八年级上数学期末考试试卷及答案
人教版八年级上册数学期末考试试题带答案
人教版八年级上册数学期末考试试卷一、选择题。
(每小题只有一个正确答案)1.下列四个图案中,是轴对称图形的是()A .B .C .D .2.如果线段a ,b ,c 能组成三角形,那么它们的长度比可能是()A .1∶2∶4B .2∶3∶4C .3∶4∶7D .1∶3∶43.石墨烯是现在世界上最薄的纳米材料,其理论厚度仅是0.00000000034m ,这个数用科学记数法表示正确的是()A .3.4×10-9m B .0.34×10-9mC .3.4×10-10mD .3.4×10-11m 4.下列运算中,正确的是()A .22a a a ⋅=B .224()a a =C .236a a a ⋅=D .2323()a b a b =⋅5.如图,点P 是∠AOB 的平分线OC 上一点,PD ⊥OA ,垂足为D ,若PD =2,则点P 到边OB 的距离是()A .4B C .2D .16.若分式13x +有意义,则x 的取值范围是()A .x >3B .x <3C .x ≠-3D .x =37.如图,在△ABC 中,∠A =80°,∠C =60°,则外角∠ABD 的度数是()A .100°B .120°C .140°D .160°8.下列各式是完全平方式的是()A .214x x -+B .21x +C .22x xy y -+D .221a a +-9.已知一个多边形的内角和是1080°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形10.如图所示,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正△ABC和正△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下四个结论:①△ACD≌△BCE;②AD=BE;③∠AOB=60°;④△CPQ是等边三角形.其中正确的是()A.①②③④B.②③④C.①③④D.①②③二、填空题11.点()2,1M-关于y轴的对称点的坐标为______.12.如果多边形的每个内角都等于150︒,则它的边数为______.13.如图,△ABC≌△DCB,A、B的对应顶点分别为点D、C,如果AB=6cm,BC=12cm,AC=10cm,DO=3cm,那么OC的长是_____cm.14.在△ABC中,AB=AC,AB的垂直平分线交AC于D,交AB于E,连接BD,若∠ADE =40°,则∠DBC=_____.15.已知13aa+=,则221+=aa_____________________;16.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β=_____.三、解答题17.解方程:21133xx x-=---.18.先化简,再求值:(3x+2)(3x﹣2)﹣10x(x﹣1)+(x﹣1)2,其中x=﹣1.19.如图:已知∠AOB和C、D两点,求作一点P,使PC=PD,且P到∠AOB两边的距离相等.20.如图,直线EF∥GH,点A在EF上,AC交GH于点B,若∠EAB=110°,∠C=60°,点D在GH上,求∠BDC的度数.21.甲、乙两工程队共同完成一项工程,乙队先单独做1天后,再由甲、乙两队合作2天就完成了全部工程,已知甲队单独完成这项工程所需的天数是乙队单独完成工程所需天数的2倍,则甲、乙两工程队单独完成工程各需多少天?22.如图,已知AB=AC=AD,且AD∥BC,求证:∠C=2∠D.23.如图:在△ABC中∠ACB=90°,AC=BC,AE是BC边上的中线,过点C作CF⊥AE,垂足为F,过B作BD⊥BC交CF的延长线于D.求证:(1)AE=CD.(2)若AC=12cm,求BD的长.24.某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该商场两次共购进这种运动服多少套?(2)如果这两批运动服每套的售价相同,且全部售完后总利润不低于20%,那么每套售价至少是多少元?25.如图所示,已知△ABC中,AB=AC=10厘米,BC=8厘米,点D为AB的中点.如果点P在线段BC上以1厘米/秒的速度由B点向C点运动,同时点Q在线段CA上由C点向A点运动.(1)若点Q与点P的运动速度相等,经过3秒后,△BPD与△CQP是否全等?请说明理由;(2)若点Q与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP 全等?参考答案1.C【解析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,对各项进行判断找出不是轴对称图形即可.【详解】A.不是轴对称图形;B.不是轴对称图形;C.是轴对称图形;D.不是轴对称图形;故选:C .【点睛】考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.B【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析求解.【详解】A 、1+2<4,不能组成三角形;B 、2+3>4,能组成三角形;C 、3+4=7,不能够组成三角形;D 、1+3=4,不能组成三角形.故选B .【点睛】考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.3.C【详解】试题分析:根据科学记数法的概念可知:用科学记数法可将一个数表示10n a ⨯的形式,所以将0.00000000034用科学记数法表示103.410-⨯,故选C .考点:科学记数法4.B【解析】【分析】根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项分析判断后利用排除法求解.【详解】A 选项:23a a a ⋅=,故是错误的;B选项:()224a a=,故是正确的;C选项:235a a a⋅=,故是错误的;D选项:()3243=⋅,故是错误的;a b a b故选:B.【点睛】考查了同底数幂乘法和幂的乘方,解题关键是运用了同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘.5.C【分析】根据角平分线的性质解答.【详解】解:如图,作PE⊥OB于E,∵点P是∠AOB的角平分线OC上一点,PD⊥OA,PE⊥OB,∴PE=PD=2,故选C.【点睛】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.6.C【解析】【分析】考查分式有意义的条件:分母≠0,即x+3≠0,解得x的取值范围.【详解】∵x+3≠0,∴x≠-3.故选:C.考查的是分式有意义的条件:当分母不为0时,分式有意义.7.C【解析】【分析】根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】由三角形的外角性质得,∠ABD=∠A+∠C=80°+60°=140°.故选C.【点睛】考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.8.A【解析】【分析】根据完全平方式(a2+2ab+b2和a2-2ab+b2)进行判断.【详解】A、是完全平方式,故本选项正确;B、不是完全平方式,故本选项错误;C、不是完全平方式,故本选项错误;D、不是完全平方式,故本选项错误;故选:A.【点睛】考查了对完全平方式的应用,主要考查学生的判断能力.9.D【分析】根据多边形的内角和=(n﹣2)•180°,列方程可求解.【详解】设所求多边形边数为n,∴(n﹣2)•180°=1080°,解得n=8.【点睛】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.10.A【分析】由已知条件运用等边三角形的性质得到三角形全等,进而得到更多结论,然后运用排除法,对各个结论进行验证从而确定最后的答案.【详解】∵△ABC和△CDE是正三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∵∠ACD=∠ACB+∠BCD,∠BCE=∠DCE+∠BCD,∴∠ACD=∠BCE,∴△ADC≌△BEC(SAS),故①正确,∴AD=BE,故②正确;∵△ADC≌△BEC,∴∠ADC=∠BEC,∴∠AOB=∠DAE+∠AEO=∠DAE+∠ADC=∠DCE=60°,故③正确;∵CD=CE,∠DCP=∠ECQ=60°,∠ADC=∠BEC,∴△CDP≌△CEQ(ASA).∴CP=CQ,∴∠CPQ=∠CQP=60°,∴△CPQ是等边三角形,故④正确;故选A.【点睛】考查等边三角形的性质及全等三角形的判定等知识点;得到三角形全等是正确解答本题的关键.11.()2,1【分析】关于y 轴对称的点,纵坐标相同,横坐标互为相反数.【详解】∵关于y 轴对称的点,纵坐标相同,横坐标互为相反数∴点()2,1M -关于y 轴的对称点的坐标为()2,1.故答案为:()2,1【点睛】考核知识点:轴对称与点的坐标.理解轴对称和点的坐标关系是关键.12.12【分析】先求出这个多边形的每一个外角的度数,再用360°除以外角的度数即可得到边数.【详解】∵多边形的每一个内角都等于150°,∴多边形的每一个外角都等于180°﹣150°=30°,∴边数n =360°÷30°=12.故答案为12.【点睛】本题考查了多边形的内角与外角的关系,求出每一个外角的度数是解答本题的关键.13.7【解析】【分析】根据△ABC ≌△DCB 可证明△AOB ≌△DOC ,从而根据已知线段即可求出OC 的长.【详解】∵△ABC ≌△DCB ,∴AB=DC ,∠A=∠D ,又∵∠AOB=∠DOC (对顶角相等),∴△AOB ≌△DOC ,∴OC=BO=BD-DO=AC-DO=7.故答案是:7.【点睛】考查了全等三角形的性质解题的关键是注意掌握全等三角形的对应边相等,注意对应关系.14.15°.【分析】先根据线段垂直平分线的性质得出DA=DB ,∠AED=∠BED=90︒,即可得出∠A=∠ABD ,∠BDE =∠ADE ,然后根据直角三角形的两锐角互余和等腰三角形的性质分别求出∠ABD ,∠ABC 的度数,即可求出∠DBC 的度数.【详解】∵AB 的垂直平分线交AC 于D ,交AB 于E ,∴DA=DB ,∠AED=∠BED=90︒,∴∠A=∠ABD ,∠BDE =∠ADE ,∵∠ADE =40︒,∴∠A=∠ABD=9040︒-︒=50︒,∵AB =AC ,∴∠ABC=150652︒-︒=︒,∴∠DBC =∠ABC-∠ABD=15︒.故答案为15︒.【点睛】本题考查线段垂直平分线的性质,等腰三角形的性质.15.7【分析】把已知条件平方,然后求出所要求式子的值.【详解】∵13a a +=,∴219a a ⎛⎫+= ⎪⎝⎭,∴2212+a a +=9,∴221+=a a =7.故答案为7.【点睛】此题考查分式的加减法,解题关键在于先平方.16.240°【详解】已知等边三角形的顶角为60°,根据三角形的内角和定理可得两底角和=180°-60°=120°;再由四边形的内角和为360°可得∠α+∠β=360°-120°=240°.故答案是:240°.17.无解【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】21133x x x -=---2-x=x-3-1-2x=-3-1-2x=3当x=3时,x-3=0,所以原分式方程无解.【点睛】考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.18.8x -3,-11【解析】【分析】原式利用平方差公式,完全平方公式,以及单项式乘以多项式法则计算,去括号合并即可得到结果.【详解】原式=9x 2-4-10x 2+10x+x 2+1-2x=8x-3当x=-1时,原式=-8-3=-11.【点睛】考查了整式的混合运算,平方差公式,以及完全平方公式,熟练掌握运算法则是解本题的关键.19.见解析【分析】先作CD的垂直平分线和∠AOB的平分线,它们的交点为P点,则根据线段垂直平分线的性质和角平分线的性质得到PC=PD,且P到∠AOB两边的距离相等.【详解】解:如图,点P为所作.【点睛】本复考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.20.50°【分析】先利用平行线求出∠CBG,再用邻补角的定义求出∠CBD,最后用三角形的内角和定理即可得出结论.【详解】解:∵EF∥GH,∴∠CBG=∠EAB,∵∠EAB=110°,∴∠CBG=110°,∴∠CBD=180°﹣∠CBG=70°,在△BCD中,∵∠C=60°,∴∠BDC=180°﹣∠C﹣∠CBD=180°﹣60°﹣70°=50°,即:∠BDC的度数为50°.【点睛】此题主要考查了平行线的性质,邻补角的定义,三角形内角和定理,求出∠CBD=70°是解本题的关键.21.甲需8天,乙需4天【解析】【分析】根据乙队先单独做1天后,再由两队合作2天就完成了全部工程则等量关系为:乙一天的工作量+甲乙合作2天的工作量=1,再设未知数列方程,解方程即可.【详解】设乙队单独完成所需天数x天,则甲队单独完成需2x天,1112(1++=2x x x解得:x=4,当x=4时,分式方程有意义,所以x=4是分式方程的解,所以甲、乙两队单独完成工程各需8天和4天.答:甲、乙两队单独完成工程各需8天和4天.【点睛】考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.22.证明见解析【详解】试题分析:首先根据AB=AC=AD,可得∠C=∠ABC,∠D=∠ABD,∠ABC=∠CBD+∠D;然后根据AD∥BC,可得∠CBD=∠D,据此判断出∠ABC=2∠D,再根据∠C=∠ABC,即可判断出∠C=2∠D.试题解析:∵AB=AC=AD,∴∠C=∠ABC,∠D=∠ABD.∴∠ABC=∠CBD+∠D.∵AD∥BC,∴∠CBD=∠D.∴∠ABC=2∠D.又∵∠C=∠ABC,∴∠C=2∠D.23.(1)见解析;(2)6【分析】(1)根据DB ⊥BC ,CF ⊥AE ,得出∠D =∠AEC ,再结合∠DBC =∠ECA =90°,且BC =CA ,证明△DBC ≌△ECA ,即可得证;(2)由(1)可得△DBC ≌△ECA ,可得CE=BD ,根据BC=AC=12cm AE 是BC 的中线,即可得出12CE BC =,即可得出答案.【详解】证明:(1)证明:∵DB ⊥BC ,CF ⊥AE ,∴∠DCB +∠D =∠DCB +∠AEC =90°.∴∠D =∠AEC .又∵∠DBC =∠ECA =90°,且BC =CA ,在△DBC 和△ECA 中90D AEC DBC ECA BC AC ∠∠∠∠⎪⎩︒⎧⎪⎨====,∴△DBC ≌△ECA (AAS ).∴AE =CD ;(2)由(1)可得△DBC ≌△ECA∴CE=BD ,∵BC=AC=12cm AE 是BC 的中线,∴162CE BC cm ==,∴BD=6cm .【点睛】本题考查了全等三角形的判定和性质,直角三角形斜边上的中线,证明△DBC ≌△ECA 解题关键.24.(1)商场两次共购进这种运动服600套;(2)每套运动服的售价至少是200元【分析】(1)设该商场第一次购进这种运动服x 套,第二次购进2x 套,然后根据题意列分式解答即可;(2)设每套售价是y 元,然后根据“售价-两次总进价≥成本×利润率”列不等式并求解即可.【详解】解:(1)设商场第一次购进x 套运动服,由题意得6800032000102x x-=解这个方程,得200x =经检验,200x =是所列方程的根22200200600x x +=⨯+=;答:商场两次共购进这种运动服600套;(2)设每套运动服的售价为y 元,由题意得600320006800020%3200068000y --+ ,解这个不等式,得200y ≥.答:每套运动服的售价至少是200元.【点睛】本题主要考查了分式方程和一元一次不等式的应用,弄清题意、确定量之间的关系、列出分式方程和不等式是解答本题的关键.25.(1)全等;(2)当点Q 的运动速度为54厘米/秒时,能够使△BPD 与△CQP 全等.【分析】(1)根据时间和速度分别求得两个三角形中的边的长,根据SAS 判定两个三角形全等;(2)根据全等三角形应满足的条件探求边之间的关系,再根据路程=速度×时间公式,先求得点P 运动的时间,再求得点Q 的运动速度.【详解】(1)因为t =3秒,所以BP =CQ =1×3=3(厘米),因为AB =10厘米,点D 为AB 的中点,所以BD =5厘米.又因为PC =BC BP -,BC =8厘米,所以PC =835-=(厘米),所以PC =BD .因为AB =AC ,所以∠B=∠C,所以△BPD≌△CQP(SAS).(2)因为P v≠Q v,所以BP≠CQ,当△BPD≌△CPQ时,因为∠B=∠C,AB=10厘米,BC=8厘米,所以BP=PC=4厘米,CQ=BD=5厘米,所以点P,点Q运动的时间为4秒,所以54Qv 厘米/秒,即当点Q的运动速度为54厘米/秒时,能够使△BPD与△CQP全等.【点睛】考查了全等三角形的判定,等腰三角形的性质.解题时,主要是运用了路程=速度×时间的公式.熟练运用全等三角形的判定和性质,能够分析出追及相遇的问题中的路程关系.。
人教版八年级(上)数学期末试卷(含答案)
人教版八年级(上)数学期末试卷一、选择题(共12小题,每题3分,计36分)1.新冠病毒的直径最小大约为0.00000008米,这个数用科学记数法表示为()A.8×10﹣8B.8×10﹣7C.80×10﹣9D.0.8×10﹣72.下列运算正确的是()A.2﹣2=B.(a3)2=a5C.+=D.(3a2)3=27a63.若正多边形的一个外角是60°,则该正多边形的内角和为()A.360°B.540°C.720°D.900°4.在下列因式分解的过程中,分解因式正确的是()A.x2+2x+4=(x+2)2B.x2﹣4=(x+4)(x﹣4)C.x2﹣4x+4=(x﹣2)2D.x2+4=(x+2)25.如图,经过直线AB外一点C作这条直线的垂线,作法如下:(1)任意取一点K,使点K和点C在AB的两旁.(2)以点C为圆心,CK长为半径作弧,交AB于点D和E.(3)分别以点D和点E为圆心,大于DE的长为半径作弧,两弧相交于点F.(4)作直线CF.则直线CF就是所求作的垂线.根据以上尺规作图过程,若将这些点作为三角形的顶点,其中不一定是等腰三角形的为()A.△CDF B.△CDK C.△CDE D.△DEF6.有两块总面积相等的场地,左边场地为正方形,由四部分构成,各部分的面积数据如图所示.右边场地为长方形,长为2(a+b),则宽为()A.B.1C.D.a+b7.下列式子变形是因式分解的是()A.x2﹣5x+6=x(x﹣5)+6B.x2﹣5x+6=(x﹣2)(x﹣3)C.(x﹣2)(x﹣3)=x2﹣5x+6D.x2﹣5x+6=(x+2)(x+3)8.若分式有意义,则a的取值范围是()A.a=0B.a=1C.a≠﹣1D.a≠09.化简的结果是()A.x+1B.x﹣1C.﹣x D.x10.平行四边形ABCD中,对角线AC和BD相交于点O,若AC=3,AB=6,BD=m,那么m的取值范围是()A.9<m<15B.2<m<14C.6<m<8D.4<m<2011.若分式方程无解,则a的值为()A.1B.﹣1C.0D.1或﹣112.如图,△ABC的周长为20,点D,E在边BC上,∠ABC的平分线垂直于AE,垂足为N,∠ACB的平分线垂直于AD,垂足为M,若BC=8,则MN的长度为()A.B.2C.D.3二、填空题(共10小题,每空2分,计20分)13.请写出一个只含有字母x的分式,当x=3时分式的值为0,你写的分式是.14.计算:(2a)3•(﹣a)4÷a2=.15.如图,要测量池塘两岸相对的两点A,B的距离,可以在池塘外取AB的垂线BF上的两点C,D,使BC=CD,再画出BF的垂线DE,使E与A,C在一条直线上.若想知道两点A,B的距离,只需要测量出线段即可.16.若分式方程:有增根,则k=.17.如图所示,已知点A、D、B、F在一条直线上,AC=EF,AD=FB,要使△ABC≌△FDE,还需添加一个条件,这个条件可以是.(只需填一个即可)第17题第18题图第19题图18.如图,在△ABC中,AC=BC,△ABC的外角∠ACE=100°,则∠A=度.19.如图,一只蚂蚁沿着边长为2的正方体表面从顶点A出发,经过3个面爬到顶点B,如果它运动的路径是最短的,则最短路径为.20.因式分解:x 4﹣16=.21.如图,在△ABC 中,CE 平分∠ACB ,CF 平分△ABC 的外角∠ACD ,且EF 平行BC 交AC 于M ,若CM =4,则CE 2+CF 2的值为.22.如图,△ABC 中,AD 平分∠BAC ,CD ⊥AD ,若∠ABC 与∠ACD 互补,CD =5,则BC 的长为.三、计算题(共3小题,计16分)23.(4分)解方程:.24.(4分)先化简再求值:(+4)÷,其中x =.25.(8分)(1)计算:(3﹣π)0﹣38÷36+()﹣1;(2)因式分解:3x 2﹣12y 2.四、解答题(共4小题,计28分)26.(6分)如图,在▱ABCD 中,过点D 作DE ⊥AB 于点E ,点F 在边CD 上,CF =AE ,连接AF ,BF .第22题图第21题图(1)求证:四边形BFDE是矩形;(2)已知∠DAB=60°,AF是∠DAB的平分线,若AD=3,求DC的长度.27.(6分)在平面直角坐标系xOy中,直线l为一、三象限角平分线.点P关于y轴的对称点称为P 的一次反射点,记作P1;P1关于直线l的对称点称为点P的二次反射点,记作P2.例如,点(﹣2,5)的一次反射点为(2,5),二次反射点为(5,2).根据定义,回答下列问题:(1)点(2,5)的一次反射点为,二次反射点为;(2)当点A在第一象限时,点M(3,1),N(3,﹣1)Q(﹣1,﹣3)中可以是点A的二次反射点的是;(3)若点A在第二象限,点A1,A2分别是点A的一次、二次反射点,△OA1A2为等边三角形,求射线OA与x轴所夹锐角的度数.附加问题:若点A在y轴左侧,点A1,A2分别是点A的一次、二次反射点,△AA1A2是等腰直角三角形,请直接写出点A在平面直角坐标系xOy中的位置.28.(6分)某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天.(1)这项工程的规定时间是多少天?(2)已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少?29.(10分)如图1,在平面直角坐标系中,点O(0,0),A(a,0),C(0,c),其中a>c>0,以OA,OC为邻边作矩形OABC,连接AC.(1)若a,c满足+(4﹣c)2=0,求AC的长;(2)在(1)的条件下,将△AOC沿AC折叠,使O'落在矩形所在平面内,AO'交BC于P,求CP的长及点O'的坐标;(3)如图2,D为AC中点时,点E、F分别在线段OA、OC上,且CD=CF,AD=AE,连接FD,EF,DE,则∠FED=90°,求∠FDE的大小及的值.人教版八年级(上)数学期末试卷参考答案与试题解析一、填空题1.【解答】解:∵0.00000008=8×10﹣8;故选:A.2.【解答】解:A、原式中2,﹣2不是同类项,也不是同类二次根式不能合并,故A选项不符合题意;B、原式=a6,故B选项不符合题意;C、原式中,不是同类二次根式不能合并,故C选项不符合题意;D、原式=(3a2)3=33(a2)3=27a6,故D选项符合题意.故选:D.3.【解答】解:该正多边形的边数为:360°÷60°=6,该正多边形的内角和为:(6﹣2)×180°=720°.故选:C.4.【解答】解:A、原式不能分解,不符合题意;B、原式=(x+2)(x﹣2),不符合题意;C、原式=(x﹣2)2,符合题意;D、原式不能分解,不符合题意,故选:C.5.【解答】解:由作图可得,CD,DF,CF不一定相等,故△CDF不一定是等腰三角形;而CD=CK,CD=CE,DF=EF,故△CDK,△CDE,△DEF都是等腰三角形;故选:A.6.【解答】解:左边场地面积=a2+b2+2ab,∵左边场地的面积与右边场地的面积相等,∴宽=(a2+b2+2ab)÷2(a+b)=(a+b)2÷2(a+b)=,故选:C.7.【解答】解:A、x2﹣5x+6=x(x﹣5)+6右边不是整式积的形式,故不是分解因式,故本选项错误;B、x2﹣5x+6=(x﹣2)(x﹣3)是整式积的形式,故是分解因式,故本选项正确;C、(x﹣2)(x﹣3)=x2﹣5x+6是整式的乘法,故不是分解因式,故本选项错误;D、x2﹣5x+6=(x﹣2)(x﹣3),故本选项错误.故选B.8.【解答】解:∵分式有意义,∴a≠﹣1.故选C.9.【解答】解:=﹣===x,故选D.10.【解答】解:如图,∵四边形ABCD是平行四边形,∴OA=OC=AC=1.5,OB=OD=BD=m,∵AB﹣OA<OB<AB+OA,∴6﹣1.5<OB<6+1.5,∴4.5<OB<7.5,∴9<BD<15,∴m的取值范围是9<m<15.故选:A.11.【解答】解:∵分式方程无解,∴x+1=0,x=﹣1.∵,整理得(1﹣a)x=2a,∵分式方程无解,∴①当1﹣a=0时,a=1.②把x=﹣1代入(1﹣a)x=2a,得a=﹣1.综上所述:a的值是:1或﹣1.12.【解答】解:在△BNA和△BNE中,,∴△BNA≌△BNE(ASA)∴BE=BA,AN=NE,同理,CD=CA,AM=MD,∴DE=BE+CD﹣BC=BA+CA﹣BC=20﹣8﹣8=4,∵AN=NE,AM=MD,∴MN=DE=2,故选:B.二、填空题13.【解答】解:由题意得:,故答案为:.14.【解答】解:原式=8a3•a4÷a2=8a5,故答案为:8a515.【解答】解:利用CD=BC,∠ABC=∠EDC,∠ACB=∠ECD,即两角及这两角的夹边对应相等即ASA这一方法,可以证明△ABC≌△EDC,故想知道两点A,B的距离,只需要测量出线段DE即可.故答案为:DE.16.【解答】解:∵,去分母得:2(x﹣2)+1﹣kx=﹣1,整理得:(2﹣k)x=2,当2﹣k=0时,此方程无解,∵分式方程有增根,∴x﹣2=0,2﹣x=0,解得:x=2,把x=2代入(2﹣k)x=2得:k=1.故答案为:1或2.17.【解答】解:增加一个条件:∠A=∠F,显然能看出,在△ABC和△FDE中,利用SAS可证三角形全等(答案不唯一).故答案为:∠A=∠F或AC∥EF或BC=DE(答案不唯一).18.【解答】解:∵AC=BC,∴∠A=∠B,∵∠A+∠B=∠ACE,∴∠A=∠ACE=×100°=50°.故答案为:50.19.【解答】解:将正方体展开,右边与后面的正方形与前面正方形放在一个面上,展开图如图所示,此时AB最短,AB==2,故答案为:2.20.【解答】解:x4﹣16=(x2+4)(x2﹣4)=(x2+4)(x+2)(x﹣2).故答案为:(x2+4)(x+2)(x﹣2).21.【解答】解:∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,∴CM=EM=MF=4,∴EF=8,由勾股定理得:CE2+CF2=EF2=64.22.【解答】解:延长AB、CD交于点E,如图:∵AD平分∠BAC,CD⊥AD,∴∠EAD=∠CAD,∠ADE=∠ADC=90°,在△ADE和△ADC中,,∴△ADE≌△ADC(ASA),∴ED=CD=5,∠E=∠ACD,∵∠ABC与∠ACD互补,∠ABC与∠CBE互补,∴∠E=∠ACD=∠CBE,∴BC=CE=2CD=10,故答案为:10.三、计算题23.【解答】解:原方程即:.方程两边同时乘以(x+2)(x﹣2),得x(x+2)﹣(x+2)(x﹣2)=8.化简,得2x+4=8.解得:x=2.检验:x=2时,(x+2)(x﹣2)=0,即x=2不是原分式方程的解,则原分式方程无解.24.【解答】解:(+4)÷=•=•=x+2,当x=时,原式=+2.25.【解答】解:(1)原式=1﹣32+3=1﹣9+3=﹣5;(2)原式=3(x2﹣4y2)=3(x+2y)(x﹣2y).四、解答题26.【解答】证明(1)∵四边形ABCD是平行四边形∴DC∥AB,DC=AB∵CF=AE∴DF=BE且DC∥AB∴四边形DFBE是平行四边形又∵DE⊥AB∴四边形DFBE是矩形;(2)∵∠DAB=60°,AD=3,DE⊥AB∴AE=,DE=AE=∵四边形DFBE是矩形∴BF=DE=∵AF平分∠DAB∴∠FAB=∠DAB=30°,且BF⊥AB∴AB=BF=∴CD=27.【解答】解:(1)由题意:点(2,5)的一次反射点为(﹣2,5),二次反射点为(5,﹣2).故答案为(﹣2,5),(5,﹣2).(2)由题意点A的二次反射点在第四象限,故答案为N点.(3)∵点A在第二象限,∴点A1,A2均在第一象限.∵△OA1A2为等边三角形,A1,A2关于OB对称,∴∠A1OB=∠A2OB=30°分类讨论:①若点A1位于直线l的上方,如图1所示,此时∠AOC=∠A1OC=15°,因此射线OA与x轴所夹锐角为75°.②若点A1位于直线l的上下方,如图2所示,此时∠AOC=∠A1OC=75°,因此射线OA与x轴所夹锐角为15°.综上所述,射线OA与x轴所夹锐角为75°或15°.附加题:若点A在y轴左侧,点A1,A2分别是点A的一次、二次反射点,△AA1A2是等腰直角三角形,则点A在平面直角坐标系xOy中的位置:x轴负半轴或第三象限的角平分线.28.【解答】解:(1)设这项工程的规定时间是x天,根据题意得:(+)×15+=1.解得:x=30.经检验x=30是方程的解.答:这项工程的规定时间是30天.(2)该工程由甲、乙队合做完成,所需时间为:1÷(+)=18(天),则该工程施工费用是:18×(6500+3500)=180000(元).答:该工程的费用为180000元.29.【解答】解:(1)∵+(4﹣c)2=0,∴a=8,c=4,∴点A(8,0),点C(0,4),∴OA=8,OC=4,∴AC===4;(2)∵将△AOC沿AC折叠,∴∠PAC=∠OAC,OC=O'C=5,AO=AO'=8,∵BC∥AO,∴∠PCA=∠OAC=∠PAC,∴PC=PA,∵PA2=PB2+AB2,∴CP2=(8﹣AP)2+16,∴CP=5=AP,∴O'P=3,过点O'作O'E⊥CB于E,∵S△CO'P=×CO'×O'P=×CP×O'E,∴O'E=,∴CE===,∴点O'坐标为(,);(3)∵CD=CF,AD=AE,∴∠CDF=∠CFD=,∠ADE=∠AED=,∵∠AOC=90°,∴∠DAO+∠OCA=90°,∴∠CDF+∠ADE=+==135°,∴∠FDE=180°﹣∠CDF﹣∠ADE=45°;∵∠FED=90°,∴∠FDE=∠EFD=45°,∴DE=EF,如图2,过点D作DH⊥AO于H,∵A(a,0),C(0,c),点D是AC的中点,∴OA=a,OC=c,CD=AD,点D(,),∴DH=,OH=,AC=,∴CD=AD=,∴CF=,OF=c﹣,∵∠DEF=∠EOF=∠DHE=90°,∴∠FEO+∠DEH=90°=∠FEO+∠EFO,∴∠EFO=∠DEH,又∵EF=DE,∴△EFO≌△DEH(AAS),∴EH=OF=c﹣,OE=DE=,∵OE+EH=OH,∴+c﹣=,∴=+﹣ac,∴=.。
人教版八年级上册数学期末考试试卷附答案
人教版八年级上册数学期末考试试题一、选择题。
(每小题只有一个正确答案)1.下列图形中,轴对称图形的个数是()A .1个B .2个C .3个D .4个2.下列长度的三条线段能组成三角形的是()A .4、5、6B .2、4、7C .8、10、20D .5、15、83.已知△ABC ≌△A′B′C′,∠A=80°,∠B=40°,那么∠C′的度数为()A .80°B .40°C .60°D .120°4.点P (﹣2,3)关于y 轴对称点的坐标在第()象限A .第一象限B .第二象限C .第三象限D .第四象限5.下列计算正确的是()A .325a a a +=B .326a a a ⋅=C .()325a a =D .624a a a ÷=6.要使分式12x x +-有意义,则x 的取值应满足()A .2x ≠B .1x ≠-C .2x =D .1x =-7.如图,在△ABC 中,BD 平分∠ABC ,ED ∥BC ,若AB =4,AD =2,则△AED 的周长是()A .6B .7C .8D .108.如果2(1)9x m x +-+是一个完全平方式,那么m 的值是()A .7B .-7C .-5或7D .-5或59.已知a+b=3,ab=1,则多项式a 2b+ab 2-a-b 的值为()A .-1B .0C .3D .610.如图,等边△ABC 中,BD ⊥AC 于D ,AD =3.5cm ,点P 、Q 分别为AB 、AD 上的两个定点且BP =AQ =2cm ,在BD 上有一动点E 使PE +QE 最短,则PE +QE 的最小值为()A .3cmB .4cmC .5cmD .6cm二、填空题11.因式分解:24x -=__________.12.一个n 边形的内角和是540°,那么n =_____.13.若分式12x x --的值为0,则x=_____.14.若3,6m n x x ==,求m n x +的值为___________________.15.如图,BD 是ABC 的中线,点E 、F 分别为BD 、CE 的中点,若AEF 的面积为23cm ,则ABC 的面积是______2cm .16.如图,△ABC 中,∠ACB =90°,沿CD 折叠△CBD ,使点B 恰好落在AC 边上的点E 处.若∠A =22°,则∠ADE =_______°.三、解答题17.计算:()()()2322x x x ---+18.解方程:34 x 1x=-19.先化简,再求值:2234221121x x x x x x ++⎛⎫-÷ ⎪---+⎝⎭,其中3x =-.20.如图,已知EC =AC ,∠BCE =∠ACD ,∠A =∠E ,BC =3.求DC 的值.21.在新冠肺炎疫情发生后,某企业加快转型步伐,引进,A B 两种型号的机器生产防护服,已知一台A 型机器比一台B 型机器每小时多加工20套防护服,且一台A 型机器加工800套防护服与一台B 型机器加工600套防护服所用时间相等.(1)每台AB 型号的机器每小时分别加工多少套防护服?(2)如果该企业计划安排AB 、两种型号的机器共10台,一起加工一批防护服,为了如期完成任务,要求这10台机器每小时加工的防护服不少于720件,则至少需要安排几台A 型机器?22.如图,AC 平分∠BAD ,CE ⊥AB ,CD ⊥AD ,点E 、D 为垂足,CF=CB .(1)求证:BE=FD ;(2)若CD=6,AD=8,求四边形ABCF 的面积.23.a 、b 、c 是ABC 的三边,且有2241029a b a b +=+-(1)求a 、b 的值(2)若c 为整数,求c 的值(3)若ABC 是等腰三角形,求这个三角形的周长24.如图,Rt △ABC 中,∠ACB =90°,CD ⊥AB 于D ,CE 平分∠ACB 交AB 于E ,EF ⊥AB 交CB 于F .(1)求证:CD //EF ;(2)若∠A =70°,求∠FEC 的度数.25.如图1,ABC 是直角三角形,90C ∠=︒,CAB ∠的角平分线AE 与AB 的垂直平分线DE 相交于点E .(1)如图2,若点E 正好落在边BC 上.①求B Ð的度数;②证明:3BC DE =.(2)如图3,若点E 满足C 、E 、D 共线.线段AD 、DE 、BC 之间是否满足AD DE BC +=,若满足请给出证明;若不满足,请说明理由.参考答案1.B【分析】根据轴对称图形的概念可直接判断.【详解】解:由轴对称图形的定义可直接判断第2个和第4个是轴对称图形,第1个和第3个不是,所以有两个轴对称图形.故选:B【点睛】本题主要考查轴对称图形的定义,理解轴对称图形,学会判断即可.2.A【分析】根据将两条较短的线段长度之和是否大于第三条线段的长度进行判断.【详解】A选项:4+5>6,故能组成三角形;B选项:2+4<7,故不能组成三角形;C选项:8+10<20,故不能组成三角形;D选项:5+8<15,故不能组成三角形;故选:A.【点睛】考查了三角形三边关系,解题关键是判定三条线段能否构成三角形时,只需将两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.3.C【分析】先利用三角形的内角和为180°求出∠C的度数,再根据全等三角形的对应角相等得∠C′=∠C 即可求解.【详解】解:∵在△ABC中,∠A=80°,∠B=40°,∴∠C=180°﹣80°﹣40°=60°,∵△ABC≌△A′B′C′,∴∠C′=∠C=60°,故选:C.【点睛】本题考查全等三角形的性质、三角形的内角和定理,掌握全等三角形的对应角相等是解答的关键.4.A【解析】∵点P(-2,3)在第二象限,∴点P关于y轴的对称点在第一象限.故选A.5.D【分析】分别根据合并同类项的法则、同底数幂的乘法法则、幂的乘方法则以及同底数幂除法法则解答即可.【详解】A、∵2a和3a不是同类项,∴不能加减,故此答案错误,不符合题意;B、∵3256a a a a⋅=≠,∴此答案错误,不符合题意;C、∵()3265a a a=≠,∴此答案错误,不符合题意;D、∵624a a a÷=,∴此答案正确,符合题意.故选D【点睛】本题主要考查了幂的运算性质以及合并同类项的法则,熟练掌握运算法则是解答本题的关键.6.A【详解】解:∵12xx+-在实数范围内有意义,∴x20-≠.∴x2≠故选A.7.A【分析】根据角平分线的性质以及平行线的性质得出△BDE为等腰三角形,然后将△ADE的周长转化为AB+AD得出答案.【详解】∵BD平分∠ABC,∴∠DBC=∠ABD,∵DE∥BC,∴∠EDB=∠DBC ,∴∠EDB=∠EBD ,∴BE=DE ,∴ADE C =AE+DE+AD=AE+BE+AD=AB+AD=4+2=6,故选A .点睛:本题主要考查的是角平分线的性质以及平行线的性质,属于基础题型.解答这个问题的关键就是得出△BDE 为等腰三角形.8.C【分析】根据完全平方公式,中间项等于首项和尾项底数乘积的±2倍列式即可得出m 的值.【详解】解:∵x 2+(m-1)x+9是一个完全平方式,∴(m-1)x=±2•x•3,∴m-1=±6,∴m=-5或7,故选:C .【点睛】本题考查了完全平方式,能熟记完全平方式的特点是解此题的关键,注意:完全平方公式有(a+b)2=a 2+2ab+b 2和(a-b)2=a 2-2ab+b 2两个.9.B【分析】根据分解因式的分组分解因式后整体代入即可求解.【详解】解:a 2b+ab 2-a-b=(a 2b-a )+(ab 2-b )=a (ab-1)+b (ab-1)=(ab-1)(a+b )将a+b=3,ab=1代入,得原式=0.故选:B.【点睛】本题考查了因式分解的应用,解决本题关键是掌握分组分解因式的方法.10.C【分析】作点Q关于BD的对称点Q′,连接PQ′交BD于E,连接QE,此时PE+EQ的值最小.最小值PE+PQ=PE+EQ′=PQ′,【详解】解:如图,∵△ABC是等边三角形,∴BA=BC,∵BD⊥AC,∴AD=DC=3.5cm,作点Q关于BD的对称点Q′,连接PQ′交BD于E,连接QE,此时PE+EQ的值最小.最小值为PE+PQ=PE+EQ′=PQ′,∵AQ=2cm,AD=DC=3.5cm,∴QD=DQ′=1.5(cm),∴CQ′=BP=2(cm),∴AP=AQ′=5(cm),∵∠A=60°,∴△APQ′是等边三角形,∴PQ′=PA=5(cm),∴PE+QE的最小值为5cm.故选:C.【点睛】本题考查了等边三角形的性质和判定,轴对称最短问题等知识,解题的关键是学会利用轴对称解决最短问题.11.(x+2)(x-2)【详解】解:24x -=222x -=(2)(2)x x +-;故答案为(2)(2)x x +-12.5【分析】根据多边形的内角和公式列出方程,解方程即可【详解】解:设这个多边形的边数为n ,由题意,得(n ﹣2)•180°=540°,解得n =5.故答案为:5.【点睛】本题考查了多边形的内角和,熟练掌握n 边形的内角和为(n ﹣2)•180°是解题的关键13.1.【分析】分式的值为零时,分子等于零,且分母不为零.【详解】若分式12x x --的值为0,则10,x -=解得: 1.x =此时x-2≠0.故答案为1.【点睛】考查分式的值为零的条件,分子为0,分母不为0.14.18【分析】逆用同底幂的乘法法则可以得到解答.【详解】解:原式=·3618m n x x =⨯=故答案为18.【点睛】本题考查同底幂的运算,灵活运用同底幂的乘法法则计算是解题关键.15.12【分析】根据三角形的中线把三角形分成两个面积相等的三角形解答即可.【详解】∵F 是CE 的中点,23AEF S cm∆=∴226ACE AEF S S cm ∆∆==,∵E 是BD 的中点,∴ADE ABE S S ∆∆=,CDE BCE S S ∆∆=,∴12ACE ABC S S ∆∆=,∴△ABC 的面积=212cm .故答案为:12.【点睛】本题考查了三角形的面积,主要利用了三角形的中线把三角形分成两个面积相等的三角形,原理为等底等高的三角形的面积相等.16.46【分析】由△ABC 中,∠ACB =90°,∠A =22°,可求得∠B 的度数,由折叠的性质可得:∠CED =∠B =68°,由三角形外角的性质,可求得∠ADE 的度数.【详解】△ABC 中,∠ACB =90°,∠A =22°,∴∠B =180°-90°﹣∠A =68°,由折叠的性质可得:∠CED =∠B =68°,∴∠ADE =∠CED ﹣∠A =46°.故答案为:46.【点睛】本题考查了折叠的性质、三角形内角和定理以及三角形外角的性质.此题难度不大,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.17.613x -+【分析】原式利用完全平方公式,以及平方差公式计算即可求出值.【详解】解:原式=x 2-6x+9-(x 2-4)=x 2-6x+9-x 2+4=6x 13-+【点睛】本题考查平方差公式,以及完全平方公式,熟练掌握公式是解题关键.18.x=4【分析】去分母化为整式方程,再求解.【详解】解:去分母得:3x=4(x-1),去括号得:3x=4x-4,移项合并得:x=4,经检验:x=4是原方程的解.【点睛】本题考查了解分式方程,解题的关键是掌握解法,注意检验.19.11x x -+;2【分析】先算括号里的减法,把除法变成乘法,求出结果,最后代入求出即可.【详解】解:()()()222134223422111211121x x x x x x x x x x x x x x -+++---⎛⎫-÷=⋅= ---++-++⎝⎭当3x =-时,原式31231--==-+,故答案为11x x -+;2.【点睛】本题考查了分式的混合运算和求值,能正确根据分式的运算法则进行化简是解此题的关键,注意运算顺序.20.3【分析】求出∠ACB=∠ECD ,由“ASA”可证△ACB ≌△ECD ,可得BC=DC=3.【详解】解:∵∠BCE=∠ACD ,∴∠BCE+∠ACE=∠ACD +∠ACE ,即∠ACB=∠ECD ,在△ACB 和△ECD 中,A E AC EC BCA DCE ∠∠∠⎧⎪⎪⎩∠⎨===,∴△ACB ≌△ECD (ASA ),∴BC=DC=3.【点睛】本题考查了全等三角形的判定和性质,证明△ACB ≌△ECD 是本题的关键.21.(1)每台B 型号的机器每小时加工60套防护服,每台A 型号的机器每小时加工80套防护服;(2)6台【分析】(1)设每台B 型号的机器每小时加工x 套防护服,每台A 型号的机器每小时加工(x +20)套防护服,根据题意,列出分式方程即可求出结论;(2)设需要安排a 台A 型机器,根据题意,列出一元一次不等式,即可求出结论.【详解】解:(1)设每台B 型号的机器每小时加工x 套防护服,每台A 型号的机器每小时加工(x +20)套防护服由题意可得80060020x x=+解得:x=60经检验:x=60是原方程的解,且符合题意60+20=80(套)答:每台B 型号的机器每小时加工60套防护服,每台A 型号的机器每小时加工80套防护服;(2)设需要安排a 台A 型机器由题意可得80a +60(10-a )≥720解得:a≥6答:至少需要安排6台A 型机器.【点睛】此题考查的是分式方程的应用和一元一次不等式的应用,掌握实际问题中的等量关系和不等关系是解题关键.22.(1)证明见解析;(2)48.【分析】(1)先根据角平分线的性质可得CE CD =,再根据直角三角形全等的判定定理与性质即可得证;(2)先根据全等三角形的性质可得Rt BCE Rt FCD S S = ,再根据直角三角形全等的判定定理与性质可得Rt ACE Rt ACD S S = ,然后利用割补法求面积即可得.【详解】(1)AC 平分BAD ∠,,CE AB CD AD ⊥⊥,CE CD ∴=,在Rt BCE V 和Rt FCD 中,CE CD CB CF=⎧⎨=⎩,()Rt BCE Rt FCD HL ∴≅ ,BE FD ∴=;(2)由(1)已证:Rt BCE Rt FCD ≅ ,Rt BCE Rt FCD S S ∴= ,在Rt ACE △和Rt ACD △中,CE CD AC AC=⎧⎨=⎩,()Rt ACE Rt ACD HL ∴≅ ,Rt ACE Rt ACD S S ∴= ,则四边形ABCF 的面积为Rt ACE Rt BCE ACF S S S ++ ,()Rt ACE Rt FCD ACF S S S =++ ,Rt ACE Rt ACD S S =+ ,2Rt ACD S = ,122AD CD =⨯⋅,12862=⨯⨯⨯,48=,即四边形ABCF 的面积为48.【点睛】本题考查了角平分线的性质、直角三角形全等的判定定理与性质,熟练掌握直角三角形全等的判定定理与性质是解题关键.23.(1)2a =,5b =;(2)4c =或5c =或6c =;(3)12【分析】(1)由a 2+b 2=4a+10b−29,可得:(a−2)2+(b−5)2=0,利用非负数的性质求解a ,b ;(2)再利用三角形三边的关系得到c 的取值范围;(3)分两种情况讨论,当a=2为腰时,当b=5为腰时,再结合三角形的三边的关系,确定三角形的三边,从而可得答案.【详解】解:(1)2241029a b a b +=+-()()224410250a ab b -++-+=()()22250a b -+-=2a =,5b =(2)a 、b 、c 是ABC 的三边37c ∴<<又c 为整数4c ∴=,5c =,6c =(3)ABC 是等腰三角形,2a =,5b =根据三边关系可知,只有当c=5时三角形才为等腰三角形,5c ∴=25512ABC C ∴=++=△故周长为:12【点睛】本题考查的是完全平方式的变形,非负数的性质,因式分解,三角形三边之间的关系,等腰三角形的定义,掌握以上知识是解题的关键.24.(1)见解析;(2)25°【分析】(1)根据垂直于同一条直线的两直线平行证明;(2)根据直角三角形的性质求出∠ACD ,根据角平分线的定义求出∠ACE ,结合图形求出∠DCE ,根据平行线的性质解答即可.【详解】(1)证明:∵CD ⊥AB ,EF ⊥AB ,∴CD ∥EF ;(2)解:∵CD ⊥AB ,∴∠ACD =90°﹣70°=20°,∵∠ACB =90°,CE 平分∠ACB ,∴∠ACE =45°,∴∠DCE =45°﹣20°=25°,∵CD ∥EF ,∴∠FEC =∠DCE =25°.【点睛】本题考查的是平行线的判定和性质、直角三角形的性质,掌握两直线平行、内错角相等、直角三角形的两锐角互余是解题的关键.25.(1)①30°;②见解析;(2)满足,证明见解析【分析】(1)①由角平分线与垂直平分线的性质证明:CAE DAE B ∠=∠=∠,再利用三角形的内角和定理可得答案;②先利用角平分线的性质证明:EC ED =,再利用30B ∠=︒,证明2BE DE =,从而可得结论;(2)过点E 作EF AC ⊥于点F ,证明:EF CF =,再证明()Rt ADE Rt AFE HL ≌,可得AD AF =,再利用线段的和差可得答案.【详解】(1)①解:∵AE 平分CAB∠∴CAE BAE∠=∠又∵ED 是AB 的垂直平分线∴EA EB=∴B DAE ∠=∠,∴CAE DAE B∠=∠=∠又∵90C ∠=︒∴190303B ∠=⨯︒=︒;②证明:∵AE 平分CAB ∠,且EC AC ⊥,ED AB⊥∴EC ED =,在Rt EDB 中,30B ∠=︒∴2BE DE =,3BC BE CE BE DE DE =+=+=;(2)解:线段AD 、DE 、BC 之间满足AD DE BC +=,证明如下:过点E 作EF AC ⊥于点F ,∵ED 是AB 的垂直平分线,且C 、E 、D 共线∴CD 也是AB 的垂直平分线∴CA CB=又90ACB ∠=︒∴ABC 是等腰直角三角形.∴45ACD ∠=︒∴CEF △是等腰直角三角形.∴EF CF=∵AE 平分CAB ∠,且EF AC ⊥,ED AB⊥∴EF ED=∴ED FC =,在Rt ADE △和Rt AFE 中EF ED AE AE=⎧⎨=⎩∴()Rt ADE Rt AFE HL ≌∴AD AF =,∴BC AC AF FC AD DE ==+=+.【点睛】本题考查的是三角形的内角和定理,角平分线的性质,垂直平分线的性质,直角三角形全等的判定与性质,含30°的直角三角形的性质,掌握以上知识是解题的关键.。
八年级上学期期末考试数学试卷(附答案解析)
八年级上学期期末考试数学试卷(附答案解析)一、选择题1.下列各式中,无论x取何值,分式都有意义的是()A. xx2+2x+4B. 2x22x+1C. x+1x2D. x2x2.已知△ABC(如图1),按图2图3所示的尺规作图痕迹,(不需借助三角形全等)就能推出四边形ABCD是平行四边形的依据是()A. 两组对边分别平行的四边形是平行四边形B. 对角线互相平分的四边形是平行四边形C. 一组对边平行且相等的四边形是平行四边形D. 两组对边分别相等的四边形是平行四边形3.某中学篮球队12名队员的年龄情况如下:年龄(单位:岁)1415161718人数15321则这个队队员年龄的众数和中位数分别是()A. 15,16B. 15,15C. 15,15.5D. 16,154.若关于x的方程x−1x−2=mx−2+2产生增根,则m的值是()A. 2B. 0C. 1D. −15.如图,在正方形ABCD内,以BC为边作等边三角形BCM,连接AM并延长交CD于N,则下列结论不正确的是()A. ∠DAN =15°B. ∠CMN =45°C. AM =MND. MN =NC6. 如图,在△ABC 中,点M 为BC 的中点,AD 为∠BAN 的平分线,且AD ⊥BD ,若AB =6,AC =9,则MD 的长为( )A. 3B. 92C. 5D. 152 7. 如图,△ABC 中,AD 垂直BC 于点D ,且AD =BC ,BC 上方有一动点P 满足S △PBC =12S △ABC ,则点P 到B 、C 两点距离之和最小时,∠PBC 的度数为( )A. 30°B. 45°C. 60°D. 90°8. 如图,AD ⊥BC ,BD =DC ,点C 在AE 的垂直平分线上,则AB ,AC ,CE 的长度关系为( )A. AB >AC =CEB. AB =AC >CEC. AB >AC >CED. AB =AC =CE 9. 若x 2=y 7=z 5,则x+y−z x 的值是( ) A. 1 B. 2C. 3D. 4 10. 如图,在△ABC 中,∠A =40°,D 点是∠ABC 和∠ACB 角平分线的交点,则∠BDC =( )A. 110°B. 100°C. 90°D. 80°11. 如果把分式2xy x+y 中的x 和y 都扩大3倍,那么分式的值( )A. 扩大3倍B. 缩小3倍C. 缩小6倍D. 不变 12. 已知x 为整数,且分式2x−2x 2−1的值为整数,满足条件的整数x 的个数有( )A. 1个B. 2个C. 3个D. 4个13. 如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,BC =16,F 是线段DE 上一点,连接AF 、CF ,DE =4DF ,若∠AFC =90°,则AC 的长度是( )A. 6B. 8C. 10D. 12二、填空题14.数学老师计算同学们一学期的平均成绩时,将平时、期中和期末的成绩按3:3:4计算,若小红平时、期中和期末的成绩分别是90分、100分、90分,则小红一学期的数学平均成绩是______分.15.如图(1)是长方形纸带,∠DEF=20°,将纸带沿EF折叠图(2)形状,则∠FGD等于______度.16.若a:b=1:3,b:c=2:5,则a:c=______.17.已知点A(a,1)与点B(5,b)关于y轴对称,则ba +ab=______.18.如图,在梯形ABCD中,AD//BC,若AB=AD=DC=3,∠A=120°,则梯形ABCD的周长为______.19.如图,依据尺规作图的痕迹,计算∠α=______°.三、解答题(20.(1)计算:1−x−2yx+y ÷x2−4xy+4y2x2−y2(2)先化简,再求值:(9x+3+x−3)÷(xx2−9),其中x=−2.21.过矩形ABCD的对角线AC的中点O作EF⊥AC,交BC边于点E,交AD边于点F,分别连接AE,CF.(1)求证:四边形AECF是菱形;(2)若AB=6,AC=10,EC=254,求EF的长.参考答案和解析1.【答案】A【解析】解:A、xx2+2x+4=x(x+1)2+3,(x+1)2≥0,则(x+1)2+3≥3,无论x取何值,分式都有意义,故此选项正确;B、当x=−12时,分式分母=0,分式无意义,故此选项错误;C、x=0时,分式分母=0,分式无意义,故此选项错误;D、x=0时,分式分母=0,分式无意义,故此选项错误;故选:A.2.【答案】B【解析】解:由图可知先作AC的垂直平分线,再连接AC的中点O与B点,并延长使BO=OD,可得:AO=OC,BO=OD,进而得出四边形ABCD是平行四边形,故选:B.3.【答案】C【解析】解:∵这组数据中15出现5次,次数最多,∴众数为15岁,中位数是第6、7个数据的平均数,=15.5岁,∴中位数为15+162故选:C.4.【答案】C【解析】解:分式方程去分母得:x−1=m+2x−4,根据题意得:x−2=0,即x=2,代入整式方程得:2−1=m+4−4,解得:m=1.故选C5.【答案】D【解析】解:作MG⊥BC于G.∵四边形ABCD是正方形,∴BA=BC,∠ABC=∠DAB=°∠DCB=90°∵△MBC是等边三角形,∴MB=MC=BC,∠MBC=∠BMC=60°,∵MG⊥BC,∴BG=GC,∵AB//MG//CD,∴AM=MN,∴∠ABM=30°,∵BA=BM,∴∠MAB=∠BMA=75°,∴∠DAN=90°−75°=15°,∠CMN=180°−75°−60°=45°,故A,B,C正确,故选:D.6.【答案】D【解答】解:延长BD交CA的延长线于E,∵AD为∠BAE的平分线,BD⊥AD,∴BD=DE,AB=AE=6,∴CE=AC+AE=9+6=15,又∵M为△ABC的边BC的中点,∴DM是△BCE的中位线,∴MD=12CE=12×15=7.5.故选:D.7.【答案】B【解析】解:∵S△PBC=12S△ABC,∴P在与BC平行,且到BC的距离为12AD的直线l上,∴l//BC,作点B关于直线l的对称点B′,连接B′C交l于P,如图所示:则BB′⊥l,PB=PB′,此时点P到B、C两点距离之和最小,作PM⊥BC于M,则BB′=2PM=AD,∵AD⊥BC,AD=BC,∴BB′=BC,BB′⊥BC,∴△BB′C是等腰直角三角形,∴∠B′=45°,∵PB=PB′,∴∠PBB′=∠B′=45°,∴∠PBC=90°−45°=45°;故选:B.8.【答案】D【解答】解:∵AD⊥BC,BD=DC,∴AD垂直平分BC,∴AB=AC,又∵点C在AE的垂直平分线上,∴AC=EC,∴AB=AC=CE.故选D.9.【答案】B【解答】解:设x2=y7=z5=k,则x=2k,y=7k,z=5k,把x=2k,y=7k,z=5k代入x+y−zx =2k+7k−5k2k=2,故选B.10.【答案】A【解析】解:∵D点是∠ABC和∠ACB角平分线的交点,∴∠CBD=∠ABD=12∠ABC,∠BCD=∠ACD=12∠ACB,∴∠ABC+∠ACB=180°−40°=140°,∴∠DBC+∠DCB=70°,∴∠BDC=180°−70°=110°,故选:A.11.【答案】A【解析】解:把原分式中的x换成3x,把y换成3y,那么2⋅3x⋅3y 3x+3y =6xyx+y=3×2xyx+y.故选:A.12.【答案】C【解析】解:∵原式=2(x−1)(x+1)(x−1)=2x+1,∴x+1为±1,±2时,2x+1的值为整数,∵x2−1≠0,∴x≠±1,∴x为−2,0,−3,个数有3个.故选:C.13.【答案】D【解析】解:∵D、E分别是AB、AC的中点,BC=8,∴DE=12∵DE=4DF,DE=2,∴DF=14∴EF=DE−DF=6,∵∠AFC=90°,点E是AC的中点,∴AC=2EF=12,故选:D.14.【答案】93【解析】解:根据题意得:90×3+100×3+90×4=93(分),3+3+4答:小红一学期的数学平均成绩是93分;故答案为:93.15.【答案】40【解析】解:根据折叠可知:∠AEG=180°−20°×2=140°,∵AE//BF,∴∠EGB=180°−∠AEG=40°,∴∠FGD=40°.故答案为:40.16.【答案】2:15【解析】解:∵a:b=1:3=2:6,b:c=2:5=6:15,∴a:c=2:15,故答案为:2:1517.【答案】−265【解析】解:∵点A(a,1)与点A′(5,b)关于y轴对称,∴a=−5,b=1,∴ba +ab=−15+(−5)=−265,故答案为:−265.18.【答案】15【解析】解:过点A作AE//CD,交BC于点E,∵AD//BC,∴四边形AECD是平行四边形,∠B=180°−∠BAD=180°−120°=60°,∴AE=CD,CE=AD=3,∵AB=DC,∴△ABE是等边三角形,∴BE=AB=3,∴BC=BE+CE=6,∴梯形ABCD的周长为:AB+BC+CD+AD=15.故答案为:15.首先过点A作AE//CD,交BC于点E,由AB=AD=DC=2,∠A=120°,易证得四边形AECD 是平行四边形,△ABE是等边三角形,继而求得答案.19.【答案】56【分析】本题考查的是作图−基本作图,熟知角平分线及线段垂直平分线的作法是解答此题的关键.先根据矩形的性质得出AD//BC,故可得出∠DAC的度数,由角平分线的定义求出∠EAF的度数,再由EF是线段AC的垂直平分线得出∠AEF的度数,根据三角形内角和定理得出∠AFE的度数,进而可得出结论.【解答】解:∵四边形ABCD是矩形,∴AD//BC,∴∠DAC=∠ACB=68°.∵由作法可知,AF是∠DAC的平分线,∴∠EAF=12∠DAC=34°.∵由作法可知,EF是线段AC的垂直平分线,∴∠AEF=90°,∴∠AFE=90°−34°=56°,∴∠α=56°.故答案为:56.20.【答案】解:(1)原式=1−x−2yx+y ⋅(x+y)(x−y)(x−2y)2=1−x−yx−2y=x−2yx−2y−x−yx−2y=−y2x−y;(2)原式=(9x+3+x2−9x+3)÷x(x+3)(x−3)=x2x+3⋅(x+3)(x−3)x=x(x−3),当x=−2时,原式=(−2)×(−2−3)=10.【解析】(1)根据分式的混合运算顺序和运算法则计算可得;(2)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.21.【答案】解:(1)∵四边形ABCD是矩形,∴AD//BC,∴∠ACB=∠DAC,∵O是AC的中点,∴AO =CO ,在△AOF 和△COE 中,{∠ACB =∠DACAO =CO ∠AOF =∠COE,∴△AOF ≌△COE(ASA),∴OE =OF ,且AO =CO ,∴四边形AECF 是平行四边形,又∵EF ⊥AC ,∴四边形AECF 是菱形;(2)∵菱形AECF 的面积=EC ×AB =12AC ×EF ,又∵AB =6,AC =10,EC =254, ∴254×6=12×10×EF ,解得EF =152.【解析】(1)由矩形的性质可得∠ACB =∠DAC ,然后利用“ASA ”证明△AOF 和△COE 全等,根据全等三角形对应边相等可得OE =OF ,即可证四边形AECF 是菱形;(2)由菱形的性质可得:菱形AECF 的面积=EC ×AB =12AC ×EF ,进而得到EF 的长.。
人教版八年级上册数学期末考试试卷及答案
人教版八年级上册数学期末考试试题一、单选题1.下列文字中,是轴对称图形的是()A .我B .爱C .中D .国2.用科学记数法表示0.0000003是()A .60.310-⨯B .70.310-⨯C .6310-⨯D .7310-⨯3.等腰三角形的两边长为2cm ,5cm ,则该等腰三角形的周长为()A .9cmB .12cmC .9cm 或12cmD .6cm 或12cm4.下列各式运算正确的是()A .326a a a ⨯=B .()428=a aC .()220a a -+=D .()23622a a =5.点A (-2,3)向右平移3个单位后得到点B ,那么点B 关于x 轴对称的点的坐标是A .(1,-3)B .(1,3)C .(-1,3)D .(-1,-3)6.如图,在△ABC 与△ADC 中,若BAC DAC ∠=∠,则下列条件不能判定△ABC 与△ADC 全等的是()A .B D∠=∠B .BCA DCA ∠=∠C .BC DC =D .AB AD =7.已知()()222x m x x x +-=--,那么m 的值是()A .1B .-1C .2D .-28.如图,在Rt △ABC 中,90C = ∠,AD 平分∠BAC ,交BC 于点D ,若20AB =,△ABD 的面积为60,则CD 长()A .12B .10C .6D .49.如图,在△ABC 中,AB AC =,BD CD =,边AB 的垂直平分线交AC 于点E ,连接BE ,交AD 于点F ,若66C ∠=︒,则∠AFE 的度数为()A .60B .62°C .66D .7210.如图,数轴上点A 、B 、C 、D 分别表示数0、1、2、3,若x 为整数(0x ≠),则分式21x x -表示的点落在哪条线段上?()A .ACB .BC C .BD D .CD11.如图,把一块等腰直角三角尺放在直角坐标系中,直角顶点A 落在第二象限,锐角顶点B 、C 分别落在x 轴、y 轴上,已知点A (-2,2)、C (0,-3),则点B 的坐标为()A .(-4,0)B .(-5,0)C .(-7,0)D .(-8,0)12.如图,有10个形状大小一样的小长方形①,将其中的3个小长方形①放入正方形②中,剩余的7个小长方形①放入长方形③中,其中正方形②中的阴影部分面积为21,长方形③中的阴影部分面积为93,那么一个小长方形①的面积为()A .5B .6C .9D .10二、填空题13.分解因式26m m +=_________.14.计算:3242a b ab ÷=______.15.已知:26910a a b -+++=,那么22a b +=______.16.当=a ___________时,关于x 的方程12325x a x a +-=-+的解为零.17.如图,点D 、A 、B 、C 是正十边形依次相邻的顶点,分别连接AC 、BD 相交于点P ,则∠DPC =______度.18.等腰直角三角形ABC 中,AB AC =,90BAC ∠= ,且△ABC 的面积为16,过点B 作直线EF AC ∥,点G 是直线EF 上的一个动点,连接AG ,将AG 绕点A 顺时针旋转90 ,得到线段AH ,连接BH ,则线段BH 的最小值为______.19.如图,已知AE =BE ,DE 是AB 的垂线,F 为DE 上一点,BF =11cm ,CF =3cm ,则AC =_______.20.如图,在等腰△ABC 中,AB=AC=13,BC=10,D 是BC 边上的中点,M 、N 分别是AD 和AB 上的动点.则BM+MN 的最小值是_________________.三、解答题21.计算:(1)02312020222--++⨯(2)()()()22a b a b a b +--+22.化简求值:2222m n mn n m m m ⎛⎫--÷- ⎪⎝⎭,其中3,1m n ==-.23.解分式方程:2231022x x x x-=+-24.如图,四边形ABED 中,90B E ACD ∠=∠=∠= ,BC DE =.(1)求证:ABC CED ∆=∆.(2)发现:若AB a =,BC b =,AC c =,请用两种方法计算四边形ABCD 的面积,并探究a 、b 、c 之间有什么数量关系?(3)应用:①根据(2)中的发现,当8AB =,6BC =时,AC 的长为___;②如图,若30P ∠= ,4PM =,7PN =,点F 在PN 上,点G 在射线PM 上连接FM 、FG 、NG ,求MF FG GN ++的最小值.25.为了进一步丰富校园文体活动,学校准备购进一批篮球和足球,已知每个篮球的进价比每个足球的进价多20元,用1800元购进篮球的数量是用700元购进足球的数量的2倍,求每个篮球和足球的进价各是多少元?26.如图,90ACB ∠=︒,AC BC =,AD CE ⊥,BE CE ⊥,垂足分别为D ,E .(1)求证:ACD CBE △△≌;(2)试探究线段AD ,DE ,BE 之间有什么样的数量关系,请说明理由.27.如图,Rt △ABC 与Rt △DEF 中,点B 、E 、C 、F 在一条直线上,AC 与DE 相交于点O ,90BAC EDF ∠=∠=︒,AB DE =,BE CF =,则:(1)求证:AC DE ⊥;(2)连接AD 、AE 、DC ,若12,5AC AB ==,求四边形AECD 的面积.28.如图是33⨯的网格,网格中每个小正方形的顶点叫做格点,当三角形的三个顶点是格点时,这个三角形叫做格点三角形,图中阴影部分的三角形就是格点三角形.(1)请在图一、图二中分别作出与阴影部分成轴对称的格点三角形,要求所作格点三角形在33⨯的网格内且位置不同;(2)思考:在33⨯的网格内一共可以作___个符合(1)中要求的格点三角形.参考答案1.C2.D3.B4.B5.A6.C7.A8.C9.D10.C11.C12.Am m+13.(6)14.22a b15.1016.1517.144【详解】解:∵DAB ∠和ABC ∠是正十边形的两个内角,∴(102)18014410DAB ABC -⨯︒∠=∠==︒,DA AB BC ==,∴180********,22DAB ABD ︒-∠︒-︒∠===︒1801801441822ABC BCA ︒-∠︒-︒∠===︒,∴14418126PBC ABC ABD ∠=∠-∠=︒-︒=︒,∴12618144DPC PBC PCB ∠=∠+∠=︒+︒=︒,故答案为:144【点睛】可不是主要考查了正多边形内角和问题,解题的关键是熟练掌握基本知识.18.【分析】如图所示:连接CG .由旋转的性质可知AG AH =,90GAH ∠=︒,再由90BAC ∠=︒,可知HAB CAG ∠=∠.可证ABH ACG ≅ .可得BH CG =.BH 最小转化成求CG 最小.只需CG BG ⊥就可以了.由此可得四边形ABGC 是正方形.由ABC 的面积是16,可求BH 的值为【详解】如图所示:连接CG .由旋转的性质可知:AG AH =,90GAH ∠=︒.∵90BAC ∠=︒∴BAC BAG GAH BAG ∠-∠=∠-∠,即HAB CAH ∠=∠.在ABH 和ACG 中,AB AC HAB CAH AH AG =⎧⎪∠=∠⎨⎪=⎩ABH ACG≅ ∴BH CG=要让BH 最小,也就是要CG 最小,∴CG BG ⊥时,CG 最小.∵EF AC ∥,90BAC ∠=︒,∴90ABG BAC ∠=∠=︒∵CG BG⊥∴四边形ABGC 时矩形,∵AB AC=∴矩形ABGC 是正方形.∴AB BG CG AC ===.∵△ABC 的面积为16,∴•162AB AC =,解得:AB AC ==.∴AB AC CG BH ====故答案为:【点睛】本题考查了全等三角形的性质和判定定理、矩形的性质和判定定理、正方形的性质和判定定理、等腰直角三角形的性质等知识.证得三角形全等,由求BH 转化成求CG ,和让CG BG ⊥时,CG 最短是解决本题的关键.19.14cm【分析】由AE =BE ,DE 是AB 的垂线得出DE 是AB 的中线,进而可得DE 是AB 的垂直平分线,由此即可得到AF =BF ,再根据线段的和差即可得解.【详解】解:∵AE =BE ,DE 是AB 的垂线,∴DE 是AB 的中线,∴DE是AB的垂直平分线,∵F为DE上一点,∴AF=BF,∴AC=AF+CF=BF+CF,∵BF=11cm,CF=3cm,∴AC=14cm,故答案为:14cm.【点睛】此题考查了等腰三角形的三线合一以及垂直平分线的性质,熟练掌握等腰三角形的三线合一以及垂直平分线的性质是解此题的关键.20.120 13【分析】作BH⊥AC,垂足为H,交AD于M′点,过M′点作M′N′⊥AB,垂足为N′,然后根据轴对称的性质可知BM′+M′N′为所求的最小值.【详解】解:如图,作BH⊥AC,垂足为H,交AD于M′点,过M′点作M′N′⊥AB,垂足为N′,则BM′+M′N′为所求的最小值.∵AB=AC,D是BC边上的中点,∴AD是∠BAC的平分线,∴M′H=M′N′,∴BH是点B到直线AC的最短距离(垂线段最短),∵AB=AC=13,BC=10,D是BC边上的中点,∴AD⊥BC,∴AD=12,∵S△ABC=12AC×BH=12BC×AD,∴13×BH=10×12,解得:BH=120 13;故答案为12013.21.(1)2(2)233ab b --【分析】(1)根据零次幂、负指数幂可进行求解;(2)根据完全平方公式及多项式乘以多项式可进行求解.(1)解:原式=111428++⨯11122=++=2;(2)解:原式=()222222a ab b a ab b ---++=222222a ab b a ab b -----=233ab b --.22.2m n -;12【分析】先根据分式混合运算法则进行化简,然后再代入求值即可.【详解】解:原式22222m n m mn n m m m ⎛⎫--=÷- ⎝⎭22222m n m mn n m m--+=÷()()22m n mm m n -=⋅-2m n=-把m=3,n=−1代入得:原式()231=--231=+24=12=23.4x =【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】2231022x x x x-=+-解:方程可变为:()()31022x x x x -=+-,方程两边同乘以x (x+2)(x ﹣2)得:3(x ﹣2)﹣(x+2)=0,解得,x =4,检验:当x =4时,x (x+2)(x ﹣2)≠0,所以,原分式方程的解为x =4.24.(1)见解析;(2)第一种方法:S 四边形ABCD=2ab +22c ,第二种方法:22222a b ab ++;a 、b 、c 之间的数量关系是222+=a b c ;(3)①10【分析】(1)根据BAC ECD ∠=∠,B E ∠=∠,BC ED =即可证明两个三角形全等;(2)第一种面积求法直接是S △ABC+S △ACD ,代入表示即可;第二种面积表示用S 梯形ABED-S △CED 来表示,就可以得到a 、b 、c 之间的数量关系;(3)①根据(2)中的结论,代入数值即可计算;②作点M 关于PN 的对称点1M ,作点N 关于PM 的对称点1N ,连接11M N ,线段11M N 与PN 的交点即为F ,与PM 的交点即为点G ,连接P 1M ,P 1N ,此时MF FG GN ++的值最小,代入(2)中的结论,即可算出这个最小值;【详解】(1)∵∠B=∠E=∠ACD=90°,∴∠DCE+∠ACB=90°,∠ACB+∠BAC=90°,∴∠BAC=∠DCE ,在△ABC 和△CED 中,BAC ECD B E BC ED ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△CED ;(2)第一种方法:S 四边形ABCD=S △ABC+S △ACD=2ab +22c ,第二种方法:由(1)可知,△ABC ≌△CED ,∴CD=c ,DE=b ,CE=a ,S 四边形ABCD =S 梯形ABED-S △CED=22a b a b ab ++-()(),=22222a b ab ++,∴2ab +22c =22222a b ab ++,∴222+=a b c ,即a 、b 、c 之间的数量关系是222+=a b c ;(3)①∵AB=8,BC=6,∴22268AC =+=100,∴AC=10,②作点M 关于PN 的对称点1M ,作点N 关于PM 的对称点1N ,连接11M N ,线段11M N 与PN 的交点即为F ,与PM 的交点即为点G ,连接P 1M ,P 1N ,此时MF FG GN ++的值最小;如图所示:∵点M 与1M 关于PN 对称,点N 与1N 关于PM 对称,∴1M F=MF ,PM=P 1M =4,∴GN=G 1N ,PN=P 1N =7,∠1M PF=∠FPM=∠MP 1N =30°,∴∠11M PN =3×30°=90°∴MF+FG+GN=M 1F+FG+N 1G≥M 1N 1,当点M 1、F 、G 、N 1四点共线时最短,在△11M PN 中,∠11M PN =90°,PM=4,P 1N =7,∴由(2)可知,211M N =2247+=65,∴11M N∴MF FG GN ++25.每个足球的进价是70元,每个篮球的进价是90元【详解】解:设每个足球的进价是x 元,则每个篮球的进价是()20x +元.由题意得:1800700220x x=⨯+.解得:70x =.检验:当70x =时,()200x x +≠,所以,原方程的解为70x =.∴2090x +=.答:每个足球的进价是70元,每个篮球的进价是90元.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.26.(1)见解析(2)BE DE AD +=,见解析【分析】(1)由“AAS”可证ACD CBE △△≌;(2)由全等三角形的性质可得CD BE =,AD CE =,即可求解.【详解】(1)证明:∵AD CE ⊥,BE CE ⊥,∴90E ADC ∠=∠=︒,∴1290∠+∠=︒,∵90ACB ∠=︒,∴3290∠+∠=︒,∴13∠=∠,在ACD 和CBE △中,13ADC E AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ACD CBE △△≌(AAS ).(2)解:BE DE AD +=,理由如下:∵ACD CBE △△≌,∴CD BE =,AD CE =.∵CD DE CE +=,∴BE DE AD +=.27.(1)见详解(2)四边形AECD 的面积为30【分析】(1)由题意易得BC EF =,然后根据“HL”可证ABC DEF ≌△△,则有//AB DE ,进而问题可求证;(2)由(1)可知△DEF 是由△ABC 向右平移所得到,则根据平移的性质可得AD=BE ,然后根据勾股定理可得BC=13,进而问题可求解.(1)证明:∵BE CF =,∴BE EC CF EC +=+,即BC EF =,∵90BAC EDF ∠=∠=︒,AB DE =,∴ABC DEF ≌△△(HL ),∴B DEF ∠=∠,∴//AB DE ,∴90EOC A ∠=∠=︒,∴AC DE ⊥;(2)解:由(1)可知△DEF 是由△ABC 向右平移所得到,则根据平移的性质可得AD=BE ,//AD EC ,∴四边形AECD 是梯形,∵12,5AC AB ==,90BAC ∠=︒,∴13BC ==,设△ABC 边BC 上的高为h ,∴6013AB AC h BC ⋅==,∴()()1111601330222213AECD S AD EC h BE EC h BC h =+=+=⋅=⨯⨯=四边形.【点睛】本题主要考查勾股定理、平移的性质及全等三角形的性质与判定,勾股定理、平移的性质及全等三角形的性质与判定是解题的关键.28.(1)见解析(2)3【分析】(1)根据轴对称图形的性质作出轴对称图形即可;(2)作出所有轴对称图形即可得到答案.(1)如图一、二,即为所作图形,(虚线为对称轴)(2)可以作出3个符合(1)中要求的格点三角形.第3个如图所示,故答案为:3。
人教版八年级上学期期末考试数学试卷(附带答案)精选全文
精选全文完整版(可编辑修改)人教版八年级上学期期末考试数学试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列图形中,是轴对称图形的是()A.B.C.D.2.(4分)下列式子中是分式的是()A.B.C.D.3.(4分)下列各式中,由左向右的变形是分解因式的是()A.x2﹣2x+1=x(x﹣2)+1B.x2y﹣xy2=xy(x﹣y)C.﹣x2+(﹣2)2=(x﹣2)(x+2)D.(x+y)2=x2+2xy+y24.(4分)(mx+8)(2﹣3x)展开后不含x的一次项,则m为()A.3 B.0 C.12 D.245.(4分)下列选项中,能使分式值为0的x的值是()A.1 B.0 C.1或﹣1 D.﹣16.(4分)如图,在Rt△ACB中,∠ACB=90°,∠A=35°,点D是AB上一点,将Rt△ABC沿CD折叠,使点B落在AC边上B′处,则∠ADB′的度数为()A.25°B.30°C.35°D.20°7.(4分)若多项式4x2﹣(k﹣1)x+9是一个完全平方式,则k的值是()A.13 B.13或﹣11 C.﹣11 D.±118.(4分)若关于x的分式方程有增根,则m的值是()A.0 B.1 C.2 D.﹣19.(4分)如图,在△ABC中,AB=AC、BC=6,AF⊥BC于F,BE⊥AC于E,且点D是AB的中点,连接DE、EF、DF,△DEF的周长是11,则AB的长度为()A.5 B.6 C.7 D.810.(4分)已知两个分式:将这两个分式进行如下操作:第一次操作:将这两个分式作和,结果记为f1;作差,结果记为g1;(即,)第二次操作:将f1,g1作和,结果记为f2;作差,结果记为g2;(即f2=f1+g1,g2=f1﹣g1)第三次操作;将f2,g2作和,结果记为f3;作差,结果记为g3;(即f3=f2+g2,g3=f2﹣g2)…(依此类推)将每一次操作的结果再作和,作差,继续依次操作下去,通过实际操作,有以下结论:①g7=8g1;②当x=2时;③若f8=g4,则x=2;④在第2n(n为正整数)次操作的结果中:.以上结论正确的个数有()个.A.4 B.3 C.2 D.1二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:+(﹣2013)0+()﹣2+|2﹣|+(﹣2)2×(﹣3)=.12.(4分)若一个正多边形的一个内角与它相邻的一个外角的差是100°,则这个多边形的边数是.13.(4分)若5x﹣3y﹣2=0,则25x÷23y﹣1=.14.(4分)已知x2+y2=8,x﹣y=3,则xy的值为.15.(4分)已知,则代数式的值为.16.(4分)若关于x的不等式组有4个整数解,且关于y的分式方程=1的解为正数,则满足条件所有整数a的值之和为17.(4分)如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD于点E,过点B作CD 平行线,交AE的延长线于点F,在延长线上截得FG=CD,连接CG、DF.若BG=11,AF=8,则四边形CGFD的面积等于.18.(4分)对于一个各位数字都不为零的四位正整数N,若千位数字比十位数字大3,百位数字是个位数字的3倍,那么称这个数N为“三生有幸数”,例如:N=5321,∵5=2+3,3=1×3,∴5321是个“三生有幸数”;又如N=8642,∵8≠4+3,∴8642不是一个“三生有幸数”.则最小的“三生有幸数”是.若将N 的千位数字与个位数字互换,百位数字与十位数字互换,得到一个新的四位数,那么称这个新的数为数N的“反序数”,记作N',例如:N=5321,其“反序数”N′=1235.若一个“三生有幸数”N的十位数字为x,个位数字为y,设P(N)=,若P(N)除以6余数是1,则所有满足题意的四位正整数N的最大值与最小值的差是.三.解答题(共9小题,满分78分)19.(8分)计算:(1)(﹣3x+2)(﹣3x﹣2)﹣5x(1﹣x)+(2x+1)(x﹣5)(2).20.(8分)解方程:(1);(2).21.(8分)将下列各式因式分解(1)x2(m﹣2)+y2(2﹣m)(2)x2+2x﹣1522.(8分)先化简,再求值:(﹣)÷.其中a是x2﹣2x=0的根.23.(8分)重庆市2023年体育中考已经结束,现从某校初三年级随机抽取部分学生的成绩进行统计分析(成绩得分用x表示,共分成4个等级,A:30≤x<35,B:35≤x<40,C:40≤x<45,D:45≤x≤50),绘制了如下的统计图,请根据统计图信息解答下列问题:(1)本次共调查了名学生;(2)请补全条形统计图;(3)在扇形统计图中,m的值是;B对应的扇形圆心角的度数是;(4)若该校初三年级共有2000名学生,估计此次测试成绩优秀(45≤x≤50)的学生共有多少人?24.(8分)在学习了角平分线的性质后,小明想要去探究直角梯形的两底边与两非直角顶点所连腰的数量关系,于是他对其中一种特殊情况进行了探究:在直角梯形ABCD中,∠B=∠C=90°,AE平分∠BAD交BC于点E,连接DE,当DE平分∠ADC时,探究AB、CD与AD之间的数量关系.他的思路是:首先过点E作AD的垂线,将其转化为证明三角形全等,然后根据全等三角形的对应边相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E作AD的垂线,垂足为点F.(只保留作图痕迹)∵∠B=90°∴EB⊥AB∵AE平分∠BAD,EF⊥AD∴(角平分线的性质)在Rt△ABE和Rt△AFE中∵∴Rt△ABE≌Rt△AFE(HL).∴同理可得:DC=DF∴AB+CD=即AB+CD=AD.25.(10分)为落实“双减政策”,某校购进“红色教育”和“传统文化”两种经典读本,花费分别是14000元和7000元,已知“红色教育”经典读本的订购单价是“传统文化”经典读本的订购单价的 1.4倍,并且订购的“红色教育”经典读本的数量比“传统文化”经典读本的数量多300本.(1)求该学校订购的两种经典读本的单价分别是多少元;(2)该学校拟计划再订购这两种经典读本共1000本,其中“传统文化”经典读本订购数量不超过400本且总费用不超过12880元,求该学校订购这两种读本的最低总费用.26.(10分)如图1,点A(0,a),B(b,0),且a,b满足|a﹣4|+=0.(1)求A,B两点的坐标.(2)如图2,点C(﹣3,n)在线段AB上,点D在y轴负半轴上,连接CD交x轴负半轴于点M,且S△MBC =S△MOD,求点D的坐标.(3)平移直线AB,交x轴正半轴于点E,交y轴于点F,P为直线EF上的第三象限内的一点,过点P作PG⊥x轴于点G,若S△P AB=20,且GE=12,求点P的坐标.27.(10分)△ABC中,点D为AC边上一点,连接BD,在线段BD上取一点E,连接EC.(1)如图1,若∠BAC=90°,BC=AB,tan∠ABC=2,点D,E分别为AC,BD中点,BC=a,求△CDE的面积(结果用含a的代数式表示);(2)如图2,若EB=EC,过点E作EF⊥AC于点F,F在线段AD上(F与A,D不重合),过点E作EG∥AC交BC于点G,∠ABD=30°,AF=CF,求证:2CG+EG=BC;(3)如图3,若△ABC是等边三角形,且AE⊥BD,∠DEC=60°,AB=2,直接写出线段DE的长.参考答案一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列图形中,是轴对称图形的是()A.B.C.D.【答案】C2.(4分)下列式子中是分式的是()A.B.C.D.【答案】B3.(4分)下列各式中,由左向右的变形是分解因式的是()A.x2﹣2x+1=x(x﹣2)+1B.x2y﹣xy2=xy(x﹣y)C.﹣x2+(﹣2)2=(x﹣2)(x+2)D.(x+y)2=x2+2xy+y2【答案】B4.(4分)(mx+8)(2﹣3x)展开后不含x的一次项,则m为()A.3 B.0 C.12 D.24【答案】C5.(4分)下列选项中,能使分式值为0的x的值是()A.1 B.0 C.1或﹣1 D.﹣1【答案】D6.(4分)如图,在Rt△ACB中,∠ACB=90°,∠A=35°,点D是AB上一点,将Rt△ABC沿CD折叠,使点B落在AC边上B′处,则∠ADB′的度数为()A.25°B.30°C.35°D.20°【答案】D7.(4分)若多项式4x2﹣(k﹣1)x+9是一个完全平方式,则k的值是()A.13 B.13或﹣11 C.﹣11 D.±11【答案】B8.(4分)若关于x的分式方程有增根,则m的值是()A.0 B.1 C.2 D.﹣1【答案】D9.(4分)如图,在△ABC中,AB=AC、BC=6,AF⊥BC于F,BE⊥AC于E,且点D是AB的中点,连接DE、EF、DF,△DEF的周长是11,则AB的长度为()A.5 B.6 C.7 D.8【答案】D10.(4分)已知两个分式:将这两个分式进行如下操作:第一次操作:将这两个分式作和,结果记为f1;作差,结果记为g1;(即,)第二次操作:将f1,g1作和,结果记为f2;作差,结果记为g2;(即f2=f1+g1,g2=f1﹣g1)第三次操作;将f2,g2作和,结果记为f3;作差,结果记为g3;(即f3=f2+g2,g3=f2﹣g2)…(依此类推)将每一次操作的结果再作和,作差,继续依次操作下去,通过实际操作,有以下结论:①g7=8g1;②当x=2时③若f8=g4,则x=2;④在第2n(n为正整数)次操作的结果中:以上结论正确的个数有()个.A.4 B.3 C.2 D.1【答案】B二.填空题(共8小题,满分32分,每小题4分)11.(4分)计算:+(﹣2013)0+()﹣2+|2﹣|+(﹣2)2×(﹣3)=.【答案】见试题解答内容12.(4分)若一个正多边形的一个内角与它相邻的一个外角的差是100°,则这个多边形的边数是9.【答案】见试题解答内容13.(4分)若5x﹣3y﹣2=0,则25x÷23y﹣1=8.【答案】见试题解答内容14.(4分)已知x2+y2=8,x﹣y=3,则xy的值为﹣.【答案】见试题解答内容15.(4分)已知,则代数式的值为﹣2.【答案】﹣2.16.(4分)若关于x的不等式组有4个整数解,且关于y的分式方程=1的解为正数,则满足条件所有整数a的值之和为2【答案】见试题解答内容17.(4分)如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD于点E,过点B作CD 平行线,交AE的延长线于点F,在延长线上截得FG=CD,连接CG、DF.若BG=11,AF=8,则四边形CGFD的面积等于20.【答案】见试题解答内容18.(4分)对于一个各位数字都不为零的四位正整数N,若千位数字比十位数字大3,百位数字是个位数字的3倍,那么称这个数N为“三生有幸数”,例如:N=5321,∵5=2+3,3=1×3,∴5321是个“三生有幸数”;又如N=8642,∵8≠4+3,∴8642不是一个“三生有幸数”.则最小的“三生有幸数”是4311.若将N的千位数字与个位数字互换,百位数字与十位数字互换,得到一个新的四位数,那么称这个新的数为数N的“反序数”,记作N',例如:N=5321,其“反序数”N′=1235.若一个“三生有幸数”N的十位数字为x,个位数字为y,设P(N)=,若P(N)除以6余数是1,则所有满足题意的四位正整数N的最大值与最小值的差是2729.【答案】4311;3331.三.解答题(共9小题,满分78分)19.(8分)计算:(1)(﹣3x+2)(﹣3x﹣2)﹣5x(1﹣x)+(2x+1)(x﹣5)(2).【答案】16x2-14x-9;20.(8分)解方程:(1);(2).【答案】(1)x=4;(2)无解.21.(8分)将下列各式因式分解(1)x2(m﹣2)+y2(2﹣m)(2)x2+2x﹣15【答案】(m-2)(x+y)(x-y);(x+5)(x-3).22.(8分)先化简,再求值:(﹣)÷.其中a是x2﹣2x=0的根.【答案】见试题解答内容23.(8分)重庆市2023年体育中考已经结束,现从某校初三年级随机抽取部分学生的成绩进行统计分析(成绩得分用x表示,共分成4个等级,A:30≤x<35,B:35≤x<40,C:40≤x<45,D:45≤x≤50),绘制了如下的统计图,请根据统计图信息解答下列问题:(1)本次共调查了50名学生;(2)请补全条形统计图;(3)在扇形统计图中,m的值是10;B对应的扇形圆心角的度数是108°;(4)若该校初三年级共有2000名学生,估计此次测试成绩优秀(45≤x≤50)的学生共有多少人?【答案】(1)50;(3)10,108°;(4)估计此次测试成绩优秀(45≤x≤50)的学生共有800人.24.(8分)在学习了角平分线的性质后,小明想要去探究直角梯形的两底边与两非直角顶点所连腰的数量关系,于是他对其中一种特殊情况进行了探究:在直角梯形ABCD中,∠B=∠C=90°,AE平分∠BAD交BC于点E,连接DE,当DE平分∠ADC时,探究AB、CD与AD之间的数量关系.他的思路是:首先过点E作AD的垂线,将其转化为证明三角形全等,然后根据全等三角形的对应边相等使问题得到解决.请根据小明的思路完成下面的作图与填空:证明:用直尺和圆规,过点E作AD的垂线,垂足为点F.(只保留作图痕迹)∵∠B=90°∴EB⊥AB∵AE平分∠BAD,EF⊥AD∴①(角平分线的性质)在Rt△ABE和Rt△AFE中∵∴Rt△ABE≌Rt△AFE(HL).∴③同理可得:DC=DF∴AB+CD=④即AB+CD=AD.【答案】①EB=EF,②AE=AE③.AB=AF,④AF+FD.25.(10分)为落实“双减政策”,某校购进“红色教育”和“传统文化”两种经典读本,花费分别是14000元和7000元,已知“红色教育”经典读本的订购单价是“传统文化”经典读本的订购单价的 1.4倍,并且订购的“红色教育”经典读本的数量比“传统文化”经典读本的数量多300本.(1)求该学校订购的两种经典读本的单价分别是多少元;(2)该学校拟计划再订购这两种经典读本共1000本,其中“传统文化”经典读本订购数量不超过400本且总费用不超过12880元,求该学校订购这两种读本的最低总费用.【答案】(1)“红色教育”的订购单价是14元,“传统文化”经典读本的单价是10元;(2)12400元26.(10分)如图1,点A(0,a),B(b,0),且a,b满足|a﹣4|+=0.(1)求A,B两点的坐标.(2)如图2,点C(﹣3,n)在线段AB上,点D在y轴负半轴上,连接CD交x轴负半轴于点M,且S△MBC =S△MOD,求点D的坐标.(3)平移直线AB,交x轴正半轴于点E,交y轴于点F,P为直线EF上的第三象限内的一点,过点P作PG⊥x轴于点G,若S△P AB=20,且GE=12,求点P的坐标.【答案】(1)A(0,4),B(﹣6,0);(2)D(0,﹣4);(3)(﹣8,﹣8).27.(10分)△ABC中,点D为AC边上一点,连接BD,在线段BD上取一点E,连接EC.(1)如图1,若∠BAC=90°,BC=AB,tan∠ABC=2,点D,E分别为AC,BD中点,BC=a,求△CDE的面积(结果用含a的代数式表示);(2)如图2,若EB=EC,过点E作EF⊥AC于点F,F在线段AD上(F与A,D不重合),过点E作EG∥AC交BC于点G,∠ABD=30°,AF=CF,求证:2CG+EG=BC;(3)如图3,若△ABC是等边三角形,且AE⊥BD,∠DEC=60°,AB=2,直接写出线段DE的长.【答案】(1)a2;(3).。
人教版八年级上册数学期末考试试卷含答案
人教版八年级上册数学期末考试试题一、单选题1.点M (﹣2,1)关于x 轴的对称点N 的坐标是()A .(2,1)B .(﹣2,1)C .(﹣2,﹣1)D .(2,﹣1)2.使分式321x x --有意义的x 的取值范围是()A .x >12B .x <12C .x≠3D .x≠123.一个三角形的两边长分别为3cm 和8cm ,则此三角形第三边长可能是()A .3cmB .5cmC .7cmD .11cm4.如图,已知ABC DCB ∠=∠,添加以下条件,不能判定ABC DCB ∆≅∆的是()A .AB DC =B .BE CE =C .AC DB=D .A D∠=∠5.如果2(2)9x m x +-+是个完全平方式,那么m 的值是()A .8B .-4C .±8D .8或-46.若分式211x x -+的值为0,则x 的值为().A .0B .1C .﹣1D .±17.下列运算正确的是()A .x 2+x 2=2x 4B .a 2•a 3=a 5C .(﹣2x 2)4=16x 6D .(x+3y )(x ﹣3y )=x 2﹣3y 28.如图,已知D 为△ABC 边AB 的中点,E 在AC 上,将△ABC 沿着DE 折叠,使A 点落在BC 上的F 处.若∠B=65°,则∠BDF 等于()A .65°B .50°C .60°D .57.5°9.若(x+a )(x 2﹣x ﹣b )的乘积中不含x 的二次项和一次项,则常数a 、b 的值为()A.a=1,b=﹣1B.a=﹣1,b=1C.a=1,b=1D.a=﹣1,b=﹣1 10.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于12MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,有下列说法:①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC:S△ABC=1:3.其中说法正确的个数是()A.1B.2C.3D.4二、填空题11.当x≠__时,分式11xx-+有意义.12.分解因式:3x2﹣12xy+12y2=_____.13.数据0.0000000001,用科学记数法表示为____.14.关于x的分式方程3111mx x+=--的解为正数,则m的取值范围是________.15.若一个正多边形的每一个外角都是30°,则这个正多边形的内角和等于____度.16.已知m+2n+2=0,则2m•4n的值为_____.17.如图,△ABC的两条高BD、CE相交于点O且OB=OC.则下列结论:①△BEC≌△CDB;②△ABC是等腰三角形;③AE=AD;④点O在∠BAC的平分线上,其中正确的有_____.(填序号)18.如图,已知每个小方格的边长为1,A、B两点都在小方格的格点(顶点)上,请在图中找一个格点C,使△ABC是等腰三角形,这样的格点C有________个。
人教版数学八年级上册期末考试试卷附答案
人教版数学八年级上册期末考试试题一、选择题(每小题只有一个正确答案。
每小题2分,共12分)1.(2分)下列平面图形中,不是轴对称图形的是()A.B.C.D.2.(2分)计算(﹣2x2y)3的结果是()A.﹣2x5y3B.﹣8x6y3C.﹣2x6y3D.﹣8x5y33.(2分)如果代数式有意义,那么x的取值范围是()A.x≥0B.x≠1C.x>0D.x≥0且x≠1 4.(2分)一个三角形的三条边长分别为1、2、x,则x的取值范围是()A.1≤x≤3B.1<x≤3C.1≤x<3D.1<x<3 5.(2分)如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()A.180°B.220°C.240°D.300°6.(2分)如图,已知∠1=∠2,∠B=∠C,下列结论:(1)AB=AC;(2)∠BAE=∠CAD;(3)BE=DC;(4)AD=DE.中正确的个数是()A.1B.2C.3D.4二、填空题(每小题3分,共24分)7.(3分)芝麻作为食品和药物,均广泛使用.经测算,一粒芝麻约有0.00000201千克,用科学记数法表示为.8.(3分)因式分解:ax2﹣ay2=.9.(3分)已知等腰三角形两边的长分别是9和4,则它的周长为.10.(3分)如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,需添加一个条件是.(只需添加一个条件即可)11.(3分)如图是某超市一层到二层滚梯示意图.其中AB、CD分别表示超市一层、二层滚梯口处地面的水平线,∠ABC=150°,BC的长约为12米,则乘滚梯从点B到点C上升的高度h约为米.12.(3分)将一副直角三角板如图摆放,点C在EF上,AC经过点D.已知∠A=∠EDF =90°,AB=AC.∠E=30°,∠BCE=40°,则∠CDF=.13.(3分)计算+的结果是.14.(3分)如图,在△ABC中,CD是它的角平分线,DE⊥AC于点E.若BC=6cm,DE =2cm,则△BCD的面积为cm2.三、解答题(每题5分,共20分)15.(5分)计算:(π﹣3.14)0+()﹣1﹣|﹣2|﹣(﹣1)2020.16.(5分)计算:(a+3)(a﹣1)+a(a﹣2)17.(5分)已知一个多边形的内角和与外角和之比为9:2,求它的边数.18.(5分)解分式方程:﹣=1.四、解答题(每小题7分,共28分)19.(7分)如图,在平面直角坐标系中.(1)请画出△ABC关于y轴对称的△AB1C1,并写出B1、C1的坐标;=;(2)直接写出△ABC的面积:S△ABC(3)在x轴上找到一点P,使PA+PC的值最小,请标出点P在坐标轴上的位置.20.(7分)如图,已知点A、F、E、C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.21.(7分)已知:a+b=4,ab=2,求下列式子的值:①a2+b2②(a﹣b)222.(7分)如图所示,在△ABC中,BO,CO分别平分∠ABC和∠ACB;BD、CD分别平分∠ABC和∠ACB的外角.(1)若∠BAC=70°,求:∠BOC的度数;(2)探究∠BDC与∠A的数量关系.(直接写出结论,无需说明理由)五、解答题(每小题8分,共16分)23.(8分)学校在假期内对教室内的黑板进行整修,需在规定日期内完成.如果由甲工程小组做,恰好按期完成;如果由乙工程小组做,则要超过规定日期3天.结果两队合作了2天,余下部分由乙组独做,正好在规定日期内完成,问规定日期是几天?24.(8分)如图1,等边△ABC中,AD是BC边上的中线,E为AD上一点(点E与点A 不重合),以CE为一边且在CE下方作等边△CEF,连接BF.(1)猜想线段AE,BF的数量关系:(不必证明);(2)当点E为AD延长线上一点时,其它条件不变.①请你在图2中补全图形;②(1)中结论成立吗?若成立,请证明;若不成立请说明理由.六、解答题(每小题10分,共20分)25.(10分)如图①所示,从边长为a的正方形纸片中剪去一个边长为b的小正方形,再沿虚线AB剪开,把剪成的两张纸片拼成如图②所示的等腰梯形.(1)设图①中阴影部分的面积为S1,图②中阴影部分面积为S2,请直接用含a,b的式子表示S1和S2.(2)请写出上述过程中所揭示的乘法公式;(3)用这个乘法公式计算:①(x﹣)(x+)(x2+);②107×93.26.(10分)在△ABC中,AB=AC=2,∠B=40°,D是线段BC上一动点(不与B、C 两点重合),且∠ADE=40°.(1)若∠BDA=115°,则∠CDE=,∠AED=;(2)当DC等于多少时,△ABD≌△DCE?试说明理由;(3)在D点运动过程中,能使△ADE是等腰三角形吗?若能,请求出使△ADE是等腰三角形时的∠ADB的度数;若不能,请说明理由.答案与解析一、单项选择题1.(2分)下列平面图形中,不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析.【解答】解:A、是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项不合题意;C、不是轴对称图形,故此选项符合题意;D、是轴对称图形,故此选项不合题意;故选:C.【点评】此题主要考查了轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.(2分)计算(﹣2x2y)3的结果是()A.﹣2x5y3B.﹣8x6y3C.﹣2x6y3D.﹣8x5y3【分析】积的乘方法则,把每一个因式分别乘方,再把所得的幂相乘,据此求解即可.【解答】解:(﹣2x2y)3=(﹣2)3(x2)3y3=﹣8x6y3.故选:B.【点评】本题主要考查了幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键.3.(2分)如果代数式有意义,那么x的取值范围是()A.x≥0B.x≠1C.x>0D.x≥0且x≠1【分析】代数式有意义的条件为:x﹣1≠0,x≥0.即可求得x的范围.【解答】解:根据题意得:x≥0且x﹣1≠0.解得:x≥0且x≠1.故选:D.【点评】式子必须同时满足分式有意义和二次根式有意义两个条件.分式有意义的条件为:分母≠0;二次根式有意义的条件为:被开方数≥0.此类题的易错点是忽视了二次根式有意义的条件,导致漏解情况.4.(2分)一个三角形的三条边长分别为1、2、x,则x的取值范围是()A.1≤x≤3B.1<x≤3C.1≤x<3D.1<x<3【分析】已知两边,则第三边的长度应是大于两边的差而小于两边的和,这样就可求出第三边长的范围.【解答】解:根据题意得:2﹣1<x<2+1,即1<x<3.故选:D.【点评】考查了三角形三边关系,本题需要理解的是如何根据已知的两条边求第三边的范围.5.(2分)如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()A.180°B.220°C.240°D.300°【分析】本题可先根据等边三角形顶角的度数求出两底角的度数和,然后在四边形中根据四边形的内角和为360°,求出∠α+∠β的度数.【解答】解:∵等边三角形的顶角为60°,∴两底角和=180°﹣60°=120°;∴∠α+∠β=360°﹣120°=240°;故选:C.【点评】本题综合考查等边三角形的性质及三角形内角和为180°,四边形的内角和是360°等知识,难度不大,属于基础题6.(2分)如图,已知∠1=∠2,∠B=∠C,下列结论:(1)AB=AC;(2)∠BAE=∠CAD;(3)BE=DC;(4)AD=DE.中正确的个数是()A.1B.2C.3D.4【分析】先证AB=AC,再证△ABE≌△ACD(AAS)得AD=AE,BE=CD,∠BAE =∠CAD,即可得出结论.【解答】解:∵∠B=∠C,∴AB=AC,故(1)正确;在△ABE和△ACD中,,∴△ABE≌△ACD(AAS),∴AD=AE,BE=CD,∠BAE=∠CAD,故(2)(3)正确,(4)错误,正确的个数有3个,故选:C.【点评】本题考查了全等三角形的判定与性质、等腰三角形的判定等知识,熟练掌握全等三角形的判定与性质是本题的关键.二、填空题(每小题3分,共24分)7.(3分)芝麻作为食品和药物,均广泛使用.经测算,一粒芝麻约有0.00000201千克,用科学记数法表示为 2.01×10﹣6.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000201=2.01×10﹣6.故答案为:2.01×10﹣6.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.(3分)因式分解:ax2﹣ay2=a(x+y)(x﹣y).【分析】首先提取公因式a,再利用平方差公式分解因式得出答案.【解答】解:ax2﹣ay2=a(x2﹣y2)=a(x+y)(x﹣y).故答案为:a(x+y)(x﹣y).【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用平方差公式是解题关键.9.(3分)已知等腰三角形两边的长分别是9和4,则它的周长为22.【分析】因为等腰三角形的两边分别为4和9,但没有明确哪是底边,哪是腰,所以有两种情况,需要分类讨论.【解答】解:当4为底时,其它两边都为9,即:9、9、4可以构成三角形,周长为22;当4为腰时,其它两边为9和4,因为4+4=8<9,所以不能构成三角形,故舍去.所以答案只有22.故答案为:22.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.10.(3分)如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,需添加一个条件是∠D=∠B.(只需添加一个条件即可)【分析】利用全等三角形的判定与性质进而得出当∠D=∠B时,△ADF≌△CBE.【解答】解:当∠D=∠B时,在△ADF和△CBE中∵,∴△ADF≌△CBE(SAS),故答案为:∠D=∠B.(答案不唯一)11.(3分)如图是某超市一层到二层滚梯示意图.其中AB、CD分别表示超市一层、二层滚梯口处地面的水平线,∠ABC=150°,BC的长约为12米,则乘滚梯从点B到点C上升的高度h约为6米.【分析】先过点C作CE⊥AB,交AB的延长线于E,易求∠CBE=30°,在Rt△BCE中可知CE=BC,进而可求CE.【解答】解:过点C作CE⊥AB,交AB的延长线于E,如右图,∵∠ABC=150°,∴∠CBE=30°,在Rt△BCE中,∵BC=12,∠CBE=30°,∴CE=BC=6.故答案是6.【点评】本题考查了含30°角的直角三角形的性质,解题的关键是作辅助线构造直角三角形.12.(3分)将一副直角三角板如图摆放,点C在EF上,AC经过点D.已知∠A=∠EDF =90°,AB=AC.∠E=30°,∠BCE=40°,则∠CDF=25°.【分析】由∠A=∠EDF=90°,AB=AC.∠E=30°,∠BCE=40°,可求得∠ACE的度数,又由三角形外角的性质,可得∠CDF=∠ACE﹣∠F=∠BCE+∠ACB﹣∠F,继而求得答案.【解答】解:∵AB=AC,∠A=90°,∴∠ACB=∠B=45°,∵∠EDF=90°,∠E=30°,∴∠F=90°﹣∠E=60°,∵∠ACE=∠CDF+∠F,∠BCE=40°,∴∠CDF=∠ACE﹣∠F=∠BCE+∠ACB﹣∠F=45°+40°﹣60°=25°.故答案为:25°.13.(3分)计算+的结果是.【分析】利用分式加减法的计算方法进行计算即可.【解答】解:原式=﹣===,故答案为:.14.(3分)如图,在△ABC中,CD是它的角平分线,DE⊥AC于点E.若BC=6cm,DE =2cm,则△BCD的面积为6cm2.【分析】作DF⊥BC于F,根据角平分线的性质求出DF,根据三角形的面积公式计算即可.【解答】解:作DF⊥BC于F,∵CD是它的角平分线,DE⊥AC,DF⊥BC,∴DF=DE=2,∴△BCD的面积=×BC×DF=6(cm2),故答案为:6.【点评】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.三、解答题(每题5分,共20分)15.(5分)计算:(π﹣3.14)0+()﹣1﹣|﹣2|﹣(﹣1)2020.【分析】先算零指数幂、负整数指数幂、绝对值、乘方,再算加减法即可求解.【解答】解:(π﹣3.14)0+()﹣1﹣|﹣2|﹣(﹣1)2020=1+2﹣2﹣1=0.【点评】考查了实数的运算,解决此类题目的关键是熟练掌握零指数幂、负整数指数幂、绝对值、乘方等知识点的运算.16.(5分)计算:(a+3)(a﹣1)+a(a﹣2)【分析】根据整式混合运算的顺序和法则分别进行计算,再把所得结果合并即可.【解答】解:(a+3)(a﹣1)+a(a﹣2)=a2+2a﹣3+a2﹣2a=2a2﹣3;【点评】此题考查了整式的混合运算,在计算时要注意混合运算的顺序和法则以及运算结果的符号,是一道基础题.17.(5分)已知一个多边形的内角和与外角和之比为9:2,求它的边数.【分析】根据多边形的内角和与外角和之间的关系列出有关边数n的方程求解即可.【解答】解:设该多边形的边数为n则(n﹣2)×180°:360=9:2,解得:n=11.故它的边数为11.【点评】本题考查了多边形的内角与外角,解题的关键是牢记多边形的内角和公式与外角和定理.18.(5分)解分式方程:﹣=1.【分析】先去分母,再解整式方程,一定要验根.【解答】解:﹣=1(x+1)2﹣4=x2﹣1x2+2x+1﹣4=x2﹣1x=1,检验:把x=1代入x2﹣1=1﹣1=0,∴x=1不是原方程的根,原方程无解.【点评】本题考查了解分式方程,掌握分式方程一定要验根是解题的关键.四、解答题(每小题7分,共28分)19.(7分)如图,在平面直角坐标系中.(1)请画出△ABC关于y轴对称的△AB1C1,并写出B1、C1的坐标;=5;(2)直接写出△ABC的面积:S△ABC(3)在x轴上找到一点P,使PA+PC的值最小,请标出点P在坐标轴上的位置.【分析】(1)利用关于y轴对称的点的坐标特征写出B1、C1的坐标,然后描点即可;(2)用一个矩形的面积分别减去三个直角三角形的面积去计算△ABC的面积;(3)作A点关于x轴的对称点A′,然后连接A′C交x轴于P点.【解答】解:(1)如图,△AB1C1为所作,B1(﹣2,﹣4),C1(﹣4,﹣1);=3×4﹣×2×2﹣×2×3﹣×4×1=5;(2)S△ABC故答案为5;(3)如图,点P为所作.【点评】本题考查了作图﹣轴对称变换:几何图形都可看做是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的.也考查了最短路径问题.20.(7分)如图,已知点A、F、E、C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两组全等三角形;(2)从(1)中任选一组进行证明.【分析】(1)根据题目所给条件可分析出△ABE≌△CDF,△AFD≌△CEB;(2)根据AB∥CD可得∠1=∠2,根据AF=CE可得AE=FC,然后再证明△ABE≌△CDF即可.【解答】解:(1)△ABE≌△CDF,△AFD≌△CEB;(2)∵AB∥CD,∴∠1=∠2,∵AF=CE,∴AF+EF=CE+EF,即AE=FC,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS).【点评】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.21.(7分)已知:a+b=4,ab=2,求下列式子的值:①a2+b2;②(a﹣b)2.【分析】①根据(a+b)2=a2+2ab+b2,可得a2+b2=(a+b)2﹣2ab,再把a+b=4,ab=2代入计算即可;②根据(a﹣b)2=a2﹣2ab+b2=(a+b)2﹣4ab,再把a+b=4,ab=2代入计算即可.【解答】解:∵a+b=4,ab=2,∴①a2+b2=(a+b)2﹣2ab=42﹣2×2=16﹣4=12;②(a﹣b)2=a2﹣2ab+b2=(a+b)2﹣4ab=42﹣4×2=16﹣8=8.【点评】本题考查完全平方公式的应用,根据题中条件,变换形式即可.22.(7分)如图所示,在△ABC中,BO,CO分别平分∠ABC和∠ACB;BD、CD分别平分∠ABC和∠ACB的外角.(1)若∠BAC=70°,求:∠BOC的度数;(2)探究∠BDC与∠A的数量关系.(直接写出结论,无需说明理由)【分析】(1)根据三角形的角平分线定义和三角形的内角和定理求出∠OBC+∠OCB的度数,再根据三角形的内角和定理即可求出∠BOC的度数;(2)根据三角形外角平分线的性质可得∠BCD=(∠A+∠ABC)、∠DBC=(∠A+∠ACB);根据三角形内角和定理可得∠BDC=90°﹣∠A.【解答】解:(1)∵OB、OC分别是∠ABC和∠ACB的角平分线,∴∠OBC+∠OCB=∠ABC+∠ACB=(∠ABC+∠ACB),∵∠A=70°,∴∠OBC+∠OCB=(180°﹣70°)=55°,∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣55°=125°;(2)∠BDC=90°﹣∠A.理由如下:∵BD、CD为△ABC两外角∠ABC、∠ACB的平分线,∴∠BCD=(∠A+∠ABC)、∠DBC=(∠A+∠ACB),由三角形内角和定理得,∠BDC=180°﹣∠BCD﹣∠DBC,=180°﹣[∠A+(∠A+∠ABC+∠ACB)],=180°﹣(∠A+180°),=90°﹣∠A;【点评】本题考查的是三角形内角和定理,涉及到三角形内角与外角的关系,角平分线的性质,三角形内角和定理,结合图形,灵活运用基本知识解决问题.五、解答题(每小题8分,共16分)23.(8分)学校在假期内对教室内的黑板进行整修,需在规定日期内完成.如果由甲工程小组做,恰好按期完成;如果由乙工程小组做,则要超过规定日期3天.结果两队合作了2天,余下部分由乙组独做,正好在规定日期内完成,问规定日期是几天?【分析】由题意可知甲的工作效率=1÷规定日期,乙的工作效率=1÷(规定日期+3);根据“结果两队合作了2天,余下部分由乙组独做,正好在规定日期内完成”可知甲做两天的工作量+乙做规定日期的工作量=1,由此可列出方程.【解答】解:设规定日期为x天,根据题意,得2(+)+×(x﹣2)=1解这个方程,得x=6经检验,x=6是原方程的解.∴原方程的解是x=6.答:规定日期是6天.【点评】找到关键描述语,找到等量关系是解决问题的关键.本题主要考查的等量关系为:工作时间=工作总量÷工作效率,当题中没有一些必须的量时,为了简便,应设其为1.24.(8分)如图1,等边△ABC中,AD是BC边上的中线,E为AD上一点(点E与点A 不重合),以CE为一边且在CE下方作等边△CEF,连接BF.(1)猜想线段AE,BF的数量关系:AE=BF(不必证明);(2)当点E为AD延长线上一点时,其它条件不变.①请你在图2中补全图形;②(1)中结论成立吗?若成立,请证明;若不成立请说明理由.【分析】(1)利用等边三角形的性质得出AC=BC,CE=CF,∠ACB=∠ECF=60°,进而得出∠ACE=∠BCF,进而判断出△ACE≌△BCF,即可得出结论;(2)①由题意补全图形,即可得出结论;②同(1)的方法,即可得出结论.【解答】解:(1)AE=BF,理由:∵△ABC和△CEF是等边三角形,∴AC=BC,CE=CF,∠ACB=∠ECF=60°,∴∠ACB﹣∠BCE=∠ECF﹣∠BCE,∴∠ACE=∠BCF,在△ACE和△BCF中,,∴△ACE≌△BCF(SAS),∴AE=BF,故答案为:AE=BF;(2)①补全图形如图2所示;②AE=BF仍然成立,理由:∵△ABC和△CEF是等边三角形,∴AC=BC,CE=CF,∠ACB=∠ECF=60°,∴∠ACB+∠BCE=∠ECF+∠BCE,∴∠ACE=∠BCF,在△ACE和△BCF中,,∴△ACE≌△BCF(SAS),∴AE=BF.【点评】此题是三角形综合题,主要考查了等边三角形的性质,全等三角形的判定和性质,判断出△ACE≌△BCF是解本题的关键.六、解答题(每小题10分,共20分)25.(10分)如图①所示,从边长为a的正方形纸片中剪去一个边长为b的小正方形,再沿虚线AB剪开,把剪成的两张纸片拼成如图②所示的等腰梯形.(1)设图①中阴影部分的面积为S1,图②中阴影部分面积为S2,请直接用含a,b的式子表示S1和S2.(2)请写出上述过程中所揭示的乘法公式;(3)用这个乘法公式计算:①(x﹣)(x+)(x2+);②107×93.【分析】(1)图①中的阴影部分的面积为两个正方形的面积差,图②中的阴影部分是上底为2b,下底为2a,高为a﹣b的梯形,利用梯形面积公式可得答案;(2)图①、图②面积相等可得等式;(3)①连续两次利用平方差公式可求结果;②将107×93转化为(100+7)(100﹣7),即可利用平方差公式求出结果.【解答】解:(1)S1=a2﹣b2,S2=(2a+2b)(a﹣b)=(a+b)(a﹣b);(2)a2﹣b2=(a+b)(a﹣b);(3)①原式=(x2﹣)(x2+)=x4﹣;②107×93=(100+7)(100﹣7)=1002﹣72=10000﹣49=9951.【点评】本题考查平方差公式的几何背景,掌握平方差公式的结构特征是解决问题的关键.26.(10分)在△ABC中,AB=AC=2,∠B=40°,D是线段BC上一动点(不与B、C 两点重合),且∠ADE=40°.(1)若∠BDA=115°,则∠CDE=25°,∠AED=65°;(2)当DC等于多少时,△ABD≌△DCE?试说明理由;(3)在D点运动过程中,能使△ADE是等腰三角形吗?若能,请求出使△ADE是等腰三角形时的∠ADB的度数;若不能,请说明理由.【分析】(1)利用等腰三角形的性质和三角形的外角性质解答即可;(2)先求出∠ADB=∠DEC,再由∠B=∠C,AB=DC=2,即可得出△ABD≌△DCE (AAS);(3)分两种情况讨论即可.【解答】解:(1)∵AB=AC,∴∠B=∠C=∠40°,∵∠BDA=115°,∴∠ADC=180°﹣115°=65°,∴∠CDE=∠ADC﹣∠ADE=65°﹣40°=25°,∴∠AED=∠CDE+∠C=25°+40°=65°,故答案为:25°,65°;(2)当DC=2时,△ABD≌△DCE,理由如下:∵∠C=40°,∴∠DEC+∠EDC=140°,∵∠ADE=40°,∴∠ADB+∠EDC=140°,∴∠ADB=∠DEC,在△ABD和△DCE中,,∴△ABD≌△DCE(AAS);(3)△ADE能成为等腰三角形,理由如下:∵∠ADE=∠C=40°,∠AED>∠C,∴△ADE为等腰三角形时,只能是AD=DE或AE=DE,当AD=DE时,∠DAE=∠DEA=(180°﹣40°)=70°,∴∠EDC=∠AED﹣∠C=70°﹣40°=30°,∴∠ADB=180°﹣40°﹣30°=110°;当EA=ED时,∠ADE=∠DAE=40°,∴∠AED=180°﹣40°﹣40°=100°,∴∠EDC=∠AED﹣∠C=100°﹣40°=60°,∴∠ADB=180°﹣40°﹣60°=80°;综上所述,当∠ADB的度数为110°或80°时,△ADE是等腰三角形.【点评】此题考查了等腰三角形的判定与性质,全等三角形的判定与性质,三角形外角的性质等知识点,此题涉及到的知识点较多,综合性较强.21。
人教版数学八年级上册期末考试试卷及答案
人教版数学八年级上册期末考试试题一、选择题(共10小题,每小题3分,共30分)1.已知点M(3,a)和N(b,4)关于x轴对称,则a的值为()A.4B.﹣4C.3D.﹣32.中x的取值范围是()A.x≥0B.x≥﹣1C.x≥1D.x>13.若分式的值为0,则x的值为()A.x=﹣3B.x=2C.x≠﹣3D.x≠24.下列计算正确的是()A.a2+a3=a5B.a3•a3=a9C.(a3)2=a6D.(ab)2=ab2 5.下列从左到右的变形,是分解因式的为()A.x2﹣x=x(x﹣1)B.a(a﹣b)=a2﹣abC.(a+3)(a﹣3)=a2﹣9D.x2﹣2x+1=x(x﹣2)+16.如果(x+m)与(x+1)的乘积中不含x的一次项,则m的值为()A.1B.﹣1C.±1D.07.如图,△ABC中,AD是高,角平分线BE交AD于点F,若∠BAC=60°,∠C=70°,则∠DFB的度数为()A.75°B.65°C.60°D.55°8.下列计算中,正确的是()A.B.C.D.9.如图,BE,CE分别平分∠ABC,∠ACD,EF∥BC,交AB于点F,交AC于点G,若BF=7,CG=5,则FG长为()A.2B.2.5C.3D.3.510.如图,△ABC中,∠B=2∠A,∠ACB的平分线CD交AB于点D,已知AC=16,BC =9,则BD的长为()A.6B.7C.8D.9二、填空题:(本题有6个小题,每小题3分,共18分)11.三角形的三边长分别为2,x,5,则x的取值范围是12.计算:=.13.已知a m=2,a n=12,则a n﹣m=.14.如图,已知A(1,3),在坐标轴上找点B,使△AOB为等腰三角形,符合条件的点有个.15.化简=.16.如图,点M是等边△ABC的边BC的中点,AB=4,射线CD⊥BC于点C,点P是射线CD上一动点,点N是线段AB上一动点,当MP+NP的值最小时,则AN长为.三、解答题(本题有9个小题,共72分)17.计算:(1);(2).18.分解因式:(1)x3﹣x;(2)x(x﹣4)+4;(3)x2﹣2x﹣15.19.先化简,再求值:,其中.20.如图.在△ABC和△DEF中,B、E、C、F在同一直线上,AB=DE,BE=CF,AB∥ED.求证:AC=DF.21.(1)已知a2+b2=5,ab=﹣2,求a+b的值;(2)已知,求的值.22.小佳与小灵共同清点一批图书,已知小佳清点完240本图书所用的时间与小灵清点完300本图书所用的时间相同,且小灵平均每分钟比小佳多清点5本,小佳平均每分钟清点图书多少本?23.(1)观察探究:①;②;③.(2)尝试练习:(仿照上面化简过程,写出①的化简过程,直接写出②化简结果)①;②;(3)拓展应用:①化简:;②计算的值.24.如图1,已知△ABC为正三角形,以AC为腰作等腰三角形ACD,使AC=AD.(1)若∠CAD=30°,则∠BDC的度数为;(2)若∠CAD的大小在0°~90°范围内之间任意改变,∠BDC的度数是否随之改变?请说明理由;(3)E是DC延长线上一点,且EB=ED,连接AE,如图2,试探究EA,EB,EC之间的关系.25.如图1,已知A(0,a),B(b,0),a,b满足a 2﹣6a+9+=0.(1)求a,b的值;(2)如图2,以AB为斜边作等腰直角三角形ABC,求证:射线OC是∠AOB的平分线;(3)以(2)中的点C为直角顶点作∠DCE,交x轴于点D,交y轴于点E,设D(m,0),E(0,n),当∠DCE绕点C任意旋转时(角的两边不与x,y轴平行),m+n的值是否改变?若不改变,请求出m+n的值;若改变,请说明理由.答案与解析一、选择题(本题共10小题,每小题3分,共30分)1.已知点M(3,a)和N(b,4)关于x轴对称,则a的值为()A.4B.﹣4C.3D.﹣3【分析】关于x轴对称的点,横坐标相同,纵坐标互为相反数.据此可得a的值.解:∵点M(3,a)和N(b,4)关于x轴对称,∴a=﹣4.故选:B.2.中x的取值范围是()A.x≥0B.x≥﹣1C.x≥1D.x>1【分析】根据二次根式中的被开方数是非负数,进而得出答案.解:有意义,则x﹣1≥0,解得:x≥1.故选:C.3.若分式的值为0,则x的值为()A.x=﹣3B.x=2C.x≠﹣3D.x≠2【分析】直接利用分式的值为零的条件分析得出答案.解:∵分式的值为0,∴x+3=0,解得:x=﹣3.故选:A.4.下列计算正确的是()A.a2+a3=a5B.a3•a3=a9C.(a3)2=a6D.(ab)2=ab2【分析】根据合并同类项法则,同底数幂的乘法法则、幂的乘方法则、积的乘方法则,对各选项分析判断后得结论.解:因为a2与a3不是同类项,所以选项A不正确;a3•a3=a6≠a9,所以选项B不正确;(a3)2=a3×2=a6,所以选项C正确;(ab)2=a2b2≠ab2,所以选项D不正确.故选:C.5.下列从左到右的变形,是分解因式的为()A.x2﹣x=x(x﹣1)B.a(a﹣b)=a2﹣abC.(a+3)(a﹣3)=a2﹣9D.x2﹣2x+1=x(x﹣2)+1【分析】根据因式分解的意义求解即可.解:A、把一个多项式转化成几个整式积的形式,故A符合题意;B、是整式的乘法,故B不符合题意;C、是整式的乘法,故C不符合题意;D、没把一个多项式转化成几个整式积的形式,故D不符合题意;故选:A.6.如果(x+m)与(x+1)的乘积中不含x的一次项,则m的值为()A.1B.﹣1C.±1D.0【分析】先算乘法,再合并同类项,根据已知条件得出1+m=0,再求出答案即可.解:(x+m)(x+1)=x2+x+mx+m=x2+(1+m)x+m,∵(x+m)与(x+1)的乘积中不含x的一次项,∴1+m=0,解得:m=﹣1,故选:B.7.如图,△ABC中,AD是高,角平分线BE交AD于点F,若∠BAC=60°,∠C=70°,则∠DFB的度数为()A.75°B.65°C.60°D.55°【分析】由三角形的内角和可求得∠ABC=50°,再由角平分线的定义可得∠CBE=25°,结合AD是高,即可求∠DFB的度数.解:∵∠BAC=60°,∠C=70°,∴∠ABC=180°﹣∠BAC﹣∠C=50°,∵角平分线BE交AD于点F,∴∠CBE=25°,∵AD是高,∴∠BDA=90°,∴∠DFB=180°﹣∠BDA﹣∠CBE=65°.故选:B.8.下列计算中,正确的是()A.B.C.D.【分析】根据二次根式的乘法运算法则即可求出答案.解:A、原式=5﹣2+3=8﹣2,故A不符合题意.B、原式=×+×=+,故B不符合题意.C、原式=a﹣+﹣,故C不符合题意.D、原式=3﹣2=1,故D符合题意.故选:D.9.如图,BE,CE分别平分∠ABC,∠ACD,EF∥BC,交AB于点F,交AC于点G,若BF=7,CG=5,则FG长为()A.2B.2.5C.3D.3.5【分析】根据BE,CE分别平分∠ABC,∠ACD及EF∥BC,可得∠ABE=∠FEB,∠FEC =∠DCE,进而得到FB=FE,GC=GE,则FG=EF﹣GE=FB﹣CG,即可解决问题.解:∵BE,CE分别平分∠ABC,∠ACD,∴∠ABE=∠DBE,∠ACE=∠DCE,∵EF∥BC,∴∠ABE=∠FEB,∠FEC=∠DCE,∴FB=FE,GC=GE,∴FG=EF﹣GE=FB﹣CG=7﹣5=2.故选:A.10.如图,△ABC中,∠B=2∠A,∠ACB的平分线CD交AB于点D,已知AC=16,BC =9,则BD的长为()A.6B.7C.8D.9【分析】在AC上截取CE=CB,连接DE,利用已知条件求证△CBD≌△CED,然后可得BD=ED,∠B=∠CED,再利用三角形外角的性质求证CE=DE,然后问题可解.解:如图,在AC上截取CE=CB,连接DE,∵∠ACB的平分线CD交AB于点D,∴∠BCD=∠ECD.在△CBD与△CED中,.∴△CBD≌△CED(SAS),∴BD=ED,∠B=∠CED,∵∠B=2∠C,∠CED=∠A+∠ADE,∴∠CED=2∠A,∴∠A=∠EDA,∴AE=ED,∴AE=BD,∴BD=AC﹣CE=AC﹣BC=16﹣9=7.故选:B.二、填空题:(本题有6个小题,每小题3分,共18分)11.三角形的三边长分别为2,x,5,则x的取值范围是3<x<7【分析】根据三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边.解:由题意,有5﹣2<x<2+5,解得:3<x<7,故答案为:3<x<712.计算:=3.【分析】直接利用二次根式的性质化简求出答案.解:=3.故答案为:3.13.已知a m=2,a n=12,则a n﹣m=6.【分析】根据同底数幂的除法的逆运算可得答案.解:∵a m=2,a n=12,∴a n﹣m=a n÷a m=12÷2=6.故答案为:6.14.如图,已知A(1,3),在坐标轴上找点B,使△AOB为等腰三角形,符合条件的点有8个.【分析】分OA是底边和腰两种情况进行讨论即可判断.解:当OA是底边时,B在线段OA的中垂线上,与坐标轴有2个交点,则满足条件的有2个;当OA是腰,O是顶角顶点时,B是以O为圆心,以OA为半径的圆与坐标轴的交点,共有4个点;当OA是腰,A是顶角顶点时,B是以A为圆心,以OA为半径的圆与坐标轴的交点,除去原点O以外有2个点.则满足条件的点有:2+4+2=8个.故答案为:8.15.化简=3.【分析】原式变形后,利用同分母分式的减法法则计算,约分即可得到结果.解:原式=﹣===3.故答案为:3.16.如图,点M是等边△ABC的边BC的中点,AB=4,射线CD⊥BC于点C,点P是射线CD上一动点,点N是线段AB上一动点,当MP+NP的值最小时,则AN长为1.【分析】作点M关于直线CD的对称点G,过G作GN⊥AB于N,交CD于P,则此时,MP+PN的值最小,根据直角三角形的性质得到BG=2BN=6,求得BN=3,于是得到结论.解:∵△ABC是等边三角形,∴AC=BC,∠B=60°,如图,作点M关于直线CD的对称点G,过G作GN⊥AB于N,交CD于P,此时,MP+PN 的值最小,∵点M是BC的中点,∴BM=CM=2,∵点M,点G关于CD对称,∴CM=CG=2,∵∠B=60°,∠BNG=90°,∴∠G=30°,∴BG=2BN=BC+CG=4+2=6,∴BN=3,∴AN=1,故答案为:1.三、解答题(本题有9个小题,共72分)17.计算:(1);(2).【分析】(1)直接利用零指数幂的性质以及负整数指数幂的性质、二次根式的性质分别化简,进而利用有理数的加减运算法则计算得出答案;(2)直接化简二次根式,进而合并得出答案.解:(1)=1﹣+5=5;(2)=3﹣2+﹣=4﹣3.18.分解因式:(1)x3﹣x;(2)x(x﹣4)+4;(3)x2﹣2x﹣15.【分析】(1)先提取公因式,再利用平方差公式分解因式即可;(2)先计算单项式乘多项式,再利用完全平方公式计算即可;(3)直接利用十字相乘法分解因式即可.解:(1)原式=x(x2﹣1)=x(x+1)(x﹣1);(2)原式=x2﹣4x+4=(x﹣2)2;(3)原式=(x﹣5)(x+3).19.先化简,再求值:,其中.【分析】先根据分式的除法法则把除法变成乘法,再根据分式的乘法法则进行计算,再根据分式的减法法则进行计算,最后代入求出答案即可.解:原式=﹣•=﹣=﹣====,当a=时,原式====.20.如图.在△ABC和△DEF中,B、E、C、F在同一直线上,AB=DE,BE=CF,AB∥ED.求证:AC=DF.【分析】由BE=CF,得到BC=EF,根据平行线的性质得到∠B=∠DEC,证得△ABC ≌△DEF,根据全等三角形的性质即可得到结论.【解答】证明:∵BE=CF,∴BE+CE=CF+CE,即BC=EF,∵AB∥DE,∴∠B=∠DEC,在△ABC与△DEF中,,∴△ABC≌△DEF,∴AC=DF.21.(1)已知a2+b2=5,ab=﹣2,求a+b的值;(2)已知,求的值.【分析】(1)先根据完全平方公式求出(a+b)2=a2+b2+2ab=1,再开平方即可;(2)先两边平方得出(a﹣)2=4,再根据完全平方公式展开即可.解:(1)∵a2+b2=5,ab=﹣2,∴(a+b)2=a2+b2+2ab=5+2×(﹣2)=5﹣4=1,∴a+b==±1;(2)∵,∴两边平方得:(a﹣)2=22即a2﹣2a•+=4,∴a2﹣2+=4,∴=4+2=6.22.小佳与小灵共同清点一批图书,已知小佳清点完240本图书所用的时间与小灵清点完300本图书所用的时间相同,且小灵平均每分钟比小佳多清点5本,小佳平均每分钟清点图书多少本?【分析】设小佳平均每分钟清点图书x本,则小灵平均每分钟清点(x+5)本,由题意:小佳清点完240本图书所用的时间与小灵清点完300本图书所用的时间相同,列出分式方程,解方程即可.解:设小佳平均每分钟清点图书x本,则小灵平均每分钟清点(x+5)本,依题意,得:=,解得:x=20.经检验,x=20是原方程的解.答:小佳平均每分钟清点图书20本.23.(1)观察探究:①;②;③.(2)尝试练习:(仿照上面化简过程,写出①的化简过程,直接写出②化简结果)①;②;(3)拓展应用:①化简:;②计算的值.【分析】(2)①类比材料中的化简过程可解答;②根据①找规律可得结论;(3)①类比材料中的化简过程可解答;②根据(1)中的化简找规律可解答.解:(2)①===﹣=﹣;②=﹣=﹣;(3)①化简:===﹣;②=1﹣+﹣+﹣+•••+﹣=1﹣=1﹣=.24.如图1,已知△ABC为正三角形,以AC为腰作等腰三角形ACD,使AC=AD.(1)若∠CAD=30°,则∠BDC的度数为30°;(2)若∠CAD的大小在0°~90°范围内之间任意改变,∠BDC的度数是否随之改变?请说明理由;(3)E是DC延长线上一点,且EB=ED,连接AE,如图2,试探究EA,EB,EC之间的关系.【分析】(1)根据等边三角形的性质得到∠BAC=60°,AB=AC,根据等腰直角三角形的性质、等腰三角形的性质以及三角形内角和定理计算,得到答案;(2)根据等腰三角形的性质、三角形内角和定理计算,得出结论;(3)在线段EA上截取EF=EB,连接BF,证明△ABF≌△CBE,根据全等三角形的性质解答即可.解:(1)∵△ABC为正三角形,∴∠BAC=60°,AB=AC,∵∠CAD=30°,AC=AD,∴∠BAD=90°,AB=AD,∴∠ABD=∠ADB=45°,∵AC=AD,∠CAD=30°,∴∠ACD=∠ADC=×(180°﹣30°)=75°,∴∠BDC=75°﹣45°=30°,故答案为:30°;(2)∠BDC的度数不变,理由如下:∵AC=AD,∴∠ACD=∠ADC=×(180°﹣∠CAD)=90°﹣∠CAD,∵AB=AD,∴∠ABD=∠ADB=×(180°﹣60°﹣∠CAD)=60°﹣∠CAD,∴∠BDC=∠ADC﹣∠ADB=(90°﹣∠CAD)﹣(60°﹣∠CAD)=30°;(3)在线段EA上截取EF=EB,连接BF,∵EB=ED,∴∠EBD=∠EDB=30°,∴∠BED=120°,∵AB=AD,EB=ED,∴AE垂直平分BD,∴∠BEF=60°,∴△BEF为等边三角形,∴BE=BF,∠EBF=60°,∴∠EBF=∠ABC,∴∠ABF=∠CBE,在△ABF和△CBE中,,∴△ABF≌△CBE(SAS),∴AF=EC,∴EA=AF+EF=BE+EC.25.如图1,已知A(0,a),B(b,0),a,b满足a 2﹣6a+9+=0.(1)求a,b的值;(2)如图2,以AB为斜边作等腰直角三角形ABC,求证:射线OC是∠AOB的平分线;(3)以(2)中的点C为直角顶点作∠DCE,交x轴于点D,交y轴于点E,设D(m,0),E(0,n),当∠DCE绕点C任意旋转时(角的两边不与x,y轴平行),m+n的值是否改变?若不改变,请求出m+n的值;若改变,请说明理由.【分析】(1)由非负性可求解;(2)由“AAS”可证△ACF≌△BCN,可得CF=CN,可得结论;(3)分三种情况讨论,由全等三角形的性质可得DG=CH,由线段和差关系可求解.【解答】(1)解:∵a2﹣6a+9+=0.∴(a﹣3)2+=0,∴a=3,b=1;(2)如图2,过点C作CF⊥AO于F,CN⊥x轴于N,∴四边形CNOF是矩形,∵△ACB是等腰直角三角形,∴AC=BC,∠ACB=90°=∠AOB,∴∠OAC+∠OBC=180°,∵∠OBC+∠CBN=180°,∴∠CBN=∠OAC,又∵∠AFC=∠CNB=90°,AC=BC,∴△ACF≌△BCN(AAS),∴CF=CN,又∵CF⊥AO,CN⊥ON,∴射线OC是∠AOB的平分线;(3)m+n的值不会发生改变,理由如下:如图2,∵△ACF≌△BCN,∴CF=CN,AF=BN,∵OC是∠AOB的平分线,∴∠COF=45°,∴∠CON=∠OCN=45°,∴CN=NO,∴四边形CFON是正方形,∴OF=ON,∵A(0,3),B(1,0),∴AO=3,OB=1,∴AO﹣OF=AF,BN=ON﹣OB,∴3﹣OF=OF﹣1,∴OF=2,∴点C(2,2),当点E在y轴正半轴,点D在x轴负半轴时,如图3,过点C作CG⊥x轴于G,过点E 作EH⊥CG于H,∴四边形OGHE是矩形,∴OG=EH,EO=HG,∵OC是∠AOB的平分线,∴∠COG=45°,∵CG⊥x轴,∴∠COG=∠OCG=45°,∴OG=CG=EH,∵∠DCE=90°,∴∠ECH+∠DCG=90°=∠DCG+∠CDG,∴∠CDG=∠ECH,又∵∠EHC=∠CGD=90°,∴△DGC≌△CHE(AAS),∴DG=CH=2﹣m,∵OE=HC+CG,∴m+n=4,当点E在y轴负半轴,点D在x轴正半轴时,如图4,过点C作CG⊥OD于G,过点C 作CH⊥y轴于H,同理可证△CGD≌△CHE(AAS),∴HE=GD=2﹣n,∵OD=OG+GD,∴m=2+2﹣n,∴m+n=4;当点E在y轴正半轴,点D在x轴正半轴时,如图4,过点C作CG⊥OD于G,过点C 作CH⊥y轴于H,同理可证△CGD≌△CHE(AAS),∴HE=GD=2﹣n,∵OD=OG+GD,∴m=2+2﹣n,∴m+n=4;综上所述:m+n=4.21。
人教版八年级上册数学期末考试试卷含答案
人教版八年级上册数学期末考试试题一、单选题1.下列图形中有且只有一条对称轴的是()A .B .C .D .2.如果分式62x -有意义,那么x 满足()A .2x =B .2x ≠C .0x =D .0x ≠3.下列各式不能用平方差公式计算的是()A .(2a -3b )(3a +2b )B .(4a 2-3bc )(4a 2+3bc )C .(3a +2b )(2b -3a )D .(3m +5)(5-3m )4.从正多边形的一个顶点可以引出5条对角线,则这个正多边形每个外角的度数为()A .135°B .45°C .60°D .120°5.如图,在△ABC 中,F 是高AD 和BE 的交点,BC =6,CD =2,AD =BD ,则线段AF 的长度为()A .2B .1C .4D .36.如图,OP 平分∠MON ,PA ⊥ON 于点A ,点Q 是射线OM 上的一个动点,若PA=2,则PQ 的最小值为()A .1B .2C .3D .47.如图,在△ABC 中,D 是CA 延长线上一点,∠B=40°,∠BAD=76°,则∠C 的度数为()A .36︒B .116︒C .26︒D .104︒8.已知:如图,在△ABC 中,边AB 的垂直平分线分别交BC 、AB 于点G 、D ,若△AGC 的周长为31cm ,AB=20cm ,则△ABC 的周长为()A .31cmB .41cmC .51cmD .61cm二、填空题9.数据0.00000008m ,用科学记数法表示为______________m10.若代数式02(2)(2)m m -++-有意义,则m 的取值范围是___________.11.因式分解:22123xy -=__________.12.若23x =,25y =,则2x y +=_____.13.如图,在△ABC 中,点E 、F 分别是AB 、AC 边上的点,EF ∥BC ,点D 在BC 边上,连接DE 、DF 请你添加一个条件___________________,使△BED ≌△FDE14.等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是__________.15.如图,在Rt △ABC 中,∠C=90°,∠B=30°,边AB 的垂直平分线DE 交AB 于点E ,交BC 于点D ,CD=3,则BC 的长为___________16.当x_________时,分式235x -有意义.17.甲、乙两个搬运工搬运某种货物.已知乙比甲每小时多搬运600kg ,甲搬运5000kg 所用的时间与乙搬运8000kg 所用的时间相等.设甲每小时搬运xkg 货物,则可列方程为___.18.如图,过边长为1的等边ABC ∆的边AB 上一点P ,作PE AC ⊥于E ,Q 为BC 延长线上一点,当PA CQ =时,连接PQ 交AC 边于D ,则DE 的长为______.三、解答题19.解方程:1x -53x +=020.先化简,再求值:()()2(23)22x y x y x y +-+-,其中13x =,12y =-.21.如图,在平面直角坐标系中(1)请在图中作出△ABC 关于直线m 的轴对称图形△A 1B 1C 1(2)坐标系中有一点M(-3,3),点M 关于直线m 的对称点为点N ,点N 关于直线n 的对称点为点E ,写出点N 的坐标;点E 的坐标.22.已知:如图,点E 、A 、C 在同一直线上,AB ∥CD ,AB =CE ,AC =CD求证:∠B =∠E23.如图,BD是△ABC的角平分线,AE丄BD交BD的'延长线于点E,∠ABC=72°,∠C:∠ADB=2:3,求∠BAC和∠DAE的度数.24.如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB(1)若∠ABC=65°,则∠NMA的度数为(2)若AB=10cm,△MBC的周长是18cm①求BC的长度②若点P为直线MN上一点,则△PBC周长的最小值为cm25.问题:分解因式(a+b)2-2(a+b)+1答:将“a+b”看成整体,设M=a+b,原式=M2-2M+1=(M-1)2,将M还原,得原式=(a+b-1)2上述解题用到的是“整体思想”,这是数学解题中常用的一种思想方法.请你仿照上面的方法解答下列问题:(1)因式分解:(2a+b)2-9a2=(2)求证:(n+1)(n+2)(n 2+3n )+1的值一定是某一个正整数的平方(n 为正整数)26.如图,△ABC 是等边三角形,D 是边AC 的中点,EC ⊥BC 与点C ,连接BD 、DE 、AE 且CE=BD ,求证:△ADE 为等边三角形27.水果店的老板用2400元购进一批仙桃,很快售完;老板又用3700元购进第二批仙桃,所购件数是第一批的32倍,但进价比第一批每件多了5元.(1)第一批仙桃每件进价是多少元?(2)老板以每件225元的价格销售第二批仙桃,售出80%后,为了尽快售完,剩下的决定打折促销.要使得第二批仙桃的销售利润不少于440元,剩余的仙桃每件售价至少打几折?(利润=售价﹣进价)28.如图①,∠BAD=90°,AB=AD ,过点B 作BC ⊥AC 于点C ,过点D 作DE ⊥CA 的延长线点E ,由∠1+∠2=∠D+∠2=90°,得∠1=∠D ,又∠ACB=∠AED=90°,AB=AD ,得△ABC ≌△DAE 进而得到AC=DE ,BC=AE ,我们把这个数学模型称为“K 字”模型或“一线三等角”模型.请应用上述“一线三等角”模型,解决下列问题:(1)如图②,∠BAD=∠CAE=90°,AB=AD ,AC=AE ,连接BC 、DE ,且BC ⊥AH 于点H ,DE 与直线AH 交于点G ,求证:点G 是DE 的中点.(2)如图③,在平面直角坐标系中,点A 为平面内任意一点,点B 的坐标为(4,1),若△AOB 是以OB 为斜边的等腰直角三角形,请直接写出点A 的坐标.参考答案1.D【分析】根据轴对称图形的概念求解,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:A.不是轴对称图形,故此选项不合题意;B.有4条对称轴,故此选项不合题意;C.有3条对称轴,故此选项不合题意;D.有1条对称轴,故此选项符合题意.故选:D.2.B【分析】根据分式有意义的条件:分母不为零,得到不等式解不等式即可.【详解】要使分式62x-有意义,则x-2≠0,得到2x≠,故选B3.A【分析】利用平方差公式的结构特征判断即可.【详解】解:A.(2a-3b)(3a+2b)不符合平方差公式的特点,故不能用平方差公式计算;B.(4a2-3bc)(4a2+3bc)=16a4-9b2c2,故能用平方差公式计算;C.(3a+2b)(2b-3a)=4b2-9a2,故能用平方差公式计算;D.(3m+5)(5-3m)=25-9m2,故能用平方差公式计算;故选:A.4.B【分析】先由n边形从一个顶点出发可引出(n-3)条对角线,可求出多边形的边数,再根据正多边形的每个外角相等且外角和为360°.【详解】解:∵经过多边形的一个顶点有5条对角线,∴这个多边形有5+3=8条边,∴此正多边形的每个外角度数为360°÷8=45°,故选B5.A【分析】先求BD,AD的长,再证△BFD≌△ADC,即可得到FD的长,即可求解.【详解】∵BC=6,CD=2,∴BD=BC-CD =6-2=4,∴AD =BD=4∵AD 和BE 是三角形的高∴∠ADB=∠ADC=∠BEC=90°∴∠DAC+∠C=90°,∠EBC+∠C=90°∴∠DAC=∠EBC在△BFD 和△ADC 中DAC EBC BD AD ADB ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BFD ≌△ADC (ASA )∴FD=DC=2∴AF=AD-FD=2故选A6.B【分析】根据题意点Q 是射线OM 上的一个动点,要求PQ 的最小值,需要找出满足题意的点Q ,根据直线外一点与直线上各点连接的所有线段中,垂线段最短,所以我们过点P 作PQ 垂直OM ,此时的PQ 最短,然后根据角平分线上的点到角两边的距离相等可得PA=PQ ,利用已知的PA 的值即可求出PQ 的最小值.【详解】解:过点P 作PQ ⊥OM ,垂足为Q ,则PQ 为最短距离,∵OP 平分∠MON ,PA ⊥ON ,PQ ⊥OM ,∴PA=PQ=2,故选:B .7.A【详解】解:∵∠BAD 是△ABC 的一个外角,∴∠BAD=∠B+∠C ,∴∠C=∠BAD-∠B=76°-40°=36°.故选A.8.C【分析】已知△AGC 的周长,因为GB 等于AG ,所以△ABC 的周长等于AC+CG+GB+AB ,即等于△AGC 的周长+AB.【详解】∵DG 是AB 边的垂直平分线,∴GA=GB ,△AGC 的周长=AG+AC+CG=AC+BC=31cm ,又AB=20cm ,∴△ABC 的周长=AC+BC+AB=51cm ,故选C.【点睛】本题考查线段的垂直平分线的性质.把求△ABC 的周长进行转化是解题的关键.9.8810-⨯【分析】将原数写成10n a ⨯的形式,a 是大于等于1小于10的数.【详解】解:80.00000008810-=⨯.故答案是:8810-⨯.【点睛】本题考查科学记数法,解题的关键是掌握科学记数法的表示方法.10.2m ≠±【分析】根据零指数幂的法则和负整数指数幂的法则可得关于m 的不等式组,解不等式组即可得出答案.【详解】解:根据题意,得:20m +≠且20m -≠,解得:2m ≠±.故答案为2m ≠±.【点睛】本题考查了零指数幂和负整数指数幂的知识,属于基础题型,熟知运用零指数幂和负整数指数幂的运算法则进行计算的前提条件是解此题的关键.11.3(2x+y)(2x-y)【分析】先提取公因式,然后根据平方差公式因式分解即可.【详解】解:原式=3(4x 2-y 2)=3(2x+y )(2x-y ).【点睛】因式分解是本题的考点,熟练掌握因式分解的方法是解题的关键,本题用到了提取公因式法和公式法.12.15【分析】由23x=,25y =,根据同底数幂的乘法可得222x y x y +=⋅,继而可求得答案.【详解】∵23x=,25y =,∴2223515x y x y +=⋅=⨯=,故答案为15.【点睛】本题考查了同底数幂的乘法,熟练掌握运算法则是解题的关键.本题中要注意掌握公式的逆运算.13.BD=FE (答案不唯一);【分析】根据平行四边形的判定和性质、全等三角形的判定定理即可解答.【详解】当BD=FE 时,△BED ≌△FDE ,∵EF ∥BC ,当BD=FE 时,∴四边形BEFD 是平行四边形,∴∠B =∠DFE ,BE =FD∵BD =FE∴△BED ≌△FDE ,故答案为:BD =FE .【点睛】本题考查了全等三角形的判定,利用了平行四边形的判定及其性质,全等三角形的判定,利用平行四边形的性质得出三角形全等的条件是解题关键.14.110°或70°【详解】解:分情况讨论:当等腰三角形的顶角是钝角时,腰上的高在外部.根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90°+20°=110°;当等腰三角形的顶角是锐角时,腰上的高在其内部,故顶角是90°﹣20°=70°.故答案为110°或70°.考点:1.等腰三角形的性质;2.分类讨论.15.9【详解】∵DE是AB的垂直平分线,∴AD=BD,∴∠DAE=∠B=30°,∴∠ADC=∠DAE+∠B=60°,∴∠CAD=30°,∴AD=2DC=6,即BD=6,∴BC=9.【点睛】本题主要考查的知识点有线段垂直平分线的性质、直角三角形30°角所对的直角边等于斜边的一半的性质,熟练运用各性质是解题的关键.16.5 3≠【分析】根据分母不等于0列式求解即可.【详解】由题意得3x-5≠0,x5 3≠.故答案为5 3≠.【点睛】本题考查了分式有意义的条件,熟知分母不为零时分式有意义是解答本题的关键.17.5000x=8000600+x【分析】设甲每小时搬运x千克,则乙每小时搬运(x+600)千克,根据甲搬运5000kg所用时间与乙搬运8000kg所用时间相等建立方程求出其解就可以得出结论.【详解】解:设甲每小时搬运x千克,则乙每小时搬运(x+600)千克,由题意得:5000x=8000600+x.故答案是:5000x =8000600+x .【点睛】本题考查了由实际问题抽象出分式方程,根据题意找到等量关系是关键.18.12【分析】过P 作PF ∥BC 交AC 于F ,得出等边三角形APF ,推出AP=PF=QC ,根据等腰三角形性质求出EF=AE ,证△PFD ≌△QCD ,推出FD=CD ,推出DE=12AC 即可.【详解】解:过P 作PF ∥BC 交AC 于F,∵PF ∥BC ,△ABC 是等边三角形,∴∠PFD=∠QCD ,∠APF=∠B=60°,∠AFP=∠ACB=60°,∠A=60°,∴△APF 是等边三角形,∴AP=PF=AF ,∵PE ⊥AC ,∴AE=EF ,∵AP=PF ,AP=CQ ,∴PF=CQ ,在△PFD 和△QCD 中PFD QCDPDF CDQ PF CQ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△PFD ≌△QCD ,∴FD=CD ,∵AE=EF ,∴EF+FD=AE+CD ,∴AE+CD=DE=12AC ,∵AC=1,∴DE=12;故答案为:12.【点睛】本题综合考查了全等三角形的性质和判定,等边三角形的性质和判定,等腰三角形的性质,平行线的性质等知识点的应用,能综合运用性质进行推理是解此题的关键,通过做此题培养了学生分析问题和解决问题的能力,题型较好,难度适中.19.x=34【分析】方程两边同乘以x(x+3),得到整式方程,解整式方程,把得到的根代入最简公分母检验即可.【详解】解:x +3-5x=04x=3x=34检验:当x=34时,x (x+3)≠0,故x=34是原方程的根.【点睛】本题考查的是分式方程的解法,解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.20.21210xy y +,12【分析】先利用完全平方公式与平方差公式计算乘法,再合并同类项,最后代入计算即可.【详解】()()2(23)22x y x y x y +-+-()222241294x xy y x y =++--22222412941210x xy y x y xy y =++-+=+,当13x =,12y =-时,原式21111210322⎛⎫⎛⎫=⨯⨯-+⨯- ⎪ ⎪⎝⎭⎝⎭522=-+12=.【点睛】本题主要考查了整式的混合运算,涉及了完全平方公式,平方差公式,解题的关键是熟练掌握整式混合运算的运算顺序和运算法则.21.(1)见解析;(2)(1,3),(1,1).【分析】(1)利用网格结构分别找出点A 、B 、C 关于直线m 的对称点,然后顺次连接即可.(2)利用网格结构找出点M 关于直线m 的对称点N ,再找出点N 关于直线n 的对称点E ,写出其坐标即可.【详解】(1)如图即为ABC 关于直线m 的轴对称图形111A B C △.(2)如图,即可知点M 关于直线m 的对称点N 的坐标是(1,3);点N 关于直线n 的对称点E 的坐标是(1,1).故答案为:(1,3);(1,1).【点睛】本题考查画轴对称图形和轴对称-坐标的变化.了解轴对称的性质是解答本题的关键.22.见解析【分析】根据平行线的性质可得∠BAC=∠ECD ,再由条件AB=CE ,AC=CD 可证出△BAC 和△ECD 全等,再根据全等三角形对应角相等即可求证结论.【详解】证明:∵AB ∥CD∴∠BAC=∠ECD∵在△ABC 和△CED 中,AB CE BAC ECD AC CD =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△CED (SAS )∴∠B=∠E【点睛】本题考查了平行线的性质,全等三角形的判定和性质,解题的关键是证明△ABC ≌△CED .23.∠BAC =36°,∠DAE=18°.【分析】先根据BD 是△ABC 的角平分线,∠ABC =72°求出∠EBC=36°,由∠C :∠ADB =2:3可设∠C=2x ,则∠ADB=3x,根据在△BCD 中的外角定理列出方程即可求解x,再根据等腰三角形的及垂直的性质求解.【详解】∵BD 是△ABC 的角平分线,∠ABC =72°∴∠EBC=36°,∵∠C :∠ADB =2:3可设∠C=2x ,则∠ADB=3x,在△BCD 中∠ADB=∠EBC+∠C即3x=36°+2x解得x=36°,∴∠C=72°,∠ADB=108°,故∠BAC=180°-∠C-∠ABC=36°,在△DAE 中,AE 丄BD∴∠DAE=∠ADB-90°=18°.【点睛】此题主要考查角度的求解,解题的关键是熟知三角形的外角定理.24.(1)40°;(2)①8cm ;②18【分析】(1)先根据等腰三角形的性质求出∠A=50°,根据垂直平分线的定义得到∠ANM =90°,然后根据直角三角形两锐角互余求解即可;(2)①根据垂直平分线的性质得AM=BM ,△MBC 的周长是18cm ,AC=AB=10cm ,即可求BC 的长度;②当点P 与点M 重合时,△PBC 周长的最小,即为△MBC 的周长.【详解】解:(1)∵AB=AC ,∴∠ABC=∠C∵∠ABC=65°,∴∠C=65°,∴∠A=50°,∵MN 是AB 的垂直平分线,∴∠ANM =90°,∴∠NMA=90°-50°=40°;(2)①∵MN 是线段AB 的垂直平分线,∴AM=MB .∵△MBC 的周长是18cm ,AB=10cm ,∴BM+MC+BC=AM+MC+BC=AC+BC=AB+BC=18cm ,∴BC=18-AB=18-10=8cm ;②∵MN 是线段AB 的垂直平分线,∴点A 和点B 关于直线MN 对称,∴当点P 与点M 重合时,△PBC 周长的值最小,∴△PBC 的周长的最小值为18cm .【点睛】本题考查了等腰三角形的性质,线段垂直平分线的性质,轴对称-最短路线问题,解决本题的关键是掌握线段垂直平分线的性质和等腰三角形的性质.25.(1)()()5+a b b a -;(2)见解析【分析】(1)根据平方差公式分解因式即可求解;(2)先根据多项式乘以多项式进行计算,再根据完全平方公式分解即可求解.【详解】解:(1)原式()()22=2+3a b a -()()=2+32+3a b a a b a +-()()=5+a b b a -证明(2)(n+1)(n+2)(n 2+3n )+1=(n 2+3n+2)(n 2+3n )+1=(n 2+3n )2+2(n 2+3n )+1=(n 2+3n+1)2故当n 为正整数时,(n+1)(n+2)(n 2+3n )+1的值一定是某一个正整数的平方【点睛】本题考查因式分解,解题的关键是熟练掌握平方差公式、完全平方公式的应用.26.证明见解析【分析】利用△ABC 是等边三角形,D 为边AC 的中点,求得∠ADB=90°,再用SAS 证明△CBD ≌△ACE ,推出AE=CD=AD ,∠AEC=∠BDC=90°,根据直角三角形斜边上中线性质求出DE=AD ,即可证明.【详解】证明:∵△ABC 是等边三角形,D 是边AC 的中点,∴AD=DC ,BC=CA ,BD ⊥AC ,∴∠BDC=90°,即∠DBC+∠DCB=90°,∵EC ⊥BC ,∴∠BCE=90°,即∠ACE+∠BCD=90°,∴∠ACE=∠DBC ,在△CBD 和△ACE 中,BC CA DBC ACE BD CE =⎧⎪∠=∠⎨⎪=⎩∴△CBD ≅△ACE (SAS )∴CD=AE ,∴∠AEC=∠CDB=90°∵D 为AC 的中点∴AD=DE ,AD=DC ,∴AD=AE=DE ,即△ADE 为等边三角形.【点睛】本题主要考查等边三角形的性质和判定,全等三角形的性质和判定,直角三角形斜边上的中线等.解答此题的关键是先证明△CBD ≌△ACE ,然后再利用三边相等证明此三角形是等边三角形.27.(1)进价为180元;(2)至少打6折.【分析】(1)根据题意,列出等式24003370025x x ⨯=+,解等式,再验证即可得到答案;(2)设剩余的仙桃每件售价打y 折,由题意得到不等式,再解不等式,即可得到答案.【详解】解:(1)设第一批仙桃每件进价x 元,则24003370025x x ⨯=+,解得180x =.经检验,180x =是原方程的根.答:第一批仙桃每件进价为180元;(2)设剩余的仙桃每件售价打y 折.则:3700370022580%225(180%)0.1370044018051805y ⨯⨯+⨯⨯-⨯-≥++,解得6y ≥.答:剩余的仙桃每件售价至少打6折.【点睛】本题考查分式方程的应用和一元一次不等式的应用,解题的关键是熟练掌握分式方程的应用和一元一次不等式的应用.28.(1)见解析;(2)A(32,52)或(52,-32).【分析】(1)过点D 作DM ⊥AM 交AG 于点M ,过点E 作EN ⊥AG 于点N .根据“K 字模型”即可证明AH=DM 和AH=EN ,即EN=DM ,再根据全等三角形的判定和性质即可证明DG=EG ,即点G 是DE 的中点.(2)分情况讨论①当A 点在OB 的上方时,作AC 垂直于y 轴,BE 垂直于x 轴,CA 和EB 的延长线交于点D .根据“K 字模型”即可证明AC BD OC AD DE ===,,再利用B 点坐标即可求出A 点坐标.②当A 点在OB 的下方时,作AP 垂直于y 轴,BM 垂直于x 轴,PA 和BM 的延长线交于点Q .同理即能求出A 点坐标.【详解】(1)如图,过点D 作DM ⊥AM 交AG 于点M ,过点E 作EN ⊥AG 于点N ,则∠DMA=90°,∠ENG=90°.∵∠BHA=90,∴∠2+∠B=90°.∵∠BAD=90°,∴∠1+∠2=90°.∴∠B=∠1.在△ABH 和△DAM 中1BHA AMD B AB DA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABH ≅△DAM (AAS ),∴AH=DM .同理△ACH ≅△EAN (AAS ),∴AH=EN .∴EN=DM .在△DMG 和△ENG 中MGD NGE DMG ENG DM EN ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DMG ≅△ENG (AAS ).∴DG=EG .∴点G 是DE的中点.(2)根据题意可知有两种情况,A 点分别在OB 的上方和下方.①当A 点在OB 的上方时,如图,作AC 垂直于y 轴,BE 垂直于x 轴,CA 和EB 的延长线交于点D .利用“K 字模型”可知ACO BDA ≅ ,∴AC BD OC AD DE ===,,设AC x =,则BD x =,∵1DE BD BE x =+=+,∴1OC AD DE x ===+,又∵4CD AD AC =+=,即14x x ++=,解得32x =,∴32AC =,35122DE =+=.即点A 坐标为(32,52).②当A点在OB的下方时,如图,作AP垂直于y轴,BM垂直于x轴,PA和BM的延长线交于点Q.根据①同理可得:52AP=,32MQ=.即点A坐标为(52,32-).。
八年级数学(上)期末测试试卷含答案解析
八年级数学(上)期末测试试卷一、选择题(共10小题,每小题2分,满分20分)1.(2分)下列各实数是无理数的是()A.B.C.3. D.﹣π2.(2分)二元一次方程2y﹣x=1有无数多个解,下列四组值中是该方程的解的是()A.B.C.D.3.(2分)满足下列条件的三角形中,不是直角三角形的是()A.三个内角之比为1:1:2 B.三条边之比为1:2:C.三条边之比为5:12:13 D.三个内角之比为3:4:54.(2分)下列命题错误的是()A.所有实数都可以用数轴上的点表示B.同位角相等,两直线平行C.无理数包括正无理数、负无理数和0D.等角的补角相等5.(2分)请估计的值在()A.1与2之间B.2与3之间C.3与4之间D.4与5之间6.如图,AB∥CD,EF与AB、CD分别相交于点E、F,EP⊥EF,与∠EFD的平分线FP相交于点P,且∠BEP=50°,则∠EPF=()度.A.70 B.65 C.60 D.557.(2分)现在父亲的年龄是儿子年龄的3倍,七年前父亲的年龄是儿子年龄的5倍,则父亲和儿子现在的年龄分别是()A.42岁,14岁B.48岁,16岁C.36岁,12岁D.39岁,13岁8.(2分)如果m是任意实数,那么点M(m﹣5,m+2)一定不在()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.(2分)如图,已知△ABC是等腰直角三角形,∠ACB=90°,P为斜边AB上一点,PF⊥BC于点F,PE⊥AC于点E.若S△APE=7,S△PBF=2,则PC的长为()A.5 B.3C. D.310.(2分)在同一直角坐标系中,一次函数y=(k﹣2)x+k的图象与正比例函数y=kx图象的位置可能是()A.B.C.D.二、填空题(共8小题,每小题2分,满分16分)11.函数中,自变量x的取值范围是.12.(2分)一组数据﹣1,0,2,4,x的极差为7,则x=.13.(﹣2)2的平方根是.14.直线y=2x+1与y=﹣x+4的交点是(1,3),则方程组的解是.15.(2分)一个两位数,个位数字比十位数字大4,个位数字与十位数字的和为8,则这个两位数是.16.(2分)如图,一长方体底面宽AN=5cm,长BN=10cm,高BC=16cm.D为BC的中点,一动点P从A点出发,在长方体表面移动到D点的最短距离是.17.(2分)若直线y=k x+b平行于直线y=﹣2x+3,且过点(5,9),则其解析式为.18.(2分)如图,在一单位长度为1的方格纸上.△A1A2A3,△A3A4A5,△A5A6A7…都是斜边在x 轴上,斜边长分别为2,4,6…的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,﹣1),A3(0,0).则依图中所示规律,A2016的坐标是.三、解答题(共7小题,满分64分)19.计算:(﹣2)×﹣6(2)解方程组:.20.(8分)在平面直角坐标系中,△ABC的顶点坐标是A(﹣4,1),B(﹣2,1),C(﹣2,3).(1)作△ABC关于y轴对称的图形△A1B1C1;(2)作△ABC向下平移4个单位长度的图形△A2B2C2;(3)如果△ABC与△ABD全等,则请直接写出点D坐标.21.(8分)丽水发生特大泥石流灾害后,某校学生会在全校1900名学生发起了“心系丽水”若捐款活动,为了解捐款情况,学生会随机调查了部分学生捐款情况,并用调查排水数据绘制了如图统计图,根据相关信息解答系列问题:(1)本次接受随机抽样调查的学生人数为人,图①中的值是.(2)求本次调查获取的样本数据的众数和中位数;(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.22.(10分)某工厂工人的工作时间为每月25天,每天8小时,每名工人每月有基本工资400元.该厂生产A、B两种产品,工人每生产一件A种产品,可得到报酬0.75元;每生产一件B种产品,可得到报酬1.40元,如表记录了工人小王的工作情况:生产A种产品件数生产B种产品件数合计用工时间(分钟)1 1 353 2 85(1)求小王每生产一件A种产品和一件B种产品,分别需要多少时间?(2)求小王每月工资额范围.23.(8分)如图,A、B、C、D四点在同一条直线上,∠AGD=90°,且∠1=∠D,∠2=∠A.求证:FB∥EC.24.(10分)小明和小亮在9:00同时乘坐由甲地到乙地的客车,途经丙地时小亮下车,处理个人事情后乘公交返回甲地;小明乘客车到达乙地;30分钟后乘出租车也返回甲地,两人同时回到甲地,设两人之间的距离为y千米,所用时间为x分钟,图中折线表示y与x之间函数关系图象,根据题中所给信息,解答下列问题:(1)甲、乙两地相距千米,客车的速度是千米/时;(2)小亮在丙地停留分钟,公交车速度是千米/时;(3)求两人何时相距28千米?25.(12分)如图所示,AB∥CD,直线EF与AB相交于点E,与CD相交于点F,FH是∠EFD的角平分线,且与AB相交于点H,GF⊥FH交AB于点G(GF>HP).(1)如图①,求证:点E是GH的中点;(2)如图②,过点E作EP⊥AB交GF于点P,请判断GP2=PF2+HF2是否成立?并说明理由;(3)如图③,在(1)的条件下,过点E作EP⊥EF交GF于点P,请猜想线段GP、PF、HP有怎样的数量关系,请直接写出你猜想的结果.参考答案与试题解析一、选择题(共10小题,每小题2分,满分20分)1.(2分)下列各实数是无理数的是()A.B.C.3. D.﹣π【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、=是有理数,故A错误;B、是有理数,故B错误;C、3.是有理数,故C错误;D、﹣π是无理数,故D正确;故选:D.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.(2分)二元一次方程2y﹣x=1有无数多个解,下列四组值中是该方程的解的是()A.B.C.D.【考点】二元一次方程的解.【专题】计算题;一次方程(组)及应用.【分析】把各项中x与y的值代入方程检验即可.【解答】解:A、把x=0,y=﹣代入方程得:左边=﹣1,右边=1,不相等,不合题意;B、把x=1,y=1代入方程得:左边=2﹣1=1,右边=1,相等,符合题意;C、把x=1,y=0代入方程得:左边=﹣1,右边=1,不相等,不合题意;D、把x=﹣1,y=﹣1代入方程得:左边=﹣3,右边=1,不相等,不合题意,故选B.【点评】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.3.(2分)满足下列条件的三角形中,不是直角三角形的是()A.三个内角之比为1:1:2 B.三条边之比为1:2:C.三条边之比为5:12:13 D.三个内角之比为3:4:5【考点】勾股定理的逆定理;三角形内角和定理.【分析】根据三角形的内角和定理得出A是直角三角形,D不是直角三角形,由勾股定理的逆定理得出B、C是直角三角形,从而得到答案.【解答】解:A、三个内角之比为1:1:2,因为根据三角形内角和定理可求出三个角分别为45°,45°,90°,所以是直角三角形,故正确;B、三条边之比为1:2:,因为12+22=()2,其符合勾股定理的逆定理,所以是直角三角形,故正确;C、三条边之比为5:12:13,因为52+122=132,其符合勾股定理的逆定理,所以是直角三角形,故正确;D、三个内角之比为3:4:5,因为根据三角形内角和公式得三个角中没有90°角,所以不是直角三角形,故不正确.故选:D.【点评】本题考查了勾股定理的逆定理、三角形内角和定理、直角三角形的判定;熟练掌握勾股定理的逆定理和三角形内角和定理是解决问题的关键.4.(2分)下列命题错误的是()A.所有实数都可以用数轴上的点表示B.同位角相等,两直线平行C.无理数包括正无理数、负无理数和0D.等角的补角相等【考点】命题与定理.【分析】利用数轴上的点与实数一一对应可对A进行判断;根据平行线的判定方法对B进行判断;根据无理数的定义对C进行判断;根据补角的定义对D进行判断.【解答】解:A、所有实数都可以用数轴上的点表示,所以A选项为真命题;B、同位角相等,两直线平行,所以B选项为真命题;C、无理数包括正无理数、负无理数,所以C选项为假命题;D、等角的补角相等,所以D选项为真命题.故选C.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.5.(2分)请估计的值在()A.1与2之间B.2与3之间C.3与4之间D.4与5之间【考点】估算无理数的大小.【分析】根据被开方数越大算术平方根越大,可得3<<4,再根据不等式的性质1,可得答案.【解答】解:由被开方数越大算术平方根越大,得<<,即3<<4,都减1,得2<﹣1<3.故选:B.【点评】本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出3<<4是解题关键.6.如图,AB∥CD,EF与AB、CD分别相交于点E、F,EP⊥EF,与∠EFD的平分线FP相交于点P,且∠BEP=50°,则∠EPF=()度.A.70 B.65 C.60 D.55【考点】平行线的性质.【分析】先由垂直的定义,求出∠PEF=90°,然后由∠BEP=50°,进而可求∠BEF=140°,然后根据两直线平行同旁内角互补,求出∠EFD的度数,然后根据角平分线的定义可求∠EFP的度数,然后根据三角形内角和定理即可求出∠EPF的度数.【解答】解:如图所示,∵EP⊥EF,∴∠PEF=90°,∵∠BEP=50°,∴∠BEF=∠BEP+∠PEF=140°,∵AB∥CD,∴∠BEF+∠EFD=180°,∴∠EFD=40°,∵FP平分∠EFD,∴=20°,∵∠PEF+∠EFP+∠EPF=180°,∴∠EPF=70°.故选:A.【点评】此题考查了平行线的性质,解题的关键是:熟记两直线平行同位角相等;两直线平行内错角相等;两直线平行同旁内角互补.7.(2分)现在父亲的年龄是儿子年龄的3倍,七年前父亲的年龄是儿子年龄的5倍,则父亲和儿子现在的年龄分别是()A.42岁,14岁B.48岁,16岁C.36岁,12岁D.39岁,13岁【考点】一元一次方程的应用.【分析】可设儿子现在的年龄是x岁,则父亲现在的年龄是3x岁,根据等量关系:7年前父亲的年龄=7年前儿子的年龄×5,依此列出方程求解即可.【解答】解:设儿子现在的年龄是x岁,依题意得:3x﹣7=5(x﹣7).解得x=14.则3x=42.即父亲和儿子现在的年龄分别是42岁,14岁.故选:A.【点评】考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,由年龄的倍数问题找出合适的等量关系列出方程,再求解.8.(2分)如果m是任意实数,那么点M(m﹣5,m+2)一定不在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】点的坐标.【分析】根据第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣),可得答案.【解答】解:m>5时,m﹣5>0,m+2>0,点位于第一象限,故A不符合题意;m=5时点位于y轴;﹣2<m<5时,m﹣5<0,m+2>0,点位于第二象限,故B不符合题意;m=﹣2时,点位于x轴;m<﹣2时,m﹣5<0,m+2<0,点位于第三象限,故C不符合题意;M(m﹣5,m+2)一定不在第四象限,故D符合题意;故选:D.【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).9.(2分)如图,已知△ABC是等腰直角三角形,∠ACB=90°,P为斜边AB上一点,PF⊥BC于点F,PE⊥AC于点E.若S△APE=7,S△PBF=2,则PC的长为()A.5 B.3C. D.3【考点】等腰直角三角形.【分析】由等腰直角三角形的性质得出∠A=∠B=45°,证出四边形PECF是矩形,得出PF=CE,证出△APE和△BPF是等腰直角三角形,得出AE=PE,BF=PF,再由三角形的面积得出PE2=14,CE2=PF2=4,由勾股定理求出PC的长即可.【解答】解:∵△ABC是等腰直角三角形,∠ACB=90°,∴∠A=∠B=45°,∵PF⊥BC于点F,PE⊥AC于点E,∴∠PFB=∠PEA=90°,四边形PECF是矩形,∴△APE和△BPF是等腰直角三角形,PF=CE,∠PEC=90°,∴AE=PE,BF=PF,∵S△APE=AE•PE=PE2=7,S△PBF=PF•BF=PF2=2,∴PE2=14,CE2=PF2=4,∴PC===3;故选:B.【点评】本题考查了等腰直角三角形的判定与性质、矩形的判定与性质、勾股定理;熟练掌握等腰直角三角形的判定与性质,运用勾股定理求出PC是解决问题的关键.10.(2分)在同一直角坐标系中,一次函数y=(k﹣2)x+k的图象与正比例函数y=kx图象的位置可能是()A.B.C.D.【考点】一次函数的图象;正比例函数的图象.【分析】根据正比例函数与一次函数的图象性质作答.【解答】解:当k>2时,正比例函数y=kx图象经过1,3象限,一次函数y=(k﹣2)x+k的图象1,2,3象限;当0<k<2时,正比例函数y=kx图象经过1,3象限,一次函数y=(k﹣2)x+k的图象1,2,4象限;当k<0时,正比例函数y=kx图象经过2,4象限,一次函数y=(k﹣2)x+k的图象2,3,4象限;故选B.【点评】此题考查一次函数的图象问题,正比例函数的性质:正比例函数y=kx的图象是过原点的一条直线.当k>0时,直线经过第一、三象限;当k<0时,直线经过第二、四象限.二、填空题(共8小题,每小题2分,满分16分)11.函数中,自变量x的取值范围是x≤2.【考点】函数自变量的取值范围.【分析】根据二次根式的性质,被开方数大于或等于0,可以求出x的范围.【解答】解:根据题意得:2﹣x≥0,解得:x≤2.故答案是:x≤2.【点评】函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.12.(2分)一组数据﹣1,0,2,4,x的极差为7,则x=6或﹣3.【考点】极差.【分析】分别当x为最大值和最小值时,根据极差的概念求解.【解答】解:当x为最大值时,x﹣(﹣1)=7,解得:x=6,当x为最小值时,4﹣x=7,解得:x=﹣3.故答案为:6或﹣3.【点评】本题考查了极差的知识,极差是指一组数据中最大数据与最小数据的差.13.(﹣2)2的平方根是±2.【考点】平方根.【专题】计算题.【分析】先求出(﹣2)2的值,然后开方运算即可得出答案.【解答】解:(﹣2)2=4,它的平方根为:±2.故答案为:±2.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.14.直线y=2x+1与y=﹣x+4的交点是(1,3),则方程组的解是.【考点】一次函数与二元一次方程(组).【分析】利用函数图象交点坐标为两函数解析式组成的方程组的解易得答案.【解答】解:∵直线y=2x+1与y=﹣x+4的交点是(1,3),∴方程组的解为.故答案为.【点评】本题考查了一次函数与一元一次方程(组):函数图象交点坐标为两函数解析式组成的方程组的解.15.(2分)一个两位数,个位数字比十位数字大4,个位数字与十位数字的和为8,则这个两位数是26.【考点】二元一次方程组的应用.【专题】数字问题.【分析】设这个两位数个位数为x,十位数字为y,根据个位数字比十位数字大4,个位数字与十位数字的和为8,列方程组求解.【解答】解:设这个两位数个位数为x,十位数字为y,由题意得,,解得:,则这个两位数为26.故答案为:26.【点评】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.16.(2分)如图,一长方体底面宽AN=5cm,长BN=10cm,高BC=16cm.D为BC的中点,一动点P从A点出发,在长方体表面移动到D点的最短距离是cm.【考点】平面展开-最短路径问题.【分析】将图形展开,可得到AD较短的展法两种,通过计算,得到较短的即可.【解答】解:(1)如图1,BD=BC=6cm,AB=5+10=15cm,在Rt△ADB中,AD==3cm;(2)如图2,AN=5cm,ND=5+6=11cm,Rt△ADN中,AD===cm.综上,动点P从A点出发,在长方体表面移动到D点的最短距离是cm.故答案为:cm.【点评】本题考查了平面展开﹣﹣最短路径问题,熟悉平面展开图是解题的关键.17.(2分)若直线y=kx+b平行于直线y=﹣2x+3,且过点(5,9),则其解析式为y=﹣2x+19.【考点】两条直线相交或平行问题.【专题】计算题.【分析】根据两直线平行的问题得到k=﹣2,然后把(5,9)代入y=﹣2x+b,求出b的值即可.【解答】解:根据题意得k=﹣2,把(5,9)代入y=﹣2x+b得﹣10+b=9,所以直线解析式为y=﹣2x+19.故答案为y=﹣2x+19.【点评】本题考查了两直线平行或相交的问题:直线y=k1x+b1(k1≠0)和直线y=k2x+b2(k2≠0)平行,则k1=k2;若直线y=k1x+b1(k1≠0)和直线y=k2x+b2(k2≠0)相交,则交点坐标满足两函数的解析式.也考查了待定系数法求函数的解析式.18.(2分)如图,在一单位长度为1的方格纸上.△A1A2A3,△A3A4A5,△A5A6A7…都是斜边在x 轴上,斜边长分别为2,4,6…的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,﹣1),A3(0,0).则依图中所示规律,A2016的坐标是(2,1008).【考点】规律型:点的坐标.【分析】由于2016是4的整数倍数,故A1﹣﹣A4;A5﹣﹣﹣A8;…每4个为一组,可见,A2016在x轴上方,横坐标为2,再根据纵坐标变化找到规律即可解答即可.【解答】解:∵2016是4的整数倍数,∴A1﹣﹣A4;A5﹣﹣﹣A8;…每4个为一组,∵2016÷4=504…0,∴A2016在x轴上方,横坐标为2,∵A4、A8、A12的纵坐标分别为2,4,6,∴A2016的纵坐标为2016×=1008.故答案为:(2,1008).【点评】本题考查了等腰直角三角形、点的坐标,主要是根据坐标变化找到规律,再依据规律解答.三、解答题(共7小题,满分64分)19.计算:(﹣2)×﹣6(2)解方程组:.【考点】二次根式的混合运算;解二元一次方程组.【专题】计算题.【分析】(1)先进行二次根式的乘法运算,然后合并即可;(2)利用加减消元法解二元一次方程组.【解答】解:(1)原式=3﹣6﹣3(2),①+②×5得:13y=13,解得y=1,把y=1代入②中得2x﹣1=1,解得x=1,所以原方程组的解是.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.也考查了解二元一次方程组.20.(8分)在平面直角坐标系中,△ABC的顶点坐标是A(﹣4,1),B(﹣2,1),C(﹣2,3).(1)作△ABC关于y轴对称的图形△A1B1C1;(2)作△ABC向下平移4个单位长度的图形△A2B2C2;(3)如果△ABC与△ABD全等,则请直接写出点D坐标.【考点】作图-轴对称变换;全等三角形的性质;作图-平移变换.【分析】(1)首先确定A、B、C三点关于y轴对称的点的位置,再连接即可;(2)首先确定A、B、C三点向下平移4个单位长度的对应点的位置,再连接即可;(3)首先确定D点位置,然后再写出坐标即可.【解答】解:(1)(2)如图所示:;(3)(﹣4,﹣1);(﹣2,﹣1);(﹣4,3).【点评】此题主要考查了作图﹣﹣平移变换,以及关于坐标轴对称,全等三角形的判定,关键是正确确定对称点和对应点的位置.21.(8分)丽水发生特大泥石流灾害后,某校学生会在全校1900名学生发起了“心系丽水”若捐款活动,为了解捐款情况,学生会随机调查了部分学生捐款情况,并用调查排水数据绘制了如图统计图,根据相关信息解答系列问题:(1)本次接受随机抽样调查的学生人数为50人,图①中的值是12.(2)求本次调查获取的样本数据的众数和中位数;(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.【考点】条形统计图;用样本估计总体;扇形统计图;中位数;众数.【专题】计算题.【分析】(1)利用条形统计图得各组的频数,然后把它们相加即可得到抽样调查的学生的总数,再用16除以50即可得到m的值;(2)根据众数和中位数的定义求解;(3根据样本估计总体,用样本中捐款10元所占的百分比表示全校捐款10元的百分比,然后计算1900×32%即可.【解答】解:(1)本次接受随机抽样调查的学生人数为4+16+12+10+8=50(人),m%=×100%=32%;故答案为50;32;(2)本次调查获取的样本数据的众数是10元;中位数是15元;(3)1900×32%=608(人),答:估计该校捐款10元的学生人数有608人.【点评】本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.从条形图可以很容易看出数据的大小,便于比较.也考查了用样本估计总体、中位数和众数.22.(10分)某工厂工人的工作时间为每月25天,每天8小时,每名工人每月有基本工资400元.该厂生产A、B两种产品,工人每生产一件A种产品,可得到报酬0.75元;每生产一件B种产品,可得到报酬1.40元,如表记录了工人小王的工作情况:生产A种产品件数生产B种产品件数合计用工时间(分钟)1 1 353 2 85(1)求小王每生产一件A种产品和一件B种产品,分别需要多少时间?(2)求小王每月工资额范围.【考点】一次函数的应用;二元一次方程组的应用.【分析】(1)设生产一件A种产品需要x分钟,生产一件B种产品需要y分钟,根据等量关系为“1件A,1件B用时35分钟”和“3件A,2件B用时85分钟”,根据这两个等量关系可列方程组,再进行求解即可.(2)求小王每月工资额的范围,需要求助于函数,由(1)知生产A、B的单个时间,又每月工作总时间一定为25×8×60,所以可列一个二元一次方程,又工资计算方法已知,则可利用一个未知量,去表示另一个未知量,得到函数,进行解答.【解答】解:(1)设生产一件A种产品需要x分钟,生产一件B种产品需要y分钟,依题意得:,解得:,答:生产一件A种产品需要15分钟,生产一件B种产品需要20分钟.(2)设小王每月生产A、B两种产品的件数分别为m、n,月工资额为w,根据题意得:,即,因为m,n为非负整数,所以0≤m≤800,故当m=0时,w有最大值为1240,当m=800时,w有最小值为1000,则小王每月工资额最少1000元,每月工资额最多1240元.【点评】此题考查了一次函数的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系:“1件A,1件B用时35分钟”和“3件A,2件B用时85分钟”,列出方程组,再求解.23.(8分)如图,A、B、C、D四点在同一条直线上,∠AGD=90°,且∠1=∠D,∠2=∠A.求证:FB∥EC.【考点】平行线的判定.【专题】证明题.【分析】先由∠AGD=90°,根据三角形内角和定理得出∠A+∠D=90°,再由∠1=∠D,∠ABF=∠1+∠D,得出∠ABF=2∠D,同理得出∠DCE=2∠A,那么∠DCE+∠ABF=2(∠A+∠D)=180°,根据邻补角定义得出∠ABF+∠DBF=180°,由同角的补角相等得到∠DCE=∠DBF,根据同位角相等,两直线平行得出FB∥EC.【解答】证明:∵∠AGD=90°,∴∠A+∠D=90°,∵∠1=∠D,∠ABF=∠1+∠D,∴∠ABF=2∠D,同理:∠DCE=2∠A,∴∠DCE+∠ABF=2(∠A+∠D)=180°,又∵∠ABF+∠DBF=180°,∴∠DCE=∠DBF,∴FB∥EC.【点评】本题考查了平行线的判定,三角形内角和定理,三角形外角的性质,邻补角定义,补角的性质,根据条件得出∠DCE=∠DBF是解题的关键.24.(10分)小明和小亮在9:00同时乘坐由甲地到乙地的客车,途经丙地时小亮下车,处理个人事情后乘公交返回甲地;小明乘客车到达乙地;30分钟后乘出租车也返回甲地,两人同时回到甲地,设两人之间的距离为y千米,所用时间为x分钟,图中折线表示y与x之间函数关系图象,根据题中所给信息,解答下列问题:(1)甲、乙两地相距80千米,客车的速度是80千米/时;(2)小亮在丙地停留48分钟,公交车速度是40千米/时;(3)求两人何时相距28千米?【考点】一次函数的应用;一次函数的图象;待定系数法求一次函数解析式.【专题】数形结合;分类讨论;函数思想;待定系数法;一次函数及其应用.【分析】(1)结合图象知,小明乘客车从丙地到乙地用时30分钟,行驶40千米可得客车速度,小明从甲到乙行驶1小时,可得甲乙间距离;(2)小亮在x=30到达丙地,x=78离开丙地,可得停留时间,根据小亮从丙地返回到甲地用时可得公交车速度;(3)两人相距28千米,即y=28,求出AB、DE函数解析式,令y=28可求得.【解答】解:(1)根据题意可知,当x=30时小明、小亮同时到达丙地,小亮停留在丙地;当x=60时y=40,即小明到达乙地,此时两人间的距离为40千米,∴小明乘客车从丙地到乙地用时30分钟,行驶40千米,∴客车的速度为:40÷0.5=80(千米/小时),∵小明乘客车从甲地到乙地用时60分钟,速度为80千米/小时,∴甲、乙两地相距80千米.(2)当x=78时小亮从丙地出发返回甲地,当x=138时小亮乘公交车从丙地出发返回到甲地,∴小亮在丙地停留78﹣30=48(分钟),公交车的速度为:40÷1=40(千米/小时).(3)①设AB关系式为:y1=k1x+b1由图象可得A(30,0)、B(60,40),代入得:则,解得,所以AB关系式为:(30≤x≤60),令y1=28,有,∴x=51.②设DE关系式为:y2=k2x+b2,∵(千米),∴D(90,48),由图象可得E(138,0),所以,解得:,所以DE关系式为:y2=﹣x+138 (90≤x≤138),令y2=28,有﹣x+138=28,∴x=110.所以两人在9:51和10:50相距28千米.故答案为:(1)80,80;(2)48,40.【点评】本题主要考查一次函数图象及待定系数法求一次函数解析式的能力,读懂函数图象各分段实际意义是关键,属中档题.25.(12分)如图所示,AB∥CD,直线EF与AB相交于点E,与CD相交于点F,FH是∠EFD 的角平分线,且与AB相交于点H,GF⊥FH交AB于点G(GF>HP).(1)如图①,求证:点E是GH的中点;(2)如图②,过点E作EP⊥AB交GF于点P,请判断GP2=PF2+HF2是否成立?并说明理由;(3)如图③,在(1)的条件下,过点E作EP⊥EF交GF于点P,请猜想线段GP、PF、HP有怎样的数量关系,请直接写出你猜想的结果.【考点】全等三角形的判定与性质;勾股定理.【分析】(1)根据平行线的性质和角平分线的定义求得∠EHF=∠EFH,证得EF=EH,根据∠EFG+∠EFH=90°,∠EGF+∠EHF=90°,得出∠EFG=∠EGF,根据等角对等边求得EG=EF,即可证得EH=EG,即E为HG的中点;(2)连接PH,根据垂直平分线的性质得出PG=PH,在Rt△PFH中,根据勾股定理得:PH2=PF2+HF2,即可得到GP2=PF2+HF2;(3)延长PE,使PE=EM,连接MH,MF,易证得△GPE≌△HME,从而得出GP=MH,∠1=∠2,进而证得EF垂直平分PM,根据垂直平分线的性质得出PF=MF,在RT△MHF中,MF2=MH2+FH2,即可得到PF2=GP2+FH2.【解答】(1)证明:∵AB∥CD,∴∠EHF=∠HFD,∵FH平分∠EFD,∴∠EFH=∠HFD,∴∠EHF=∠EFH,∴EF=EH,∵∠GFH=90°,∴∠EFG+∠EFH=90°,∠EGF+∠EHF=90°,∴∠EFG=∠EGF,∴EG=EF,∴EH=EG,∴E为HG的中点;(2)连接PH,如图②:∵EP⊥AB,又∵E是GH中点,∴PE垂直平分GH,∴PG=PH,在Rt△PFH中,∠PFH=90°,由勾股定理得:PH2=PF2+HF2,∴GP2=PF2+HF2;(3)如图③,延长PE,使PE=EM,连接MH,MF,在△GPE和△HME中,,∴△GPE≌△HME(SAS),∴GP=MH,∠1=∠2,∵GF⊥FH,∴∠1+∠3=90°,∴∠2+∠3=90°,∵EF⊥PM,PE=EM,∴PF=MF,在RT△MHF中,MF2=MH2+FH2,∴PF2=GP2+FH2.【点评】本题考查了全等三角形的判定和性质,线段的垂直平分线的性质,等腰三角形的判定和性质,勾股定理的应用等,找出辅助线,构建等腰三角形是解题的关键.。
2023-2024学年四川省自贡市八年级(上)期末数学试卷+答案解析
2023-2024学年四川省自贡市八年级(上)期末数学试卷一、选择题:本题共8小题,每小题3分,共24分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知某新型流感病毒的直径约为米,将用科学记数法表示为( )A. B. C. D.2.下列几何图形中,是轴对称图形的是( )A. B. C. D.3.能与长为20cm,30cm的两根木条首尾顺次相接钉成一个三角形的木条长度是( )A. 10cmB. 30cmC. 50cmD. 70cm4.下列计算正确的是( )A. B. C. D.5.如图,在中,DE是AC的垂直平分线,且分别交BC,AC于点D和E,连接若,,则为( )A.B.C.D.6.下列等式从左到右的变形,是因式分解的是( )A. B.C. D.7.如图,的和的外角角平分线交于点D,若,,则的度数是( )A.B.C.D.8.如图,在和中,,,,,连接AC,BD交于点H,连接OH,下列结论:①;②;③OH平分;④HO平分;⑤直线BD平分线段其中正确的结论有( )A. 2个B. 3个C. 4个D. 5个二、填空题:本题共6小题,每小题3分,共18分。
9.若分式有意义,则x的取值范围是______.10.约分:______.11.如图,在中,AD是高,角平分线AE,BF相交于点O,,,则的度数是______.12.已知,则______.13.一个多边形的内角和是它的外角和的3倍,则从这个多边形的一个顶点出发共有______条对角线.14.如图,已知锐角的面积为42,,,点C是AB边上一动点,点E,F是OA,OB边上异于端点的两个动点,当的周长最小时,点O到线段EF的距离是______.三、解答题:本题共10小题,共58分。
解答应写出文字说明,证明过程或演算步骤。
15.本小题5分计算:16.本小题5分解方程:17.本小题5分如图,在中,,D为BC的中点,,,垂足分别为E、F,求证:18.本小题5分计算:19.本小题5分如图,在中,,,要把图纸上的这块三角形土地均分给甲、乙、丙三家农户,并使这三家农户所得土地的大小、形状都相同,请在图上画出分割图要求;尺规作图,要写出作法,并保留作图痕迹20.本小题6分自贡彩灯文化历史悠久,盐、龙、灯被称为自贡的“大三绝”.师徒二人制作某种彩灯,师父每天比徒弟多做5个,师父做80个所用的时间与徒弟做60个所用的时间相等.求师父每天做彩灯多少个?春节前夕,有600个该种彩灯需要制作.若师父工价是每天300元,徒弟每天250元,总预算费用不超过9200元,则最多可安排徒弟做多少天?21.本小题6分如图,在中,点A,B,C的坐标分别为,,画出关于y轴对称的图形,并写出点D,E,F的坐标;求以A,C,F,D为顶点的四边形的面积.22.本小题6分如图,在中,,AD是BC边上的中线,交AB于点求证:23.本小题7分如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”,如:,,,因此4,12,20都是“神秘数”.请说明36是否为“神秘数”;证明:“神秘数”一定是4的倍数;是“神秘数”吗?请说明理由.24.本小题8分如图1所示,在中,,点D是线段CA延长线上一点,且点F是线段AB 上一点,连接DF,以DF为斜边作等腰,连接EA,且若,垂足为G,求证:如图2,若点F是线段BA延长线上一点,其他条件不变,请写出线段AE,AF,BC之间的数量关系,并说明理由.答案和解析1.【答案】B【解析】解:故选:用科学记数法表示较小的数,一般形式为,与较大数的科学记数法不同的是其所使用的是负整数指数幂.本题主要考查了用科学记数法表示较小的数,一般形式为,其中,n为由原数左边起第一个不为零的数字前面的0的个数所决定.2.【答案】D【解析】解:A,B,C选项中的图形都不能找到一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;D选项中的图形能找到一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形.故选:根据轴对称图形的定义进行逐一判断即可.本题主要考查了轴对称图形,如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.3.【答案】B【解析】解:设要选取的木条长度是x cm,,,要选取的木条长度是30cm,故选:三角形三边关系定理:三角形两边之和大于第三边,三角形的两边差小于第三边,设要选取的木条长度是x cm,由此得到,即可得到答案.本题考查三角形三边关系,关键是掌握三角形三边关系定理.4.【答案】A【解析】解:,此选项计算正确,故此选项符合题意;B.,此选项计算错误,故此选项不符合题意;C.,此选项计算错误,故此选项不符合题意;D.,此选项计算错误,故此选项不符合题意;故选:A.根据幂的乘方法则进行计算,然后判断即可;B.根据同底数幂相乘法则进行计算,然后判断即可;C.根据负整数指数幂的性质进行计算,然后判断即可;D.根据同底数幂相除法则进行计算,然后判断即可.本题主要考查了整式的有关运算,解题关键是熟练掌握同底数幂的乘除法则、幂的乘方法则和负整数指数幂的性质.5.【答案】C【解析】解:,,,是AC的垂直平分线,,,故选:首先利用等腰三角形的性质求得的度数,然后利用三角形的外角的性质求得答案即可.本题考查了等腰三角形的性质及垂直平分线的性质,解题的关键是了解线段的垂直平分线上的点到线段两端点的距离相等.6.【答案】D【解析】解:是整式乘法运算,则A不符合题意;是单项式的变形,则B不符合题意;的右边不是积的形式,则C不符合题意;符合因式分解的定义,则D符合题意;故选:将一个多项式化为几个整式的积的形式即为因式分解,据此逐项判断即可.本题考查因式分解的识别,熟练掌握其定义是解题的关键.7.【答案】C【解析】解:如图,延长CA至E,使,连接BD,ED,ED交BA的延长线于点N,,,,平分,,,,在和中,,≌,,设,,,,的和的外角角平分线交于点D,平分,,,,,,,,,即,故选:延长CA至E,使,连接BD,ED,由“SAS”可证≌,可得,设,由等腰三角形的性质可得,根据角平分线定义求出,,根据平角定义求出,再根据三角形外角的性质可求解.本题考查了全等三角形的判定和性质,等腰三角形的性质,角平分线的性质,添加恰当辅助线构造全等三角形是本题的关键.8.【答案】B【解析】解:,,,,,即,在和中,,≌,,,故①正确,符合题意;由三角形的外角性质得:,,故②正确,符合题意;作于G,于M,如图所示,则,在和中,,≌,,平分,故④正确,符合题意;假设OH平分,则,,平分,,在和中,,≌,,与矛盾,故③错误,不符合题意;根据题意,无法求证直线BD平分线段OC,故⑤错误,不符合题意;正确的个数有3个;故选:由SAS证明≌得出,,①正确;由全等三角形的性质得出,由三角形的外角性质得:,得出,②正确;作于G,于M,如图所示:则,由AAS证明≌,得出,由角平分线的判定方法得出HO平分,④正确;假设OH平分,则,由HO平分,,利用ASA推出≌,得,而,故③错误;根据题意,无法求证直线BD平分线段OC,故⑤错误,即可得出结论.本题考查了全等三角形的判定与性质、三角形的外角性质、角平分线的判定等知识;证明三角形全等是解题的关键.9.【答案】【解析】解:分式有意义,,故答案是:根据分式有意义的条件计算即可.本题主要考查了分式有意义的条件,准确计算是解题的关键.10.【答案】【解析】解:原式故答案为:先把分子因式分解,然后把分子分母都约去m即可.本题考查了约分:约去分式的分子与分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.11.【答案】【解析】解:角平分线AE,BF相交于点O,,,,是高,,,,,,故答案为:由角平分线的定义可得,,由高线可得,从而可求得,再由三角形的内角和可得,即可求的度数,从而可求的度数.本题主要考查三角形的内角和定理,解答的关键是结合图形分析清楚各角的关系.12.【答案】【解析】解:,,,,,,,,,,故答案为:先利用多项式乘多项式法则计算已知条件中等式的左边,然后根据右边得到,,再灵活利用完全平方公式求出即可.本题主要考查了多项式乘多项式,解题关键是熟练掌握完全平方公式和灵活运用完全平方公式解决问题.13.【答案】5【解析】解:设这个多边形有n条边,由题意得:,解得,从这个多边形的一个顶点出发的对角线的条数是,故答案为:首先设这个多边形有n条边,由题意得方程,再解方程可得到n的值,然后根据n边形从一个顶点出发可引出条对角线可得答案.此题主要考查了多边形的内角和外角,以及对角线,关键是掌握多边形的内角和公式.14.【答案】【解析】解:作点C关于OA的对称点G,点C关于OB的对称点H,连接CG、CH、OG、OH,垂直平分CG,OB垂直平分CH,,,,,,,,,作于点I,则,,,,,连接GE、HF,则,,,,,作于点D,的面积为42,,,解得,,当点C与点D重合时,,此时OC的值最小,当时,的值最小,的周长最小,,,点O到线段EF的距离是,故答案为:作点C关于OA的对称点G,点C关于OB的对称点H,连接CG、CH、OG、OH,则,所以,,则,求得,作于点I,则,,求得,所以,连接GE、HF,则,,所以,则,作于点D,由的面积为42,,求得,则当点C与点D重合时,,此时OC的值最小,当时,的周长最小,由,求得,于是得到问题的答案.此题重点考查轴对称的性质、等腰三角形的性质、直角三角形中角所对的直角边等于斜边的一半、两点之间线段最短、垂线段最短、根据面积等式求线段的长度等知识与方法,正确地作出辅助线是解题的关键.15.【答案】解:【解析】根据完全平方公式、单项式乘多项式的法则计算即可.本题考查了完全平方公式、单项式乘多项式,熟练掌握公式和运算法则是解题的关键.16.【答案】解:原方程去分母得:,去括号得:,移项,合并同类项得:,系数化为1得:,检验:将代入得,故原分式方程的解为【解析】利用解分式方程的步骤解方程即可.本题考查解分式方程,熟练掌握解方程的方法是解题的关键.17.【答案】证明:,,又,,,点D为BC中点,,在和中,≌,【解析】此题考查全等三角形的判定和性质,关键是根据等腰三角形的性质得出根据等腰三角形的性质得出,根据全等三角形的判定和性质得出即可;18.【答案】解:【解析】先算乘方,再算乘除,即可得出结果.本题考查了分式的乘方、乘除法,熟练掌握分式的混合运算法则是解题的关键.19.【答案】解:作法:作AB边的垂直平分线,分别交BC、AB于点E、F,连接、、即为分出的三块地.【解析】作AB边的垂直平分线EF,连接本题考查了应用与设计作图,三角形内角和定理.首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图.20.【答案】解:设师父每天做彩灯x个,则徒弟每天做彩灯个,由题意得:,解得,经检验,是原方程的解,且符合题意,答:师父每天做彩灯20个;设可安排徒弟做b天,则安排师父做天,即天,由题意得:,解得:,答:最多可安排徒弟做8天.【解析】设师父每天做彩灯x个,则徒弟每天做彩灯个,关键师父做80个所用的时间与徒弟做60个所用的时间相等.列出分式方程,解方程即可;设可安排徒弟做b天,则安排师父做天,即天,根据总预算费用不超过9200元,列出一元一次不等式,解不等式即可.本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:找准等量关系,正确列出分式方程;找出数量关系,正确列出一元一次不等式.21.【答案】解:如图所示,即为所求,由图知,、、;由图知,,以A,C,F,D为顶点的四边形的面积为【解析】分别作出三个顶点关于y轴的对称点,再首尾顺次连接即可得出答案;根据梯形的面积公式求解即可.本题主要考查作图-轴对称变换,解题的关键是掌握轴对称变换的定义与性质,并据此得出变换后的对应点.22.【答案】证明:,,,在中,,,是BC上的中线,是的角平分线,,,,,,,即【解析】首先利用和,推导出,,进而得到,进一步推导出,,进而得证.本题主要考查了平行线的性质,解答本题的关键是熟练掌握平行线的性质以及等腰三角形“三线合一”的性质,23.【答案】解:假设36是神秘数,则能表示为两个连续偶数的平方差,设较小的偶数为x,则较大的偶数为解得:是“神秘数”.设较小的偶数为2k,则较大的偶数为为正整数,为正整数.“神秘数”一定是4的倍数.不是“神秘数”.理由:假设2000是“神秘数”,由得解得:不是整数,假设不成立.不是“神秘数”.【解析】假设36是神秘数,看36是否能表示为两个连续偶数的平方差即可判断是否为“神秘数”;可设较小的偶数为2k,则较大的偶数为,看较大偶数与较小偶数的平方差是否是4的倍数即可;把2000代入得到的式子中,看是否符合实际意义.本题考查新定义的应用.理解新定义的意义是解决本题的关键.注意应用已得到的结论.24.【答案】证明:如图1,,,,,,,在和中,,≌,,是以DF为斜边的等腰直角三角形,,,,在和AFE中,,≌,,,,解:,理由:如图2,作交AE的延长线于点H,则,,在和中,,≌,,,,在和AFE中,,≌,,,【解析】由,,得,而,,则,,即可根据“AAS”证明≌,得,再证明≌,得,则;作交AE的延长线于点H,可证明≌,得,再证明≌,得,则此题重点考查等腰直角三角形的性质、同角的余角相等、全等三角形的判定与性质等知识,正确地作出辅助线是解题的关键.。
人教版八年级(上)数学期末试卷(含答案)
人教版八年级(上)数学期末试卷一、选择题(共10小题,每小题3分,计30分)1.下列长度的线段能组成三角形的是()A.3,4,8B.5,6,11C.5,6,10D.6,10,42.下列图案中不是轴对称图形的是()A.B.C.D.3.分式有意义的条件是()A.x≠﹣4B.x≠6C.x≠﹣4且x≠6D.x=44.甲、乙、丙、丁4名运动员参加射击训练,他们10次射击的平均成绩都是8.5环,方差分别是S甲2=3,S乙2=4,S丙2=6,S丁2=2,则这4名运动员10次射击成绩最稳定的是()A.甲B.乙C.丙D.丁5.用加减消元法解二元一次方程组时,下列方法中无法消元的是()A.①×2﹣②B.②×3+①C.①﹣②×3D.①×(﹣2)+②6.下列各组线段不能构成直角三角形的是()A.2,3,4B.3,4,5C.1,1,D.6,8,107.已知,如图,△ABC是等边三角形,AE=CD,BQ⊥AD于Q,BE交AD于点P,下列说法:①∠APE=∠C,②AQ=BQ,③BP=2PQ,④AE+BD=AB,其正确的个数有()个.A.1B.2C.3D.48.如图,七边形ABCDEFG中,AB、ED的延长线交于点O,着∠1、∠2、∠3、∠4对应的邻补角和等于215°,则∠BOD的度数为()A.30°B.35°C.40°D.45°9.已知点P(a+1,2a﹣3)关于x轴的对称点在第一象限,则a的取值范围是()A.a>B.a>﹣1C.﹣1<a<D.a<10.关于x的分式方程有整数解,关于x的不等式组无解,所有满足条件的整数a的和为()A.2B.﹣6C.﹣3D.4二、填空题(共8小题,每空3分,计24分)11.(3分)开州区云枫街道一位巧娘,用了7年时间,绣出了21米长的《清明上河图》.全图长21米,宽0.65米,扎了600多万针.每针只约占0.000002275平方米.数据0.000002275用科学记数法表示为.12.(3分)计算:(﹣1)2019+(﹣)﹣2﹣(π﹣)0=.13.(3分)如图,若AB∥CD,∠A=110°,则∠1=°.14.(3分)一次函数y=2x+1的图象不经过第象限.15.(3分)将一根长为24cm的筷子置于底面直径为12cm,高为16cm的圆柱形水杯中,则筷子露在杯子外面的最短长度为cm.16.(3分)如图,AB=12m,CA⊥AB于A,DB⊥AB于B,且AC=4m,P点从B向A运动,每分钟走1m,Q点从B向D运动,每分钟走2m,P、Q两点同时出发,运动分钟后△CAP与△PQB全等.17.(3分)已知:如图,在△MPN中,H是高MQ和NR的交点,且MQ=NQ,已知PQ=5,NQ=9,则MH长为.18.(3分)如图,∠AOB=30°,点M、N分别是射线OB、OA上的动点,点P为∠AOB内一点,且OP=8,则△PMN的周长的最小值=.三、计算题(共3小题,计16分)19.(6分)化简:(1)(3x+2y)(x﹣3y)﹣6xy(2)(a+2b)2+(2a3b+8ab3)÷(2ab)20.(4分)解方程组.21.(6分)(1)计算:a﹣2b2•(a2b﹣2)﹣3÷(a﹣4)2(2)解方程:=﹣1四、操作题(5分)22.(5分)在平面直角坐标系中,已知点A(1,3),B(3,1),C(4,3).(1)画出△ABC;(2)画出△ABC关于x轴对称的△A1B1C1.连接A1B并直接写出线段A1B的长.五、解答题(共3小题,计25分)23.(8分)2018中国重庆开州汉丰湖国际摩托艇公开赛第二年举办.邻近区县一旅行社去年组团观看比赛,全团共花费9600元.今年赛事宣传工作得力,该旅行社继续组团前来观看比赛,人数比去年增加了50%,总费用增加了3900元,人均费用反而下降了20元.(1)求该旅行社今年有多少人前来观看赛事?(2)今年该旅行社本次费用中,其它费用不低于交通费的2倍,求人均交通费最多为多少元?24.(8分)如图,在△ABC中,∠A=30°,∠ACB=80°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.25.(9分)如图1,在平面直角坐标系中,A(﹣3,0)、B(0,7)、C(7,0),∠ABC+∠ADC=180°,BC⊥CD.(1)求证:∠ABO=∠CAD;(2)求四边形ABCD的面积;(3)如图2,E为∠BCO的邻补角的平分线上的一点,且∠BEO=45°,OE交BC于点F,求BF的长.人教版八年级(上)数学期末试卷参考答案与试题解析一、选择题1.【解答】解:A、3+4<8,不能构成三角形,故此选项不符合题意;B、5+6<11,不能构成三角形,故此选项不符合题意;C、6+5>10,能构成三角形,故此选项符合题意;D、6+4=10,不能构成三角形,故此选项不符合题意.故选:C.2.【解答】解:A、是轴对称图形,故本选项不合题意;B、是轴对称图形,故本选项不合题意;C、是轴对称图形,故本选项不合题意;D、不是轴对称图形,故本选项符合题意;故选:D.3.【解答】解:要使分式有意义,必须x+4≠0,解得,x≠﹣4,故选:A.4.【解答】解:∵S甲2=3,S乙2=4,S丙2=6,S丁2=2,∴S丁2<S甲2<S乙2<S丙2,∴这4名运动员10次射击成绩最稳定的是丁,故选:D.5.【解答】解:A.,①×2﹣②,得7y=7,能消元,故本选项不符合题意;B.,②×3+①,得7x=7,能消元,故本选项不符合题意;C.,①﹣②×3,得﹣5x+6y=1,不能消元,故本选项符合题意;D.,①×(﹣2)+②,得﹣7y=﹣7,能消元,故本选项不符合题意;故选:C.6.【解答】解:A、∵22+32≠42,∴三角形不是直角三角形,故本选项正确;B、∵32+42=52,∴三角形是直角三角形,故本选项错误;C、∵12+12=()2,∴三角形是直角三角形,故本选项错误;D、∵62+82=102,∴三角形不是直角三角形,故本选项错误.故选:A.7.【解答】证明:∵△ABC是等边三角形,∴AB=AC,∠BAE=∠C=60°,在△ABE和△CAD中,,∴△ABE≌△CAD(SAS),∴∠1=∠2,∴∠BPQ=∠2+∠3=∠1+∠3=∠BAC=60°,∴∠APE=∠C=60°,故①正确∵BQ⊥AD,∴∠PBQ=90°﹣∠BPQ=90°﹣60°=30°,∴BP=2PQ.故③正确,∵AC=BC.AE=DC,∴BD=CE,∴AE+BD=AE+EC=AC=AB,故④正确,无法判断BQ=AQ,故②错误,故选:C.8.【解答】解:∵∠1、∠2、∠3、∠4的外角的角度和为215°,∴∠1+∠2+∠3+∠4+215°=4×180°,∴∠1+∠2+∠3+∠4=505°,∵五边形OAGFE内角和=(5﹣2)×180°=540°,∴∠1+∠2+∠3+∠4+∠BOD=540°,∴∠BOD=540°﹣505°=35°,故选:B.9.【解答】解:∵点P(a+1,2a﹣3)关于x轴的对称点在第一象限,∴点P在四象限,∴,解得:﹣1<a,故选:C.10.【解答】解:将不等式组整理得:,由不等式组无解,得到﹣1≥,解得:a≤3,分式方程去分母得:1﹣ax+4(x﹣3)=﹣5,去括号得:1﹣ax+4x﹣12=﹣5,移项合并得:(4﹣a)x=6,解得:x=,∵x﹣3≠0,当a=﹣2、1、3时,符合题意;∴所有满足条件的a的值之和为:﹣2+1+3=2,故选:A.二、填空题11.【解答】解:0.000002275=2.275×10﹣6.故答案是:2.275×10﹣6.12.【解答】解:原式=﹣1+9﹣1=7.故答案为:7.13.【解答】解:∵AB∥CD,∴∠2=∠A=110°.又∵∠1+∠2=180°,∴∠1=180°﹣∠2=180°﹣110°=70°.故答案为:70.14.【解答】解:∵2>0,1>0,∴一次函数y=2x+1的图象经过一、二、三象限,即不经过第四象限.故答案为:四.15.【解答】解:设筷子露在杯子外面的长度为h,当筷子与杯底及杯高构成直角三角形时h最小,如图所示:此时,AB===20(cm),故h=24﹣20=4(cm).故筷子露在杯子外面的最短长度为4cm.故答案为:4.16.【解答】解:∵CA⊥AB于A,DB⊥AB于B,∴∠A=∠B=90°,设运动x分钟后△CAP与△PQB全等;则BP=xm,BQ=2xm,则AP=(12﹣x)m,分两种情况:①若BP=AC,则x=4,AP=12﹣4=8,BQ=8,AP=BQ,∴△CAP≌△PBQ;②若BP=AP,则12﹣x=x,解得:x=6,BQ=12≠AC,此时△CAP与△PQB不全等;综上所述:运动4分钟后△CAP与△PQB全等;故答案为:4.17.【解答】解:∵MQ⊥PN,NR⊥PM,∴∠NQH=∠NRP=∠HRM=90°,∵∠RHM=∠QHN,∴∠PMH=∠HNQ,在△MQP和△NRP中,,∴△MQP≌△NQH(ASA),∴PQ=QH=5,∵NQ=MQ=9,∴MH=MQ﹣HQ=9﹣5=4,故答案为4.18.【解答】解:分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OP、OC、OD、PM、PN.∵点P关于OA的对称点为C,关于OB的对称点为D,∴PM=CM,OP=OC,∠COA=∠POA;∵点P关于OB的对称点为D,∴PN=DN,OP=OD,∠DOB=∠POB,∴OC=OD=OP=8cm∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+2∠POB=2∠AOB=60°,∴△COD是等边三角形,∴CD=OC=OD=8.∴△PMN的周长的最小值=PM+MN+PN=CM+MN+DN≥CD=8.故答案为:8.三、计算题19.【解答】解:(1)(3x+2y)(x﹣3y)﹣6xy =3x2﹣9xy+2xy﹣6y2﹣6xy=3x2﹣13xy﹣6y2;(2)(a+2b)2+(2a3b+8ab3)÷(2ab)=a2+4ab+4b2+a2+4b2=2a2+4ab+8b2.20.【解答】解:①×3﹣②得:2x=4,解得:x=2,把x=2代入①得:4+y=2,解得:y=﹣2,所以原方程组的解为.21.【解答】解:(1)原式=a﹣2b2•a﹣6b6÷a﹣8=a﹣8b8÷a﹣8=b8;(2)两边都乘以(x+1)(x﹣1),得:3(x﹣1)=x(x+1)﹣(x+1)(x﹣1),解得:x=2,检验:x=2时,(x+1)(x﹣1)=3≠0,∴分式方程的解为x=2.四、操作题22.【解答】解:(1)如图,△ABC为所作;(2)如图,△A1B1C1为所作;A1B==2.五、解答题23.【解答】解:(1)设该旅行社去年有x人前来观看赛事,根据题意,得:,解得:x=30,经检验:x=30是原方程的解,所以原方程的解为x=30,∴(1+50%)x=45,答:该旅行社今年的有45人前来观看赛事;(2)今年该旅行社本次费用中,人均交通费为x元,由题意得:9600+3900﹣45x≥2×45x,解得:x≤100,答:人均交通费最多为100元.24.【解答】解:(1)∵在△ABC中,∠A=30°,∠ACB=80°,∴∠CBD=∠A+∠ACB=110°,∵BE是∠CBD的平分线,∴∠CBE=∠CBD=55°;(2)∵∠ACB=80°,∠CBE=55°,∴∠CEB=∠ACB﹣∠CBE=80°﹣55°=25°,∵DF∥BE,∴∠F=∠CEB=25°.25.【解答】解:(1)在四边形ABCD中,∵∠ABC+∠ADC=180°,∴∠BAD+∠BCD=180°,∵BC⊥CD,∴∠BCD=90°,∴∠BAD=90°,∴∠BAC+∠CAD=90°,∵∠BAC+∠ABO=90°,∴∠ABO=∠CAD;(2)过点A作AF⊥BC于点F,作AE⊥CD的延长线于点E,作DG⊥x轴于点G,∵B(0,7),C(7,0),∴OB=OC,∴∠BCO=45°,∵BC⊥CD,∴∠BCO=∠DCO=45°,∵AF⊥BC,AE⊥CD,∴AF=AE,∠FAE=90°,∴∠BAF=∠DAE,在△ABF和△ADE中,,∴△ABF≌△ADE(ASA),∴AB=AD,同理,△ABO≌△DAG,∴DG=AO,BO=AG,∵A(﹣3,0)B(0,7),∴D(4,﹣3),S四ABCD=AC•(BO+DG)=50;(3)过点E作EH⊥BC于点H,作EG⊥x轴于点G,∵E点在∠BCO的邻补角的平分线上,∴EH=EG,∵∠BCO=∠BEO=45°,∴∠EBC=∠EOC,在△EBH和△EOG中,,∴△EBH≌△EOG(AAS),∴EB=EO,∵∠BEO=45°,∴∠EBO=∠EOB=67.5°,又∠OBC=45°,∴∠BOE=∠BFO=67.5°,∴BF=BO=7.。
人教版八年级上册数学期末试卷及答案
人教版八年级上册数学期末试题一、单选题1.下列图形中,是轴对称图形的是()A .B .C .D .2.以下列数值为长度的各组线段中,不能围成三角形的是()A .2,3,4B .3,5,6C .2,2,5D .4,4,63.下列计算正确的是()A .22a a a ⋅=B .330a a ÷=C .()3253ab a b =D .221a a -=4.下列分式是最简分式的()A .223ac a bB .23aba a -C .22ab a b ++D .222a aba b --5.若224x mx ++是完全平方式,则m 的值是()A .16±B .4±C .2±D .1±6.已知图中的两个三角形全等,则∠1的度数为()A .43B .55C .82D .677.等腰三角形的周长为10cm ,其中一边长为4cm ,则该等腰三角形的底边长为()A .5cmB .4cmC .3cm 或4cmD .2cm 或4cm 8.一个多边形的内角和比四边形内角和多360 ,则这个多边形是()A .五边形B .六边形C .七边形D .八边形9.若2x y +=,15xy =,则()()22x y --的值是()A .11B .14C .15D .1810.如图,已知△ABC 中,D 、E 分别为BC 、AC 上的点,且满足AB AD CD CE ===,若∠36BAD = ,则∠ADE 的度数为()A .36°B .35°C .26°D .72°二、填空题11.因式分解:224a b -=_____.12.点()2,3P -关于x 轴对称的点的坐标为_________.13.数据0.0000001米,用科学记数法表示为_______米.14.甲完成一项工作需t 小时,乙完成同样工作比甲少用1小时,设工作总量为1,则乙的工作效率为__________.15.如图,在△ABC 中,∠C=90°,AD 平分∠BAC ,AB=5,CD=2,则△ABD 的面积是________.16.如图,已知AD ∥BC ,∠BAD=90°,∠C=60°,CB=CD ,若AD=1,则BC=____.三、解答题17.计算:(1)()()3421x x +-(2)2(2)(2)()m n m n m n +---18.解分式方程:(1)15122x x x +=++(2)2351311x x x x +=---19.先化简,再求值:()22212•21121a a a a a a a -+-÷++--,其中12a =.20.如图,点A 、E 、B 、D 在同一直线上,AC 、DF 相交于点G ,FE AD ⊥,垂足为E ,CB AD ⊥垂足为B ,且FE CB =,AE BD =.求证:△ABC ≌△DEF .21.如图,在平面直角坐标系中,已知A (3,3),B (1,1),C (4,-1).(1)画出△ABC 关于y 轴的轴对称图形△A 1B 1C 1,并写出A 1、B 1、C 1坐标;(2)在(1)的条件下,连接AA 1、AB 1,直接写出△AA 1B 1的面积.22.如图,D 、E 分别是AB 、AC 的中点,CD ⊥AB 于D ,BE ⊥AC 于E ,求证:AC=AB .23.某学校为美化校园,安排甲、乙两工程队对面积为990m 2的区域进行绿化.已知甲队每天能完成的绿化面积是乙队每天能完成绿化面积的2倍,若先由乙队完成面积的13,再由甲、乙共同完成,时间共用11天.问甲、乙两工程队每天能完成绿化的面积分别是多少平方米?24.如图,正方形ABCD 的边长为4,动点P 从点A 开始沿A→D→C 的方向,以每秒2个单位的长度运动,动点Q 从点B 出发,沿B→C→D 以每秒1个单位的长度运动.当点P 到达C 点后,P 、Q 两点同时停止运动.设运动时间为t ,△BPQ 的面积为S .(1)填空:当动点P 到达D 点时,t=;(2)请用含t 的式子表示面积S .25.轴对称变换是几何证明中重要的图形变换之一,即寻找对称轴,将对称轴的一侧图形进行翻折,来构造满足条件的几何辅助线.例:在△ABC 中,过点A 作AD ⊥BC 于点D ,若AC+CD=BD ,则∠B 与∠C 满足什么关系?分析:将△ADC 沿直线AD 翻折,得到△ADE ,通过相关定理即可得到结论.(1)请猜想∠B 与∠C 的关系,并说明理由;(2)如图3,A 、D 为线段BC 同侧两点,∠BAC=∠BDC=60°,∠ACB+12∠ACD=90°,求证:AB=AC+CD .26.如图,在平面直角坐标系中,点(0)A m ,、点(,0)B n 分别在y 轴、x 轴的正半轴上,若m 、n 满足()()2240m n n -+-=.(1)填空:m =,n =;(2)如图,点P 是第一象限内一点,连接AP 、OP ,使∠APO=45°.过点B 作BC ⊥OP 于点D ,交y 轴于点C ,证明:DP=DB .(3)若在线段OA 上有一点M (0t ,),连接BM ,将BM 绕点B 逆时针旋转90°得到BN ,连接AN 交x 轴于点E ,请直接写出点E 的坐标(用含有t 的代数式表示).参考答案1.A2.C3.D4.C5.C6.C7.D8.B9.C10.A11.()()22a b a b +-【详解】解:原式=(a+2b)(a-2b).故答案为:(a+2b )(a-2b )12.()2,3--【详解】解:点()2,3P -关于x 轴对称点的坐标为:()2,3--,故答案为()2,3--.13.7110-⨯【详解】解:70.0000001110-=⨯故答案为:7110-⨯14.1t-1【详解】解:∵乙的工作时间为(t-1),工作总量为1,∴乙的工作效率为11t -.故答案为:11t -.15.5【详解】解:如图,过D 作DE ⊥AB 于E ,△DAE 和△DAC 中,AD 平分∠BAC ,则∠DAE=∠DAC ,∠DEA=∠DCA=90°,DA=DA ,∴△DAE ≌△DAC (AAS ),∴DE=DC=2,∴△ABD 的面积=12×AB×DE=12×5×2=5,故答案为:5;16.2【分析】连接BD ,证明△BCD 是等边三角形,可得BD =BC ,∠DBC =60°,求出∠ABD =30°,然后根据含30°角的直角三角形的性质求出BD 即可.【详解】解:连接BD ,∵∠C=60°,CB=CD ,∴△BCD 是等边三角形,∴BD =BC ,∠DBC =60°,∵AD ∥BC ,∠BAD=90°,∴∠ABC =90°,∴∠ABD =30°,∵∠BAD=90°,AD=1,∴BD =2AD =2,∴BC =BD =2,故答案为:2.17.(1)2654x x +-(2)22322m mn n +-【分析】(1)根据多项式乘多项式进行计算即可;(2)运用平方差与完全平方公式进行计算即可.(1)解:()()3421x x +-=26834x x x +--=2654x x +-(2)2(2)(2)()m n m n m n +---=()222242m n m mn n ---+=222242m n m mn n --+-=22322m mn n +-18.(1)-3x =(2)12x =-【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.(1)解:15122x x x +=++,方程两边同时乘以21x +()得:25x =+,解得-3x =,把-3x =代入2123140x +=-+=-≠()(),所以-3x =是原方程的解;(2)解:2351311x x x x +=---,方程两边同时乘以(1)(1)x x -+得:()()()3151311x x x x x -+=+-+-,化简得:84x -=,解得12x =-,把12x =-代入()()1131111224x x ⎛⎫⎛⎫-+=---+=- ⎪⎪⎝⎭⎝⎭≠0,所以原方程的解为12x =-.19.()211a a -+,23-【分析】根据分式的乘除法可以化简题目中的式子,再把a 值代入化简式子中求解即可.【详解】解:()22212•21121a a a a a a a -+-÷++--=()()222121••121a a a a a a --+--+=()211a a -+,把12a =代入原式得原式=121122133122⎛⎫⨯- ⎪-⎝⎭==-+.20.见解析【详解】证明:∵EF ⊥AD ,CB ⊥AD ,∴∠ABC=∠DEF=90°,又∵AE=BD ,∴AE+EB=BD+EB ,∴AB=DE ,在△ABC 与△DEF 中FE CB ABC DEF AB DE =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△DEF (SAS ).21.(1)图见解析,A 1(-3,3),B 1(-1,1),C 1(-4,-1)(2)△AA 1B 1的面积为6【分析】(1)直接利用关于y 轴对称点的性质得出对应点位置进而得出答案;(2)利用三角形面积公式进而得出答案.(1)解:如图所示:△A 1B 1C 1,即为所求;A 1(-3,3),B 1(-1,1),C 1(-4,-1);(2)解:△AA 1B 1的面积为:12×6×2=6.22.证明见解析【分析】连接BC ,由CD 垂直于AB ,且D 为AB 中点,即CD 所在直线为AB 的垂直平分线,根据线段垂直平分线上的点到线段两端点的距离相等,得到AC=BC ,又E 为AC 中点,且BE 垂直于AC ,即BE 所在的直线为AC 的垂直平分线,同理可得BC=AB ,等量代换即可得证.【详解】证明:如图,连接BC∵CD ⊥AB 于D ,D 是AB 的中点,即CD 垂直平分AB ,∴AC=BC (中垂线的性质),∵E 为AC 中点,BE ⊥AC ,∴BC=AB (中垂线的性质),∴AC=AB .23.甲工程队每天能完成绿化的面积为100平方米,乙工程队每天能完成绿化的面积为50平方米【分析】设乙工程队每天能完成绿化的面积为x 平方米,根据“由甲、乙共同完成,时间共用11天”列分式方程求解即可.【详解】解:设乙工程队每天能完成绿化的面积为x 平方米,则甲工程队每天能完成绿化的面积为2x 平方米,由题意得:1299099033112x x x⨯⨯+=+,整理得:33022011x x +=,即55011x =,方程两边同时乘以x ,得,11550x =,解得50x =,验根:当50x =时分母不为0,所以50x =是原方程的解,答:甲工程队每天能完成绿化的面积为100平方米,乙工程队每天能完成绿化的面积为50平方米.24.(1)2(2)22(02)4(24)t x S t t x <≤⎧=⎨-+<≤⎩【分析】(1)用AD 的长除以动点P 的速度可求出t ;(2)分0<t≤2时和2<t≤4时两种情况,分别利用三角形的面积公式列式计算即可.(1)解:∵正方形ABCD 的边长为4,动点P 的速度为每秒2个单位的长度,∴t =4÷2=2,故答案为:2;(2)当0<t≤2时,点P 在线段AD 上,如图:∵BQ =t ,∴114222S BQ CD t t =⋅=⨯=;当2<t≤4时,点P 在线段CD 上,如图:∵BQ =t ,CP =8-2t ,∴()21182422S BQ CP t t t t =⋅=⨯-=-+;综上所述:()()2202424t t S t t t ⎧<≤⎪=⎨-+<≤⎪⎩.25.(1)∠C=2∠B ,证明见解析(2)见解析【分析】(1)在DB 上截取一点E ,使DE=DC ,利用SAS 证明△ADE ≌△ADC ,推出AE=AC ,∠AED=∠C ,再证明BE=AE ,利用三角形的外角性质即可得到∠C=2∠B ;(2)延长AC 至E ,使AE=AB ,设∠ACD=2α,得到∠BCE=90°+α,∠BCD=90°-α+2α=90°+α,再推出△ABE 是等边三角形,利用AAS 证明△BCD ≌△BCE ,据此即可证明AB=AC+CD .(1)解:结论:∠C=2∠B ,证明:在DB 上截取一点E ,使DE=DC ,连接AE ,∵AD⊥BC,∴∠ADC=∠ADE=90°,在△ADE与△ADC中,AD AD ADE ADCDE DC=⎧⎪∠=∠⎨⎪=⎩,∴△ADE≌△ADC(SAS),∴AE=AC,∠AED=∠C,∴BD=BE+ED,又∵BD=AC+CD,∴AC=BE,∴BE=AE,∴∠B=∠BAE,∴∠AED=2∠B,∴∠C=2∠B;(2)证明:延长AC至E,使AE=AB,连接BE,设∠ACD=2α,∵∠ACB+12∠ACD=90°,则∠ACB=90°-α,∴∠BCE=90°+α,∴∠BCD=90°-α+2α=90°+α,∵∠BAC=60°,BA=BE ,∴△ABE 是等边三角形,∴∠E=60°,AB=AE ,在△BCD 与△BCE 中,D E BCD BCE BC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BCD ≌△BCE(AAS),∴CD=CE ,∵AE=AC+CE=AC+CD ,∴AB=AC+CD .26.(1)4,4m n ==(2)见解析(3)E (2-12t ,0)【分析】(1)根据()()2240m n n -+-=得到040m n n -=⎧⎨-=⎩即可求解;(2)过点A 向OP 作垂线交于点E ,证明△AOE ≌△BOD ,进而可得到结论;(3)过点N 作NC ⊥x 轴交于点C ,可证△BOM ≌△BCN ,之后再证明△AOE ≌△ECN ,即可得到结论;(1)解:()()2240m n n -+-= ,040m n n -=⎧∴⎨-=⎩,4m n ∴==,故答案为:4,4m n ==;(2)证明:过点A 向OP 作垂线交于点E ,则∠AEP=90°,∵∠AOP+∠POB=90°,∠AOP+∠OAE=90°,∴∠POB=∠OAE ,又OA=OB ,∠AEO=∠BDO=90°,∴△AOE ≌△BOD ()AAS ,∴DB=OE ,AE=OD ,又∵∠APO=45°,∠AEP=90°,∴AE=EP,∴EP=OD ,∵OE=OD+DE ,DP=DE+EP ,∴OE=DP ,∴DP=DB ,(3)解:如图,过点N 作NC ⊥x 轴交于点C ,由题可知BM BN =,90MBN MOB ∠=∠=︒,90MBO OBN ∠+∠=︒ ,90OBN CNB ∠+∠=︒,MBO CNB ∴∠=∠,∴△BOM ≌△BCN ()AAS ,OM BC t ∴==,OB NC =,OA OB = ,OA NC ∴=,90AOC NCE ∠=∠=︒ ,OEA CEN ∠=∠,∴△AOE ≌△ECN ()AAS ,12OE EC OC ∴==,4OC OB CB t =-=- ,∴OC=4-t ,∴OE=12OC=2-12t ,∴E (2-12t ,0).。
八年级(上)期末数学试卷(含答案)
八年级(上)期末数学试卷一、选择题1.已知△ABC中,∠A=40°,∠B=50°,那么△ABC是()A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形2.下列语句中,是命题的是()A.∠α和∠β相等吗? B.两个锐角的和大于直角C.作∠A的平分线MN D.在线段AB上任取一点3.如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是()A.BD=CD B.AB=AC C.∠B=∠C D.∠BDA=∠CDA4.下列说法中错误的是()A.等腰三角形至少有两个角相等B.等腰三角形的底角一定是锐角C.等腰三角形顶角的外角是底角的2倍D.等腰三角形中有一个角是45°,那它一定是等腰直角三角形5.两个代数式x﹣1与x﹣3的值的符号相同,则x的取值范围是()A.x>3 B.x<1 C.1<x<3 D.x<1或x>36.如图,已知等腰△ABO的底边BO在x轴上,且BO=8,AB=AO=5,点A的坐标是()A.(﹣3,4)B.(3,﹣4)C.(﹣4,3)D.(4,﹣3)7.已知(﹣1.2,y1),(﹣0.5,y2),(2.9,y3)是直线y=﹣5x+a(a为常数)上的三个点,则y1,y2,y3的大小关系是()A.y3>y2>y1B.y1>y2>y3C.y1>y3>y2D.y3>y1>y28.若m<n,下列不等式组无解的是()A.B.C.D.9.已知A,B两地相距120千米,甲乙两人沿同一条公路匀速行驶,甲骑自行车以20千米/时从A地前往B地,同时乙骑摩托车从B地前往A地,设两人之间的距离为s(千米),甲行驶的时间为t(小时),若s与t的函数关系如图所示,则下列说法错误的是()A.经过2小时两人相遇B.若乙行驶的路程是甲的2倍,则t=3C.当乙到达终点时,甲离终点还有60千米D.若两人相距90千米,则t=0.5或t=4.510.在△ABC中,AB=AC,两底角的平分线交于点M,两腰上的中线交于点N,两腰上的高线所在直线交于点H,在线段AB,AC上分别有P,Q两点,且BQ=CP,线段BQ与CP交于点G,下面四条直线:①直线AM,②直线AH,③直线AH,④直线AG,其中必过BC中点的有()A.①②③B.①②④C.③④D.①②③④二、填空题11.写出一个解为x>﹣1的一元一次不等式.12.命题“若a=b,则a2=b2”的逆命题是.13.一辆汽车加满油后,油箱中有汽油70L,汽车行驶时正常的耗油量为0.1L/km,则油箱中剩余的汽油量Q(L)关于加满后已驶里程d(km)的函数表达式是,自变量d的取值范围.14.下列说法:①点(0,﹣3)在x轴上;②若点A到x轴和y轴的距离分别为3,4,则点A的坐标为(4,3);③若点A(6,a),B(b,﹣3)位于第四象限,则ab<0,正确的有.(填序号)15.在等腰△ABC中,D为线段BC上一点,AD⊥BC,若AB=5,AD=3,CD=.16.Rt△ABC中,BC为较长的直角边,它是较短直角边长的两倍,把△ABC放入直角坐标系,若点B,点C的坐标分别为(1,2),(3,4),则点A的坐标为.三、解答题17.解不等式组,并把解在数轴上表示出来.18.如图,已知D是△ABC内一点.(1)求作△ADE,使得D,E分别在AC的两侧,且AD=AE,∠DAE=∠BAC;(2)在(1)的条件下,若AB=AC,连BD,EC,求证:BD=EC.19.高空的气温与距地面的高度有关,某地地面气温为24℃,且已知离地面距离每升高1 km,气温下降6℃.(1)写出该地空中气温T(℃)与高度h(km)之间的函数表达式;(2)求距地面3 km处的气温T;(3)求气温为﹣6℃处距地面的高度h.20.如图,一次函数y=x+2的函数图象与x轴,y轴分别交于点A,B.(1)若点P(﹣1,m)为第三象限内一个动点,请问△OPB的面积会变化吗?若不变,请求出面积;若变化,请说明理由?(2)在(1)的条件下,试用含m的代数式表示四边形APOB的面积;若△APB的面积是4,求m的值.21.如图AB∥CD,AC平分∠BAD,BD平分∠ADC,AC和BD交于点E,F为AD 的中点,连结EF.(1)找出图中所有的等腰三角形,并证明其中的一个;(2)若AE=8,DE=6,求EF的长.22.如图,直线l1:y=2x+3与y轴交于点B,直线l2交y轴于点A(0,﹣1),且直线l1与直线l2交于点P(﹣1,t).(1)求直线l2的函数表达式;(2)过动点D(a,0)作x轴的垂线与直线l1,l2分别交于M,N两点,且MN ≤2.①求a的取值范围;=,求MN的长度.②若S△APM23.如图,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,沿CD折叠,使点B落在CA边上的B'处,展开后,再沿BE折叠,使点C落在BA边上的C'处,CD与BE 交于点F.(1)求AC'的长度;(2)求证:E为B'C的中点;(3)比较四边形EC'DF与△BCF面积的大小,并说明理由.参考答案与试题解析一、选择题1.已知△ABC中,∠A=40°,∠B=50°,那么△ABC是()A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形【考点】K7:三角形内角和定理.【分析】根据三角形内角和定理求出∠C,判断结论即可.【解答】解:由三角形内角和定理得,∠C=180°﹣∠A﹣∠B=90°,∴△ABC为直角三角形,故选:A.2.下列语句中,是命题的是()A.∠α和∠β相等吗? B.两个锐角的和大于直角C.作∠A的平分线MN D.在线段AB上任取一点【考点】O1:命题与定理.【分析】根据命题的定义对各选项进行判断.【解答】解:A、语句为疑问句,不是命题,所以A选项错误;B、两个锐角的和大于直角是命题,所以B选项正确;C、作∠A的平分线MN为描述性语言,不是命题,所以C选项错误;D、在线段AB上任取一点,为描述性语言,不是命题,所以D选项错误.故选B.3.如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是()A.BD=CD B.AB=AC C.∠B=∠C D.∠BDA=∠CDA【考点】KB:全等三角形的判定.【分析】分析已知条件知道,在△ABD与△ACD中,有一对对应角相等,一公共边,所以结合全等三角形的判定定理进行判断即可.【解答】解:A、∵∠1=∠2,AD为公共边,若BD=CD,则△ABD≌△ACD(SAS),故本选项错误;B、∵∠1=∠2,AD为公共边,若AB=AC,不符合全等三角形判定定理,不能判定△ABD≌△ACD,故本选项正确;C、∵∠1=∠2,AD为公共边,若∠B=∠C,则△ABD≌△ACD(AAS)故本选项错误;D、∵∠1=∠2,AD为公共边,若∠BDA=∠CDA,则△ABD≌△ACD(ASA)故本选项错误;故选:B.4.下列说法中错误的是()A.等腰三角形至少有两个角相等B.等腰三角形的底角一定是锐角C.等腰三角形顶角的外角是底角的2倍D.等腰三角形中有一个角是45°,那它一定是等腰直角三角形【考点】KH:等腰三角形的性质.【分析】根据等腰三角形的性质对各选项分析判断后利用排除法求解.【解答】解:A、等腰三角形至少有两个角相等,故本选项正确;B、等腰三角形的底角一定是锐角,故本选项正确;C、等腰三角形顶角的外角是底角的2倍,故本选项正确;D、等腰三角形中有一个角是45°,那它一定是等腰直角三角形或锐角三角形,故本选项错误.故选D.5.两个代数式x﹣1与x﹣3的值的符号相同,则x的取值范围是()A.x>3 B.x<1 C.1<x<3 D.x<1或x>3【考点】CB:解一元一次不等式组.【分析】根据两代数式的值符号相同可得或,分别求解可得.【解答】解:根据题意可得或,解得:x>3或x<1,故选:D.6.如图,已知等腰△ABO的底边BO在x轴上,且BO=8,AB=AO=5,点A的坐标是()A.(﹣3,4)B.(3,﹣4)C.(﹣4,3)D.(4,﹣3)【考点】KH:等腰三角形的性质;D5:坐标与图形性质.【分析】过A作AC⊥OB于C,若求顶点A的坐标则求出AC和OC的长即可.【解答】解:过A作AC⊥OB于C,∵AB=AO,∴OC=OB=4,AC==3,∴A(﹣4,3),故选C.7.已知(﹣1.2,y1),(﹣0.5,y2),(2.9,y3)是直线y=﹣5x+a(a为常数)上的三个点,则y1,y2,y3的大小关系是()A.y3>y2>y1B.y1>y2>y3C.y1>y3>y2D.y3>y1>y2【考点】F8:一次函数图象上点的坐标特征.【分析】先根据一次函数的解析式判断出函数的增减性,进而可得出结论.【解答】解:∵一次函数y=﹣5x+a(a为常数)中,k=﹣5<0,∴y随x的增大而减小.∵2.9>﹣0.5>﹣1.2,∴y1>y2>y3.故选B.8.若m<n,下列不等式组无解的是()A.B.C.D.【考点】C3:不等式的解集.【分析】根据已知条件m<n,先求出每个不等式组的解集判断即可.【解答】解:∵m<n,∴2m<2n,∴不等式组的解集为2m<x<2n;不等式组的解集为x<m﹣n;不等式组的解集为x>n﹣1,∵m<n,∴m﹣2n<﹣n,∴不等式组无解,故选D.9.已知A,B两地相距120千米,甲乙两人沿同一条公路匀速行驶,甲骑自行车以20千米/时从A地前往B地,同时乙骑摩托车从B地前往A地,设两人之间的距离为s(千米),甲行驶的时间为t(小时),若s与t的函数关系如图所示,则下列说法错误的是()A.经过2小时两人相遇B.若乙行驶的路程是甲的2倍,则t=3C.当乙到达终点时,甲离终点还有60千米D.若两人相距90千米,则t=0.5或t=4.5【考点】FH:一次函数的应用.【分析】由图象得到经过2小时两人相遇,A选项正确,若乙行驶的路程是甲的2倍,则甲行驶40千米,乙行驶80千米,得到t=2,B选项错误,由于乙的速度是=40千米\时,乙到达终点时所需时间为=3(小时),3小时甲行驶3×20=60(千米),离终点还有120﹣60=60(千米),故C选项正确,当0<t ≤2时,得到t=0.5,当3<t≤6时,得到t=4.5,于是得到若两人相距90千米,则t=0.5或t=4.5,故D正确.【解答】解:由图象知:经过2小时两人相遇,A选项正确,∵若乙行驶的路程是甲的2倍,则甲行驶40千米,乙行驶80千米,∴20t=40,∴t=2,B选项错误,乙的速度是=40千米\时,乙到达终点时所需时间为=3(小时),3小时甲行驶3×20=60(千米),离终点还有120﹣60=60(千米),故C选项正确,当0<t≤2时,S=﹣60t+120,当S=90时,即﹣60t+120=90,解得:t=0.5,当3<t≤6时,S=20t,当S=90时,即20t=90,解得:t=4.5,∴若两人相距90千米,则t=0.5或t=4.5,故D正确.故选B.10.在△ABC中,AB=AC,两底角的平分线交于点M,两腰上的中线交于点N,两腰上的高线所在直线交于点H,在线段AB,AC上分别有P,Q两点,且BQ=CP,线段BQ与CP交于点G,下面四条直线:①直线AM,②直线AH,③直线AH,④直线AG,其中必过BC中点的有()A.①②③B.①②④C.③④D.①②③④【考点】KH:等腰三角形的性质.【分析】由等腰三角形的性质即可得到结论.【解答】解:∵如图,∵AB=AC,∴∠ABC=∠ACB,∵BD平分∠ABC,∴∠1=∠ABC,同理,∠2=ACB,∴∠1=∠2,∴BM=CM,∴直线AM是BC的垂直平分线,∴直线AM必过BC中点,同理直线AN,AH,AG,必过BC中点,故选D.二、填空题11.写出一个解为x>﹣1的一元一次不等式x+1>0(答案不唯一).【考点】C3:不等式的解集.【分析】根据一元一次不等式的求解逆用,把﹣1进行移项就可以得到一个;也可以对原不等式进行其它变形,所以答案不唯一.【解答】解:移项,得x+1>0.故答案为:x+1>0(答案不唯一).12.命题“若a=b,则a2=b2”的逆命题是若a2=b2,则a=b.【考点】O1:命题与定理.【分析】如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题,如果把其中一个叫做原命题,那么把另一个叫做它的逆命题.故只需将命题“若a=b,则a2=b2”的题设和结论互换,变成新的命题即可.【解答】解:命题“若a=b,则a2=b2”的逆命题是若a2=b2,则a=b.13.一辆汽车加满油后,油箱中有汽油70L,汽车行驶时正常的耗油量为0.1L/km,则油箱中剩余的汽油量Q(L)关于加满后已驶里程d(km)的函数表达式是Q=70﹣0.1d,自变量d的取值范围0≤d≤700.【考点】E3:函数关系式;E4:函数自变量的取值范围.【分析】根据余油量=原有油量﹣用油量,可得出Q(L)与d(km)之间的函数关系式,再根据里程数=总共油量÷单位耗油量可求自变量d的取值范围.【解答】解:原有油量=70L,用油量=0.1d,由题意得:油箱中剩余的汽油两Q(L)关于加满后已驶里程d(km)的函数表达式是Q=70﹣0.1d,自变量d的取值范围为:0≤d≤700.故答案为:Q=70﹣0.1d,0≤d≤700.14.下列说法:①点(0,﹣3)在x轴上;②若点A到x轴和y轴的距离分别为3,4,则点A的坐标为(4,3);③若点A(6,a),B(b,﹣3)位于第四象限,则ab<0,正确的有③.(填序号)【考点】D1:点的坐标.【分析】①根据x轴上点的坐标特征判断;②根据点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值写出点A的坐标;③根据第四象限内点的横坐标是正数,纵坐标是负数求出a、b的正负,再根据有理数的乘法判断.【解答】解:①点(0,﹣3)在x轴上,错误,应该在y轴上;②若点A到x轴和y轴的距离分别为3,4,则|x|=4,|y|=3,所以,点A的坐标为(4,3)或(4,﹣3)或(﹣4,3)或(﹣4,﹣3);③若点A(6,a),B(b,﹣3)位于第四象限,则a<0,b>0,所以,ab<0,正确;综上所述,说法正确的是③.故答案为:③.15.在等腰△ABC中,D为线段BC上一点,AD⊥BC,若AB=5,AD=3,CD=4或1.【考点】KH:等腰三角形的性质.【分析】分三种情况:①当AB=AC=5时,如图1,②当AB=BC=5时,如图2,③当AC=BC时,如图3,分别根据勾股定理和等腰三角形的性质求CD的长即可.【解答】解:分三种情况:①当AB=AC=5时,如图1,∵AD⊥BC,∴∠ADC=90°,BD=DC,在Rt△ADC中,由勾股定理得:DC==4,②当AB=BC=5时,如图2,∵AD⊥BC,∴∠ADB=∠ADC=90°,同理得:BD=4,∴DC=5﹣4=1,③当AC=BC时,如图3,同理得:BD=4,设CD=x,则AC=x+4,由勾股定理得:(x+4)2=x2+32,8x=﹣7,x=﹣(不符合题意,舍),综上所述,DC的长为4或1;故答案为:4或1.16.Rt△ABC中,BC为较长的直角边,它是较短直角边长的两倍,把△ABC放入直角坐标系,若点B,点C的坐标分别为(1,2),(3,4),则点A的坐标为A1(2,5),A2(4,3),A3(0,3),A4(2,1).【考点】KQ:勾股定理;D5:坐标与图形性质.【分析】由点B,点C的坐标分别为(1,2),(3,4),利用两点间的距离公式求出BC==2.设点A的坐标为(x,y),分两种情况进行讨论:①如果∠ACB=90°,那么AC=,AB=,依此列出方程组;②如果∠ABC=90°,那么AB=,AC=,依此列出方程组,解方程组即可求出点A的坐标.【解答】解:∵点B,点C的坐标分别为(1,2),(3,4),∴BC==2.∵Rt△ABC中,BC为较长的直角边,它是较短直角边长的两倍,∴较短直角边长是,斜边长是=.设点A的坐标为(x,y),BC为直角边时,分两种情况:①如果∠ACB=90°,那么AC=,AB=,则,解得,或,∴A1(2,5),A2(4,3);②如果∠ABC=90°,那么AB=,AC=,则,解得,或,∴A3(0,3),A4(2,1);即点A的坐标为A1(2,5),A2(4,3),A3(0,3),A4(2,1).故答案为A1(2,5),A2(4,3),A3(0,3),A4(2,1).三、解答题17.解不等式组,并把解在数轴上表示出来.【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集.【分析】先求出每个不等式的解集,再求出不等式组的解集,最后在数轴上表示出来即可.【解答】解:∵解不等式①得:x≥﹣3,解不等式②得:x≤,∴原不等式组的解集为﹣3≤x,不等式组的解集在数轴上表示如下:.18.如图,已知D是△ABC内一点.(1)求作△ADE,使得D,E分别在AC的两侧,且AD=AE,∠DAE=∠BAC;(2)在(1)的条件下,若AB=AC,连BD,EC,求证:BD=EC.【考点】N3:作图—复杂作图;KD:全等三角形的判定与性质.【分析】(1)根据D,E分别在AC的两侧,且AD=AE,∠DAE=∠BAC,即可作出△ADE;(2)根据∠DAE=∠BAC,得出∠BAD=∠CAE,再判定△ABD≌△ACE(SAS),即可得到BD=EC.【解答】解:(1)如图所示,△ADE即为所求;(2)如图所示,连BD,EC,∵∠DAE=∠BAC,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=EC.19.高空的气温与距地面的高度有关,某地地面气温为24℃,且已知离地面距离每升高1 km,气温下降6℃.(1)写出该地空中气温T(℃)与高度h(km)之间的函数表达式;(2)求距地面3 km处的气温T;(3)求气温为﹣6℃处距地面的高度h.【考点】E3:函数关系式.【分析】(1)直接利用空中气温T=地面温度﹣6×上升高度,进而得出答案;(2)利用h=3,进而代入函数关系式求出答案;(3)利用T=﹣6,进而代入函数关系式求出答案.【解答】解:(1)∵离地面距离每升高1 km ,气温下降6℃,∴该地空中气温T (℃)与高度h (km )之间的函数表达式为:T=24﹣6h ;(2)当h=3时,T=24﹣6×3=6(℃);(3)当T=﹣6℃时,﹣6=24﹣6h ,解得:h=5,答:距地面的高度h 为5km .20.如图,一次函数y=x +2的函数图象与x 轴,y 轴分别交于点A ,B .(1)若点P (﹣1,m )为第三象限内一个动点,请问△OPB 的面积会变化吗?若不变,请求出面积;若变化,请说明理由?(2)在(1)的条件下,试用含m 的代数式表示四边形APOB 的面积;若△APB 的面积是4,求m 的值.【考点】F8:一次函数图象上点的坐标特征.【分析】(1)求出A 、B 点的坐标,利用三角形的面积公式即可得出结论; (2)根据S 四边形APOB =S △AOP +S △AOB 即可得出四边形APOB 的面积,再由△APB 的面积是4可得出m 的值.【解答】解:(1)不变.∵一次函数y=x +2的函数图象与x 轴,y 轴分别交于点A ,B ,∴A (﹣2,0),B (0,2),∴OB=2.∵P (﹣1,m ),∴S △OPB =OB ×1=×2×1=1;(2)∵A (﹣2,0),P (﹣1,m ),∴S 四边形APOB =S △AOP +S △AOB =OA•(﹣m )+OA ×2=﹣×2m +×2×2=2﹣m .∵S 四边形APOB =S △APB +S △OPB =4+1=5,∴2﹣m=5,解得m=﹣3.21.如图AB ∥CD ,AC 平分∠BAD ,BD 平分∠ADC ,AC 和BD 交于点E ,F 为AD 的中点,连结EF .(1)找出图中所有的等腰三角形,并证明其中的一个;(2)若AE=8,DE=6,求EF 的长.【考点】KD :全等三角形的判定与性质;KI :等腰三角形的判定.【分析】(1)图中△ADC ,△AFE ,△DFE 都,△ADB 是等腰三角形.根据等腰三角形的判定方法一一证明即可.(2)求出AB 的长,再根据三角形的中位线定理即可解决问题.【解答】解:(1)图中△ADC ,△AFE ,△DFE 都,△ADB 是等腰三角形. 理由:∵CD ∥AB ,∴∠C=∠BAC ,∵∠DAC=∠CAB ,∴∠C=∠DAC ,∴△DAC 是等腰三角形,∵DB平分∠ADC,∴DB⊥AC,∴∠AED=90°,∵AF=FD,∴EF=AF=FD,∴△AEF,△DFE都是等腰三角形.∵∠AED=∠AEB=90°,∴∠DAE+∠ADE=90°,∠EAB+∠B=90°,∵∠DAE=∠EAB,∴∠ADE=∠B,∴△ADB是等腰三角形.(2)∵AD=AB,AE⊥BD,∴DE=EB=6,在Rt△AEB中,AB===10,∵DF=FA,DE=EB,∴EF=AB=5.22.如图,直线l1:y=2x+3与y轴交于点B,直线l2交y轴于点A(0,﹣1),且直线l1与直线l2交于点P(﹣1,t).(1)求直线l2的函数表达式;(2)过动点D(a,0)作x轴的垂线与直线l1,l2分别交于M,N两点,且MN ≤2.①求a的取值范围;=,求MN的长度.②若S△APM【考点】FI :一次函数综合题.【分析】(1)可先求得P 点坐标,再由A 、P 两点的坐标,利用待定系数法可求得直线l 2的函数表达式;(2)①用a 可分别表示出M 、N 的坐标,则可表示出MN 的长,由条件可得到关于a 的不等式,则可求得a 的取值范围;②可先求得△APB 的面积,由条件可知点M 应在y 轴左侧,当点M 在线段PB 上时,则可知S △ABM =S △APB ,则可求得M 点到y 轴的距离;当点M 在线段BP 的延长线上时则可知S △APM =S △APB ,可求得M 到y 轴的距离;再利用①中MN 的长可求得答案.【解答】解:(1)∵点P (﹣1,t )在直线直线l 1上,∴t=2×(﹣1)+3=1,即P (﹣1,1),设直线l 2解析式为y=kx +b ,把A 、P 的坐标代入可得,解得,∴直线l 2的函数表达式为y=﹣x ﹣1;(2)①∵MN ∥y 轴,∴M 、N 的横坐标为a ,设M 、N 的纵坐标分别为y m 和y n ,∴y m =2a +3,y n =﹣a ﹣1,当MN 在点P 左侧时,此时a <﹣1,则有MN=y n ﹣y m =﹣a ﹣1﹣(2a +3)=﹣3a ﹣4,∵MN ≤2,∴﹣3a﹣4≤2,解得a≥﹣2,∴此时﹣2≤a<﹣1;当MN在点P的右侧时,此时a>﹣1,则有MN=y m﹣y n=2a+3﹣(﹣a﹣1)=3a+4,∵MN≤2,∴3a+4≤2,解得a≤﹣,∴此时﹣1<a<﹣;综上可知当﹣2≤a<﹣1或﹣1<a<﹣时,MN≤2;②由题意可知B(0,3),且A(0,﹣1),∴AB=4,∵P(﹣1,1),=×4×1=2,∴S△APB由题意可知点M只能在y轴的右侧,当点M在线段AP上时,过点M作MC⊥y轴于点C,如图1 =,∵S△APM=S△APB=,∴S△ABM∴AB•MC=,即2MC=,解得MC=,∴点M的横坐标为﹣,即a=﹣,∴MN=3a+4=﹣2+4=2;当点M 在线段BP 的延长线上时,过点M 作MD ⊥y 轴于点D ,如图2,∵S △APM =,∴S △ABM =2S △APB =4,∴AB•MC=4,即2MC=4,解得MC=2,∴点M 的横坐标为﹣2,∴MN=﹣3a ﹣4=6﹣4=2,综上可知MN 的长度为2.23.如图,在 Rt △ABC 中,∠ACB=90°,BC=3,AC=4,沿CD 折叠,使点B 落在CA 边上的B'处,展开后,再沿BE 折叠,使点C 落在BA 边上的C'处,CD 与BE 交于点F .(1)求AC'的长度;(2)求证:E 为B'C 的中点;(3)比较四边形EC'DF 与△BCF 面积的大小,并说明理由.【考点】PB :翻折变换(折叠问题);KQ :勾股定理.【分析】(1)根据折叠求BC′=BC=3,再利用勾股定理求AB=5,可得结果;(2)证明△AEC′∽△ABC ,列比例式可求EC′=,由折叠的性质得,CE=EC′=,则E 为B'C 的中点;(3)由图形可得:S △BDC =S △BFC +S △BDF ,S △EC′B =S 四边形EC′DF +S △BDF ,只要比较△BDC 和△EC′B 的面积即可,作高线DG ,根据三角函数求DG 的长,分别求出两三角形的面积作比较即可.【解答】解:(1)∵在Rt △ABC 中,∠ACB=90°,BC=3,AC=4,∴AB=5,由折叠的性质得,BC′=BC=3,∴AC′=5﹣3=2;(2)由折叠的性质得,∠AC′E=′ACB=90°,∵∠A=∠A ,∴△AEC′∽△ABC ,∴=,即=,∴EC′=,由折叠的性质得,CB′=BC=3,CE=EC′=∴CE=CB′,∴E 为B'C 的中点;(3)结论:S 四边形EC′DF <S △BCF ,理由是:如图,过D 作DG ⊥BC 于G ,由折叠得:∠DCB=∠ACD=45°,∴DG=CG ,设DG=x ,则CG=x ,BG=3﹣x ,tan ∠ABC=,∴, x=,∴DG=, ∴S △BDC =BC•DG=×=, ∵S △EC′B =S △ECB =BC•EC=×=, ∵, ∴S △BDC >S △EC′B , ∵S △BDC =S △BFC +S △BDF , S △EC′B =S 四边形EC′DF +S △BDF , ∴S 四边形EC′DF <S △BCF .。
八年级(上)期末数学试卷(含答案解析)
八年级(上)期末数学试卷一、单项选择题(共10个小题,每小题3分,满分30分)1.计算a2•a的结果是()A.a2B.2a3C.a3D.2a22.下面图形是用木条钉成的支架,其中不容易变形的是()A.B. C.D.3.下列算式结果为﹣3的是()A.﹣31B.(﹣3)0C.3﹣1D.(﹣3)24.如果把中的x与y都扩大为原来的10倍,那么这个代数式的值()A.扩大为原来的10倍B.扩大为原来的5倍C.缩小为原来的D.不变5.下列图形中,不是轴对称图形的是()A.正方形B.等腰直角三角形C.等边三角形D.含30°的直角三角形6.下列变形,是因式分解的是()A.x(x﹣1)=x2﹣x B.x2﹣x+1=x(x﹣1)+1C.x2﹣x=x(x﹣1) D.2a(b+c)=2ab+2ac7.若等腰三角形中有一个角等于40°,则这个等腰三角形顶角的度数为()A.40°B.100°C.40°或100°D.40°或70°8.如图,AC、BD相交于点O,∠A=∠D,要使得△AOB≌△DOC,还需补充一个条件,下面补充的条件不一定正确的是()A.OA=OD B.AB=DC C.OB=OC D.∠ABO=∠DCO9.如图,D是AB的中点,将△ABC沿过点D的直线折叠,使点A落在BC边上点F处,若∠B=50°,则∠EDF的度数为()A.40°B.50°C.60°D.80°10.某厂接到加工720件衣服的订单,每天做48件正好按时完成,后因客户要求提前5天交货,设每天应多做x件,则x应满足的方程为()A.B.C.D.二、填空题(共6个小题,每小题4分,满分24分)11.分式有意义的x的取值范围为.12.禽流感病毒的形状一般为球形,直径大约为0.000000102m,该直径用科学记数法表示为m.13.如图,已知OC平分∠AOB,CD∥OB,若OD=6cm,则CD的长等于.14.一个五边形有三个内角是直角,另两个内角都等于n°,求n的值=.15.a+2﹣=.16.如图,AB=AC=10,AB的垂直平分线DE交AB于点D,交AC于点E,则边BC的长度的取值范围是.17.因式分解:(x﹣1)(x+4)+4.18.解分式方程:.19.如图,∠A=∠C,∠1=∠2.求证:AB=CD.四、解答题(二)(共3个小题,每小题7分,满分21分)20.化简:(﹣)+,再选取一个适当的x的数值代入求值.21.如图,在平面直角坐标中,△ABC各顶点都在小方格的顶点上.(1)画出△ABC关于x轴对称的图形△A1B1C1;(2)在y轴上找一点P,使PA+PB1最短,画出图形并写出P点的坐标.22.如图,在△ABC中,∠A=72°,∠BCD=31°,CD平分∠ACB.(1)求∠B的度数;(2)求∠ADC的度数.23.甲乙两车站相距450km,一列货车从甲车站开出3h后,因特殊情况在中途站多停了一会,耽误了30min,后来把货车的速度提高了0.2倍,结果准时到达乙站,求这列货车原来的速度.24.在直角△ABC中,∠ACB=90°,∠B=60°,AD,CE分别是∠BAC和∠BCA的平分线,AD,CE相交于点F.(1)求∠EFD的度数;(2)判断FE与FD之间的数量关系,并证明你的结论.25.如图,点A、B、C在一条直线上,△ABD、△BCE均为等边三角形,连接AE 和CD,AE分别交BD、CD于点P、M,CD交BE于点Q,连接PQ.求证:(1)∠DMA=60°;(2)△BPQ为等边三角形.参考答案与试题解析一、单项选择题(共10个小题,每小题3分,满分30分)1.计算a2•a的结果是()A.a2B.2a3C.a3D.2a2【考点】46:同底数幂的乘法.【分析】直接利用同底数幂的乘法运算法则求出答案.【解答】解:a2•a=a3.故选:C.2.下面图形是用木条钉成的支架,其中不容易变形的是()A.B. C.D.【考点】L1:多边形;K4:三角形的稳定性.【分析】根据三角形的稳定性进行解答.【解答】解:含有三角形结构的支架不容易变形.故选:B.3.下列算式结果为﹣3的是()A.﹣31B.(﹣3)0C.3﹣1D.(﹣3)2【考点】6F:负整数指数幂;1E:有理数的乘方;6E:零指数幂.【分析】结合负整数指数幂、有理数的乘方以及零指数幂的概念和运算法则进行求解即可.【解答】解:A、﹣31=﹣3,本选项正确;B、(﹣3)0=1≠﹣3,本选项错误;C、3﹣1=≠﹣3,本选项错误;D、(﹣3)2=9≠﹣3,本选项错误.故选A.4.如果把中的x与y都扩大为原来的10倍,那么这个代数式的值()A.扩大为原来的10倍B.扩大为原来的5倍C.缩小为原来的D.不变【考点】65:分式的基本性质.【分析】根据题意将10x与10y代入原式后化简即可求出答案.【解答】解:由题意可知:==故选(D)5.下列图形中,不是轴对称图形的是()A.正方形B.等腰直角三角形C.等边三角形D.含30°的直角三角形【考点】P3:轴对称图形.【分析】根据关于某条直线对称的图形叫轴对称图形,进而判断得出即可.【解答】解:A、正方形是轴对称图形,不合题意;B、等腰直角三角形是轴对称图形,不合题意;C、等边三角形是轴对称图形,不合题意;平行四边形不是轴对称图形,符合题意;D、含30°的直角三角形不是轴对称图形,符合题意;故选:D.6.下列变形,是因式分解的是()A.x(x﹣1)=x2﹣x B.x2﹣x+1=x(x﹣1)+1C.x2﹣x=x(x﹣1) D.2a(b+c)=2ab+2ac【考点】51:因式分解的意义.【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.【解答】解:A、右边不是整式积的形式,不是因式分解,故本选项错误;B、右边不是整式积的形式,不是因式分解,故本选项错误;C、是符合因式分解的定义,故本选项正确;D、右边不是整式积的形式,不是因式分解,故本选项错误;故选C.7.若等腰三角形中有一个角等于40°,则这个等腰三角形顶角的度数为()A.40°B.100°C.40°或100°D.40°或70°【考点】KH:等腰三角形的性质.【分析】由等腰三角形中有一个角等于40°,可分别从①若40°为顶角与②若40°为底角去分析求解即可求得答案.【解答】解:∵等腰三角形中有一个角等于40°,∴①若40°为顶角,则这个等腰三角形的顶角的度数为40°;②若40°为底角,则这个等腰三角形的顶角的度数为:180°﹣40°×2=100°.∴这个等腰三角形的顶角的度数为:40°或100°.故选:C.8.如图,AC、BD相交于点O,∠A=∠D,要使得△AOB≌△DOC,还需补充一个条件,下面补充的条件不一定正确的是()A.OA=OD B.AB=DC C.OB=OC D.∠ABO=∠DCO【考点】KB:全等三角形的判定.【分析】根据ASA可以推出两三角形全等;根据AAS可以推出两三角形全等;根据AAS可以推出两三角形全等;根据AAA不能推出两三角形全等.【解答】解:A、∵在△AOB和△DOC中∴△AOB≌△DOC(ASA),正确,故本选项错误;B、∵在△AOB和△DOC中∴△AOB≌△DOC(AAS),正确,故本选项错误;C、∵在△AOB和△DOC中∴△AOB≌△DOC(AAS),正确,故本选项错误;D、根据三个角对应相等的两个三角形不全等,错误,故本选项正确;故选D.9.如图,D是AB的中点,将△ABC沿过点D的直线折叠,使点A落在BC边上点F处,若∠B=50°,则∠EDF的度数为()A.40°B.50°C.60°D.80°【考点】PB:翻折变换(折叠问题);K7:三角形内角和定理.【分析】连接AF交DE于G,由翻折的性质可知点G是AF的中点,故此DG是△ABF的中位线,于是得到DG∥BF,由平行线的性质可求得∠ADE=50°.【解答】解:如图所示:连接AF交DE于G.∵由翻折的性质可知:AG=FG.∴点G是AF的中点.又∵D是AB的中点,∴DG是△ABF的中位线.∴DG∥FB.∴∠ADE=∠B=∠EDF=50°.故选B.10.某厂接到加工720件衣服的订单,每天做48件正好按时完成,后因客户要求提前5天交货,设每天应多做x件,则x应满足的方程为()A.B.C.D.【考点】B6:由实际问题抽象出分式方程.【分析】本题的关键是要弄清因客户要求工作量提速后的工作效率和工作时间,然后根据题目给出的关键语“提前5天”找到等量关系,然后列出方程.【解答】解:因客户的要求每天的工作效率应该为:(48+x)件,所用的时间为:,根据“因客户要求提前5天交货”,用原有完成时间减去提前完成时间,可以列出方程:.故选:A二、填空题(共6个小题,每小题4分,满分24分)11.分式有意义的x的取值范围为x≠1.【考点】62:分式有意义的条件.【分析】分式有意义时,分母不等于零.【解答】解:当分母x﹣1≠0,即x≠1时,分式有意义.故答案是:x≠1.12.禽流感病毒的形状一般为球形,直径大约为0.000000102m,该直径用科学记数法表示为 1.02×10﹣7m.【考点】1J:科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000102=1.02×10﹣7.故答案为:1.02×10﹣7.13.如图,已知OC平分∠AOB,CD∥OB,若OD=6cm,则CD的长等于6cm.【考点】KJ:等腰三角形的判定与性质.【分析】根据题意,可得∠AOC=∠BOC,又因为CD∥OB,求得∠C=∠AOC,则CD=OD可求.【解答】解:∵OC平分∠AOB,∴∠AOC=∠BOC;又∵CD∥OB,∴∠C=BOC,∴∠C=∠AOC;∴CD=OD=6cm.故答案为:6cm.14.一个五边形有三个内角是直角,另两个内角都等于n°,求n的值=135.【考点】L3:多边形内角与外角.【分析】多边形的内角和可以表示成(n﹣2)•180°,因为所给五边形有三个角是直角,另两个角都等于n,列方程可求解.【解答】解:依题意有3×90+2n=(5﹣2)•180,解得n=135.故答案为:135.15.a+2﹣=.【考点】6B:分式的加减法.【分析】先通分,然后进行同分母分式加减运算,最后要注意将结果化为最简分式.【解答】解:a+2﹣=+=.故答案为:.16.如图,AB=AC=10,AB的垂直平分线DE交AB于点D,交AC于点E,则边BC的长度的取值范围是0<BC<10.【考点】KG:线段垂直平分线的性质.【分析】根据线段垂直平分线的性质和三角形的三边关系即可得到结论.【解答】解:∵AB的垂直平分线DE交AB于点D,∴AE=BE,∴AE+CE=AC=10,∴0<BC<10,故答案为:0<BC<10.三、解答题(一)(共3个小题,每小题6分,满分18分)17.因式分解:(x﹣1)(x+4)+4.【考点】53:因式分解﹣提公因式法.【分析】首先去括号,进而合并同类项,再利用提取公因式法分解因式得出答案.【解答】解:原式=x2+3x﹣4+4=x2+3x=x(x+3).18.解分式方程:.【考点】B3:解分式方程.【分析】观察可得最简公分母是x(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程的两边同乘x(x﹣2),得3(x﹣2)=x,解得x=3.检验:把x=3代入x(x﹣2)=3≠0.∴原方程的解为:x=3.19.如图,∠A=∠C,∠1=∠2.求证:AB=CD.【考点】KD:全等三角形的判定与性质.【分析】根据全等三角形的判定和性质即可得到结论.【解答】证明:在△ABD和∠△CDB中,,∴△ABD≌△CDB,∴AB=CD.四、解答题(二)(共3个小题,每小题7分,满分21分)20.化简:(﹣)+,再选取一个适当的x的数值代入求值.【考点】6D:分式的化简求值.【分析】先化简题目中的式子,然后选取合适的值代入化简后的式子即可解答本题,注意x不能取0或1.【解答】解:(﹣)+======,当x=2时,原式==3.21.如图,在平面直角坐标中,△ABC各顶点都在小方格的顶点上.(1)画出△ABC关于x轴对称的图形△A1B1C1;(2)在y轴上找一点P,使PA+PB1最短,画出图形并写出P点的坐标.【考点】P7:作图﹣轴对称变换;PA:轴对称﹣最短路线问题.【分析】(1)直接利用轴对称图形的性质得出对应点位置进而得出答案;(2)直接利用对称点求最短路线的性质得出答案.【解答】解:(1)如图所示:△A1B1C1为所求作的三角形;(2)如图,点P的坐标为:(0,1).22.如图,在△ABC中,∠A=72°,∠BCD=31°,CD平分∠ACB.(1)求∠B的度数;(2)求∠ADC的度数.【考点】K7:三角形内角和定理.【分析】(1)根据角平分线的定义求出∠ACB,再利用三角形的内角和等于180°列式计算即可得解;(2)根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:(1)∵CD平分∠ACB,∠BCD=31°,∴∠ACD=∠BCD=31°,∴∠ACB=62°,∵在△ABC中,∠A=72°,∠ACB=62°,∴∠B=180°﹣∠A﹣∠ACB=180°﹣72°﹣62°=46°;(2)在△BCD中,由三角形的外角性质得,∠ADC=∠B+∠BCD=46°+31°=77°.五、解答题(三)(共3个小题,每小题9分,满分27分)23.甲乙两车站相距450km,一列货车从甲车站开出3h后,因特殊情况在中途站多停了一会,耽误了30min,后来把货车的速度提高了0.2倍,结果准时到达乙站,求这列货车原来的速度.【考点】B7:分式方程的应用.【分析】设货车原来的速度为x km/h,根据等量关系:按原速度行驶所用时间﹣提速后时间=,列出方程,求解即可【解答】解:设货车原来的速度为x km/h,根据题意得:﹣=,解得:x=75.经检验:x=75是原方程的解.答:货车原来的速度是75 km/h.24.在直角△ABC中,∠ACB=90°,∠B=60°,AD,CE分别是∠BAC和∠BCA的平分线,AD,CE相交于点F.(1)求∠EFD的度数;(2)判断FE与FD之间的数量关系,并证明你的结论.【考点】K7:三角形内角和定理.【分析】(1)根据三角形内角和定理和角平分线的定义计算求解;(2)在AC上截取AG=AE,则EF=FG;根据ASA证明△FCD≌△FCG,得DF=FG,故判断EF=FD.【解答】解:(1)∵△ABC中,∠ACB=90°,∠B=60°∴∠BAC=30°,∵AD、CE分别是∠BAC、∠BCA的平分线∴∠FAC=∠BAC=15°,∠FCA=∠ACB=45°∴∠AFC=180°﹣∠FAC﹣∠FCA=120°,∴∠EFD=∠AFC=120°;(2)FE与FD之间的数量关系为FE=FD;证明:在AC上截取AG=AE,连接FG,∵AD是∠BAC的平分线,∴∠1=∠2又∵AF为公共边在△EAF和△GAF中∵,∴△AEF≌△AGF∴FE=FG,∠AFE=∠AFG=60°,∴∠CFG=60°,又∵FC为公共边,∠DCF=∠FCG=45°在△FDC和△FGC中∵,∴△CFG≌△CFD,∴FG=FD∴FE=FD.25.如图,点A、B、C在一条直线上,△ABD、△BCE均为等边三角形,连接AE 和CD,AE分别交BD、CD于点P、M,CD交BE于点Q,连接PQ.求证:(1)∠DMA=60°;(2)△BPQ为等边三角形.【考点】KD:全等三角形的判定与性质;KM:等边三角形的判定与性质.【分析】(1)根据等边三角形的性质,可证明△ABE≌△DBC,可求得∠BAE=∠BDC,则可证得∠ABD=∠DMA=60°;(2)由等边三角形的性质,结合(1)中的结论可证明△ABP≌△DBQ,可得BP=BQ,则可证得结论.【解答】证明:(1)∵△ABD、△BCE均为等边三角形,∴AB=DB,EB=CB,∠ABD=∠EBC=60°,∴∠ABD+∠DBE=∠EBC+∠DBE,即∠ABE=∠DBC,在△ABE和△DBC中∴△ABE≌△DBC (SAS),∴∠BAE=∠BDC,在△ABP和△DMP中,∠BAE=∠BDC,∠APB=∠DPM,∴∠DMA=∠ABD=60°;(2)∵△ABD、△BCE均为等边三角形,∴AB=DB,∠ABD=∠EBC=60°,∵点A、B、C在一条直线上,∴∠DBE=60°,即∠ABD=∠DBE,由(1)得∠BAE=∠BDC,在△ABP和△DBQ中∴△ABP≌△DBQ(ASA),∴BP=BQ,∴△BPQ为等边三角形.。
江苏省南京市联合体2023-2024学年八年级上学期期末数学试题(含答案)
2023—2024学年度第一学期期末学情分析样题八年级数学注意事项:1.本试卷共6页.全卷满分100分.考试时间为100分钟.考生答题全部答在答题纸上,答在本试卷上无效.2.请认真核对监考教师在答题纸上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题纸及本试卷上.3.答选择题必须用铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题纸上的指定位置,在其他位置答题一律无效.4.作图必须用铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.下列垃圾分类的标志中,是轴对称图形的是()A .B .C .D .2.在平面直角坐标系中,在第二象限的点是()A .B .C .D .3.下列长度的三条线段能组成直角三角形的是()A.,,B .2,3,4C .7,24,25D .9,37,384的值()A .在1到2之间B .在2到3之间C .在3到4之间D .在4到5之间5.如图,若,则下列结论不一定正确的是()(第5题)A .B .C .D .6.如图,在三角形纸片中,.把沿着翻折,点落在点处,连接.若,则的度数为()2B 2B ()3,1()3,1--()3,1-()3,1-131415ABC FED ≌△△EC BD =EF AB ∥DF BD =AC FD∥ABC AC BC =ABC △AC B D BD 40BAC ∠=︒CBD ∠(第6题)A .9°B .10°C .20°D .30°7.如图,在和中,,,,交于点,交于点.下列结论:①;②;③.其中所有正确结论的序号是()A .①②B .②③C .①③D .①②③8.已知一次函数,函数值随自变量的增大而增大,且,则该函数的大致图像可以是()A .B .C .D .二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.4的平方根是______.10.将3.142精确到0.1,结果是______.11.在实数,中,无理数的个数有______个.12.将的图像向下平移4个单位长度,所得图像对应的函数表达式是______.AEB △AFC △90E F ∠=∠=︒B C ∠=∠AE AF =EB AC M AB FC N 12∠∠=ACN ABM ≌△△MA MB =y kx k b =-+y x k b <-2272π23y x =+13.一次函数()的图像过点,,则______(填“>”、“”或“=”).14.如图,在中,的垂直平分线交于点,交于点,连接.若的周长为,则的周长为______.(第14题)15.如图,在平面直角坐标系中,、两点的坐标分别为、,则点在此坐标系中的第______象限.(第15题)16.如图,在中,,,,平分交于点.则的长为______.(第16题)17.如图,在四边形中,.、分别是对角线,的中点.若,.则的长为______.(第17题)18.如图,和是等腰直角三角形,,连接、.若,,则四边形面积的最大值为______.y kx b =+0k <()12,A y -()21,B y 1y 2y <ABC △AC BC D AC E AD ABC △13,2AE =ABD △A B (),7a ()5,b ()6,10C a b --Rt ABC △90C ∠=︒3AC =4BC =AD BAC ∠BC D CD ABCD 90BAD BCD ∠=∠=︒M N BD AC 6AC =8BD =MN AOB △COD △90AOB COD ∠=∠=︒AD BC 1OA =2OD =ABCD(第18题)三、解答题(本大题共9小题,共64分.请在答题卡指定区域内作答,解答时应写出文字说明、说理过程或演算步骤)19.(5.20.(6分)求下列各式中的:(1);(2).21.(6分)如图,.求证:.(第21题)22.(8分)如图,在平面直角坐标系中,,,.(1)画出关于轴的对称图形;(2)画出沿轴向下平移4个单位长度后得到的;(3)若线段上有一点经过上述两次变换,则对应的点的坐标是______.2x 22180x -=3(1)8x -=-,B C AD AE ∠=∠=BD CE =()3,4A ()4,2B ()1,1C ABC △y 111A B C △111A B C △y 222A B C △BC (),M a b 2M(第22题)23.(8分)已知某种毛线玩具的销售单价(元)与它的日销售量(个)之间的关系如下表.355055…352015…若日销售量是销售单价的一次函数.(1)求与之间的函数表达式;(2)当销售单价为58元时,它的日销售量是多少?(3)若销售单价提高7元,则它的日销售量减少______个.24.(6分)已知为直线外一点,利用直尺和圆规在上作点、,分别满足下列条件.(保留作图痕迹,不写作法)①②(1)在图①中,,(2)在图②中,,.25.(8分)一辆货车和一辆轿车先后从地出发沿同一直道去地.已知、两地相距180km 轿车的速度为120km/h ,图中分别表示货车、轿车离地的距离(km )与时间(h )之间的函数关系.(1)货车的速度是______km/h ;(2)求两车相遇时离地的距离;(3)在轿车行驶过程中,当______h 时,两车相距20km .(第25题)26.(8分)在中,,(1)如图①,为边上一点,连接,以为边作,,,连接.求证:,(2)如图②,为外一点.若,,.则的长为______.x y xy y x y x P A B PA PB =90APB ∠=︒PA PB =60APB ∠=︒A B A B OC DE 、A s A t =ABC △90BAC ∠=︒AB AC=D BC AD AD ADE △90DAE ∠=︒AD AE =EC BD CE =BD CE⊥D ABC △45ADC ∠=︒13BD =5CD =AD①②27.(9分)若一个函数,对于自变量的不同取值范围,该函数有不同的表达式,则这样的函数称为“分段函数”.当时,;当时,,可以记作分段函数.(1)若时,画出与之间的函数图像,并写出该函数两条不同类型的性质.(2)正比例函数的图像与函数的图像的一个交点坐标为,当时,的取值范围是______;(3)已知点,函数的图像与线段的交点个数随的值的变化而变化,直接写出交点个数及对应的的取值范围.0x ≥12y kx =+0x <12y kx =-()1202(0)kx x y kx x ⎧+≥=⎨-<⎩1k =1y x 22y kx =1y ()2,4--12y y >x ()()2,1,1,1A B --1y AB k k2023-2024学年度第一学期期末学情分析样题八年级数学参考答案说明:本评分标准每题给出了一种或几种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(本大题共8小题,每题2分,共16分)题号12345678答案B D C B C B A D二、填空题(本大题共10小题,每小题2分,共20分)9. 10.3.1 11.1 12. 13.>14.9 15.四16.1718.三、解答题(本大题共9小题,共64分)19.(5分)解:原式20.(6分)解:(1);,(2),21.(6分)证明:在和中,(AAS ),...22.(8分)(1)如图;(2)如图;(3).2±21y x =-3292()2334=+--=-2218x =29x =3x =±12x -=-3x =ABE △ACD △B CA AAD AE∠=∠⎧⎪∠=∠⎨⎪=⎩ABE ACD ∴≌△△AB AC ∴=AB AD AC AE ∴-=-BD CE ∴=(),4a b --23.(8分)解:(1)设一次函数表达式为,将和代入,得解得,所以一次函数表达式为;用其他点代入,或其他方法,结果正确均给4分(2)当时,,所以日销售量是12个;(3)724.(6分)(1)(2)方法一:方法二:y kx b =+()35,35()50,2035355020k b k b +=⎧⎨+=⎩170k b =-⎧⎨=⎩70y x =-+58x =587012y =-+=说明:每种作法3分;其他情况酌情给分.25.(8分)解:(1)60;(2)设的函数表达式为,将代入得,,,设的函数表达式为,将,代入得,,,,解得,此时.相遇时离地.(3)或.26.(8分)(1)证明:即在和中,,,即27.(9分)解:(1)OC 1s mt =()3,18060m =160s t ∴=180120 1.5÷=(2.5,180)E ∴DE 2s kt b =+()1,0()2.5,180120k =120b =-2120120s t ∴=-60120120t t ∴=-2t =120km s =∴A 120km 537390BAC DAE ∠=∠=︒ BAC DAC DAE DAC ∴∠-∠=∠-∠BAD CAE∠=∠ABD △ACE △,,,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩()SAS ABD ACE ∴≌△△,BD CE B ACE∴=∠=∠90,BAC AB AC ∠=︒= 45B BCA ACE ∴∠=∠=︒=∠90BCE BCA ACE ∴∠=∠+∠=︒BD CE⊥图像正确性质1:当时,随的增大而增大;性质2:当时,函数有最小值2.答案不唯一;性质正确1个1分(2)或(3)当时,没有交点当时,1个交点当时,2个交点0x ≥y x 0x ≥2x <-02x ≤<12k >-112k -<≤-1k ≤-。
人教版数学八年级上册期末考试试卷带答案
人教版数学八年级上册期末考试试题一、单项选择题(每小题2分,共12分)1.如果一个三角形的两边长分别为2和5,则第三边长可能是(A)2(B)3(C)5(D)82.下列计算中正确的是(A)a2+a3=a5(B)a2⋅a3=a5(C)(a2)3=a5(D)a6÷a3=a23.京剧是我国的国粹,是介绍、传播中国传统艺术文化的重要媒介.在下面的四个京剧脸谱中,不.是.轴对称图形的是(A)(B)(C)(D)4.六边形的内角和是(A)180°(B)360°(C)540°(D)720°5.一艘轮船在静水中的最大航速为35km/h,它以最大航速沿江顺流航行120km所用时间,与以最大航速逆流航行90km所用时间相等.设江水的流速为vkm/h,则可列方程为(A)120903535=+-v v(B )120903535=-+v v(C)120903535=+-v v(D)120903535=-+v v6.如图,直线l是线段AB的垂直平分线,点C在直线l外,且与A点在直线l的同一侧,点P是直线l上的任意点,连接AP,BC,CP,则BC与AP+PC的大小关系是(A)>(B)<(C)≥(D)≤二、填空题(每小题3分,共24分)7.计算:02(1)3--⨯=.8.某病毒直径约0.00000008米.将0.00000008这个数用科学记数法表示为.9.当a=2020时,分式293--aa的值是.10.点P(-2,-4)关于y轴对称点的坐标是.(第6题)11.若a+b=5,ab=6,则(a-b)2=.12.如图,若△ABC ≌△DEF ,且∠B=60°,∠F-∠D=56°则∠A=°.(第12题)(第14题)13.如果a c =b ,那么我们规定(a ,b)=c ,例如:因为23=8,所以(2,8)=3.若(3,5)=a ,(3,6)=b ,(3,m)=2a-b ,则m=.14.如图,AD 是△ABC 的平分线,DF ⊥AB 于点F ,DE=DG ,AG=16,AE=8,若S △ADG =64,则△DEF 的面积为.三、解答题(每小题5分,共20分)15.计算:(23ab 2-2ab)⋅12ab.16.计算:(36x 4y 3-24x 3y 2+3x 2y 2)÷(-6x 2y 2).17.因式分解:x 3-25x.18.解方程:34122+=--x x x.四、解答题(每小题7分,共28分)19.如图,在四边形ABCD 中,AB ∥CD ,∠1=∠2,DB=DC.(1)求证:AB+BE=CD.(2)若AD=BC ,在不添加任何补助线的条件下,直接写出图中所有的等腰三角形.(第19题)20.在平面直角坐标系中,△ABC 的位置如图所示.(1)画出△ABC 关于x 轴对称的△A 1B 1C 1.(2)在坐标平面内确定点P ,使△PBC 是以BC 为底边的等腰直角三角形,请直接写出P 点坐标.(第20题)21.先化简,再求值:(2x+4)(2x-3)-4(x+2)(x-2),其中x=12.22.某同学化简分式2221()211x x x x x x+÷--+-出现了错误,解答过程如下:原式=22222121121x x x x x x x x x x++÷-÷-+--+(第一步)=332222(1)(1)x x x x x x -+---(第二步)=22(1)2(1)x x x -+-(第三步)(1)该同学解答过程从第步开始错误的.(2)写出此题正确的解答过程,并从-2<x<3的范围内选取一个你喜欢的x 值代入求值.五、解答题(每小题8分,共16分)23.两个工程队共同参与一项筑路工程,甲队单独施工一个月完成总工程的31,这时增加了乙队,两队又共同工作了半个月,总工程全部完成.问哪个队的施工速度快?24.如图,在△ABC中,AC=BC,∠ACB=90°,延长CA至点D,延长CB至点E,使AD=BE,连接AE,BD,交点为O.(1)求证:OB=OA;(2)连接OC,若AC=OC,则∠D的度数是度.(第24题)六、解答题(每小题10分,共20分)25.【知识生成】我们已经知道,通过计算几何图形的面积可以表示一些代数恒等式.例如:图①可以得到恒等式(a+b)2=a2+2ab+b2,基于此,请解答下列问题:(1)根据图②,写出一个代数恒等式:.(2)利用(1)中得到的结论,解决下面的问题:若a+b+c=10,ab+ac+bc=35,求a2+b2+c2的值.(3)小明同学用图③中x张边长为a的正方形,y张边长为b的正方形,z张长、宽分别为a,b的长方形纸片拼出一个面积为(2a+b)(a+2b)的长方形,则x+y+z=.【知识迁移】(4)事实上,通过计算几何图形的体积也可以表示一些代数恒等式,图④表示的是一个边长为m的正方体挖去一个小长方体后重新拼成一个新长方体,请你根据图④中图形的变化关系,写出一个代数恒等式:.图①图②图③图④(第25题)26.如图,等边△ABC中,点E在AB上,点D在CB的延长线上,且ED=EC.(1)如图①,点E为AB的中点,求证:AE=DB.(2)如图②,点E在边AB上时,AE DB(填:“>”,“<”或“=”).理由如下:过点E 作EF ∥BC ,交AC 于点F(请你完成以下解答过程).图①图②(第26题)(3)在等边△ABC 中,点E 在直线AB 上,点D 在直线BC 上,且ED=EC.若AB=1,AE=2时,直接写出CD 的长.参考答案及评分标准一、单项选择题(每小题2分,共12分)1.C2.B3.A4.D5.A6.D二、填空题(每小题3分,共24分)7.198.8810-⨯9.202310.(2,-4)11.112.3213.25614.16三、解答题(每小题5分,共20分)15.解:原式=23ab 2⋅12ab-2ab ⋅12ab=13a 2b 3-a 2b 2.(5分)16.解:原式=-6x 2y+4x-12.(5分)17.解:原式=x(x 2-25)=x(x+5)(x-5).(5分)18.解:方程两边同时乘(x-2),得3x-4=x-2.解得x=1.(3分)检验:当x=1时,x-2=-1≠0.(4分)所以,原方程的解是x=1.(5分)四、解答题(每小题7分,共28分)19.(1)证明:∵AB ∥CD ,∴∠ABD=∠EDC.∵DB=DC ,∠1=∠2,∴△ABD ≌△EDC.(3分)∴AB=DE ,BD=CD.∴DE+BE=CD ,∴AB+BE=CD.(5分)(2)△BCD ,△BCE.(7分)20.解:(1)如图所示.(3分)(2)所确定的P 点为如图所示.(5分)P(-1,3)或P(2,-2).(7分)21.解:原式=4x 2+2x-12-4(x 2-4)=4x 2+2x-12-4x 2+16=2x+4.(5分)当x=12时,原式=2×12+4=5.(7分)22.解:(1)一(1分)(2)原式=22221(1)(1)21(1)(1)11x x x x x x x x x x x x x x x +++-÷=⋅=-+--+-.(4分)要使原式有意义,x≠1,0,-1,(5分)则当x=2时,原式=2221-=4.(7分)五、解答题(每小题8分,共16分)23.解:设乙队单独完成总工程需要x 个月,根据题意,得(1分)解得:(5分)121)131(31=⨯++x 1=x经检验x=1是原分式方程的解.(6分)∴甲队单独完成总工作需要3个月,乙队单独完成工作需要1个月.∵3>1∴乙队快(7分)答:乙队的施工速度快。
人教版八年级上册数学期末考试试卷附答案
人教版八年级上册数学期末考试试题一、单选题1.下列运算中,结果正确的是()A .824a a a÷=B .()222a b a b +=+C .()2242a ba b =D .()()2122a a a -+=-2.围棋起源于中国,古代称之为“弈”,至今已有四千多年的历史.下列由黑白棋子摆成的图案是轴对称图形的是()A .B .C .D .3.若分式12x +有意义,则x 的取值范围是()A .2x ≥-B .2x >-C .0x ≠D .2x ≠-4.将数字0.0000023用科学记数法表示为()A .52.310-⨯B .62.310-⨯C .50.2310-⨯D .62.310-⨯5.在平面直角坐标系中.点(1,2)P -关于x 轴对称的点的坐标是()A .(1,2)B .(1,2)-C .(1,2)-D .(1,2)--6.如图,已知∠ABC =∠DEF ,AB =DE ,添加以下条件,不能判定△ABC ≌△DEF 的是()A .∠A =∠DB .∠ACB =∠DFEC .AC =DFD .BE =CF7.已知等腰三角形的其中两边长分别为4,9,则这个等腰三角形的周长是()A .13B .17C .22D .17或228.如图,在ABC 中,AD 、AE 分别是边BC 上的中线与高,4AE =,CD 的长为5,则ABC 的面积为()A .8B .10C .20D .409.如图,在ABC 中,40B ∠=︒,60C ∠=°,AD 平分BAC ∠交BC 于点D ,在AB 上截取AE AC =,则EDB ∠的度数为()A .30°B .20°C .10°D .15°10.如图,由4个全等的小长方形与一个小正方形密铺成一个大的正方形图案,该图案的面积为100,里面的小正方形的面积为16,若小长方形的长为a ,宽为b ,则下列关系式中:①222100a ab b ++=;②22216a ab b -+=;③2256a b +=;④2240a b -=,正确的有()个A .1B .2C .3D .4二、填空题11.因式分解:2363x x -+=______.12.一个n 边形的内角和为1080°,则n=________.13.方程213x x=+的解为______________.14.已知25,23mn ==,则+2m n =__________.15.如图,点F ,A ,D ,C 在同一条直线上,ABC DEF △≌△,3AD =,CF 10=,则AC 等于_____.16.如图,Rt ABC ∆中,90C ∠=︒,30A ∠=︒,D ,E 分别为AC ,AB 边上的点,将ADE 沿DE 翻折,点A 恰好与点B 重合,若3CD =,则AD =______.17.如图,ABC 中,OD 、OE 分别是AB 、BC 边上的垂直平分线,OD 、OE 交于点O ,连接OA 、OC ,已知40B ∠=︒,则OAC ∠=______.三、解答题18.化简:()()()2212x x x +---19.ABC 在如图所示的平面直角坐标系中,A 点坐标为()3,4.(1)画出ABC 关于y 轴对称的111A B C △;(2)求ABC 的面积.20.如图,在ABC 中,AD 是BC 边上的高,CE 平分ACB ∠,若20CAD ∠=︒,50B ∠=︒,求AEC ∠的度数.21.先化简:532224m m m m -⎛⎫++÷⎪--⎝⎭,然后,m 在1,2,3中选择一个合适的数代入求值.22.如图,在ABC 中,AD BC ⊥,E 是AD 上一点,且DE DC =,连接BE 并延长交AC 于点F ,BE AC =.(1)求证:BED ACD ≌;(2)猜想BF 与AC 的位置关系,并证明.23.某施工队对一段2400米的河堤进行加固,在施工800米后,采用新的施工机器,每天工作的效率比原来提高了25%,共用了26天完成全部工程.(1)求原来每天加固河堤多少米?(2)若承包方原来每天支付施工队工资800元,提高工作效率后,每天支付给施工队的工资也增加了25%,那么整个工程完成后承包方需要支付工资多少元?24.如图,90B ∠=︒,90C ∠=︒,E 为BC 中点,DE 平分ADC ∠.(1)求证:AE 平分DAB ∠;(2)求证:AE DE ⊥;(3)求证:DC AB AD +=.25.如图,在等边ABC 中,D 为BC 边上一点,连接AD ,将ACD △沿AD 翻折得到AED ,连接BE 并延长交AD 的延长线于点F ,连接CF .(1)若20CAD ∠=︒,求CBF ∠的度数;(2)若a CAD ∠=,求CBF ∠的大小;(3)猜想CF ,BF ,AF 之间的数量关系,并证明.参考答案1.C 2.D 3.D 4.B 5.A 6.C 7.C 8.C 9.B10.C11.23(1)x -12.813.3x =14.1515.6.516.617.50°18.72x +19.【详解】(1)分别作A 、B 、C 三点关于y 轴的对称点A 1、B 1、C 1,△A 1B 1C 1即为所求;(2)S △ABC=3×3111312123222-⨯⨯-⨯⨯-⨯⨯=72.20.85°【分析】由高的定义可得出∠ADB =∠ADC =90,在△ACD 中利用三角形内角和定理可求出∠ACB 的度数,结合CE 平分∠ACB 可求出∠ECB 的度数.由三角形外角的性质可求出∠AEC 的度数,【详解】解:∵AD 是BC 边上的高,∴∠ADB =∠ADC =90.在△ACD 中,∠ACB =180°﹣∠ADC ﹣∠CAD =180°﹣90°﹣20°=70°.∵CE 平分∠ACB ,∴∠ECB =12∠ACB =35°.∵∠AEC 是△BEC 的外角,50B ∠=︒,∴∠AEC =∠B+∠ECB =50°+35°=85°.答:∠AEC 的度数是85°.【点睛】本题考查了三角形内角和定理、角平分线的定义以及三角形外角的性质,利用三角形内角和定理及角平分线的性质,求出∠ECB 的度数是解题的关键.21.26--m ,-8【分析】先按照分式的混合计算法则进行化简,然后根据分式有意义的条件求出m 的值,最后代值计算即可.【详解】解:532224m m m m ⎛⎫ ⎪⎝-÷⎭++--()24532222m mm m m ⎛⎫--=-÷ ⎪---⎝⎭()222923m m m m--=⋅--()()()332223m m m m m+--=⋅--()23m =-+26m =--,∵分式要有意义且除数不为0,∴3020m m -≠⎧⎨-≠⎩,∴32m m ≠⎧⎨≠⎩,∴当1m =时,原式2168=-⨯-=-.22.(1)见解析;(2)BF ⊥AC ,理由见解析【分析】(1)利用HL 证明Rt △BED ≌Rt △ACD 即可;(2)根据全等三角形的性质可得∠EBD=∠CAD ,再由∠BED+∠EBD=90°,∠AEF=∠BED ,得到∠EBD+∠AEF=90°,则∠CAD+∠AEF=90°,∠AFE=90°,由此即可证明BF ⊥AC .【详解】:(1)∵AD ⊥BC ,∴∠ADC=∠BDE=90°,在RtBED 和Rt △ACD 中,DE DCBE AC=⎧⎨=⎩,∴Rt △BED ≌Rt △ACD (HL );(2)BF ⊥AC ,理由如下:∵Rt △BED ≌Rt △ACD ,∴∠EBD=∠CAD ,∵∠BED+∠EBD=90°,∠AEF=∠BED ,∴∠EBD+∠AEF=90°,∴∠CAD+∠AEF=90°,∴∠AFE=90°,∴BF ⊥AC .23.(1)原来每天加固河堤80米;(2)整个工程完成后承包方需要支付工资24000元.【分析】(1)设原来每天加固河堤a 米,则采用新的加固模式后每天加固5(125%)4a a +=米,然后根据用26天完成了全部加固任务,列方程求解即可;(2)先算出提高工作效率后每天加固的长度,然后进行求解即可.【详解】解:(1)设原来每天加固河堤a 米,则采用新的加固模式后每天加固5(125%)4a a +=米.根据题意得:80024008002654a a -+=,解这个方程得:80a =经检验可知,80a=是原分式方程的根,并符合题意;答:原来每天加固河堤80米;(2)558010044a=⨯=(米)∴承包商支付给工人的工资为:8002400800800800(125%)24000 80100-⨯+⨯+=(元).答:整个工程完成后承包方需要支付工资24000元.【点睛】本题主要考查了分式方程的应用,解题的关键在于能够准确找到等量关系列出方程求解.24.(1)见解析;(2)见解析;(3)见解析【分析】(1)延长DE交AB延长线于F,由∠B=∠C=90°,推出AB∥CD,则∠CDE=∠F,再由DE平分∠ADC,即可推出∠ADF=∠F,得到AD=AF,即△ADF是等腰三角形,然后证明△CDE≌△BFE得到DE=FE,即E是DF的中点,即可证明AE平分∠BAD;(2)由(1)即可用三线合一定理证明;(3)由△CDE≌△BFE,得到CD=BF,则AD=AF=AB+BF=AB+CD.【详解】解:(1)如图所示,延长DE交AB延长线于F,∵∠B=∠C=90°,∴AB∥CD,∴∠CDE=∠F,∵DE平分∠ADC,∴∠CDE=∠ADE,∴∠ADF=∠F,∴AD=AF,∴△ADF是等腰三角形,∵E是BC的中点,∴CE=BE,∴△CDE≌△BFE(AAS),∴DE=FE,∴E是DF的中点,∴AE平分∠BAD;(2)由(1)得△ADF 是等腰三角形,AD=AF ,E 是DF 的中点,∴AE ⊥DE ;(3)∵△CDE ≌△BFE ,∴CD=BF ,∴AD=AF=AB+BF=AB+CD .25.(1)20°;(2)CBF α∠=;(3)AF=CF+BF ,理由见解析【分析】(1)由△ABC 是等边三角形,得到AB=AC ,∠BAC=∠ABC=60°,由折叠的性质可知,∠EAD=∠CAD=20°,AC=AE ,则∠BAE=∠BAC-∠EAD-∠CAD=20°,AB=AE ,()1180=802ABE AEB BAE ==︒-︒∠∠∠,∠CBF=∠ABE-∠ABC=20°;(2)同(1)求解即可;(3)如图所示,将△ABF 绕点A 逆时针旋转60°得到△ACG ,先证明△AEF ≌△ACF 得到∠AFE=∠AFC ,然后证明∠AFE=∠AFC=60°,得到∠BFC=120°,即可证明F 、C 、G 三点共线,得到△AFG 是等边三角形,则AF=GF=CF+CG=CF+BF .【详解】解:(1)∵△ABC 是等边三角形,∴AB=AC ,∠BAC=∠ABC=60°,由折叠的性质可知,∠EAD=∠CAD=20°,AC=AE ,∴∠BAE=∠BAC-∠EAD-∠CAD=20°,AB=AE ,∴()1180=802ABE AEB BAE ==︒-︒∠∠∠,∴∠CBF=∠ABE-∠ABC=20°;(2)∵△ABC 是等边三角形,∴AB=AC,∠BAC=∠ABC=60°,由折叠的性质可知,EAD CAD α∠=∠=,AC=AE ,∴602BAE BAC EAD CAD α∠=∠-∠-∠=︒-,AB=AE ,11∴()1180=602ABE AEB BAE α==︒-︒+∠∠∠,∴CBF ABE ABC α∠=∠-∠=;(3)AF=CF+BF ,理由如下:如图所示,将△ABF 绕点A 逆时针旋转60°得到△ACG ,∴AF=AG ,∠FAG=60°,∠ACG=∠ABF ,BF=CG在△AEF 和△ACF 中,=AE ACEAF CAF AF AF=⎧⎪∠∠⎨⎪=⎩,∴△AEF ≌△ACF (SAS ),∴∠AFE=∠AFC ,∵∠CBF+∠BCF+∠BFD+∠CFD=180°,∠CAF+∠CFA+∠ACD+∠CFD=180°,∴∠BFD=∠ACD=60°,∴∠AFE=∠AFC=60°,∴∠BFC=120°,∴∠BAC+∠BFC=180°,∴∠ABF+∠ACF=180°,∴∠ACG+∠ACF=180°,∴F 、C 、G 三点共线,∴△AFG 是等边三角形,∴AF=GF=CF+CG=CF+BF.。
人教版八年级上册数学期末考试试卷含答案
人教版八年级上册数学期末考试试题一、单选题1.下面的图形是轴对称图形的是()A .B .C .D .2.数据0.00000164用科学记数法可表示为()A .51.6410-⨯B .61.6410-⨯C .716.410-⨯D .50.16410-⨯3.下列多项式中,能运用平方差公式分解因式的是()A .22a b +B .22a b-C .22a b -+D .22a b --4.计算:3223x y ⎛⎫-= ⎪⎝⎭()A .632x y-B .63827x y C .53827x y -D .63827x y -5.将分式222x x y+中的x ,y 同时扩大4倍,则分式的值()A .扩大4倍B .扩大2倍C .缩小到原来的一半D .保持不变6.已知2x =是分式方程113k x x x -+=-的解,那么k 的值为()A .0B .1C .2D .47.在ABC 中,AB AC =,AD BC ⊥于点D ,若8AB =,5CD =,则ABC 的周长为()A .13B .18C .21D .268.如图,点E 在AC 上,则A B C D DEB ∠+∠+∠+∠+∠的度数是()A .90°B .180°C .270°D .360°9.如图,两个正方形的边长分别为a 、b ,若7a b +=,3ab =,则阴影部分的面积是()A .40B .492C .20D .2310.如图,已知直角三角形ABC 中,90ACB ∠=︒,60CAB ∠=︒,在直线BC 或AC 上取一点P ,使得ABP △为等腰三角形,则符合条件的点有()A .4个B .5个C .6个D .7个二、填空题11.正五边形的外角和等于_______◦.12.已知221x x -=-,则代数式()52x x +-的值为______.13.已知30x yx -=,则y x=______.14.分式方程:2211x x x+=--的解是___________.15.在ABC 中,AB AC =,AB 的垂直平分线与AC 所在直线相交所得的锐角为42°,则B ∠=______.16.如图,B C ∠=∠,译添加一个条件______使得ABE ACD △△≌.17.如图,5AB AC ==,110BAC ∠=︒,AD 是∠BAC 内的一条射线,且25BAD ∠=︒,P 为AD 上一动点,则PB PC -的最大值是______.18.如图,在平面直角坐标系中,已知()2,0A ,()0,3B ,若在第一象限中找一点C ,使得AOC OAB ≅△△,则C 点的坐标为_______.三、解答题19.计算:()()()323235a a a a a -+-+÷.20.已知23m n=,求224421n mn n m m m ⎛⎫--+÷ ⎪⎝⎭的值.21.在()()223x x a x b -++的运算结果中,2x 的系数为4-,x 的系数为7-,求a ,b 的值并对式子224ax b +进行因式分解.22.如图,AB ,CD 相交于点E 且互相平分,F 是BD 延长线上一点,若2FAC BAC ∠=∠,求证:AC DF AF +=.23.某商场计划在年前用30000元购进一批彩灯,由于货源紧张,厂商提价销售,实际的进货价格比原来提高了20%,结果比原计划少购进100盏彩灯.该商场实际购进彩灯的单价是多少元?24.如图1,射线BD 交△ABC 的外角平分线CE 于点P ,已知∠A=78°,∠BPC=39°,BC=7,AB=4.(1)求证:BD平分∠ABC;(2)如图2,AC的垂直平分线交BD于点Q,交AC于点G,QM⊥BC于点M,求MC的长度.25.如图,△ABC和△DEC都是等边三角形,D是BC延长线上一点,AD与BE相交于点P,AC、BE相交于点M,AD、CE相交于点N.求证:(1)AD=BE;(2)∠BMC=∠ANC;(3)△CMN是等边三角形.26.如图所示,点M是线段AB上一点,ED是过点M的一条直线,连接AE、BD,过点B 作BF//AE交ED于F,且EM=FM.(1)若AE=5,求BF的长;(2)若∠AEC=90°,∠DBF=∠CAE,求证:CD=FE.参考答案1.C 2.B 3.C 4.D 5.A 6.D 7.D 8.B 9.C 10.C 11.36012.413.1314.0x =15.66°或24°16.AB AC =(答案不唯一)【详解】解: B C ∠=∠,,A A ∠=∠添加:,AB AC =∴(),ABE ACD ASA ≌△△故答案为:,AB AC =(答案不唯一)17.5【分析】作点B 关于射线AD 的对称点B ',连接AB '、CB '、B'P .则AB AB '=,PB PB '=,AB C 'V 是等边三角形,在PB C ' 中,PB PC B C -'≤',当P 、B '、C 在同一直线上时,PB PC '-取最大值B C ',即为5.所以PB PC '-的最大值是5.【详解】解:如图,作点B 关于射线AD 的对称点B ',连接AB '、CB ',B'P .则AB AB '=,PB PB '=,25B AD BAD ∠=∠='︒,110252560B AC BAC BAB ∠=∠-∠=︒-︒-︒=''︒.∵5AB AC ==,∴5AB AC '==,∴AB C 'V 是等边三角形,∴5B C '=,在PB C ' 中,PB PC B C -'≤',当P 、B '、C 在同一直线上时,PB PC '-取最大值B C ',即为5.∴PB PC '-的最大值是5.故答案为:5.18.()2,3【详解】根据题意C 点在第一象限内,且AOC OAB ≅△△,如图,又已知OAB 和AOC △有已知公共边AO ,∴(23)C ,.故答案为(2)3,.【点睛】本题考查全等三角形的性质,由已知公共边结合三角形全等的性质找到点C 的位置是解答本题的关键.19.210a --【分析】先利用平方差公式进行整式的乘法运算,同步计算多项式除以单项式,再合并同类项即可.【详解】解:原式222495110a a a =---=--.【点睛】本题考查的是平方差公式的运用,多项式除以单项式,掌握“整式的混合运算”是解本题的关键.20.2【分析】先计算括号内分式的加法,再把除法转化为乘法,约分后可得结果,再把23m n =化为23,n m =再整体代入即可.【详解】解:原式222442n mn m mm n m-+=⋅-()22222n m m n mm n m m--=⋅=-∵23m n=∴23n m =,代入上式,得:原式322m m mm m-===.【点睛】本题考查的是分式的化简求值,掌握“整体代入法求解分式的值”是解本题的关键.21.1a =-,2b =,()()411x x +-【分析】先计算多项式乘以多项式,再结合题意可得64b -=-,327a b -=-,解方程组求解,a b 的值,再利用平方差公式分解因式即可.【详解】解:∵()()223x x a x b -++3223623x bx x bx ax ab =+--++()()323623x b x b a x ab=+-+-++∴64b -=-,327a b -=-解得:1a =-,2b =∴()()222444411ax b x x x +=-+=+-.22.【详解】证明:∵AB ,CD 互相平分∴AE BE =,CE DE =又∵AEC BED ∠=∠∴AEC BED△△≌∴CAE DBE =∠∠,AC BD =∵2FAC BAC ∠=∠∴CAE FAE ∠=∠∴DBE FAE ∠=∠∴AF BF =∵BF BD DF =+∴AC DF AF +=.23.商场实际购进彩灯的单价是60元【分析】设商场原计划购进彩灯的单价为x 元,则商场实际购进彩灯的单价为(120%)x +元,由题意:某商场计划在年前用30000元购进一批彩灯,由于货源紧张,厂商提价销售,实际的进货价格比原来提高了20%,结果比原计划少购进100盏彩灯.列出分式方程,解方程即可.【详解】解:设商场原计划购进彩灯的单价为x 元,则商场实际购进彩灯的单价为(120%)x +元,根据题意得:3000030000100(120%)x x-=+,解得:50x =,经检验,50x =是原分式方程的解,且符合题意,则(120%)60x +=(元),答:商场实际购进彩灯的单价为60元.24.(1)见解析(2)MC=1.5【分析】(1)由∠ACF=∠A+∠ABF ,∠ECF=∠BPC+∠DBF ,得∠ABF=∠ACF-78°,∠DBF=∠ECF-39°,再根据CE 平分∠ACF ,得∠ACF=2∠ECF ,则∠ABF=2∠ECF-78°=2(∠ECF-39°)=2∠DBF ,从而证明结论;(2)连接AQ ,CQ ,过点Q 作BA 的垂线交BA 的延长线于N ,利用HL 证明Rt△QNA≌Rt△QMC,得NA=MC,再证明Rt△QNB≌Rt△QMB(HL),得NB=MB,则BC=BM+MC=BN+MC=AB+AN+MC,从而得出答案.(1)证明:∵∠ACF=∠A+∠ABF,∠ECF=∠BPC+∠DBF,∴∠ABF=∠ACF-78°,∠DBF=∠ECF-39°,∵CE平分∠ACF,∴∠ACF=2∠ECF,∴∠ABF=2∠ECF-78°=2(∠ECF-39°)=2∠DBF,∴BD平分∠ABC;(2)解:连接AQ,CQ,过点Q作BA的垂线交BA的延长线于N,∵QG垂直平分AC,∴AQ=CQ,∵BD平分∠ABC,QM⊥BC,QN⊥BA,∴QM=QN,∴Rt△QNA≌Rt△QMC(HL),∴NA=MC,∵QM=QN,BQ=BQ,∴Rt△QNB≌Rt△QMB(HL),∴NB=MB,∴BC=BM+MC=BN+MC=AB+AN+MC,∴7=4+2MC,∴MC=1.5.25.(1)见解析;(2)见解析;(3)见解析【分析】(1)根据等边三角形的性质和题意,可以得到△ACD ≌△BCE 的条件,从而可以证明结论成立;(2)由△ACD ≌△BCE 得∠CBE=∠CAD ,由△ABC 和△DEC 都是等边三角形得60ACB ECD ∠=∠=︒,由平角定义得60ACN ∠=︒,再由三角形内角和定理可得结论;(3)根据(1)中的结论和等边三角形的判定可以证明△CMN 是等边三角形.【详解】(1)证明:∵△ABC 和△CDE 都是等边三角形,∴BC=AC ,CE=CD ,∠BCA=∠ECD=60°,∴∠BCA+∠ACE=∠ECD+∠ACE ,∠ACE=60°,∴∠BCE=∠ACD ,在△ACD 和△BCE 中AC BC ACD BCE CD CE ⎧⎪∠∠⎨⎪⎩===,∴△ACD ≌△BCE (SAS );∴AD =BE ;(2)由(1)得△ACD ≌△BCE ∴∠CBE=∠CAD ,∵△ABC 和△DEC 都是等边三角形∴60ACB ECD ∠=∠=︒∴60ACN ∠=︒∵180,180CBM BCM BMC CAN ACN ANC ∠+∠+∠=︒∠+∠+∠=︒∴∠BMC =∠ANC ;(3)由(1)知,△ACD ≌△BCE ,则∠ADC=∠BEC ,即∠CDN=∠CEM ,∵∠ACE=60°,∠ECD=60°,∴∠MCE=∠NCD ,在△MCE 和△NCD 中,MCE NCD MEC NDC CE CD ∠∠⎧⎪∠∠⎨⎪⎩===,∴△MCE≌△NCD(AAS),∴CM=CN,∵∠MCN=60°,∴△MCN是等边三角形.26.(1)BF=5;(2)见解析.【分析】(1)证明△AEM≌△BFM即可;(2)证明△AEC≌△BFD,得到EC=FD,利用等式性质,得到CD=FE.【详解】(1)∵BF//AE,∴∠MFB=∠MEA,∠MBF=∠MAE,∵EM=FM,∴△AEM≌△BFM,∴AE=BF,∵AE=5,∴BF=5;(2)∵BF//AE,∴∠MFB=∠MEA,∵∠AEC=90°,∴∠MFB=90°,∴∠BFD=90°,∴∠BFD=∠AEC,∵∠DBF=∠CAE,AE=BF,∴△AEC≌△BFD,∴EC=FD,∴EF+FC=FC+CD,∴CD=FE.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上学期期末考试八年级数学试题(人教版)(时间:90分钟 满分:150分)一、细心填一填(本题共10小题;每小题4分,共40分.) 1.若x 2+kx +9是一个完全平方式,则k = .2.点M (-2,k )在直线y =2x +1上,则点M 到x 轴的距离是 .3.已知一次函数的图象经过(-1,2),且函数y 的值随自变量x 的增大而减小,请写出一个符合上述条件的函数解析式 .4.如图,在△ABC 中,∠C=90°,AD 平分∠BAC ,BC=10cm ,BD=7cm ,则点D 到AB 的距离是 .5.在△ABC 中,∠B=70°,DE 是AC 的垂直平分线,且∠BAD:∠BAC=1:3,则∠C= .6.一等腰三角形的周长为20,一腰的中线分周长为两部分,其中一部分比另一部分长2,则这个三角形的腰长为 .7.某市为鼓励居民节约用水,对自来水用户收费办法调整为:若每户/月不超过12吨则每吨收取a 元;若每户/月超过12吨,超出部分按每吨2a 元收取.若小亮家5月份缴纳水费20a 元,则小亮家这个月实际用水8. 如图,C 为线段AE 上一动点(不与点A ,E 重合),在AE 同侧分别作正△ABC 和正△CDE ,AD 与BE 交于点O ,AD 与BC 交于点P ,BE与CD 交于点Q ,连结PQ .以下五个结论:① AD =BE ;② PQ ∥AE ;③ AP =BQ ;④ DE =DP ;⑤ ∠AOB =60°. 一定成立的结论有____________(把你认为正确的序号都填上).4题 5题图AB D CAEB D CABCEDO PQ9.对于数a ,b ,c ,d ,规定一种运算a b c d=ad -bc ,如102(2)-=1×(-2)-0×2=-2,那么当(1)(2)(3)(1)x x x x ++--=27时,则x=10、已知,3,5==+xy y x 则22y x +=二、精心选一选(本题共10小题;每小题4分,共40分) 11、下列四个图案中,是轴对称图形的是 ( )12、等腰三角形的一个内角是50°,则另外两个角的度数分别是( ) A 、65°,65° B 、50°,80° C 、65°,65°或50°,80° D 、50°,5013、下列命题 :(1)绝对值最小的的实数不存在;(2)无理数在数轴上对应点不存在;(3)与本身的平方根相等的实数存在;(4)带根号的数都是无理数;(5)在数轴上与原点距离等于2的点之间有无数多个点表示无理数,其中错误的命题的个数是( )A 、2B 、3C 、4D 、514.对于任意的整数n ,能整除代数式(n+3)(n -3)-(n+2)(n -2)的整数是 ( ) A.4B.3C.5D.25.已知点(-4,y 1),(2,y 2)都在直线y=- 12 x+2上,则y 1 、y 2大小关系是 ( )A . y 1 > y 2B . y 1 = y 2C .y 1 < y 2D . 不能比较 16.下列运算正确的是 ( )A.x 2+x 2=2x 4B.a 2·a 3= a 5C.(-2x 2)4=16x 6D.(x+3y)(x -3y)=x 2-3y 2 17.如图,把矩形纸片ABCD 纸沿对角线折叠,设重叠部分 为△EBD ,那么,下列说法错误的是( ) A .△EBD 是等腰三角形,EB =EDABDB .折叠后∠ABE 和∠CBD 一定相等C .折叠后得到的图形是轴对称图形D .△EBA 和△EDC 一定是全等三角形18.如图,△ABC 中边AB 的垂直平分线分别交BC 、AB 于点D 、E ,AE=3cm ,△ADC•的周长为9cm ,则△ABC 的周长是( )A .10cmB .12cmC .15cmD .17cm y=ax +b 和y=bx+a ,它们在同一坐标系中的图象大致是( )20.一名学生骑自行车出行的图象如图,其中正确的信息是( )A.整个过程的平均速度是760千米/时B.前20分钟的速度比后半小时慢C.该同学途中休息了10分钟D.从起点到终点共用了50分钟三.用心做一做21.计算(10分,每小题5分)(1)分解因式6xy 2-9x 2y -y 3 (2)223(2)()()a b ab b b a b a b --÷-+-22. (10分) 如图,(1)画出△ABC 关于Y 轴的对称图形△A 1B 1C 1 (2)请计算△ABC 的面积 (3)直接写出△ABC 关于X 轴对称的三角形△A 2B 2C 2的各点坐标。
x y o x y o x y o x y o A B C D x /分 y /千米 O 1 2 3 45 67 20 10 30 40 50 6023. (10分)先化简,再求值:2[()(2)8]2x y y x y x x +-+-÷,其中x =-2 . 4.(10分)甲骑自行车、乙骑摩托车沿相同路线由A 地到B 地,行驶过程中路程与时间的函数关系的图象如图. 根据图象解决下列问题:(1) 谁先出发?先出发多少时间?谁先到达终点?先到多少时间? (2) 分别求出甲、乙两人的行驶速度; (3) 在什么时间段内,两人均行驶在途中(不包括起点和终点)?在这一时间段内,请你根据下列情形,分别列出关于行驶时间x 的方程或不等式(不化简,也不求解):① 甲在乙的前面;② 甲与乙相遇;③ 甲在乙后面.25.(10分)如图,小明在完成数学作业时,遇到了这样一个问题,AB=CD ,BC=AD ,请说明: OA=OC 的道理,小明动手测量了一下,发现OA 确实与OC 相等,但他不能说明其中的道理,你能帮助他说明这个道理吗?试试看。
26.(10分)如图,在△ABC 中,∠C = 90°,AB 的垂直平分线交AC 于点D,垂足为E ,若∠A = 30°,CD = 2. (1) 求∠BDC 的度数; (2)求BD 的长.A ODC(第25题)27.(10分)08年5月12,四川省汶川等地发生强烈地震。
在抗震救灾中,甲、乙两重灾区急需一批大型挖掘机,甲地需25台,乙地需23台;A、B两省获知情况后慷慨相助,分别捐赠挖掘机26台和22台并将其全部调往灾区.若从A省调运一台挖掘机到甲地要耗资0.4万元,到乙地要耗资0.3万元;从B省调运一台挖掘机到甲地要耗资0.5万元,到乙地要耗资0.2万元.设从A省调往甲地x台,A、B两省将捐赠的挖掘机全部调往灾区共耗资y万元.(1)求出y与x之间的函数关系式及自变量x的取值范围;(2)若要使总耗资不超过15万元,有哪几种调运方案?(3)怎样设计调运方案能使总耗资最少?最少耗资是多少万元?八年级数学参考答案一.1.±6 ,2. 3, 3. y=-x+1, 4.3cm, 5.40°, 6.22/3cm或6cm, 7. 16吨, 8.①.②.③.⑤, 9.22, 10.19二11.c,12.C, 13.B, 14.C, 15.A, 16.B, 17.B, 18.C, 19.B, 20.C 三21.①-y(3x-y)2 ② -2ab22. ①略②s△ABC=213③ A 2(-3, -2), B 2(-4, 3), C 2(- 1, 1) 23 解:原式=421-x当x =-2时,原式=-5 24.解:(1)甲先出发,先出发10分钟。
乙先到达 终点,先到达5分钟。
……………………2分(2)甲的速度为:V 甲=(12216=千米/小时)……………………3分 乙的速度为:V 乙==-601025624(千米/时) ……………………4分 (3)当10<X <25分钟时两人均行驶在途中。
设S 甲=kx,因为S 甲=kx 经过(30,6)所以6=30k,故k=51.∴S 甲=51x.设S 乙=k 1x+b,因为S 乙=k 1x+b 经过(10,0),(25,6) 所以0=10k 1+b k 1=526=25k 1+b b=-4所以S 乙=52x -4① 当S 甲>S 乙时,即51x >52x -4时甲在乙的前面。
② 当S 甲=S 乙时,即51x=52x -4时甲与乙相遇。
③ 当S 甲<S 乙时,即51x <52x -4时乙在甲的前面。
25..证明:在△ABD 与△CBD 中,AB=CD AD=CB BD=DB∴ △ABD ≌△CBD (SSS ) ∴ ∠A=∠C{ {BA OC(第26题)∵∠AOB=∠COD AB=CD∴△AOB≌△COD∴OA=OC26.⑴∠BDC=60°⑵ BD=427.⑴y=0.4X+0.3(26-X) +0.5(25-X) +0.2〔23-(26-X)〕=19.7-0.2X (1≤X≤25)⑵ 19.7-0.2X≤15解得:X≥23.5 ∵ 1≤X≤25∴ 24≤X≤25即有2种方案,方案如下:方案1:A省调运24台到甲灾区,调运2台到乙灾区,B省调运1台到甲灾区,调运21台到乙灾区;方案2:A省调运25台到甲灾区,调运1台到乙灾区,B省调运0台到甲灾区,调运22台到乙灾区;⑶y=19.7-0.2X, y是关于x的一次函数,且y随x的增大而减小,要使耗资最少,则x取最大值25。
即:y最小=19.7-0.2×25=14.7(万元)。