三角形的内角和说课ppt课件

合集下载

三角形的内角和说课课件

三角形的内角和说课课件
三角形内角和的验证方法
通过测量、撕拼、折叠等方式验证三角形的内角和为180度。
三角形内角和的性质
无论三角形的形状和大小如何变化,其内角和始终保持不变。
作业布置及要求说明
完成教材上的相关练习题,巩固三角形内角和的知识点。 尝试使用不同的方法验证三角形的内角和,例如通过作辅助线、利用平行线的性质等。 思考并尝试解决一些与三角形内角和相关的实际问题,例如角度计算、角度关系分析等。
02
其他小组可以向分享的小组提出问题或质疑,分享小组需
要给予解答或回应。
教师点评
03
教师对学生的分享和交流进行点评和总结,强调三角形内
角和性质的重要性和证明方法的多样性。
2
教师答疑解惑,引导深入思考
答疑解惑
1
教师针对学生在讨论和分享过程中提出的 问题或疑惑进行解答,帮助学生理解和掌
握三角形内角和的性质。
美术学
在美术创作中,三角形内角和的原理被用于构图和色彩搭配等 方面,例如在绘画中利用三角形的稳定性来构建画面结构。
THANKWSAFTCOHRING
感谢您的观看
引导思考
教师进一步引导学生思考三角形内角和性 质的应用场景,以及与其他数学知识点的 联系和区别。
拓展延伸
3
教师可以给出一些拓展题目或思考题,让 学生进一步巩固和加深对三角形内角和性
质的理解和应用能力。
第总 结 回
六顾 与 作
章业 布 置
重点知识点总结回顾
三角形的内角和定义
三角形的三个内角之和等于180度。
第 方拓 法展 :
四多 边 形

内 角
和 计

多边形划分为三角形策略
对于n边形,可以选择一个顶点, 将其他n-1个顶点与该顶点相连, 形成n-2条对角线,从而将多边形 划分为n-2个三角形。

《三角形的内角和》PPT

《三角形的内角和》PPT

《三角形的内角和》PPT一、幻灯片 1:封面标题:三角形的内角和二、幻灯片 2:引入在我们的日常生活中,三角形无处不在。

从建筑结构到道路标志,从家具设计到艺术作品,三角形都扮演着重要的角色。

那大家有没有想过,三角形的三个内角之间存在着怎样的关系呢?这就是我们今天要探讨的主题——三角形的内角和。

三、幻灯片 3:三角形的定义首先,让我们来回顾一下什么是三角形。

三角形是由三条线段首尾相连所组成的封闭图形。

它有三个顶点、三条边和三个内角。

四、幻灯片 4:内角的概念接下来,我们了解一下内角的概念。

三角形的内角就是三角形相邻两边所组成的角。

比如在三角形 ABC 中,∠A、∠B、∠C 就是它的三个内角。

五、幻灯片 5:测量法探究内角和我们可以通过测量三角形的三个内角的度数,然后将它们相加,来探究三角形的内角和。

比如,我们测量一个锐角三角形的三个内角,分别是 50°、60°和 70°,将它们相加:50°+ 60°+ 70°= 180°。

六、幻灯片 6:测量法的误差但是,通过测量的方法来探究三角形的内角和可能会存在一定的误差。

因为测量过程中可能会出现读数不准确、测量工具不够精确等问题。

七、幻灯片 7:剪拼法探究内角和那有没有更准确的方法呢?我们可以试试剪拼法。

将三角形的三个内角剪下来,然后拼在一起,看看能得到什么。

八、幻灯片 8:剪拼法演示比如,我们把三角形ABC 的三个内角∠A、∠B、∠C 分别剪下来,然后把它们的顶点重合拼在一起,会发现正好形成了一个平角,也就是 180°。

九、幻灯片 9:推理证明内角和除了测量和剪拼的方法,我们还可以通过推理来证明三角形的内角和是 180°。

十、幻灯片 10:证明过程以三角形 ABC 为例,过点 A 作直线 EF 平行于 BC。

因为 EF∥BC,所以∠EAB =∠B,∠FAC =∠C。

又因为∠EAB +∠BAC +∠FAC = 180°,所以∠B +∠BAC +∠C = 180°,即三角形的内角和是 180°。

三角形的内角和PPT课件

三角形的内角和PPT课件
三角形的内角和PPT课与性质 • 三角形内角和定理及其证明 • 三角形外角性质与计算 • 三角形角度计算技巧与方法 • 三角形内角和在生活中的应用 • 总结回顾与拓展延伸
01
CATALOGUE
三角形基本概念与性质
三角形定义及分类
三角形定义
由不在同一直线上的三条线段首 尾顺次连接所组成的封闭图形。
04
CATALOGUE
三角形角度计算技巧与方法
利用平行线求角度
平行线性质
两直线平行,同位角相等;内错角相等;同旁内角互补。
示例
已知三角形ABC中,角A=60度,角B=45度,求角C的度数。可以过点C作AB的 平行线,将角C分为两个与角A、角B分别相等或互补的角,从而求得角C的度数 。
利用相似三角形求角度
三角形分类
按边可分为不等边三角形、等腰 三角形;按角可分为锐角三角形 、直角三角形、钝角三角形。
三角形边与角关系
三角形边的关系
任意两边之和大于第三边,任意两边 之差小于第三边。
三角形角的关系
三个内角之和等于180°,外角等于与 它不相邻的两个内角之和。
特殊三角形性质
01
02
03
等腰三角形性质
两腰相等,两底角相等; 三线合一(即顶角的平分 线、底边上的中线、底边 上的高重合)。
相似三角形性质
两个三角形如果三边对应成比例,则这两个三角形相似。相 似三角形的对应角相等。
示例
已知三角形ABC中,AB=AC,D为BC上一点,且BD=DC。 求角BAD的度数。可以通过构造与三角形ABD相似的三角形 ,利用相似三角形的性质求得角BAD的度数。
利用三角函数求角度
三角函数性质
正弦、余弦、正切等三角函数在特定角度下有确定的值。

2024版《三角形的内角和》优质ppt课件

2024版《三角形的内角和》优质ppt课件

《三角形的内角和》优质ppt课件CONTENTS•三角形基本概念与性质•三角形内角和定理推导•三角形内角和定理应用举例•拓展:多边形内角和计算方法探讨•练习题与课堂互动环节•课程小结与预习提示三角形基本概念与性质01三角形定义及分类三角形定义由不在同一直线上的三条线段首尾顺次连接所组成的封闭图形。

三角形分类按边可分为等边三角形、等腰三角形和不属于以上两种的其他三角形;按角可分为锐角三角形、直角三角形和钝角三角形。

三角形边长与角度关系三角形边长关系任意两边之和大于第三边,任意两边之差小于第三边。

三角形角度关系三角形内角和等于180°,外角和等于360°。

三边相等,三个内角均为60°。

等边三角形等腰三角形直角三角形锐角三角形和钝角三角形有两边相等,且两底角相等;顶角的平分线、底边上的中线和高互相重合(简称“三线合一”)。

有一个角为90°,斜边中线等于斜边一半;两锐角互余,且满足勾股定理。

除上述特殊三角形外,其余均为普通锐角三角形或钝角三角形,它们不具有特殊的性质。

特殊三角形性质介绍三角形内角和定理推导02直观感受法01通过测量不同类型的三角形的三个内角,并求和,观察结果是否接近或等于180度。

02利用三角形纸片的撕拼,将三个内角拼在一起,观察是否能拼成一个平角。

拼图验证法将三角形三个内角剪下,并尝试拼合,观察是否能拼成一个平角。

通过动画演示,将三角形三个内角旋转、平移拼接,直观展示三角形内角和为180度的过程。

过三角形一个顶点做对边的平行线,利用平行线的性质及平角的定义进行证明。

延长三角形的一条边,并作出与之相邻的外角,通过外角性质及平角的定义进行证明。

利用向量的加法运算及共线向量定理进行证明。

平行线性质证明外角性质证明向量法证明几何证明法三角形内角和定理应用举例03求角度问题已知三角形两个内角,求第三个内角的大小。

已知三角形一个内角及相邻两边,求另一个内角的大小。

三角形内角和说课ppt课件

三角形内角和说课ppt课件

感谢观看
THANKS
三角形内角和的基础知识
三角形的定义和分类
三角形是由不在同一直线上的三条线段首尾顺次 相接所组成的图形。根据边长特点,三角形可以 分为等边三角形、等腰三角形和普通三角形。
等腰三角形有两边长度相等,对应的两角也相等 ,另一个角为顶角。
等边三角形三边长度相等,三个内角相等,均为 60°。
普通三角形三边长度和三个内角均不相等。
电子工程
在电子工程中,三角形内角和定理可以用于计算电路中的 电阻、电容、电感等元件的参数,以及确定电路的性能和 稳定性。
05
三角形内角和定理的拓展和
深化理解
对称三角形内角和定理的拓展
总结词
揭示规律,拓展思维
详细描述
通过对称三角形的案例分析,揭示三角形内角和定理背后的规律,引导学生拓展 思维,探索不同证明方法的可能性。
三角形内角和说课 ppt课件
• 引言 • 三角形内角和的基础知识 • 三角形内角和的证明方法 • 三角形内角和的应用 • 三角形内角和定理的拓展和深化
理解 • 总结与回顾
目录
01
引言
主题和目的
主题
探究三角形的内角和
目的
通过多种方法证明三角形内角和为180度,并运用该结论解决实际问题
背景和重要性
03
这种证明方法较为抽象,但可以借助计算机软件进行计算 和验证。
04
三角形内角和的应用
在几何学中的应用
证明定理
三角形内角和定理是几何学中最 基本的定理之一,它可以应用于
证明其他定理和性质。
计算角度
通过三角形内角和定理,我们可以 快速计算出三角形的内角大小,以 及一个角度相对于其他角度的大小 。

三角形的内角和(PPT课件)2024新版

三角形的内角和(PPT课件)2024新版
忽视三角形形状的多样性,认为只有某些特殊形状的三角 形才具有内角和为180度的性质。实际上,所有三角形的内 角和均为180度,与形状无关。
拓展延伸:多边形内角和探讨
多边形的定义及分类
由三条或三条以上的线段首尾顺 次连接所组成的平面图形叫做多 边形。按照边数可分为三边形、 四边形、五边形等。
多边形内角和的计算 公式
在建筑设计中,需要测量建筑物的各个角度,以确保建筑物的稳定性和
美观性。三角形内角和的原理可以帮助建筑师快速准确地计算角度。
02
屋顶角度设计
屋顶的角度设计对于建筑物的排水、采光和保温等方面都有重要影响。
利用三角形内角和的原理,建筑师可以设计出合理的屋顶角度。
03
楼梯角度计算
在楼梯设计中,需要计算楼梯的倾斜角度,以确保人们上下楼梯时的舒
艺术创作
在艺术创作中,艺术家经常需要运用几何原理来构图和设计。三角形内角和的原理可以帮 助艺术家创造出具有美感和平衡感的作品。
06
总结回顾与拓展延伸
关键知识点总结回顾
三角形的内角和定义
01
三角形的三个内角之和等于180度。
三角形内角和的验证方法
02
通过测量、撕拼、折叠等方法验证三角形的内角和为180度。
可以通过三角形内角和定理和 邻补角的性质来证明三角形外 角和定理。
03
三角形外角性质与计算
三角形外角定义及性质
三角形外角的定义
三角形的一边与另一边的延长线组成的角,叫做三角形的外 角。
三角形外角的性质
三角形的外角等于与它不相邻的两个内角之和。此外,三角 形的一个外角大于任何一个和它不相邻的内角。
方法二:通过撕拼法 证明
从而得到∠A + ∠B + ∠C = 180度。

三角形内角和说课课件ppt

三角形内角和说课课件ppt
在 日 常 生 活 中,随 处都可 以看到 浪费粮 食的现 象。也 许你并 未意识 到自己 在浪费 ,也许 你认为 浪费这 一点点 算不了 什么
教学构思与设计

情 分 在日常生活中,随处都可以看到浪费粮食的现象。也许你并未意识到自己在浪费,也许你认为浪费这一点点算不了什么

知识基础 学生在小学已经用实验的方法得到了 三角形内角和等于180°,并且在第二章对平行线 的特征进行了探索,具备了利用平行线的结论得 出三角形内角和的基本知识和技能.
在 日 常 生 活 中,随 处都可 以看到 浪费粮 食的现 象。也 许你并 未意识 到自己 在浪费 ,也许 你认为 浪费这 一点点 算不了 什么
教学过程设计
情景导入 探索研究 应用拓展
课后作业 课堂小结
课堂检测
课堂检测 在日常生活中,随处都可以看到浪费粮食的现象。也许你并未意识到自己在浪费,也许你认为浪费这一点点算不了什么
探索研究
活动四 猜一猜
设计意图:
按内角的大小把三角形进行分类,使学生了解 数学的分类思想,理解直角三角形两锐角互余是内 角和结论的延伸,会用符号语言表示直角三角形, 增强学生的符号意识.
在 日 常 生 活 中,随 处都可 以看到 浪费粮 食的现 象。也 许你并 未意识 到自己 在浪费 ,也许 你认为 浪费这 一点点 算不了 什么
教学目标
知识目标 能力目标 情感目标
了解“三角形内角和”的推理过程,会按内 角的大小对三角形分类,能运用结论来解决三角 形内角的问题
培养学生“观察-操作-推理-应用”的能力, 使学生体验数学知识之间的内在联系,初步形成 数学整体性的认识
营造“体验-交流-分享”的教学氛围,锻炼学生 的协作精神和团队意识,在合作学习中增强集体荣 誉感

11.2.1三角形的内角和 公开课ppt课件

11.2.1三角形的内角和 公开课ppt课件
22
我不但三边之和比你长, 你的三边之和。是比我长,
而且三个内角之和也比 但三个内角之和并不比我
你大!

你同意谁的说法呢?为什么?
23
这节课你学到了什么?
P13 练习
24
(两直线平行,内错角相等)
∠B=∠2
(两直线平行,同位角相等)
∵∠1+∠2+∠ACB=180°
A
∴∠A+∠B+∠ACB=180° (等量代换) B
E
1 2
C
D
12
证法三 内错角+同旁内角
过A作AE∥BC,
∴∠B=∠BAE
(两直线平行,内错角相等)
∠EAB+∠BAC+∠C=180°
(两直线平行,同旁内角互补)
E
A
∴∠B+∠C+∠BAC=180°
(等量代换)
B
C
13
三角形内角和定理: 三角形的内角和等于1800. 即在△ABC中, ∠A +∠B +∠C=180 °
14
பைடு நூலகம்
15
例1、 如图:在△ABC中,∠BAC=40°, ∠B=75°,AD是△ABC的角平分线。 求∠ADB的度数?
在△ABD中,
A
∠ADB=180°-∠B-∠BAD,
19
例:
已知△ABC, ∠A +∠B= 90 °,求∠C的度数。
解:∵ ∠A+∠B+ ∠C=180 ° ∴ ∠C=180 °-( ∠A +∠B) =180 °- 90 ° = 90 °
20
例3
我的一个角是多少 度?
1800÷3=60°

最新《三角形的内角和》说课PPT课件

最新《三角形的内角和》说课PPT课件

教法、学法
(3)情感态度与价值观:使学生感受数学的转化 思想,感受数学的图形之美,体验数学就在我们 身边,并通过活动激发学生探索数学知识的兴趣, 体会学习数学的快乐。
教学重点:
三、说设计
教学目标
动手操作、自主探究验证三角形的内 角和等于180° ,并能进行简单的运用。
教学难点:
教学重、难点
采用多种途径证明三角形的内角 和是180°,拓宽学生的思路。
临床抗生素的合理
应用和进展
抗菌素治疗策略
• 最大限度地扩大抗生素的疗效 • 进行患者病情的分级 • 限制抗生素使用的级别 • 策略性定期更换抗生素 • 联合抗生素治疗 • 轮换抗生素治疗 • 控制感染知识培训
巴塞罗那宣言,西班牙, 2002.10.
● 抗生素的分类:
▓ β—内酰胺类抗生素 ▓ 大环内酯类抗生素 ▓ 氨基糖苷类抗生素 ▓ 喹诺酮类抗菌药物
2:头孢菌素类(cephalosporins)
包括一、二、三、四代 3:β—内酰胺酶抑制剂:
● 克拉维酸(clavulanic acid,棒酸) ● 舒巴坦(sulbactam,青酶烷砜钠) ● 他唑巴坦(tazobactam)
4:碳青酶烯类(carbapenems) 5:氧头孢烯类(oxacephems) 6:单环β—内酰胺类抗菌素(monobactms)
● 自然青霉素类(natural penicillins) ● 耐青霉素酶的半合成青霉素类 ● 氨基苄青霉素类(aminopenicillins) ● 羧基苄青霉素类(carboxypenicillins) ● 脲基青霉素类(ureidopenicillins) ● 咪基青酶烷酸类(amidinopenicillins)
抗生素药代学/药效学关系分类

三角形的内角和说课稿ppt课件

三角形的内角和说课稿ppt课件

经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
三角形的内角和
3 平角:1800
平角:1800
平角
3
3
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
三 角 形 的 内 角 和
一、教材分析 二、学情分析 三、教法和学法 四、教学准备 五、教学过程 六、板书设计
一、 教材分析 经营者提供商品或者服务有欺诈行为的,应当按照消费者的要求增加赔偿其受到的损失,增加赔偿的金额为消费者购买商品的价款或接受服务的费用
1
1
23
3
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
2
1
21
3
3
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
五、说教学过程
基础练习 要求学生利用“三角形内角和是180°” 在三角形内已知两个角,求第三个角。

四年级下《三角形的内角和》PPT课件

四年级下《三角形的内角和》PPT课件
Thank you for coming and listening,you can ask questions according to this section and this courseware can be downloaded
and edited freely
已知等腰三角形的风筝, 一个底角70°,顶角多少度?
180°-70°-70°=40°
180°-70°×2=40°
70° 70°
一个直角三角形,一个锐角是 50°,另一个锐角是几度?
180°-90°-50°=40°
180°
-(50°+90°)=40
°
50°
90°-50°=40°
• 现在,你知道为什么等边三角形的 三个内角都是60°了吗?
1
2 125°
∠2﹦180°- 125° = 55° ∠1﹦180°- 60°-55°=75 °
小结 拓展
知识的升华
你能根据自己的知识求出四边形和 正六边形的内角和吗?
两个三角形: 180°×2=360 °
4个三角形: 180°×4=720°
课件下载后可自由编辑,如有不理解
之处可根据本节内容进行提问
2
2
3
3
直角三角形
结论: 三角形内角和180°。
判断: 1、一个三角形最少有2个锐角
(√ )
2、两个锐角的和小于90度的三角形是钝角三角形( √ )
×
3、一个三角形有2个直角
()
4、有两个角的和是90度的三角形是直角三角形( √ )

72°
28°
180°--(72°+28°)=80°
一个等腰三角形的风筝, 它的一个底角是700,它 的顶角是多少度?

人教版四年级下册数学《三角形的内角和》课件(共15张PPT)

人教版四年级下册数学《三角形的内角和》课件(共15张PPT)

量一量

180°

请同学们每人再画一个三角形,量一量, 看看内角和是多少度。
给大家10分钟的时间,前后桌四人 为一个小组,小组内一起讨论讨论, 想出验证方法,待会请各小组代表 进行分享。
剪一剪,拼一拼
不为三角形内角和
剪一剪,拼一拼
3
1
2
3
平角:180°
3
1
2
3
1
2
3
平角:180°
剪一剪 拼一拼
3
平角:180°
折一折,拼一拼
1
1 22
33
平角:180°
折一折 拼一拼
1
1
2
2
3
3
平角:180°
1
1
2
2
3
3
平角:180°
一、测量法 二、剪拼法 三、折拼法
结论:三角形的内角和是180°。
①和②两个三角形的内角和各是多少度?
18①是多少度?
人教版小学数学四年级下册
三角形的内角和
授课人:
说一说:你知道三角形的哪些特性?
三个顶点 三条边 三个角(内角)
三角形的内角和:三角形的三个内角之和。
说一说:关于三角形的内角和,你们知道什么?
三角形的内角和是180°
①号三角形内角和是多少呢? 三角形无论什么大小、形状,内角和都是180°


②号三角形的内角和呢?
55° 35°
180°- 35°- 90°=55°
50° 65° 65°
30°
120° 30°
180°- 50°- 65°=65° 180°- 30°- 120°=30°
课堂 小结

《三角形的内角和》说课课件PPT

《三角形的内角和》说课课件PPT

是进一步学习多边形的内角和
以及解决实际问题的基础。
4
1、通过前面的学习,学生
学 已经掌握了三角形的一些基
情 础知识,会用工具量角、画
分 析
角,具备了探索三角形内角 和的知识与基础技能。
2、学生的生活经验是可利
用的教学资源。
5
前置小研究:
1、画几个不同类型的三角形。量一量、算一算, 三角形3个内角的和各是多少度。完成后面的表 格:
过 程 与
的研究过程,感受数学 的研究方法,培养学生
方 观察、思考、猜想、推
法 理、验证和动手操作的
目 能力。渗透转化这一数
标 学思想。
9
情 感
通过数学活动使学生
态 获得成功的体验,增
度 与
强自信心,培养学生
价 严谨、认真、实事求
值 是的学习习惯。

10
教学重难点
重点: 动手操作、自主探究发现三角形的 内角和等于180度,并能进行简单的运用。 难点:采用多种途径证明三角形的内角和, 拓宽学生思路。
大家好
1
《三角形的内角和》 说课
且末县小学 马超群 2

一、说教材

二、说教学目标
形 三、说教学准备


四、说教法和学法

五、说教学设计

六、说板书设计
3
一、 说教材
本节课是在学生学过角的度量、
教 三角形的特征和分类等知识的
材 分 析
基础上进行教学的,《三角形 的内角和》是三角形的一个重 要性质,学好它有助于学生理 解三角形内角之间的关系,也
26
400 1800-700 -700
1800-700×2

三角形的内角和PPT说课稿公开课获奖课件省赛课一等奖课件

三角形的内角和PPT说课稿公开课获奖课件省赛课一等奖课件

A
B
C
D
∠ACD > ∠A (<、>);
∠ACD > ∠B (<、>).
结论:三角形旳一种外角不小于与它 不相邻旳任何一种内角。
看谁答得
迅速抢答
又快又准
1 _∠__4__+__∠__C_
A
2 _∠__3__+__∠__B_
34
2 __>__ 3
12
2 __>__ B
B
DC
把图中旳∠1、∠2、∠3按由大到小旳 顺序排列
三角形旳一边与另一边旳延长线 构成旳角叫做三角形旳外角.
合作与交流
画一种△ABC,你能画出它旳全
部外角吗?请动手试一试.同步,想
一想△ABC旳外角一共有几种?
归纳:
A 12
每一种三角形
共有6个外角. 6
3
B5
4C
(二)外角与内角有什么关系?
1、相邻:
A
B
C
D
发觉: ACD与ACB互为邻补角.
即: ∠ACD(外角)+∠ACB(相邻内角)=180°
14.2(2)三角形旳内角和
知识回忆
1、三角形三个内角旳和等于多少度? 三角形三个内角旳和等于180°
2、在△ABC中, (1)∠C=90°,∠A=30 °,则∠B=_6_0_°_; (2)∠A=50°,∠B=∠C,则∠B=__6_5_°_.
观察∠ 1
A
E
B
1
1 C
B
C
E
A
探究新知
(一)三角形旳外角
BE
D
A
C
例题 如图,求∠1旳度数。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

过 程 与
的研究过程,感受数学 的研究方法,培养学生
方 观察、思考、猜想、推
法 理、验证和动手操作的
目 能力。渗透转化这一数
标 学思想。
8
情 感
通过数学活动使学生
态 获得成功的体验,增
度 与
强自信心,培养学生
价 严谨、认真、实事求
值 是的学习习惯。

9
教学重难点
重点: 动手操作、自主探究发现三角形的 内角和等于180度,并能进行简单的运用。 难点:采用多种途径证明三角形的内角和, 拓宽学生思路。
最大。
14
什么是内角?
把图形中相邻两边的夹角成为内角

15
第二环节
• 合作探究 • 操作实验 • 猜想验证
16
汇报展示
A、撕拼法 B、折叠法 C、其它方法
17
拼一拼
3 平角:1800
平角:1800
平角:1800
18
1
折一折
1
2
2
3
3
19
折一折
1
1
23
3
20
折一折
1
2
21
3
3
21
帕斯卡生于法国
《三角形的内角和》 说课
1

一、说教材

二、说教学目标
形 三、说教学准备


四、说教法和学法

五、说教学设计

六、说板书设计
2
一、 说教材
本节课是在学生学过角的度量、
教 三角形的特征和分类等知识的
材 分 析
基础上进行教学的,《三角形 的内角和》是三角形的一个重 要性质,学好它有助于学生理 解三角形内角之间的关系,也
的内角和是多少度?
28
谈谈收获
29
课后拓展
根据三角形的内角和是180°,你 能求出下面图形的内角和吗?
你有什么发现?
30
六、说板书设计
三角形的内角和是180度 量、撕、剪、折、拼 转化策略
31
是进一步学习多边形的内角和
以及解决实际问题的基础。
3
1、通过前面的学习,学生
学 已经掌握了三角形的一些基
情 础知识,会用工具量角、画
分 析
角,具备了探索三角形内角 和的知识与基础技能。
2、学生的生活经验是可利
用的教学资源。
4
前置小研究:
1、画几个不同类型的三角形。量一量、算一算, 三角形3个内角的和各是多少度。完成后面的表 格:
根据以上数据的测量,我能猜测出三角形的内 角和是多少度?
2、我的验证方法:1、
2、
3、
5
……
量 一 量
6
二、 说教学目标
知 通过"量一量","算一
识 算","拼一拼","折
与 一折"的方法,让学生
技 推理归纳出三角形内
能 角和是180°,并能应
目 用这一知识解决一些
标 简单问题。
7
经历探索三角形内角和
奥弗涅的克莱蒙费 朗,帕斯卡从小就 智力高人一等,12 岁时就爱上数学, 他父亲是一位受人 尊敬的数学家,在 其精心地教育下, 帕斯卡很小时就精 通欧几里得几何, 他自己独立地发现 出欧几里得的前32 条定理,而且顺序 也完全正确。12岁 独自发现了 “三角
形的内角和等于 180度”后,开始 师从父亲学习数学2。2
25
400 1800-700 -700
1800-700×2
700
700
一个等腰三角形的风筝, 它的一个底角是700,它 的顶角是多少度?
26
180o÷3=60o
90o-40o=50o
27
拓展练习
1、一个三角形中可能有两个直角吗? 一个三角形中可能有两个钝角吗? 2、把三角形减去一个角后,所剩的图形
课堂检测
拓展练习



பைடு நூலகம்
知 ,
提高练习




基础练习
23
基础练习 看图,求三角形中未知角的度数。
180o-75o-65o=40o 180o-(75o+65o)=40o
180o-125o-25o=30o 180o-(125o+25o)=30o
24
一个等腰三角形的风筝, 它的一个底角是700,他 的顶角是多少度?
10
三、教学准备
教具:实物投影仪、多媒体课件
学具:各类三角形,长方形,量角器, 前置小研究等
11
四、教法和学法
本节课,我准备引导学生采用自主 探究、动手操作、猜想验证、合作 交流的学习方法,并在教学过程中 课前两分钟激疑,引导探究;组织 讨论,适时地启发帮助。使教法和 学法和谐统一在“以学生的发展为 本”这一教育目标之中。
12
(一)课前2分钟导入新课
五、教学设计
(二)合作探究、操作实验、 猜想验证
(三)汇报展示
(四)课外拓展,积淀文化
(五)课堂检测
(六)梳理反思,课外延伸
13
我的一个角比你们的 大,所以我的内角和
一定比你们的大。
别看我的个头小 ,可有的角比你 们大,所以我的 内角和最大。
我有一个角是直角 ,所以我的内角和
相关文档
最新文档