九年级数学总复习基础测试题

合集下载

人教版九年级数学(上下全册)综合测试卷(附带参考答案)

人教版九年级数学(上下全册)综合测试卷(附带参考答案)

人教版九年级数学(上下全册)综合测试卷(附带参考答案)(考试时长:100分钟;总分:120分)学校:___________班级:___________姓名:___________考号:___________一、单选题 1.方程2269x x -=的二次项系数、一次项系数、常数项分别为( ) A .6,2,9 B .2,-6,9 C .-2,-6,9 D .2,-6,-92.下列方程中,属于一元二次方程的是( )A .233x x =-;B .5(1)(51)2x x x x +=-+;C .()2333y x -=;D .21210x x -+=.3.一元二次方程2410x x --=的根的情况是( )A .没有实数根B .只有一个实根C .有两个相等的实数D .有两个不相等的实数根4.把二次函数2243y x x =--+用配方法化成()2y a x h k =-+的形式( )A .()2215y x =-++B .()2215y x =--+C .()2215y x =++D .()2215y x =-+5.下图是由几个相同的小正方体搭成的一个几何体,它的主视图是( )A .B .C .D .6.关于x 的一元二次方程x 2+kx ﹣2=0(k 为实数)根的情况是( )A .没有实数根B .有两个相等的实数根C .有两个不相等的实数根D .不能确定7.若a ,b 为一元二次方程2710x x --=的两个实数根,则33842a ab b a ++-值是()A .-52B .-46C .60D .668.如图所示,在坐标系中放置一菱形OABC ,已知60ABC ∠=︒,OA=1,先将菱形OABC 沿x 轴的正方向无滑动翻转,每次翻转60︒,连续翻转2020次,点B 的落点一次为123,,B B B ……则2020B 的坐标为( )A .(1346,3)B .(1346,0)C .(1346,23)D .(1347,3)9.将一副三角板如下图摆放在一起,连结AD ,则∠ADB 的正切值为( )A .31-B .21-C .312+D .312- 10.如图,一名滑雪运动员沿着倾斜角为34°的斜坡,从A 滑行至B ,已知AB=500米,则这名滑雪运动员的高度下降了__米.(sin34°≈0.56,cos34°≈0.83,tan34°≈0.67) ( )A .415B .280C .335D .25011.二次函数y =x 2+4x −5的图象的对称轴为( )A .x =−4B .x =4C .x =−2D .x =212.如图,在平面直角坐标系中,O 为原点35OA OB ==,点C 为平面内一动点32BC =,连接AC ,点M 是线段AC 上的一点,且满足:1:2CM MA =.当线段OM 取最大值时,点M 的坐标是( )A .36,55⎛⎫ ⎪⎝⎭B .365,555⎛⎫ ⎪⎝⎭C .612,55⎛⎫ ⎪⎝⎭D .6125,555⎛⎫ ⎪⎝⎭ 二、填空题 13.芜湖宣州机场(Wuhu Xuanzhou Airport ,IATA :WHA ,ICAO :ZSWA ),简称“芜宣机场”,位于中国安徽省芜湖市湾沚区湾沚镇和宣城市宣州区养贤乡,为4C 级国内支线机场、芜湖市与宣城市共建共用机场,如图是芜宣机场部分出港航班信息表,从表中随机选择一个航班,所选航班飞行时长超过2小时的概率为 .航程 航班号 起飞时间 到达时间 飞行时长芜宣-贵阳 C54501 9:15 11:552h40m 芜宣-南宁 G54701 9:15 11:55 2h40m 芜宣-沈阳 G54517 9:20 11:502h30m 芜宣-济南 JD5339 10:15 11:451h30m 芜宣-重庆 3U8072 12:35 14:552h20m 芜宣-北京 KN5870 14:00 16:152h15m 芜宣-长沙 G52817 14:20 16:001h40 m 芜宣-青岛 DZ6253 16:30 18:201h50m 芜宣-三亚 TD5340 17:5521:10 3h15m 14.抛物线()2318y x =-+的对称轴是: .15.如图,在O 中,AB 切O 于点A ,连接OB 交O 于点C ,点D 在O 上,连接CD 、AD ,若50B ∠=︒,则D ∠为 .16.直角三角形一条直角边和斜边的长分别是一元二次方程的两个实数根,该三角形的面积为 . 17.写出一个开口向下、且经过点(-1,2)的二次函数的表达式 ;18.如图,将ABC 绕点A 顺时针旋转85︒,得到ADE ,若点E 恰好在CB 的延长线上,则BED ∠= .19.甲袋里有红、白两球,乙袋里有红、红、白三球,两袋的球除颜色不同外其他都相同,分别从两袋里任摸一球,同时摸到红球的概率是 .20.如图,点A ,B 的坐标分别为()()4004A B ,,,,C 为坐标平面内一点,2BC =,点M 为线段AC 的中点,连接OM OM ,的最大值为 .21.如图,在Rt△ABC 中,∠ACB =90°,AB =5,BC =3,将△ABC 绕点B 顺时针旋转得到△A′B C′,其中点A ,C 的对应点分别为点,A C ''连接,AA CC '',直线CC '交AA '于点D ,点E 为AC 的中点,连接DE .则DE 的最小值为22.如图,在平面直角坐标系中,ACE ∆是以菱形ABCD 的对角线AC 为边的等边三角形23AC =点C 与点E 关于x 轴对称,则过点C 的反比例函数的表达式是 .23.若粮仓顶部是圆锥形,且这个圆锥的高为2m ,母线长为2.5m ,为防雨需在粮仓顶部铺上油毡,则这块油毡的面积是 m 2.(结果保留π)24.如图,在矩形ABCD 中,4,6,AB BC E ==是AB 的中点,F 是BC 边上一动点,将BEF △沿着EF 翻折,使得点B 落在点B '处,矩形内有一动点,P 连接,,,PB PC PD '则PB PC PD '++的最小值为 .(21题图) (22题图) (24题图)三、解答题25.计算:(﹣2)3+16﹣2sin30°+(2016﹣π)0.26.(1)计算:112cos30|32|()44-︒+---.(2)如图是一个几何体的三视图(单位:cm ).①这个几何体的名称是 ;②根据图上的数据计算这个几何体的表面积是 (结果保留π)27.水务部门为加强防汛工作,决定对马边河上某电站大坝进行加固.原大坝的横断面是梯形ABCD ,如图所示,已知迎水面AB 的长为20米,∠B =60°,背水面DC 的长度为203米,加固后大坝的横断面为梯形ABED.若CE的长为5米.(1)已知需加固的大坝长为100米,求需要填方多少立方米;(2)求新大坝背水面DE的坡度.(计算结果保留根号).28.某校举行了“防溺水”知识竞赛.八年级两个班各选派10名同学参加预赛,依据各参赛选手的成绩(均为整数)绘制了统计表和折线统计图(如图所示).班级八(1)班八(2)班最高分100 99众数a98中位数96 b平均数c94.8(1)统计表中,=a_______,b=_________,c=_______;(2)若从两个班的预赛选手中选四名学生参加决赛,其中两个班的第一名直接进入决赛,另外两个名额在成绩为98分的学生中任选两个,求另外两个决赛名额落在不同班级的概率.29.某口罩生产厂生产的口罩1月份平均日产量为18000个,1月底市场对口罩需求量大增,为满足市场需求,工厂决定从2月份起扩大产量,3月份平均日产量达到21780个.(1)求口罩日产量的月平均增长率;(2)按照这个增长率,预计4月份平均日产量为多少?30.阳阳超市以每件10元的价格购进了一批玩具,定价为20元时,平均每天可售出80个.经调查发现,玩具的单价每降1元,每天可多售出40个;玩具的单价每涨1元,每天要少售出5个.如何定价才能使每天的利润最大?求出此时的最大利润.31.(1)一个矩形的长比宽大2cm,面积是168cm?.求该矩形的长和宽.(2)如图,两个圆都以点O为圆心.求证:AC BD.32.国庆与中秋双节期间,小林一家计划在焦作市内以下知名景区选择一部分去游玩.5A级景区四处:a.云台山景区,b.青天河景区,c.神农山景区;d.峰林峡景区;4A级景区六处:e.影视城景区,f.陈家沟景区,g.嘉应观景区,h.圆融寺景区,i.老家莫沟景区,j.大沙河公园;(1)若小林一家在以上这些景区随机选择一处,则选到5A级景区的概率是.(2)若小林一家选择了“a.云台山景区”,此外,他们决定再从b,c,d,e四处景区中任选两处景区去游玩,用画树状图或列表的方法求恰好选到b,e两处景区的概率.33.综合与探究问题情境:某商店购进一种冬季取暖的“小太阳”取暖器,每台进价为40元,这种取暖器的销售价为每台52元时,每周可售出180台.探究发现:①销售定价每增加1元时,每周的销售量将减少10台;②销售定价每降低1元时,每周的销售量将增多10台.问题解决:若商店准备把这种取暖器销售价定为每台x元,每周销售获利为y元.(1)当54x 时,这周的“小太阳”取暖器的销售量为______台,每周销售获利y为______元.(2)求y与x的函数关系式(不必写出x的取值范围),并求出销售价定为多少时,这周销售“小太阳”取暖器获利最大,最大利润是多少?(3)若该商店在某周销售这种“小太阳”取暖器获利2000元,求x的值.答案:1.D 2.A 3.D 4.A 5.C 6.C 7.C 8.B 9.D 10.B 11.C 12.D 13.2314.直线1x=15.20︒16.24.17.23y x=-+(答案不唯一).18.95︒19.92520.122+/221+21.122.23yx=23.154π.24.423+25.-4.26.(1)4-;(2)①圆锥;②几何体的表面积为220cmπ27.(1)需要填方25003立方米;(2)新大坝背水面DE的坡度为237.28.(1)96;96;94.5;(2)3529.(1)口罩日产量的月平均增长率为10% (2)预计4月份平均日产量为23958个30.当定价为16元时,每天的利润最大,最大利润是1440元31.(1)矩形的长为14cm,宽为12cm32.(1)25(2)1633.(1)160,2240;(2)当销售定价为55元时,利润最大,最大为2250元;(3)当x为60或50时,每周获利可达2000元.。

初三数学复习题带答案

初三数学复习题带答案

初三数学复习题带答案1. 已知一个二次函数的图像开口向上,且经过点(1,0)和(-1,0),求该二次函数的解析式。

解析:由于二次函数图像开口向上,我们可以设二次函数的解析式为y=ax^2+bx+c。

因为图像经过点(1,0)和(-1,0),所以这两个点满足函数解析式,即:\[ a(1)^2+b(1)+c=0 \]\[ a(-1)^2+b(-1)+c=0 \]解得b=0,c=-a。

又因为图像开口向上,所以a>0。

因此,二次函数的解析式为y=ax^2-a。

答案:y=ax^2-a(a>0)2. 计算下列有理数的混合运算:\(\frac{1}{2} - \frac{1}{3} +\frac{5}{6}\)。

解析:首先找到这三个分数的最小公倍数,即6,然后将每个分数转换为相同的分母:\[ \frac{1}{2} = \frac{3}{6} \]\[ \frac{1}{3} = \frac{2}{6} \]\[ \frac{5}{6} \]接下来,将这些分数相加减:\[ \frac{3}{6} - \frac{2}{6} + \frac{5}{6} = \frac{3-2+5}{6} = \frac{6}{6} = 1 \]答案:13. 一个长方体的长、宽、高分别为3cm、4cm和5cm,求其体积。

解析:长方体的体积可以通过长、宽、高的乘积来计算,即:\[ V = 长 \times 宽 \times 高 \]将给定的尺寸代入公式中:\[ V = 3cm \times 4cm \times 5cm = 60cm^3 \]答案:60cm^34. 已知一个圆的半径为5cm,求其周长和面积。

解析:圆的周长公式为C=2πr,面积公式为A=πr^2。

将半径r=5cm 代入公式中:周长:\[ C = 2 \times \pi \times 5cm = 10\pi cm \]面积:\[ A = \pi \times (5cm)^2 = 25\pi cm^2 \]答案:周长为10π cm,面积为25π cm^25. 一个等腰三角形的底边长为6cm,两腰长为5cm,求其周长。

九年级全册数学复习试卷【含答案】

九年级全册数学复习试卷【含答案】

九年级全册数学复习试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个三角形的两边长分别为8cm和10cm,且这两边的夹角为60°,则这个三角形的周长为多少cm?A. 26cmB. 28cmC. 30cmD. 32cm2. 已知函数f(x) = 2x + 3,那么f(3)的值为多少?A. 9B. 11C. 12D. 153. 在直角坐标系中,点A(2, -3)关于x轴的对称点坐标为?A. (2, 3)B. (-2, -3)C. (2, 3)D. (-2, 3)4. 若一个等差数列的首项为3,公差为2,那么第10项的值为多少?A. 19B. 20C. 21D. 225. 已知一个圆的半径为5cm,那么这个圆的面积为多少平方厘米?A. 25πB. 50πC. 75πD. 100π二、判断题(每题1分,共5分)1. 若两个角的和为90°,则这两个角互为补角。

()2. 任何数乘以0都等于0。

()3. 在直角三角形中,斜边是最长的一边。

()4. 若一个等差数列的公差为0,则这个数列的所有项都相等。

()5. 任何数乘以-1都等于这个数的相反数。

()三、填空题(每题1分,共5分)1. 若一个等腰三角形的底边长为8cm,腰长为10cm,则这个三角形的周长为______cm。

2. 已知函数f(x) = 3x 5,那么f(4)的值为______。

3. 在直角坐标系中,点B(-3, 4)关于原点的对称点坐标为______。

4. 若一个等差数列的首项为2,公差为3,那么第7项的值为______。

5. 已知一个圆的直径为10cm,那么这个圆的周长为______cm。

四、简答题(每题2分,共10分)1. 请简述勾股定理的内容。

2. 请解释等差数列和等比数列的区别。

3. 请说明圆的面积公式。

4. 请简述函数的概念。

5. 请解释直角坐标系中点的坐标表示。

五、应用题(每题2分,共10分)1. 一个长方形的长为10cm,宽为5cm,求这个长方形的面积。

人教版初三数学基础练习题

人教版初三数学基础练习题

人教版初三数学基础练习题一、选择题1. 下面哪个数是一个整数?A. -3.5B. √2C. -πD. 0.252. 小明乘以一个正数得到了-8,那么这个正数是多少?A. 2B. -2C. -8D. -1/83. 在数轴上,点A的坐标为-3/4,点B的坐标为5/4,则AB的坐标是多少?A. 1B. -1/2C. 1/2D. -14. 已知正整数a、b,其中a>b,若a-b=5,则下面哪个等式是正确的?A. a+b=5B. a+b=0C. a-b=0D. a+b=105. 某商品打折出售,原价是200元,现在的售价是原价的80%,那么现售价是多少?A. 160元B. 100元C. 120元D. 180元二、解答题1. 已知一个数是一个整数,他的绝对值比这个整数的相反数大2,求这个整数是多少?解:设这个整数为x,根据题意可以得到方程|x|=|-x|+2由于x的绝对值为正,所以方程可以化简为x=-x+2移项整理后得到2x=2,所以x=1所以这个整数是1。

2. 已知一个几何图形的面积为12平方厘米,如果将它的边长扩大为原来的3倍,则新图形的面积是多少?解:设原图形的边长为a,则原图形的面积为a^2=12扩大边长3倍后,新图形的边长为3a,所以新图形的面积为(3a)^2=9a^2由于a^2=12,所以9a^2=9×12=108所以新图形的面积是108平方厘米。

3. 小明和小红一起做了一份试卷,小明答对了试卷的80%,小红答对了试卷的60%。

小明和小红答对试卷的百分比之和是多少?解:设试卷共有100道题,小明答对80道题,小红答对60道题。

所以小明的答对比例是80% = 80/100 = 0.8小红的答对比例是60% = 60/100 = 0.6小明和小红答对试卷的百分比之和是0.8 + 0.6 = 1.4所以小明和小红答对试卷的百分比之和是140%。

以上是人教版初三数学基础练习题的解答,希望能对你有所帮助。

苏科版2019-2020九年级数学第一学期期中综合复习基础训练3(附答案)

苏科版2019-2020九年级数学第一学期期中综合复习基础训练3(附答案)

苏科版2019-2020九年级数学第一学期期中综合复习基础训练3(附答案)1.下列说法:①如果a 2>b 2,那么a>b ;4;③过一点有且只有一条直线与已知直线平行;④关于x 的方程2210mx x ++=没有实数根,那么m 的取值范围是m>1且m≠0;正确的有( )A .0个B .1个C .2个D .3个2.如图,如果从半径为9cm 的圆形纸片剪去圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的底面半径为( )A .6cmB .3cmC .5cm D .3cm 3.如图,AB 是O 的直径,120BOD =∠,点C 为BD 的中点,AC 交OD 于点E ,1DE =,则AE 的长为( )A B C .D .4.若关于x 的一元二次方程mx 2﹣2x +1=0有两个实数根,则实数m 的取值范围是( )A .m ≤1B .m ≤﹣1C .m ≤1且m ≠0D .m ≥1且m ≠0 5.下列说法正确的是( )A .一个游戏中奖的概率是1100,则做100次这样的游戏一定会中奖 B .为了了解全国中学生的心理健康状况,应采用普查的方式C .一组数据0,1,2,1,1的众数和中位数都是1D .若甲组数据的方差为2s 甲,乙组数据的方差为2s 乙,则乙组数据比甲组数据稳定6.某型号的手机连续两次降阶,每台手机售价由原来的1185元降到580元,设平均每次降价的百分率为,则列出方程正确的是( )A .580(1+x)2=1185B .1185(1-x)2=580C.580(1-x)2=1185 D.1185(1+x)2=5807.如图,将半径为2的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长度为()A B.2 C.D.(1+8.一组数据2,3,5,4,5的众数是()A.2 B.3 C.4 D.59.如图,已知⊙O的半径为5,点A到圆心O的距离为3,则过点A的所有弦中,最短弦的长为( )A.4 B.6 C.8 D.1010.通过测试从9位书法兴趣小组的同学中,择优挑选5位去参加中学生书法表演,若测试结果每位同学的成绩各不相同.则被选中同学的成绩,肯定不少于这9位同学测试成绩统计量中的()A.平均数B.众数C.中位数D.方差11.在如图所示的电路图中,在开关全部断开的情况下,闭合其中任意一个开关,灯泡发亮的概率是______.12.如图,AC⊥BC,AC=BC=4,以BC为直径作半圆,圆心为O.以点C为圆心,BC为半径作弧AB,过点O作AC的平行线交两弧于点D、E,则阴影部分的面积是_____.13.一组数据2,4,5,,1的平均数为,那么这组数据的方差是___.14.关于x 的方程x 2+2(m ﹣1)x ﹣4m =0的两个实数根分别是x 1,x 2,且x 1﹣x 2=2,则m 的值是_____.15.已知圆锥的母线长为5cm ,侧面积为15π2cm ,则这个圆锥的底面圆半径为_____cm.16.已知a ,b 是方程x 2+2017x +2=0的两个根,则(2+2019a +a 2)(2+2019b +b 2)的值为______.17.如图,四边形ABCD 为⊙O 的内接四边形,点E 在DA 的延长线上,已知∠BCD=110°,则∠BAE =_______°.18.已知O 的半径为4cm ,点P 在直线l 上,且点P 到圆心O 的距离为4cm ,则直线l 与O ______.19.如图,△ABC 中,AB =8,BC =10,AC =7,∠ABC 和∠ACB 的平分线交于点 I ,IE ⊥BC 于E ,则 BE 的长为________.20.一元二次方程290x x +=的解是______.21.如图,已知Rt △ABC 中,∠ACB=90°,以AC 为直径的圆O 交斜边AB 于D .过D 作DE ⊥AC 于E ,将△ADE 沿直线AB 翻折得到△ADF .(1)求证:DF 是⊙O 的切线;(2)若⊙O 的半径为10,sin ∠FAD=35,延长FD 交BC 于G ,求BG 的长.22.已知:关于x 的方程()222120x m x m -+++=. ()1若方程总有两个实数根,求m 的取值范围;()2在(1)的条件下,若两实数根1x 、2x 满足1212x x x x +=,求m 的值.23.每年夏季全国各地总有未成年人因溺水而丧失生命,令人痛心疾首.今年某校为确保学生安全,开展了“远离溺水·珍爱生命”的防溺水安全知识竞赛.现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用x表示,共分成四组:A.80≤x≤85,B.85≤x≤90,C.90≤x≤95,D.95≤x≤100),下面给出了部分信息:七年级10名学生的竞赛成绩是:90,80,90,86,99,96,96,100,89,82八年级10名学生的竞赛成绩在C组中的数据是:94,90,94根据以上信息,解答下列问题:(1)直接写出上述图表中a,b,c的值;(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握防溺水安全知识较好?请说明理由(一条理由即可);(3)该校七、八年级共730人参加了此次竞赛活动,估计参加此次竞赛活动成绩优秀(x≧90)的学生人数是多少?24.已知ABC,()1用无刻度的直尺和圆规作ABD,使A D B A C B.∠∠=且ABD的面积为ABC 面积的一半,只需要画出一个ABD即可(作图不必写作法,但要保留作图痕迹) ()2在ABC中,若ACB45∠=,AB4=,则ABC面积的最大值是______25.足球训练场上,教练在球门前画了一个圆圈进行无人防守的射门训练.如图,甲、乙两名运动员分别在C,D两处,他们争论不休,都说自己所在的位置对球门AB的张角大,如果你是教练,请评一评他们两个人谁的位置对球门AB的张角大?为什么?26.如图①,四边形ABCD 与四边形CEFG 都是矩形,点E ,G 分别在边CD ,CB 上,点F 在AC 上,AB =3,BC =4(1)求AF BG的值; (2)把矩形CEFG 绕点C 顺时针旋转到图②的位置,P 为AF ,BG 的交点,连接CP (Ⅰ)求AF BG 的值; (Ⅱ)判断CP 与AF 的位置关系,并说明理由.27.解下列方程(1)x 2+12x +27=0(2)3x 2-2=5x28.如图1,四边形ADBC 内接于O ,AB 为O 的直径,对角线AB 、CD 相交于点E .图1 图2图3(1)求证:90BCD ABD ∠+∠=︒;(2)如图2,点G 在AC 的延长线上,连接BG ,交O 于点Q ,CA CB =,ABD ABG ∠=∠,作GH CD ⊥,交DC 的延长线于点H ,求证:GQ = (3)如图3,在(2)的条件下,过点B 作//BF AD ,交CD 于点F ,3GH CH =,若CF =O 的半径.参考答案1.A【解析】【分析】①当a是负数且绝对值大于b(正数)时,不成立;②4,再求其算术平方根即可;③当点在直线上时,没有与已知直线平等的直线;④根据一元二次方程根的判别式进行判断.【详解】①当a=-5时,b=2时,a2>b2,a<b,故①错误;=4,故其算术平方根为2,故②错误;③当点在直线上时,没有与已知直线平行的直线,正确说法是:过直线外一点有且只有一条直线与已知直线平行,故③错误;④关于x的方程mx2+2x+1=0没有实数根,那么m的取值范围是m>1,故此选项错误.所以正确的有0个.故选:A.【点睛】考查了算术平方根的定义、一元二次方程根的判别式等知识,正确把握相关性质是解题关键.2.A【解析】【分析】设圆锥的底面圆半径为r,先利用圆的周长公式计算出剩下的扇形的弧长,然后把它作为圆锥的底面圆的周长进行计算即可.【详解】设圆锥的底面圆半径为r,∵半径为9cm的圆形纸片剪去一个圆周的扇形,∴剩下的扇形的弧长=×2π×9=12π,∴2πr=12π,∴r=6.【点睛】本题考查了圆锥的有关计算:圆锥的侧面展开图为扇形,圆锥的底面圆的周长等于扇形的弧长.也考查了圆的周长公式.3.A【解析】【分析】连接OC ,证明OD ⊥AC 即可解决问题.【详解】解:连接OC ,∵弧CD=弧BC ,∴60DOC BOC ∠=∠=︒,60AOD ∠=︒,∴AOD DOC ∠=∠,∴弧AD=弧CD ,∴OD AC ⊥,90AEO ∠=︒,设AO r =,则1OE r =-,∵·cos60OE AO =︒, ∴112r r -=,2r =,∴AE =故选:A.【点睛】本题考查圆周角定理,垂径定理,解直角三角形等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,属于中考常考题型.4.C【解析】利用一元二次方程的定义和判别式的意义得到m≠0且△=(﹣2)2﹣4m≥0,然后求出两不等式的公共部分即可.【详解】根据题意得m≠0且△=(﹣2)2﹣4m≥0,解得m≤1且m≠0.故选:C.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.5.C【解析】【分析】根据调查方式,可判断A,根据概率的意义一,可判断B根据中位数、众数,可判断c,根据方差的性质,可判断D.【详解】A、一个游戏中奖的概率是1100,做100次这样的游戏有可能中奖,而不是一定中奖,故A错误;B、为了了解全国中学生的心理健康状况,应采用抽查方式,故B错误;C、一组数据0,1,2,1,1的众数和中位数都是1,故C正确;D. 若甲组数据的方差为2s甲,乙组数据的方差为2s乙,无法比较甲乙两组的方差,故无法确定那组数据更加稳定,故D错误.故选:C.【点睛】本题考查了概率、抽样调查及普查、中位数及众数、方差等,熟练的掌握各知识点的概念及计算方法是关键.6.B【解析】根据降价后的价格=原价(1-降低的百分率),本题可先用x表示第一次降价后商品的售价,再根据题意表示第二次降价后的售价,即可列出方程.【详解】设平均每次降价的百分率为x,由题意得出方程为:1185(1−x)2=580.故选:B.【点睛】本题考查的是由实际问题列出一元二次方程,正确列出方程是解题的关键.7.C【解析】【分析】过O作OC⊥AB,交圆O于点D,连接OA,由垂径定理得到C为AB的中点,再由折叠得到CD=OC,求出OC的长,在直角三角形AOC中,利用勾股定理求出AC的长,即可确定出AB的长.【详解】过O作OC⊥AB,交圆O于点D,连接OA,由折叠得到CD=OC=12OD=1cm,在Rt△AOC中,根据勾股定理得:AC2+OC2=OA2,即AC2+1=4,解得:,则.故选C.【点睛】此题考查了垂径定理,勾股定理,以及翻折的性质,熟练掌握垂径定理是解本题的关键.8.D【解析】【分析】根据众数的定义:一组数据中出现次数最多的数据即可得出答案.【详解】解:这组数据中出现次数最多的数据为:5.故众数为5,故选:D.【点睛】本题考查了众数的知识,属于基础题,解答本题的关键是熟练掌握一组数据中出现次数最多的数据叫做众数.9.C【解析】【分析】最短弦是过A点垂直于OA的弦.根据垂径定理和勾股定理求解.【详解】由垂径定理得,该弦应该是以OA为中垂线的弦BC.连接OB.已知OB=5,OA=3,由勾股定理得AB=4.所以弦BC=8.故选C.【点睛】此题主要考查了学生对垂径定理及勾股定理的理解运用.10.C【解析】【分析】由于从9个人中挑选5位,则应根据中位数的意义进行解答.【详解】∵从9位书法兴趣小组的同学中,择优挑选5位去参加中学生书法表演,∴则被选中同学的成绩,肯定不少于这9位同学测试成绩统计量中的中位数,故选C .【点睛】本题考查了统计的相关知识,涉及了平均数、中位数、众数、方差等,要结合具体的问题对统计量进行合理的选择和恰当的运用.11.13【解析】【分析】根据概率公式知,共有3个开关,只闭一个开关时,只有闭合S 3时才发光,所以小灯泡发光的概率等于1.3【详解】根据题意,三个开关,只有闭合3S 小灯泡才发光,所以小灯泡发光的概率等于13. 故答案为:13【点睛】考查概率的计算,明确概率的意义是解题的关键,概率等于所求情况数与总情况数的比.12.53π﹣ 【解析】【分析】如图,图中S 阴影=S 扇形BCE ﹣S 扇形BOD ﹣S △OCE .根据已知条件易求得OB =OC =OD =2,BC=CE =4.∠ECB=60°,∠OEC=30°,所以由扇形面积公式、三角形面积公式进行解答即可 【详解】解:如图,连接CE .∵AC ⊥BC ,AC =BC =4,以BC 为直径作半圆,圆心为点O ;以点C 为圆心,BC 为半径作弧AB ,∴∠ACB =90°,OB =OC =OD =2,BC =CE =4.又∵OE ∥AC ,∴∠ACB =∠COE =90°.∴在直角△OEC 中,OC =2,CE =4,∴∠CEO =30°,∠ECB =60°,OE =∴S 阴影=S 扇形BCE ﹣S 扇形BOD ﹣S △OCE =2604360 π ﹣14 π×22﹣12×2×=53π﹣,故答案为:53π﹣【点睛】此题考查扇形面积的计算,掌握运算法则是解题关键13.2【解析】【分析】根据平均数的计算方法求得a 的值,再利用方差公式计算这组数据的方差即可.【详解】∵数据2,4,5,a ,1的平均数为a , ∴(2 +4+5+a+1)=a ,∴a=3,∴s 2=[(2-3)2+(4-3)2+(5-3)2+(3-3)2+(1-3)2]=2.故答案为:2.【点睛】本题考查了平均数及方差的计算公式,熟知平均数及方差的计算公式是解决问题的关键. 14.m =0或m =﹣2.【解析】【分析】由韦达定理得出x 1+x 2=﹣2(m ﹣1),x 1x 2=﹣4m ,结合x 1﹣x 2=2知122x m x m =-+⎧⎨=-⎩,代入x 1x 2=﹣4m 可得关于m 的方程,解之可得答案.【详解】解:∵关于x 的方程x 2+2(m ﹣1)x ﹣4m =0的两个实数根分别是x 1,x 2,∴x 1+x 2=﹣2(m ﹣1),x 1x 2=﹣4m ,又∵x 1﹣x 2=2,∴1212222x x m x x +=-+⎧⎨-=⎩, 解得:122x m x m =-+⎧⎨=-⎩, 代入x 1x 2=﹣4m 得﹣m (﹣m+2)=﹣4m ,解得:m =0或m =﹣2,故答案为:m =0或m =﹣2.【点睛】本题主要考查一元二次方程根与系数的关系,根据韦达定理及x 1﹣x 2=2得出关于m 的方程是解题的关键.15.3【解析】【分析】根据圆锥的侧面积和圆锥的母线长求得圆锥的弧长,利用圆锥的侧面展开扇形的弧长等于圆锥的底面周长求得圆锥的底面半径即可.【详解】∵圆锥的母线长是5cm ,侧面积是15πcm2,∴圆锥的侧面展开扇形的弧长为:215=65ππ⨯, ∵锥的侧面展开扇形的弧长等于圆锥的底面周长,∴r=62ππ=3cm , 故答案为:3.【点睛】本题考查了圆锥的计算,解题的关键是正确地进行圆锥与扇形的转化.16.8.【解析】【分析】根据已知条件得到2+2017a+a2=0,2+2017b+b2=0,ab=2,代入代数式即可得到结论.【详解】∵a,b是方程x2+2017x+2=0的两个根,∴2+2017a+a2=0,2+2017b+b2=0,ab=2,∴(2+2019a+a2)(2+2019b+b2)=(2+2017a+2a+a2)(2+2017b+2b+b2)=4ab=8,故答案为:8.【点睛】本题考查了一元二次方程根与系数的关系,熟练掌握根与系数的关系是解题的关键.17.110【解析】【分析】根据圆内接四边形的任意一个外角等于它的内对角解答.【详解】∵四边形ABCD是⊙O的内接四边形,∴∠BAE=∠BCD=110°,故答案为:110.【点睛】本题考查了圆内接四边形的性质,掌握圆内接四边形的任意一个外角等于它的内对角是解题的关键.18.相交或相切【解析】【分析】根据直线与圆的位置关系即可得出结论.【详解】解:∵点P在直线l上,且点P到圆心O的距离为4cm,等于直径,∴点P在⊙O上∴直线l与⊙O相交或相切故答案为:相交或相切【点睛】本题考查直线与圆的位置关系,解题的关键是熟知直线与圆的三种位置关系.19.【解析】【分析】如图作△ABC 的内切圆,切点分别为 E ,F ,G ,根据切线长定理即可解决问题;【详解】解:如图作△ABC 的内切圆,切点分别为 E ,F ,G ,∵BE =BF ,AF =AG ,CE =CG ,∴BE ==, 故答案为. 【点睛】本题考查角平分线的性质,三角形的内切圆,切线长定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.20.0x =或9x =-【解析】【分析】因式分解法求解可得.【详解】解:()90x x +=,0x ∴=或90x +=,解得:0x =或9x =-,故答案为:0x =或9x =-.【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.21.(1)见解析(2)15 4【解析】【分析】(1)由△ADE沿直线AB翻折得到△ADF,得到∠DAE=∠DAF,∠AED=∠F=90°,由于OA=OD,于是得到∠DAE=∠ODA,根据平行线的判定定理得到OD∥AF,根据平行线的性质得到OD⊥DF,于是得到结论;(2)连接DC,由于AC是O的直径,即CD⊥AB;又FD与BC均是O的切线且相交于点G由切线长定理可得:GD=GC,于是得到∠GDC=∠GCD,由于GD是Rt△BDC斜边上的中线,即GD=12BC,由于△ADE沿直线AB翻折得到△ADF,得到sin∠DAE=sin∠DAF=35,解直角三角形得到sin∠DAC=DCAC=10DC=35,得DC=6,由勾股定理得AD=8;根据三角形相似即可得到结论.【详解】(1)证明:∵△ADE沿直线AB翻折得到△ADF,∴∠DAE=∠DAF,∠AED=∠F=90°,又∵OA=OD,∴∠DAE=∠ODA,∴∠DAF=∠ODA,∴OD∥AF,∴∠ODF+∠F=180°,∴∠ODF=90°,∴OD⊥DF,∴DF是O的切线;(2)连接DC,∵AC是圆O的直径,∴∠ADC=90°,即CD⊥AB;又∵FD与BC均是圆O的切线且相交于点G,由切线长定理可得:GD=GC,∴∠GDC=∠GCD,又∵Rt△BDC中,∠GCD+∠B=90°,∠GDC+∠GDB=90°,∴∠B=∠GDB,∴GD=GB,∴GD是Rt△BDC斜边上的中线,即GD=12 BC,∵△ADE沿直线AB翻折得到△ADF,∴∠DAE=∠DAF,∴sin∠DAE=sin∠DAF=35,又∵圆O的半径为5,∴AC=10,Rt△DAC中,∠ADC=90°,∴sin∠DAC=DCAC=DC10=35,得DC=6,由勾股定理得AD=8;在Rt △ADC 与Rt △ACB 中,∠ADC=∠ACB=90°,∠DAC=∠BAC ,∴Rt △ADC ∽Rt △ACB , ∴CD AD BC AC =,即6810BC =,解得BC=152; ∴GB=GD=12BC=154. 【点睛】本题考查的知识点是切线的判定, 翻折变换(折叠问题), 相似三角形的判定与性质,解题的关键是熟练的掌握切线的判定, 翻折变换(折叠问题), 相似三角形的判定与性质. 22.(1)12m >;(2)2m =. 【解析】【分析】 ()1由0>得840m ->,解之可得;()2由()1221x x m +=+,2122x x m =+,结合1212x x x x +=得()2212m m +=+,解之可得m 的值,依据()1中的结果取舍即可得.【详解】解:()()()221[21]412m m =-+-⨯⨯+ 2248448m m m =++--840m =->,12m ∴>; ()()12221x x m +=+,2122x x m =+,∴由1212x x x x +=得()2212m m +=+,解得:10m =,22m =, 12m >, 2m ∴=.【点睛】本题主要考查根的判别式、根与系数的关系,关键是掌握1x ,2x 是方程20x px q ++=的两根时,12x x p +=-,12x x q =.23.(1)a=40,b=94,c=99;(2)八年级,见解析;(3)参加此次竞赛活动成绩优秀的人数是468人.【解析】【分析】(1)根据中位数和众数的定义即可得到结论;(2)根据八年级的中位数和众数均高于七年级于是得到八年级学生掌握防溺水安全知识较好;(3)利用样本估计总体思想求解可得.【详解】解:(1)3120%10%1004010a ⎛⎫=---⨯= ⎪⎝⎭, ∵八年级10名学生的竟赛成绩的中位数是第5和第6个数据的平方数,∴ 9494942b +== ∵在七年级10名学生的竟赛成绩中99出现的次数最多,∴c=99;(2)八年级学生掌握防溺水安全知识较好,理由:虽然七、八年级的平均分均为92分,但八年级的中位数和众数均高于七年级.(3)参加此次竞赛活动成绩优秀(x≥90)的学生人数=720×1320=468人, 答:参加此次竞赛活动成绩优秀(x≥90)的学生人数是468人.【点睛】本题考查读扇形统计图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问24.(1)详见解析;(2)4+【解析】【分析】(1)先作出ABC 的外接圆,再作AB 边上的高,继而作出此高的中垂线,与外接圆的交点即为所求;(2)作以AB 为弦且AB 所对圆心角为90°的O ,则垂直于弦AB 的直径与优弧的交点即为使三角形面积最大的点C ,根据作图得出AB 边上的高可得答案.【详解】∠即为所求.解:()1如图1所示,ABD()2如图2所示,作以AB为弦,且AB所对圆心角为90的O,C点轨迹为圆上不与AB重合的任一点,∴当C在位置上时,高最长,故面积最大,=,AB4AP BP OP2∴===,则OC OA==∴=+PC2ABC ∴的面积为(11AB PC 42422⋅⋅=⨯⨯+=+故答案为:4+.【点睛】 本题主要考查作图复杂作图,解题的关键判断出点C 是以AB 为弦的圆上、圆的确定及线段的中垂线的尺规作图等知识点.25.一样大,理由见解析.【解析】【分析】根据圆周角定理,即可确定两角的大小.【详解】解:甲、乙两个人所在的位置对球门AB 的张角一样大.根据圆周角定理的推论可得∠ADB=∠ACB.【点睛】本题的解答关键是对圆周角定理的灵活运用.圆周角定理指的是一条弧所对圆周角等于它所对圆心角的一半;即同弦或等弦所对的圆周角相等.26.(1)54AF BG =;(2)(Ⅰ)54AF BG =;(Ⅱ)CP ⊥AF ,理由:见解析. 【解析】【分析】(1)根据矩形的性质得到∠B =90°,根据勾股定理得到AC =5,根据相似三角形的性质即可得到结论;(2)(Ⅰ)连接CF ,根据旋转的性质得到∠BCG =∠ACF ,根据相似三角形的判定和性质定理得到结论;(Ⅱ)根据相似三角形的性质得到∠BGC =∠AFC ,推出点C ,F ,G ,P 四点共圆,根据圆周角定理得到∠CPF =∠CGF =90°,于是得到结论.【详解】(1)∵四边形ABCD 是矩形,∴∠B =90°,∵AB =3,BC =4,∴AC=5,∴54 ACBC=,∵四边形CEFG是矩形,∴∠FGC=90°,∴GF∥AB,∴△CGF∽△CBA,∴54 CF CACG CB==,∵FG∥AB,∴54 AF CFBG CG==;(2)(Ⅰ)连接CF,∵把矩形CEFG绕点C顺时针旋转到图②的位置,∴∠BCG=∠ACF,∵54 AC CFBC CG==,∴△BCG∽△ACF,∴54 AF ACBG BC==;(Ⅱ)CP⊥AF,理由:∵△BCG∽△ACF,∴∠BGC=∠AFC,∴点C,F,G,P四点共圆,∴∠CPF=∠CGF=90°,∴CP⊥AF.【点睛】本题考查了相似三角形的判定和性质,矩形的性质,平行线分线段成比例定理,旋转的性质,熟练掌握相似三角形的判定定理是解题的关键.27.(1)x 1=-3,x 2=-9;(2)x 1=2,x 2=-13. 【解析】【分析】 (1)直接把等号左边进行因式分解,然后可得x+3=0,x+9=0,再解即可;(2)先整理成一般形式,然后用公式法解答即可.【详解】(1)(x+3)(x+9)=0,x+3=0,x+9=0,解得:x 1=-3,x 2=-9;(2) 3x 2-2=5x整理为:3x 2-5x-2=0,这里,a=3,b=-5,c=-2,b 2-4ac=(-5)2-4×3×(-2)=49>0,∴ ∴x 1=2,x 2=13-.【点睛】本题考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程.28.(1)证明见解析;(2)证明见解析;(3).【解析】【分析】(1)根据圆周角定理即可证明;(2)作AM AD ⊥交DC 延长线于点M ,连接MG ,AQ ,证明AMG QAG ∆≅∆,得到45GMH AMD ∠=∠=︒,易求得GQ =;(3)延长MG 交DB 于N ,延长BF 交6030m n =⎧⎨=-⎩于W ,则四边形AMND 是正方形,求出13EF ED =,设EF x =,则3ED x =,列式求出EF ,易得AB ,问题得解. 【详解】解:(1)证明:AB Q 是直径90BCD ABD ∴∠+∠=︒BCD DAB ∠=∠90DAB DBA ∴∠+∠=︒(2)证明:作AM AD ⊥交DC 延长线于点M ,连接MG ,AQ,AB Q 是直径,90AQB ∴∠=︒,90ACB ∠=︒ABD ABG ∠=∠AQ AD ∴=CA CB =45CBA CAB ∴∠=∠=︒45ADM ∴∠=︒AM AD ∴=AM AQ ∴=BAD BAQ ∠=∠,45BAQ QAG ∠+∠=︒45BAD GAM ∴∠+∠=︒GAQ GAM ∴∠=∠AMG QAG ∴∆≅∆90AMG ∴∠=︒45GMH AMD ∴∠=∠=︒MG ∴=GQ ∴=(3)延长MG 交DB 于N ,∴四边形AMND 是正方形延长BF 交6030m n =⎧⎨=-⎩于W //BW MN BWG MGA ∴∠=∠BWG BGW ∴∠=∠BG BW ∴=MG BD BW +=WF MG ∴=FC MC ∴=BAD BCD HGC ∠=∠=∠,3HG CH =1tan 3BAD ∴∠=13BD BF AD AD ∴== 13EF ED ∴= 设EF x =,则3ED x =222EC CM DE =+222((3)x x ∴+=+x ∴=DF =4BD =,12AD =AB ∴=r =【点睛】本题是圆和四边形的综合问题,考查了圆周角定理、三角形全等的判定和性质以及三角函数等知识点,涉及知识点较多,图形较为复杂,能够作出辅助线是解题关键.。

九年级数学上册第25章《概率初步》综合复习练习题(含答案)

九年级数学上册第25章《概率初步》综合复习练习题(含答案)

九年级数学上册第25章《概率初步》综合复习练习题(含答案)一、单选题1.不透明的袋子中装有10个黑球和若干个白球,这些球除颜色外无其他差别.从袋子中随机摸出一球记下其颜色,再把它放回袋子中摇匀,重复上述过程,共试验400次,其中有300次摸到白球,由此估计袋子中的白球大约有()A.6个B.10个C.15个D.30个2.从甲、乙、丙三名同学中随机抽取两名同学去参加义务劳动,则甲与乙恰好被选中的概率是()A.16B.14C.13D.123.某人在做抛掷硬币试验中,抛掷n次,正面朝上有m次,若正面朝上的频率是Pmn =,则下列说法正确的是()A.P一定等于0.5 B.多投一次,P更接近0.5C.P一定不等于0.5 D.投掷次数逐渐增加,P稳定在0.5附近4.分别向如图所示的四个区域投掷一个小球,小球落在阴影部分的概率最小的是()A.B.C.D.5.如图所示的是由8个全等的小正方形组成的图案,假设可以随意在图中取一点,那么这个点取在阴影部分的概率是()A.38B.12C.58D.16.甲、乙两人玩“石头,剪刀,布”的游戏,约定只玩一局,描述错误的是()A.甲,乙获胜的概率均低于0.5 B.甲,乙获胜的概率相同C.甲,乙获胜的概率均高于0.5 D.游戏公平7.如图,在56⨯的长方形网格飞镖游戏板中,每块小正方形除颜色外都相同,小正方形的顶点称为格点,扇形OAB的圆心及弧的两端均为格点.假设飞镖击中每一块小正方形是等可能的(击中扇形的边界或没有击中游戏板,则重投1次),任意投掷飞镖1次,飞镖击中扇形OAB (阴影部分)的概率是( )A .12π B .24πC .1060πD .560π 8.如图是用七巧板拼成的正方形桌面,一个小球在桌面上自由地滚动,它最终停在黑色区域的概率是( )A .14B .18C .316D .239.不透明的袋子中装有红、绿小球各一个,除颜色外两个小球无其他差别,从中随机摸出一个小球,放回并摇匀,再从中随机摸出一个小球,那么第一次摸到红球、第二次摸到绿球的概率是( )A .14B .13C .12D .3410.小明在一次用频率估计概率的实验中,统计了某一结果出现的频率,并绘制了如图所示的统计图,则符合这一结果的实验可能是( )A .掷一枚质地均匀的硬币,正面朝上的概率B .从一副去掉大小王的扑克牌中任意抽取一张,抽到黑桃的概率C.从一个装有2个白球和1个红球的不透明袋子中任意摸出一球(小球除颜色外,完全相同),摸到红球的概率D.任意买一张电影票,座位号是2的倍数的概率11.某人在做掷硬币试验时,抛掷m次,正面朝上有n次,则即正面朝上的频率是P=nm,下列说法中正确的是()A.P一定等于12B.抛掷次数逐渐增加,P稳定在12附近C.多抛掷一次,P更接近12D.硬币正面朝上的概率是n m12.如图是一个游戏转盘.自由转动转盘,当转盘停止转动后,指针落在数字1,2,3,4所示区域内可能性最大的是()A.1号B.2号C.3号D.4号二、填空题1321-,π,0,3这五个数中随机抽取一个数,恰好是无理数的概率是__.14.乐乐把8个红球,9个白球,a个黑球装在一个不透明布袋中,这些球每个球除颜色外都相同,从中任取一球,取得红球的概率是0.4,则a的值是______.15.不透明的袋子中有两个小球,上面分别写着数字“1”、“2”,除数字外两个小球无其他差别.从中随机摸出一个小球,记录其数字,放回并摇匀,再从中随机摸出一个小球,记录其数字,那么两次记录的数字之和为3的概率是______.16.学校食堂晚餐有四荤三素,荤菜有红烧肉、酸菜鱼、姜爆鸭和辣子鸡,素菜有干煸四季豆、青椒土豆丝和香干炒蒜苔,小南让食堂阿姨任打一道荤菜一道素菜,则刚好选到她爱吃的红烧肉和青椒土豆丝的概率为__.17.在一个不透明的口袋中,装有若干个红球和6个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球试验发现,摸到黄球的频率是0.3,摸到红球的频率是_____,则估计盒子中大约有红球_____个.三、解决问题18.如图是小丽设计可自由的均匀转盘,将其等分为12个扇形,每个扇形有1个有理数,转得下列各数的概率是多少?(1)转得非负数的概率是多少?(2)转得整数的概率是多少?(3)若小丽和妈妈做游戏,转得负整数小丽获胜;若转得的数绝对值大于等于8妈妈获胜,这个游戏公平吗?请说明理由.19.某校计划在下个月第三周的星期一至星期四开展社团活动.(1)若甲同学随机选择其中的一天参加活动,则甲同学选择在星期三的概率为______;(2)若乙同学随机选择其中的两天参加活动,请用画树状图(或列表)的方法求其中一天是星期二的概率.20.某校开展以“奋斗百年路•启航新征程”为主题的活动来庆祝建党百年.活动分为两个阶段:第一阶段是宣讲红色故事,有以党建党史、文化传承、人物传记为素材的3个宣讲项目(分别用A、B、C表示);第二阶段是主题文艺创作,有文学创作、美术创作、舞蹈创作、音乐创作4个项目(分别用D、E、F、G表示).要求参加人员在每个阶段各随机抽取一个项目完成.若小明参加该活动,请用画树状图或列表的方法列出小明参加项目的所有可能的结果,并求小明恰好抽中项目C和E的概率.21.琳琳有4盒外包装完全相同的糖果,其中有2盒巧克力味的,1盒牛奶味的,1盒水果味的,她准备和好朋友分享糖果.(1)若琳琳随机打开1盒糖果,恰巧是牛奶味的概率是______;(2)若琳琳从这4盒中随机挑选两盒打开,请用列表或画树状图法打开的两盒都是巧克力味的概率.22.建国中学有7位学生的生日是10月1日,其中男生分别记为1A,2A,3A,4A,女生分别记为1B,2B,3B.学校准备召开国庆联欢会,计划从这7位学生中抽取学生参与联欢会的访谈活动.(1)若任意抽取1位学生,且抽取的学生为女生的概率是;(2)若先从男生中任意抽取1位,再从女生中任意抽取1位,求抽得的2位学生中至少有1位是1A或1B的概率.(请用“画树状图”或“列表”等方法写出分析过程)23.下面是某学校生物兴趣小组在相同的实验条件下,对某植物种子发芽率进行研究时所得到的数据:试验的种子数n 500 1000 1500 2000 3000 4000 发芽的粒数m 4719461425 1898 28533812 发芽频率mn0.942 0.946x0.949y0.953(1)求表中x ,y 的值;(2)任取一粒这种植物种子,估计它能发芽的概率约是多少?(精确到0.01)(3)若该学校劳动基地需要这种植物幼苗7600棵,试估算需要准备多少粒种子进行发芽培育.24.概率与统计在我们日常生活中应用非常广泛,请同学们直接填出下列事件中所要求的结果:(1)我们平时娱乐的一副标准扑克去掉大小王后剩下的四种花色(红桃、方块、梅花、黑桃)共有52张,如果从中任抽一张得到红桃的概率为______;(2)盒子里有红黑两种颜色的5个相同的球,如果随机抽取1个球记下颜色,然后放回,再重复这个试验,通过大量重复试验后发现,抽到红球的频率稳定在0.8左右,则盒中红球有______个;(3)形如222a ab b ±+的式子称为完全平方式.若有一多项式为29a ka ++,其中k 的值可以从4张分别写有-3,-6,6,9的卡片中随机抽取,那么正好让这个多项式为完全平方式的概率为______;(4)如图是由全等的小正方形组成的图案,假设可以随意在图中取点,那么这个点取在阴影部分的概率是______.25.在一个不透明的盒子里装有只有颜色不同的黑、白两种球共60个.小亮做摸球实验,他将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:(1)请估计:当n的值越来越大时,摸到白球的频率将会接近______;(精确到0.1)(2)假如你摸球一次,摸到白球的概率P(摸到白球)=______,摸到黑球的概率P(摸到黑球)=______;(3)请估算盒子里黑、白两种颜色的球各有多少个?26.小董利用均匀的骰子和同桌做游戏,规则如下:①两人同时做游戏,各自投掷一枚骰子,也可以连续投掷几次骰子;②当掷出的点数和不超过10,如果决定停止投掷,那么你的得分就是掷出的点数和;当掷出的点数和超过10,必须停止投掷,并且你的得分为0;③比较两人的得分,谁的得分多谁就获胜.在一次游戏中,同桌连续投掷两次,掷出的点数分别是2、6,同桌决定不再投掷;小董也是连续投掷两次,但是掷出的点数分别了3、4,小董决定再投掷一次.请问:(1)最终小董的得分为0分的概率多大?并说明原因.(2)小董获胜的概率多大?并说明原因.(3)做这个游戏时应该注意什么才能使游戏公平?参考答案1.D2.C3.D4.A5.A6.C7.A8.C9.A10.C11.B12.C13.2,π是无理数,P(恰好是无理数)25 =.故答案为:25.14.解:依题意有:889a++=0.4,解得a=3,经检验,a=3是原方程的解.故答案为:3.15.解:列表如下:12 123 234由表可知,共有4种等可能结果,其中两次记录的数字之和为3的有2种结果,所以两次记录的数字之和为3的概率为21 42 =.故答案为:12.16.红烧肉、酸菜鱼、姜爆鸭、辣子鸡分别用A、B、C、D表示,干煸四季豆、青椒土豆丝、香干炒蒜苔用a、b、c表示,根据题意画树状图如下:共有12种等可能的情况数,其中她选到红烧肉和青椒土豆丝的有1种,则刚好选到她爱吃的红烧肉和青椒土豆丝的概率为12.故答案为:112.17.解:摸到黄球的频率是0.3,摸到红球的频率是0.7,设有红球x个,根据题意得:60.36x=+,解得:x=14,经检验,x=14是原方程的解.故答案是:0.7,14.18.(1)解:由题意可知,转盘中有12个数,其中非负数为:0,15,8,11,6,5,23,这7个,所以转得非负数的概率为712.(2)解∶由题意可知,转盘中有12个数,其中整数为:﹣1,0,15,﹣17,8,11,6,﹣10,5,这9个,所以转得整数的概率为93 124=.(3)解:由题意可知,转盘中有12个数,其中负整数为:﹣1,﹣17,﹣10,这3个,转得负整数的概率为31124=,故小丽获胜的概率为:14;这12个数中转得的数绝对值大于等于8为:15,﹣17,8,11,﹣10,这5个,转得绝对值大于等于8的数的概率为512,故妈妈获胜的概率为:512;因为15 412≠,故这个游戏不公平.19.(1)总的可选日期为4个,则甲随机选择其中某一天的概率为1÷4=14,故答案为:14;(2)用A、B、C、D分别表示星期一、星期二、星期三、星期四,根据题意列表如下:总的可能情况数为12种,含星期二(B)的情况有6种,则乙同学选的两天中含星期二的概率为:6÷12=12,即所求概率为12.20.解:列表如下:D E F GA AD AE AF AGB BD BE BF BGC CD CE CF CG由表可以看出,共有12种等可能结果,其中小明恰好抽中项目C和E的结果只有1种,∴小明恰好抽中项目C和E的概率为112.21.(1)()1 =1?4=4P牛奶味;故答案为:14;(2)用Q1 、Q2表示巧克力味的,N表示牛奶味的,S表示水果味的,列表如下:共12种等可能结果,其中两盒都是巧克力味的结果有2种,随机挑选两盒都是巧克力味的概率为:()21 == 126P两盒巧克力味.22.(1)解:任意抽取1位学生,且抽取的学生为女生的概率是37,故答案为:37.(2)解:列出表格如下:一共有12种情况,其中至少有1位是1A或1B的有6种,∴抽得的2位学生中至少有1位是1A 或1B 的概率为61122=. 23.(1)解:14250.9501500x ==;28530.9513000y ==; (2)解:概率是大量重复试验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率;∴这种种子在此条件下发芽的概率约为0.95.(3)解:若该学校劳动基地需要这种植物幼苗7600棵, 需要准备760080000.95=(粒)种子进行发芽培育. 24.(1)解:∵一幅扑克牌中有13张红桃,去掉大小王后剩下52张, ∴P (抽中红桃)=131524=. 故答案为:14.(2)解:∵抽到红球的频率稳定在0.8左右, ∴抽到红球的概率为0.8, ∴红球个数为:5×0.8=4(个). 故答案为:4. (3)解:∵当k =±6时,29a ka ++是完全平方式, ∴P (完全平方式)=24=12.故答案为:12. (4)解:∵图中有9个小正方形,阴影部分有5个,∴随意在图中取点,这个点取在阴影部分的概率P (阴影)=59.故答案为:59.25.(1)解:当n 的值越来越大时,摸到白球的频率将会接近0.6, 故答案为:0.6;(2)根据频率估计概率可得,摸到白球的概率P (摸到白球)=0.6, 摸到黑球的概率P (摸到黑球)=1-0.6=0.4,故答案为:0.6,0.4;(3)60×0.4=24,60-24=36.∴黑球有24只,白球有36只.26.(1)解:1()由题意可知:小董投掷骰子的点数为4、5、6时,得分为0,∴小董得零分的概率为:P(小董得分为零31 62 ==).(2)解:根据题意得:小董再次投掷骰子,点数为2或3时得分为9或10,小董获胜,∴小董获胜的概率为:P(小董获胜21 63 ==).(3)根据游戏规则,前一个人投掷的骰子点数总和大小会影响后一个人是否再次投掷第二次骰子,∴在游戏过程中应注意轮流投掷骰子,先小董或同桌投掷第一次,如需投掷第二次,再同桌或小董投掷第二次,这样即可保证游戏公平.。

人教版九年级数学 中考数学复习卷

人教版九年级数学   中考数学复习卷

人教版九年级数学中考数学复习卷一.选择题(共10小题,满分30分,每小题3分)1.数据0.000000203用科学记数法表示为()A.2.03×10﹣8B.2.03×10﹣7C.2.03×10﹣6D.203×10﹣72.﹣3的相反数是()A.﹣3 B.3 C.D.3.如图是某几何体的三视图,该几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥4.已知关于x的一元二次方程x2﹣(2m﹣1)x+m2=0有实数根,则m的取值范围是()A.m≠0 B.m≤C.m<D.m>5.下列计算正确的是()A.(﹣3ab2)2=6a2b4 B.﹣6a3b÷3ab=﹣2a2b C.(a2)3﹣(﹣a3)2=0 D.(a+1)2=a2+1 6.为了了解我县参加中考的6000名学生的体重情况,随机抽取了其中200名学生的体重进行统计分析.下面叙述正确的是()A.6000名学生是总体 B.每名学生是总体的一个个体C.以上调查是普查 D.200名学生的体重是总体的一个样本7.如图,等腰直角△ABC的两个顶点A,C分别落在直线a和直线b上,若直线a∥b,则∠1+∠2的度数为()A.30°B.45° C.60° D.90°8.如图,Rt△ABC中,∠C=90°,利用尺规在BC,BA上分别截取BE,BD,使BE=BD;分别以D,E为圆心、以大于DE的长为半径作弧,两弧在∠CBA内交于点F;作射线BF交AC于点G.若△BCG的面积为4,BC=4,P为AB上一动点,则GP的最小值为()A.无法确定B.4 C.3 D.29.如图,P是边长为1的正方形ABCD对角线AC上一动点(P与A、C不重合),点E在射线BC上,且PE=PB.设AP=x,△PBE的面积为y.则能够正确反映y与x之间的函数关系的图象是()A. B.C. D.10.现代科技的发展已经进入到了5G时代,某地区将在X年基本实现5G信号全覆盖.5G网络峰值速率为4G网络峰值速率的10倍,在峰值速率下传输4千兆数据,5G网络比4G网络快360秒.若设4G网络的峰值速率为每秒传输x千兆数据,则由题意可列方程()A.﹣=360 B.﹣=360 C.﹣=360 D.﹣=360二.填空题(共5小题,满分15分,每小题3分)11.一个袋中有3个白球和2个红球,它们除颜色不同外都相同.任意摸出一个球后放回,再任意摸出一球,则两次都摸到红球的概率为.12.计算: +(π﹣3)0﹣|﹣3|=.13.若关于x的一元一次不等式组的解集是x<﹣3,则m的取值范围是.14.如图,正方形ABCD的边长为8,点E是BC上的一点,连接AE并延长交射线DC于点F,将△ABE沿直线AE翻折,点B落在点N处,AN的延长线交DC于点M,当AB=2CF时,则NM的长为.15.如图,矩形ABCD中,AD=,CD=3,连接AC,将线段AC、AB分别绕点A顺时针旋转90°至AE、AF,线段AE与弧BF交于点G,连接CG,则图中阴影部分面积为.三.解答题(共8小题,满分75分)16.先化简:,再从2,﹣2,3,﹣3中选一个合适的数作为a的值代入求值.17.某校九年级的一次数学小测试由20道选择题构成,每题5分.共100分.为了了解本次测试中同学们的成绩情况,某调查小组从中随机调查了部分同学,并根据调查结果绘制了如下尚不完整的统计图:请根据以上信息解答下列问题:(1)本次调查的学生人数为人;(2)调查的学生中,该次测试成绩的中位数是分;(3)调查的学生中,该次测试成绩的众数为分;(4)补全条形统计图;(5)若测试成绩80分或80分以上为“优秀”,则估计该校九年级800名学生中,本次测试成绩达到“优秀”的人数是多少?18.如图,已知AB是⊙O的直径,PC切⊙O于点P,过A作直线AC⊥PC交⊙O于另一点D,连接PA、PB.(1)求证:AP平分∠CAB;(2)若P是直径AB上方半圆弧上一动点,⊙O的半径为2,则:①当的长是时,以A,O,P,C为顶点的四边形是正方形;①当弦AP的长度是时,以A、D、O、P为顶点的四边形是菱形.19.假日期间,乐乐自驾游去了离家156千米的崆峒山游玩,下图是乐乐黄离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.(1)求乐乐出发0.5小时时,离家的距离;(2)求出AB段的图象的函数解析式;(3)乐乐出发1.5小时时,离目的地还有多少千米?20.脱贫攻坚工作让老百姓过上了幸福的生活.如图①是政府给贫困户新建的房屋,如图②是房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高AB所在的直线,为了测量房屋的高度,在地面上C 点测得屋顶A的仰角为35°,此时地面上C点、屋檐上E点、屋顶上A点三点恰好共线,继续向房屋方向走8m到达点D时,又测得屋檐E点的仰角为60°,房屋的顶层横梁EF=12m,EF∥CB,AB交EF于点G(点C,D,B在同一水平线上).(参考数据:sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,≈1.7)(1)求屋顶到横梁的距离AG;(2)求房屋的高AB(结果精确到1m).21.在如图所示的直角坐标系中,O为原点,直线y=﹣x+8与x轴、y轴分别交于A、B两点,设直线OP与线段AB相交于P点,且=,试求点P的坐标.22.【问题背景】如图1,在Rt△ABC中,AB=AC,D是直线BC上的一点,将线段AD绕点A逆时针旋转90°至AE,连接CE,求证:△ABD≌△ACE;【尝试应用】如图2,在图1的条件下,延长DE,AC交于点G,BF⊥AB交DE于点F,求证:FG=AE;【拓展创新】如图3,A是△BDC内一点,∠ABC=∠ADB=45°,∠BAC=90°,BD=,直接写出△BDC 的面积为.23.如图,二次函数y=﹣x2+mx+3的图象与x轴交于A、B两点,与y轴交于点C,点D在函数图象上,CD∥x轴且CD=2,直线l是抛物线的对称轴,E是抛物线的顶点.(1)则m=、A点的坐标、B点的坐标、E点的坐标;(2)如图1,连接BE,线段OC上的点F关于直线l的对称点F'恰好在线段BE上,求点F的坐标;(3)如图2,抛物线的对称轴上是否存在点T,使得线段TA绕点T顺时针旋转90°后,点A的对应点A'恰好也落在此抛物线上?若存在,求出点T的坐标;若不存在,请说明理由.(4)如图3,动点P在线段OB上,过点P作x轴的垂线分别与BC交于点M、与抛物线交于点N.试问:抛物线上是否存在点Q,使得△PQN与△APM的面积相等,且线段NQ的长度最小?若存在,直接写出Q的坐标;若不存在,说明理由.。

人教版初三数学试卷基础题

人教版初三数学试卷基础题

一、选择题(每题4分,共20分)1. 下列各数中,有理数是()A. √2B. πC. 0.1010010001...D. 32. 已知x²=9,那么x的值为()A. ±3B. ±2C. ±1D. ±43. 若a、b是方程x²-5x+6=0的两个根,则a+b的值为()A. 5B. -5C. 6D. -64. 下列函数中,自变量x的取值范围是全体实数的是()A. y = √(x+1)B. y = 1/xC. y = |x|D. y = √(x²-1)5. 在直角坐标系中,点A(2,3)关于x轴的对称点坐标是()A. (2,-3)B. (-2,3)C. (-2,-3)D. (2,-3)二、填空题(每题4分,共16分)6. 若x=2,那么2x²-3x+1的值为______。

7. 若a=-3,b=2,那么a²+b²的值为______。

8. 已知三角形的三边长分别为3、4、5,那么这个三角形是______三角形。

9. 分数1/3的倒数是______。

10. 圆的半径为r,那么圆的周长是______。

三、解答题(每题10分,共30分)11. 解下列方程:(1)2x-3=7(2)3(x+2)=912. 计算下列代数式的值:(1)当x=1时,2x²-5x+3(2)当a=2,b=3时,a²+2ab+b²13. 已知一个等腰三角形的底边长为6cm,腰长为8cm,求这个三角形的面积。

四、应用题(每题10分,共20分)14. 甲、乙两地相距120km,一辆汽车从甲地开往乙地,每小时行驶60km,另一辆汽车从乙地开往甲地,每小时行驶80km。

求两车何时相遇。

15. 小明从家出发去图书馆,他先以每小时5km的速度走了15分钟,然后以每小时10km的速度走了20分钟,此时他离图书馆还有1km。

求小明家到图书馆的距离。

2021年九年级中考数学考点复习专题-【实际问题与一元二次方程】 复习专练

2021年九年级中考数学考点复习专题-【实际问题与一元二次方程】 复习专练

2021中考数学复习专题【实际问题与一元二次方程】复习专练1.某社区“百果园”水果店一直销售的是沙漠蜜瓜,1月份新引进一种金美人蜜瓜,其中金美人蜜瓜的销售单价是沙漠蜜瓜的倍,1月份,沙漠蜜瓜和金美人蜜瓜总计销售400kg,金美人蜜瓜的销售额为8640元,沙漠蜜瓜的销售额为4320元.(1)求金美人蜜瓜,沙漠蜜瓜的销售单价各为多少;(2)受疫情影响,水果销量急剧下降,于是百果园在4月推出“心享会员”活动,充值金额后不仅返还现金券,所有水果还可享受降价a%的折扣,非心享会员则需按原价购买,就金美人蜜瓜而言,4月销量比1月销量增加了a%,其中遇过心享会员购买的销量占4月金美人蜜瓜总销量的,不计会员充值费用以及返还的现金券,4月金美人蜜瓜的销售总额比1月金美人蜜瓜的销售总额提高了a%,求a的值.2.水蜜桃,因其鲜嫩多汁,香甜可口深受广大市民喜爱.近期是水蜜桃大量上市的日子,某水果店以12元每千克购进水蜜桃100千克进行销售.若在运输过程中质量损耗10%,其他费用忽略不计.(1)问每千克水蜜桃售价至少定为多少元,才能使销售完后的利润率不低于20%?(2)因水蜜桃销售情况良好,很快一抢而空,水果店本周又购进了第二批水蜜桃400千克,第二批水蜜桃的购进价格比第一批上涨了a%,由于天气原因,第二批水蜜桃在运输过程中质量损耗提高到a%,所以水果商决定提高售价,比第一批的最低售价提高a元,这样,第二批水蜜桃销售完后比第一批水蜜桃多赚1480元,求a的值.3.为了满足师生的阅读需求,某校图书馆藏书总量由2017年5万册增加到2019年7.2万册.(1)求该校图书馆这两年藏书总量的年均增长率;(2)经统计知:在这两年新增加的图书中,中外古典名著所占的百分率恰好等于这两年藏书总量的年均增长率,2019年中外古典名著册数占藏书总量的10%,而在2017年中外古典名著册数仅占当年藏书总量的m%,请求出m的值.4.某小区物业一直用洗涤剂和消毒水对小区进行清洁消毒,已知1桶洗涤剂和4桶消毒水的价格为150元,2桶洗涤剂和2桶消毒水的价格为140元,该小区原来一周会消耗2桶洗涤剂和4桶消毒水.(1)求1桶洗涤剂和1桶消毒水的售价各是多少元?(2)新冠疫情期间物业加大了小区清洁消毒力度,现在该小区每周消耗洗涤剂的数量在原来一周的基础上增加了2m%,每周消耗的消毒水数量比原来一周消耗的多桶.疫情期间洗涤剂价格上涨了m%,因异地购买每桶还需另付邮费5元;每桶消毒水的价格上涨了50%,也因异地购买每桶还需另付邮费10元,现在该小区疫情期间每周购买洗涤剂和消毒水的费用(含邮费)比原来每周费用的4倍还少m元,求m的值.5.如图,在长为50米,宽为30米的矩形地面上修建三条同样宽的道路,余下部分种植草坪,草坪总面积为1392平方米.(1)求道路宽多少米;(2)现需要A、B两种类型的步道砖,A种类型的步道砖每平方米原价300元,现打八折出售,B种类型的步道板每平方米价格是200元,若铺路费用不高于23600元,(不考虑步道砖损失的情况下)最多选A种类型步道砖多少平方米?6.“过雨荷花满院香,沉李浮瓜冰雪凉”,炎热的夏季正是各种水果大量上市的季节,香果园大型水果超市的江安李子和山东烟台的红富士苹果很受消费者的欢迎,苹果售价24元/千克,李子售价16元/千克.(1)若第一周苹果的平均销量比李子的平均销量多200千克,且这两种水果的总销售额为12800元,则第一周销售苹果多少千克?(2)该水果超市第一周按照(1)中苹果和李子的销量销售这两种水果,并决定第二周继续销售这两种水果,第二周苹果售价降低了a%,销量比第一周增加了a%,李子的售价保持不变,销量比第一周增加了a%,结果这两种水果第二周的总销售额比第一周增加了a%,求a的值.7.为了开展阳光体育运动,坚持让中小学生“每天锻炼一小时”,体育局做了一个随机调查,调查内容是:每天锻炼是否超过1h及锻炼未超过1h的原因.他们随机调查了340名学生,用所得的数据制成了扇形统计图和频数分布直方图(图1、图2).根据图示,请回答以下问题:(1)“没时间”的人数是,并补全频数分布直方图;(2)2015年全市中小学生约18万人,按此调查,可以估计2015年全市中小学生每天锻炼超过1h的约有万人;(3)在(2)的条件下,如果计划2017年全市中小学生每天锻炼未超过1h的人数减少到8.64万人,求2015年至2017年锻炼未超过1h人数的年平均降低的百分率.8.有长为30m的篱笆,一面利用墙(墙的最大可用长度为10m),围成中间隔有一道篱笆(平行于AB)的矩形花圃,设花圃的一边AB为xm,面积为ym2.(1)用含有x的代数式表示y.(2)如果要围成面积为63m2的花圃,AB的长是多少?(3)能围成面积为72m2的花圃吗!如果能,请求出AB的长;如果不能,请说明理由.9.某水果超市第一次花费2200元购进甲、乙两种水果共350千克.已知甲种水果进价每千克5元,售价每千克10元;乙种水果进价每千克8元,售价每千克12元.(1)第一次购进的甲、乙两种水果各多少千克?(2)由于第一次购进的水果很快销售完毕,超市决定再次购进甲、乙两种水果,它们的进价不变.若要本次购进的水果销售完毕后获得利润2090元,甲种水果进货量在第一次进货量的基础上增加了2m%,售价比第一次提高了m%;乙种水果的进货量为100千克,售价不变.求m的值.10.“一带一路”为我们打开了交流、合作的大门,也为沿线各国在商贸等领域提供了更多的便捷,2018年11月5日至10日,首届中国国际进口博览会在国家会展中心(上海)举办,据哈外贸商会发布消息,博览会期间,哈Paseka公司与重庆某国际贸易公司签订了供应蜂蜜合同:哈Paseka 公司于2019年6月前分期分批向重庆某国际贸易公司供给优质蜂蜜共3000万件,该公司顺应新时代购物流,打算分线上和线下两种方式销售.(1)若计划线上销售量不低于线下销售量的25%,求该公司计划在线下销售量最多为多少万件?(2)该公司在12月上旬销售优质蜂蜜共240万件,且线上线下销售单件均为100元/件.12月中旬决定线上销售单价下调m%,线下销售单价不变,在这种情况下,12月中旬销售总量比上旬增加了m%,且中旬线上销售量占中旬总销量的,结果中旬销售总金额比上旬销售总金额提高了m%.求m的值.参考答案1.解:(1)设沙漠蜜瓜的销售单价为x元,则金美人蜜瓜的销售单价为x元,依题意,得:+=400,解得:x=27,经检验,x=27是原方程的解,且符合题意,∴x=36.答:金美人蜜瓜的销售单价为36元,沙漠蜜瓜的销售单价为27元.(2)1月份金美人蜜瓜的销售数量为8640÷36=240(千克).依题意,得:36(1﹣a%)××240(1+a%)+36×(1﹣)×240(1+a%)=8640(1+a%),整理,得:a2﹣20a=0,解得:a1=20,a2=0(不合题意,舍去).答:a的值为20.2.解:(1)设每千克水蜜桃售价为x元,依题意,得:100×(1﹣10%)x﹣12×100≥12×100×20%,解得:x≥16.答:每千克水蜜桃售价至少定为16元,才能使销售完后的利润率不低于20%.(2)依题意,得:(16+a)×400(1﹣a%)﹣12(1+a%)×400=12×100×20%+1480,整理,得:a2﹣80a+1200=0,解得:a1=20,a2=60,又∵a%>10%,∴a>40,∴a=60.答:a的值为60.3.解:(1)设该校图书馆藏书总量从2017年至2019年的年平均增长率为x,由题意得:5(1+x)2=7.2,解得:x1=0.2,x2=﹣2.2(舍去),∴x=0.2=20%,答:该校图书馆这两年藏书总量的年均增长率为20%.(2)由题意知:(7.2﹣5)×20%+5×m%=7.2×10%,解得:m=5.6.4.解:(1)设1桶洗涤剂的售价为x元,1桶消毒水的售价为y元,依题意,得:,解得:.答:1桶洗涤剂的售价为元,1桶消毒水的售价为元.(2)依题意,得:[(1+m%)+5]×2(1+2m%)+[(1+50%)+10]×(4+)=4×(×2+×4)﹣m,整理,得:13m2+6600﹣357500=0,解得:m1=,m2=(不合题意,舍去).答:m的值为.5.解:(1)设道路宽x米,根据题意得:(50﹣2x)(30﹣x)=1392,整理得:x2﹣55x+54=0,解得:x=1或x=54(不合题意,舍去),故道路宽1米.(2)设选A种类型步道砖y平方米,根据题意得:300×0.8y+200×[50×1+(30﹣1)×1×2﹣y]≤23600,解得:y≤50.故最多选A种类型步道砖50平方米.6.解:(1)设第一周李子销售量为x千克.则苹果的平均销量为y千克,根据题意得:,解得:,答:第一周销售苹果400千克;(2)根据题意得:24(1﹣a%)×400(1+a%)+16×200(1+a%)=12800(1+a%),∴a1=60,a2=0(舍去).答:a的值为60.7.解:(1)∵随机调查了340名学生,∴锻炼未超过1h的中小学生有340×=255人,又∵不喜欢的人数和其他的人数分别是120和20,∴“没时间”的人数为255﹣120﹣20=115人,频数分布直方图如图所示:(2)根据扇形统计图知道:每天锻炼超过1h的百分比为18×=4.5万人.故估计2015年全市中小学生每天锻炼超过1h的约有4.5万人;(3)设2015年至2017年锻炼未超过1h人数的年平均降低的百分率为x.由题意得:18×0.75(1﹣x)2=8.64,解得x=0.2,x=1.8(舍去).答:2015年至2017年锻炼未超过1h人数的年平均降低的百分率为20%.故答案为:115;4.5.8.解:(1)由题意得:y=x(30﹣3x),即y=﹣3x2+30x.(2)当y=63时,﹣3x2+30x=63.解此方程得x1=7,x2=3.当x=7时,30﹣3x=9<10,符合题意;当x=3时,30﹣3x=21>10,不符合题意,舍去;∴当AB的长为7m时,花圃的面积为63m2.(3)不能围成面积为72m2的花圃.理由如下:如果y=72,那么﹣3x2+30x=72,整理,得x2﹣10x+24=0,解此方程得x1=4,x2=6,当x=4时,30﹣3x=18,不合题意舍去;当x=6时,30﹣3x=12,不合题意舍去;故不能围成面积为72m2的花圃.9.解:(1)设第一次购进甲种水果x千克,购进乙种水果y千克,依题意,得:,解得:.答:第一次购进甲种水果200千克,购进乙种水果150千克.(2)依题意,得:[10(1+m%)﹣5]×200(1+2m%)+(12﹣8)×100=2090,整理,得:0.4m2+40m﹣690=0,解得:m1=15,m2=﹣115(不合题意,舍去).答:m的值为15.10.解:(1)设该公司计划在线下销售量为x万件,则3000﹣x≥25%x解得:x≤2400∴该公司计划在线下销售量最多为2400万件;(2)由题意得:×240(1+m%)×100(1﹣m%)+(1﹣)×240(1+m%)×100=240×100(1+m%)化简得:m2﹣25m=0解得:m1=0(不合题意,舍去),m2=25∴m的值为25.。

初三数学26题复习题

初三数学26题复习题

初三数学26题复习题一、选择题1. 若二次方程 \( ax^2 + bx + c = 0 \) 的判别式 \( \Delta =b^2 - 4ac \) 等于0,那么该方程:A. 无实数解B. 有两个实数解C. 有一个实数解D. 无法确定2. 函数 \( y = 2x + 3 \) 与 \( y = -x + 5 \) 的交点坐标是:A. (-1, 2)B. (2, 7)C. (4, 11)D. (1, 5)二、填空题1. 已知点A(-3, 4)和点B(1, -2),线段AB的中点坐标是________。

2. 一个圆的半径为5,圆心到直线的距离为3,那么这条直线与圆的位置关系是__________。

三、解答题1. 解方程组:\[\begin{cases}x + y = 5 \\2x - y = 1\end{cases}\]2. 已知三角形ABC的三边长分别为a, b, c,且满足 \( a^2 + b^2 = c^2 \),求证三角形ABC是直角三角形。

3. 某工厂生产一种产品,其成本函数为 \( C(x) = 100 + 20x \),收入函数为 \( R(x) = 60x - x^2 \)。

求该工厂生产多少件产品时,利润最大。

四、应用题1. 某班级有40名学生,其中30名男生和10名女生。

如果随机选择一名学生,求这名学生是男生的概率。

2. 一个长方体的长、宽、高分别是10cm、8cm和6cm,求这个长方体的体积和表面积。

结束语通过这些复习题的练习,可以帮助同学们巩固初三数学的重要知识点,提高解题技巧和应用能力。

希望同学们能够认真复习,为即将到来的考试做好充分的准备。

九年级最新数学中考一轮复习测试题初三数学复习检测题带图文答案100篇一轮复习6期函数(二)同步练习

九年级最新数学中考一轮复习测试题初三数学复习检测题带图文答案100篇一轮复习6期函数(二)同步练习

中考一轮复习:函数(二)同步练习 二次函数图象与性质同步练习(答题时间:30分钟)1. 已知函数y =ax 2+bx +c 的图象如图所示,那么关于x 的方程ax 2+bx +c +2=0的根的情况是( )xyO -3A. 无实根B. 有两个相等实数根C. 有两个异号实数根D. 有两个同号不等实数根2. 下图中,哪个是二次函数y =2x 2-4x +3的图象( )123-1-2-3-1-21234yx 123-1-2-3-1-21234yx123-1-2-3-1-21234yx 123-1-2-3-1-21234yxA B C D3. (山东泰安)已知函数y =(x -m )(x -n )(其中m <n )的图象如图所示,则一次函数y =mx +n 与反比例函数y =xnm 的图象可能是( )A. B.C. D.*4. 已知二次函数y =ax 2+bx +c 的图象如图所示,对称轴是x =1,则下列结论中正确的是( )xyOA. ac >0B. b <0C. b 2-4ac <0D. 2a +b =05. 已知二次函数y =ax 2+bx +c 的图象如图所示,则a ______0,b ______0,c ______0。

(填“>”“<”或“=”)xyO**6. (浙江杭州)设抛物线y =ax 2+bx +c (a ≠0)过A (0,2),B (4,3),C 三点,其中点C 在直线x =2上,且点C 到抛物线的对称轴的距离等于1,则抛物线的函数解析式为__________.*7. (北京)对某一个函数给出如下定义:若存在实数m >0,对于任意的函数值y ,都满足-m ≤y ≤m ,则称这个函数是有界函数,在所有满足条件的m 中,其最小值称为这个函数的边界值。

例如,如图中的函数是有界函数,其边界值是1。

(1)分别判断函数 y =x1(x >0)和y =x +1(-4≤x ≤2)是不是有界函数?若是有界函数,求其边界值;(2)若函数y =-x +1(a ≤x ≤b ,b >a )的边界值是2,且这个函数的最大值也是2,求b 的取值范围;(3)将函数 y =x 2(-1≤x ≤m ,m ≥0)的图象向下平移m 个单位,得到的函数的边界值是t ,当m 在什么范围时,满足43≤t ≤1?二次函数图象与性质同步练习参考答案1. D 解析:方程ax 2+bx +c +2=0即ax 2+bx +c =-2。

(word完整版)九年级数学总复习试卷及参考答案

(word完整版)九年级数学总复习试卷及参考答案

九年级数学总复习练习卷一.选择题(共10小题)1.在Rt△ABC中,∠C=90°,cosA=,则tanB等于()A.B.C.D.2.在Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C对边,如果3a=4b,则cosB的值是()A.B.C.D.3.在△ABC中,∠C=90°,a,b,c分别为∠A,∠B,∠C的对边,下列关系中错误的是()A.b=c•cosB B.b=a•tanB C.b=c•sinB D.a=b•tanA 4.一斜坡的坡度是1:,则此斜坡的坡角是()A.15°B.30°C.45°D.60°5.∠A为锐角,若cosA=,则∠A的度数为()A.75°B.60°C.45°D.30°6.如图,在△ABC中,∠C=90°,AB=10,BC=8,则sin∠A=()A.B.C.D.7.在Rt△ABC中∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,c=3a,tanA 的值为()A.B.C.D.38.已知Rt△ABC中,∠C=90°,tanA=,BC=8,则AB等于()A.6B.C.10D.129.在Rt△ABC中,∠C=90°,∠B=25°,AB=5,则BC的长为()A.5sin25°B.5tan65°C.5cos25°D.5tan25°10.南沙群岛是我国固有领土,现在我南海渔民要在南沙某海岛附近进行捕鱼作业,当渔船航行至B处时,测得该岛位于正北方向10(1+)海里的C处,为了防止某国海巡警干扰,请求我A处的渔监船前往C处护航.如图,已知C位于A处的东北方向上,A位于B的北偏西30°方向上,则A 和C之间的距离为()A.10海里B.20海里C.20海里D.10海里二.填空题(共6小题)11.已知α为锐角,且sinα=cosα,则α=.12.如果α是锐角,且cotα=tan25°,那么α=度.13.小明同学沿坡度为i=1:的山路向上行走了100米,则小明上升的高度是米.14.若tanα=5,则=.15.如图是某幼儿园的滑滑梯的简易图,已知滑坡AB的坡度是1:3,滑坡的水平宽度是6m,则高BC为m.16.小明沿着坡度为1:的坡面向上走了300米,此时小明上升的垂直高度为米.三.解答题(共11小题)17.如图,某渔船向正东方向航行,在B处测得A岛在北偏东的45°方向,岛C在B处的正东方向且相距30海里,从岛C测得A岛在北偏西的60°方向,已知A岛周围8海里内有暗礁.如果渔船继续向东航行,有无触礁危险?(≈1.4,≈1.7)18.计算:在一次数学社团活动课上,同学们测量一座古塔CD的高度,他们首先在A处安置测量器,测得塔顶C的仰角∠CFE=30°,然后往塔的方向前进100米到达B处,此时测得塔顶C的仰角∠CGE=60°,已知测量器高1.5米,请你根据以上数据计算出古塔CD的高度.(保留根号)19.如图,在Rt△ABC中,∠C=90°,BC=6,tan∠A=.求AB的长和sin∠B 的值.20.计算:﹣sin30°(cos45°﹣sin60°)21.计算:(1)sin260°﹣tan30°•cos30°+tan45°(2)cos245°+sin245°+sin254°+cos25422.如图,学校的实验楼对面是一幢教工宿舍楼,小敏在实验楼的窗口C测得教工宿台楼顶部D仰角为15°,教学楼底部B的俯角为22°,量得实验楼与教学楼之间的距离AB=30m.(1)求∠BCD的度数.(2)求教工宿舍楼的高BD.(结果精确到0.1m,参考数据:tanl5°≈0.268,tan22°=0.404)23.如图,在Rt△ABC中,∠C=90°,D为AC上的一点,CD=3,AD=BD=5.求∠A的三个三角函数值.25.阅读理解:我们已经学习的直角三角形知识包括:勾股定理,30°、45°特殊角的直角三角形的边之间的关系等,在解决初中数学问题上起到重要作用,锐角三角函数是另一个研究直角三角形中边角间关系的知识,通过锐角三角函数也可以帮助解决数学问题.阅读下列材料,完成习题:如图1,在Rt△ABC中,∠C=90°,我们把锐角A的对边与斜边的比叫做∠A 的正弦(sine),记作sinA,即sinA==例如:a=3,c=7,则sinA=问题:在Rt△ABC中,∠C=90°(1)如图2,BC=5,AB=8,求sinA的值.(2)如图3,当∠A=45°时,求sinB的值.(3)AC=2,sinB=,求BC的长度.26.济南市纬十二路的一座过街天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1:.(1)求新坡面的坡角a;(2)原天桥底部正前方7米处(PB的长)有一文化墙PM,若新坡面下A 处与文化墙之间需留下至少3米宽的人行道,问文化墙是否需要拆除?请说明理由.(约为1.732)27.阅读下列材料,并完成相应的任务.初中阶段,我们所学的锐角三角函数反映了直角三角形中的边角关系:sinα=cosα=tanα=一般地,当α、β为任意角时,sin(α+β)与sin(α﹣β)的值可以用下面的公式求得:sin(α+β)=sinαcosβ+cosαsinβsin(α﹣β)=sinαcosβ﹣cosαsinβ例如sin15°=sin(45°﹣30°)=sin45°cos30°﹣cos45°sin30°=根据上述材料内容,解决下列问题:(1)计算:sin75°=;(2)在Rt△ABC中,∠A=75°,∠C=90°,AB=4,请你求出AC和BC的长.九年级数学总复习练习卷一.选择题(共10小题)1.在Rt△ABC中,∠C=90°,cosA=,则tanB等于()A.B.C.D.【分析】根据题意画出图形,进而表示出AC,BC,AB的长,进而求出答案.【解答】解:如图所示:∵cosA=,∴设AC=7x,AB=25x,则BC=24x,则tanB=.故选:C.【点评】此题主要考查了互余两角三角函数关系,正确表示出三角形各边长是解题关键.2.在Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C对边,如果3a=4b,则cosB的值是()A.B.C.D.【分析】根据锐角三角函数的定义可得cosB=,然后根据题目所给3a=4b 可求解.【解答】解:因为在Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C 对边,如果3a=4b,令b=3x,则a=4x,所以c=5x,所以cosB=故选:D.【点评】本题考查了锐角三角函数的定义,解答本题的关键是掌握cosB=,3.在△ABC中,∠C=90°,a,b,c分别为∠A,∠B,∠C的对边,下列关系中错误的是()A.b=c•cos B B.b=a•tanB C.b=c•sinB D.a=b•tanA 【分析】本题可以利用锐角三角函数的定义求解即可.【解答】解:在Rt△ABC中,∠C=90°,则tanA=,tanB=,cosB=,stnB=;因而b=c•sinB=a•tanB,a=b•tanA,错误的是b=c•cosB.故选:A.【点评】利用锐角三角函数的定义,正确理解直角三角形边角之间的关系.在直角三角形中,如果已知一边及其中的一个锐角,就可以表示出另外的边.4.一斜坡的坡度是1:,则此斜坡的坡角是()A.15°B.30°C.45°D.60°【分析】坡度=坡角的正切值,依此求出坡角的度数.【解答】解:设坡角为α,由题意知:tanα==,∴∠α=30°.即斜坡的坡角为30°.故选:B.【点评】此题考查的是解直角三角形的应用﹣坡度坡角问题,坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.把坡面与水平面的夹角α叫做坡角,坡度i与坡角α之间的关系为:i=h:l=tanα.5.∠A为锐角,若cosA=,则∠A的度数为()A.75°B.60°C.45°D.30°【分析】根据特殊角的三角函数值求解.【解答】解:∵∠A为锐角,cosA=,∴∠A=60°.故选:B.【点评】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.6.如图,在△ABC中,∠C=90°,AB=10,BC=8,则sin∠A=()A.B.C.D.【分析】根据锐角的正弦等于对边比斜边列式计算即可得解.【解答】解:∵∠C=90°,AB=10,BC=8,∴在Rt△ABC中,sinA===,故选:A.【点评】本题考查的是锐角三角函数的定义,掌握锐角A的对边a与斜边c 的比叫做∠A的正弦是解题的关键.7.在Rt△ABC中∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,c=3a,tanA 的值为()A.B.C.D.3【分析】根据锐角三角函数的定义即可求出答案.【解答】解:由题意可知:sinA===,∴tanA==,故选:B.【点评】本题考查锐角三角函数,解题的关键是熟练运用锐角三角函数的定义,本题属于基础题型.8.已知Rt△ABC中,∠C=90°,tanA=,BC=8,则AB等于()A.6B.C.10D.12【分析】根据锐角三角函数的定义即可求出答案.【解答】解:∵tanA=,∴sinA=,∴=,∴AB=10,故选:C.【点评】本题考查锐角三角函数,解题的关键是熟练运用锐角三角函数的定义,本题属于基础题型.9.在Rt△ABC中,∠C=90°,∠B=25°,AB=5,则BC的长为()A.5sin25°B.5tan65°C.5cos25°D.5tan25°【分析】在Rt△ABC中,由AB及∠B的值,可求出BC的长.【解答】解:在Rt△ABC中,∠C=90°,∠B=25°,AB=5,∴BC=AB•cos∠B=5cos25°.故选:C.【点评】本题考查了解直角三角形,牢记直角三角形中边角之间的关系是解题的关键.10.南沙群岛是我国固有领土,现在我南海渔民要在南沙某海岛附近进行捕鱼作业,当渔船航行至B处时,测得该岛位于正北方向10(1+)海里的C处,为了防止某国海巡警干扰,请求我A处的渔监船前往C处护航.如图,已知C位于A处的东北方向上,A位于B的北偏西30°方向上,则A 和C之间的距离为()A.10海里B.20海里C.20海里D.10海里【分析】过点A作AD⊥BC于点D,设AD=x,则CD=x,AC=x,BD=x,结合BC=10(1+)即可求出x的值,进而即可得出A和C之间的距离.【解答】解:过点A作AD⊥BC于点D,如图所示.设AD=x,则CD=x,AC=x,BD=x.∵BC=BD+CD=(+1)x=10(1+),∴x=10,∴AC=10.故选:A.【点评】本题考查了解直角三角形的应用﹣方向角问题,通过解一元一次方程求出AD的长度是解题的关键.二.填空题(共6小题)11.已知α为锐角,且sinα=cosα,则α=45°.【分析】根据一个角的正弦等于这个角的余角的余弦解答.【解答】解:∵sinα=cos(90°﹣α),∴α=90°﹣α,解得,α=45°,故答案为:45°.【点评】本题考查的是同角三角函数的关系,掌握一个角的正弦等于这个角的余角的余弦是解题的关键,12.如果α是锐角,且cotα=tan25°,那么α=65度.【分析】依据α是锐角,且cotα=tan25°,即可得出α=65°.【解答】解:∵α是锐角,且cotα=tan25°,∴α=65°,故答案为:65.【点评】本题主要考查了互余两角三角函数的关系,若∠A+∠B=90°,那么sinA=cosB或sinB=cosA.13.小明同学沿坡度为i=1:的山路向上行走了100米,则小明上升的高度是50米.【分析】由斜坡的坡度i=1:=,可得坡角α的度数,再求得斜坡的正弦值sinα,那么它垂直上升的高度可利用正弦函数求得.【解答】解:∵斜坡的坡度i=1:=,∴坡角α=60°,∴斜坡的正弦值sinα=,∴小明上升的高度是100×sinα=50(米).故答案为50.【点评】本题考查了解直角三角形的应用﹣﹣﹣坡度坡角问题,根据坡度求出坡角是解题的关键.坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.把坡面与水平面的夹角α叫做坡角,坡度i与坡角α之间的关系为:i=h:l=tanα.14.若tanα=5,则=.【分析】根据同角的三角函数的关系即可求出答案.【解答】解:原式=∵tanα=5,∴原式=故答案为:【点评】本题考查同角三角函数的关系,解题的关键熟练运用同角三角函数的关系,本题属于基础题型.15.如图是某幼儿园的滑滑梯的简易图,已知滑坡AB的坡度是1:3,滑坡的水平宽度是6m,则高BC为2m.【分析】根据滑坡的坡度及水平宽,可求出坡面的铅直高度,此题得解.【解答】解:∵滑坡AB的坡度是1:3,滑坡的水平宽度是6m,∴AC=6m,∴BC=×6=2m.故答案为:2.【点评】本题考查了解直角三角形的应用中的坡度坡角问题,牢记坡度的定义是解题的关键.16.小明沿着坡度为1:的坡面向上走了300米,此时小明上升的垂直高度为150米.【分析】根据坡度算出坡角的度数,利用坡角的正弦值即可求解.【解答】解:∵坡度tanα==1:=,∴α=30°.∴上升的垂直高度=坡长×sin30°=300×=150(米).故答案为150.【点评】此题考查了解直角三角形的应用﹣坡度坡角问题,坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.把坡面与水平面的夹角α叫做坡角,坡度i与坡角α之间的关系为:i=h:l=tanα.掌握坡度、坡角的定义是解答本题的关键.三.解答题(共11小题)17.如图,某渔船向正东方向航行,在B处测得A岛在北偏东的45°方向,岛C在B处的正东方向且相距30海里,从岛C测得A岛在北偏西的60°方向,已知A岛周围8海里内有暗礁.如果渔船继续向东航行,有无触礁危险?(≈1.4,≈1.7)【分析】判断渔船有无危险只要求出点A到BC的距离,与8海里比较大小就可以.【解答】解:若渔船继续向东航行,无触礁的危险.理由如下:如图,过点A作AD⊥BC于点D.由题意得:∠ABD=45°,∠ACD=30°.设AD=x海里.在Rt△ABD中,∵∠ABD=45°,∴BD=AD=x海里.在Rt△ACD中,∵∠ACD=30°,∴CD=AD=x海里.∵BD+DC=30,∴x+x=30,解得x=15(﹣1),17(﹣1)≈10.5>8,即:若渔船继续向东航行,无触礁危险.【点评】本题考查了解直角三角形的应用﹣方向角问题,特殊角的三角函数等知识,解题的关键是添加辅助线构造直角三角形,把实际问题转化为解直角三角形问题,属于中考常考题型.18.计算:在一次数学社团活动课上,同学们测量一座古塔CD的高度,他们首先在A处安置测量器,测得塔顶C的仰角∠CFE=30°,然后往塔的方向前进100米到达B处,此时测得塔顶C的仰角∠CGE=60°,已知测量器高1.5米,请你根据以上数据计算出古塔CD的高度.(保留根号)【分析】先分析图形,根据题意构造直角三角形.本题涉及到两个直角三角形△CEF、△CGE,利用其公共边CE构造等量关系,借助FG=EF﹣GE=100,构造关系式求解.【解答】解:由题意知CD⊥AD,EF∥AD.∴∠CEF=90°.设CE=x米,∵在Rt△CEF中,tan∠CFE=,∴EF===x,∵在Rt△CEG中,tan∠CGE=,∴GE===x.∵FG=EF﹣GE=100,∴x﹣x=100,解得x=50.∴CD=CE+ED=50+1.5(米).答:古塔CD的高度是(50+1.5)米.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,此类题目要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.19.如图,在Rt△ABC中,∠C=90°,BC=6,tan∠A=.求AB的长和sin∠B 的值.【分析】根据∠A的正切值用BC表示出AC,再利用勾股定理列式求解即可得到BC的长,然后求出AB的长,再根据锐角的正弦等于对边比斜边列式计算即可得解.【解答】解:∵在Rt△ABC中,∠C=90°,BC=6,tan∠A==,∴AC=12,∴AB===6,∴sin∠B===.【点评】本题考查了锐角三角函数的定义,勾股定理,用BC表示出AC是解题的关键.20.计算:﹣sin30°(cos45°﹣sin60°)【分析】依据30°、45°、60°角的各种三角函数值,即可得到计算结果.【解答】解:原式=﹣(﹣)=﹣==【点评】本题主要考查了特殊角的三角函数值,其应用广泛,一是它可以当作数进行运算,二是具有三角函数的特点,在解直角三角形中应用较多.21.计算:(1)sin260°﹣tan30°•cos30°+tan45°(2)cos245°+sin245°+sin254°+cos254°【分析】根据特殊角的锐角三角函数的值即可求出答案.【解答】解:(1)原式=()2﹣×+1=﹣+1=,(2)原式=(cos245°+sin245°)+(sin254°+cos254°)=1+1=2【点评】本题考查锐角三角函数的定义,解题的关键是熟练运用特殊角的锐角三角函数的定义,本题属于基础题型.22.如图,学校的实验楼对面是一幢教工宿舍楼,小敏在实验楼的窗口C测得教工宿台楼顶部D仰角为15°,教学楼底部B的俯角为22°,量得实验楼与教学楼之间的距离AB=30m.(1)求∠BCD的度数.(2)求教工宿舍楼的高BD.(结果精确到0.1m,参考数据:tanl5°≈0.268,tan22°=0.404)【分析】(1)作CH⊥BD于H,如图,利用仰角和俯角定义得到∠DCH=15°,∠BCH=22°,然后计算它们的和即可得到∠BCD的度数;(2)利用正切定义,在Rt△DCH中计算出DH=30tan15°=8.04,在Rt△BCH 中计算出BH=30tan22°=12.12,然后计算BH+DH即可得到教工宿舍楼的高BD.【解答】解:(1)作CH⊥BD于H,如图,根据题意得∠DCH=15°,∠BCH=22°,∴∠BCD=∠DCH+∠BCH=15°+22°=37°;(2)易得四边形ABHC为矩形,则CH=AB=30,在Rt△DCH中,tan∠DCH=,∴DH=30tan15°=30×0.268=8.04,在Rt△BCH中,tan∠BCH=,∴BH=30tan22°=30×0.404=12.12,∴BD=12.12+8.04=20.16≈20.1(m).答:教工宿舍楼的高BD为20.1m.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题:解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形,当图形中没有直角三角形时,要通过作高或垂线构造直角三角形,另当问题以一个实际问题的形式给出时,要善于读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.23.计算:sin45°+cos45°.【分析】直接利用特殊角的三角函数值代入求出答案.【解答】解:原式=+=.【点评】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.24.如图,在Rt△ABC中,∠C=90°,D为AC上的一点,CD=3,AD=BD=5.求∠A的三个三角函数值.【分析】在Rt△BCD中由勾股定理求得BC=4,在Rt△ABC中求得AB=4,再根据三角函数的定义求解可得.【解答】解:在Rt△BCD中,∵CD=3、BD=5,∴BC===4,又AC=AD+CD=8,∴AB===4,则sinA===,cosA===,tanA===.【点评】本题主要考查锐角的三角函数的定义,解题的关键是掌握勾股定理及三角函数的定义.25.阅读理解:我们已经学习的直角三角形知识包括:勾股定理,30°、45°特殊角的直角三角形的边之间的关系等,在解决初中数学问题上起到重要作用,锐角三角函数是另一个研究直角三角形中边角间关系的知识,通过锐角三角函数也可以帮助解决数学问题.阅读下列材料,完成习题:如图1,在Rt△ABC中,∠C=90°,我们把锐角A的对边与斜边的比叫做∠A 的正弦(sine),记作sinA,即sinA==例如:a=3,c=7,则sinA=问题:在Rt△ABC中,∠C=90°(1)如图2,BC=5,AB=8,求sinA的值.(2)如图3,当∠A=45°时,求sinB的值.(3)AC=2,sinB=,求BC的长度.【分析】(1)根据正弦函数的定义解答;(2)设AC=x,则BC=x,利用方程解答;(3)由锐角三角函数定义求得AB=4,然后由勾股定理解答.【解答】解:(1)sinA=;(2)在Rt△ABC中,∠A=45°,设AC=x,则BC=x,AB=,则sinB=;(3)sinB=,则AB=4,由勾股定理得:BC2=AB2﹣AC2=16﹣12=4,∴BC=2.【点评】考查了锐角三角函数定义,勾股定理,直角三角形的性质以及特殊角的三角函数值.注意:勾股定理应用的前提条件是在直角三角形中.26.济南市纬十二路的一座过街天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1:.(1)求新坡面的坡角a;(2)原天桥底部正前方7米处(PB的长)有一文化墙PM,若新坡面下A 处与文化墙之间需留下至少3米宽的人行道,问文化墙是否需要拆除?请说明理由.(约为1.732)【分析】(1)作CH⊥AB于H,如图,利用坡度的定义得到tan∠CAH===,然后根据特殊角的三角函数值求出∠CAH即;(2)另一条坡度定义得到tan∠CBH==,所以BH=CH=6,再利用=得到AH=6,接着计算出AB≈4.392,然后根据3+4.392>7可判断文化墙需要拆除.【解答】解:(1)作CH⊥AB于H,如图,在Rt△ACH中,∵tan∠CAH===,∴∠CAH=30°,即新坡面的坡角a为30°;(2)文化墙需要拆除.理由如下:∵tan∠CBH==,∴BH=CH=6,∵=,∴AH=CH=6≈10.392,∴AB=AH﹣BH=6﹣6=4.392,∵3+4.392>7,∴文化墙需要拆除.【点评】本题考查了解直角三角形的应用﹣坡度坡角问题:坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.在解决坡度的有关问题中,一般通过作高构成直角三角形,坡角即是一锐角,坡度实际就是一锐角的正切值,水平宽度或铅直高度都是直角边,实质也是解直角三角形问题.27.阅读下列材料,并完成相应的任务.初中阶段,我们所学的锐角三角函数反映了直角三角形中的边角关系:sinα=cosα=tanα=一般地,当α、β为任意角时,sin(α+β)与sin(α﹣β)的值可以用下面的公式求得:sin(α+β)=sinαcosβ+cosαsinβsin(α﹣β)=sinαcosβ﹣cosαsinβ例如sin15°=sin(45°﹣30°)=sin45°cos30°﹣cos45°sin30°=根据上述材料内容,解决下列问题:(1)计算:sin75°=;(2)在Rt△ABC中,∠A=75°,∠C=90°,AB=4,请你求出AC和BC的长.【分析】(1)根据公式可求.(2)根据锐角的三角函数值,求AC和BC的值.【解答】解:(1)sin75°=sin(30°+45°)=sin30°cos45°+cos30°sin45°=×+×=,故答案为:.(2)Rt△ABC中,∵sin∠A=sin75°==∴BC=AB×=4×=∵∠B=90﹣∠A∴∠B=15°∵sin∠B=sin15°==∴AC=AB×=【点评】本题考查了同角三角函数关系,利用特殊的三角函数值求线段的长度是本题的关键.。

初中数学总复习分章节测试题与答案(完整版)

初中数学总复习分章节测试题与答案(完整版)

2012年 第一章 有理数的概念一、选择题:1.下列命题中,正确的是 ( ) A 有限小数是有理数 B 无限小数是无理数 C 数轴上的点与有理数一一对应 D 数轴上的点与实数一一对应2.四位同学画数轴如下图所示,你认为正确的是 ( )A B C D3.下列说法正确的是 ( ) A 绝对值较大的数较大 B 绝对值较大的数较小 C 绝对值相等的两数相等 D 相等两数的绝对值相等4.若a 与b 互为相反数,则下列式子成立的是 ( ) A 0=-b a B 1=+b a C 0=+b a D .0=ab5.数轴上原点和原点左边的点表示的数是 ( ) A 负数 B 正数 C 正数或零 D 负数或零6.下列比较中,正确的是 ( )A331212-<<- B212313-<<- C 210->-> D 201-><- 7.a--是一个 ( )A 正数 B 负数 C 正数或零 D 负数或零8.下列命题中正确的是 ( )A 3和-是互为相反数 B 3和-3是互为倒数 C 绝对值为3的数是-3D -3的绝对值是39.数x 由四舍五入得到的近似数是35.0,数x 不可能是 ( ) A 35.049 B 34.974C 35.052 D 34.95910.若a 为实数,下列代数式中,一定是负数的是 ( )A 2a - B 2)1(+-a C a - D )1(+--a11.若)(21++n m b a ·)(35212b a b a m n =-,则n m +的值为 ( ) A 1 B 2 C 3 D -312.据6月4日《苏州日报》报道,今年苏州市商品房销售量迅速增加,1~4月商品房销售金额高达1 711 000 00O 元,这个数用科学计数法表示是 ( )A 1.711×610B 1.711×910C 1.711×1010D 1711×61013.在0,1-,1,2的四个数中,最小的数是 ( ) A. 0 B 1- C 1 D. 214.张玲身高h ,由四舍五入后得到的近似数为1.5米,正确表示h 的值是 ( ) A 1.43米 B 1.56米 C 1.41≤ h ≤ 1.51 D 1.41≤ h <1.55 二、填空题:14.2001年3月,国家统计局公布我国总人口为129533万人.如果以亿为单位保留两位小数,可以写成约为____________亿人;15.计算:)3()20()100(---⨯-= ;16.2)1(-的相反数是_______;17.已知5,10=-=b a ,代数式)(b a --的值是 ; 18.如果ba b a ><<,0,0,那么0____b a -;如果ba b a <<<,0,0,那么___b a -0;19.21的倒数的相反数的3次幂等于 ;20.把3729000-用科学记数法可表示为 ; 21.41030.3⨯有 个有效数字,它精确到 位; 22.方程275=+x 的解的2003次幂是 ; 23.若0<m ,则_____=+m m ,若0>m ,则______=+m m ,若0=m ,则______=+m m ;24.0)4(|3||2|2=+-+-++z y x ,则.____=+zy x x 25.观察下列算式:21=2;22=4;23=8;24=16;25=32;26=64;27=128;28=256;……通过观察,用你所发现的规律写出811的末位数字是 ;26.已知:1+3=22;1+3+5=32;1+3+5+7=42;1+3+5+7+9=52; ……… 根据前面各式的规律,可猜测:1+3+5+7+…+_____12=+n ;27.观察下列等式:41314313121321211211-=;-=;-=⨯⨯⨯; ……。

2021年九年级数学中考一轮复习知识点基础达标测评:数与式综合(附答案)

2021年九年级数学中考一轮复习知识点基础达标测评:数与式综合(附答案)

2021年九年级数学中考一轮复习知识点基础达标测评:数与式综合(附答案)1.《九章算术》中有注:“今两算得失相反,要令正负以名之.”意思是:“今有两数若其意义相反,则分别叫做正数和负数.”如果高于海平面200米记为+200米,那么低于海平面300米应记为()A.﹣300米B.+500米C.+300米D.﹣100米2.设三个互不相等的有理数,既可表示为1、a+b、a的形式,又可表示为0、、b的形式,则a2019+b2019的值为()A.0B.﹣1C.1D.23.如图,数轴上有A,B,C,D四个整数点(即各点均表示整数),且2AB=BC=3CD.若A,D两点所表示的数分别是﹣5和6,则线段BD的中点所表示的数是()A.6B.5C.3D.24.﹣2018的相反数是()A.﹣2018B.2018C.D.﹣5.已知a是一个正整数,记G(x)=a﹣x+|x﹣a|.若G(1)+G(2)+G(3)+…+G(2019)+G(2020)=90,则a的值为()A.11B.10C.9D.86.|a﹣2|+|b+1|=0,则a+b等于()A.﹣1B.1C.0D.﹣27.有一个程序,当输入任意一个有理数时,显示屏上的结果总是1与输入的有理数的差的倒数,若第一次输入3,并将显示的结果第二次输入,则此时显示的结果是()A.3B.C.D.﹣38.若a+b<0,a<0,b>0,则a,﹣a,b,﹣b的大小关系是()A.a<﹣b<b<﹣a B.﹣b<a<﹣a<b C.a<﹣b<﹣a<b D.﹣b<a<b<﹣a 9.体育课上的口令:立正,向右转,向后转,向左转之间可以相加.连结执行两个口令就把这两个口令加起来.例如:向右转+向左转=立正;向左转+向后转=向右转.如果分别用0,1,2,3分别代表立正,向右转,向后转,向左转,就可以用如图所示的加法表来表示,在表中填了部分的数值和代表数值的字母.下列对于字母a,b,c,d的值,说法错误的是()A.a=0B.b=1C.c=2D.d=310.下列运算正确的是()A.﹣2+(﹣5)=﹣(5﹣2)=﹣3B.(+3)+(﹣8)=﹣(8﹣3)=﹣5 C.(﹣9)﹣(﹣2)=﹣(9+2)=﹣11D.(+6)+(﹣4)=+(6+4)=+10 11.下列说法正确的是()①已知a,b是不为0的有理数,则的值为﹣1或3.②如果定义,当ab<0,a+b<0,|a|>|b|时,{a,b}的值为b﹣a.③若|a+3|=﹣3﹣a,|b﹣2|=b﹣2,则化简|b+3|﹣|a﹣2|的结果为a﹣b+5.A.①②B.①③C.②③D.①②③12.如果向东走2米可记作+2,那么向西走3米可记作.13.在有理数中最大的负整数是,最小的非负数.14.如图,已知数轴上三点M,O,N对应的数分别为﹣1,0,3,点P为数轴上任意一点,其对应的数为x.如果点P以每分钟1个单位长度的速度从点O向左运动,同时点M和点N分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动,设t分钟时点P到点M、点N的距离相等,则t的值为.15.﹣3的绝对值等于.16.若,则xy=.17.﹣的倒数是.18.写出一个比﹣2小的有理数:.19.绝对值大于1而小于3.5的所有整数的和为.20.已知(a+3)2+|b﹣2|=0,则a﹣b的值是.21.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B、C、D处的其它甲虫(A,B,C,D都在格点上).规定:向上向右走为正,向下向左走为负.如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中:(1)A→C(,),B→C(,),C→D(,);(2)若这只甲虫的行走路线为A→B→C→D,则该甲虫走过的路程是;(3)若这只甲虫从A处去甲虫P处的行走路线依次为(+3,+2),(+2,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P的位置.(4)若图中另有两个格点M、N,且M→A(2﹣a,b﹣5),M→N(4﹣a,b﹣3),则N →A应记为什么?22.如图,数轴的原点为0,点A、B、C是数轴上的三点,点B对应的数字1,AB=6,BC =2,动点P、Q同时从A、C出发,分别以每秒2个长度单位和每秒1个长度单位的速度沿数轴正方向运动.设运动时间为t秒(t>0)(1)求点A、C分别对应的数;(2)求点P、Q分别对应的数(用含t的式子表示)(3)试问当t为何值时,OP=OQ?23.已知y=|2x+6|+|x﹣1|+4|x+1|,求y的最小值.24.有理数a、b、c在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b﹣c0,b﹣a0,c﹣a0.(2)化简:|b﹣c|+|b﹣a|﹣|c﹣a|.25.请根据情景对话回答下面的问题:小明:这条数轴上的两个点A、B表示的数都是绝对值是4的数,点A在点B的左边;小宇:点C表示负整数,点D表示正整数,且这两个数的差为3;小智:点E表示的数的相反数是它本身;(1)求A、B、C、D、E五个不同的点对应的数.(2)求这五个点表示的数的和.26.随着手机的普及,微信的兴起,许多人抓住这种机会,做起了“微商”,很多农产品改变原来的销售模式,实行网上销售,刚大学毕业的小明把自家的冬枣产品放到网上,他原计划每天卖100斤冬枣,但由于种种原因,实际每天的销售量相比有出入,下表是某周的销售情况(超额记为正,不足记为负.单位:斤):(1)根据记录的数据可知销售量最多的一天比销售量最少的一天多销售斤;(2)此前的上个周日小明卖了100斤冬枣,现在用正数表示比前一天多的销售量,负数表示比前一天少的销售量.完成下面的销量变化表:星期一二三四五六日计划量的差额+4﹣3﹣5+14﹣8+21﹣6星期一二三四五六日实际销售量比前一天的变化量(3)求本周实际销售总量与计划总量相比,具体增加或减少了多少斤?27.在一条不完整的数轴上,有A、B、C三个点,C点在A点的右侧,B点在A、C两点之间,已知A点对应数为﹣5,AB=3,设A、C两点对应数的和为m,A、B、C三个点对应数的积为n.(1)求B点表示的数是;(2)若点B是线段AC的三等分点,求m的值;【注:把一条线段平均分成三等分的两个点,都叫线段的三等分点】(3)如图所示,把一把直尺放置在数轴上,发现A点、B点、C点与直尺的刻度0.6,刻度2.4,刻度6分别对应,求n的值.28.有一块面积为64米2的正方形纸片,第1次剪掉一半,第2次剪掉剩下纸片的一半,如此继续剪下去,第6次后剩下的纸片的面积是多少米?29.计算(1)6+(﹣4)+(﹣2)+(﹣5);(2)(﹣+﹣)×(﹣24);(3)﹣22+3×(﹣1)4﹣(﹣4)×2;(4)﹣5﹣[﹣﹣(1﹣0.2×)÷(﹣2)2].参考答案1.解:如果高于海平面200米记为+200米,那么低于海平面300米应记为﹣300米.故选:A.2.解:∵三个互不相等的有理数,既可表示为1、a+b、a的形式,又可表示为0、、b 的形式,∴这两个三数组分别对应相等.∴a+b、a中有一个是0,由于有意义,所以a≠0,则a+b=0,所以a、b互为相反数.∴=﹣1,b=1,a=﹣1.∴a2019+b2019=(﹣1)2019+12019=0.故选:A.3.解:设BC=6x,∵2AB=BC=3CD,∴AB=3x,CD=2x,∴AD=AB+BC+CD=11x,∵A,D两点所表示的数分别是﹣5和6,∴11x=11,解得:x=1,∴AB=3,CD=2,∴B,D两点所表示的数分别是﹣2和6,∴线段BD的中点表示的数是2.故选:D.4.解:﹣2018的相反数是2018.故选:B.5.解:当x≥a时,则|x﹣a|=x﹣a,∴G(x)=a﹣x+x﹣a=0;当x<a时,则|x﹣a|=﹣(x﹣a)=﹣x+a,∴G(x)=a﹣x﹣x+a=2a﹣2x,∵G(1)+G(2)+G(3)+G(4)+…+G(2020)=90,∴设第n个数时,即x=n,G(x)开始为0,即x=a=n,∴G(n)=2n﹣2n=0,∴G(1)+G(2)+G(3)+G(4)+…+G(2020)=2n﹣2+2n﹣4+2n﹣6+…+2n﹣2n+0+0+…+0=2n×n﹣2(1+2+3+…+n)=2n2﹣2×=n2﹣n,即n2﹣n=90,解得n1=10,n2=﹣9(舍去).故选:B.6.解:∵|a﹣2|+|b+1|=0,∴a=2,b=﹣1,∴a+b=1.故选:B.7.解:由题意可得:1﹣3=﹣2,则输出﹣,故第二次输入﹣,得到:1﹣(﹣)=,输出.故选:C.8.解:按题意,可设a=﹣2,b=1,则﹣a=2,﹣b=﹣1.由于﹣2<﹣1<1<2,所以a<﹣b<b<﹣a.故选:A.9.解:根据题意,将表格中的数据填写完整如图所示:因此,a=0,b=1,c=1,d=3,故选:C.10.解:A、﹣2+(﹣5)=﹣(2+5)=﹣7,故本选项不符合题意.B、(+3)+(﹣8)=﹣(8﹣3)=﹣5,本选项符合题意.C、(﹣9)﹣(﹣2)=(﹣9)+2=﹣(9﹣2)=﹣7,本选项不符合题意.D、(+6)+(﹣4)=+(6﹣4)=2,本选项不符合题意,故选:B.11.解:①已知a,b是不为0的有理数,可分4种情况:a>0,b>0,此时ab>0,∴=1+1+1=3;a>0,b<0,此时ab<0,∴=1﹣1﹣1=﹣1;a<0,b<0,此时ab>0,∴=﹣1﹣1+1=﹣1;a<0,b>0,此时ab<0,∴=﹣1+1﹣1=﹣1;∴的值为﹣1或3,故①正确;②当ab<0,a+b<0,|a|>|b|时,a<0<b,∴{a,b}=b﹣a,故②正确;③若|a+3|=﹣3﹣a,|b﹣2|=b﹣2,则a+3≤0,b﹣2≥0,∴a≤﹣3,b≥2,∴b+3>0,a﹣2<0,∴|b+3|﹣|a﹣2|=b+3+a﹣2=a+b+1.故③错误.综上,正确的有①②.故选:A.12.解:向东走2米可记作+2,那么向西走3米可记作﹣3米,故答案为:﹣3米.13.解:在有理数中最大的负整数是﹣1,最小的非负数0,故答案为:﹣1,0.14.解:设运动t分钟时,点P到点M,点N的距离相等,即PM=PN.点P对应的数是﹣t,点M对应的数是﹣1﹣2t,点N对应的数是3﹣3t.①当点M和点N在点P同侧时,点M和点N重合,所以﹣1﹣2t=3﹣3t,解得t=4,符合题意.②当点M和点N在点P异侧时,点M位于点P的左侧,点N位于点P的右侧(因为三个点都向左运动,出发时点M在点P左侧,且点M运动的速度大于点P的速度,所以点M永远位于点P的左侧),故PM=﹣t﹣(﹣1﹣2t)=t+1.PN=(3﹣3t)﹣(﹣t)=3﹣2t.所以t+1=3﹣2t,解得t=,符合题意.综上所述,t的值为或4.故答案为:或4.15.解:﹣3的绝对值等3.故答案为:3.16.解:根据题意得,x+2=0,y﹣1=0,解得x=﹣2,y=1,∴xy=(﹣2)×1=﹣2.故答案为:﹣2.17.解:﹣的倒数是﹣8,故答案为:﹣8.18.解:比﹣2小的有理数为﹣3(答案不唯一),故答案为:﹣3.19.解:绝对值大于1而小于3.5的整数包括±2,±32+(﹣2)+3+(﹣3)=0.故答案为:0.20.解:∵(a+3)2≥0,|b﹣2|≥0,而(a+3)2+|b﹣2|=0,∴a+3=0,b﹣2=0,∴a=﹣3且b=2.∴a﹣b=﹣3﹣2=﹣5.故答案为:﹣5.21.解:(1)∵规定:向上向右走为正,向下向左走为负,∴A→C记为(+4,+4),B→C记为(+3,0),C→D记为(+1,﹣3);故答案为:+4;+4;+3;0;+1;﹣3;(2)据已知条件可知:A→B表示为:(+1,+4),B→C记为(+3,0),C→D记为(+1,﹣3);∴该甲虫走过的路线长为1+4+3+1+3=12.故答案为:12;(3)P点位置如图所示.(4)∵M→A(2﹣a,b﹣5),M→N(4﹣a,b﹣3),∴4﹣a﹣(2﹣a)=2,b﹣3﹣(b﹣5)=2,∴从而得到点A向右走2个格点,向上走2个格点到点N,∴N→A应记为(﹣2,﹣2).22.解:(1)∵点B对应的数为1,AB=6,BC=2,∴点A对应的数是1﹣6=﹣5,点C对应的数是1+2=3.(2)∵动点P、Q分别同时从A、C出发,分别以每秒2个单位和1个单位的速度沿数轴正方向运动,∴点P对应的数是﹣5+2t,点Q对应的数是3+t;(3)①当点P与点Q在原点两侧时,若OP=OQ,则5﹣2t=3+t,解得:t=;②当点P与点Q在同侧时,若OP=OQ,则﹣5+2t=3+t,解得:t=8;当t为或8时,OP=OQ.23.解:令2x+6=0,x﹣1=0,x+1=0,解得:x=﹣3,x=1,x=﹣1.当x<﹣3时,则y=﹣2x﹣6﹣x+1﹣4x﹣4=﹣7x﹣9,则没有最小值;当﹣3≤x<﹣1时,则y=2x+6﹣x+1﹣4x﹣4=﹣3x+3,则最小值为﹣6;当﹣1≤x<1时,则y=2x+6﹣x+1+4x+4=5x+11,则最小值为6;当x≥1时,则y=2x+6+x﹣1+4x+4=7x+9,则最小值为16;故y的最小值为﹣6.24.解:(1)观察数轴可知:a<0<b<c,∴b﹣c<0,b﹣a>0,c﹣a>0.故答案为:<;>;>.(2)∵b﹣c<0,b﹣a>0,c﹣a>0,∴|b﹣c|+|b﹣a|﹣|c﹣a|=c﹣b+b﹣a﹣c+a=0.25.解:(1)∵点E表示的数的相反数是它本身,∴E表示0,∵A.B表示的数都是绝对值是4的数,且点A在点B左边,∴A表示﹣4,B表示4,∵点C表示负整数,点D表示正整数,且这两个数的差是3,∴若C表示﹣1,则D表示2:若C表示﹣2.则D表示1.即A、B、C、D、E五个不同的点对应的数是﹣4,4,﹣1,2,0或﹣4,4,﹣2,1,0;(2)当A、B、C、D、E五个不同的点对应的数是﹣4,4,﹣1,2,0时,这五个点表示的数的和是﹣4+4+(﹣1)+2+0=1;当A、B、C、D、E五个不同的点对应的数是﹣4,4,﹣2,1,0时,这五个点表示的数的和是﹣4+4+(﹣2)+1+0=﹣1.26.解:(1)21﹣(﹣8)=29(斤),答:销售量最多的一天比销售量最少的一天多销售29斤,故答案为29;(2)星期一实际销售100+4=104(斤),星期二实际销售100﹣3=97(斤),星期三实际销售100﹣5=95(斤),星期四实际销售100+14=114(斤),星期五实际销售100﹣8=92(斤),星期六实际销售100+21=121(斤),星期日实际销售100﹣6=94(斤),本周每天实际销售量比前一天的变化量分别为:+4,﹣7,﹣2,+19,﹣22,+29,﹣27,故列表如下:星期一二三四五六日+4﹣7﹣2+19﹣22+29﹣27实际销售量比前一天的变化量(3)+4﹣3﹣5+14﹣8+21﹣6=17(斤),答:本周实际销售总量与计划总量相比,具体增加了17斤.27.解:(1)∵A点对应数为﹣5,AB=3,C点在A点的右侧,B点在A、C两点之间,∴B点表示的数为﹣2,故答案为﹣2;(2)∵点B是AC的三等分点,∴当点B靠近点A时,AC=3AB=9,∵A点表示的数为﹣5,且C点在A点的右侧,∴C点表示的数为4,∴m=﹣5+4=﹣1;当点B靠近点C时,AC=AB=,∵A点表示的数为﹣5,且C点在A点的右侧,∴C点表示的数为,∴m=﹣5+=;(3)数轴上的一个单位长度对应刻度尺上是,∴BC的长为,∴C点表示的数为4,∴n=(﹣5)×(﹣2)×4=40.28.解:由题意得,64×()6=64×=1平方米,答:第六次后,还剩1平方米.29.解:(1)原式==4+(﹣10)=﹣6;(2)原式==4﹣30+14=﹣12;(3)原式=﹣4+3+8=7;(4)原式=﹣5﹣[﹣﹣(1﹣)÷4]=﹣5﹣(﹣﹣×)=﹣5﹣()=﹣5+=。

九年级数学复习题

九年级数学复习题

九年级数学复习题各个科目都有自己的学习方法,但其实都是万变不离其中的,基本离不开背、记,练,数学作为最烧脑的科目之一,也是一样的。

下面是作者给大家整理的一些九年级数学复习的学习资料,期望对大家有所帮助。

初三数学知识点分类复习题【实弹射击】1、(08广东省)将两块大小一样含30°角的直角三角板,叠放在一起,使得它们的斜边AB重合,直角边不重合,已知AB=8,BC=AD=4,AC与BD相交于点E,连结CD.(1)填空:如图a,AC= ,BD= ;四边形ABCD是梯形.(2)请写出图a中所有的类似三角形(不含全等三角形).图10(3)如图b,若以AB所在直线为轴,过点A垂直于AB的直线为轴建立如图10的平面直角坐标系,保持ΔABD不动,将ΔABC向轴的正方向平移到ΔFGH的位置,FH与BD相交于点P,设AF=t,ΔFBP面积为S,求S与t之间的函数关系式,并写出t的取值值范畴.图a2、(09广东省) 正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直,(1)证明:Rt△ABM ∽Rt△MCN;(2)设BM=x,梯形ABCN的面积为y,求y与x之间的函数关系式;当M点运动到什么位置时,四边形ABCN的面积,并求出面积;(3)当M点运动到什么位置时Rt△ABM ∽Rt△AMN,求此时x的值.3、(10广东省)如图(1),(2)所示,矩形ABCD的边长AB=6,BC=4,点F在DC上,DF=2。

动点M、N分别从点D、B同时动身,沿射线DA、线段BA向点A 的方向运动(点M可运动到DA的延长线上),当动点N运动到点A时,M、N两点同时停止运动。

连接FM、FN,当F、N、M不在同一直线时,可得△FMN,过△FMN三边的中点作△PQW。

设动点M、N的速度都是1个单位/秒,M、N运动的时间为x秒。

试解答下列问题:(1)说明△FMN∽△QWP;(2)设0≤x≤4(即M从D到A运动的时间段)。

初三数学复习题及答案

初三数学复习题及答案

初三数学复习题及答案
一、选择题
1. 下列哪个选项是二次函数的图像?
A. 一条直线
B. 一个圆
C. 一个抛物线
D. 一个立方体
答案:C
2. 一个数的平方根是它本身的数有多少个?
A. 0个
B. 1个
C. 2个
D. 3个
答案:C
3. 以下哪个方程不是一元一次方程?
A. 2x + 3 = 7
B. 3y - 5 = 0
C. x^2 - 4x + 4 = 0
D. 5z = 15
答案:C
二、填空题
4. 一个等腰三角形的底边长为6cm,高为4cm,其周长为_______cm。

答案:16
5. 如果一个数的立方等于8,那么这个数是______。

答案:2
三、解答题
6. 已知一个直角三角形的两条直角边长分别为3cm和4cm,求斜边的长度。

答案:斜边的长度为5cm。

7. 某商店购进一批商品,进价为每件100元,售价为每件150元。

若该商店希望获得的利润率不低于20%,则至少需要卖出多少件商品?
答案:至少需要卖出100件商品。

8. 某工厂生产一种零件,每件零件的成本为50元,售价为80元。

若该工厂希望在一个月内获得至少10000元的利润,则至少需要生产并销售多少件零件?
答案:至少需要生产并销售250件零件。

初三数学基础试题及答案

初三数学基础试题及答案

初三数学基础试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 2B. √2C. 0.5D. 3.14答案:B2. 一个数的立方根是它本身,这个数是:A. 0B. 1C. -1D. 以上都是答案:D3. 一个数的相反数是它自己,这个数是:A. 0B. 1C. -1D. 以上都不是答案:A4. 一个数的倒数是它自己,这个数是:A. 0B. 1C. -1D. 以上都不是答案:B5. 一个数的绝对值是它自己,这个数是:A. 正数B. 负数C. 0D. 以上都是答案:D6. 以下哪个选项是方程的解?A. x = 2B. x = -2C. x = 3D. x = 4答案:A7. 以下哪个选项是不等式的解?A. x > 3B. x < 3C. x = 3D. x ≤ 3答案:D8. 以下哪个选项是函数的值域?A. {x | x > 0}B. {x | x < 0}C. {x | x = 0}D. {x | x ≤ 0}答案:A9. 以下哪个选项是二次函数的顶点坐标?A. (0, 0)B. (1, 1)C. (-1, 1)D. (1, -1)答案:C10. 以下哪个选项是一次函数的斜率?A. 0B. 1C. -1D. 以上都不是答案:B二、填空题(每题4分,共20分)1. 圆的周长公式是 ________。

答案:C = 2πr2. 直角三角形的斜边长公式是 ________。

答案:c = √(a² + b²)3. 一个数的平方是25,这个数是 ________。

答案:±54. 一个数的立方是8,这个数是 ________。

答案:25. 一个数的绝对值是5,这个数可以是 ________。

答案:±5三、解答题(每题10分,共50分)1. 计算:(3x - 2)(x + 1)。

答案:3x² + x - 22. 已知一个数的平方是36,求这个数。

【新】九年级数学 人教版 中考专题复习-代数篇(整式、分式、二次根式)练习题

【新】九年级数学 人教版 中考专题复习-代数篇(整式、分式、二次根式)练习题

中考专题复习-代数篇【整式篇】【学生总结-幂运算公式】 (1) (2) (3) (4)2、若32=n a ,则n a 6= .3、若 3m ,2m y x == 则 =+y x m ____, =+y 2x 3m =______.4、计算:()()()22245+•+•+b b b ().)2y -x (2y)-x (2y -x 432••【换指数】计算:(-2)1999+(-2)200020102009)532()135(⨯【整体带入】变式3、若ab 2=-6 ,则-ab(a 2b 5-ab 3-b)的值为平方差公式公式: ( a+b)(a-b)= a 2-b 2语言叙述:两数的 和乘以这两个数的差等于这两个数的平方差 , . 。

公式结构特点:左边: (a+b)(a-b)右边: a 2-b 2完全平方公式公式: (a+b)2=a 2+2ab+b 2 (a-b)2=a 2-2ab+b 2语言叙述:两数的 完全平方和(差)等于这两个数各自平方和与这两个数乘积2倍的和(差)。

,. 。

公式结构特点:左边: (a+b)2; (a-b)2右边:a 2+2ab+b 2; a 2-2ab+b 2 熟悉公式:公式中的a 和b 既可以表示数字也可以表示字母,还可以表示一个单项式或者一个多项式。

公式变形1、a 2+b 2=(a+b)2 =(a-b)22、(a-b )2=(a+b)2 ; (a+b)2=(a-b)23、(a+b)2 +(a-b )2=4、(a+b)2 --(a-b )2= 一、计算下列各题:2)(y x + 2)23(y x - 2)12(--t 5、2)313(c ab +-【十字相乘法】(二次项系数为1)232++x x 232+-x x 322-+x x 322--x x(二次项系数不为1)2522++x x 3522--x x 20322--x x 7522-+x x【分式篇】【分式加减法】例.(1)3b b x x + 242)2(2---x x x例.计算 (1)mm -+-329122 (2)a-b+22b a b +变式练习 1.计算:(1) (2)xx x ----13132(3)222x x x +--2144x x x --+ (4)++y x 1yx -11、计算:(1)))(())((a b c b ca cb b a b a --++--+ (2)x x x x ---3)3(32(3)22n m nn m m n m m ---++ (4) a -242a --【分式乘除法】分子分母因式分解→约分→计算例1.计算 (1)y x yz z xy 32982-•- (2)y x yx y x y x y x +-•-+÷-222)(1计算:(1)⎪⎪⎭⎫ ⎝⎛-÷x y y x 346342, (2)xy x xy xy y x y x ++÷++-22222224.【分式混合计算】例.计算:(1))(a ab a b a 222-2a b a · 1-2a 12+++ (2) 4421642++-÷-x x x x变式练习 1.计算(1)⎪⎭⎫ ⎝⎛+-÷-111122x x x (2)x x x x x x x x -÷⎪⎭⎫ ⎝⎛+----+44412222【二次根式篇】【知识点一】:二次根式 1、a 有意义的条件:a 0≥2、二次根式的非负性:①⎩⎨⎧<-≥==0a ,a 0a ,a |a |a 2②0a ≥3、最简二次根式;①被开方数不含能开得尽方的因数和因式; ②被开方数不含分母.4、二次根式的乘除法法则:()0,0a b ab a b =≥≥g()0,0a a a b b b=≥≥例题讲解:例1:a 3-有意义,a 的取值范围____________; 2:已知y=2x -+2x -+5,求=yx_____________; 3:21--=x x y 在实数范围内有意义,x 应满足 ; 例2:02)2(2=++-y y x ,则xy 的值。

初三数学专题复习试题九年级最新中考专题训练试卷含答案解析(20套)

初三数学专题复习试题九年级最新中考专题训练试卷含答案解析(20套)

初三数学专题复习试题九年级最新中考专题训练试卷含答案解析(20套)1.32的倒数是(). A .32 B .23 C .32- D .23-2.据报道,2010年苏州市政府有关部门将在市区完成130万平⽅⽶⽼住宅⼩区综合整治⼯作.130万(即1 300 000)这个数⽤科学记数法可表⽰为().A .1.3×104B .1.3×105C .1.3×106D .1.3×1073.记n S =n a a a +++ 21,令12n n S S S T n+++=,称n T 为1a ,2a ,……,n a 这列数的“理想数”。

已知1a ,2a ,……,500a 的“理想数”为2004,那么8,1a ,2a ,……,500a 的“理想数”为(). A .2004 B .2006 C .2008 D .20104.某汽车维修公司的维修点环形分布如图。

公司在年初分配给A 、B 、C 、D 四个维修点某种配件各50件。

在使⽤前发现需将A 、B 、C 、D 四个维修点的这批配件分别调整为40、45、54、61件,但调整只能在相邻维修点之间进⾏。

那么要完成上述调整,最少的调动件次(n 件配件从⼀个维修点调整到相邻维修点的调动件次为n )为().A .15B .16C .17D .185.在2,1,0,1-这四个数中,既不是正数也不是负数的是…………………………()A )1- B )0 C )1 D )26. 2010年⼀季度,全国城镇新增就业⼈数为289万⼈,⽤科学记数法表⽰289万正确的是()A )2.89×107.B )2.89×106 .C )2.89×105..7.下⾯两个多位数1248624……、6248624……,都是按照如下⽅法得到的:将第⼀位数字乘以2,若积为⼀位数,将其写在第2位上,若积为两位数,则将其个位数字写在第2位。

对第2位数字再进⾏如上操作得到第3位数字……,后⾯的每⼀位数字都是由前⼀位数字进⾏如上操作得到的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

“线段”表示的是“图形”,而“距离”指的是线段的“长度” 指的是一个“数”,几何第一章基础测试(时间 90 分)一、判断题(每小题 1 分共 8 分,对的在括号内画“√”,错的画“×”).1.经过三点中的每两个,共可以画三条直线…………………………………( )【提示】平面内三点可以在同一条直线上,也可以不在同一条直线上. 【答案】×. 【点评】要注意,三个点的相互位置共有两种情况,如图(1) (2)因此,平面内经过三点中每两个的直线可以是同一条,也可以是三条,必须把上面 两种情况全部考虑到,再分类解决,若只考虑其中的第二种情况,判断就会出错.2.射线 AP 和射线 P A 是同一条射线………………………………………………( )【提示】表示射线端点的字母要写在前,另一个字母写在后,端点不同的射线不是同一条射 线.【答案】×.3.连结两点的线段,叫做这两点间的距离…………………………………………( )【提示】连结两点的线段的长度,叫做这两点的距离. 【答案】×. 【点评】.. .两者不能等同.4.两条直相交,只有一个交点……………………………………………………( ) 【提示】两条不同的直线,如果它们有一个公共点,我们就说它们相交,若两条直线相交, 有两个公共点,那么根据直线公理:经过两点有且只有一条直线,则这两条直线实际上 是同一条直线了.同样两条不同的直线不能有三个或更多的公共点. 【答案】√. 5.两条射线组成的图形叫做角……………………………………………………()1【提示】有公共端点的两条射线组成的图形叫做角.【答案】×.【点评】“角”的构成有两个条件:①有公共端点;②两条射线组成的图形.两者缺一不可,按题中的叙述,可以画出这样的图形(如下图),显然这个图形不是角.PABQ6.角的边的长短,决定了角的大小.【提示】角的大小,与组成角的两条射线张开的程度相关,或者说与射线绕着它的端点旋转过的平面部分的大小相关,与角的边画出部分的长短无关.【答案】×.【点评】我们在现实生活中看到的直线或射线,其实大多数以线段的形式出现的,所以在运用直线或射线概念时,千万别忘了它们的几何意义,否则就要出错.7.互余且相等的两个角都是45°的角…………………………………………()【提示】“互余”即两角和为90°.【答案】√.【点评】设相等的两个角为x°,由“互余”得,2x=90,∴x=45(度),以正确的计算为依据,也是作判断题的方法之一.注意,角度是一个带单位的数.设未知数时,未知量带单位,则列式中即可不用带单位.这与解其他类型的应用题格式相同.8.若两个角互补,则其中一定有一个角是钝角……………………………………()【提示】“互补”即两角和为180°.想一想:这里的两个角可能是怎样的两个角?【答案】×.【点评】两角互补,这里的两角有两种情形,如图:图(1)图(2)2..一条线段上有4个点,则共有5+4+3+2+1条线段;若线段上再增加一个点,即有5个点,则共有6+5+4+3+2+1条线段;若一条线段上有n个点呢?则有(n+1)因此,互补的两个角中,可能有一个是钝角,也可能两个角都是直角,因此在作出判断前必须全面地考虑,这就要求有“分类讨论”的思想,“分类讨论”是数学中重要的思想方法之一.二、填空题(每空1分,共28分)1.过平面内的三个点中的每两个画直线,最少可画____条直线,最多可画_____条直线.【提示】分三点在一条直线上和三点不在同一条直线上两种情况.【答案】1,3.2.如图,线段AB上有C、D、E、F四个点,则图中共有_____条线段.【提示】方法一:可先把点A作为一个端点,点C、D、E、F、B分别为另一个端点构成线段,再把点C作为一个端点,点D、E、F、B分别为另一个端点构成线段……依此类推,数出所有线段求和,即得结果.方法二:先数出相邻两点间线段的条数,再数出中间隔一点或隔二点、或隔三点……数出各种情况线段的条数,将它们相加,即得结果.【答案】15.【点评】.............+n+(n-1)+…+3+2+1=(n+1)(n+2)条线段,每增加一个点,就增加(n+1)条线2段.3.线段AB=6cm,BC=4cm,则线段AC的长是______.【提示】分点C在AB的延长线上或点C在AB上两种情形.【答案】10cm或2cm.【点评】(1)当点C在AB延长线上时,如图,则AC=AB+BC=6+4=10(cm);(2)当点C在AB上时,如图,则AC=AC-BC=6-4=2(cm),点有位置不同,故应有两种情形.4.把线段AB延长到点C,使BC=AB,再延长BA到点D,使AD=2AB,则DC=_____AB=____AC;BD=_____AB=_____DC.【提示】根据题意,画出符合条件的图形,如图,答案是否明白了?3【答案】4,2;3,34.【点评】判断线段间的数量关系,应画出符合题意的图形,结合图形正确分析方能得出正确的结论,这里要注意“延长线段AB”与“延长线段BA”的区别.5.45°=______直角=_____平角=____周角.【提示】1直角=90°,且1直角=11平角=周角.24【答案】111,,.2486.18.26°=___°___′___″;12°36′18″______°.【提示】1°=60′,1′=60″,高一级单位化成低一级单位,用乘法,乘以60;低一级单位化成高一级单位,用除法,除以60.【答案】18,15,36;12.605.7.只有_____角有余角,而且它的余角是_____角.【提示】①互余的两角和为90°;②0°<锐角<90°.【答案】锐、锐.8.如图,∠AOC=∠COE=∠BOD=90°,则图中与∠BOC相等的角为_____;与∠BOC互余的角为______,与∠BOC互补的角为______.【提示】互余的两角和为90°,互补的两角和为180°;同角或等角的余角相等,同角或等角的补角相等.【答案】∠DOE,∠AOB、∠COD;∠AOD.【点评】互补两角,图形上并非一定出现相邻两角为平角,而只要求和为180°,类似地,也应这样去理解互为余角的概念.9.∠α与它的余角相等,∠β与它的补角相等,则∠α+∠β=____°.4设互余两角为α,β,且α>β,则⎨⎧α+β=90︒α-β=35︒【提示】互余且相等的角是45°,互补且相等的角是90°.【答案】135°.10.互为余角两角之差是35°,则较大角的补角是_____°.【提示】先根据互余两角和为90°,差是35°,求出较大角,然后再求较大角的补角.【答案】117.5°.【点评】⎩.解这个方程组,即可求出∠α的度数,这种和用方程组解决几何计算题的方法以后还会经常用到.11.钟表在12时15分时刻的时针与分针所成的角是_____°.【提示】钟面上时针每小时旋转1大格为30°,则每分旋转0.5°;分针每小时旋转12大格为360°,则每分转6°.【答案】如图,∠BOC=∠AOB-∠AOC=30°×3-0.5°×15=90°-7.5°=82.5°12.用定义、性质填空:(1)如下图,∵M是AB的中点,∴AM=MB=1AB.(2)A M B(2)如下图,5NPO∵OP是∠MON的平分线,M∴∠MOP=∠NOP=(3)如下图,12∠MON.()∵点A、B、C在一条直线上,∴∠ABC是平角()(4)如下图,∵∠1+∠2=90°,∠3+∠2=90°,∴∠1=∠3()【提示】根据线段中点、角平分线概念、互为余角的性质填写.【答案】线段中点的定义,角平分线的定义,平角的定义,同角的余角相等.【点评】定义性质是推理的依据,要学会定义、性质的符号表达式,为后面的进一步学习做好准备.三、选择题(每小题2分,共16分)1.如图,B、C、D是射线AM上的一个点,则图中的射线有………………()(A)6条(B)5条(C)4条(D)1条【提示】射线是指直线上一点和它一旁的部分,射线有一个端点,可以向一方无限延伸.【答案】B.2.下列四组图形(其中AB是直线,CD是射线,MN是线段)中,能相交的一组是6....()(A ) (B ) (C ) (D )【提示】直线没有端点,可以向两方无限延伸;射线有一个端点,可以向一方无限延伸;线 段有两个端点,题中四组图形,画出部分都没相交、要找出能相交的一组,就看直线、 射线可延伸出部分能否与另一条线相交. 【答案】B . 3.如图,由 AB =CD ,可得 AC 与 BD 的大小关系是…………………………()AC B D(A )AC >BD (B )AC <BD (C )AC =BD (D )不能确定【提示】由 AB =CD ,两边同时减去 CB ,即可找出答案. 【答案】C .4.如图,M 是线段 AB 的中点,N 是线段 AB 上一点,AB =2a ,NB =b ,下列说法 中错误的是…………………………………………………………………………( )AM N B(A )AM =a(B )AN =2a -b(C )MN =a -b(D )MN = 1 2a【提示】由“M 是线段 AB 的中点,AB =2a ”,可得 AM =MB = 1AB =a .2【答案】D .5.下列说法中正确的是…………………………………………………………( ) (A )角是由一条射线旋转而成的 (B )角的两边可以度量(C )一条直线就是一个平角(D )平角的两边可以看成一条直线 【提示】角是由一条射线绕着它的端点旋转而成的图形,角的边是射线,角有顶点.【答案】D .【点评】7平角的两边互为反向延长线,可以构成一条直线,但不可把直线当作直角,因为直线没有明确角的顶点.6.下列四个图形中,能用∠,∠O,∠AOB三种方式正确表示同一个角的图形是()(A)(B)(C)(D)【提示】当且仅当顶点处只有一个角时,可用顶点的大写字母表示这个角.【答案】C.7.如图,∠AOB是一直角,∠AOC=40°,OD平分∠BOC,则∠AOD等于()ACDO B(A)65°(B)50°(C)40°(D)25°【提示】∠AOD=∠AOB-∠BOD或者∠AOD=∠AOC+∠COD.【答案】A.【点评】观察图形,确定角与角之间的关系是解决此题的关键.8.下列说法中正确的是…………………………………………………………()(A)一个角的补角一定比这个角大(B)一个锐角的补角是锐角(C)一个直角的补角是直角(D)一个锐角和一个钝角一定互为补角【提示】0°<锐角<90°,1直角=90°,90°<钝角<180°,互补两角的和是180°.【答案】C.四、计算(每小题2分,共8分)1.37°28′+44°49′;2.108°18′-52°30″;3.25°36′×4;4.40°40′÷3.【提示】81°=60′,1′=60″,低一级单位满“60”,要向高一级单位进“1”,由高一级单位借“1”要化成“60”加入低一级单位参与运算.【答案】1.82°17′;2.56°17′30″;3.102°24′;4.13°33′20″.五、画图题(共15分)1.(4分)读句画图:如图,A、B、C、D在同一平面内.(1)过点A和点D画直线;(2)画射线CD;(3)连结AB;(4)连结BC,并反向延长BC.ADB C【答案】如图:ADB C【点评】画直线AD时,要画出向两方延伸的情况,画射线CD时,要画出向D的一旁延伸的情况,画线段AB时,则不要画出向任何一旁延伸的情况,线段是射线、直线的一部分,射线又是直线的一部分.2.(4分)已知线段a、b(如图),画出线段AB,设AB=3a-1b,并写出画法.2【答案】方法一:①量得a=1.9cm,b=2.6cm;②算AB的长,AB=3×1.9-12×2.6=4.4(cm);9①画射线AM,并在射线AM上顺次截取AC=CD=DE=a;..EA上截取EB=b.,,③画线段AB=4.4cm.则线段AB就是所要画的线段.方法二:........1②在线段2则线段AB就是要画的线段.【点评】①写画法就是按照画图的顺序,交代清楚在什么位置(在射线AM上)上画什么样的线段,怎样画(顺次截取),哪一条线段就是要画的线段.②涉及到的概念用语(是射线还是线段)位置术语(在……上)动作术语(截取还是顺次截取)等都要仔细体会,正确运用.3.(4分)用三角板画15°与135°的角.【提示】15°=45°-30°=60°-45°;135°=90°+45°=180°-45°.【答案】如图:或则∠AOC就是所要画的15°角.或则∠MON就是所要画的135°的角.104.(3分)已知:∠1与∠2,且∠1>∠2,画∠AOB,使∠AOB=12(∠1-∠2).【答案】方法一①量得∠1=120°,∠2=44°;1②算∠AOB=(120°-44°)=38°;2③画∠AOB=38°.则∠AOB就是所要画的38°角.方法二①画∠AOC=120°;②以O为顶点OC为一边在∠AOC的内部画∠COD=44°;1③量得∠AOD=76°,则∠AOD=38°;2④以O为顶点,OA为一边,在∠AOD的内部画∠AOB=38°.则∠AOB就是所要画的38°的角.【点评】无论方法一还是方法二,都要使用量器画角,有一定的局限性,常常会有误差.以后,我们还要学习“尺规作图”的方法,从而能提高画图能力.5.读句画图填空(每空1分,共10分)(1)画∠AOB=60°.(2)画∠AOB的平分线OC,则∠BOC=∠____=12∠____=____°.(3)画OB的反向延长线OD,则∠AOD=∠____-∠AOB=_____°.AC = (4)画∠AOD 的平分线 OE ,则∠AOE =∠____=_____°,∠COE =_____°.(5)以 O 为顶点,OB 为一边作∠AOB 的余角∠BOF ,则∠EOF =____°,射线OC 、OB 将∠____三等分.【答案】(2)AOC 、AOB 、30;(3)BOD 、120;(4)DOE 、60,90;(5)150,AOF . 【点评】读句画图,看图填空,把几何图形与语句表示,符号书写融为一体,看到了图形形 成的过程,利于识图.六、解答题(每小题 5 分,共 15 分)1.如图,M 是线段 AB 的中点,点 C 在线段 AB 上,且 AC =4 cm ,N 是 AC 的中点,MN =3 cm ,求线段 CM 和 AB 的长.【提示】CM =MN -NC ,AB =2 AM .【答案】∵ N 是 AC 中点,AC =4 cm , ∴ NC = 1 1×4=2(cm ), 2 2∵ MN =3 cm ,∴ CM =MN -NC =3-2=1(cm ), ∴ AM =AC +CM =4+1=5(cm ), ∵ M 是 AB 的中点,∴ AB =2 AM =2×5=10(cm ).答:线段 CM 的长为 1 cm ,AB 的长为 10 cm . 【点评】在进行线段的有关计算时,要依据已知,仔细看图,找出已知线段与所求线段的关 系,关于线段中点的三种表达方式,应结合图形灵活运用.2.已知∠α与∠β 互为补角,且∠β 互为补角,且∠β 的角.【提示】2 3比∠α大 15°,求∠α的余⎩∠β = 117︒找互补两角和为 180°,根据题意可知列出关于∠α、∠β的方程组,求出∠α,再根 据“互余两角和为 90°”,求出∠α的余角. 【答案】由题意可得:⎧∠α + ∠β = 180︒ ⎪⎨ 2 ⎪⎩ 3 ∠β - ∠α = 15︒解之得:⎧∠α = 63︒ ⎨∴ ∠α的余角=90°-∠α=90°-63°=27°.答:∠α的余角是 27°.3.如图,∠AOB 是直角,∠AOC 等于 46°,OM 平分∠AOC ,ON 平分∠BOC , 求∠MON 的度数.BNOAMC【提示】∠MON =∠CON -∠COM . 【答案】∵ ∠AOB 是直角.∴ ∠AOB =90°(直角的定义), ∵ ∠AOC =46°,∴ ∠BOC =∠AOB +∠AOC =90°+46°=136°, ∵ ON 平分∠BOC ,∴ ∠CON = 1 1∠BOC = ×136°=68°(角平分线定义),2 2∵ OM 平分∠AOC ,1 1∴ ∠COM =∠AOC =×46°=23°(角平分线定义),22∴ ∠MON =∠CON -∠COM =68°-23°=45°.答:∠MON =45°. 【点评】和线段计算一样,在进行有关角度计算时,也要根据已知,仔细看图, 出已知角与所求角的关系,此题中的∠MON还可看成是∠BOM与∠BON的差,∠MON也可看成是∠AOM与∠AON之和,请试一试怎么算,比一比哪种方法较简便.关于角平分线的三种表达式,也应结合图形灵活运用.。

相关文档
最新文档