股定理得到BE =√BD 2−DE 2=3√74,根据相似三角形的性质得到CE =74,根据勾股定理即可得到结论.本题考查了圆的切线性质与判定,全等三角形的性质与判定,锐角三角函数的定义等知识,综合程度较高,需要学生综合运用知识. 23.答案:解:(1)设B 类玩具的进价为x 元,则A 类玩具的进价是(x +3)元由题意得900x+3=750x ,解得x =15,经检验x =15是原方程的解.所以15+3=18(元)答:A 类玩具的进价是18元,B 类玩具的进价是15元;(2)设购进A 类玩具a 个,则购进B 类玩具(100−a)个,由题意得:2a +10(100−a)≥1080,解得a ≥40.答:至少购进A 类玩具40个.解析:本题考查了分式方程的应用和一元一次不等式的应用.解决本题的关键是读懂题意,找到符合题意的数量关系.准确的解分式方程或不等式是需要掌握的基本计算能力.(1)设B 的进价为x 元,则a 的进价是(x +3)元;根据用900元购进A 类玩具的数量与用750元购进B 类玩具的数量相同这个等量关系列出方程即可;(2)设购进A 类玩具a 个,则购进B 类玩具(100−a)个,结合“玩具店将每个A 类玩具定价为30元出售,每个B 类玩具定价25元出售,且全部售出后所获得利润不少于1080元”列出不等式并解答. 24.答案:解:(1)∵矩形ABCD ,AB =8,BC =6,∴∠ABC =∠BCD =90°,∴AC =BD =10,∴BE=DE=12BD=5,AE=CE=12AC=5,∴AE=DE=CE=BE=5,作EH⊥BC,垂足为H,∴BH=CH=12BC=3,∴EH=4,∵OC=8,∴OH=OC−CH=5,∴点E的坐标为(5,4),代入y=kx,得k=5×4=20;(2)∵BF−BE=2,BE=5,∴BF=7,设F(a,7),则E(a+3,4),∵反比例函数y=kx(x>0)的图象经过点E、F,∴7a=4(a+3),解得a=4,∴F(4,7),∴k=28,∴反比例函数解析式为y=28x,当x=4+6=10时,y=2810=145,∴G(10,145),∴CG=145,作EM⊥DC,垂足为M,∵EH⊥BC,∴∠EHC=∠HCM=∠CME=90°,∴四边形EHCM是矩形,∴EM=CH=3,∴S△CEG=12CG×EM=12×145×3=215.解析:本题考查了反比例函数系数k的几何意义:在反比例函数y=kx(k≠0)图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.也考查了反比例函数的性质.(1)先利用矩形的性质求出点E的坐标(5,4),然后把E点坐标代入y=kx即可求得k的值;(2)因为BF−BE=2,BE=5,所以BF=7,设F(a,7),E(a+3,4),利用反比例函数图象上点的坐标得到7a=4(a+3),解得a=4,从而得到反比例函数解析式为y=28x,然后确定G点坐标,最后利用三角形面积公式计算△CEG 的面积.25.答案:解:(1)由题意得,−1+5+n =0,解得,n =−4,∴抛物线的解析式为y =−x 2+5x −4;(2)y =−x 2+5x −4=−(x −52)2+94, 抛物线对称轴为:x =52,顶点坐标为 (52,94);(3)∵点A 的坐标为(1,0),点B 的坐标为(0,−4),∴OA =1,OB =4,在Rt △OAB 中,AB =√OA 2+OB 2=√17,①当PB =PA 时,PB =√17,∴OP =PB −OB =√17−4,此时点P 的坐标为(0,√17−4),②当PA =AB 时,OP =OB =4,此时点P 的坐标为(0,4).解析:本题考查的是待定系数法求函数解析式、定义三角形的性质,掌握待定系数法求出函数解析式的一般步骤、灵活运用分情况讨论思想是解题的关键.(1)把点A 的坐标代入解析式,计算即可;(2)利用配方法把一般式化为顶点式,根据二次函数的性质解答;(3)分PB =PA 、PA =AB 两种情况,根据等腰三角形的性质解答.。

2020年广东中考数学模拟试卷(附答案和解析)

2020年广东中考数学模拟试卷(附答案和解析)

23.如图,正方形 ABCD 的边长为 1,对角线 AC、BD 交 于点 O,E 是 BC 延长线上一点,且 AC=EC,连接 AE 交 BD 于点 P. (1)求∠DAE 的度数; (2)求 BP 的长.
第 3页 共 4页
五、解答题(三)(本大题共 2 小题,每小题 10 分,共 20 分) 24.如图,已知一次函数 y = kx+b(k ≠ 0) 的图象与 x 轴、 y 轴分别交于点 A、B 两点,且与反比例 函数 y = m (m ≠ 0) 的图象在第一象限第一象限内的部分交于点 C , CD 垂直于 x 轴于点 D ,其中
2020年广东名校中考数学学科线上一模 试卷(二)
说 明:本试卷共 4 页,满分 120 分,考试时间 90 分钟.
注意事项: 1. 选择题、填空题和解答题的答案写在答题卡上,若写在试卷上不计成绩. 2. 作图(含辅助线)和列表时用铅笔(如 2B 铅笔),要求痕迹清晰.
一、选择题(本大题共 10 个小题,每小题 3 分,共 30 分)
九年级数学答案第 3 页(共 5 页)
即1+1√2
=
√2−BP BP
∴BP=1
┅┅┅┅┅┅┅8 分
五、解答题(三)
24.(1)答: A( - 2,0) , C ( 2, 4) ┅┅┅┅┅2 分(写对一个点的坐标得 1 分)
(2) y = x +2 , y = 8 x
┅┅┅┅┅6 分 (求对一个表达式得 2 分)
四、解答题(二)(本大题共 3 小题,每小题 8 分,共 24 分)
21.如图是一块直角三角形木板,其中∠C=90°,AC=1.5m,面积为 1.5m2.一 位木匠想把它加工成一个面积最大且无拼接的正方形桌面,∠C 是这个正方形 的一个内角. (1)请你用尺规为这位木匠在图中作出符合要求的正方形; (2)求加工出的这个正方形桌面的边长.

2020广东省中考数学模拟试卷(一)(含答案和解析)

2020广东省中考数学模拟试卷(一)(含答案和解析)

2020广东省中考数学模拟试卷(一)说明:1. 全卷共4页,满分为120分,考试用时为90分钟.2. 答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡上填写自己的准考证号、姓名、考场号、座位号.用2B铅笔把对应该号码的标号涂黑.3. 选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上.4. 非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5. 考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题共10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的.1.-16的相反数是()A.6B.-6C.16D.-162.港珠澳大桥被英国《卫报》誉为“新世界七大奇迹”之一,它是世界总体跨度最长的跨海大桥,全长55 000米.数字55 000用科学记数法表示为()A.5.5×104B.55×104C.5.5×105D.0.55×1063.已知∠α=60°32',则∠α的余角是()A.29°28'B.29°68'C.119°28'D.119°68'4.一元二次方程x2+px-2=0的一个根为x=2,则p的值为()A.1B.2C.-1D.-25.某校女子排球队12名队员的年龄分布如下表所示:年龄(岁) 13 14 15 16人数(人) 1 2 5 4则该校女子排球队12名队员年龄的众数、中位数分别是()A.13,14B.14,15C.15,15D.15,146.下列图形既是中心对称图形又是轴对称图形的是()A B C D图象的一个交点坐标为(-1,2),则另一个交点的坐7.若正比例函数y=-2x与反比例函数y=kx标为()A.(2,-1)B.(1,-2)C.(-2,-1)D.(-2,1)8.下列运算中,正确的是()A.2x·3x2=5x3B.x4+x2=x6C.(x2y)3=x6y3D.(x+1)2=x2+19.如图,AB是☉O的弦,OC⊥AB交☉O于点C,点D是☉O上一点,∠ADC=30°,则∠BOC的度数为()A.30°B.40°C.50°D.60°10.如图1,在矩形ABCD中,E是AD上一点,点P从点B沿折线BE-ED-DC运动到点C时停止;点Q从点B沿BC运动到点C时停止,速度均为每秒1个单位长度.如果点P,Q同时开始运动,设运动时间为t,△BPQ的面积为y,已知y与t的函数图象如图2所示,有以下结论:①BC=10; ②cos ∠ABE=35; ③当0≤t ≤10时,y=25t 2;④当t=12时,△BPQ 是等腰三角形; ⑤当14≤t ≤20时,y=110-5t. 其中正确的有( )A.2个B.3个C.4个D.5个二、填空题(本大题共7小题,每小题4分,共28分) 11. 因式分解:ab-7a= .12. 若一个多边形的内角和等于它的外角和,则这个多边形的边数为 .13. 一枚材质均匀的骰子,六个面的点数分别是1,2,3,4,5,6,投这个骰子,掷得点数大于4的概率是 .14. 若a-b=2,则代数式5+2a-2b 的值是 .15. 如图,数轴上A ,B 两点所表示的数分别是-4和2,点C 是线段AB 的中点,则点C 所表示的数是 .16. 观察以下一列数:3,54,79,916,1125,…,则第20个数是 .17. 将长为2、宽为a (a 大于1且小于2)的长方形纸片按如图①所示的方式折叠并压平,剪下一个边长等于长方形宽的正方形,称为第一次操作;再把剩下的长方形按如图②所示的方式折叠并压平,剪下一个边长等于此时长方形宽的正方形,称为第二次操作;如此反复操作下去……若在第n 次操作后,剩下的长方形恰为正方形,则操作终止,当n=3时,a 的值为 .三、解答题(一)(本大题共3小题,每小题6分,共18分) 18. 计算: (3-π)0-2cos 30°+|1-√3|+(12)-1.19 .先化简,再求值: x 2-1x 2-2x+1·1x+1-1x , 其中x=2.20. 小甘到文具超市去买文具.请你根据图中的对话信息,求中性笔和笔记本的单价分别是多少元?四、解答题(二)(本大题共3小题,每小题8分,共24分)21.(1)如图1,已知EK垂直平分线段BC,垂足为D,AB与EK相交于点F,连接CF.求证:∠AFE=∠CFD.(2)如图2,在Rt△GMN中,∠M=90°,P为MN的中点.①用直尺和圆规在GN边上求作点Q,使得∠GQM=∠PQN(保留作图痕迹,不要求写作法);②在①的条件下,如果∠G=60°,那么Q是GN的中点吗?为什么?22. 某校为了解八年级男生“立定跳远”成绩的情况,随机选取该年级部分男生进行测试,以下是根据测试成绩绘制的统计图表的一部分.成绩等级频数(人) 频率优秀15 0.3良好及格不及格 5(1) 被测试男生中,成绩等级为“优秀”的男生人数为人,成绩等级为“及格”的男生人数占被测试男生总人数的百分比为%;(2) 被测试男生的总人数是多少?成绩等级为“不及格”的男生人数占被测试男生总人数的百分比是多少?(3) 若该校八年级共有180名男生,根据调查结果,估计该校八年级男生成绩等级为“良好”的学生人数.23. 如图,抛物线y=12x 2-32x-2与x 轴交于A ,B 两点,与y 轴交于点C ,点D 与点C 关于x 轴对称.(1) 求点A ,B ,C 的坐标; (2) 求直线BD 的解析式;(3) 在直线BD 下方的抛物线上是否存在一点P ,使△PBD 的面积最大?若存在,求出点P 的坐标; 若不存在,请说明理由.五、解答题(三)(本大题共2小题,每小题10分,共20分)24. 如图,点O 是线段AH 上一点,AH=3,以点O 为圆心,OA 的长为半径作☉O ,过点H 作AH 的垂线交☉O 于C ,N 两点,点B 在线段CN 的延长线上,连接AB 交☉O 于点M ,以AB ,BC 为边作▱ABCD.(1) 求证:AD 是☉O 的切线;(2) 若OH=13AH ,求四边形AHCD 与☉O 重叠部分的面积; (3) 若NH=13AH ,BN=54,连接MN ,求OH 和MN 的长.25. 如图1,已知点G在正方形ABCD的对角线AC上,GE⊥BC,垂足为点E,GF⊥CD,垂足为点F.(1)证明与推断:①求证:四边形CEGF是正方形;的值是多少?②推断:AGBE(2)探究与证明:将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图2,试探究线段AG与BE 之间的数量关系,并说明理由;(3)拓展与运用:正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时,如图3,延长CG交AD于点H,若AG=6,GH=2 √2,求BC的长.参考答案1.C2.A3.A4.C5.C6.C7.B8.C9.D 10.B 11.a (b-7) 12.4 13.13 14.9 15.-1 16.41400 17.65或3218.解:原式=1-2×√32+√3-1+2=2. 19.解:原式=(x+1)(x-1)(x-1)2·1x+1-1x=1x-1-1x =x x(x-1)-x-1x(x-1)=1x(x-1), 当x=2时,原式=12×1=12. 20.解:设中性笔和笔记本的单价分别是x 元、y 元, 根据题意,得{12y +20x =11212x +20y =144,解得{x =2y =6. 答:中性笔和笔记本的单价分别是2元、6元. 21.(1)证明:∵EK 垂直平分线段BC ,∴FC=FB ,CD=BD ,∴∠CFD=∠BFD , ∵∠BFD=∠AFE ,∴∠AFE=∠CFD.(2)①解:如图,作点P 关于GN 的对称点P',连接P'M 交GN 于Q ,连接PQ ,点Q 即为所求.②解:结论:Q 是GN 的中点.理由如下:设PP'交GN 于K.∵∠G=60°,∠GMN=90°,∴∠N=30°, ∵PK ⊥KN ,∴PK=KP'=12PN , ∴PP'=PN=PM ,∴∠P'=∠PMP',∵∠NPK=∠P'+∠PMP'=60°,∴∠PMP'=30°,∴∠N=∠QMN=30°,∠G=∠GMQ=60°,∴QM=QN ,QM=QG ,∴QG=QN ,∴Q 是GN 的中点.22.解:(1)15 20(2)被测试男生的总人数为15÷0.3=50(人),成绩等级为“不及格”的男生人数占被测试男生总人数的百分比为550×100%=10%.(3)由(1)(2)可知,优秀占30%,及格占20%,不及格占10%,则良好占40%, 故该校八年级男生成绩等级为“良好”的学生人数为180×40%=72(人). 23.解:(1)解方程12x 2-32x-2=0,得x 1=-1,x 2=4, ∴A 点坐标为(-1,0),B 点坐标为(4,0).当x=0时,y=-2,∴C 点坐标为(0,-2).(2)∵点D 与点C 关于x 轴对称,∴D 点坐标为(0,2).设直线BD 的解析式为y=kx+b ,则{0=4k +b 2=b ,解得{k =-12b =2, ∴直线BD 的解析式为y=-12x+2. (3)如图,作PE ∥y 轴交BD 于E ,设P (m,12m 2-32m-2),则E (m,-12m +2),∴PE=-12m+2-(12m 2-32m-2)=-12m 2+m+4, ∴S △PBD =12·PE ·(x B -x D )=12×(-12m 2+m +4)×4 =-m 2+2m+8=-(m-1)2+9,∵-1<0,∴当m=1时,△PBD 的面积最大,面积的最大值为9, 此时,P 的坐标为(1,-3).24.(1)证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,∵∠AHC=90°,∴∠HAD=90°,即OA ⊥AD ,又∵OA 是☉O 的半径,∴AD 是☉O 的切线.(2)解:如图,连接OC ,∵OH=12OA ,AH=3,∴OH=1,OA=2, ∵在Rt △OHC 中,∠OHC=90°,OH=12OC , ∴∠OCH=30°,∴∠AOC=∠OHC+∠OCH=120°, ∴S 扇形OAC =120×π×22360=4π3, ∵CH=√22-12=√3,∴S △OHC =12×1×√3=√32, ∴四边形AHCD 与☉O 重叠部分的面积=S 扇形OAC +S △OHC =4π3+√32. (3)解:∵AH ⊥NC ,NH=13AH ,AH=3, ∴CH=NH=1.设☉O 的半径OA=OC=r ,OH=3-r ,在Rt △OHC 中,OH 2+HC 2=OC 2,∴(3-r )2+12=r 2,∴r=53,∴OH=43, 在Rt △ABH 中,AH=3,BH=54+1=94,∴AB=154, 在Rt △ACH 中,AH=3,CH=1,得AC=√10, ∵∠BMN+∠AMN=180°,∠NCA+∠AMN=180°, ∴∠BMN=∠NCA.在△BMN 和△BCA 中,∠B=∠B ,∠BMN=∠BCA ,∴△BMN ∽△BCA ,∴MN AC =BN AB ,即MN 10=54154, ∴MN=√103,∴OH=43,MN=√103. 25.(1)①证明:∵四边形ABCD 是正方形, ∴∠BCD=90°,∠BCA=45°,∵GE ⊥BC ,GF ⊥CD ,∴∠CEG=∠CFG=∠ECF=90°,∴四边形CEGF 是矩形,∠CGE=∠ECG=45°, ∴EG=EC ,∴四边形CEGF 是正方形.②解:由①知四边形CEGF 是正方形,∴∠CEG=∠B=90°,∠ECG=45°,∴GE ∥AB ,CG CE =√2,∴AG BE =CG CE=√2. (2)解:如图,连接CG ,由旋转性质知∠BCE=∠ACG=α,在Rt △CEG 和Rt △CBA 中,CE CG =cos 45°=√22,CB CA =cos 45°=√22, ∴CG CE =CA CB=√2, ∴△ACG ∽△BCE ,∴AG BE =CA CB=√2, ∴线段AG 与BE 之间的数量关系为AG=√2BE.(3)解:∵∠CEF=45°,点B ,E ,F 三点共线, ∴∠BEC=135°,∵△ACG ∽△BCE ,∴∠AGC=∠BEC=135°,∴∠AGH=45°=∠CAH , ∵∠CHA=∠AHG ,∴△AHG ∽△CHA ,∴AG AC =GH AH =AH CH, 设BC=CD=AD=a ,则AC=√2a ,由AG AC =GH AH ,得√2a =2√2AH ,∴AH=23a ,∴DH=AD -AH=13a ,∴CH=√CD 2+DH 2=√103a , 由AG AC =AH CH ,得√2a =23a √103a , 解得a=3 √5,即BC=3 √5.。

2020年广东省中考数学模拟试题与答案

2020年广东省中考数学模拟试题与答案

2020年广东省中考数学模拟试题与答案(试卷满分120分,考试时间120分钟)一、选择题(本题共12小题。

每小题3分,共36分。

在每小题给出的四个选项中,只有一项是正确的。

)1. 张敏同学在“百度”搜索引擎中输入“中国梦,我的梦”能搜索到与之相关的结果的条数约为67 100 000,这个数67 100 000用科学记数法可表示为()A.671×105B.6.71×106C.6.71×107D.0.671×1082. 下列计算正确的是()A.a+a=a2B.(2a)3=6a3C.a3×a3=2a3D.a3÷a=a23. 将一个长方体内部挖去一个圆柱(如图所示),它的主视图是()A. B. C. D.4.任意掷一枚骰子,下列情况出现的可能性比较大的是()A.面朝上的点数是6 B.面朝上的点数是偶数C.面朝上的点数大于2 D.面朝上的点数小于25.如图,在Rt△ABC中,∠C=90°.D为边CA延长线上一点,DE∥AB,∠ADE=42°,则∠B的大小为()A.42°B.45°C.48°D.58°6.如图,在Rt△ABC中,∠B=90°,以点A为圆心,适当长为半径画弧,分别交AB、AC于点D,E,再分别以点D、E为圆心,大于DE为半径画弧,两弧交于点F,作射线AF交边BC于点G,若BG=1,AC=4,则△ACG的面积是()A.1 B.C.2 D.7.已知:点A(2016,0)、B(0,2018),以AB为斜边在直线AB下方作等腰直角△ABC,则点C 的坐标为()A.(2,2 )B.(2,﹣2 )C.(﹣1,1 )D.(﹣1,﹣1 )8.已知2是关于x的方程x2﹣(5+m)x+5m=0的一个根,并且这个方程的两个根恰好是等腰△ABC 的两条边长,则△ABC的周长为()A.9 B.12 C.9或12 D.6或12或159.下列4个点,不在反比例函数y=﹣图象上的是()A.(2,﹣3)B.(﹣3,2)C.(3,﹣2)D.( 3,2)10.如图,已知点A(﹣8,0),B(2,0),点C在直线y=﹣上,则使△ABC是直角三角形的点C的个数为()A.1 B.2 C.3 D.411.如图,AB、AC为⊙O的切线,B、C是切点,延长OB到D,使BD=OB,连接AD,如果∠DAC=78°,那么∠ADO等于()A.70°B.64°C.62°D.51°12.已知二次函数y=ax2+bx+c(a≠0)的图象如图,有下列6个结论:①abc<0;②b<a﹣c;③4a+2b+c>0;④2c<3b;⑤a+b<m(am+b),(m≠1的实数)⑥2a+b+c>0,其中正确的结论的有_______ .A.①②④⑤B.②③⑤⑥C.①②③⑤D.①③④⑥二、填空题(本题共6小题,满分18分。

2020年广东省中考数学全真模拟试卷(新题型)(解析版)

2020年广东省中考数学全真模拟试卷(新题型)(解析版)

2020年广东省中考数学全真模拟试卷(新题型)(解析版)考试时间:90分钟;满分:120学校:___________班级:___________姓名:___________学号:___________一.选择题(共10小题,满分30分,每小题3分)1.(3分)﹣2020的相反数是()A.B.C.2020D.﹣20202.(3分)港珠澳大桥2018年10月24日上午9时正式通车,这座大桥跨越伶仃洋,东接香港,西接广东珠海和澳门,总长约55000m,集桥、岛、隧于一体,是世界最长的跨海大桥,数据55000用科学记数法表示为()A.5.5×105B.55×104C.5.5×104D.5.5×1063.(3分)如图,下列结论正确的是()A.c>a>b B.C.|a|<|b|D.abc>04.(3分)如表是我国近六年“两会”会期(单位:天)的统计结果:时间201420152016201720182019会期(天)111314131813则我国近六年“两会”会期(天)的众数和中位数分别是()A.13,11B.13,13C.13,14D.14,13.55.(3分)在Rt△ABC,∠C=90°,sin B=,则sin A的值是()A.B.C.D.6.(3分)如图,AB是⊙O的直径,CD是⊙O的弦,如果∠ACD=34°,那么∠BAD等于()A.34°B.46°C.56°D.66°7.(3分)下列运算中,计算正确的是()A.2a+3a=5a2B.(3a2)3=27a6C.x6÷x2=x3D.(a+b)2=a2+b28.(3分)甲、乙两位同学做中国结,已知甲每小时比乙少做6个,甲做30个所用的时间与乙做45个所用的时间相等,求甲每小时做中国结的个数.如果设甲每小时做x个,那么可列方程为()A.=B.=C.=D.=9.(3分)如图,以正方形ABCD的顶点A为坐标原点,直线AB为x轴建立直角坐标系,对角线AC与BD相交于点E,P为BC上一点,点P坐标为(a,b),则点P绕点E顺时针旋转90°得到的对应点P′的坐标是()A.(a﹣b,a)B.(b,a)C.(a﹣b,0)D.(b,0)10.(3分)已知一元二次方程ax2+bx+c=0(a≠0)中,下列说法:①若a+b+c=0,则b2﹣4ac>0;②若方程两根为﹣1和2,则2a+c=0;③若方程ax2+c=0有两个不相等的实根,则方程ax2+bx+c=0必有两个不相等的实根;④若b=2a+c,则方程有两个不相等的实根.其中正确的有()A.①②③B.①②④C.②③④D.①②③④二.填空题(共7小题,满分28分,每小题4分)11.(4分)因式分解:x2﹣9=.12.(4分)在平面直角坐标系中点P(﹣2,3)关于x轴的对称点在第象限.13.(4分)一个正数a的平方根分别是2m﹣1和﹣3m+,则这个正数a为.14.(4分)已知反比例函数y=(k是常数,k≠1)的图象有一支在第二象限,那么k 的取值范围是.15.(4分)在一个不透明的布袋中装有4个白球和n个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球,摸到白球的概率是,则n=.16.(4分)如图,AB是半圆的直径,∠BAC=20°,D是的中点,则∠DAC的度数是.17.(4分)如图,在平面直角坐标系中,抛物线y=ax2﹣2ax+(a>0)与y轴交于点A,过点A作x轴的平行线交抛物线于点M.P为抛物线的顶点.若直线OP交直线AM于点B,且M为线段AB的中点,则a的值为.三.解答题(共8小题,满分62分)18.(6分)计算:2sin30°﹣(π﹣)0+|﹣1|+()﹣119.(6分)先化简,再求值(﹣)÷,其中a,b满足a+b﹣=0.20.(6分)如图,在△ABC中,∠ABC=90°.(1)作∠ACB的平分线交AB边于点O,再以点O为圆心,OB的长为半径作⊙O;(要求:不写做法,保留作图痕迹)(2)判断(1)中AC与⊙O的位置关系,直接写出结果.21.(8分)如图,在△ABC中,过点C作CD∥AB,E是AC的中点,连接DE并延长,交AB于点F,交CB的延长线于点G,连接AD,CF.(1)求证:四边形AFCD是平行四边形.(2)若GB=3,BC=6,BF=,求AB的长.22.(8分)2019年4月23日是第二十四个“世界读书日“.某校组织读书征文比赛活动,评选出一、二、三等奖若干名,并绘成如图所示的条形统计图和扇形统计图(不完整),请你根据图中信息解答下列问题:(1)求本次比赛获奖的总人数,并补全条形统计图;(2)求扇形统计图中“二等奖”所对应扇形的圆心角度数;(3)学校从甲、乙、丙、丁4位一等奖获得者中随机抽取2人参加“世界读书日”宣传活动,请用列表法或画树状图的方法,求出恰好抽到甲和乙的概率.23.(8分)在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.销售量y(千克)…34.83229.628…售价x(元/千克)…22.62425.226…(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?24.(10分)如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC,AC分别交于D,E两点,过点D作DH⊥AC于点H.(1)判断DH与⊙O的位置关系,并说明理由;(2)求证:H为CE的中点;(3)若BC=10,cos C=,求AE的长.25.(10分)如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B,与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.(1)求二次函数的表达式;(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标;(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N 从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)﹣2020的相反数是()A.B.C.2020D.﹣2020【分析】直接利用相反数的定义得出答案.【解答】解:﹣2020的相反数是:2020.故选:C.2.(3分)港珠澳大桥2018年10月24日上午9时正式通车,这座大桥跨越伶仃洋,东接香港,西接广东珠海和澳门,总长约55000m,集桥、岛、隧于一体,是世界最长的跨海大桥,数据55000用科学记数法表示为()A.5.5×105B.55×104C.5.5×104D.5.5×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:55000=5.5×104,故选:C.3.(3分)如图,下列结论正确的是()A.c>a>b B.C.|a|<|b|D.abc>0【分析】A、根据数轴上的数右边的总比左边的大,可得结论;B、根据0<b<1<c,可得结论;C、根据数轴上数a表示的点离原点比较远,可得|a|>|b|;D、根据a<0,b>0,c>0,可得结论.【解答】解:A、由数轴得:a<b<c,故选项A不正确;B、∵0<b<1<c,∴>,故选项B正确;C、由数轴得:|a|>|b|,故选项C不正确;D、∵a<0,b>0,c>0,∴abc<0,故选项D不正确;故选:B.4.(3分)如表是我国近六年“两会”会期(单位:天)的统计结果:时间201420152016201720182019会期(天)111314131813则我国近六年“两会”会期(天)的众数和中位数分别是()A.13,11B.13,13C.13,14D.14,13.5【分析】根据中位数和众数的定义解答.第3和第4个数的平均数就是中位数,13出现的次数最多.【解答】解:由表知这组数据的众数13,中位数为=13,故选:B.5.(3分)在Rt△ABC,∠C=90°,sin B=,则sin A的值是()A.B.C.D.【分析】根据互余两角三角函数的关系:sin2A+sin2B=1解答.【解答】解:∵在Rt△ABC,∠C=90°,∴∠A+∠B=90°,∴sin2A+sin2B=1,sin A>0,∵sin B=,∴sin A==.故选:B.6.(3分)如图,AB是⊙O的直径,CD是⊙O的弦,如果∠ACD=34°,那么∠BAD等于()A.34°B.46°C.56°D.66°【分析】由AB是⊙O的直径,根据直径所对的圆周角是直角,可求得∠ADB=90°,又由∠ACD=34°,可求得∠ABD的度数,再根据直角三角形的性质求出答案.【解答】解:∵AB是⊙O的直径,∴∠ADB=90°,∵∠ACD=34°,∴∠ABD=34°∴∠BAD=90°﹣∠ABD=56°,故选:C.7.(3分)下列运算中,计算正确的是()A.2a+3a=5a2B.(3a2)3=27a6C.x6÷x2=x3D.(a+b)2=a2+b2【分析】直接利用合并同类项法则以及积的乘方运算法则、完全平方公式分别化简得出答案.【解答】解:A、2a+3a=5a,故此选项错误;B、(3a2)3=27a6,正确;C、x6÷x2=x4,故此选项错误;D、(a+b)2=a2+2ab+b2,故此选项错误;故选:B.8.(3分)甲、乙两位同学做中国结,已知甲每小时比乙少做6个,甲做30个所用的时间与乙做45个所用的时间相等,求甲每小时做中国结的个数.如果设甲每小时做x个,那么可列方程为()A.=B.=C.=D.=【分析】根据甲乙的工作时间,可列方程.【解答】解:设甲每小时做x个,乙每小时做(x+6)个,根据甲做30个所用时间与乙做45个所用时间相等,得,故选:A.9.(3分)如图,以正方形ABCD的顶点A为坐标原点,直线AB为x轴建立直角坐标系,对角线AC与BD相交于点E,P为BC上一点,点P坐标为(a,b),则点P绕点E顺时针旋转90°得到的对应点P′的坐标是()A.(a﹣b,a)B.(b,a)C.(a﹣b,0)D.(b,0)【分析】如图,连接PE,点P绕点E顺时针旋转90°得到的对应点P′在x轴上,根据正方形的性质得到∠ABC=90°,∠AEB=90°,AE=BE,∠EAP′=∠EBP=45°,由点P坐标为(a,b),得到BP=b,根据全等三角形的性质即可得到结论.【解答】解:如图,连接PE,点P绕点E顺时针旋转90°得到的对应点P′在x轴上,∵四边形ABCD是正方形,∴∠ABC=90°,∴∠AEB=90°,AE=BE,∠EAP′=∠EBP=45°,∵点P坐标为(a,b),∴BP=b,∵∠PEP′=90°,∴∠AEP′=∠PEB,在△AEP′与△BEP中,,∴△AEP′≌△BEP(ASA),∴AP′=BP=b,∴点P′的坐标是(b,0),故选:D.10.(3分)已知一元二次方程ax2+bx+c=0(a≠0)中,下列说法:①若a+b+c=0,则b2﹣4ac>0;②若方程两根为﹣1和2,则2a+c=0;③若方程ax2+c=0有两个不相等的实根,则方程ax2+bx+c=0必有两个不相等的实根;④若b=2a+c,则方程有两个不相等的实根.其中正确的有()A.①②③B.①②④C.②③④D.①②③④【分析】①观察条件,知是当x=1时,有a+b+c=0,因而方程有根.②把x=﹣1和2代入方程,建立两个等式,即可得到2a+c=0.③方程ax2+c=0有两个不相等的实根,则△=﹣4ac>0,左边加上b2就是方程ax2+bx+c=0的△,由于加上了一个非负数,所以△>0.④把b=2a+c代入△,就能判断根的情况.【解答】解:①当x=1时,有若a+b+c=0,即方程有实数根了,∴△≥0,故错误;②把x=﹣1代入方程得到:a﹣b+c=0 (1)把x=2代入方程得到:4a+2b+c=0 (2)把(2)式减去(1)式×2得到:6a+3c=0,即:2a+c=0,故正确;③方程ax2+c=0有两个不相等的实数根,则它的△=﹣4ac>0,∴b2﹣4ac>0而方程ax2+bx+c=0的△=b2﹣4ac>0,∴必有两个不相等的实数根.故正确;④若b=2a+c则△=b2﹣4ac=(2a+c)2﹣4ac=4a2+c2,∵a≠0,∴4a2+c2>0故正确.②③④都正确,故选C.二.填空题(共7小题,满分28分,每小题4分)11.(4分)因式分解:x2﹣9=(x+3)(x﹣3).【分析】原式利用平方差公式分解即可.【解答】解:原式=(x+3)(x﹣3),故答案为:(x+3)(x﹣3).12.(4分)在平面直角坐标系中点P(﹣2,3)关于x轴的对称点在第三象限.【分析】应先判断出所求的点的横纵坐标,进而判断所在的象限.【解答】解:点P(﹣2,3)满足点在第二象限的条件.关于x轴的对称点的横坐标与P 点的横坐标相同,是﹣2;纵坐标互为相反数,是﹣3,则P关于x轴的对称点是(﹣2,﹣3),在第三象限.故答案是:三13.(4分)一个正数a的平方根分别是2m﹣1和﹣3m+,则这个正数a为4.【分析】直接利用平方根的定义得出2m﹣1+(﹣3m+)=0,进而求出m的值,即可得出答案.【解答】解:根据题意,得:2m﹣1+(﹣3m+)=0,解得:m=,∴正数a=(2×﹣1)2=4,故答案为:4.14.(4分)已知反比例函数y=(k是常数,k≠1)的图象有一支在第二象限,那么k 的取值范围是k<1.【分析】由于反比例函数y=的图象有一支在第二象限,可得k﹣1<0,求出k的取值范围即可.【解答】解:∵反比例函数y=的图象有一支在第二象限,∴k﹣1<0,解得k<1.故答案为:k<1.15.(4分)在一个不透明的布袋中装有4个白球和n个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球,摸到白球的概率是,则n=8.【分析】根据白球的概率公式=列出方程求解即可.【解答】解:不透明的布袋中的球除颜色不同外,其余均相同,共有n+4个球,其中白球4个,根据古典型概率公式知:P(白球)==,解得:n=8,故答案为:8.16.(4分)如图,AB是半圆的直径,∠BAC=20°,D是的中点,则∠DAC的度数是35°.【分析】首先连接BC,由AB是半圆的直径,根据直径所对的圆周角是直角,可得∠C =90°,继而求得∠B的度数,然后由D是的中点,根据弧与圆周角的关系,即可求得答案.【解答】解:连接BC,∵AB是半圆的直径,∴∠C=90°,∵∠BAC=20°,∴∠B=90°﹣∠BAC=70°,∵D是的中点,∴∠DAC=∠B=35°.故答案为:35°.17.(4分)如图,在平面直角坐标系中,抛物线y=ax2﹣2ax+(a>0)与y轴交于点A,过点A作x轴的平行线交抛物线于点M.P为抛物线的顶点.若直线OP交直线AM于点B,且M为线段AB的中点,则a的值为2.【分析】先根据抛物线解析式求出点A坐标和其对称轴,再根据对称性求出点M坐标,利用点M为线段AB中点,得出点B坐标;用含a的式子表示出点P坐标,写出直线OP 的解析式,再将点B坐标代入即可求解出a的值.【解答】解:∵抛物线y=ax2﹣2ax+(a>0)与y轴交于点A,∴A(0,),抛物线的对称轴为x=1∴顶点P坐标为(1,﹣a),点M坐标为(2,)∵点M为线段AB的中点,∴点B坐标为(4,)设直线OP解析式为y=kx(k为常数,且k≠0)将点P(1,)代入得=k∴y=()x将点B(4,)代入得=()×4解得a=2故答案为:2.三.解答题(共8小题,满分62分)18.(6分)计算:2sin30°﹣(π﹣)0+|﹣1|+()﹣1【分析】直接利用特殊角的三角函数值以及零指数幂的性质和负指数幂的性质分别化简得出答案.【解答】解:原式=2×﹣1+﹣1+2=1+.19.(6分)先化简,再求值(﹣)÷,其中a,b满足a+b﹣=0.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把已知等式变形后代入计算即可求出值.【解答】解:原式=•=,由a+b﹣=0,得到a+b=,则原式=2.20.(6分)如图,在△ABC中,∠ABC=90°.(1)作∠ACB的平分线交AB边于点O,再以点O为圆心,OB的长为半径作⊙O;(要求:不写做法,保留作图痕迹)(2)判断(1)中AC与⊙O的位置关系,直接写出结果.【分析】(1)首先利用角平分线的作法得出CO,进而以点O为圆心,OB为半径作⊙O 即可;(2)利用角平分线的性质以及直线与圆的位置关系进而求出即可.【解答】解:(1)如图所示:;(2)相切;过O点作OD⊥AC于D点,∵CO平分∠ACB,∴OB=OD,即d=r,∴⊙O与直线AC相切,21.(8分)如图,在△ABC中,过点C作CD∥AB,E是AC的中点,连接DE并延长,交AB于点F,交CB的延长线于点G,连接AD,CF.(1)求证:四边形AFCD是平行四边形.(2)若GB=3,BC=6,BF=,求AB的长.(1)由E是AC的中点知AE=CE,由AB∥CD知∠AFE=∠CDE,据此根据“AAS”【分析】即可证△AEF≌△CED,从而得AF=CD,结合AB∥CD即可得证;(2)证△GBF∽△GCD得=,据此求得CD=,由AF=CD及AB=AF+BF可得答案.【解答】解:(1)∵E是AC的中点,∴AE=CE,∵AB∥CD,∴∠AFE=∠CDE,在△AEF和△CED中,∵,∴△AEF≌△CED(AAS),∴AF=CD,又AB∥CD,即AF∥CD,∴四边形AFCD是平行四边形;(2)∵AB∥CD,∴△GBF∽△GCD,∴=,即=,解得:CD=,∵四边形AFCD是平行四边形,∴AF=CD=,∴AB=AF+BF=+=6.22.(8分)2019年4月23日是第二十四个“世界读书日“.某校组织读书征文比赛活动,评选出一、二、三等奖若干名,并绘成如图所示的条形统计图和扇形统计图(不完整),请你根据图中信息解答下列问题:(1)求本次比赛获奖的总人数,并补全条形统计图;(2)求扇形统计图中“二等奖”所对应扇形的圆心角度数;(3)学校从甲、乙、丙、丁4位一等奖获得者中随机抽取2人参加“世界读书日”宣传活动,请用列表法或画树状图的方法,求出恰好抽到甲和乙的概率.【分析】(1)由一等奖人数及其所占百分比可得总人数,总人数减去一等奖、三等奖人数求出二等奖人数即可补全图形;(2)用360°乘以二等奖人数所占百分比可得答案;(3)画出树状图,由概率公式即可解决问题.【解答】解:(1)本次比赛获奖的总人数为4÷10%=40(人),二等奖人数为40﹣(4+24)=12(人),补全条形图如下:(2)扇形统计图中“二等奖”所对应扇形的圆心角度数为360°×=108°;(3)树状图如图所示,∵从四人中随机抽取两人有12种可能,恰好是甲和乙的有2种可能,∴抽取两人恰好是甲和乙的概率是=.23.(8分)在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.销售量y(千克)…34.83229.628…售价x(元/千克)…22.62425.226…(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?【分析】(1)根据表格内的数据,利用待定系数法可求出y与x之间的函数关系式,再代入x=23.5即可求出结论;(2)根据总利润=每千克利润×销售数量,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【解答】解:(1)设y与x之间的函数关系式为y=kx+b,将(22.6,34.8)、(24,32)代入y=kx+b,,解得:,∴y与x之间的函数关系式为y=﹣2x+80.当x=23.5时,y=﹣2x+80=33.答:当天该水果的销售量为33千克.(2)根据题意得:(x﹣20)(﹣2x+80)=150,解得:x1=35,x2=25.∵20≤x≤32,∴x=25.答:如果某天销售这种水果获利150元,那么该天水果的售价为25元.24.(10分)如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC,AC分别交于D,E两点,过点D作DH⊥AC于点H.(1)判断DH与⊙O的位置关系,并说明理由;(2)求证:H为CE的中点;(3)若BC=10,cos C=,求AE的长.【分析】(1)连结OD、AD,如图,先利用圆周角定理得到∠ADB=90°,则根据等腰三角形的性质得BD=CD,再证明OD为△ABC的中位线得到OD∥AC,加上DH⊥AC,所以OD⊥DH,然后根据切线的判定定理可判断DH为⊙O的切线;(2)连结DE,如图,有圆内接四边形的性质得∠DEC=∠B,再证明∠DEC=∠C,然后根据等腰三角形的性质得到CH=EH;(3)利用余弦的定义,在Rt△ADC中可计算出AC=5,在Rt△CDH中可计算出CH =,则CE=2CH=2,然后计算AC﹣CE即可得到AE的长.【解答】(1)解:DH与⊙O相切.理由如下:连结OD、AD,如图,∵AB为直径,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴BD=CD,而AO=BO,∴OD为△ABC的中位线,∴OD∥AC,∵DH⊥AC,∴OD⊥DH,∴DH为⊙O的切线;(2)证明:连结DE,如图,∵四边形ABDE为⊙O的内接四边形,∴∠DEC=∠B,∵AB=AC,∴∠B=∠C,∴∠DEC=∠C,∵DH⊥CE,∴CH=EH,即H为CE的中点;(3)解:在Rt△ADC中,CD=BC=5,∵cos C==,∴AC=5,在Rt△CDH中,∵cos C==,∴CH=,∴CE=2CH=2,∴AE=AC﹣CE=5﹣2=3.25.(10分)如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B,与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.(1)求二次函数的表达式;(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标;(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N 从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.【分析】(1)代入A(1,0)和C(0,3),解方程组即可;(2)求出点B的坐标,再根据勾股定理得到BC,当△PBC为等腰三角形时分三种情况进行讨论:①CP=CB;②BP=BC;③PB=PC;(3)设AM=t则DN=2t,由AB=2,得BM=2﹣t,S△MNB=×(2﹣t)×2t=﹣t2+2t,运用二次函数的顶点坐标解决问题;此时点M在D点,点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处.【解答】解:(1)把A(1,0)和C(0,3)代入y=x2+bx+c,解得:b=﹣4,c=3,∴二次函数的表达式为:y=x2﹣4x+3;(2)令y=0,则x2﹣4x+3=0,解得:x=1或x=3,∴B(3,0),∴BC=3,点P在y轴上,当△PBC为等腰三角形时分三种情况进行讨论:如图1,①当CP=CB时,PC=3,∴OP=OC+PC=3+3或OP=PC﹣OC=3﹣3∴P1(0,3+3),P2(0,3﹣3);②当BP=BC时,OP=OB=3,∴P3(0,﹣3);③当PB=PC时,∵OC=OB=3∴此时P与O重合,∴P4(0,0);综上所述,点P的坐标为:(0,3+3)或(0,3﹣3)或(0,﹣3)或(0,0);(3)如图2,设A运动时间为t,由AB=2,得BM=2﹣t,则DN=2t,∴S△MNB=×(2﹣t)×2t=﹣t2+2t=﹣(t﹣1)2+1,即当M(2,0)、N(2,2)或(2,﹣2)时△MNB面积最大,最大面积是1.。

广东省2020年中考数学模拟试卷--解析版

广东省2020年中考数学模拟试卷--解析版

广东省2020年中考数学模拟试卷--解析版-CAL-FENGHAI.-(YICAI)-Company One1广东省2020年中考数学模拟试卷一、选择题(本大题10小题,每小题3分,共30分,在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑)1.(3分)在0.3,﹣3,0,﹣这四个数中,最大的是()A.0.3 B.﹣3 C.0 D.﹣2.(3分)近年来,中国高铁发展迅速,高铁技术不断走出国门,成为展示我国实力的新名片.现在中国高速铁路营运里程已达到35000公里,继续高居世界第一将35000用科学记数法表示应为()A.3.5×104B.35×103C.3.5×103D.0.35×105 3.(3分)如图所示的几何体左视图是()A.B.C.D.4.(3分)一组数据3、﹣2、0、1、4的中位数是()A.0 B.1 C.﹣2 D.45.(3分)下列图形既是轴对称图形,又是中心对称图形的是()A.B.C.D.6.(3分)用不等式表示图中的解集,其中正确的是()A.x≥﹣2 B.x≤﹣2 C.x<﹣2 D.x>﹣27.(3分)如图,在△ABC中,D、E分别是AB、AC的中点,若△ADE的面积是a,则四边形BDEC的面积是()A.a B.2a C.3a D.4a8.(3分)已知如图DC∥EG,∠C=40°,∠A=70°,则∠AFE的度数为()A.140°B.110°C.90°D.30°9.(3分)如果关于x的一元二次方程x2﹣x+m﹣1=0有实数根,那么m的取值范围是()A.m>2 B.m≥3 C.m<5 D.m≤5 10.(3分)如图,等边△ABC的边长为2cm,点P从点A出发,以1cm/s的速度沿AC向点C运动,到达点C停止;同时点Q从点A出发,以2cm/s的速度沿AB﹣BC向点C运动,到达点C停止,设△APQ的面积为y(cm2),运动时间为x(s),则下列最能反映y与x之间函数关系的图象是()A.B.C.D.二、填空题(共7小题,每小题4分,满分28分)11.(4分)如图⊙O中,∠BAC=74°,则∠BOC=.12.(4分)分解因式:3y2﹣12=.13.(4分)若一个正数的平方根是2a﹣1和﹣a+2,则这个正数是.14.(4分)已知x、y满足+|y+2|=0,则x2﹣4y的平方根为.15.(4分)矩形ABCD中,AB=6,以AB为直径在矩形内作半圆,与DE相切于点E(如图),延长DE交BC于F,若BF=,则阴影部分的面积为.16.(4分)如图,已知等边△OA1B1,顶点A1在双曲线y=(x>0)上,点B的坐标为(2,0).过B1作B1A2∥OA1交双曲线于点A2,过A2作A2B2∥A1B1 1交x轴于点B2,得到第二个等边△B1A2B2;过B2作B2A3∥B1A2交双曲线于点A,过A3作A3B3∥A2B2交x轴于点B3,得到第三个等边△B2A3B3;以此类3推,…,则点B6的坐标为.17.(4分)如图,在矩形ABCD中,AB=2,AD=,在边CD上有一点E,使EB平分∠AEC.若P为BC边上一点,且BP=2CP,连接EP并延长交AB的延长线于F.给出以下五个结论:①点B平分线段AF;②PF=DE;③∠BEF=∠FEC;④S矩形ABCD=4S△BPF;⑤△AEB是正三角形.其中正确结论的序号是.三、解答题(一)(本大题共3小题,共18分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)18.(6分)计算:﹣(π﹣3.14)0+|﹣6|+()﹣2.19.(6分)化简求值:(1+)÷﹣,a取﹣1,0,1,2中的一个数.20.(6分)如图,BD是菱形ABCD的对角线,∠A=30°.(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,连接BF,求∠DBF的度数.四、解答题(二)(本大题共3小题,共24分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)21.(8分)2019年12月1日阜阳高铁正式运行,在高铁的建设中,某段轨道的铺设若由甲乙两工程队合做,12天可以完成,共需工程费用27720元,已知乙队单独完成这项工程所需时间是甲队单独完成这项工程所需时间的1.5倍,且甲队每天的工程费用比乙队多250元.(1)求甲、乙两队单独完成这项工程各需多少天?(2)若工程管理部门决定从这两个队中选一个队单独完成此项工程,从节约资金的角度考虑,应选择哪个工程队?请说明理由.22.(8分)八年级(1)班研究性学习小组为研究全校同学课外阅读情况,在全校随机邀请了部分同学参与问卷调查,统计同学们一个月阅读课外书的数量,并绘制了以下统计图.请根据图中信息解决下列问题:(1)共有名同学参与问卷调查;(2)补全条形统计图和扇形统计图;(3)全校共有学生1500人,请估计该校学生一个月阅读2本课外书的人数约为多少.23.(8分)如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC于点E.(1)求证:△DCE≌△BFE;(2)若CD=,DB=2,求BE的长.五、解答题(三)(本大题共2小题,共20分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)24.(10分)如图,已知AB是圆O的直径,F是圆O上一点,∠BAF的平分线交⊙O于点E,交⊙O的切线BC于点C,过点E作ED⊥AF,交AF的延长线于点D.(1)求证:DE是⊙O的切线;(2)若DE=3,CE=2,①求的值;②若点G为AE上一点,求OG+EG最小值.25.(10分)如图1,抛物线y=a(x+2)(x﹣6)(a>0)与x轴交于C,D 两点(点C在点D的左边),与y轴负半轴交于点A.(1)若△ACD的面积为16.①求抛物线解析式;②S为线段OD上一点,过S作x轴的垂线,交抛物线于点P,将线段SC,SP绕点S顺时针旋转任意相同的角到SC,SP1的位置,使点C,P的对应点1C,P1都在x轴上方,C1C与P1S交于点M,P1P与x轴交于点N.求的最1大值;(2)如图2,直线y=x﹣12a与x轴交于点B,点M在抛物线上,且满足∠MAB=75°的点M有且只有两个,求a的取值范围.参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分,在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑)1.(3分)在0.3,﹣3,0,﹣这四个数中,最大的是()A.0.3 B.﹣3 C.0 D.﹣【分析】根据正数大于0,0大于负数,正数大于负数,比较即可【解答】解:∵﹣3<﹣<0<0.3∴最大为0.3故选:A.2.(3分)近年来,中国高铁发展迅速,高铁技术不断走出国门,成为展示我国实力的新名片.现在中国高速铁路营运里程已达到35000公里,继续高居世界第一将35000用科学记数法表示应为()A.3.5×104B.35×103C.3.5×103D.0.35×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:35000=3.5×104.故选:A.3.(3分)如图所示的几何体左视图是()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看是一个矩形中间为虚线,故选:C.4.(3分)一组数据3、﹣2、0、1、4的中位数是()A.0 B.1 C.﹣2 D.4【分析】将这组数据从小到大重新排列后为﹣2,0,1,3,4;最中间的数1即中位数【解答】解:将这组数据从小到大重新排列后为﹣2,0,1,3,4;.所以中位数为1.故选:B.5.(3分)下列图形既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故此选项不合题意;B、不是轴对称图形,是中心对称图形,故此选项不合题意;C、是轴对称图形,不是中心对称图形,故此选项不合题意;D、是轴对称图形,是中心对称图形,故此选项符合题意;故选:D.6.(3分)用不等式表示图中的解集,其中正确的是()A.x≥﹣2 B.x≤﹣2 C.x<﹣2 D.x>﹣2【分析】因为表示不等式的解集的折线向右延伸,且表示﹣2的点是空心圆点,所以x>﹣2.【解答】解:∵表示不等式的解集的折线向右延伸,且表示﹣2的点是空心圆点∴x>﹣2故选:D.7.(3分)如图,在△ABC中,D、E分别是AB、AC的中点,若△ADE的面积是a,则四边形BDEC的面积是()A.a B.2a C.3a D.4a【分析】由D、E分别是AB、AC的中点,可得出DE∥BC、BC=2DE,进而可得出△ADE∽△ABC,根据相似三角形的性质可得出S△ABC=4a,再根据S△BDEC =S△ABC﹣S△ADE即可求出四边形BDEC的面积.【解答】解:∵D、E分别是AB、AC的中点,∴DE∥BC,BC=2DE,∴△ADE∽△ABC,∴=()2=4,∴S△ABC=4a,∴S△BDEC=S△ABC﹣S△ADE=3a.故选:C.8.(3分)已知如图DC∥EG,∠C=40°,∠A=70°,则∠AFE的度数为()A.140°B.110°C.90°D.30°【分析】先根据三角形外角的性质可求∠ABD,再根据平行线的性质可求∠AFE的度数.【解答】解:∵∠C=40°,∠A=70°,∴∠ABD=40°+70°=110°,∵DC∥EG,∴∠AFE=110°.故选:B.9.(3分)如果关于x的一元二次方程x2﹣x+m﹣1=0有实数根,那么m的取值范围是()A.m>2 B.m≥3 C.m<5 D.m≤5【分析】若一元二次方程有实数根,则根的判别式△=b2﹣4ac≥0,建立关于m的不等式,求出m的取值范围.【解答】解:∵关于x的一元二次方程x2﹣x+m﹣1=0有实数根,a=1,b =﹣1,c=m﹣1,∴△=b2﹣4ac=(﹣1)2﹣4×1×(m﹣1)≥0,解得m≤5.故选:D.10.(3分)如图,等边△ABC的边长为2cm,点P从点A出发,以1cm/s的速度沿AC向点C运动,到达点C停止;同时点Q从点A出发,以2cm/s的速度沿AB﹣BC向点C运动,到达点C停止,设△APQ的面积为y(cm2),运动时间为x(s),则下列最能反映y与x之间函数关系的图象是()A.B.C.D.【分析】根据点Q的位置分两种情况讨论,当点Q在AB上运动时,求得y 与x之间函数解析式,当点Q在BC上运动时,求得y与x之间函数解析式,最后根据分段函数的图象进行判断即可.【解答】解:由题得,点Q移动的路程为2x,点P移动的路程为x,∠A=∠C=60°,AB=BC=2,①如图,当点Q在AB上运动时,过点Q作QD⊥AC于D,则AQ=2x,DQ=x,AP=x,∴△APQ的面积y=×x×x=(0<x≤1),即当0<x≤1时,函数图象为开口向上的抛物线的一部分,故(A)、(B)排除;②如图,当点Q在BC上运动时,过点Q作QE⊥AC于E,则CQ=4﹣2x,EQ=2﹣x,AP=x,∴△APQ的面积y=×x×(2﹣x)=﹣+x(1<x≤2),即当1<x≤2时,函数图象为开口向下的抛物线的一部分,故(C)排除,而(D)正确;故选:D.二、填空题(共7小题,每小题4分,满分28分)11.(4分)如图⊙O中,∠BAC=74°,则∠BOC=148°.【分析】直接利用圆周角定理求解.【解答】解:∠BOC=2∠BAC=2×74°=148°.故答案为148°.12.(4分)分解因式:3y2﹣12=3(y+2)(y﹣2).【分析】先提公因式,在利用平方差公式因式分解.【解答】解:3y2﹣12=3(y2﹣4)=3(y+2)(y﹣2),故答案为:3(y+2)(y﹣2).13.(4分)若一个正数的平方根是2a﹣1和﹣a+2,则这个正数是9 .【分析】首先根据整数有两个平方根,它们互为相反数可得2a﹣1﹣a+2=0,解方程可得a,然后再求出这个正数即可.【解答】解:由题意得:2a﹣1﹣a+2=0,解得:a=﹣1,2a﹣1=﹣3,﹣a+2=3,则这个正数为9,故答案为:9.14.(4分)已知x、y满足+|y+2|=0,则x2﹣4y的平方根为±3 .【分析】根据非负数的性质,求出x、y的值,代入原式可得答案.【解答】解:∵+|y+2|=0,∴x﹣1=0,y+2=0,∴x=1,y=﹣2,∴x2﹣4y=1+8=9,∴x2﹣4y的平方根为±3,故答案为:±3.15.(4分)矩形ABCD中,AB=6,以AB为直径在矩形内作半圆,与DE相切于点E(如图),延长DE交BC于F,若BF=,则阴影部分的面积为9﹣3π.【分析】连接OF、OE、OD,如图,在Rt△OBF中利用三角函数的定义求出∠OFB=60°,再利用切线的性质和切线长定理得到∠OFE=∠OFB=60°,OE⊥DF,所以∠BFE=120°,则∠ADE=60°,同样可得∠ADO=∠EDO=30°,利用含30度的直角三角形三边的关系求出AD=OA=3,所以S△=;接着计算出∠AOE=120°,于是得到S扇形AO=3π,然后利用阴影ADO部分的面积=四边形AOED的面积﹣扇形AOE的面积进行计算即可.【解答】解:连接OF、OE、OD,如图,在Rt△OBF中,∵tan∠OFB===,∴∠OFB=60°,∵BF⊥AB,∴BF为切线,∵DF为切线,∴∠OFE=∠OFB=60°,OE⊥DF,∴∠BFE=120°,∵BC∥AD,∴∠ADE=60°,∵AD⊥AB,∴AD为切线,而DE为切线,∴∠ADO=∠EDO=30°,在Rt△AOD中,AD=OA=3,∴S△ADO=×3×3=;∵∠AOE=180°﹣∠ADE=120°,∴S扇形AOE==3π,∴阴影部分的面积=四边形AOED的面积﹣扇形AOE的面积=2×﹣3π=9﹣3π.故答案为9﹣3π.16.(4分)如图,已知等边△OA1B1,顶点A1在双曲线y=(x>0)上,点B的坐标为(2,0).过B1作B1A2∥OA1交双曲线于点A2,过A2作A2B2∥A1B1 1交x轴于点B2,得到第二个等边△B1A2B2;过B2作B2A3∥B1A2交双曲线于点A,过A3作A3B3∥A2B2交x轴于点B3,得到第三个等边△B2A3B3;以此类3推,…,则点B6的坐标为(2,0).【分析】根据等边三角形的性质以及反比例函数图象上点的坐标特征分别求出B2、B3、B4的坐标,得出规律,进而求出点B6的坐标.【解答】解:如图,作A2C⊥x轴于点C,设B1C=a,则A2C=a,OC=OB+B1C=2+a,A2(2+a,a).1∵点A2在双曲线y=(x>0)上,∴(2+a)•a=,解得a=﹣1,或a=﹣﹣1(舍去),∴OB2=OB1+2B1C=2+2﹣2=2,∴点B2的坐标为(2,0);作A3D⊥x轴于点D,设B2D=b,则A3D=b,OD=OB+B2D=2+b,A3(2+b,b).2∵点A3在双曲线y=(x>0)上,∴(2+b)•b=,解得b=﹣+,或b=﹣﹣(舍去),∴OB3=OB2+2B2D=2﹣2+2=2,∴点B3的坐标为(2,0);同理可得点B4的坐标为(2,0)即(4,0);以此类推…,∴点B n的坐标为(2,0),∴点B6的坐标为(2,0).故答案为(2,0).17.(4分)如图,在矩形ABCD中,AB=2,AD=,在边CD上有一点E,使EB平分∠AEC.若P为BC边上一点,且BP=2CP,连接EP并延长交AB的延长线于F.给出以下五个结论:①点B平分线段AF;②PF=DE;③∠BEF=∠FEC;④S矩形ABCD=4S△BPF;⑤△AEB是正三角形.其中正确结论的序号是①②③⑤.【分析】由角平分线的定义和矩形的性质可证明∠AEB=∠ABE,可求得AE =AB=2,在Rt△ADE中可求得DE=1,则EC=1,又可证明△PEC∽△PBF,可求得BF=2,可判定①;在Rt△PBF中可求得PF,可判定②;在Rt△BCE中可求得BE=2,可得∠BEF=∠F,可判定③;容易计算出S矩形ABCD和S△BPF;可判定④;由AE=AB=BE可判定⑤;可得出答案.【解答】解:∵四边形ABCD为矩形,∴AB∥CD,∴∠CEB=∠ABE,又∵BE平分∠AEC,∴∠AEB=∠CEB,∴∠AEB=∠ABE,∴AE=AB=2,在Rt△ADE中,AD=,AE=2,由勾股定理可求得DE=1,∴CE=CD﹣DE=2﹣1=1,∵DC∥AB,∴△PCE∽△PBF,∴=,即==,∴BF=2,∴AB=BF,∴点B平分线段AF,故①正确;∵BC=AD=,∴BP=,在Rt△BPF中,BF=2,由勾股定理可求得PF===,∵DE=1,∴PF=DE,故②正确;在Rt△BCE中,EC=1,BC=,由勾股定理可求得BE=2,∴BE=BF,∴∠BEF=∠F,又∵AB∥CD,∴∠FEC=∠F,∴∠BEF=∠FEC,故③正确;∵AB=2,AD=,∴S矩形ABCD=AB•AD=2×=2,∵BF=2,BP=,∴S△BPF=BF•BP=×2×=,∴4S△BPF=,∴S矩形ABCD=≠4S△BPF,故④不正确;由上可知AB=AE=BE=2,∴△AEB为正三角形,故⑤正确;综上可知正确的结论为:①②③⑤.故答案为:①②③⑤.三、解答题(一)(本大题共3小题,共18分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)18.(6分)计算:﹣(π﹣3.14)0+|﹣6|+()﹣2.【分析】直接利用零指数幂的性质以及负指数幂的性质以及算术平方根的定义分别化简得出答案.【解答】解:原式=2﹣1+6+4=11.19.(6分)化简求值:(1+)÷﹣,a取﹣1,0,1,2中的一个数.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分后计算得到最简结果,把a=2代入计算即可求出值.【解答】解:原式=•﹣=﹣=﹣,则当a=2时,原式有意义,原式=﹣1.20.(6分)如图,BD是菱形ABCD的对角线,∠A=30°.(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,连接BF,求∠DBF的度数.【分析】(1)分别以A、B为圆心,大于AB长为半径画弧,过两弧的交点作直线即可;(2)利用菱形的性质得AD∥BC,∠ABD=∠CBD=75°,则∠ABC=150°,再利用平行线的性质得∠A=180°﹣∠ABC=180°﹣150°=30°,接着根据线段垂直平分线的性质得AF=BF,则∠A=∠FBA=30°,然后计算∠ABD ﹣∠FBA即可.【解答】解:(1)如图所示,直线EF即为所求;(2)∵四边形ABCD是菱形,∴∠ABD=∠DBC,DA∥CB,∴∠ABC+∠A=180°.又∵∠A=30°,∴∠ABC=150°.∴∠ABD=∠DBC=75°,∵EF垂直平分线段AB,∴AF=FB.∴∠A=∠FBA=30°.∴∠DBF=∠ABD﹣∠FBA=75°﹣30°=45°.四、解答题(二)(本大题共3小题,共24分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)21.(8分)2019年12月1日阜阳高铁正式运行,在高铁的建设中,某段轨道的铺设若由甲乙两工程队合做,12天可以完成,共需工程费用27720元,已知乙队单独完成这项工程所需时间是甲队单独完成这项工程所需时间的1.5倍,且甲队每天的工程费用比乙队多250元.(1)求甲、乙两队单独完成这项工程各需多少天?(2)若工程管理部门决定从这两个队中选一个队单独完成此项工程,从节约资金的角度考虑,应选择哪个工程队?请说明理由.【分析】(1)设甲工程队单独完成这项工程需要x天,则乙工程队单独完成这项工程需要1.5x天,根据甲工程队完成的工作量+乙工程队完成的工作量=整项工程,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设甲工程队每天的费用是y元,则乙工程队每天的费用是(y﹣250)元,根据甲、乙两工程队合作12天共需费用27720元,即可得出关于y的一元一次方程,解之即可得出两队每天所需费用,再求出两队单独完成这些工程所需总费用,比较后即可得出结论.【解答】解:(1)设甲工程队单独完成这项工程需要x天,则乙工程队单独完成这项工程需要1.5x天,依题意,得:+=1,解得:x=20,经检验,x=20是原分式方程的解,且符合题意,∴1.5x=30.答:甲工程队单独完成这项工程需要20天,乙工程队单独完成这项工程需30天;(2)设甲工程队每天的费用是y元,则乙工程队每天的费用是(y﹣250)元,依题意,得:12y+12(y﹣250)=27720,解得:y=1280,∴y﹣250=1030.甲工程队单独完成共需要费用:1280×20=25600(元),乙工程队单独完成共需要费用:1030×30=30900(元).∵25600<30900,∴甲工程队单独完成需要的费用低,应选甲工程队单独完成.22.(8分)八年级(1)班研究性学习小组为研究全校同学课外阅读情况,在全校随机邀请了部分同学参与问卷调查,统计同学们一个月阅读课外书的数量,并绘制了以下统计图.请根据图中信息解决下列问题:(1)共有100 名同学参与问卷调查;(2)补全条形统计图和扇形统计图;(3)全校共有学生1500人,请估计该校学生一个月阅读2本课外书的人数约为多少.【分析】(1)由读书1本的人数及其所占百分比可得总人数;(2)总人数乘以读4本的百分比求得其人数,减去男生人数即可得出女生人数,用读2本的人数除以总人数可得对应百分比;(3)总人数乘以样本中读2本人数所占比例.【解答】解:(1)参与问卷调查的学生人数为(8+2)÷10%=100人,故答案为:100;(2)读4本的女生人数为100×15%﹣10=5人,读2本人数所占百分比为×100%=38%,补全图形如下:(3)估计该校学生一个月阅读2本课外书的人数约为1500×38%=570人.23.(8分)如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC于点E.(1)求证:△DCE≌△BFE;(2)若CD=,DB=2,求BE的长.【分析】(1)由矩形的性质可知AB=DC,∠A=∠C=90°,由翻折的性质可知∠AB=BF,∠A=∠F=90°,于是可得到∠F=∠C,BF=DC,然后依据AAS可证明△DCE≌△BFE;(2)先依据勾股定理求得BC的长,由全等三角形的性质可知BE=DE,最后再△EDC中依据勾股定理可求得ED的长,从而得到BE的长.【解答】(1)∵四边形ABCD为矩形,∴AB=CD,∠A=∠C=90°∵由翻折的性质可知∠F=∠A,BF=AB,∴BF=DC,∠F=∠C.在△DCE与△BEF中,∴△DCE≌△BFE.(2)在Rt△BDC中,由勾股定理得:BC==3.∵△DCE≌△BFE,∴BE=DE.设BE=DE=x,则EC=3﹣x.在Rt△CDE中,CE2+CD2=DE2,即(3﹣x)2+()2=x2.解得:x=2.∴BE=2.五、解答题(三)(本大题共2小题,共20分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)24.(10分)如图,已知AB是圆O的直径,F是圆O上一点,∠BAF的平分线交⊙O于点E,交⊙O的切线BC于点C,过点E作ED⊥AF,交AF的延长线于点D.(1)求证:DE是⊙O的切线;(2)若DE=3,CE=2,①求的值;②若点G为AE上一点,求OG+EG最小值.【分析】(1)根据切线的判定,连接过切点E的半径OE,利用等腰三角形和平行线性质即能证得OE⊥DE.(2)①观察DE所在的△ADE与CE所在的△BCE的关系,由等角的余角相等易证△ADE∽△BEC,即得的值.②先利用的值和相似求出圆的直径,发现∠BAC=30°;利用30°所对直角边等于斜边一半,给EG构造以EG为斜边且有30°的直角三角形,把EG转化到EP,再从P出发构造PQ=OG,最终得到三点成一直线时线段和最短的模型.【解答】(1)证明:连接OE∵OA=OE∴∠OAE=∠OEA∵AE平分∠BAF∴∠OAE=∠EAF∴∠OEA=∠EAF∴OE∥AD∵ED⊥AF∴∠D=90°∴∠OED=180°﹣∠D=90°∴OE⊥DE∴DE是⊙O的切线(2)解:①连接BE∵AB是⊙O直径∴∠AEB=90°∴∠BED=∠D=90°,∠BAE+∠ABE=90°∵BC是⊙O的切线∴∠ABC=∠ABE+∠CBE=90°∴∠BAE=∠CBE∵∠DAE=∠BAE∴∠DAE=∠CBE∴△ADE∽△BEC∴∵DE=3,CE=2∴②过点E作EH⊥AB于H,过点G作GP∥AB交EH于P,过点P作PQ∥OG交AB于Q∴EP⊥PG,四边形OGPQ是平行四边形∴∠EPG=90°,PQ=OG∵∴设BC=2x,AE=3x∴AC=AE+CE=3x+2∵∠BEC=∠ABC=90°,∠C=∠C∴△BEC∽△ABC∴∴BC2=AC•CE即(2x)2=2(3x+2)解得:x1=2,x2=﹣(舍去)∴BC=4,AE=6,AC=8∴sin∠BAC=,∴∠BAC=30°∴∠EGP=∠BAC=30°∴PE=EG∴OG+EG=PQ+PE∴当E、P、Q在同一直线上(即H、Q重合)时,PQ+PE=EH最短∵EH=AE=3∴OG+EG的最小值为325.(10分)如图1,抛物线y=a(x+2)(x﹣6)(a>0)与x轴交于C,D 两点(点C在点D的左边),与y轴负半轴交于点A.(1)若△ACD的面积为16.①求抛物线解析式;②S为线段OD上一点,过S作x轴的垂线,交抛物线于点P,将线段SC,SP绕点S顺时针旋转任意相同的角到SC,SP1的位置,使点C,P的对应点1C,P1都在x轴上方,C1C与P1S交于点M,P1P与x轴交于点N.求的最1大值;(2)如图2,直线y=x﹣12a与x轴交于点B,点M在抛物线上,且满足∠MAB=75°的点M有且只有两个,求a的取值范围.【分析】(1)①由题意,令y=0,解得C(﹣2,0),D(6,0)得CD=8,令x=0,解得y=﹣12a,且a>0,A(0,﹣12a),即OA=12a,由S△==48a=16,解得:,所求抛物线的解析式为ACD=;②由于∠SP1P﹣∠SC1C=∠SCC1,且∠MSC=∠NSP1∴△MSC∽△NSP1得,设S(t,0)(0≤t≤6),则SP=,SC=t+2,可得t=0时,最大值为2;(2)分两种情况讨论,①由直线y=x﹣12a与x轴交于点B得B(12a,0),OA=OB=12a,∠OAB=∠OBA=45°,当点N在y轴的左侧时,此时∠MAO=30°得直线AM的解析式为:得点M的横坐标为得;②当点M在y轴的右侧时,过点B作x轴的垂线与①中直线AE关于AB的对称直线交于点F,易证:△EBA≌△FBA,得∠BAF=75°,BF=BE=,∠FBO=90°,得直线AF的解析式为:,点G横坐标为,点A关于抛物线对称轴x=2的对称点的坐标为:(4,﹣12a),则,得a>,因此满足∠MAB=75°的点M有且只有两个,则a的取值范围为:.【解答】解:(1)①由题意,令y=0,解得x1=﹣2,x2=6∴C(﹣2,0),D(6,0)∴CD=8.令x=0,解得y=﹣12a,且a>0∴A(0,﹣12a),即OA=12a∴S△ACD==48a=16,解得:所求抛物线的解析式为=②由题意知,∠SP1P﹣∠SC1C=∠SCC1,且∠MSC=∠NSP1∴△MSC∽△NSP1∴设S(t,0)(0≤t≤6),则SP=,SC=t+2∴∵0≤t≤6∴t=0时,最大值为2;(2)由题意,直线y=x﹣12a与x轴交于点B得B(12a,0),OA=OB=12a,∠OAB=∠OBA=45°如图2当点M在y轴的左侧时,此时∠MAO=30°设直线AM与x轴交于点E,则OE=∴又∵A(0,﹣12a),∴直线AM的解析式为:由得:解得:∴点M的横坐标为∵②当点M在y轴的右侧时,过点B作x轴的垂线与①中直线AE关于AB的对称直线交于点F,易证:△EBA≌△FBA,得∠BAF=75°,BF=BE=,∠FBO=90°∴∴直线AF的解析式为:由,解得:∴点G 横坐标为,点A关于抛物线对称轴x=2的对称点的坐标为:(4,﹣12a),则,得a >,故要使满足∠MAB=75°的点M有且只有两个,则a 的取值范围为:.31。

广东省2020年中考数学全真模拟试卷(附加答题卡和解析)

广东省2020年中考数学全真模拟试卷(附加答题卡和解析)

2020年中考数学全真模拟试卷(广东)(四)(考试时间:90分钟;总分:120分)班级:___________姓名:___________座号:___________分数:___________ 一、单选题(每小题3分,共30分)1.12-的值是()A.12-B.12C.2-D.22.某区公益项目“在线伴读”平台开通以来,累计为学生在线答疑15000次.用科学记数法表示15000是()A.0.15×106B.1.5×105C.1.5×104D.15×1053.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.如图,几何体的左视图是( )A.B.C.D.5.某班体育课上老师记录了7位女生1分钟仰卧起坐的成绩(单位:个)分别为:28,38,38,35,35,38,48,这组数据的中位数和众数分别是()A .35,38B .38,38C .38,35D .35,356 ( )A .5B C .±5D .7.正八边形的每一个外角的度数是() A .30°B .45︒C .60︒D .135︒8.关于x 的一元二次方程210ax x +-=有实数根,则a 的取值范围是() A .14a >-B .14a ≥-C .14a ≥-且0a ≠ D .14a >-且0a ≠ 9.一元一次不等式组的解集在数轴上表示为()A .B .C .D .10.如图,在△ABC 中,AB=3,AC=4,BC=5,P 为边BC 上一动点,PE ⊥AB 于E,PF ⊥AC 于F,则EF 的最小值为( )A .2B .2.2C .2.4D .2.5二、填空题(每小题4分,共28分)11.分解因式:24xy x -=_________________.12x 应满足的条件是______. 13.在一个不透明的盒子中装有12个白球,若干个黄球,这些球除颜色外都相同.若从中随机摸出一个球是白球的概率是13,则黄球的个数为______个. 14.已知点(1 )A a ,,(2 )B b ,在反比例函数2y x=-的图象上,则a ,b 的大小关系是__________. 15.如图,把一张长方形纸片ABCD 沿EF 折叠后ED 与BC 的交点为G ,D 、C 分别在M 、N 的位置上,若∠EFG =50°,则∠2=_________.16.如图,已知△ABC 中,AB =AC =12厘米,BC =8厘米,点D 为AB 的中点,如果点M 在线段BC 上以2厘米/秒的速度由B 点向C 点运动,同时,点N 在线段CA 上由C 点向A 点运动,若使△BDM 与△CMN 全等,则点N 的运动速度应为_____厘米/秒.17.如图,在平面直角坐标系中,△P 1OA 1,△P 2A 1A 2,△P 3A 2A 3,…都是等腰直角三角形,其直角顶点P 1(3,3),P 2,P 3,…均在直线143y x =-+上.设△P 1OA 1,△P 2A 1A 2,△P 3A 2A 3,…的面积分别为S 1,S 2,S 3,…,依据图形所反映的规律,S n =_____.三、解答题一(每小题6分,共18分)18.计算:201()2sin30(20172-︒-.19.先化简,再求值:,其中满足20.如图,在△ABC 中,∠ABC =80°,∠BAC =40°,AB 的垂直平分线分别与AC 、AB 交于点D 、E . (1)在图中作出AB 的垂直平分线DE ,并连接BD . (2)证明:△ABC ∽△BDC .四、解答题二(每小题8分,共24分)21.西昌市数科科如局从2013年起每年对全市所有中学生进行“我最喜欢的阳光大课间活动”抽样调查(被调查学生每人只能选一项),并将抽样调查的数据绘制成图1、图2两幅统计图,根据统计图提供的信息解答下列问题:(1)年抽取的调查人数最少;年抽取的调查人数中男生、女生人数相等;(2)求图2中“短跑”在扇形图中所占的圆心角α的度数;(3)2017年抽取的学生中,喜欢羽毛球和短跑的学生共有多少人?(4)如果2017年全市共有3.4万名中学生,请你估计我市2017年喜欢乒乓球和羽毛球两项运动的大约有多少人?22.某校计划组织师生共310人参加一次野外研学活动,如果租用6辆大客车和5辆小客车恰好全部坐满.已知每辆大客车的乘客座位数比小客车多15个.(1)求每辆大客车和每辆小客车的乘客座位数;(2)由于最后参加活动的人数增加了20人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,为将所有参加活动的师生装载完成,求租用小客车数量的最大值.23.如图1,在Rt△ABC中,∠ACB=90°,点D是边AB的中点,点E在边BC上,AE=BE,点M是AE的中点,联结CM,点G在线段CM上,作∠GDN=∠AEB交边BC于N.(1)如图2,当点G和点M重合时,求证:四边形DMEN是菱形;(2)如图1,当点G和点M、C不重合时,求证:DG=DN.五、解答题三(每小题10分,共20分)24.平行四边形ABCD的对角线相交于点M,△ABM的外接圆交AD于点E且圆心O恰好落在AD边上,连接ME,若∠BCD=45°(1)求证:BC为⊙O切线;(2)求∠ADB的度数;(3)若ME=1,求AC的长.25.如图,在平面直角坐标系中,抛物线y=ax2﹣2ax﹣3a(a>0)与x轴交于A、B两点(点A在点B左侧),经过点A的直线l:y=kx+b与y轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)直接写出点A的坐标,并用含a的式子表示直线l的函数表达式(其中k、b用含a的式子表示).(2)点E为直线l下方抛物线上一点,当△ADE的面积的最大值为254时,求抛物线的函数表达式;(3)设点P是抛物线对称轴上的一点,点Q在抛物线上,以点A、D、P、Q为顶点的四边形能否为矩形?若能,求出点P的坐标;若不能,请说明理由.2020年中考数学全真模拟试卷(广东)(四)答题卡姓名:______________班级:______________选择题(请用2B 铅笔填涂)非选择题(请在各试题的答题区内作答)20题、23题、24题、2020年中考数学全真模拟试卷(广东)(四)(考试时间:90分钟;总分:120分)班级:___________姓名:___________座号:___________分数:___________ 一、单选题(每小题3分,共30分)1.12-的值是()A.12-B.12C.2-D.2【答案】B【解析】根据绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0即可求解【详解】根据负数的绝对值是它的相反数,得11 22 -=.故选B.【点睛】本题考查了绝对值的性质,熟练掌握绝对值的定义和性质是解题的关键.2.某区公益项目“在线伴读”平台开通以来,累计为学生在线答疑15000次.用科学记数法表示15000是()A.0.15×106B.1.5×105C.1.5×104D.15×105【答案】C【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:用科学记数法表示15000是:1.5×104.故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】D【解析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】A、是轴对称图形,不是中心对称图形,故本选项不符合题意;B、不是轴对称图形,不是中心对称图形,故本选项不符合题意;C、是轴对称图形,不是中心对称图形,故本选项不符合题意;D、既是轴对称图形又是中心对称图形,故本选项符合题意.故选:D.【点睛】此题主要考查对轴对称图形和中心对称图形的识别,熟练掌握,即可解题.4.如图,几何体的左视图是( )A.B.C.D.【答案】A【解析】根据从左边看得到的图形是左视图,可得答案.【详解】解:如图所示,其左视图为:.故选A.【点睛】本题考查了简单组合体的三视图,从左边看得到的图形是左视图,注意看不到而且是存在的线是虚线.5.某班体育课上老师记录了7位女生1分钟仰卧起坐的成绩(单位:个)分别为:28,38,38,35,35,38,48,这组数据的中位数和众数分别是()A.35,38B.38,38C.38,35D.35,35【答案】B【解析】出现次数最多的那个数,称为这组数据的众数;中位数一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.【详解】把这些数从小到大排列为:28,35,35,38,38,38,48,最中间的数是38,则中位数是38;∵38出现了3次,出现的次数最多,∴这组数据的众数是38;故选B.【点睛】此题考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会错误地将这组数据最中间的那个数当作中位数;众数是一组数据中出现次数最多的数.6( )A.5 B C.±5 D.【答案】A【解析】根据算术平方根的定义即可求解.【详解】故答案选A..【点睛】本题考查的知识点是算术平方根,解题的关键是熟练的掌握算术平方根.7.正八边形的每一个外角的度数是()A.30°B.45︒C.60︒D.135︒【答案】B【解析】根据多边形的外角和为360度,再用360度除以边数即可得到每一个外角的度数.【详解】∵多边形的外角和为360度,∴每个外角度数为:360°÷8=45°,故选:B.【点睛】考查了多边形的外角和定理.任何一个多边形的外角和都是360°,用外角和求正多边形的边数直接让360度除以外角.8.关于x的一元二次方程210ax x+-=有实数根,则a的取值范围是()A.14a>-B.14a≥-C.14a≥-且0a≠D.14a>-且0a≠【答案】C【解析】从两方面考虑①方程要是一元二次方程,则二次项系数不能为0;②利用根的判别式△≥0列出不等式求解.【详解】解:要使方程210ax x+-=为一元二次方程则a≠0此时∵关于x的方程210ax x+-=有实数根,∴214(1)140a a=-⨯⨯-=+V…解得:14 a-…,故答案为14a≥-且0a≠,选C.【点睛】本题考查根的判别式,解题的关键是明确当一元二次方程有实数根时,△≥0.在本题中切记二次项系数不能为0.9.一元一次不等式组的解集在数轴上表示为()A.B.C.D.【答案】A【解析】试题分析:解不等式①得:x>﹣1,解不等式②得:x≤2,∴不等式组的解集是﹣1<x≤2,表示在数轴上,如图所示:.故选A.考点:解一元一次不等式组;在数轴上表示不等式的解集.10.如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,则EF的最小值为( )A.2 B.2.2 C.2.4 D.2.5【答案】C【解析】根据三个角都是直角的四边形是矩形,得四边形AEPF是矩形,根据矩形的对角线相等,得EF=AP,则EF的最小值即为AP的最小值,根据垂线段最短,知:AP的最小值即等于直角三角形ABC斜边上的高.【详解】连接AP,∵在△ABC中,AB=3,AC=4,BC=5,∴AB2+AC2=BC2,即∠BAC=90°,又∵PE⊥AB于E,PF⊥AC于F,∴四边形AEPF是矩形,∴EF=AP,∵AP的最小值即为直角三角形ABC斜边上的高,即2.4,∴EF的最小值为2.4,故选:C.【点睛】本题考查了矩形的性质和判定,勾股定理的逆定理,直角三角形的性质的应用,要能够把要求的线段的最小值转化为便于求的最小值得线段是解此题的关键.二、填空题(每小题4分,共28分)11.分解因式:24xy x -=_________________.【答案】x (y+2)(y-2)【解析】首先提公因式x ,然后利用平方差公式分解即可;【详解】解:224)4(2)((2)x y x y y y x x --+-==故答案为:x (y+2)(y-2)【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止. 12有意义时,x 应满足的条件是______. 【答案】8x >.【解析】直接利用二次根式的定义和分数有意义求出x 的取值范围.【详解】有意义,可得:80x ->,所以8x >, 故答案为:8x >.【点睛】本题考查了二次根式有意义的条件,熟练掌握是解题的关键.13.在一个不透明的盒子中装有12个白球,若干个黄球,这些球除颜色外都相同.若从中随机摸出一个球是白球的概率是13,则黄球的个数为______个.【答案】24【解析】分析:首先设黄球的个数为x 个,根据题意得:1212x +=13,解此分式方程即可求得答案. 详解:设黄球的个数为x 个, 根据题意得:1212x +=13, 解得:x =24,经检验:x =24是原分式方程的解;∴黄球的个数为24.故答案为24点睛:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.14.已知点(1 )A a ,,(2 )B b ,在反比例函数2y x=-的图象上,则a ,b 的大小关系是__________. 【答案】a b <【解析】由反比例函数y =-2x可知函数的图象在第二、第四象限内,可以知道在每个象限内,y 随x 的增大而增大,根据这个判定则可.【详解】∵反比例函数中y =-2x中20k =-<, ∴此函数的图象在二、四象限内,在每个象限内,y 随x 的增大而增大,∵0<1<2,∴A 、B 两点均在第四象限,∴a <b.故答案为:a<b.【点睛】本题考查了反比例函数图象上点的坐标特征,熟练掌握该特征是本题解题的关键.15.如图,把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D、C分别在M、N的位置上,若∠EFG=50°,则∠2=_________.【答案】100°【解析】试题解析:如图,∵长方形纸片ABCD的边AD∥BC,∴∠3=∠EFG=50°,根据翻折的性质,∠1=180°-2∠3=180°-2×50°=80°,又∵AD∥BC,∴∠2=180°-∠1=180°-80°=100°.16.如图,已知△ABC中,AB=AC=12厘米,BC=8厘米,点D为AB的中点,如果点M在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点N在线段CA上由C点向A点运动,若使△BDM与△CMN全等,则点N的运动速度应为_____厘米/秒.【答案】2或3【解析】分两种情形讨论①当BD=CM=6,BM=CN时,△DBM≌△MCN,②当BD=CN,BM=CM时,△DBM≌△NCM,再根据路程、时间、速度之间的关系求出点N的速度.【详解】解:∵AB=AC,∴∠B=∠C,①当BD=CM=6厘米,BM=CN时,△DBM≌△MCN,∴BM=CN=2厘米,t=2=1,2∴点N运动的速度为2厘米/秒.②当BD=CN,BM=CM时,△DBM≌△NCM,∴BM=CM=4厘米,t=4=2,CN=BD=6厘米,2∴点N的速度为:6=3厘米/秒.2故点N的速度为2或3厘米/秒.故答案为2或3.【点睛】本题考查等腰三角形的性质、全等三角形的判定和性质,用分类讨论是正确解题的关键.17.如图,在平面直角坐标系中,△P 1OA 1,△P 2A 1A 2,△P 3A 2A 3,…都是等腰直角三角形,其直角顶点P 1(3,3),P 2,P 3,…均在直线143y x =-+上.设△P 1OA 1,△P 2A 1A 2,△P 3A 2A 3,…的面积分别为S 1,S 2,S 3,…,依据图形所反映的规律,S n =_____.【答案】194n -(或2292n -) 【解析】分别过点P 1、P 2、P 3作x 轴的垂线段,先根据等腰直角三角形的性质求得前三个等腰直角三角形的底边和底边上的高,继而求得三角形的面积,得出面积的规律即可得出答案.【详解】如图,分别过点P 1、P 2、P 3作x 轴的垂线段,垂足分别为点C 、D 、E ,∵P 1(3,3),且△P 1OA 1是等腰直角三角形,∴OC=CA 1=P 1C=3,设A 1D=a ,则P 2D=a ,∴OD=6+a ,∴点P 2坐标为(6+a ,a ),将点P 2坐标代入y=-13x+4,得:-13(6+a )+4=a , 解得:a=32, ∴A 1A 2=2a=3,P 2D=32, 同理求得P 3E=34、A 2A 3=32, ∵12311391339639,3,222422416S S S =⨯⨯==⨯⨯==⨯⨯=、…… ∴S n =194n -(或2292n -). 故答案为194n -(或2292n -). 【点睛】本题考查规律型:点的坐标、等腰直角三角形的性质等知识,解题的关键是从特殊到一般,探究规律,利用规律解决问题.三、解答题一(每小题6分,共18分)18.计算:201()2sin30(20172-︒--. 【答案】2【解析】分析:根据负整指数幂的的性质,二次根式的性质,特殊角的三角函数值,零次幂的性质求解即可. 详解:原式=142212-+⨯-=2. 点睛:此题主要考查了实数的混合运算,关键是熟记并灵活运用负整指数幂的的性质,二次根式的性质,特殊角的三角函数值,零次幂的性质计算即可.19.先化简,再求值:,其中满足【答案】原式=x 2−1−x2+2xx(x+1)×(x+1)2x(2x−1)=x+1x2∵∴x2=x+1原式=x+1x+1=1【解析】试题分析:先对小括号部分通分,同时把除化为乘,再根据分式的基本性质约分,最后整体代入求值. 原式=·原式=1.考点:分式的化简求值点评:计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分.20.如图,在△ABC中,∠ABC=80°,∠BAC=40°,AB的垂直平分线分别与AC、AB交于点D、E.(1)在图中作出AB的垂直平分线DE,并连接BD.(2)证明:△ABC∽△BDC.【答案】(1)见解析(2)证明见解析【解析】(1)分别以A、B为圆心,大于12AB的长为半径画弧,两弧交于两点,过两点作直线,即为AB的垂直平分线;(2)由线段垂直平分线的性质,得DA=DB,则∠ABD=∠BAC=40°,从而求得∠CBD=40°,即可证出△ABC∽△BDC.【详解】(1)如图,DE即为所求;(2)∵DE是AB的垂直平分线,∴BD=AD,∴∠ABD=∠A=40°,∴∠DBC=∠ABC﹣∠ABD=80°﹣40°=40°,∴∠DBC=∠BAC,∵∠C=∠C,∴△ABC∽△BDC.【点睛】本题考查了作图——基本作图,相似三角形的判定,线段垂直平分线的性质,熟练掌握相关的性质与判定定理是解题的关键.四、解答题二(每小题8分,共24分)21.西昌市数科科如局从2013年起每年对全市所有中学生进行“我最喜欢的阳光大课间活动”抽样调查(被调查学生每人只能选一项),并将抽样调查的数据绘制成图1、图2两幅统计图,根据统计图提供的信息解答下列问题:(1)年抽取的调查人数最少;年抽取的调查人数中男生、女生人数相等;(2)求图2中“短跑”在扇形图中所占的圆心角α的度数;(3)2017年抽取的学生中,喜欢羽毛球和短跑的学生共有多少人?(4)如果2017年全市共有3.4万名中学生,请你估计我市2017年喜欢乒乓球和羽毛球两项运动的大约有多少人?【答案】(1)2013;2016;(2)54°;(3)460人;(4)20400人【解析】(1)由图中的数据进行判断即可;(2)先求得“短跑”在扇形图中所占的百分比为15%,进而得到α=360°×15%=54°;(3)依据2017年抽取的学生总数,即可得到喜欢羽毛球和短跑的学生数量;(4)依据喜欢乒乓球和羽毛球两项运动的百分比,即可估计我市2017年喜欢乒乓球和羽毛球两项运动的人数.【详解】解:(1)由图可得,2013年抽取的调查人数最少;2016年抽取的调查人数中男生、女生人数相等;故答案为:2013,2016;(2)1﹣35%﹣10%﹣15%﹣25%=15%,∴α=360°×15%=54°;(3)2017年抽取的学生中,喜欢羽毛球和短跑的学生共有(600+550)×(25%+15%)=460(人);(4)我市2017年喜欢乒乓球和羽毛球两项运动的大约有34000×(25%+35%)=20400(人).【点睛】本题考查的是折线统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.折线统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.某校计划组织师生共310人参加一次野外研学活动,如果租用6辆大客车和5辆小客车恰好全部坐满.已知每辆大客车的乘客座位数比小客车多15个.(1)求每辆大客车和每辆小客车的乘客座位数;(2)由于最后参加活动的人数增加了20人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,为将所有参加活动的师生装载完成,求租用小客车数量的最大值.【答案】(1)每辆小客车的乘客座位数是20个,大客车的乘客座位数是35个(2)3【解析】(1)根据“每辆大客车的乘客座位数-小客车乘客座位数=15;6辆大客车乘客+5辆小客车乘客=310”列出二元一次方程组解之即可.(2)根据题意,设租用a辆小客车才能将所有参加活动的师生装载完成,利用“大客车乘客+小客车乘客≥310+20”解之即可.【详解】(1)设每辆小客车的乘客座位数是x个,大客车的乘客座位数是y个,根据题意,得15 56310 y xx y-=⎧⎨+=⎩解得2035 xy=⎧⎨=⎩答:每辆小客车的乘客座位数是20个,大客车的乘客座位数是35个. (2)设租用a辆小客车才能将所有参加活动的师生装载完成,则20a+35(11-a)≥310+20,解得a≤32 3 ,符合条件的a的最大整数为3.答:租用小客车数量的最大值为3.【点睛】本题考查了二元一次方程组和一元一次不等式的应用,解决本题的关键是找到题目中蕴含的数量关系. 23.如图1,在Rt△ABC中,∠ACB=90°,点D是边AB的中点,点E在边BC上,AE=BE,点M是AE的中点,联结CM,点G在线段CM上,作∠GDN=∠AEB交边BC于N.(1)如图2,当点G和点M重合时,求证:四边形DMEN是菱形;(2)如图1,当点G和点M、C不重合时,求证:DG=DN.【答案】(1)见解析;(2)见解析【解析】本题主要考查菱形及全等三角形的应用(1)先由MD为BE的中位线,可证MD∥EN且MD=12BE,又∠GDN+∠DNE=180°,可证四边形MDNE为平行四边形,从而可证平行四边形DMEN为菱形(2)取BE中点F,连接DM,DF,利用(1)的结论可证△DMG≌△DFN,即可得出答案【详解】证明:(1)如图2中,∵AM =ME .AD =DB ,∴DM ∥BE ,∴∠GDN+∠DNE =180°,∵∠GDN =∠AEB ,∴∠AEB+∠DNE =180°,∴AE ∥DN ,∴四边形DMEN 是平行四边形, ∵11,,22DM BE EM AE AE BE ===,∴DM =EM ,∴四边形DMEN 是菱形.(2)如图1中,取BE 的中点F ,连接DM 、DF .由(1)可知四边形EMDF 是菱形,∴∠AEB =∠MDF ,DM =DF ,∴∠GDN =∠AEB ,∴∠MDF=∠GDN,∴∠MDG=∠FDN,∵∠DFN=∠AEB=∠MCE+∠CME,∠GMD=∠EMD+∠CME,、在Rt△ACE中,∵AM=ME,∴CM=ME,∴∠MCE=∠CEM=∠EMD,∴∠DMG=∠DFN,∴△DMG≌△DFN,∴DG=DN.【点睛】本题的关键是掌握菱形的性质及判断以及全等三角形的判定五、解答题三(每小题10分,共20分)24.平行四边形ABCD的对角线相交于点M,△ABM的外接圆交AD于点E且圆心O恰好落在AD边上,连接ME,若∠BCD=45°(1)求证:BC为⊙O切线;(2)求∠ADB的度数;(3)若ME=1,求AC的长.【答案】(1)详见解析;(2)∠ADB=30°;(3)AC=2AM=【解析】(1)连接OB,根据平行四边形的性质得到∠BAD=∠BCD=45°,根据圆周角定理得到∠BOD=2∠BAD =90°,根据平行线的性质得到OB⊥BC,即可得到结论;(2)连接OM,根据平行四边形的性质得到BM=DM,根据直角三角形的性质得到OM=BM,求得∠OBM =60°,于是得到∠ADB=30°;(3)连接EM,过M作MF⊥AE于F,根据等腰三角形的性质得到∠MOF=∠MDF=30°,设OM=OE=r,解直角三角形即可得到结论.【详解】(1)证明:连接OB,∵四边形ABCD是平行四边形,∴∠BAD=∠BCD=45°,∴∠BOD=2∠BAD=90°,∵AD∥BC,∴∠DOB+∠OBC=180°,∴∠OBC=90°,∴OB⊥BC,∴BC为⊙O切线;(2)解:连接OM,∵四边形ABCD是平行四边形,∴BM=DM,∵∠BOD=90°,∴OM =BM ,∵OB =OM ,∴OB =OM =BM ,∴∠OBM =60°,∴∠ADB =30°;(3)解:连接EM ,过M 作MF ⊥AE 于F ,∵OM =DM ,∴∠MOF =∠MDF =30°,设OM =OE =r ,1,2FM r OF ∴==EF r ∴= 222EF FM EM +=Q221122r r r ⎛⎫⎛⎫∴-+= ⎪ ⎪ ⎪⎝⎭⎝⎭解得:r∴AE =2r =∵AE 是⊙O 的直径,∴∠AME =90°,∴AM=,∴AC =2AM =【点睛】本题考查了切线的判定,圆周角定理,平行四边形的性质,等腰直径三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.25.如图,在平面直角坐标系中,抛物线y=ax2﹣2ax﹣3a(a>0)与x轴交于A、B两点(点A在点B左侧),经过点A的直线l:y=kx+b与y轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)直接写出点A的坐标,并用含a的式子表示直线l的函数表达式(其中k、b用含a的式子表示).(2)点E为直线l下方抛物线上一点,当△ADE的面积的最大值为254时,求抛物线的函数表达式;(3)设点P是抛物线对称轴上的一点,点Q在抛物线上,以点A、D、P、Q为顶点的四边形能否为矩形?若能,求出点P的坐标;若不能,请说明理由.【答案】(1)A(﹣1,0),y=ax+a;(2)y=25x2﹣45x﹣65;(3)以点A、D、P、Q为顶点的四边形能成为矩形,点P的坐标为(1)或(1,4).【解析】(1)由抛物线y=ax2﹣2ax﹣3a(a<0)与x轴交于两点A、B,求得A点的坐标,作DF⊥x轴于F,根据平行线分线段成比例定理求得D 的坐标,然后利用待定系数法即可求得直线l 的函数表达式.(2)设点E (m ,ax 2﹣2ax ﹣3a ),知HE =(ax +a )﹣(ax 2﹣2ax ﹣3a )=﹣ax 2+3ax +4a ,根据直线和抛物线解析式求得点D 的横坐标,由S △ADE =S △AEH +S △DEH 列出函数解析式,根据最值确定a 的值即可; (3)分以AD 为矩形的对角线和以AD 为矩形的边两种情况利用矩形的性质确定点P 的坐标即可.【详解】解:(1)令y =0,则ax 2﹣2ax ﹣3a =0,解得x 1=﹣1,x 2=3∵点A 在点B 的左侧,∴A (﹣1,0),如图1,作DF ⊥x 轴于F ,∴DF ∥OC , ∴OF CD OA AC=, ∵CD =4AC , ∴4,OF CD OA AC== ∵OA =1,∴OF =4,∴D 点的横坐标为4,代入y =ax 2﹣2ax ﹣3a 得,y =5a ,∴D (4,5a ),把A 、D 坐标代入y =kx +b 得045,k b k b a -+=⎧⎨+=⎩解得,k a b a =⎧⎨=⎩∴直线l 的函数表达式为y =ax +a .(2)如图2,过点E 作EH ∥y 轴,交直线l 于点H ,设E (x ,ax 2﹣2ax ﹣3a ),则H (x ,ax +a ).∴HE =(ax +a )﹣(ax 2﹣2ax ﹣3a )=﹣ax 2+3ax +4a ,由223y ax a y ax ax a =+⎧⎨=--⎩得x =﹣1或x =4, 即点D 的横坐标为4,∴S △ADE =S △AEH +S △DEH =52(﹣ax 2+3ax +4a )253125228a x a ⎛⎫=--+ ⎪⎝⎭.∴△ADE的面积的最大值为1258a,∴12525,84a=解得:25 a=,∴抛物线的函数表达式为y=25x2﹣45x﹣65(3)已知A(﹣1,0),D(4,5a).∵y=ax2﹣2ax﹣3a,∴抛物线的对称轴为x=1,设P(1,m),①若AD为矩形的边,且点Q在对称轴左侧时,则AD∥PQ,且AD=PQ,则Q(﹣4,21a),m=21a+5a=26a,则P(1,26a),∵四边形ADPQ为矩形,∴∠ADP=90°,∴AD2+PD2=AP2,∴52+(5a)2+(1﹣4)2+(26a﹣5a)2=(﹣1﹣1)2+(26a)2,即a2=17,∵a>0,∴a∴P1(1),②若AD为矩形的边,且点Q在对称轴右侧时,则AD∥PQ,且AD=PQ,则Q(4,5a),此时点Q与点D重合,不符合题意,舍去;③若AD是矩形的一条对角线,则AD与PQ互相平分且相等.∴x D+x A=x P+x Q,y D+y A=y P+y Q,∴x Q=2,∴Q(2,﹣3a).∴y P=8a∴P(1,8a).∵四边形APDQ为矩形,∴∠APD=90°∴AP2+PD2=AD2∴(﹣1﹣1)2+(8a)2+(1﹣4)2+(8a﹣5a)2=52+(5a)2即a2=14,∵a>0,∴a=12∴P2(1,4)综上所述,以点A、D、P、Q为顶点的四边形能成为矩形,点P的坐标为(1)或(1,4).【点睛】本题是二次函数的综合题,考查了待定系数法求一次函数的解析式,二次函数图象上点的坐标特征,以及矩形的判定,根据平行线分线段成比例定理求得D的坐标是本题的关键.。

2020年广东省中考数学模拟试卷(含答案和解析)

2020年广东省中考数学模拟试卷(含答案和解析)
向运动到点 B,动点 Q 同时从点 A 出发,以 1cm/s 的速度沿折线 AC→CB 方向运动到点 B.设△APQ 的面积为 y(cm2),运动时间为 x(s),则下列图象能反映 y 与 x 之间关系的是
第 10 题
A.
B.
二、填空题(本大题共 7 小题,每小题 4 分,共 28 分)
C.
D.
11.若 x 1 有意义,则 x 的取值范围为
即 x2﹣3x+1=0,
解得 x1=
,x2=
<1,应舍去,
∴x=

┉┉┉┉ 9 分
∴y=4﹣x=

即点 P1 坐标为(

).
┉┉┉┉ 1Байду номын сангаас 分
②若以 CD 为底边,则 P1D=P1C,法二: 直线 CD 的解析式为:y=x+3,CD 线段中点 M 为(0.5,3.5) 则利用互相垂直的两条直线的 k 相乘等于-1 得 MP1 的解析式为:y=4﹣x, 同上可得 P1 坐标
为坐标原点、AB 所在直线为 x 轴建立的平面直角坐标系中,将△ABC
绕点 B 顺时针旋转,使点 A 旋转至 y 轴正半轴上的 A′处,则图中
阴影部分面积为__________ .
第 16 题
17.将一些形状相同的小五角星如下图所示的规律摆放,据此规律,第 10 个图形有
个五角星.
三、解答题一(本大题共 3 小题,每小题 6 分,共 18 分)
三、解答题(一)
18、解:原式
= 2 3 +1−9−4× 3 2
=2 +1﹣9﹣2 =﹣8
┉┉┉┉┉┉ 4 分
┉┉┉┉┉ 5 分 ┉┉┉┉┉ 6 分
16. π 17. 120

2020年广东省中考数学模拟试卷

2020年广东省中考数学模拟试卷

2020中考模拟卷数学(考试时间:90分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

5.考试范围:广东中考全部内容。

第Ⅰ卷一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)11.-的倒数等于2A.12B.-12C.-2D.2【答案】C.1【解析】-的倒数是-2.故选C.22.神舟五号飞船与送它上天的火箭共有零部件约120000个,用科学记数法表示为A.1.2⨯104B.1.2⨯105C.1.2⨯106D.12⨯104【答案】B.【解析】由于120000有6位,所以可以确定n=6-1=5.所以120000=1.2⨯105个.故选B.3.下列计算正确的是A.x5+x5=x10B.x5g x2=x10C.(x5)5=x10D.(m2)3g m4=m10【答案】D.【解析】A、x5+x5=2x5,故错误;B、x5g x2=x7,故错误;C、(x5)5=x25,故错误;D、正确;故选D.4.如图,在e O中,∠ABC=40︒,则∠AOC=A.40°B.20°C.80°D.50°【答案】C.【解析】Q在e O中,∠ABC=40︒,∴∠AOC=2∠ABC=80︒.故选C.5.一个不透明的袋中装有除颜色外均相同的3个红球和2个黄球,从中随机摸出一个,摸到黄球的概率是A.23B.15C.25D.35【答案】C.【解析】根据题意可得:一袋中装有3个红球,2个黄球,共5个,任意摸出1个,摸到黄球的概率是25.故选C.6.如图为主视图方向的几何体,它的俯视图是A.B.C.D.【答案】D.【解析】从上面看可得到三个左右相邻的长方形,故选D.7.如图,已知∠1=60︒,如果CD//B E,那么∠B的度数为A.60︒B.100︒C.110D.120︒【答案】D.【解析】Q∠1=60︒,∴∠2=180︒-60︒=120︒.Q CD//B E,∴∠2=∠B=120︒.故选D.b -2 4ac - b 2 4 ⨯1⨯ (-3) - (-2)22B .2D .8.抛物线 y = x 2 - 2x - 3 的顶点坐标为A . (-1,-4)【答案】C .B . (1,4)C . (1,-4)D . (-1,4)【解析】Q a = 1 ,b = -2 , c = -3 ,∴- =- = 1 , = = -4 .故2a 2 ⨯1 4a 4 ⨯1选 C .9.一仓库管理员需要清点仓库的物品,物品全是一些大小相同的正方体箱子,他不能搬下箱子进行清点.后来,他想出了一个办法,通过观察物品的三视图求出了仓库里的存货.他所看到的三视图如图,那么仓库管理员清点出存货的个数是A .5B .6C .7D .8【答案】D .【解析】综合主视图,俯视图,左视图底层有 6 个正方体,第二层有 2 个正方体,所以仓库里的正方体箱子的个数是 8.故选 D .10.如图,直径为 10 的 e A 经过点 C(0,5) 和点 O(0,0) ,B 是 y 轴右侧 e A 优弧上一点,则 ∠OBC的正弦值为A . 134 C . 345【答案】A .【解析】连接 AC , OA ,Q 15.设 x ,x 是一元二次方程 x 2 - 3x - 2 = 0 的两个实数根,则 x 2 + 3x x + x 2 的值为__________.Q 点 C(0,5) 和点 O(0,0) ,∴OC = 5 , 直径为 10,∴ AC = OA = 5 ,∴ AC = OA = OC ,∴∆OAC1是等边三角形,∴∠OAC = 60︒ ,∴∠OBC = ∠OAC = 30︒ ,∴∠OBC 的正弦值为:21sin30︒ = .故选 A .2第Ⅱ卷二、填空题(本大题共 7 小题,每小题 4 分,共 28 分)11.算术平方根等于它本身的数是__________.【答案】0 和 1.【解析】算术平方根等于它本身的数是 0 和 1.12.已知相似 ∆ABC 与 ∆DEF 的相似比为1:3 ,若 ∆ABC 的面积为 2 米 2 ,则 ∆DEF 的面积为__________.【答案】18 米 2 .【解析】Q 相似 ∆ABC 与 ∆DEF 的相似比为1:3 ,∴ 相似 ∆ABC 与 ∆DEF 的面积比为1:9 ,∴ S∆ABC = S ∆DEF1 2 1,即 = ,解得 S 9 S 9∆DEF∆DEF = 18 (米 2 ) .故答案为:18 米 2 .13.在函数 y = x + 3 中,自变量 x 的取值范围是__________.【答案】 x …- 3 .【解析】根据题意得: x + 3…0 ,解得: x …- 3 .14.在 Rt ∆ABC 中,若 ∠C = 90︒ , AC = 1 , BC = 2 , sin B = __________.【答案】5 .5【解析】根据勾股定理可得: AB =AC 2+ BC 2= 5 ,∴ sin B =AC 1 5= = .故答案是: AB 5 55 5.121 12 2【答案】7.【解析】由题意,得:x+x=3,x x=-2;原式=(x+x)2+x x=9-2=7.故答案为:7.1212121216.把多项式2m2n-8mn2+8n3分解因式,结果是__________.【答案】2n(m-2n)2.【解析】原式=2n(m2-4mn+4n2)=2n(m-2n)2.故答案为:2n(m-2n)2.17.观察下面的图形,它们是按一定规律排列的,依照此规律,第__________个图形共有120个★.【答案】15.【解析】通过观察,得到星的个数分别是,1,3,6,10,15,⋯,第一个图形为:1⨯(1+1)÷2=1,第二个图形为:2⨯(2+1)÷2=3,第三个图形为:3⨯(3+1)÷2=6,第四个图形为:4⨯(4+1)÷2=10,⋯,所以第n个图形为:n(n+1)÷2个星,设第m个图形共有120个星,则m(m+1)÷2=120,解得m=15.故答案为:15.三、解答题(一)(本大题共3小题,每小题6分,共18分)18.计算:21-sin45︒+(-)-1+(3-2)0.22【答案】-22-1.【解析】原式=2-=-2-1.222-2+1⎧x-y=1①19.解方程组:⎨⎩x2-y2=5②⎧y=2【答案】⎨.⎩x=3.⎧x-y=1⋯①【解析】方程组⎨⎩x2-y2=5⋯②,⎧由①得, x = 1 + y ⋯ ③,把③代入②得 (1+ y)2 - y 2 = 5 ,解得, y = 2 ,把 y = 2 代入①得, x = 3 ,∴ 原方程组的解为: ⎨ y = 2⎩ x = 3.20.将如图中 ∆ABC 作下列变化,画出相应的图形:(1)沿 y 轴负向平移 2 个单位后的△ A B C ;1 1 1(2)关于 y 轴对称的△ A B C ;2 2 2(3)以点 B 为中心,放大到原来的 2 倍的△ A B C .3 3 3【答案】作图见解析.【解析】(1)如图,△ A B C 为所作;1 1 1(2)如图,△ A B C 为所作;2 2 2(3)如图,△ A B C 为所作.3 3 3△四、解答题(二)(本大题共 3 小题,每小题 7 分,共 21 分)21.如图,九年级某班同学要测量校园内旗杆的高度,在地面的 C 点处用测角器测得旗杆顶 A点的仰角 AFE 45 ,再沿直线 CB 后退12m 到 D 点,在 D 点又用测角器测得旗杆顶 A 点的仰角 AGE 30 ;已知测角器的高度为1.6m ,求旗杆 AB 的高度 ( 3 1.73,结果保留一位小数).【答案】约为 18.0 米.【解析】Q AFE 45 ,AEF 为等腰 Rt ,AE EFQ AGE 30 ,在 Rt AEG 中, GE 3AE ,又Q GE EF GF 12 ,即有 ( 3 1)AE12 ,AE 16.38, AB AE BE 16.38 1.6 17.98 18.0.答:求旗杆高度约为 18.0 米.22.阅读对话,解答问题:【答案】(1)作图见解析;(2)p(V…0)..∴p(V…0)=3=1-,2⨯=2-,3⨯=3-,⋯(1)分别用a、b表示小冬从小丽、小兵袋子中抽出的卡片上标有的数字,请用树状图法或列表法写出(a,b)的所有取值;(2)求在(a,b)中使关于x的一元二次方程x2-ax+2b=0有实数根的概率.14【解析】(1)(a,b)对应的表格为:a123b1 2 3 4(1,1)(2,1)(3,1)(4,1)(1,2)(2,2)(3,2)(4,2)(1,3)(2,3)(3,3)(4,3)(2)Q方程x2-ax+2b=0有实数根,∴△=a2-8b….∴使a2-8b…的(a,b)有(3,1),(4,1),(4,2),1=.12423.观察下列等式:1⨯112233 223344(1)请你按照这个规律写出第四个等式__________;(2)猜想并写出第n个等式__________;【猜想】(3)证明:Q左边=n⨯;右边=n-;∴n⨯n=n-(3)证明你写出的等式的正确性.【答案】(1)4⨯44n n=4-;(2)n⨯=n-;(3)证明见解析.55n+1n+144【解析】(1)解:第四个等式4⨯=4-;55n n(2)解:猜想第n个等式:n⨯;n+1n+1n n2=n+1n+1n n(n+1)-n n2==n+1n+1n+1左边=右边,n=n-.n+1n+1五、解答题(三)(本大题共2小题,每小题10分,共20分)24.如图:在∆ABC中,∠ACB=90︒,以BC上一点O为圆心,以O B为半径的圆交AB于点M,交BC于点N.(1)求证:BA g BM=BC g BN;(2)如果CM是e O的切线,且M为AB的中点,当BN=4时,求MN的长.【答案】(1)证明见解析;(2)MN=2.【解析】(1)证明:如图1,连接MN,Q NB是e O的直径,∴∠NMB=90︒,∴∆ABC∽∆NBM,∴BA=,∴B A g BM=BC g BN;'''⎧∠ABC=∠NBM在∆ABC和∆NBM中,⎨,⎩∠ACB=∠NMBBCBN BM(2)如图2,连接MO、MN,Q∠ACB=90︒,M为AB的中点,∴MC=MB,∴∠MCB=∠B,Q CM是e O的切线,∴∠NMC=∠B,Q∠MNB=∠NCM+∠NMC,∴∠MNB=2∠B,Q BN为e O的直径,∴∠NMB=90︒,∴∠MNO=60︒,∴∆MNO是等边三角形,∴MN=2.25.在∆ABC中,∠ACB=90︒,∠ABC=30︒,将∆ABC绕顶点C顺时针旋转,旋转角为θ(0︒<θ<180︒),得到△A'B'C.(Ⅰ)如图①,当AB//CB'时,设A'B'与CB相交于点D.证明:△A'CD是等边三角形;(Ⅱ)如图②,连接AA、BB',设∆ACA和∆BCB的面积分别为S、S.求证:S:S=1:3;1212(Ⅲ)如图③,设AC的中点为E,A'B'的中点为P,AC=a,连接EP.求当θ为何值时,EP的长度最大,并写出EP的最大值(直接写出结果即可).3【答案】(Ⅰ)证明见解析;(Ⅱ)证明见解析;(Ⅲ)E P=a.2【解析】(Ⅰ)证明:如图①,' Q AC = A 'C , BC = B 'C ,∴ AC BC 3 ' 'Q AB / /CB ' ,∴∠BCB ' = ∠ABC = 30︒ ,∴∠ACA = 30︒ .又Q ∠ACB = 90︒ ,∴∠A 'CD = 60︒ .又Q ∠CA 'B ' = ∠CAB = 60︒ ,∴ △ A 'CD 是等边三角形.(Ⅱ)证明:如图②,A 'C = . BCB 'C 又Q ∠ACA= ∠BCB ' ,∴∆ACA ∽∆BCB ' .Q AC = tan 30︒ = 3 ,∴ S : S = AC 2 : BC 2 = 1: 3 . 123 (Ⅲ)当 θ = 120︒ 时, EP 的长度最大, EP 的最大值为 a . 2解:如图,连接 CP ,Q ∠B ' = 30︒ , ∠ACB ' = 90︒ ,∴ A 'C = AC = A 'B ' = a , ' ' A 'B ' = a , EC = a ,∴ E P = EC + CP = a + a =当 ∆ABC 旋转到 E 、 C 、 P 三点共线时, EP 最长,此时 θ = ∠ACA = 120︒ ,1 '2 Q AC 中点为 E , A 'B ' 中点为 P , ∠ACB ' = 90︒ ∴CP = 1 1 13 a . 2 2 2 2。

2020广东中考数学.2020年广东省初中学业水平考试仿真模拟卷(五)

2020广东中考数学.2020年广东省初中学业水平考试仿真模拟卷(五)

(3)在点 P 的运动过程中,是否存在点 P,使△BEP 为等腰三 角形?若存在,求出点 P 的坐标;若不存在,请说明理由.
解:(1)∵x2-7x+12=0,∴x1=3,x2=4, ∵BC>AB,∴BC=4,AB=3, ∵OA=2OB,∴OA=2,OB=1, ∵四边形 ABCD 是矩形,∴点 D 的坐标为(-2,4).
由勾股定理得 OP= OE2-PE2= 102-82=6, ∴BP=OB-OP=10-6=4, ∵tan∠ABC=DBPP=43,∴DP=43BP=34×4=3, ∴DE=PE-DP=8-3=5.
25.如图,在平面直角坐标系中,矩形 ABCD 的边 AB 在 x 轴上,AB,BC 的长分别是一元二次方程 x2-7x+12=0 的两 个根(BC>AB),OA=2OB,边 CD 交 y 轴于点 E,动点 P 以 每秒 1 个单位长度的速度,从点 E 出发沿折线段 ED-DA 向 点 A 运动,运动的时间为 t(0≤t<6)秒,设△BOP 与矩形 AOED 重叠部分的面积为 S. (1)求点 D 的坐标; (2)求 S 关于 t 的函数关系式,并写出自变量的取值范围;
②∵tan∠ABC=ABCC=43,设 AC=3k,BC=4k(k>0), 由勾股定理得 AC2+BC2=AB2,即(3k)2+(4k)2=202,解得 k =4, ∴AC=12,BC=16,
∵点 E 是 的中点,∴OE⊥BC,BH=CH=8, ∴OE×BH=OB×PE,即 10×8=10PE,解得 PE=8,
②当 BP=PE 时,9+m2=m2-8m+20,解得 m=181,则 P-2,181; ③当 BE=PE 时,17=m2-8m+20,解得 m=4± 13,则 P(-2,4- 13). 综上,P(-2,2 2)或-2,181或(-2,4- 13).

2020年广东省中考数学模拟试卷(含两套,附解析)

2020年广东省中考数学模拟试卷(含两套,附解析)

2020中考模拟卷一(含两套)数 学(考试时间:90分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

5.考试范围:广东中考全部内容。

第Ⅰ卷一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.6的相反数是 A .16B .16-C .6-D .6【答案】C .【解析】6的相反数是6-,故选C .2.一条数学信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为 A .62.1810⨯ B .52.1810⨯C .621.810⨯D .521.810⨯【答案】A .【解析】将数据2180000用科学记数法表示为62.1810⨯.故选A . 3.观察下列图形,是中心对称图形的是A .B .C .D .【答案】D.【解析】A 、不是中心对称图形,故本选项错误;B 、不是中心对称图形,故本选项错误; C 、不是中心对称图形,故本选项错误;D 、是中心对称图形,故本选项正确.故选D .4.下列数据:75,80,85,85,85,则这组数据的众数和中位数是( ) A .75,80 B .85,85 C .80,85 D .80,75【答案】B .【解析】此组数据中85出现了3次,出现次数最多,所以此组数据的众数是85;将此组数据按从小到大依次排列为:75,80,85,85,85,此组数据个数是奇数个,所以此组数据的中位数是85;故选B .5.在平面直角坐标系中,点(3,2)-所在的象限是 A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】B .【解析】点(3,2)-所在的象限在第二象限.故选B . 6.下列运算正确的是A .236a a a =gB .32a a a -=C .842a a a ÷=D =【答案】B .【解析】A 、235a a a =g ,故此选项错误;B 、32a a a -=,正确;C 、844a a a ÷=,故此选项错误;D B .7.如图,//a b ,180∠=︒,则2∠的大小是A .80︒B .90︒C .100︒D .110︒【答案】C .【解析】//a b Q ,12180∴∠+∠=︒,又180∠=︒Q ,2100∴∠=︒,故选C . 8.二元一次方程组22x y x y +=⎧⎨-=-⎩的解是A .02x y =⎧⎨=⎩B .02x y =⎧⎨=-⎩C .20x y =⎧⎨=⎩D .20x y =⎧⎨=⎩【答案】A .【解析】22x y x y +=⎧⎨-=-⎩①②,①+②得;20x =,解得:0x =,把0x =代入①得:2y =,则方程组的解为02x y =⎧⎨=⎩,故选A .9.如图,一把直尺,60︒的直角三角板和光盘如图摆放,A 为60︒角与直尺交点,3AB =,则光盘的直径是A .3B .C .6D .【答案】D .【解析】设三角板与圆的切点为C ,连接OA 、OB ,由切线长定理知3AB AC ==,OA 平分BAC ∠,60OAB ∴∠=︒,在Rt ABO ∆中,tan OB AB OAB =∠=∴光盘的直径为,故选D .10.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,下列结论:①0abc >;②20a b +>;③240b ac ->;④0a b c -+>,其中正确的个数是A .1B .2C .3D .4【答案】D .【解析】①Q 抛物线对称轴是y 轴的右侧,0ab ∴<,Q 与y 轴交于负半轴,0c ∴<,0abc ∴>,故①正确;②0a >Q ,12bx a=-<,2b a ∴-<,20a b ∴+>,故②正确; ③Q 抛物线与x 轴有两个交点,240b ac ∴->,故③正确; ④当1x =-时,0y >,0a b c ∴-+>,故④正确.故选D .第Ⅱ卷二、填空题(本大题共7小题,每小题4分,共28分) 11.分解因式:29a -=__________. 【答案】(3)(3)a a +-.【解析】29(3)(3)a a a -=+-.故答案为:(3)(3)a a +-. 12.不等式20190x ->的解集是__________. 【答案】2019x >. 【解析】20190x ->, 移项得,2019x >, 故答案为2019x >.13.2018年5月13日,中国首艘国产航空母舰首次执行海上试航任务,共排水量超过6万吨,将数60000用科学记数法表示应为__________. 【答案】4610⨯.【解析】460000610=⨯,故答案为:4610⨯.14=__________. 【答案】4.【解析】2416=Q ,∴4=,故答案为4.15.一个多边形的内角和等于900︒,则这个多边形是__________边形. 【答案】七.【解析】设多边形为n 边形,由题意,得 (2)180900n -︒=g ,解得7n =, 故答案为:七. 16.观察以下一列数:3,54,79,916,1125,⋯则第20个数是__________.【答案】41400. 【解析】观察数列得:第n 个数为221n n +,则第20个数是41400,故答案为:41400. 17.如图,四边形ACDF 是正方形,CEA ∠和ABF ∠都是直角且点E ,A ,B 三点共线,4AB =,则阴影部分的面积是__________.【答案】8.【解析】Q 四边形ACDF 是正方形,AC AF ∴=,90CAF ∠=︒,90EAC FAB ∴∠+∠=︒, 90ABF ∠=︒Q ,90AFB FAB ∴∠+∠=︒,EAC AFB ∴∠=∠,在CAE ∆和AFB ∆中,CAE AFBAEC FBA AC AF ∠=∠⎧⎪∠=∠⎨⎪=⎩,CAE AFB ∴∆≅∆,4EC AB ∴==,∴阴影部分的面积182AB CE =⨯⨯=,故答案为:8. 三、解答题(一)(本大题共3小题,每小题6分,共18分) 18.计算:20190(1)|)π-++.【解析】原式11=-.19.先化简,再求值:22212()11a a a a a a+-÷-+-,其中a . 【答案】2aa +,原式5=- 【解析】原式212[](1)(1)(1)(1)(1)a a a a a a a a a -+=-÷+-+--1(1)(1)(1)2a a a a a a +-=+-+g2aa =+,当a原式5===-20.已知平行四边形ABCD .(1)尺规作图:作BAD ∠的平分线交直线BC 于点E ,交DC 延长线于点F (要求:尺规作图,保留作图痕迹,不写作法); (2)在(1)的条件下,求证:CE CF =.【答案】(1)作图见解析;(2)证明见解析. 【解析】(1)如图所示,AF 即为所求;(2)Q 四边形ABCD 是平行四边形,//AB DC ∴,//AD BC ,12∴∠=∠,34∠=∠.AF Q 平分BAD ∠,13∴∠=∠,24∴∠=∠,CE CF ∴=.四、解答题(二)(本大题共3小题,每小题7分,共21分)21.坐火车从上海到娄底,高铁1329G 次列车比快车575K 次列车要少9小时,已知上海到娄底的铁路长约1260千米,1329G 的平均速度是575K 的2.5倍. (1)求575K 的平均速度;(2)高铁1329G 从上海到娄底只需几小时? 【答案】(1)84千米/小时;(2)6小时.【解析】(1)设575K 的平均速度为x 千米/小时,则1329G 的平均速度是2.5x 千米/小时, 由题意得,1260126092.5x x=+, 解得,84x =,检验:当84x =时,2.50x ≠,84x =是原方程的根,答:575K 的平均速度为84千米/小时; (2)高铁1329G 从上海到娄底需要:1260684 2.5=⨯(小时),答:高铁1329G 从上海到娄底只需6小时.22.如图,矩形ABCD 中,过对角线BD 中点O 的直线分别交AB ,CD 边于点E 、F . (1)求证:四边形BEDF 是平行四边形;(2)只需添加一个条件,即__________,可使四边形BEDF 为菱形.【答案】(1)证明见解析;(2)EF BD ⊥或DE BE =或EDO FDO ∠=∠(答案不唯一). 【解析】(1)Q 四边形ABCD 是平行四边形,O 是BD 的中点, //AB DC ∴,OB OD =,OBE ODF ∴∠=∠,又BOE DOF ∠=∠Q ,()BOE DOF ASA ∴∆≅∆,EO FO ∴=,∴四边形BEDF 是平行四边形;(2)EF BD ⊥或DE BE =或EDO FDO ∠=∠. Q 四边形BEDF 是平行四边形,EF BD ⊥Q ,∴平行四边形BEDF 是菱形.故答案为:EF BD ⊥或DE BE =或EDO FDO ∠=∠(答案不唯一).23.有四张正面分别标有数字1,2,3-,4-的不透明卡片,它们除了数字之外其余全部相同,将它们背面朝上,洗匀后从四张卡片中随机地抽取一张不放回,将该卡片上的数字记为m ,再随机地抽取一张,将卡片上的数字记为n .(1)请用画树状图或列表法写出(,)m n 所有的可能情况;(2)求所选的m ,n 能使一次函数y mx n =+的图象经过第一、三、四象限的概率. 【答案】(1)答案见解析;(2)13.【解析】(1)画树状图如下:则(,)m n 所有的可能情况是(1,2)(1,3)(1-,4)(2-,1)(2,3)(2-,4)(3--,1)(3-,2)(3-,4)(4--,1)(4-,2);(4,3)--.(2)所选的m ,n 能使一次函数y mx n =+的图象经过第一、三、四象限的情况有: (1,3)(1-,4)(2-,3)(2-,4)-共4种情况,则能使一次函数y mx n =+的图象经过第一、三、四象限的概率是41123=. 五、解答题(三)(本大题共2小题,每小题10分,共20分)24.如图,AB 是O e 的直径,点E 为线段OB 上一点(不与O 、B 重合),作EC OB ⊥,交O e 于点C ,作直径CD ,过点C 的切线交DB 的延长线于点P ,作AF PC ⊥于点F ,连接CB .(1)求证:AC 平分FAB ∠; (2)求证:2BC CE CP =g ; (3)若34CE CP =,O e 的面积为12π,求PF 的长.【答案】(1)证明见解析;(2)证明见解析;(3)7PF =. 【解析】(1)CP Q 是O e 的切线,OC CP ∴⊥, AF PC ⊥Q ,//OC AF ∴,FAC ACO ∴∠=∠, OA OC =Q ,OAC ACO ∴∠=∠, FAC OAC ∴∠=∠,即AC 平分FAB ∠;(2)证明:AB Q 是O e 的直径, 90ACB ∴∠=︒,即90CAB ABC ∠+∠=︒,EC OB ⊥Q ,90ECB ABC ∴∠+∠=︒,CAB ECB ∴∠=∠, CP Q 是O e 的切线,CAB BCP ∴∠=∠,ECB BCP ∴∠=∠, CD Q 是O e 的直径,90CBD ∴∠=︒, CEB CBP ∴∠=∠,又ECB BCP ∠=∠,CEB CBP ∴∆∆∽,∴CE CBCB CP=,即2BC CE CP =g ; (3)解:设3CE x =, Q34CE CP =,4CP x ∴=,2BC CE CP =Q g ,BC ∴=,由勾股定理得,BE ,O Q e 的面积为12π,O ∴e 的半径为AB = 90ACB ∠=︒Q ,CE AB ⊥,2BC BE AB ∴=g ,即2)=g 1x =,则3CE =,4CP =,AC Q 平分FAB ∠,AF PC ⊥,EC OB ⊥,3CF CE ∴==, 7PF CF CP ∴=+=.25.已知抛物线21()22y a x =--,顶点为A ,且经过点3(,2)2B -,点5(,2)2C .(1)求抛物线的解析式;(2)如图1,直线AB 与x 轴相交于点M ,y 轴相交于点E ,抛物线与y 轴相交于点F ,在直线AB 上有一点P ,若OPM MAF ∠=∠,求POE ∆的面积;(3)如图2,点Q 是折线A B C --上一点,过点Q 作//QN y 轴,过点E 作//EN x 轴,直线QN 与直线EN 相交于点N ,连接QE ,将QEN ∆沿QE 翻折得到1QEN ∆,若点1N 落在x 轴上,请直接写出Q 点的坐标.【答案】(1)21()22y x =--;(2)POE ∆的面积为115或13;(3)点Q 的坐标为5(4-,3)2或(,2)或,2).【解析】(1)把点3(,2)2B -代入21()22y a x =--,解得:1a =,∴抛物线的解析式为:21()22y x =--;(2)由21()22y x =--知1(2A ,2)-,设直线AB 解析式为:y kx b =+,代入点A ,B 的坐标, 得:122322k b k b⎧-=+⎪⎪⎨⎪=-+⎪⎩,解得:21k b =-⎧⎨=-⎩,∴直线AB 的解析式为:21y x =--,易求(0,1)E -,7(0,)4F -,1(,0)2M -,若OPM MAF ∠=∠,//OP AF ∴,OPE FAE ∴∆∆∽,∴14334OP OE FA FE ===,∴43OP FA ===设点(,21)P t t --解得1215t =-,223t =-, POE ∆Q 的面积1||2OE t =g g ,POE ∴∆的面积为115或13. (3)若点Q 在AB 上运动,如图1,设(,21)Q a a --,则NE a =-、2QN a =-, 由翻折知2QN QN a '==-、N E NE a '==-, 由90QN E N ∠'=∠=︒易知QRN ∆'∽△N SE ',∴QR RN QN N S ES EN ''=='',即21221QR a a ES a ---===-,2QR ∴=、212a ES --=, 由NE ES NS QR +==可得2122a a ---+=,解得:54a =-,5(4Q ∴-,3)2;若点Q 在BC 上运动,且Q 在y 轴左侧,如图2,设NE a =,则N E a '=,易知2RN '=、1SN '=、3QN QN '==,QR ∴=SE a ,在Rt SEN ∆'中,222)1a a -+=,解得:a =,(Q ∴,2); 若点Q 在BC 上运动,且点Q 在y 轴右侧,如图3,设NE a =,则N E a '=,易知2RN '=、1SN '=、3QN QN '==,QR ∴=SE a ,在Rt SEN ∆'中,222)1a a -+=,解得:a =,Q ∴2).综上,点Q 的坐标为5(4-,3)2或(,2)或2).2020中考模拟卷二数 学(考试时间:90分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

2020年广东中考数学押题卷1到5卷

2020年广东中考数学押题卷1到5卷

24.如图,在 Rt△ABC 中,∠ACB=90°,AO 是△ABC 的角平分线.以 O 为圆心, OC 为半径作⊙O.(1)求证:AB 是⊙O 的切线. (2)已知 AO 交⊙O 于点 E,延长 AO 交⊙O 于点 D,tanD= ,求 的值.
(3)在(2)的条件下,设⊙O 的半径为 3,求 AB 的长.
个“广”字中的棋子个数是________,第 n 个“广”字中的棋子个数是________
(A)这一天中最高气温是 24℃ (B)这一天中最高气温与最低气温的差为 16℃ (C)这一天中 2 时至 14 时之间的气温在逐渐升高 (D)这一天中只有 14 时至 24 时之间的气温在逐渐降低
16. 如图 8 是由一些相同长方体的积木块搭成的几何体的三视图, 则此几何体共由________块长方体的积木搭成
四、解答题(本大题共 3 小题,每题 7 分共 21 分)
20.某校学生利用双休时间去距学校 10km 的炎帝故里参观,一部分学生骑自行车先走,过了 20min 后, 其余学生乘汽车沿相同路线出发,结果他们同时到达.已知汽车的速度是骑车学生速度的 2 倍,求骑车 学生的速度和汽车的速度.
1 版权所有,翻版必究
2020 年广东中考数学押题卷 1
一、选择题(本大题共 10 小题,每小题 3 分,共 30 分)
1.在 3,﹣1,0,﹣2 这四个数中,最大的数是( )
A.0
B.6 C.﹣2
D.3
2.下列图形中是中心对称图形的有( )个.
11.据民政部网站消息,截至 2014 年底,我国 60 岁以上老年人口已经达到 2.12 亿,
10
(C)
13
12
(D)
13
10. 如图 6,在 ABCD 中,AB=6,AD=9,∠BAD 的平分线交 BC 于点 E,交 DC 的延长线于点 F,BG⊥AE,垂足
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年广东省中考数学模拟试卷
一.选择题(共10小题,满分30分,每小题3分)
1.(3分)下列说法正确的是()
A.无限小数都是无理数
B.没有立方根
C.正数的两个平方根互为相反数
D.﹣(﹣13)没有平方根
2.(3分)下列轴对称图形中,对称轴的数量小于3的是()
A.B.
C.D.
3.(3分)据统计,2019年杭州市区初中毕业生为25000余人,25000用科学记数法表示为()
A.25×103B.2.5×103C.2.5×104D.0.25×105 4.(3分)在某市举行的“慈善万人行”大型募捐活动中,某班50位同学捐款金额统计如下表:则在这次活动中,该班同学捐款金额的众数是()
金额(元)20303550100
学生数(人)20105105
A.20元B.30元C.35元D.100元
5.(3分)用5个完全相同的小正方体组合成如图所示的立体图形,它的俯视图为()A.B.C.D.
6.(3分)如图,是一张长方形纸片(其中AB∥CD),点E,F分别在边AB,AD上.把这张长方形纸片沿着EF折叠,点A落在点G处,EG交CD于点H.若∠BEH=4∠AEF,则∠CHG的度数为()
A.108°B.120°C.136°D.144°
7.(3分)已知x>y,则下列不等式不成立的是()
A.x﹣6>y﹣6B.3x>3y
C.﹣2x<﹣2y D.﹣3x+6>﹣3y+6
8.(3分)若关于x的方程x2+(m+1)x+m2=0的两个实数根互为倒数,则m的值是()A.﹣1B.1或﹣1C.1D.2
9.(3分)如图,菱形ABCD中,对角线AC,BD相交于点O,M为边AB的M中点,若MO=5cm,则菱形ABCD的周长为()
A.5cm B.10cm C.20cm D.40cm
10.(3分)如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()
A.B.2C.D.2
二.填空题(共7小题,满分28分,每小题4分)
11.(4分)分解因式:6xy2﹣9x2y﹣y3=.
12.(4分)函数y=中,自变量x的取值范围是.
13.(4分)小明从P点出发,沿直线前进10米后向右转a,接着沿直线前进10米,再向右转a,…,照这样走下去,第一次回到出发地点P时,一共走了120米,则a的度数是.
14.(4分)小明上学经过两个路口,如果每个路口可直接通过或需等待的可能性相等,那么小明上学时在这两个路口都直接通过的概率为.
15.(4分)如图,已知⊙O的半径为2,弦AB,CD所对的圆心角分别是∠AOB,∠COD,若∠AOB与∠COD互补,弦CD=6,则弦AB的长为.
16.(4分)如图,点A是双曲线y=在第一象限上的一动点,连接
AO并延长交另一分支于点B,以AB为斜边作等腰Rt△ABC,点C
在第二象限,随着点A的运动,点C的位置也不断的变化,但始
终在一函数图象上运动,则这个函数的解析式为.
17.(4分)如图,A是正比例函数y=x图象上的点,且在第一象限,过点A作AB⊥y轴于点B,以AB为斜边向上作等腰直角三角形ABC,
若AB=2,则点C的坐标为.
三.解答题(一)(共3小题,满分18分)
18.(6分)计算:2cos30°+()﹣1﹣+20190
19.(6分)先化简,再求值:,其中x满足x2+3x﹣1=0.20.(6分)如图,▱ABCD中,
(1)作边AB的中点E,连接DE并延长,交CB的延长线于点F;
(用尺规作图,保留作图痕迹,不要求写作法):
(2)已知▱ABCD的面积为8,求四边形EBCD的面积.
四.解答题(二)(共3小题,满分24分)
21.(8分)我市正在努力创建“全国文明城市”,2018年梅州已入选“全国文明城市提名城市”.为进一步营造“创文”氛围,我市某学校组织了一次全校2000名学生都参加的“创文知识竞赛”,竞赛题共10题.竞赛活动结束后,学校团委随机抽查部分考生的考卷,对考生答题情况进行分析统计,发现所抽查的考卷中答对题量最少为6题,并且绘制了如下两幅不完整的统计图.请根据统计图提供的信息解答以下问题:
(1)本次抽查的样本容量是;在扇形统计图中,m=;n=,“答对8题”
所对应扇形的圆心角为度;
(2)将条形统计图补充完整;
(3)请根据以上调査结果,估算出该校答对不少于8题的学生人数.
22.(8分)我市大力发展乡村旅游产业,全力打造客都美丽乡村”,其中“客家美景、客家文化、客家美食”享誉全省,游人络绎不绝.去年我市某村村民抓住机遇,投入20万元创办农家乐(餐饮+住宿),一年时间就收回投资的80%,其中餐饮收入是住宿收入的2倍还多1万元.
(1)求去年该农家乐餐饮和住宿的收入各为多少万元?
(2)今年该村村民再投入了10万元,增设了土特产的实体销售和网上销售项目并实现盈利,村民在接受记者采访时说,预计今年餐饮和住宿的收入比去年还会有10%的增长.这两年的总收入除去所有投资外还能获得不少于10万元的纯利润,请问今年土特产销售至少收入多少万元?
23.(8分)如图,已知△ABC是等边三角形,E为AC上一点,连接BE.将AC绕点E旋转,使点C落在BC上的点D处,点A落在BC上方的点F处,连接AF.
求证:四边形ABDF是平行四边形.
五.解答题(三)(共2小题,满分20分)
24.(10分)如图,AD是⊙O的直径,弧BA=弧BC,BD交AC于点E,点F在DB的延长线上,且∠BAF=∠C.
(1)求证:AF是⊙O的切线;
(2)求证:△ABE∽△DBA;
(3)若BD=8,BE=6,求AB的长.
25.(10分)如图,在平面直角坐标系中,已知抛物线y=ax2+bx+2(a≠0)与x轴交于A (﹣1,0),B(3,0)两点,与y轴交于点C.
(1)求该抛物线的解析式;
(2)如图①,若点D是抛物线上一个动点,设点D的横坐标为m(0<m<3),连接CD、BD、BC、AC,当△BCD的面积等于△AOC面积的2倍时,求m的值;
(3)若点N为抛物线对称轴上一点,请在图②中探究抛物线上是否存在点M,使得以B,C,M,N为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点M的坐标;若不存在,请说明理由.。

相关文档
最新文档