带料连续拉深模设计
图解五金冲压模具
冲压模具图例(示图) 常闭触头级进模具
滑片级进模产品图
滑片级进模具产品装配图
冲孔、落料级进模(一)
冲孔、落料级进模(二)
定转子片硬质合金级进模模具装配图
磁轭片硬质合金级进模
动触座级进模具装配图
动触座级进模具装配图二
接触板级进模具装配图
压簧级进自动模
压簧级进自动模产品图
二轮压簧级进模
铆接成形级进模具装配图
钩式送料连续拉深模
钩式送料连续拉深模产品图二
滚轴式送料切断、压弯级进模产品图
滚轴式送料切断、压弯级进模产品图二
插销式送料压弯、切断级进模具装配图
定转子硬质合金级进模
双切口连续拉深模具装配图
整带料自动连续拉深模具装配图
整带料自动连续拉深模具产品图
对向凹模
汽车车门齿板模具装配图
汽车车门齿板产品图
汽车散热器罩修边冲孔模
精密冲裁模(一)
精密冲裁模(二)
精密冲裁模(三)
正装-倒装复合模
子冲片复合模模具装配图
磁极片复合模模具装配图
转子冲槽复合模模具装配图
斜楔式冲孔模
调焦导向盘侧向模具装配图
槽钢产品图
剖切模-管件切槽模模具产品装配图
外缘-内缘-整修模-筒壁切舌模
自行车花盘冷挤模
管子冲孔、扩口模模具装配图
装配模模具装配图
液压胀形模产品图
通用切断模产品图
汽车前围外板拉深模
变薄-旋转变薄模具装配图
液压拉深模产品图
大型件弯曲模
V形件-U形件-W形件弯曲模
Z形件-圆形件弯曲模产品图 卷圆模产品图
压圈弯曲模模具装配图
螺旋弯曲模模具装配图
其它形状件弯曲模产品图。
拉深模具的设计
拉深模具的设计拉深模具的分类及典型结构拉深模按其工序顺序可分为首次拉深模和后续各工序拉深模,它们之间的本质区别是压边圈的结构和定位方式上的差异。
按拉伸模使用的冲压设备又可分为单动压力机用拉深模、双动压力机用拉深模及三动压力机用拉深模,它们的本质区别在于压边装置的不同(弹性压边和刚性压边)。
按工序的组合来分,又可分为单工序拉深模、复合模和级进式拉深模。
此外还可按有无压边装置分为无压边装置拉深模和有压边装置拉深模等。
下面将介绍几种常见的拉深模典型结构。
1一凸模; 2一定位板; 3一凹模; 4一下模座图 1 无压边装置的首次拉深模1.首次拉深模(1) 无压边装置的首次拉深模(图1)此模具结构简单,常用于板料塑性好,相对厚度时的拉深。
工件以定位板 2 定位,拉深结束后的卸件工作由凹模底部的台阶完成,拉深凸模要深入到凹模下面,所以该模具只适合于浅拉深。
(2) 具有弹性压边装置的首次拉深模这是最广泛采用的首次拉深模结构形式(图2)压边力由弹性元件的压缩产生。
这种装置可装在上模部分( 即为上压边 ) ,也可装在下模部分( 即为下压边 ) 。
上压边的特征是由于上模空间位置受到限制,不可能使用很大的弹簧或橡皮,因此上压边装置的压边力小,这种装置主要用在压边力不大的场合。
相反,下压边装置的压边力可以较大,所以拉深模具常采用下压边装置。
(3) 落料首次拉深复合模图 3 为在通用压力机上使用的落斜首次拉深复合模。
它一般采用条料为坯料,故需设置导料板与卸料板。
拉深凸模 9 的顶面稍低于落料凹模 10 ,刃面约一个料厚,使落料完毕后才进行拉深。
拉深时由压力机气垫通过顶杆 7 和压边圈 8 进行压边。
拉深完毕后靠顶杆 7 顶件,卸料则由刚性卸料板 2 承担。
1一凸模; 2一上模座; 3一打料杆; 4一推件块; 5一凹模;6一定位板; 7一压边圈; 8一下模座; 9一卸料螺钉图 2 有压边装置的首次拉深模(4) 双动压力机上使用的首次拉滦模(图 4) 因双动压力机有两个滑块,其凸模1 与拉深滑块( 内滑块 ) 相连接,而上模座 2(上模座上装有压边圈3) 与压边滑块(外滑块)相连。
拉深级进模设计要点分析
拉深级进模设计要点分析作者:施建浩郑勇来源:《中国新技术新产品精选》2009年第17期摘要:本文在对拉深工艺作了简单的概述后,着重对拉深件工艺性、拉深工艺计算、拉深级进模的料带设计等方面的若干设计要点作了分析。
关键词:拉深;级进模;冲压;料带拉深工艺是利用专用模具将平片毛坯制成开孔空心件的一种冲压加工方法。
它在电子、电器、仪表、汽车等工业部门及日常生活用品的生产中应用极为广泛。
由于拉深过程中材料塑形变形影响因素太多,故设计时要考虑许多因素,往往在试模时不能一次成形,还要经过多次修模,才能达到理想的结果。
而拉深级进模设计时,级进模的结构特点以及料带送料顺畅的要求,使得模具设计时有更多的考虑要点。
因此,在实践中不断积累经验,对拉深模的设计大有裨益。
以下就拉深级进模设计中的要点作些分析。
1 拉深件工艺性分析1.1 拉深件的材料好的材料是成功的一半,对于拉深,万万不可忽视。
用于拉深的材料一般要求具有较好的塑性、低的屈强比、大的板厚方向性系数和小的板平面方向性。
目前,拉深用冷轧薄钢板主要有08Al、08、08F、10、20号钢,其中用量最大的是08号钢,分为沸腾钢和镇静钢,沸腾钢价格低,表面质量好,但偏析较严重,有"应变时效"倾向,不适用于对冲压性能要求高外观要求较严格的零件,镇静钢较好,性能均匀但价格较高,代表牌号为铝镇静钢08Al。
1.2 拉深件的精度要求一般而言,拉深件在侧壁处材料厚度无法做到等于料厚t, 其壁厚公差要求一般不应超出拉深工艺壁厚变化规律,尺寸精度要求可达±0.05mm,在高度方向也可控制到±0.05mm。
1.3 拉深件的拉深系数要求由于拉深级进模的模具结构特点决定了在拉深过程中间无法加退火工序。
如果其总拉深系数小于材料所允许的最小拉深系数,那么制件就不具备级进拉深工艺。
另外,当总拉深系数太小时, 可考虑用胀形工艺来完成。
1.4 拉深件的拉深深度要求如果拉深件深度太高,无法级进拉深完成时,可考虑先拉深后翻孔的工艺,看能否达到目的,此时产品侧壁外观不平整。
拉深模设计(180柴油机通风口座子)
拉深模设计零件名称:180柴油机通风口座子生产批量:大批量材料:08酸洗钢板零件简图:如图17所示图17通风口座子设计步骤按如下程序进行(一)分析零件的工艺性这是一个不带底的阶梯形零件,其尺寸精度、各处的圆角半径均符合拉深工艺要求。
该零件形状比较简单,可以采用:落料一拉深成二阶形阶梯件和底部冲孔一翻边的方案加工。
但是能否一次翻边达到零件所要求的高度,需要进行计算。
1. 翻边工序计算一次翻边所能达到的高度:按相关表取极限翻边系数K最小=0.68由相应公式计算得:H最大=D/2(1-K最小)+0.43r+0.72δ=56/2(1-0.68)+0.43*8+0.72*1.5=13.48(mm)而零件的第三阶高度H=21.5>H最大=13.48。
由此可知一次翻边不能达到零件高度要求,需要采用拉深成三阶形阶梯件并冲底孔,然后再翻边。
第三阶高度应该为多少,需要几次拉深,还需继续分析计算。
计算冲底孔后的翻边高度h(见图18):取极限翻边系数K最小=0.68拉深凸模圆角半径取r凸=2σ=3mm由相关公式得翻边所能达到的最大高度:h最大=D/2(1-K最小)+0.57r凸=56/2(1-0.68)+0.57*3=10.67(mm)取翻边高度 h=10(mm)计算冲底孔直径d:d=D+1.14r凸-2h=56+1.14×3-2×10=39.42(mm) 图18拉深后翻边实际采用Ф39mm。
计算需用拉深拉出的第三阶高度h´h´=H-h+r凸+δ=21.5-10+3+1.5=16(mm)根据上述分析计算可以画出翻边前需拉深成的半成品图,如图19所示。
2.拉深工序计算图19所示的阶梯形半成品需要几次拉深,各次拉深后的半成品尺寸如何,需进行如下拉深工艺计算。
计算毛坯直径及相对厚度:先作出计算毛坯分析图,如图20所示。
为了计算方便,先按分析图中所示尺寸,根据弯曲毛坯展开长度计算方法求出中性层母线的各段长度并将计算数据列于表6中。
端盖落料拉深冲孔复合模设计
端盖落料拉深冲孔复合模随着中国工业不断地发展,模具行业也显得越来越重要。
本文针对端盖的冲裁工艺性和拉深工艺性,分析比较了成形过程的三种不同冲压工艺(单工序、复合工序和连续工序),确定用一幅复合模完成落料、拉深和冲孔的工序过程。
介绍了端盖冷冲压成形过程,经过对端盖的批量生产、零件质量、零件结构以及使用要求的分析、研究,按照不降低使用性能为前提,将其确定为冲压件,用冲压方法完成零件的加工,且简要分析了坯料形状、尺寸,排样、裁板方案,拉深次数,冲压工序性质、数目和顺序的确定。
进行了工艺力、压力中心、模具工作部分尺寸及公差的计算,并设计出模具。
还具体分析了模具的主要零部件(如凸凹模、卸料装置、拉深凸模、垫板、凸模固定板等)的设计与制造,冲压设备的选用,凸凹模间隙调整和编制一个重要零件的加工工艺过程。
列出了模具所需零件的详细清单,并给出了合理的装配图。
通过充分利用现代模具制造技术对传统机械零件进行结构改进、优化设计、优化工艺方法能大幅度提高生产效率,这种方法对类似产品具有一定的借鉴作用。
1 分析零件的工艺性冲压件工艺性是指冲压零件在冲压加工过程中加工的难易程度。
虽然冲压加工工艺过程包括备料—冲压加工工序—必要的辅助工序—质量检验—组合、包装的全过程,但分析工艺性的重点要在冲压加工工序这一过程里。
而冲压加工工序很多,各种工序中的工艺性又不尽相同。
即使同一个零件,由于生产单位的生产条件、工艺装备情况及生产的传统习惯等不同,其工艺性的涵义也不完全一样。
这里我们重点分析零件的结构工艺性。
该零件是端盖,如图1.1,该零件可看成带凸缘的筒形件,料厚t=2mm,拉深后厚度不变;零件底部圆角半径r=1.5mm凸缘处的圆角半径也为R=1.5mm;尺寸公差都为自由公差,满足拉深工艺对精度等级的要求。
图1.1 工件图工艺性对精度的要求是一般情况下,拉深件的尺寸精度应在IT13级以下,不宜高于IT11级;对于精度要求高的拉深件,应在拉深后增加整形工序,以提高其精度,由于材料各向异性的影响,拉深件的口部或凸缘外缘一般是不整齐的,出现“突耳”现象,需要增加切边工序。
冷冲压工艺及模具设计试卷及答案6套
《冷冲压工艺及模具设计》考试试题(1)适用专业模具专业时量:120min 闭卷记分学生班级姓名学号一、填空:(每小题 分,共 分)、冷冲压工艺有两大类,一类是 ,另一类是 工序。
、冲裁的变形过程主要包括 、 、 。
、下模板与导柱的配合为 ,导柱与导套的配合为 。
、冲裁时废料有 和 两大类。
、弯曲时,零件尺寸标注在外侧,凸凹模尺寸计算以 为基准、拉深可分为 和 两种。
、冷挤压变形程度的表示法有 、 、 。
、冷冲模按工序性质可分为 、 、 、 、 。
、翻边系数的表达式为m=。
、在 - 型压力机的型号中, 表示 。
二、名词解释:(每小题 分,共 分)、冲裁:、连续模:、模具闭合高度:三、问答题:(每小题 分,共 分)1、指出下面 冲裁过程 -h曲线中各曲线段各为什么阶段?段: 段:段: 段:、什么叫弯曲时的回弹?减小回弹的措施有哪些?、什么叫冲裁尺寸精度?影响冲裁精度的主要因素是什么?四、说明下例模具属何种类型?并指出图中各序号零件的名称。
( 分)五、计算题:( 分)1、计算下例弯曲件毛坯尺寸,并确定凸凹模尺寸。
材料为 Q ,t= ,尺寸 为未注公差 = , = , = , = , 。
( 分)2、确定下例拉深件需几次才能拉深完成,并确定各次拉深系数。
拉深系数值见下表示,材料为 钢, = ,毛坯直径D= ,零件图如下图示。
( )六、编织加工下例零件时的合理工艺路线,并说明各道工序采用何种类型的模具?材料为 钢。
(14分)《冷冲压工艺及模具设计》考试试题( )适用专业 模具专业 时量: 闭卷 记分学生班级 姓名 学号一、填空:(每小题 分,共 分)、板料成形有两大类,一类是 变形,另一类是 变形。
、冷挤压一般可分为 、 、 。
、拉深变形的主要失效形式为 和 。
、决定工序性质的基本准则是 。
、单位挤压比的表达式为P= 。
、冲裁力是 对板料的压力。
、设计冲孔模时以 为基准,间隙取在 上。
、弯曲时,零件尺寸标注在内侧时凸凹模尺寸计算以 为基准、在 - 型压力机的型号中, 表示 。
模具设计5拉深工艺与模具
•(二)有压边圈装置的简单拉深模
•
正装拉深模
•凸模较长,行程不大。
PPT文档演模板
•
倒装拉深模
•锥形压边圈将毛坯压成锥形有 利于拉深变形。
模具设计5拉深工艺与模具
•(三)压边圈装置分析 •1、弹性压边装置(用于普通单动压力机)
•a)橡皮压边装置
b)弹簧压边装置
c)气垫压边装置
PPT文档演模板
模具设计5拉深工艺与模具
模具设计5拉深工艺与模 具
PPT文档演模板
2020/11/20
模具设计5拉深工艺与模具
概述
• 拉深是将平面板料变成各种开口空心件的冲压工序。
•拉深件的分类:
• 圆筒形零件 • 曲面形零件 • 盒形零件 • 复杂形零件
•拉深件特点:
•效率高,精度高,材料消 耗少,强度刚度高。
•拉深压力机:
•单动、双动、三动压力机 和液压压力机。
模具设计5拉深工艺与模具
二、阶梯形件的拉深特点
• 1、判断能否一(t/D×100>1),而阶梯
之间直径之差和零件的高度较
小时,可一次拉出。
•判断条件:
• 上式中h/d是表6-9中拉深次数为1时的值
PPT文档演模板
模具设计5拉深工艺与模具
• 2、多次拉深时的拉深方法
PPT文档演模板
•负间隙拉深
模具设计5拉深工艺与模具
三、拉深凸凹模工作部分的尺寸及其制造公差
•1、最后一道工序: •拉深模工作部分尺寸及公差应按工件要求确定。
•工件要求外形尺寸时:
•工件要求内形尺寸时:
•2、中间各道工序:•凸凹模尺寸取毛坯过渡尺寸
•若以凹模为基准:
PPT文档演模板
冲压工艺与模具设计试题(简答)
冲压工艺与模具设计试题(简答)1、冲裁:是使板料沿封闭曲线相互分离的工序。
2、连续模:又称级进模,是在压力机一次行程中依一定顺序在同一模具的不同工位上完成两道以上工序的模具3、起皱:在拉深时凸缘变形区内的材料受到压应力的作用后,凸缘部分特别是凸缘外边部分的材料可能会失稳而沿切向形成高低不平的皱折,这种现象叫起皱。
4、复合模:在模具的一个工作位置上,同时完成两道或两道以上工序的模具称为复合模。
5、压力中心:冲裁力合力的作用点称为压力中心。
6、带料连续拉深:在一副模具上使用带料进行连续拉深,完成单工序生产需多副模具才能完成的拉深加工称为带料连续拉深。
1、弯曲的变形程度用什么来表示?为什么可用它来表示?弯曲极限变形程度受哪些因素的影响?答:弯曲的变形程度用弯曲系数k来表示,k= r/t。
r越小,t越大,k越小。
而板料外侧伸长率δ:δ=1/(2k+1); k越小,δ越大。
δ超过临界值,外侧发生开裂。
最小相对弯曲半径:会造成外侧开裂的相对弯曲半径(弯曲系数)r/t。
其影响因素:⑴材料塑性:材料塑性好,能承受的变形量大,最小弯曲半径可减小。
⑵材料的纤维方向:弯曲线与纤维方向垂直,最小弯曲半径可减小。
⑶弯曲角:弯曲角增大,最小弯曲半径可减小。
⑷板材表面质量:质量越好,最小弯曲半径可减小。
17.影响极限拉深系数的原因有哪些?答:(1)材料的组织与力学性能(2)板料的相对厚度t/D(3)摩擦与润滑条件(4)模具的几何参数除此之外还有拉深方法,拉深次数,拉深速度,拉深件形状等。
2、写出拉深变形时筒形件底部圆角处的应力、应变,可能产生的失效形式和预防措施。
答:底部圆角部分:径向拉应力σ1;切向拉应力σ3;厚向压应力σ2。
在拉、压应力作用下,径向产生拉应变,厚向产生压应变,底部圆角变薄。
此处,材料厚度最小,抗拉强度最低(加工硬化最小),两拉一压的应力状态,成为最薄弱部分,筒壁与凸模圆角相接处容易破裂,即开裂。
防止措施:①控制合理的变形程度;②选用合理的凸、凹模间隙及圆角半径;③采用中间退火,消除加工硬化;④合理润滑。
拉伸工艺与拉深模具设计
1.凸缘变形区的起皱 拉深过程中,凸缘区变形区的材料在切向压应力 σ 的作用下,可能会产生失稳起皱,如图 4.2.6 所示。 凸缘区会不会起皱,主要决定于两个方面:一方面是切向压应力 σ 的大小,越大越容易失稳起皱;另一方面 是凸缘区板料本身的抵抗失 稳的能力,凸缘宽度越大,厚度越薄,材料弹性模量和硬化模量越小,抵抗失稳 能力越小。这类似于材料力学中的压杆稳定问题。压杆是否稳定不仅 取决于压力而且取决于压杆的粗细。在 拉深过程中 是随着拉深的进行而增加的,但凸缘变形区的相对厚度 也在增大。这说明拉深过程中失稳起皱的 因素在增加而抗失稳起皱的能力也在增加。
图 4.2.4
在厚度方向,由于压料圈的作用,产生压应力 ,通常 和 的绝对值比 大得多。厚度方向上材料的的变形 情况取决于径向拉应力 和切向压应力 之间比例关系,一般在材料产生切向压缩和径向伸长的同时,厚度有所 增厚,越接近于外缘,板料增厚越多。如果不压料( =0),或压料力较小( 小),这时板料增厚比较大。当 拉深变形程度较大,板料又比较薄时,则在坯料的凸缘部分,特别是外缘部分,在切向压应力 作用下可能失 稳而拱起,产生起皱现象。
此外,影响极限拉深系数的因素还有拉深方法、拉深次数、拉深速度、拉深件的形状等。 采用反拉深、软模拉深等可以降低极限拉深系数;首次拉深极限拉深系数比后次拉深极限拉深 系数小;拉深速度慢,有利于拉深工作的正常进行,盒形件角部拉深系数比相应的圆筒形件的
拉深系数小。 3.极限拉深系数的确定 由于影响极限拉深系数的因素很多,目前仍难采用理论计算方法准确确定极限拉深系数。
拉伸工艺及拉伸模具设计
图阶梯形零件
”
图4.2.12 阶梯形多次拉深方法
01
若最小阶梯直径 过小,即 过小, 又不大时,最小阶梯可用胀形法得到。
02
若阶梯形件较浅,且每个阶梯的高度又不大,但相邻阶梯直径相差又较大而不能一次拉出时,可先拉成圆形或带有大圆角的筒形,最后通过整形得到所需零件,(如图)。
拉深过程中变形毛坯各部分的应力与应变状态 拉深过程中某一瞬时毛坯变形和应力情况(如图)
凹模圆角区 过渡区
凸模圆角部分 过渡区
平面凸缘部分 主要变形区
筒壁部分 传力区
圆筒底部分 小变形区
1
2
3
4
5
6
图 4.1.5 拉深中毛坯的应力应变情况
图4.2.13 直径差较大的浅阶梯形件的拉深方法
4.3 非直壁旋转体零件拉深成形的特点 曲面形状(如球面、锥面及抛物面) 零件的拉深,其变形区的位置、受力情况、变形特点等都与圆筒形零件不同,所以在拉深中出现的各种问题和解决方法亦与圆筒形件不同。对于这类零件就不能简单地用拉深系数衡量成形的难易程度,并把拉深系数作为制定拉深工艺和模具设计的依据。
4.1.3 拉深变形过程的力学分析
1.凸缘变形区的应力分析 (1)拉深中某时刻变形区应力分布 根据微元体的受力平衡可得 因为 取 并略去高阶无穷小,得: 塑性变形时需满足的塑性方程为 :
01
4.1 拉深变形过程的分析
在拉深后我们发现如图:工件底部的网格变化很小,而侧壁上的网格变化很大,以前的等距同心圆,变成了与工件底部平行的不等距的水平线,并且愈是靠近工件口部,水平线之间的距离愈大,同时以前夹角相等的半径线在拉深后在侧壁上变成了间距相等的垂线,如图所示,以前的扇形毛坯网格变成了拉深后的矩形网格。
拉深工艺及拉深模设计
拉深工艺及拉深模设计本章内容简介:本章在分析拉深变形过程及拉深件质量影响因素的基础上,介绍拉深工艺计算、工艺方案制定和拉深模设计。
涉及拉深变形过程分析、拉深件质量分析、圆筒形件的工艺计算、其它形状零件的拉深变形特点、拉深工艺性分析与工艺方案确定、拉深模典型结构、拉深模工作零件设计、拉深辅助工序等。
学习目的与要求:1.了解拉深变形规律、掌握拉深变形程度的表示;2.掌握影响拉深件质量的因素;3.掌握拉深工艺性分析。
重点:1. 拉深变形特点及拉深变形程度的表示;2.影响拉深件质量的因素;3.拉深工艺性分析。
难点:1.拉深变形规律及拉深变形特点;2.拉深件质量分析;3.拉深件工艺分析。
拉深:利用拉深模将一定形状的平面坯料或空心件制成开口空心件的冲压工序。
拉深工艺可以在普通的单动压力机上进行,也可在专用的双动、三动拉深压力机或液压机上进行。
拉深件的种类很多,按变形力学特点可以分为四种基本类型,如图5-1所示。
图5-1 拉深件示意图5.1 拉深变形过程分析5.1.1 拉深变形过程及特点图5-2所示为圆筒形件的拉深过程。
直径为D、厚度为t的圆形毛坯经过拉深模拉深,得到具有外径为d、高度为h的开口圆筒形工件。
图5-2 圆筒形件的拉深1.在拉深过程中,坯料的中心部分成为筒形件的底部,基本不变形,是不变形区,坯料的凸缘部分(即D-d的环形部分)是主要变形区。
拉深过程实质上就是将坯料的凸缘部分材料逐渐转移到筒壁的过程。
2.在转移过程中,凸缘部分材料由于拉深力的作用,径向产生拉应力,切向产生压应力。
在和的共同作用下,凸缘部分金属材料产生塑性变形,其“多余的三角形”材料沿径向伸长,切向压缩,且不断被拉入凹模中变为筒壁,成为圆筒形开口空心件。
3.圆筒形件拉深的变形程度,通常以筒形件直径d与坯料直径D的比值来表示,即m=d/D(5-1)其中m称为拉深系数,m越小,拉深变形程度越大;相反,m越大,拉深变形程度就越小。
5.1.2 拉深过程中坯料内的应力与应变状态拉深过程是一个复杂的塑性变形过程,其变形区比较大,金属流动大,拉深过程中容易发生凸缘变形区的起皱和传力区的拉裂而使工件报废。
拉深模具设计说明书
前言冷冲压是建立在金属塑性变形的基础上,在常温下利用安装在压力机上的模具对材料施加压力,使其产生分离或塑性变形,从而获得一定形状、尺寸和性能的零件的一种压力加工方法。
在冷冲压加工中,将材料(金属或非金属)加工成零件(或半成品)的一种特殊工艺装备称为冷冲压模具(俗称冷冲模)。
冷冲模在实现冷冲压加工中是必不可少的工艺装备,没有先进的模具技术,先进的冲压工艺就无法实现。
冷冲压的特点有:1,节省材料2,制品有较好的互换性3制品有较好的互换性4生产效率高5操作简单6由于冷冲压生产效率高,材料利用律,故生产的制品成本较低。
冷冲压加工在汽车、拖拉机、电机、电器、仪表和日用品生产中,已占据十分重要的地位,特别是在电子工业产品生产中,已成为不可缺少的主要加工方法之一。
随着科学技术的不断进步和工业生产的迅速发展,冲压及模具技术也在不断革新与发展。
主要表现在以下几个方面:一.工艺分析计算方法现代化现在已开始采用有限变形的弹塑性有限方法,对复杂成形件的成形过程进行应力应变分析的计算机模拟。
二.模具设计制造技术现代化工业发达国家正在大力开展模具计算辅助设计和制造(CAD/CAM)的研究。
采用这一技术,一般可提高模具设计制造效率的2-3倍,应用这一技术,不仅可以缩短模具设计制造周期,还可提高模具质量,减少设计和政治早人员的重复劳动,使设计者有可能把精力用在创新开发上。
三.冲压生产机械化与自动化与柔性化为了适应大批量,高效率生产的需要,在冲压模具和设备上广泛应用了各种自动化的进出料机构。
对于大型冲压件,专门配置了机械手和机器人,这不仅大大的提高了冲压件的生产品质和生产率,而且也增加了冲压工作和冲压工人的安全性。
在中小件的大批量生产方面,现已广泛应用于多工位压力机活、或高速压力机。
在小批量生产方面,正在发展柔性制造系统(FMS)。
四.为了满足产品更新换代快和小批量生产的需要,发展了一些新的成形工艺,简易模具,数控冲压设备和冲压柔性制造技术等。
多工位拉深级进模说明书
1冲压基础知识1.1冲压的特点和应用冲压--是在室温下,利用安装在压力机上的模具对材料施加压力,使其产生分离或塑性变形,从而获得所需零件的一种压力加工方法。
在冲压零件的生产中,合理的冲压成形工艺、先进的模具、高效的冲压设备是必不可少的三要素。
冲压成形加工必须具备相应的模具,而模具是技术密集型产品,其制造属单件小批量生产,具有难加工、精度高、技术要求高、生产成本高(约占产品成本的10%~30%)的特点。
1.2冲压现状与发展方向目前,我国冲压技术与先进工业发达国家相比还相当落后,主要原因是我国在冲压基础理论及成形工艺、模具标准化、模具设计、模具制造工艺及设备等方面与工业发达国家尚有相当大的差距,导致我国模具在寿命、效率、加工精度、生产周期等方面与先进工业发达国家的模具相比差距相当大。
随着工业产品质量的不断提高,冲压产品生产正呈现多品种、少批量,复杂、大型、精密,更新换代速度快的变化特点,冲压模具正向高效、精密、长寿命、大型化方向发展。
2拉深件的工艺性分析2.1工件的材料给定板料为A3;查资料A3即Q235。
1- -2.2工艺方案的分析该工件形状简单,为无凸缘圆阶梯筒形件,在圆周方向上的变形是均匀的,没有厚度不变的要求,工件的形状满足拉深的工艺要求,可以采用多次阶梯拉深工序加工。
该拉深件为阶梯圆筒形件,相当于若干个直壁圆筒形件的组合,所以与直壁圆筒形件的拉深基本相似,每一个阶梯的拉深相当于相应的圆筒件的拉深,但拉深工艺的设计与直壁圆筒形件有较大差别。
拉伸件侧壁与底面或凸圆连接处的圆角R,特别是外圆角R1应尽量放大,因为它们相当于最后一副拉深模的凸模及凹模圆角。
放大这些圆角半径,能够减少拉深次数,或使零件容易拉深成形。
采用如下两种方案:方案一单工序模(落料、多次拉深、冲孔)方案二多工位拉深级进模综合分析,级进模比单工序模生产效率高,减少了模具和设备的数量,工件精度较高,便于操作和实现生产自动化。
先判定是否能一次拉深成,否则要经多次拉深。
模具设计第五章 拉深工艺及拉深模
七、拉深模制造特点
4)由于拉深过程中材料厚度变化及回弹变形等原因,复杂拉深件 坯料形状和尺寸设计值与实际值往往存在误差,坯料形状和尺寸 最终是在试模后确定。 2.拉深模凸、凹模的加工方法
26627D
七、拉深模制造特点
表5-4 拉深凸模常用加工方法
26627D
七、拉深模制造特点
表5-5 拉深凹模常用加工方法
一、拉深变形分析
26627D
图5-3 拉深件的网格变化
二、拉深件的主要质量问题
1.起皱
26627D
图5-4 起皱破坏
二、拉深件的主要质量问题
(1)影响起皱的主要因素 1)坯料的相对厚度t/D。 2)拉深系数m。 (2)起皱的判断 在分析拉深件的成形工艺时,必须判断该冲件 在拉深过程中是否会发生起皱,如果不起皱,则可以采用无压边 圈的模具;否则,应该采用带压边装置的模具,如图5-5所示。
26627D
图5-10 圆筒形件
三、圆筒形件的拉深
解 由于t=2mm>1mm,所以按中线尺寸计算。 1)确定修边余量。 2)计算坯料展开直径。 3)确定是否用压边圈。 4)确定拉深次数。 5)确定各次拉深直径。 6)求各工序件高度。 7)画出工序图,如图5-11所示。
26627D
四、拉深模的典型结构
26627D
图5-9 多次拉深时筒形件直径的变化
三、圆筒形件的拉深
2.拉深系数
表5-3 圆筒形件带压边圈时的极限拉深系数
3.拉深次数 4.圆筒形件拉深各次工序尺寸的计算
(1)工序件直径 从前面介绍中已知,各次工序件直径可根据各 次的拉深系数算出。
Hale Waihona Puke 26627D三、圆筒形件的拉深
第08章--拉深模具设计PPT课件
以由弹簧或橡皮产生,也可以由气垫产生。
5
带凸缘零 件的拉深模结 构,毛坯用定 位板定位,在 下模座上安装 了定距垫块, 用来控制拉深 深度,以保证 制件的拉深高 度和凸缘直径。
图8.6 凸缘件拉深模(定距垫块) 6
图8.7 凸缘件拉深模(打料块定距)
毛坯用固定挡料销定位,打料块同时起定距垫块的作用, 作用同样是控制拉深高度和凸缘直径。
第8章 拉深模具设计
8.1 单动压力机首次拉深模
8.1.1 无压边圈的拉深模
适用于底部平整、 拉深变形程度不大、 相对厚度(t/D)较大和 拉深高度较小的零件。
1
图8.1 无压边圈有顶出装置的拉深模
8.1.2 带压边圈的拉深模
板料毛坯 被拉入凹模。 在拉簧力的作 用下,刮件环 又紧贴凸模, 在凸模上行时 可以将制件脱 出,由下模座 孔中落下。
下止点
30°
60°
曲轴转角α
90° 23
8.6.4 模具工作部分尺寸的计算
1. 凸、凹模间隙 2. 凸、凹模圆角半径 3. 凸、凹模工作尺寸及公差 4. 凸模通气孔
24
8.6.5 模具的总体设计
模具的总装图如 图8.26所示。
采用正装式结构, 落料拉深凸凹模安装 在上模;
刚性卸料板卸去 废料,也起导尺作用,
线,
若落料拉深力曲线处于许用负荷曲线之下,则所选设备符合
工作要求;
若落料拉深力曲线超出许可范围(见图8.25),则需选择标称
压力更大型号的压力机,继续以上校核过程。
26
图8.25 许用负荷与实际负荷
27
用导尺和固定挡 料销定位;
打料块将卡在凸 凹模内的工件推出。
图8.26 落料首次拉深复合模 25
冲压模具设计-落料拉深复合模
产品零件图是分析和制定冲压工艺方案的重要依据,设计冲压工艺过程要从分析产品的零件图人手。分析零件图包括技术和经济两个方面:
1.2.1
冲压加工方法是一种先进的工艺方法,因其生产率高,材料利用率高,操作简单等一系列优点而广泛使用.由于模具费用高,生产批量的大小对冲压加工的经济性起着决定性作用,批量越大,冲压加工的单件成本就越低,批量小时,冲压加工的优越性就不明显,这时采用其他方法制作该零件可能有更好的经济效果.例如在零件上加工孔,批量小时采用钻孔比冲孔要经济;有些旋转体零件,采用旋压比拉深会有更好的经济效果。所以,要根据冲压件的生产纲领,分析产品成本,阐明采用冲压生产可以取得的经济效益。
方案一:落料、拉深、修边,共三道工序。
方案二:落料+拉深复合、修边,共两道工序。
综合各方面因素,显然方案二更加合理。
2。3 主要工艺参数的计算
2。3.1 确定排样、裁板方案
考虑到操作方便,排样采用单排。
1)搭边值:查【1】表2。5.2
条料两边a = 1.0 mm,
进距方向a1= 0。8mm
进距s = D + a1= 72。8 + 0。8= 73.6 mm
冲模的零部件
通常模具由两类零件组成,一类是公益零件,这类零件直接参与工艺过程的完成并和坯料有直接接触,包括工作零件、定位零件、卸料与压料零件等;另一类是结构零件,这类零件不直接参与完成工艺过程,也不和坯料直接接触,只对模具完成工艺过程起保证作用,或对模具功能起完善作用,包括导向零件、紧固零件、标准件及其他零件等。
在综合方析,研究零件成形性的基础上,以材料的极限变形参数,各种变形性质的复合程度及趋向性,当前的生产条件和零件的产量质量要求为依据,提出各种可能的零件成形总体工艺方案.根据技术上可靠,经济上合理的原则对各种方案进行对比,分析,从而选出最佳工艺方案(包括成形工序和各辅助工序的性质,内容,复合程度,工序顺序等),并尽可能进行优化。
宽凸缘圆筒件落料拉深复合模具设计说明书
冲压工艺与模具设计课程设计报告设计题目宽凸缘圆筒件落料拉深复合模具设计学生姓名CYX学生学号专业班级学院名称机械与运载工程学院指导老师2016年 9月 9日摘要随着中国工业不断地发展,模具行业也显得越来越重要。
本文针对宽凸缘圆筒零件的冲裁工艺性和拉深工艺性,分析比较了成形过程的三种不同冲压工艺(单工序、复合工序和连续工序)。
简要分析了坯料形状、尺寸,排样、裁板方案,拉深次数,冲压工序性质、数目和顺序的确定。
进行了工艺力、压力中心、模具工作部分尺寸及公差的计算,并设计出模具。
还具体分析了模具的主要零部件(如凸凹模、卸料装置、拉深凸模、垫板、凸模固定板等)的设计与制造,凸凹模间隙调整。
列出了模具所需零件的详细清单,并给出了合理的装配图和零件图。
关键词:落料;拉深;复合模;凸缘圆筒件目录1 前言冲压模具在制造业的地位拉深工艺概述2 工件尺寸及分析工件尺寸等基本信息工件材料分析结构和精度分析3 工艺分析工序尺寸的计算模具类型的选择排样尺寸的计算4 落料拉深复合模整体方案设计整体工作原理概述各零件作用概述模具的形式判断是否选用压边圈拉深模间隙定位与卸料装置5 零件具体设计落料凹模落料拉深凸凹模拉深凸模卸料板凸凹模固定板垫板的设计模架导柱导套6 落料拉深冲压力的计算冲裁力卸料力、推件力和顶件力压边力的计算拉深力的计算压力机的选择结束语参考文献1 前言冲压模具在制造业的地位冲压是使板料经分离或成形而得到制件的加工方法。
比如冲裁就是利用冲模使部分材料或工序件与另一部分材料、工(序)件或废料分离的一种冲压工序。
而拉深则是利用拉深模具将冲裁好的平板坯料或工序件变成开口空心件的一种成形冲压工艺。
冲压利用冲压模具对板料进行加工。
常温下进行的板料冲压加工称为冷冲压。
目前,工业生产中普遍采用模具成形工业方法,以提高产品的生产率和质量。
一般压力机加工,一台普通的压力机设备每分钟可成形零件几件到几十件,高速压力机的生产率已达到每分钟数百件甚至上千件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10 带料连续拉深模设计本章内容:带料级进拉深设计计算方法,包括拉深系数的确定、拉深高度的确定、拉深的工序计算、模具结构设计、压料元件和弹料元件的设计计算及模具结构设计。
本章难点:工艺计算和模具结构。
10.1 带料连续拉深设计方法带料连续拉深——在带状毛坯上,先在前边每一工位上实施一道拉深工序,拉深完后,再进行冲孔、翻边、弯曲或校形等多种其他工序加工,最后是落料,从而得到所要求的制件冲压方法。
生产率高,不能中间退火,适用于大批量及自动化连续生产。
分为整体带料连续拉深和带料切口连续拉深。
10.1.1 整体带料连续拉深特点:相邻两个拉深部位之间的材料流动互相影响,材料变形困难。
用这种方法加工的制件应满足以下条件:259 / 27·259·t ≥0.05dd 凸<(1.1 1.2)d ~ h <dt ——材料厚度;d ——制件内径;d 凸——制件凸缘直径;h ——制件高度。
(a) 整体带料连续拉深(b) 带料切口连续拉深图10.1 带料连续拉深10.1.2 带料切口连续拉深特点:有工艺切口,接近于单个凸缘件的拉深;但相邻两个拉深件间仍有部分材料相连。
用这种方法加工的制件应满足以下条件:t <0.05d d 凸>1.2dh >d应用:加工外形尺寸50mm以内、材料厚度2mm以内的制件。
黄铜H62、H68、低碳钢08F、10F、深拉深钢和软铝合金3A21等。
10.2 带料连续拉深的计算10.2.1 带料连续拉深的工艺计算1. 带料的宽度和步距尺寸表10-1 连续拉深的带料宽度和步距计算公式拉深方法图示带料宽度计算公式步距计算公式整体带料连续拉深11122B D nD nδ=++=+(0.850.9)A D=~(但不得小于包括修边余量在内的凸缘直径)·260·261 / 27·261·带料切口连续拉深12222B D n C n δ=++=+ A D n =+22(1.2 1.5)22B D n C n =+=+~1B D D δ=+=A——带料送进步距;B ——带料宽度;δ——修边余量(见表10-2);1D ——毛坯的计算直径(与一般带凸缘筒形件毛坯计算相同);D——包括修边余量的毛坯直径;12n n 及——侧面搭边宽度(见表10-3);n——相邻切口间搭边宽度或冲槽最小宽度(见表10-3);C——工艺切口宽度(见表10-3);12K K 及——切口间跨度(见表10-3);r ——切口圆角半径(见表10-3)。
·262·表10-2 带料连续拉深的修边余量δ(单位:mm)板料的计算直径1D材料厚度t /mm0.2 0.3 0.5 0.6 0.8 1.0 1.2 1.5≤10 >10~30 >30~60 >601.0 1.2 1.21.0 1.2 1.51.2 1.5 1.82.0 1.5 1.8 2.0 2.2 1.8 2.0 2.2 2.5 2.02.2 2.53.02.5 2.83.5 3.0 3.04.0 3.5 4.5表10-3 带料连续拉深搭边及切口参数推荐数值(单位:mm)参数符号材料厚度t /mm≤0.5 ≥0.5~1.5 1.5>1n 1.5 1.75 2 2n 1.5 2 2.5 n1.5 1.8 3 r0.811.21K 1(0.50.7)K D ≈~2K2(0.250.35)K D ≈~C(1.02 1.05)D ~263 / 27·263·2. 拉深系数总拉深系数 12n dm m m m D ==⨯⨯⨯表10-4 带料拉深的总拉深系数m材 料强度极限b /MPa σ相对伸长率/%δ总拉深系数m不带推件装置带推件装置1.22t =~ 1.22t =~钢08F 黄铜H62H68、 软铝300~400 300~400 80~11028~40 28~40 22~250.4 0.35 0.380.32 0.29 0.300.16 0.24~0.2 0.18表10-5 带料切口连续拉深首次拉深系数1m (材料:0810、钢)板料相对厚度t /D ×100凸缘相对直径0.06~0.2 0.2~0.5 0.5~1.0 1.0~1.5 1.5 ≤1.1 >1.1~1.3 >1.3~1.5 >1.5~1.8 >1.8~2.0 >2.0~2.2 >2.2~2.50.640.60 0.57 0.53 0.47 0.43 0.380.62 0.59 0.56 0.52 0.46 0.43 0.380.60 0.58 0.55 0.51 0.45 0.42 0.380.58 0.56 0.53 0.50 0.44 0.42 0.380.55 0.53 0.51 0.49 0.43 0.41 0.37>2.5~2.8 >2.8~3.0 0.350.330.350.330.350.330.350.330.340.33表10-6 带料切口连续拉深后次拉深系数im(材料:0810、钢)毛坯相对厚度t/D×100拉深系数0.06~0.2 0.2~0.5 0.5~1.0 1.0~1.5 >1.5m2 m3 m4 m5 0.800.820.850.870.790.810.830.860.780.800.820.850.760.790.810.840.750.780.800.82表10-7 带料切口连续拉深各次拉深系数的极限值材料拉深系数1 2 3 4 5 6极限拉深系数黄铜软钢、铝0.630.670.760.780.780.800.800.820.820.850.850.90·264·265 / 27·265·3. 拉深高度带料切口连续拉深的第一次拉深相对高度11/h d 不应超过表7-12所列数值。
10.2.2 带料连续拉深的工序计算(1) 计算毛坯直径1()D D D δ=+。
(2) 核算总拉深系数m (大于表10-4所列数值)。
(3) 根据/)100t D ⨯(、/d d 凸和/h d 确定连续拉深的种类及切口的型式。
(4) 计算带料宽度B 和步距A 及切口尺寸。
(5) 确定各工序拉深系数,从而确定所需的拉深次数。
(6) 计算各次拉深凸模和凹模的圆角半径。
第一次拉深:(35)R t =~凸,24)R t =~凹(。
最后一次拉深:(1)0.78i i R R -=凸凸,但不小于2t ;(1)0.75i i R R -=凹凹,但不小于t 。
若工件的圆角半径2t r <凸,t r <凹,则应在保证拉深直径的前提下,通过整形工序逐渐减小圆角半径,每次整形工序总仅允许减少圆角半径50%,最后达到工件圆角半径的要求。
中间工序的圆角半径应均匀地减小。
设计拉深模时,凸,凹模圆角半径应采用小的允许值,以便调整拉深模时按需要增大凸凹模的圆角半径。
(7) 绘制工序图。
10.3 设计实例10.3.1 设计要点(1) 首次拉深和切口工序,最好有单独的压边圈,以防带料起皱,影响后续工序。
(2) 各凹模最好单独镶拼,或将分离工序(切口、冲孔、落料)与变形工序(拉延、整形)的凹模分段镶嵌,便于维修、刃磨和更换。
(3) 拉深工序次数较多时,为了便于调整模具,宜在首次拉深工序后留一空步,作后备拉深之用。
(4) 在冲孔工序中,模具定位圈(凹模)的高度应等于制件的拉深高度。
若制件的拉深高度小于凹模的高度,在冲孔时同时对制件产生拉深作用,可能拉裂,也会对制件的高度产生影响。
·266·267 / 27·267·10.3.2 设计实例冲制如图10.2所示一空心铆钉制件,材料08钢,采用带料连续冲制。
其工序为冲步距缺口、工位间切口、拉深、冲孔、翻边、落料,模具类型为具有四导向的步距侧刃连续模。
该冷冲模为拉深、冲孔、翻边、落料连续模,(a) 制件图 (b) 冲孔结束时的工序图图10.2 空心铆钉制件1. 冲压工艺设计1) 计算拉深毛坯直径和选择带料宽度及步距 (1) 冲压类型的选择计算:0.50.050.0510.40.52t d =<=⨯=25 1.2 1.210.412.48d d =>=⨯=凸 23.910.4h d =>=因此,选择带料切口连续拉深。
·268·(2) 带料宽度和步距尺寸的计算: 按体积相等关系得拉深毛坯直径38mm D =。
步距尺寸A 和带料宽度B 的计算按表10-1所列公式确定。
(382)mm 40mm A D n =+=+=2(1.02 1.05)2(1.03382 1.5)mm 42mm B D n =+=⨯+⨯=~考虑到拉深后带料两方向收缩的影响,得出排样尺寸: 步距40mm ,料原始宽度60mm ,步距冲裁后50mm ,拉深后料宽42mm ,图10.3 工艺排样图2) 计算拉深次数及各半成品尺寸由于是带状毛坯,制件拉深系数10.9/380.287m ==,查表10-4得总拉深系数08钢为0.16,可行。
(1) 选取各次im相对厚度/0.5/380.0132 1.32%t D ===,查表10-5、10-6得出相应的各次及限拉深系数10.56m=极,20.76m=极,30.79m =极,40.81m =极。
269 / 27·269·总拉深系数为12340.560.760.790.810.272m m m m m =⋅⋅⋅=⨯⨯⨯≈。
由380.27210.3361⨯=<33610.4⨯=<可知,总拉深次数可暂定为四次。
(2) 各次拉深直径id (内径)1380.56mm 20.3mmd =⨯=,220.30.76mm 16.2mm d =⨯=,316.20.79mm 12.8mmd =⨯=,412.80.81mm 10.35mm 10.4mm d =⨯=<,取。
410.4mm d = (3) 各次拉深凹模圆角半径1550.5mm 2.5mm R t ==⨯=凹,2 2.3R =凹mm ,3 2.1R =凹mm ,42mm R =凹。
(4) 各次拉深凸模圆角半径分别为:15 2.5R t ==凸mm ,2 2.1R =凸mm ,3 1.8R =凸mm ,4 1.5R =凸mm 。
(5) 各次拉深高度分别为:111mm h =,215.1mm h = ,318.2mm h = ,423.9mm h = 。
(6) 首次拉深相对直径/25/20.3 1.23d d ==凸,相对高度·270·11/11/20.30.540.56h d ==< (最小值),符合要求。