晶体管共射极单管放大器实验报告

合集下载

晶体管共射极单管放大器实验报告

晶体管共射极单管放大器实验报告

晶体管共射极单管放大器实验报告一、实验目的:1.掌握晶体管共射极单管放大器的工作原理;2.通过实验验证晶体管共射极单管放大器的放大特性。

二、实验仪器与器件:1.功能发生器;2.直流稳压电源;3.2N3904NPN型晶体管;4.脉冲发生电路;5.负载电阻;6.示波器等。

三、实验原理:四、实验步骤与过程:1.搭建晶体管共射极单管放大器电路,根据实验原理连接好各个器件与仪器;2.将直流稳压电源的正极接入收集端,负极接入基极,并合理调节稳压电源的电压和电流;3.通过功能发生器向基极注入正弦信号,调节发生器频率和幅值;4.同时连接示波器,观察输入信号与输出信号的波形;5.改变输入信号的频率和幅值,记录输出信号的变化;6.对比输入信号与输出信号,确定放大倍数。

五、实验数据记录与分析:1.在不同频率下,记录输入信号与输出信号的幅值,并计算放大倍数;2.提取数据,绘制频率与放大倍数的关系曲线;3.分析曲线特点,讨论晶体管放大器的工作频率范围;4.对比不同输入信号幅值下的输出信号,分析并解释放大器的失真情况。

六、实验结果与结论:1.经过实验数据的分析和计算,可以得出晶体管共射极单管放大器在一定频率范围内具有较好的放大效果;2.放大倍数随频率的增加而下降,且存在失真现象;3.实验结果与理论相符,验证了晶体管共射极单管放大器的放大特性。

七、实验心得与体会:通过本次实验,我深入了解了晶体管共射极单管放大器的工作原理和特性,并且掌握了实验操作技巧。

实验中遇到了一些问题,如输出信号失真、调节电源电压等,但通过耐心地调试和思考,最终取得了满意的实验结果。

通过这次实验,我不仅提高了对电路放大器的理解,还锻炼了实验操作和数据分析能力。

晶体管共射极单管放大电路实验报告

晶体管共射极单管放大电路实验报告

晶体管共射极单管放大电路实验报告一、实验目的1、掌握晶体管共射极单管放大电路的组成及工作原理。

2、学习静态工作点的调试方法,研究静态工作点对放大器性能的影响。

3、掌握放大器电压放大倍数、输入电阻、输出电阻的测量方法。

4、观察放大器输出波形的失真情况,了解产生失真的原因及消除方法。

二、实验原理1、晶体管共射极单管放大电路的组成晶体管共射极单管放大电路由晶体管、基极电阻、集电极电阻、发射极电阻和耦合电容等组成。

输入信号通过耦合电容加到晶体管的基极,经晶体管放大后,从集电极输出,再通过耦合电容加到负载电阻上。

2、静态工作点的设置静态工作点是指在没有输入信号时,晶体管各极的直流电流和电压值。

合适的静态工作点可以保证放大器在输入信号的作用下,输出信号不失真。

静态工作点的设置主要通过调整基极电阻和集电极电阻的阻值来实现。

3、放大器的性能指标(1)电压放大倍数:是指输出电压与输入电压的比值,反映了放大器对信号的放大能力。

(2)输入电阻:是指从放大器输入端看进去的等效电阻,反映了放大器从信号源获取信号的能力。

(3)输出电阻:是指从放大器输出端看进去的等效电阻,反映了放大器带负载的能力。

三、实验仪器及设备1、示波器2、信号发生器3、直流稳压电源4、万用表5、实验电路板6、晶体管、电阻、电容等元件四、实验内容及步骤1、按图连接实验电路仔细对照电路图,在实验电路板上正确连接晶体管共射极单管放大电路,注意元件的极性和引脚的连接。

2、静态工作点的调试(1)接通直流稳压电源,调节电源电压至合适值。

(2)用万用表测量晶体管各极的电压,计算静态工作电流。

(3)通过调整基极电阻的阻值,改变静态工作点,观察输出电压的变化,使输出电压不失真。

3、测量电压放大倍数(1)将信号发生器的输出信号接到放大器的输入端,调节信号发生器的频率和幅度,使输入信号为正弦波。

(2)用示波器分别测量输入信号和输出信号的峰峰值,计算电压放大倍数。

4、测量输入电阻(1)在放大器的输入端串联一个已知电阻。

晶体管共射极单管放大器实验报告

晶体管共射极单管放大器实验报告

晶体管共射极单管放大器实验报告实验报告:晶体管共射极单管放大器摘要:本实验通过搭建晶体管共射极单管放大器电路,研究其放大特性和工作原理。

通过测量输入输出特性曲线和计算放大倍数,得出合适的工作点、负载电阻和偏置电压,以实现较大的放大倍数和线性放大的目标。

【关键词】晶体管、共射极、放大特性、工作点、负载电阻、偏置电压、放大倍数、线性放大一、引言晶体管是一种重要的电子器件,在电子电路中广泛应用于放大、开关等功能。

共射极单管放大器是一种常见的放大器电路,具有简单、灵活及放大效果较好等特点。

本实验旨在通过搭建共射极单管放大器电路,研究其放大特性和工作原理,并通过实际测量及计算,确定合适的工作参数,实现最佳的放大效果。

二、实验原理共射极单管放大器由晶体管、负载电阻、输入电阻、偏置电阻和耦合电容等组成。

输入信号经耦合电容C1传递到基极,与偏置电阻R1和R2形成偏置电压,控制晶体管的工作状态。

负载电阻RL连接于集电极,输出信号从集电极提取。

三、实验步骤2.给定直流电源VCC和VE,通过调节R1和R2,使得基极电压为合适的偏置电压。

3.连接信号发生器,设置正确的输入信号频率和信号幅度。

4.连接示波器,分别测量输入和输出信号波形,并记录幅度。

5.逐步调节负载电阻RL,测量不同负载情况下的输出信号波形和幅度。

6.分析实验数据,计算放大倍数。

四、实验结果3. 放大倍数:利用实验数据计算放大倍数Av=Vout/Vin。

五、讨论与总结通过实验搭建晶体管共射极单管放大器电路,并测量了输入输出特性曲线。

根据实验结果,我们可以得出以下结论:1.在合适的工作点和偏置电压下,共射极单管放大器可以实现较大的放大倍数。

当输出信号达到晶体管的饱和区时,放大倍数会有所下降。

2.负载电阻的选择对放大倍数和线性放大效果有较大影响。

较大的负载电阻可以得到较大的放大倍数,但也会降低线性放大效果。

3.输入特性曲线的斜率代表输入电阻,输出特性曲线的斜率代表输出电阻,可以通过斜率计算电阻值。

晶体管共射极单管放大器实验报告10页

晶体管共射极单管放大器实验报告10页

晶体管共射极单管放大器实验报告10页一、实验原理晶体管(英文全称为:transis)是一种双极型器件,它使用电压控制流的方式来控制电路,是一种高低电平的转换器,其中N-MOS具有负偏移电流输出,P-MOS有正偏移电流输出。

而晶体管共射极单管放大器(CE amplifier)是利用晶体管放大输入信号,并且输出放大后的信号,它具有以下几个特点:1.具有高增益:某些应用时,可以获得高达1000倍的增益。

2.具有良好的抗杂散比:它的抗杂散比比其他放大器要好。

3.低成本:CE放大器成本低,是很多电路应用的实用设计。

二、实验准备实验准备包括晶体管共射极单管放大器原理、电路电子元件、实验接线、虚拟示波器、实验电源等:1.晶体管共射极单管放大器原理:晶体管共射极单管放大器是利用晶体管的共射极特性,以电容或非线性电路连接晶体管的共射极,把输入信号放大。

2.电路电子元件:该实验采用的电子元件有晶体管、电阻、电容、变压器等,详见实验设置部分提供的原理图。

3.实验接线:实验接线由晶体管的共射极连接电路的共射极部分,将电路中晶体管的此极和源极和源之间、此极与集电极之间等处可接电容等电子元件。

4.虚拟示波器:实验采用数字示波器,用于监测放大器输出脉冲电平变化,以及便于测量电路中其他因素对放大器性能的影响。

5.实验电源:实验主要是检测晶体管共射极单管放大器的增益、抗扰度、抗噪声度等指标,因此电源的选用是非常重要的,实验中,采用的是稳定的可调电源。

三、实验设置1.确定实验电路:实验电路如下图所示,该回路是一个简单的电路,主要是输入端只有一个电压信号,将输入信号放大传输到输出端,从而得到放大后的信号。

2.确定晶体管型号:实验采用的晶体管型号为:MJE15031。

3.确定实验电路的元件参数:该实验电路中的电容为:C1,用于共射极的电容值为:560uF;用于分压电阻的电阻值为: 10kΩ和4.7kΩ;电源电压为: 12V 。

四、实验结果1.检查输出电压:实验准备完毕后,量出输出端的脉冲电平,结果为7V,较预期值(12V)稍有偏差,约为10%,说明实验设置有较小的偏差。

晶体管共射极单管放大电路实验报告

晶体管共射极单管放大电路实验报告

实验二 晶体管共射极单管放大器一、实验目的1. 学会放大器静态工作点的调式方法和测量方法。

2. 掌握放大器电压放大倍数的测试方法及放大器参数对放大倍数的影响。

3. 熟悉常用电子仪器及模拟电路实验设备的使用。

二、实验原理图2—1为电阻分压式工作点稳定单管放大器实验电路图。

偏置电阻R B1、R B2组成分压电路,并在发射极中接有电阻R E ,以稳定放大器的静态工作点。

当在放大器的输入端加入输入信号后,在放大器的输出端便可得到一个与输入信号相位相反、幅值被放大了的输出信号,从而实现了电压放大。

三、实验设备1、 信号发生器2、 双踪示波器3、 交流毫伏表4、 模拟电路实验箱5、 万用表四、实验内容1.测量静态工作点实验电路如图2—1所示,它的静态工作点估算方法为:U B ≈211B B CCB R R U R +⨯图2—1 共射极单管放大器实验电路图I E =EBEB R U U -≈Ic U CE = U CC -I C (R C +R E )实验中测量放大器的静态工作点,应在输入信号为零的情况下进行。

1) 没通电前,将放大器输入端与地端短接,接好电源线(注意12V 电源位置)。

2) 检查接线无误后,接通电源。

3) 用万用表的直流10V 挡测量U E = 2V 左右,如果偏差太大可调节静态工作点(电位器RP )。

然后测量U B 、U C ,记入表2—1中。

表2—1测 量 值计 算 值 U B (V ) U E (V ) U C (V ) R B2(K Ω) U BE (V ) U CE (V ) I C (mA )2602B2有测量结果记入表2—1中。

5) 根据实验结果可用:I C ≈I E =E ER U 或I C =CC CC R U U - U BE =U B -U EU CE =U C -U E计算出放大器的静态工作点。

2.测量电压放大倍数各仪器与放大器之间的连接图关掉电源,各电子仪器可按上图连接,为防止干扰,各仪器的公共端必须连在一起后接在公共接地端上。

晶体管共射极单管放大电路的实验报告

晶体管共射极单管放大电路的实验报告

晶体管共射极单管放大电路的实验报告实验名称:晶体管共射极单管放大电路实验报告一、实验目的:1.了解晶体管共射极单管放大电路的基本原理和工作特性;2.学会使用实验仪器测量晶体管共射极单管放大电路的电压放大倍数和频率响应特性;3.分析晶体管共射极单管放大电路的放大性能和实际应用。

二、实验器材和仪器:1. BenchVue软件及相应的计算机;2.直流电源;3.双踪示波器及相应探头;4.功率放大三极管型号:2N3904;5.电阻、电容等电子元器件;6.实验电路板和连接线。

三、实验过程及结果:1.实验电路搭建:根据实验原理,搭建晶体管共射极单管放大电路,连接电源和示波器等仪器,并通过BenchVue软件实现电路参数采集和分析。

2.测试电路的静电工作点:先断开输入信号源,调节控制电位器使电路的电流、电压等参数处于恰当的工作范围,并记录此时的电压和电流值。

3.测试电路的电压放大倍数:连接输入信号源,输入一个特定频率和特定电压的正弦信号,并通过示波器观察输入信号和输出信号的波形。

利用示波器测量并记录输入信号和输出信号的幅度值,计算电压放大倍数。

4.测试电路的频率响应特性:通过BenchVue软件实现交流扫频实验,从低频到高频扫频,并观察输出电压的响应。

测量并记录不同频率下的输出电压值,并绘制频率特性曲线。

5.数据处理和分析:根据实验数据计算电压放大倍数和频率响应特性,并进行相关的数据处理和分析。

四、结果分析:根据实验数据和计算结果,对晶体管共射极单管放大电路的放大性能进行分析和比较。

可以比较不同频率下的输出电压值、电压放大倍数,并分析电路的频率响应特性。

五、实验总结:通过此次实验,我们对晶体管共射极单管放大电路的工作原理和特性有了更深入的了解。

我们学会了如何使用实验仪器测量电路的电压放大倍数和频率响应特性,并对实际应用进行了分析。

此实验对于加深我们对电子电路放大器的认识和理解具有重要意义。

六、存在问题及改进措施:在进行实验过程中,可能会遇到电路连接错误、仪器操作不当等问题。

晶体管共射极单管放大电路实验报告

晶体管共射极单管放大电路实验报告

试验 【2 】二 晶体管共射极单管放大器一.试验目标1.学会放大器静态工作点的调式办法和测量办法.2.控制放大器电压放大倍数的测试办法及放大器参数对放大倍数的影响. 3.熟习常用电子仪器及模仿电路试验装备的应用.二.试验道理图2—1为电阻分压式工作点稳固单管放大器试验电路图.偏置电阻R B1.R B2构成分压电路,并在发射极中接有电阻R E ,以稳固放大器的静态工作点.当在放大器的输入端参加输入旌旗灯号后,在放大器的输出端便可得到一个与输入旌旗灯号相位相反.幅值被放大了的输出旌旗灯号,从而实现了电压放大.三.试验装备1、 旌旗灯号产生器2、 双踪示波器3、 交换毫伏表4、 模仿电路试验箱5、 万用表四.试验内容1.测量静态工作点试验电路如图2—1所示,它的静态工作点估算办法为:U B ≈211B B CCB R R U R +⨯图2—1 共射极单管放大器试验电路图I E=E BEB R UU≈IcU CE = U CC-I C(R C+R E)试验中测量放大器的静态工作点,应在输入旌旗灯号为零的情形下进行.1)没通电前,将放大器输入端与地端短接,接好电源线(留意12V电源地位).2)检讨接线无误后,接通电源.3)用万用表的直流10V挡测量U E = 2V阁下,假如误差太大可调节静态工作点(电位器RP).然后测量U B.U C,记入表2—1中.表2—1测量值计算值U B (V)U E(V)U C(V)R B2(KΩ)U BE(V)U CE(V)I C(mA)2.6 2 7.2 60 0.6 5.2 24)关掉落电源,断开开关S,用万用表的欧姆挡(1×1K )测量R B2.将所有测量成果记入表2—1中. 5)依据试验成果可用:I C ≈I E =EER U 或I C =C C CC R U UU BE =U B -U E U CE =U C -U E盘算出放大器的静态工作点. 2.测量电压放大倍数各仪器与放大器之间的衔接图关掉落电源,各电子仪器可按上图衔接,为防止干扰,各仪器的公共端必须连在一路后接在公共接地端上.1)检讨线路无误后,接通电源.从旌旗灯号产生器输出一个频率为1KHz.幅值为10mv (用毫伏表测量u i )的正弦旌旗灯号参加到放大器输入端. 2)用示波器不雅察放大器输出电压的波形,在波形不掉真的前提下用交换毫伏表测量下表中三种情形下的输出电压值,记入表中.表2—23)用双踪示波器不雅察输入和输出波形的相位关系,并描写它们的波形. *4.测量输入电阻和输出电阻 依据界说:输入电阻 S i S ii i i R u u u I u R -==输出电阻 L LO R u u R )(10-=表2—3置R C =2.4K Ω,R L =2.4K Ω,I C =2.0mA,输入f =1KHz,u i =10mV 的正弦旌旗灯号,在输出电压波形不是真的情形下,用交换毫伏表测出u S .u i 和u L 记入表2—3中.断开负载电阻R L ,保持u S 不变,测量输出电压u 0,记入表2—3中.五.试验报告1.列表整顿试验成果,把实测的静态工作点与理论值进行比较.剖析.答:实测的静态工作点与理论值根本一致, 实测U BE =U B -U E =0.6V ,而理论为0.7V,产生误差的原因可能是U B .U E 的值接近,这种接近的两个量相减的间接测量,则合成相对误差就比较大了.2.剖析静态工作点对放大器机能的影响.答:静态工作点是否适合,对放大器的机能和输出波形都有很大影响.如工作点偏高,放大器在参加交换旌旗灯号今后易产生饱和掉真,此时u.的负半周将被削底;如工作点偏低则易产生截止,即u.的正半周被缩顶(一般截止掉真不如饱和掉真显著).这些情形都不相符不掉真放大的请求.所以在选定工作点今后还必须进行为态测试,即在放大器的输入端参加必定的ui,以检讨输出电压u.的大小和波形是否知足请求.如不知足,则应调节静态工作点的地位.3.如何测量R B2阻值?答:测量在线电阻时,要确认被测电路没有并联歧路并且被测电路所有电源已关断及所有电容已完整放电时,才可进行;是以本试验测量R B2时要将开关K断开.测量前先将开关转到电阻X1K档,然后把红.黑表笔短路,调剂“0Ω”调剂器,使指针指在0Ω地位上(万用表测量电阻时不同倍率档的零点不同,每换一档都应从新进行一次调零.),再把红.黑表笔离开去测被测电阻的两头,即可测出被测电阻R B2的阻值.4.总结放大器的参数对电压放大倍数的影响及输入输出波形的相位若何.答:由表2—2的试验成果可知:在静态工作点雷同情形下① R L越大,A V越大;R L越小,A V越小;②R C越大,A V越大;R C越小,A V越小; A V与R L//R C成正比.试验知足be CL V r RR A //β-=公式.③输入u i与输出u o的波形相位相反.。

晶体管单管共射极放大器实验报告

晶体管单管共射极放大器实验报告

晶体管单管共射极放大器实验报告实验报告,晶体管单管共射极放大器。

引言:晶体管单管共射极放大器是一种常见的电子放大器电路,广泛应用于电子设备中。

本实验旨在通过实际搭建电路并测量相关参数,探究共射极放大器的工作原理和特性。

实验目的:1. 理解晶体管共射极放大器的基本工作原理;2. 掌握搭建晶体管单管共射极放大器电路的方法;3. 测量并分析放大器的电压增益、频率响应、输入输出特性等参数。

实验步骤:1. 准备工作,根据电路图搭建晶体管单管共射极放大器电路,确保连接正确无误。

2. 测试电压增益,将输入信号接入放大器的输入端,通过示波器测量输入信号和输出信号的幅值,计算电压增益。

3. 测试频率响应,在输入端输入不同频率的信号,测量输出信号的幅值,绘制频率响应曲线。

4. 测试输入输出特性,改变输入信号的幅值,测量输出信号的幅值,绘制输入输出特性曲线。

5. 记录实验数据并进行分析。

实验结果与讨论:1. 电压增益,根据测量数据计算得到的电压增益为X,说明了放大器对输入信号的放大程度。

2. 频率响应,绘制的频率响应曲线显示了放大器在不同频率下的放大能力,分析曲线的特点和变化趋势。

3. 输入输出特性,绘制的输入输出特性曲线显示了放大器的非线性特性,分析曲线的斜率、饱和区等参数。

实验结论:通过本实验,我们深入了解了晶体管单管共射极放大器的工作原理和特性。

实验结果表明,该放大器具有较高的电压增益和宽广的频率响应范围。

同时,通过分析输入输出特性曲线,我们可以了解到放大器的非线性特性和工作区域。

总结:晶体管单管共射极放大器作为一种常见的电子放大器电路,在电子设备中发挥着重要的作用。

本实验通过实际搭建电路并测量参数,全面探究了该放大器的工作原理和特性。

通过实验数据的分析,我们对放大器的电压增益、频率响应和输入输出特性有了更深入的理解。

参考文献:(列出实验所参考的相关文献)。

附录:(包含实验所用的电路图、测量数据记录表等)。

晶体管单管共射放大器实验报告

晶体管单管共射放大器实验报告

一、实验目的1. 理解晶体管单管共射放大器的工作原理。

2. 掌握晶体管单管共射放大器静态工作点的调试方法。

3. 学习放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。

4. 熟悉常用电子仪器及模拟电路实验设备的使用。

二、实验原理晶体管单管共射放大器是一种常用的模拟电子电路,主要用于信号的放大。

本实验采用共射极接法,其基本电路如图1所示。

图1 晶体管单管共射放大器实验电路1. 静态工作点:晶体管单管共射放大器的静态工作点是指在没有输入信号时,晶体管的工作状态。

它决定了放大器的线性范围和输出信号的幅度。

静态工作点通常由偏置电路确定。

2. 电压放大倍数:电压放大倍数是指放大器输出电压与输入电压的比值。

它反映了放大器对信号的放大能力。

3. 输入电阻:输入电阻是指放大器输入端对信号源呈现的电阻。

它反映了放大器对信号源的影响。

4. 输出电阻:输出电阻是指放大器输出端对负载呈现的电阻。

它反映了放大器对负载的影响。

三、实验仪器与设备1. 晶体管(如3DG6)2. 电阻(如10kΩ、2.2kΩ、1kΩ、220Ω、100Ω、10Ω等)3. 电位器(如10kΩ)4. 直流电源(如+12V)5. 函数信号发生器(如AS101E)6. 双踪示波器(如DS1062E-EDU)7. 交流毫伏表(如GB7676-98)8. 直流电压表9. 万用电表四、实验步骤1. 根据实验电路图,搭建晶体管单管共射放大器实验电路。

2. 调节偏置电路,使晶体管工作在合适的静态工作点。

测量静态工作点(Uce、Ic)。

3. 在放大器输入端加入频率为1kHz的正弦信号,调节函数信号发生器的输出幅度,使放大器输入电压在合适的范围内。

4. 测量放大器的输出电压,计算电压放大倍数。

5. 测量放大器的输入电阻和输出电阻。

6. 测量放大器的最大不失真输出电压。

五、实验数据及分析1. 静态工作点:Uce=3V,Ic=2mA。

2. 电压放大倍数:Aυ=20倍。

晶体管共射极单管放大器实验报告

晶体管共射极单管放大器实验报告

晶体管共射极单管放大器实验报告一、实验目的。

本实验旨在通过搭建晶体管共射极单管放大器电路,了解其工作原理,掌握其基本特性,并通过实验验证其放大性能。

二、实验仪器与设备。

1. 电源,直流稳压电源。

2. 示波器,模拟示波器。

3. 元器件,晶体管、电阻、电容等。

三、实验原理。

晶体管共射极单管放大器是一种常用的放大电路,其工作原理是利用晶体管的放大特性,将输入信号放大到输出端。

在共射极放大器中,输入信号加在基极上,输出信号则从集电极上取出,而发射极则接地。

当输入信号加在基极时,晶体管将其放大并输出到集电极,实现信号放大的功能。

四、实验步骤。

1. 按照电路图搭建晶体管共射极单管放大器电路,并连接电源和示波器。

2. 调节示波器,观察输入信号和输出信号的波形,记录波形特点。

3. 调节输入信号的幅度,观察输出信号的变化,记录放大倍数。

4. 测量电路中各个元器件的参数,如电阻、电容等数值。

五、实验结果与分析。

经过实验观察和数据记录,我们得到了晶体管共射极单管放大器的输入输出波形,并计算出了其放大倍数。

通过分析波形特点和参数数值,我们可以得出结论,晶体管共射极单管放大器具有较好的放大性能,能够将输入信号有效放大,并输出到输出端。

六、实验总结。

本实验通过搭建晶体管共射极单管放大器电路,验证了其放大性能,并对其工作原理有了更深入的了解。

在实验过程中,我们也学习到了如何测量电路中元器件的参数,并且掌握了使用示波器观察波形的方法。

这些都对我们进一步学习电子电路理论和实践具有重要的意义。

七、实验注意事项。

1. 在搭建电路时,要注意元器件的连接方式和极性,确保电路连接正确。

2. 在调节示波器时,要小心操作,避免对示波器造成损坏。

3. 在测量元器件参数时,要选择合适的测量工具,并注意测量精度。

八、参考文献。

1. 《电子电路原理》,张三,XX出版社,2008年。

2. 《电子技术实验指导》,李四,XX出版社,2010年。

通过本次实验,我们对晶体管共射极单管放大器有了更深入的了解,掌握了其工作原理和基本特性。

晶体管共射极单管放大电路实验报告

晶体管共射极单管放大电路实验报告

晶体管共射极单管放大电路实验报告实验报告的第一部分,我们来聊聊晶体管共射极单管放大电路的基本概念。

晶体管,听起来可能有点复杂,但其实就是一种能放大电信号的电子元件。

共射极电路的特点是输入信号通过基极,而输出信号则从集电极出来。

这种方式放大倍数高,适合多种应用。

1.1 共射极电路的组成想象一下,一个简单的电路就像一个小乐队。

晶体管就是主唱,电阻器和电容器就是乐队的其他成员。

电源提供动力,信号源则是音源。

每一个部分都有自己的角色,缺一不可。

晶体管有三个引脚:基极、集电极和发射极。

基极接收信号,集电极输出放大后的信号,而发射极则是电流的出路。

要让这个乐队发挥出最佳效果,各个组件的参数得搭配得当。

1.2 工作原理咱们接着说工作原理。

电流从电源流过电阻后,进入基极。

这时候,基极电流就像是乐队的节奏,给整个电路带来活力。

基极电流的微小变化,会引起集电极电流的大幅波动,形成放大效应。

这个放大倍数,通常是基极电流的几十倍到几百倍,真是个令人惊叹的现象!第二部分,我们进入实验步骤。

动手实验,往往是最让人兴奋的环节。

2.1 实验器材准备在这个过程中,我们需要准备一些器材:晶体管、电阻、电容、信号源和万用表。

这些材料都是基础但至关重要的。

挑选晶体管时,注意型号。

不同的型号,特性也不同。

2.2 搭建电路搭建电路时,像搭积木一样简单又有趣。

把电源、电阻、晶体管按照电路图连接好。

每个连接点都得确保牢固,别让它们“脱队”。

这时候,眼睛得睁得大大的,避免搞错了正负极,万一搞错了,就像乐队的节奏乱了,那可就麻烦了。

2.3 测试和数据记录完成后,开始测试。

将信号源接入基极,万用表接到集电极,记录下电流和电压。

小心别让电流过载,这样会损坏设备。

每一次测量,都是在记录乐队演出的表现,心里那个激动啊,真是数不胜数的期待!第三部分,结果分析。

数据出来了,心里那个美呀,简直就像收到了惊喜的礼物。

3.1 数据对比把实验数据和理论计算的数据进行对比。

晶体管共射极单管放大电路实验报告

晶体管共射极单管放大电路实验报告

晶体管共射极单管放大电路实验报告一、实验目的1.理解晶体管共射极单管放大电路的工作原理;2.掌握晶体管共射极单管放大电路的输入输出特性;3.测量与分析晶体管共射极单管放大电路的直流工作点。

二、实验原理(插入晶体管共射极单管放大电路图)晶体管放大电路的工作原理是:当输入信号加到基极时,引起晶体管基极电流的变化,从而引起发射极电流的变化,使得集电极电流的变化,将输入信号放大。

三、实验器材1.功放实验板;2.电源;3.被测晶体管;4.电阻;5.示波器;6.信号发生器;7.万用表。

四、实验步骤1.按照实验电路连接图搭建电路;2.将电源接入电路,调节电压值为所需电压;3.连接示波器和信号发生器,调节信号发生器产生所需的输入信号;4.测量电路的直流工作点,记录基极电压、发射极电压、集电极电压和输出电压值;5.测量电路的交流特性,记录输入信号与输出信号的波形,并测量增益和频率响应。

五、实验结果与分析1.直流工作点测量结果如下:(插入直流工作点测量结果表格)2.交流特性测量结果如下:(插入交流特性测量结果表格)根据实验结果,可以得出晶体管共射极单管放大电路的放大倍数、输入输出特性和频率响应等。

六、实验讨论1.整个实验过程中是否有误差或问题?导致误差或问题的原因是什么?2.如果要改善电路的性能,有哪些方法可以进行改进?七、实验总结通过本实验,我对晶体管共射极单管放大电路的工作原理、特性和参数有了更深入的了解。

同时,我也学会了使用示波器、信号发生器等仪器进行测量和分析,提高了实验操作能力。

在今后的学习和工作中,我将更加熟练地运用这些知识和技能。

晶体管共射极单管放大电路实验报告

晶体管共射极单管放大电路实验报告

大学学生实验报告1.学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响。

2.掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。

3.熟悉常用电子仪器及模拟电路实验设备的使用。

【实验仪器与材料】1.EL七LA-IV的模拟电路实验箱2. 函数信号发生器3.双踪示波器4.交流毫伏表5.万用电表6.连接线若干【实验内容与原理】查阅资料可知实验箱中的三极管?〜30-35,rbb '〜200 Q图1为电阻分压式工作点稳定单管放大器实验电路图。

它的偏置电路采用昭和金组成的分压电路,并在发射极中接有电阻F E,以稳定放大器的静态工作点。

当在放大器的输入端加入输入信号U后,在放大器的输出端便可彳得到一个与U相位相反,幅值被放大了的输出信号U0,从而实现了电压放大。

在右图电路中,当流过基极偏置电阻的电流远大于晶体管的基极电流时(一般5〜10倍),则它的静态工作点可用下式估算U C L U C C— I C ( R D+R E)放大器静态工作点的调试是指对管子集电极电流I c(或U L E)的调整与测试。

调整放大器到合适的静态工作点,然后加入输入电压 U ,在输出电压 U O 不失真的情况下,单独只用用交流毫伏表或者示波器测出 U i 和U o 的有效值U和U O ,贝y⑵输入电阻R 的测量为了测量放大器的输入电阻,按图3电路在被测放大器的输入端与信号源 之间串入一已知电阻 R,在放大器正常工作的情况下,单独只用交流毫伏表或者示波器测出U S 和U ,则根据输入电阻的定义可得图4输入、输出电阻测量电路测量时应注意下列几点:① 由于电阻R 两端没有电路公共接地点,所以测量 R 两端电压U R 时必须分别 测出U S 和U ,然后按U R = U S - U 求出U R 值。

② 电阻R 的值不宜取得过大或过小,以免产生较大的测量误差,通常取 R 与R 为同一数量级为好,本实验可取 R = 1〜2K Q 。

晶体管共射极单管放大器实验报告

晶体管共射极单管放大器实验报告

实验二晶体管共射极单管放大器一、实验目的1、学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响。

2、掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。

3、熟悉常用电子仪器及模拟电路实验设备的使用。

二、实验原理图2-1为电阻分压式工作点稳定单管放大器实验电路图。

它的偏置电路采用R B1和R B2组成的分压电路,并在发射极中接有电阻R E,以稳定放大器的静态工作点。

当在放大器的输入端加入输入信号u i后,在放大器的输出端便可得到一个与u i相位相反,幅值被放大了的输出信号u0,从而实现了电压放大。

在图2-1电路中,当流过偏置电阻R B1和R B2的电流远大于晶体管T 的基极电流I B 时(一般5~10倍),则它的静态工作点可用下式估算CCB2B1B1BURRRU+≈CEBEBEIRUUI≈+-≈1FRU CE=U CC-I C(R C+R E+R F1)电压放大倍数1)1(FR//β++-=beLCV rRRβA输入电阻R i=R B1 // R B2 //[r be+(1+β)R F1 ]输出电阻图2-1 共射极单管放大器实验电路R O ≈R C由于电子器件性能的分散性比较大,因此在设计和制作晶体管放大电路时,离不开测量和调试技术。

在设计前应测量所用元器件的参数,为电路设计提供必要的依据,在完成设计和装配以后,还必须测量和调试放大器的静态工作点和各项性能指标。

一个优质放大器,必定是理论设计与实验调整相结合的产物。

因此,除了学习放大器的理论知识和设计方法外,还必须掌握必要的测量和调试技术。

放大器的测量和调试一般包括:放大器静态工作点的测量与调试,消除干扰与自激振荡及放大器各项动态参数的测量与调试等。

1、 放大器静态工作点的测量与调试 1) 静态工作点的测量测量放大器的静态工作点,应在输入信号u i =0的情况下进行, 即将放大器输入端与地端短接,然后选用量程合适的直流毫安表和直流电压表,分别测量晶体管的集电极电流I C 以及各电极对地的电位U B 、U C 和U E 。

晶体管共射极单管放大电路实验报告

晶体管共射极单管放大电路实验报告

晶体管共射极单管放大电路实验报告实验目的:通过搭建晶体管共射极单管放大电路,了解晶体管的工作原理和放大特性,并通过实验验证晶体管的放大效果。

实验原理:晶体管共射极单管放大电路是一种常用的放大电路,它可以将输入信号进行放大,并输出到负载电阻上。

该电路由一个晶体管和负载电阻组成。

晶体管的基极接收输入信号,发射极连接到地线,而集电极接在负载电阻上。

当输入信号作用在基极上时,晶体管的电流和电压都会发生变化。

通过调节偏置电阻的大小,可以使得晶体管进入放大工作区。

当输入信号的幅度足够小,使得晶体管工作在线性放大区域,此时,输出信号的幅度将是输入信号的若干倍。

实验步骤:1.将NPN型晶体管插入实验板上的晶体管座子中,并连接好各个电子元件,注意极性的正确连接。

2.用万用表测量负载电阻的阻值,并连接到晶体管的集电极处。

3.通过调节偏置电阻的阻值,使得晶体管进入放大工作区。

4.施加输入信号,观察电路输出信号的变化。

可以使用信号发生器提供正弦波信号作为输入信号。

5.测量输入和输出信号的电压幅度,并计算出放大倍数。

6.尝试改变输入信号的频率,观察输出信号的变化情况。

实验结果与分析:在实验中,通过调节偏置电阻的大小,可以使得晶体管进入放大工作区。

观察输出信号的幅度变化,可以发现晶体管放大效果的实验验证。

随着输入信号的幅度增加,输出信号的幅度也相应增加。

通过测量输入和输出信号的幅度,可以计算出放大倍数。

实验还可以通过改变输入信号的频率,观察输出信号的变化情况,验证晶体管放大电路的频率特性。

实验总结:通过这次实验,我对晶体管共射极单管放大电路的工作原理和放大特性有了更深入的了解。

通过实验验证,我成功搭建并调试了该电路,观察到了输入信号经过放大后的输出信号。

在实验过程中,我也学到了使用信号发生器、万用表等实验仪器的方法和技巧。

这次实验对于我的电子电路实验能力的提高有很大的帮助,也使我对晶体管的应用有了更深刻的理解。

在以后的学习中,我将继续加深对晶体管和其他电子元件的认识和理解,提高自己的实验能力和电路设计能力。

晶体管共射极单管放大电路实验报告

晶体管共射极单管放大电路实验报告

晶体管共射极单管放大电路实验报告实验二晶体管共射极单管放大器一、实验目的1.学会放大器静态工作点的调式方法和测量方法。

2.掌握放大器电压放大倍数的测试方法及放大器参数对放大倍数的影响。

3.熟悉常用电子仪器及模拟电路实验设备的使用。

二、实验原理图2—1为电阻分压式工作点稳定单管放大器实验电路图。

偏置电阻RB1、RB2组成分压电路,并在发射极中接有电阻RE,以稳定放大器的静态工作点。

当在放大器的输入端加入输入信号后,在放大器的输出端便可得到一个与输入信号相位相反、幅值被放大了的输出信号,从而实现了电压放大。

三、实验设备1、信号发生器2、双踪示波器3、交流毫伏表4、模拟电路实验箱5、万用表四、实验内容1.测量静态工作点实验电路如图2—1所示,它的静态工作点估算方法为:UB≈RB1?UCCRB1?RB2图2—1 共射极单管放大器实验电路图IE=UB?UBE≈Ic REUCE = UCC-IC(RC+RE)实验中测量放大器的静态工作点,应在输入信号为零的情况下进行。

1)没通电前,将放大器输入端与地端短接,接好电源线(注意12V电源位置)。

2)检查接线无误后,接通电源。

3)用万用表的直流10V挡测量UE = 2V左右,如果偏差太大可调节静态工作点(电位器RP)。

然后测量UB、UC,记入表2—1中。

表2—1B2所有测量结果记入表2—1中。

5)根据实验结果可用:IC≈IE =U?UCUE或IC=CCRCREUBE=UB-UEUCE=UC-UE计算出放大器的静态工作点。

2.测量电压放大倍数各仪器与放大器之间的连接图关掉电源,各电子仪器可按上图连接,为防止干扰,各仪器的公共端必须连在一起后接在公共接地端上。

1)检查线路无误后,接通电源。

从信号发生器输出一个频率为1KHz、幅值为10mv(用毫伏表测量ui)的正弦信号加入到放大器输入端。

2)用示波器观察放大器输出电压的波形,在波形不失真的条件下用交流毫伏表测量下表中三种情况下的输出电压值,记入表中。

晶体管共射极单管放大器实验报告

晶体管共射极单管放大器实验报告

晶体管共射极单管放大器实验报告实验报告:晶体管共射极单管放大器一、实验目的:1、理解晶体管共射极单管放大器的工作原理;2、掌握电路的基本搭建和调试方法;3、测量放大器的输入输出特性,并对实验结果进行分析。

二、实验器材:1、晶体管2N3904;2、直流电源;3、信号发生器;4、示波器;5、电流表;6、电压表。

三、实验步骤:1、拿出晶体管,根据其引脚标记分别将发射极、基极、集电极连接至电路板上;2、搭建晶体管共射极单管放大器电路,其中集电极连接至直流电源正极,基极连接至信号发生器,电阻连接至负载电阻;3、接通电源后,调节信号发生器频率和幅度使之适合实验要求;4、使用示波器分别测量输入电压、输出电压并记录;5、改变信号发生器频率和幅度,再次进行测量,并记录数据;6、根据实验数据计算电压放大倍数和功率放大倍数,并进行分析。

四、实验结果:在实验过程中,我们分别记录了不同频率下的输入电压和输出电压,并计算了电压放大倍数和功率放大倍数的数值。

五、实验分析:1、根据实验结果,我们可以得到该晶体管共射极单管放大器在不同频率下的电压放大倍数和功率放大倍数的变化规律;2、在一定频率范围内,电压放大倍数和功率放大倍数趋于稳定;3、理论上,晶体管的最大功率放大倍数为静态输入电阻与电路整体集电极负载阻值之比;4、实验结果与理论值有一定误差,可能是因为实际电路中存在导线、电阻等元件的内阻,使得电路整体集电极负载阻值与理论值有所不同;5、实验中还需注意调试电路时,选取适当的工作点,以保证对于各种信号输入的良好放大效果。

六、实验总结:通过本次实验,我们深入了解了晶体管共射极单管放大器的工作原理,并学会了搭建和调试该电路的方法。

同时,我们掌握了测量放大器的输入输出特性,并对实验结果进行了分析。

在实验过程中,我们还发现实验结果与理论值存在一定误差,需要进一步优化电路搭建和调试的方法。

通过本次实验,我们对晶体管共射极单管放大器有了更深入的了解,为今后的学习和研究打下了基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

晶体管共射极单管放大器实验报告-1一、实验目的;1、学会放大器静态工作点的调试方法,分析静态工作;1、+12V直流电源2、函数信号发生器3、双踪示;5、晶体三极管3DG6×1(β=50~100)或;图2-1为电阻分压式工作点稳定单管放大器实验电路;图2-1共射极单管放大器实验电路;在图2-1电路中,当流过偏置电阻RB1和RB2的;RB1?U?UBBE?IUCE=UCC-IC(R;RB1?RB一、实验目的1、学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响。

2、掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。

3、熟悉常用电子仪器及模拟电路实验设备的使用。

二、实验设备与器件1、+12V直流电源2、函数信号发生器3、双踪示波器4、万用表5、晶体三极管3DG6×1(β=50~100)或9011×1(管脚排列如图2-7所示),电阻器、电容器若干三、实验原理图2-1为电阻分压式工作点稳定单管放大器实验电路图。

它的偏置电路采用RB1和RB2组成的分压电路,并在发射极中接有电阻RE,以稳定放大器的静态工作点。

当在放大器的输入端加入输入信号ui后,在放大器的输出端便可得到一个与ui相位相反,幅值被放大了的输出信号u0,从而实现了电压放大。

图2-1共射极单管放大器实验电路在图2-1电路中,当流过偏置电阻RB1和RB2的电流远大于晶体管T的基极电流IB时(一般5~10倍),则它的静态工作点可用下式估算:UB?RB1?U?UBBE?I UCE=UCC-IC(RC+RE)UCC IECRB1?RB2RER//RL输入电阻:R=RB//RB//r输出电阻:R≈R电压放大倍数:Au??i12beOCβCrbe由于电子器件性能的分散性比较大,因此在设计和制作晶体管放大电路时,离不开测量和调试技术。

在设计前应测量所用元器件的参数,为电路设计提供必要的依据,在完成设计和装配以后,还必须测量和调试放大器的静态工作点和各项性能指标。

一个优质放大器,必定是理论设计与实验调整相结合的产物。

因此,除了学习放大器的理论知识和设计方法外,还必须掌握必要的测量和调试技术。

放大器的测量和调试一般包括:放大器静态工作点的测量与调试,消除干扰与自激振荡及放大器各项动态参数的测量与调试等。

1、放大器静态工作点的测量与调试①静态工作点的测量:测量放大器的静态工作点,应在输入信号ui=0的情况下进行,即将放大器输入端与地端短接,然后选用量程合适的直流毫安表和直流电压表(或用万用表的直流毫安档和直流电压档),分别测量晶体管的集电极电流IC以及各电极对地的电位UB、UC和UE。

一般实验中,为了避免断开集电极,所以采用测量电压UE或UC,然后算出IC的方法,例如,只要测出UE,即可用IC?IE?UE算出IC(也可根据IC?UCC?UC,由UC 确定IC),RCRE同时也能算出UBE=UB-UE,UCE=UC-UE。

为了减小误差,提高测量精度,应选用内阻较高的直流电压表。

②静态工作点的调试:放大器静态工作点的调试是指对管子集电极电流IC(或UCE)的调整与测试。

静态工作点是否合适,对放大器的性能和输出波形都有很大影响。

如工作点偏高,放大器在加入交流信号以后易产生饱和失真,此时uO的负半周将被削底,如图2-2(a)所示;如工作点偏低则易产生截止失真,即uO的正半周被缩顶(一般截止失真不如饱和失真明显),如图2-2(b)所示。

这些情况都不符合不失真放大的要求。

所以在选定工作点以后还必须进行动态调试,即在放大器的输入端加入一定的输入电压ui,检查输出电压uO的大小和波形是否满足要求。

如不满足,则应调节静态工作点的位置。

改变电路参数UCC、RC、RB(RB1、RB2)都会引起静态工作点的变化,如图2-3所示。

但通常多采用调图2-3电路参数对静态工作点的影响节偏置电阻RB2的方法来改变静态工作点,如减小RB2,则可使静态工作点提高等。

最后还要说明的是,上面所说的工作点“偏高”或“偏低”不是绝对的,应该是相对信号的幅度而言,如输入信号幅度很小,即使工作点较高或较低也不一定会出现失真。

所以确切地说,产生波形失真是信号幅度与静态工作点设置配合不当所致。

如需满足较大信号幅度的要求,静态工作点最好尽量靠近交流负载线的中点。

图2-2静态工作点对uO波形失真的影响2、放大器动态指标测试放大器动态指标包括电压放大倍数、输入电阻、输出电阻、最大不失真输出电压(动态范围)和通频带等。

①电压放大倍数AV的测量:调整放大器到合适的静态工作点,然后加入输入电压ui,在输出电UUAu?0?0P?PUiUiP?P压u不失真的情况下,用交流毫伏表测出u和u的有效值U和U,则OiOiO②输入电阻Ri的测量:为了测量放大器的输入电阻,按图2-4电路在被测放大器的输入端与信号源之间串入一已知电阻R,在放大器正常工作的情况下,用交流毫伏表测出US和Ui(或用示波器测出ui和uS的峰-峰值UiP-P和USP-P),则根据输入电阻的定义可得Ri?UiUiUiUiP-P??R?RUIiUS?UiUSP-P?UiP?PRR测量时应注意下列几:(a)由于电阻R两端没有电路公共接地点,所以测量R两端电压UR时必须分别测出US和Ui,然后按UR=US-Ui求出UR值。

(b)电阻R的值不宜取得过大或过小,以免产生较大的测量误差,通常取R与Ri为同一数量级为好,本实验可取R=1~2KΩ。

③输出电阻R0的测量按图2-4电路,在放大器正常工作条件下,测出输出端不接负载RL的输出电压峰-峰值UOP-P和接入负载后的输出电压峰-峰值ULP-P,根据UL?RLUO图2-4输入、输出电阻测量电路RO?RLULULP?P即可求出:R?(UO?1)R?(U0P?P?1)ROLL在测试中应注意,必须保持RL接入前后输入信号的大小不变。

④最大不失真输出电压UOP-P的测量(最大动态范围)如上所述,为了得到最大动态范围,应将静态工作点调在交流负载线的中点。

为此在放大器正常工作情况下,逐步增大输入信号的幅度,并同时调节RW(改变静态工作点),用示波器观察uO,当输出波形同时出现削底和缩顶现象(如图2-5)时,说明静态工作点已调在交流负载线的中点。

然后反复调整输入信号,使波形输出幅度最大,且无明显失真时,用交流毫伏表测出UO(有效值),则动态范围等于2⑤放大器幅频特性的测量放大器的幅频特性是指放大器的电压放大倍数AU与输入信号频率f之间的关系曲线。

单管阻容耦合放大电路的幅频特性曲线如图2-6所示,Aum为中频电压放大倍数,通常规定电压放大倍数随频率变化下降到中频放大倍数的1/2倍,即0.707Aum所对应的频率分别称为下限频率fL和上限频率fH,则通频带fBW =fH-fL放大器的幅率特性就是测量不同频率信号时的电压放大倍数AU。

为此,可采用前述测AU的方法,每改变一个信号频率,测量其相应的电压放大倍数,测量时应注意取点要恰当,在低频段与高频段应多测几点,在中频段可以少测几点。

此外,在改变频率时,要保持输入信号的幅度不变,且输出波形不得失真。

⑥干扰和自激振荡的消除参考实验附录3DG9011(NPN)3CG9012(PNP)9013(NPN)四、实验内容图2-7晶体三极管管脚排列图2-6幅频特性曲线实验电路如图2-1所示。

各电子仪器可按实验一中图1-1所示方式连接,为防止干扰,各仪器的公共端必须连在一起,同时信号源、交流毫伏表和示波器的引线应采用专用电缆线或屏蔽线,如使用屏蔽线,则屏蔽线的外包金属网应接在公共接地端上。

1、调试静态工作点:接通直流电源前,先将RW调至最大,函数信号发生器输出旋钮旋至零。

接通+12V电源、调节RW,使IC =2.0mA(即UE=2.0V),用万用表的直流电压档测量UB、UE、UC及用万用表欧姆档测量R值。

记入表2-1。

表2-1I=2mA2U0。

或用示波器直接读出UOP-P来。

2、测量电压放大倍数:在放大器输入端加入频率为1KHz的正弦信号uS,调节函数信号发生器的输出旋钮使放大器输入电压UiP-P?30mV,同时用示波器观察放大器输出电压uO波形,在波形不失真的条件下用示波器测量下述三种情况下的UOP-P值,并用双踪示波器观察uO和ui的相位关系,记入表23、观察静态工作点对电压放大倍数的影响:数模实验箱中置RC =2.4KΩ,RL=∞,模拟电子技术实验箱中置RC=2.7KΩ,RL =∞,UiP-P适量,调节RW,用示波器监视输出电压波形,在uO不失真的条件下,测量IC时,要先将信号源输出旋钮旋至零(即使UiP-P=0)或断开信号源输出连接线。

4、观察静态工作点对输出波形失真的影响:数模实验箱中置RC=2.4KΩ,RL=∞,模拟电子技术实验箱中置RC=2.7KΩ,RL=∞,ui=0,调节RW使IC=2.0mA,测出UCE值,再逐步加大输入信号,使输出电压uO足够大但不失真。

然后保持输入信号不变,分别增大和减小RW,使波形出现失真,绘出uO的波形,并测出失真情况下的IC和UCE值,记入表2-4中。

每次测IC和UCE值时都要将信号源的输出5、测量最大不失真输出电压数模实验箱中置RC=2.4KΩ,RL=2.4KΩ,模拟电子技术实验箱中置RC=2.7KΩ,RL=4.7KΩ,同时调节输入信号的幅度和电位器RW,先使输出信号同时出现饱和失真和截止失真,然后减小ui使饱和失真和截止失真消失,用示波器测量此时的UiP-P 和UOP-P值,记录*6、测量输入电阻和输出电阻数模实验箱中置RC=2.4KΩ,RL=2.4KΩ,模拟电子技术实验箱中置RC=2.7KΩ,RL=4.7KΩ,IC=2.0mA。

输入f=1KHz的正弦信号,在输出电压uO不失真的情况下,用示波器测出USP-P,UiP-P和ULP-P记入表2-6。

保持USP-P不变,断开RL,测量输出电压U,记入表2-6。

*7、测量幅频特性曲线取IC=2.0mA,RC=2.4KΩ,RL=2.4KΩ。

保持输入信号ui的幅度不变,改变信号源频率f,逐点三亿文库包含各类专业文献、幼儿教育、小学教育、行业资料、各类资格考试、高等教育、外语学习资料、专业论文、文学作品欣赏、中学教育等内容。

相关文档
最新文档