贪心算法的经典例子
经典贪心题
贪心算法是一种在解决问题的过程中追求局部最优的算法,对于一个有多种属性的事物来说,贪心算法会优先满足某种条件,追求局部最优的同时希望达到整体最优的效果。
以下是一些经典的贪心算法问题:1. 背包问题:给定一组物品,每个物品都有自己的重量和价值,背包的总容量有限。
贪心算法需要选择物品以最大化背包中物品的总价值,同时不超过背包的总容量。
这种问题可以有多种变体,例如分数背包问题和完全背包问题。
2. 硬币找零问题:给定一组硬币的面值和数量,以及需要找零的金额。
贪心算法需要选择硬币以最小化找零的总数量。
这个问题可以通过从大到小排序硬币,并从最大面值的硬币开始选择,直到找零的金额达到所需的总金额。
3. 区间选点问题:给定一系列闭区间,每个闭区间都有一个起始点和结束点。
贪心算法需要选择尽量少的点,使得每个闭区间内至少有一个点被选中。
这个问题可以通过对结束点进行排序,并从左到右选择结束点,直到下一个要选择的结束点与上一个选择的结束点之间的距离大于当前选择的结束点与上一个选择的结束点之间的距离为止。
4. 区间覆盖问题:给定一系列闭区间,贪心算法需要选择尽量少的区间,使得所有区间都被覆盖。
这个问题可以通过对每个闭区间的左端点进行排序,并从左到右选择左端点,直到下一个要选择的左端点与上一个选择的左端点之间的距离大于当前选择的左端点与上一个选择的左端点之间的距离为止。
5. 排班问题:给定一组员工和他们的班次需求,以及一组工作日的日程安排。
贪心算法需要为员工分配班次,以最小化总工作时间并满足所有工作日的需求。
这个问题可以通过从可用的班次中选择最长的班次,并从左到右分配员工,直到所有员工都被分配到一个班次为止。
这些问题是贪心算法的经典示例,它们展示了贪心算法在解决优化问题中的广泛应用。
贪心算法实例分析
贪心算法实例分析贪心算法,是一种常见的解决问题的方法,尤其在最优化问题中得到了广泛的应用。
简单来说,贪心算法是建立在选取局部最优解的基础上,通过不断的贪心选择,达到全局最优解的目的。
本文将通过两个实例,介绍使用贪心算法的思路和实现方法。
实例一:零钱兑换问题假设有 n 种不同面值的硬币,每种面值的硬币数量无限,现在需要兑换一个目标值amount 元,求兑换所需的最少硬币数。
例如:有2元、5元、10元、20元、50元、100元六种面值的硬币,需要兑换52元,则兑换最少需要三枚硬币:两枚20元硬币和一枚10元硬币。
思路分析:对于这个问题,我们可以把它看成选择一定数量的硬币使其面值之和等于 amount,且硬币数量最少。
为了使硬币数量最少,我们每次都选取当前面值最大并且小于剩余兑换金额的硬币。
这相当于在每个阶段选择局部最优解,最终得到的就是全局最优解。
实现方法:1. 排序:将硬币面额按从大到小的顺序排列。
2. 贪心选择:从面额最大的硬币开始选取,直到兑换金额为 0 或全部面额都被选择过。
代码示例:```pythondef coinChange(coins, amount):coins.sort(reverse=True) # 排序res = 0for coin in coins:while amount >= coin: # 贪心选择amount -= coinres += 1return res if amount == 0 else -1```实例二:区间调度问题假设有 n 个区间 [start, end],现在需要选出最多的区间,使得它们没有重叠。
例如:有四个区间[1,3]、[2,4]、[3,6]、[5,7],选出的最多区间数是 3,即选出[1,3]、[3,6]、[5,7]这三个区间。
思路分析:这个问题可以看成排序和贪心选择问题的复合。
首先,我们将所有区间按照 end 非递减的顺序排序。
然后从第一个区间开始,依次选取与当前区间不重叠且start 大于等于当前区间的所有区间,直到所有区间都被检查完。
c++贪心算法经典例题
c++贪心算法经典例题
经典的贪心算法例题有很多,以下是其中几个常见的例题:
1. 分糖果问题:
有一群小朋友,每个人都有一个评分。
现在需要给他们分糖果,要求评分高的小朋友比他旁边评分低的小朋友拥有更多的糖果。
求至少需要准备多少糖果。
2. 区间覆盖问题:
给定一个区间集合,每个区间表示一个工作时间段。
现在需要选择尽可能少的区间,覆盖整个时间范围。
求最少需要选择多少个区间。
3. 最佳买卖股票时机:
给定一个股票的价格列表,可以任意次数买入和卖出股票。
但是同一时间只能持有一支股票,求能够获得的最大利润。
4. 最大会议安排:
给定一系列的会议,每个会议有开始时间和结束时间。
要求安排尽可能多的会议,使得它们不会发生时间上的冲突。
5. 跳跃游戏:
给定一个非负整数数组,每个元素表示在该位置上能够跳跃的最大长度。
初始位置在第一个元素,判断能否跳到最后一个元素。
以上仅是一些常见的例题,贪心算法广泛应用于各种问题中。
在解决实际问题时,需要根据具体情况设计贪心策略,找到合适的贪心策略才能得到正确的解答。
列举用贪心算法求解的经典问题
列举用贪心算法求解的经典问题贪心算法是一种简单而高效的问题求解方法,通常用于求解最优化问题。
它通过每一步选择当前状态下的最优解,最终得到全局最优解。
贪心算法的核心思想是:每一步都做出一个局部最优的选择,并认为这个选择一定可以达到全局最优。
以下是一些经典问题,可以用贪心算法求解:1. 零钱兑换问题(Coin Change Problem):给定一些不同面额的硬币和一个目标金额,找到最少的硬币数量,使得硬币总额等于目标金额。
贪心算法可以按照硬币的面额从大到小进行选择,每次选择尽量大面额的硬币。
2. 区间调度问题(Interval Scheduling Problem):给定一些区间,找到最多的不相交区间。
贪心算法可以按照区间的结束时间进行排序,每次选择结束时间最早的区间,确保选择的区间不重叠。
3. 分糖果问题(Candy Problem):给定一个数组表示每个孩子的评分,要求给这些孩子分糖果,满足以下要求:每个孩子至少分到一个糖果,评分高的孩子要比相邻孩子分到的糖果多。
贪心算法可以从左到右进行两次遍历,分别处理评分递增和评分递减的情况。
4. 跳跃游戏问题(Jump Game Problem):给定一个非负整数数组,表示每个位置的最大跳跃长度,判断是否能从第一个位置跳到最后一个位置。
贪心算法可以记录当前能够到达的最远位置,并且更新为更远的位置。
5. 任务调度器问题(Task Scheduler Problem):给定一串任务,每个任务需要一定的冷却时间,要求以最短的时间完成所有任务。
贪心算法可以按照出现次数进行排序,优先执行出现次数最多的任务,并在冷却时间内执行其他任务。
6. 区间覆盖问题(Interval Covering Problem):给定一些区间,找到最少的区间数,使得它们的并集覆盖了所有输入区间。
贪心算法可以根据区间的起始位置进行排序,每次选择最早结束的区间,并将它添加到最终结果中。
以上仅是一些经典问题的例子,实际上还有很多问题可以用贪心算法来求解。
贪心算法几个经典例子c语言
贪心算法几个经典例子c语言1. 零钱兑换问题题目描述:给定一些面额不同的硬币和一个总金额,编写一个函数来计算可以凑成总金额所需的最少的硬币个数。
如果没有任何一种硬币组合能够凑出总金额,返回 -1。
贪心策略:每次选择面额最大的硬币,直到凑出总金额或者无法再选择硬币为止。
C语言代码:int coinChange(int* coins, int coinsSize, int amount){int count = 0;for(int i = coinsSize - 1; i >= 0; i--){while(amount >= coins[i]){amount -= coins[i];count++;}}return amount == 0 ? count : -1;}2. 活动选择问题题目描述:有 n 个活动,每个活动都有一个开始时间和结束时间,选择一些活动使得它们不冲突,且能够参加的活动数最多。
贪心策略:每次选择结束时间最早的活动,直到所有活动都被选择或者无法再选择为止。
C语言代码:typedef struct{int start;int end;}Activity;int cmp(const void* a, const void* b){return ((Activity*)a)->end - ((Activity*)b)->end;}int maxActivities(Activity* activities, int n){qsort(activities, n, sizeof(Activity), cmp);int count = 1;int end = activities[0].end;for(int i = 1; i < n; i++){if(activities[i].start >= end){count++;end = activities[i].end;}}return count;}3. 跳跃游戏题目描述:给定一个非负整数数组,你最初位于数组的第一个位置。
因为贪心而失败的例子
因为贪心而失败的例子贪心算法是一种常用的解决问题的算法思想,它通常在每一步选择中都采取当前状态下最好或最优的选择,从而希望最终能够达到全局最优的结果。
然而,贪心算法的贪心选择可能会导致最终结果并非全局最优,而是局部最优或者根本无法得到可行解。
因此,贪心算法在某些问题上会因为贪心而失败。
下面将列举10个因为贪心而失败的例子。
1. 颜色分配问题:假设有n个节点需要着色,并且相邻的节点不能具有相同的颜色。
贪心算法选择每次都选择可用颜色最少的节点进行着色。
然而,这种贪心选择可能会导致最终无法着色所有节点,因为后续节点的颜色选择受到前面节点的限制。
2. 找零问题:假设需要找零的金额为m,而只有面额为1元、5元、10元的硬币。
贪心算法选择每次都选择面额最大的硬币进行找零。
然而,在某些情况下,贪心选择可能会导致找零的硬币数量不是最小的。
3. 最小生成树问题:在一个连通图中,选择一些边构成一个树,使得这些边的权值之和最小,同时保证图中的所有节点都能够通过这些边连通。
贪心算法选择每次都选择权值最小的边加入到树中。
然而,这种贪心选择可能会导致最终得到的树不是最小生成树。
4. 背包问题:给定一组物品,每个物品有自己的重量和价值,在给定的背包容量下,选择一些物品放入背包中,使得背包中物品的总价值最大。
贪心算法选择每次都选择单位重量价值最大的物品放入背包中。
然而,在某些情况下,贪心选择可能会导致最终得到的背包价值不是最大的。
5. 最短路径问题:在一个有向图中,找到两个节点之间的最短路径。
贪心算法选择每次都选择距离最近的节点进行扩展。
然而,这种贪心选择可能会导致最终得到的路径不是最短的。
6. 任务调度问题:给定一组任务,每个任务有自己的开始时间和结束时间,在给定的时间段内,选择一些任务进行调度,使得能够完成尽可能多的任务。
贪心算法选择每次都选择结束时间最早的任务进行调度。
然而,在某些情况下,贪心选择可能会导致最终完成的任务数量不是最多的。
c++贪心算法经典例题
c++贪心算法经典例题和详解贪心算法(Greedy Algorithm)是一种优化问题解决方法,其基本思想是每一步都选择当前状态下的最优解,以期望达到全局最优解。
贪心算法的特点是每一步都要做出一个局部最优的选择,而这些局部最优选择最终构成了全局最优解。
下面是一个经典的贪心算法例题以及详解:例题:活动选择问题(Activity Selection Problem)假设有一个需要在同一时段使用同一个资源的活动集合,每个活动都有一个开始时间和结束时间。
设计一个算法,使得能够安排最多数量的互不相交的活动。
# 输入:-活动的开始时间数组`start[]`。
-活动的结束时间数组`end[]`。
# 输出:-选择的互不相交的活动的最大数量。
# 算法详解:1. 首先,将活动按照结束时间从小到大排序。
2. 选择第一个活动,并将其加入最终选择的集合中。
3. 对于剩下的活动,选择下一个结束时间最早且与前一个活动不冲突的活动。
4. 重复步骤3,直到所有活动都被选择。
```cpp#include <iostream>#include <algorithm>#include <vector>using namespace std;// 定义活动结构体struct Activity {int start, end;};// 比较函数,用于排序bool compareActivities(Activity a, Activity b) {return a.end < b.end;}// 贪心算法解决活动选择问题void activitySelection(vector<Activity>& activities) {// 按照结束时间排序sort(activities.begin(), activities.end(), compareActivities);// 第一个活动总是被选中cout << "Selected activity: (" << activities[0].start << ", " << activities[0].end << ")" << endl;// 选择其余活动int lastSelected = 0;for (int i = 1; i < activities.size(); i++) {// 如果当前活动的开始时间大于等于上一个选择的活动的结束时间,则选择该活动if (activities[i].start >= activities[lastSelected].end) {cout << "Selected activity: (" << activities[i].start << ", " << activities[i].end << ")" << endl;lastSelected = i;}}}int main() {vector<Activity> activities = {{1, 2}, {3, 4}, {0, 6}, {5, 7}, {8, 9}, {5, 9}};cout << "Activities before sorting:" << endl;for (const Activity& activity : activities) {cout << "(" << activity.start << ", " << activity.end << ") ";}cout << endl;activitySelection(activities);return 0;}```在这个例子中,我们首先定义了一个活动的结构体`Activity`,然后编写了一个比较函数`compareActivities` 用于排序。
c++贪心算法经典例题
c++贪心算法经典例题(原创实用版)目录一、贪心算法的基本概念与特点二、贪心算法的经典例题1.背包问题2.带有期限的作业排序3.最小生成树4.单源点最短路径三、贪心算法的应用场景与策略选择四、贪心算法的优缺点及注意事项五、总结正文一、贪心算法的基本概念与特点贪心算法是一种求解最优化问题的方法,其主要特点是在每一步都做出当前看来最好的选择,从而希望导致结果是全局最好的解。
贪心算法不从整体最优上加以考虑,他所做出的仅是在某种意义上的局部最优解。
贪心算法没有固定的算法框架,算法设计的关键是贪心策略的选择。
二、贪心算法的经典例题1.背包问题:给定一组物品,每种物品都有一定的价值和重量,要求在限定的总重量内,选取若干物品放入背包,使得背包中物品的总价值最大。
2.带有期限的作业排序:给定一组作业,每项作业有固定的执行时间和期限,要求在期限内尽可能多地完成作业,使得完成作业的总时间最小。
3.最小生成树:给定一个无向连通图,要求找出一棵包含所有顶点且边权值之和最小的生成树。
4.单源点最短路径:给定一个有权值边的无向图,要求找出从指定源点到其他所有顶点的最短路径。
三、贪心算法的应用场景与策略选择贪心算法适用于问题能够分解成子问题来解决的情况,子问题的解可以相互独立地求得。
在贪心算法的应用过程中,需要仔细分析问题的特点,选择合适的贪心策略。
贪心策略的选择必须满足无后效性,即某个状态以后的过程不会影响以前的状态,只与当前状态有关。
四、贪心算法的优缺点及注意事项贪心算法的优点是简单易懂、代码实现简单,且在许多情况下能够得到整体最优解。
缺点是贪心算法并不适用于所有问题,对于一些具有特殊性质的问题,可能无法得到最优解。
在使用贪心算法时,需要注意贪心策略的选择,避免因为贪心策略不合适而导致解的不正确。
五、总结贪心算法是一种求解最优化问题的方法,其关键在于选择合适的贪心策略。
贪心算法适用于问题能够分解成子问题来解决的情况,能够快速得到满意的解。
贪心算法的应用案例
贪心算法的应用案例贪心算法是一种简单直观的算法策略,用于解决一些优化问题。
它的基本思想是在每一步选择中都选择当前状态下的最优解,以期望最终达到全局最优解。
本文将通过几个具体的应用案例来展示贪心算法的实际应用。
1. 最小生成树问题最小生成树问题是图论中经典的问题之一,主要涉及到如何在一个连通加权无向图中找到一个包含所有顶点且权重最小的树。
其中,贪心算法的应用使得问题的解决更加高效。
例如,我们有一个城市网络,城市之间的距离用边的权重表示,我们希望在城市之间建立最小的铁路网络以确保每个城市都能够连通。
这可以转化为一个最小生成树问题,其中贪心算法通过选择权重最小的边,快速找到最优解。
2. 零钱兑换问题零钱兑换问题是一个经典的动态规划问题,但同样可以使用贪心算法来解决。
给定一定面值的硬币,我们需要找零某个金额的钱,求出所需硬币的最少数量。
贪心算法解决这个问题的思路是,每次选择价值最大的硬币,直到凑够所需的金额。
这样可以保证得到的结果是最优解。
例如,假设我们有面值为[1, 5, 10, 25]的硬币,需要凑够30美分,贪心算法会优先选择25美分硬币,然后再选择5美分硬币,最后选择1美分硬币,总共需要三枚硬币。
贪心算法快速获得了最优解。
3. 区间调度问题区间调度问题是一类经典的贪心算法问题,主要涉及到如何在一组任务中选择最大数量的相容任务。
每个任务都有一个开始时间和结束时间,任务之间不能同时进行,我们需要找到最大数量的任务能够不发生冲突地进行。
贪心算法解决这个问题的思路是,每次选择结束时间最早的任务,然后排除与其冲突的任务,直到没有任务可选为止。
这样就能够保证选择的任务最多且不发生冲突。
例如,假设我们有以下任务与其对应的开始时间和结束时间:A(1, 4),B(3, 6),C(5, 7)。
贪心算法会先选择A(1, 4),然后排除与其冲突的任务B(3, 6),最后剩下任务C(5, 7)。
贪心算法得到了最大数量的相容任务。
c++贪心算法经典例题
c++贪心算法经典例题摘要:一、贪心算法简介1.贪心算法的定义2.贪心算法的特点3.贪心算法适用的问题类型二、C++贪心算法经典例题1.背包问题a.0-1 背包问题b.完全背包问题c.动态背包问题2.最小生成树a.Kruskal 算法b.Prim 算法3.单源点最短路径a.Dijkstra 算法b.Floyd-Warshall 算法4.最长公共子序列a.贪心算法实现b.动态规划实现正文:一、贪心算法简介贪心算法(Greedy Algorithm)是一种求解最优解的方法。
它是在对问题求解时,总是做出在当前看来是最好的选择。
贪心算法并不追求整体最优解,只希望得到较为满意的解。
贪心算法的关键是贪心策略的选择,必须满足无后效性,即某个状态以后的过程不会影响以前的状态,只与当前状态有关。
贪心算法适用的问题类型包括背包问题、最小生成树、单源点最短路径和最长公共子序列等。
二、C++贪心算法经典例题1.背包问题背包问题(Knapsack Problem)是一种典型的贪心算法问题。
它描述的是有一个背包,有一定的容量,需要装载若干物品,每个物品有一定的价值和重量,要求在不超过背包容量的前提下,如何选择装载物品使得背包中的物品总价值最大。
背包问题可以分为0-1 背包问题、完全背包问题和动态背包问题。
2.最小生成树最小生成树(Minimum Spanning Tree,简称MST)是一种图论中的算法问题。
给定一个加权连通图,求解一个生成树,使得该生成树中所有边的权值之和最小。
最小生成树的经典算法有Kruskal 算法和Prim 算法。
3.单源点最短路径单源点最短路径(Single Source Shortest Path)问题是在一个图中,从源点出发到其他所有顶点的最短路径。
经典算法包括Dijkstra 算法和Floyd-Warshall 算法。
4.最长公共子序列最长公共子序列(Longest Common Subsequence,简称LCS)问题是求两个序列中最长的公共子序列。
贪心算法经典例题
贪心算法经典例题贪心算法是一种求解最优问题的算法思想,其核心理念是每一步都选择当前最优的策略,从而达到全局最优解。
贪心算法可以应用于许多经典问题,下面将介绍几个常见的贪心算法经典例题及相关参考内容。
1. 会议室安排问题题目描述:给定一组会议的开始时间和结束时间,求解如何安排会议,使得尽可能多的会议可以在同一时间段内进行。
解题思路:贪心算法可以通过每次选择结束时间最早的会议来求解。
首先将会议按照结束时间排序,选择第一个会议作为首先安排的会议,然后依次选择后续结束时间不冲突的会议进行安排。
相关参考内容:- 《算法导论》第16章:贪心算法(ISBN: 9787115265955)- 《数据结构与算法分析》第13章:贪心算法(ISBN: 9787302483626)2. 零钱兑换问题题目描述:给定一定面额的硬币,求解如何用最少的硬币数量兑换指定金额的零钱。
解题思路:贪心算法可以通过每次选择面额最大且不超过目标金额的硬币来求解。
从面额最大的硬币开始,尽可能多地选择当前面额的硬币,并减去已经选择的硬币金额,直到金额为0。
相关参考内容:- 《算法导论》第16章:贪心算法(ISBN: 9787115265955)- 《算法4》第1章:基础(ISBN: 9787302444627)3. 区间调度问题题目描述:给定一组区间,求解如何选择尽可能多的不重叠区间。
解题思路:贪心算法可以通过每次选择结束时间最早的区间来求解。
首先将区间按照结束时间排序,选择第一个区间作为首先选择的区间,然后依次选择后续结束时间不与已经选择的区间重叠的区间进行选择。
相关参考内容:- 《算法导论》第16章:贪心算法(ISBN: 9787115265955)- 《数据结构与算法分析》第13章:贪心算法(ISBN: 9787302483626)4. 分糖果问题题目描述:给定一组孩子和一组糖果,求解如何分配糖果,使得最多的孩子能够得到满足。
解题思路:贪心算法可以通过每次选择糖果最小且能满足当前孩子的糖果来求解。
列举贪心算法求解的经典问题
列举贪心算法求解的经典问题贪心算法是一种常用的求解优化问题的算法,它对问题的求解过程进行优先级排序,每次都选择当前最优的方案,从而得到整体最优的解。
以下是常见的几个贪心算法求解问题。
1.零钱兑换问题:给定一定面额的硬币,求解组成指定数量的钱的最小硬币数。
可以使用贪心算法,每次选择面额最大的硬币进行组合。
2.区间覆盖问题:给定若干条线段和一定长度的区间,求解怎样选择几条线段才能够覆盖整个区间。
可用贪心算法,每次选择覆盖范围最大的线段。
3.背包问题:给定一定限制下的物品和背包容量,求解如何选择物品放入背包中是物品总价值最大。
可用贪心算法,每次选择每个物品单位体积价值最大的物品放入背包中。
4.最小生成树问题:给定一个有n个节点的带权无向图,求解构建一个包含所有节点的最小花费生成树的问题。
可用贪心算法,每次选择当前最小的边加入生成树中。
5. Dijkstra算法:给定一个n个节点的有向图,求解从一个节点到所有节点的最短路径。
可用贪心算法,每次选择当前距离最短的节
点进行扩展。
6. Huffman编码问题:给定一组字符及它们在文本中出现的频率,求解一种编码方式使得编码长度最短。
可用贪心算法,每次选择频率
最小的两个字符进行合并构成一个新的节点。
以上是常见的一些贪心算法求解问题,可以看到它们涉及的问题
领域十分广泛,也是算法竞赛和工程实践中经常使用的算法之一。
贪
心算法虽然看似简单,但需要对问题的模型和贪心策略的设计有深入
的理解,才能够达到最优的解法。
1贪心算法实例
1贪心算法实例贪心算法是一种在每个阶段选择最优解,以期望使最终解也是最优的算法。
它通常不与动态规划相比较,而是作为其一种快速解决方案的方法。
下面我将为你介绍一个贪心算法的实例:最小硬币找零问题。
在现实生活中,我们经常会遇到需要找零的情况,比如给顾客找最少的硬币来凑齐一定金额。
最小硬币找零问题就是通过贪心算法来解决这个问题,即每次找零都找剩下金额中数量最大的硬币。
假设有以下几种硬币:25分、10分、5分和1分。
假设需要找零的金额是41分。
那么贪心算法的实现步骤如下:1.初始化一个空的结果集,用来保存找零的硬币。
2.从最大的硬币开始,即25分硬币。
将41分除以25分硬币,得到商为1和余数为163.将1个25分硬币加入结果集,将16分作为新的待找零金额。
4.接下来选择10分硬币,将16分除以10分硬币,得到商为1和余数为65.将1个10分硬币加入结果集,将6分作为新的待找零金额。
6.再选择5分硬币,将6分除以5分硬币,得到商为1和余数为17.将1个5分硬币加入结果集,将1分作为新的待找零金额。
8.最后选择1分硬币,将1分除以1分硬币,得到商为1和余数为0。
9.将1个1分硬币加入结果集,此时余数为0,找零完毕。
10.返回结果集。
以上就是用贪心算法解决最小硬币找零问题的步骤。
贪心算法的关键是每次选择最优解,即选择剩下金额中数量最大的硬币。
这样就能保证每次找零都尽可能少地使用硬币数量。
然而,贪心算法并不是适用于所有问题的解决方案。
因为它每次只考虑局部最优解,而没有考虑全局最优解。
在一些情况下,使用贪心算法可能得到次优解或者无解。
总结来说,贪心算法是一种简单、高效的算法思想,适用于一些特定的优化问题。
但对于一些复杂的问题,还是需要综合考虑动态规划等其他算法来得到最优解。
贪心算法的例子
贪心算法的例子
贪心算法是一种解决优化问题的算法,它通常用于在一组选择中作出最优决策。
在贪心算法中,每次选择都是当前状态下的最优解,而不考虑将来可能出现的情况。
下面是一些贪心算法的例子。
1. 零钱兑换问题
假设你有一些硬币,每个硬币的面值分别为1、5、10、50、100。
现在要找零n元,最少需要多少个硬币呢?在贪心算法中,我们每次选择最大面值的硬币,直到凑够n元为止。
2. 区间覆盖问题
假设你有一些区间,每个区间用起点和终点表示。
现在要用尽可能少的区间覆盖所有的点,怎么办?在贪心算法中,我们每次选择覆盖范围最大的区间,直到所有点都被覆盖为止。
3. 最小生成树问题
假设你有一个连通无向图,每条边都有一个权值。
现在要选择一些边,构成一棵树,使得总权值最小,怎么办?在贪心算法中,我们每次选择与当前树相连的边中,权值最小的边,直到所有点都被覆盖为止。
4. 背包问题
假设你有一个背包,容量为C,有一些物品,每个物品有重量w 和价值v。
现在要选择一些物品,放入背包中,使得总重量不超过C,总价值最大,怎么办?在贪心算法中,我们每次选择单位价值最大的物品,直到背包装满为止。
这些都是贪心算法的例子,贪心算法虽然看起来简单,但是它在某些情况下可以得到最优解,而且时间复杂度也比较低。
java贪心算法几个经典例子
java贪心算法几个经典例子1. 跳跃游戏跳跃游戏是一个非常简单的贪心算法问题,概括来说,它的目标是将一些数列中的数字与它们的下标相加,然后通过一定的规则从开始位置向后跳跃,直到跳到数组的最后一个位置。
在这个过程中,我们需要决定每一步要跳多远才能尽可能地跳到数组的最后一个位置。
具体来说,我们需要维护两个变量:一个表示目前能够跳的最远距离,另一个表示如果一步跳完所能到达的最远位置。
对于每一步,我们需要计算出在当前位置能够跳的最远距离,然后从这个范围中选出下一步的最佳位置,直到最终到达数组的结尾。
代码实现如下:```public boolean canJump(int[] nums) {int n = nums.length;int farthest = 0;for (int i = 0; i < n; i++) {if (i <= farthest) {farthest = Math.max(farthest, i + nums[i]);if (farthest >= n - 1) return true;}}return false;}```2. 最佳买卖股票时机在这个问题中,我们需要决定什么时候买入股票并在价值最高的时候卖出。
我们可以利用贪心算法来解决这个问题。
具体来说,我们需要维护两个变量:一个表示目前为止的最小股票价格,另一个表示目前为止的最大利润。
在遍历数组的过程中,我们将最小股票价格与当前价格进行比较,并尝试更新最大利润。
代码实现如下:```public int maxProfit(int[] prices) {int minPrice = Integer.MAX_VALUE;int maxProfit = 0;for (int price : prices) {if (price < minPrice) {minPrice = price;} else if (price - minPrice > maxProfit) {maxProfit = price - minPrice;}}return maxProfit;}```3. 分配饼干这个问题是关于如何将一些饼干分配给孩子们以使得他们获得最大的满足感。
C语言贪心算法范文
C语言贪心算法范文贪心算法是一种简单但有效的算法设计策略,适用于解决一些最优化问题。
它通过每一步选择局部最优解来达到全局最优解。
本文将介绍C语言中的贪心算法,包括贪心算法的基本概念、应用场景以及一些经典的贪心算法实例。
一、贪心算法的基本概念贪心算法的基本思想是每次都选择当前最优的解,而不考虑未来的结果。
它适用于具有贪心选择性质的问题,即通过局部最优解能够得到全局最优解。
贪心算法的一般步骤如下:1.将问题划分为若干子问题。
2.对每个子问题进行贪心选择,即选择局部最优解。
3.将局部最优解合并成原问题的解。
4.如果原问题无法通过局部最优解合并成全局最优解,那么贪心算法不能解决该问题。
二、贪心算法的应用场景贪心算法广泛应用于一些最优化问题,尤其在计算机科学和算法设计中得到了广泛的应用,比如:1.最小生成树问题最小生成树问题是在一个加权连通图中找到一棵权值最小的生成树。
贪心算法中常用的最小生成树算法有Prim算法和Kruskal算法。
2.哈夫曼编码问题哈夫曼编码是一种压缩数据的算法,通过使用可变长度的编码来表示更频繁出现的字符。
贪心算法可以用来构建哈夫曼树,从而得到最优的编码。
3.区间调度问题区间调度问题是指在一个时间段内选择尽可能多的非重叠区间。
贪心算法中常用的区间调度算法有活动选择问题和区间覆盖问题。
4.背包问题背包问题是指给定一组物品和一个背包的容量,在保证不能超过背包容量的前提下选择物品使得总价值最大。
贪心算法可以用来解决一些特殊的背包问题,如分数背包问题。
5.可行调度问题可行调度问题是指在一组任务和一组处理器之间进行任务调度,使得完成所有任务的时间最小。
贪心算法可以选择当前最早空闲的处理器进行任务调度,从而实现最优解。
三、经典贪心算法实例1.找零钱问题假设有n种面值的硬币,每种硬币的数量无限多。
现给定一个总金额amount,问最少需要多少个硬币可以凑出这个总金额。
贪心算法的思路是每次选择面值最大的硬币,然后逐步减少总金额。
贪心算法+实例
贪⼼算法+实例贪⼼算法(⼜称贪婪算法)是指,在对时,总是做出在当前看来是最好的选择。
也就是说,不从整体最优上加以考虑,他所做出的是在某种意义上的局部。
(官⽅解释)。
所谓的贪⼼算法主要理解就在这个“贪⼼”上⾯,所谓贪⼼,就是找到最好的,也就是上⾯说的最优解。
我们可以通过各种⽅式找到当前的最优解,将最有解利⽤过后,将其清除,再去找下⼀个最优解。
来⼀个例⼦来说明。
题⽬描述鲁宾逊先⽣有⼀只宠物猴,名叫多多。
这天,他们两个正沿着乡间⼩路散步,突然发现路边的告⽰牌上贴着⼀张⼩⼩的纸条:“欢迎免费品尝我种的花⽣!――熊字”。
鲁宾逊先⽣和多多都很开⼼,因为花⽣正是他们的最爱。
在告⽰牌背后,路边真的有⼀块花⽣⽥,花⽣植株整齐地排列成矩形⽹格(如图111)。
有经验的多多⼀眼就能看出,每棵花⽣植株下的花⽣有多少。
为了训练多多的算术,鲁宾逊先⽣说:“你先找出花⽣最多的植株,去采摘它的花⽣;然后再找出剩下的植株⾥花⽣最多的,去采摘它的花⽣;依此类推,不过你⼀定要在我限定的时间内回到路边。
”我们假定多多在每个单位时间内,可以做下列四件事情中的⼀件:1) 从路边跳到最靠近路边(即第⼀⾏)的某棵花⽣植株;2) 从⼀棵植株跳到前后左右与之相邻的另⼀棵植株;3) 采摘⼀棵植株下的花⽣;4) 从最靠近路边(即第⼀⾏)的某棵花⽣植株跳回路边。
现在给定⼀块花⽣⽥的⼤⼩和花⽣的分布,请问在限定时间内,多多最多可以采到多少个花⽣?注意可能只有部分植株下⾯长有花⽣,假设这些植株下的花⽣个数各不相同。
例如在图2所⽰的花⽣⽥⾥,只有位于(2,5),(3,7),(4,2),(5,4)(2, 5), (3, 7), (4, 2), (5, 4)(2,5),(3,7),(4,2),(5,4)的植株下长有花⽣,个数分别为13,7,15,913, 7, 15, 913,7,15,9。
沿着图⽰的路线,多多在212121个单位时间内,最多可以采到373737个花⽣。
贪心算法例题
贪心算法例题
贪心算法是一种在每一步选择中都采取当前状态下最好或最优(即最有利)的选择,从而希望导致结果是最好或最优的算法。
以下是一个贪心算法的例子:
问题描述:有100个人在一酒吧,一次酒局中大家都决定向其他每个人敬酒,但只有距离较近的人之间才能互敬。
酒局结束后,每人都记录下他们之间互敬了多少次。
现给出所有人的互敬次数,找出互敬次数最多的那个人。
贪心策略:从最多互敬次数的人开始,每次都选择能互敬次数最多的人,直到达到最大互敬次数为止。
具体实现:
1. 首先将所有人的互敬次数存入一个数组中。
2. 从数组中找到互敬次数最多的人,假设其互敬次数为max_times。
3. 从数组中删除所有互敬次数小于max_times的人,因为他们的互敬次数已经确定不会超过max_times。
4. 重复步骤2和3,直到数组为空。
这个贪心算法的例子中,每次选择都是基于当前情况下的最优选择,希望通过这种方式达到全局最优的结果。
贪心算法的应用实例
} int work(){ qsort(a+1,n,sizeof(a[0]),cmp);//按区间右端点由小到大排序 int i,j,k; int a1,a2; a1=a[1].right-1;a2=a[1].right;result=2; for(i=2;i<=n;i++) { if(a[i].left<=a1&& a[i].right>=a2)continue;//完全包含 if (a[i].left>a2 )//完全不包含 {a1=a[i].right-1;a2=a[i].right;result=result+2;} if (a[i].left>a1 && a[i].right>a2 && a[i].left<=a2) {a1=a2;a2=a[i].right;result++;}//只包含一个 } return result; } int main(){ freopen("range6.in","r",stdin); freopen("range6.out","w",stdout); cin>>n; int i; for(i=1;i<=n;i++) cin>>a[i].left>>a[i].right; cout<<work()<<endl; return 0; } 例 5.骆驼商队 Camel Trading 【题目描述】 在一片古老的大地上, 虽然商业已经非常繁荣, 但是那里的人们仍然延续着古老的交易 方式。他们牵着骆驼在城市之间往来奔波,贩运成批的商品,换来一袋袋的金币。 这片大陆上有 N 个城市,编号为 1……N。在一些城市之间有路可通,有路就有商队。 但是在不同的城市之间经商所得的收益不同, 在下面的这个 N=4 的例子中, 在城市 1 和城市 2 之间进行一次交易可以获得 40 枚金币,在城市 2 和 3 之间交易一次可以获得 50 枚金币, 等等。 1 40 2 30 50 30 3 20 4
列举用贪心算法求解的经典问题
列举用贪心算法求解的经典问题贪心算法是一种基于贪心策略的算法,它在每一步选择中采取最优的选择,从而达到全局最优的结果。
贪心算法通常求解的是最优化问题,例如最小生成树、最短路经、任务分配等问题,但并不是所有的最优化问题都可以用贪心算法解决,需要根据实际问题进行分析。
下面列举几个经典问题及其贪心算法的解法:1. 钞票找零问题这是一个典型的贪心算法问题,即如何用最少的钞票找零。
贪心算法的思路是,在每一步中选择面值最大的钞票,直到找完为止。
参考资料:- 《算法导论》第16章- 《算法竞赛入门经典》第2章2. 活动选择问题给定n个活动的起止时间,要求安排这些活动,使得尽可能多的活动能够不冲突地进行。
贪心算法的思路是,在每一次选择中选择结束时间最早的活动,因为这样可以给后面的活动留更多的时间。
参考资料:- 《算法竞赛入门经典》第3章- 《算法导论》第16章3. 背包问题将若干个物品放入一个容量为W的背包中,每个物品有自己的重量和价值。
要求在不超过容量的情况下,选择一些物品放入背包中,使得总价值最大。
贪心算法的思路是,选择价值比重量大的物品放入背包中,这样可以使得总价值最大。
参考资料:- 《算法竞赛入门经典》第4章- 《算法导论》第16章4. 最小生成树问题给定一个无向连通图,要求找到一棵生成树,使得边的权值和最小。
贪心算法的思路是,每次选择权值最小的边,加入生成树中,直到生成树包含了所有的节点。
参考资料:- 《算法竞赛入门经典》第7章- 《算法导论》第23章5. 最短路径问题给定一个有向图,求出一个节点到另一个节点的最短路径。
贪心算法的思路是,每次选择最短的路径,从起始节点开始,依次加入路径中的节点,直到到达目标节点。
参考资料:- 《算法竞赛入门经典》第8章- 《算法导论》第24章以上就是贪心算法常用的几个经典问题及其解法。
需要注意的是,贪心算法并不是对所有最优化问题都适用,需要根据具体情况进行分析和判断。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
标签: 贪心 算法 背包问题 it 分类: 简单算法
一、定义
什么是贪心算法呢?所谓贪心算法是指,在对问题求解时,总是做出在当前看来最好的选择。也就是说,不从整体最优解出发来考虑,它所做出的仅是在某种意义上的局部最优解。
贪心算法不是对所有问题都能得到整体最优解,但对范围相当广泛的许多问题都能产生整体最优解或整体最优解的近似解。
array.add(scanner.nextInt());
}
for(int i = 0; i < array.size(); i ++){
avg += array.get(i);
}
avg = avg/array.size();
System.out.println(array.size());
二是确定了可以用贪心算法之后,如何选择一个贪心标准,才能保证得到问题的最优解。在选择贪心标准时,我们要对所选的贪心标准进行验证才能使用,不要被表面上看似正确的贪心标准所迷惑,如下面的例子。
[最大整数]设有n个正整数,将它们连接成一排,组成一个最大的多位整数。
例如:n=3时,3个整数13,312,343,连成的最大整数为34331213。
public static void main(String[] args) {
int n = 0, avg =0, s = 0;
Scanner scanner = new Scanner(System.in);
ArrayList<Integer> array = new ArrayList<Integer>();
输入输出样例:4
9 8 17 6
屏幕显示:3
算法分析:设a[i]为第I堆纸牌的张数(0<=I<=n),v为均分后每堆纸牌的张数,s为最小移动次数。
我们用贪心算法,按照从左到右的顺序移动纸牌。如第I堆的纸牌数不等于平均值,则移动一次(即s加1),分两种情况移动:
1.若a[i]>v,则将a[i]-v张从第I堆移动到第I+1堆;
W=30
物品:A B C
重量:28 12 12
价值:30 20 20
根据策略,首先选取物品A,接下来就无法再选取了,可是,选取B、C则更好。
(2)贪心策略:选取重量最小。它的反例与第一种策略的反例差不多。
(3)贪心策略:选取单位重量价值最大的物品。反例:
W=3பைடு நூலகம்
物品:A B C
记得当时学算法的时候,就是这个例子,可以说很经典。
分析:
目标函数: ∑pi最大
约束条件是装入的物品总重量不超过背包容量,即∑wi<=M( M=150)
(1)根据贪心的策略,每次挑选价值最大的物品装入背包,得到的结果是否最优?
(2)每次挑选所占重量最小的物品装入是否能得到最优解?
(3)每次选取单位重量价值最大的物品,成为解本题的策略?
重量:28 20 10
价值:28 20 10
根据策略,三种物品单位重量价值一样,程序无法依据现有策略作出判断,如果选择A,则答案错误。
值得注意的是,贪心算法并不是完全不可以使用,贪心策略一旦经过证明成立后,它就是一种高效的算法。比如,求最小生成树的Prim算法和Kruskal算法都是漂亮的贪心算法。
}
}
贪心算法所作的选择可以依赖于以往所作过的选择,但决不依赖于将来的选择,也不依赖于子问题的解,因此贪心算法与其他算法相比具有一定的速度优势。如果一个问题可以同时用几种方法解决,贪心算法应该是最好的选择之一。
int n = in.nextInt();
System.out.println("Please input the data:");
while (n-- > 0) {
array.add(in.next());
}
for(int i = 0; i < array.size(); i ++)
[均分纸牌]有N堆纸牌,编号分别为1,2,…,n。每堆上有若干张,但纸牌总数必为n的倍数.可以在任一堆上取若干张纸牌,然后移动。移牌的规则为:在编号为1上取的纸牌,只能移到编号为2的堆上;在编号为n的堆上取的纸牌,只能移到编号为n-1的堆上;其他堆上取的纸牌,可以移到相邻左边或右边的堆上。现在要求找出一种移动方法,用最少的移动次数使每堆上纸牌数都一样多。例如:n=4,4堆纸牌分别为:① 9 ② 8 ③ 17 ④ 6 移动三次可以达到目的:从③取4张牌放到④ 再从③区3张放到②然后从②去1张放到①。
array.set(i, array.get(j));
array.set(j, temp);
}
}
for(int i = 0; i < array.size(); i ++){
str += array.get(i);
}
System.out.println("str=:"+str);
贪心算法的基本思路如下:
1.建立数学模型来描述问题。
2.把求解的问题分成若干个子问题。
3.对每个子问题求解,得到每个子问题的局部最优解。
4.把每个子问题的局部最优解合成为原来问题的一个解。
实现该算法的过程:
从问题的某一初始状态出发;
while 能朝给定总目标前进一步 do
求出可行解的一个解元素;
2.若a[i]<v,则将v-a[i]张从第I+1堆移动到第I堆。
为了设计的方便,我们把这两种情况统一看作是将a[i]-v从第I堆移动到第I+1堆,移动后有a[i]=v; a[I+1]=a[I+1]+a[i]-v.
在从第I+1堆取出纸牌补充第I堆的过程中可能回出现第I+1堆的纸牌小于零的情况。
如n=3,三堆指派数为1 2 27 ,这时v=10,为了使第一堆为10,要从第二堆移9张到第一堆,而第二堆只有2张可以移,这是不是意味着刚才使用贪心法是错误的呢?
ArrayList<String> array = new ArrayList<String>();
Scanner in = new Scanner(System.in);
System.out.println("Please input the number of data:");
}
}
利用贪心算法解题,需要解决两个问题:
一是问题是否适合用贪心法求解。我们看一个找币的例子,如果一个货币系统有三种币值,面值分别为一角、五分和一分,求最小找币数时,可以用贪心法求解;如果将这三种币值改为一角一分、五分和一分,就不能使用贪心法求解。用贪心法解题很方便,但它的适用范围很小,判断一个问题是否适合用贪心法求解,目前还没有一个通用的方法,在信息学竞赛中,需要凭个人的经验来判断。
贪心算法是很常见的算法之一,这是由于它简单易行,构造贪心策略简单。但是,它需要证明后才能真正运用到题目的算法中。一般来说,贪心算法的证明围绕着整个问题的最优解一定由在贪心策略中存在的子问题的最优解得来的。
对于本例题中的3种贪心策略,都无法成立,即无法被证明,解释如下:
(1)贪心策略:选取价值最大者。反例:
for(int j = i + 1; j < array.size(); j ++){
if((array.get(i) + array.get(j)).compareTo(array.get(j) + array.get(i)) < 0){
String temp = array.get(i);
System.out.println("Please input the number of heaps:");
n = scanner.nextInt();
System.out.println("Please input heap number:");
for (int i = 0; i < n; i++) {
其实此题可以用贪心法来求解,只是刚才的标准不对,正确的标准是:先把整数转换成字符串,然后在比较a+b和b+a,如果a+b>=b+a,就把a排在b的前面,反之则把a排在b的后面。
java源程序:
public static void main(String[] args){
String str = "";
由所有解元素组合成问题的一个可行解;
二、例题分析
[背包问题]有一个背包,背包容量是M=150。有7个物品,物品可以分割成任意大小。
要求尽可能让装入背包中的物品总价值最大,但不能超过总容量。
物品 A B C D E F G
重量 35 30 60 50 40 10 25
价值 10 40 30 50 35 40 30
我们继续按规则分析移牌过程,从第二堆移出9张到第一堆后,第一堆有10张,第二堆剩下-7张,在从第三堆移动17张到第二堆,刚好三堆纸牌都是10,最后结果是对的,我们在移动过程中,只是改变了移动的顺序,而移动次数不便,因此此题使用贪心法可行的。
Java源程序:
public class Greedy {
System.out.println(avg);
for(int i = 0; i < array.size()-1; i ++){