误差和数据处理

合集下载

数据处理与误差分析报告

数据处理与误差分析报告

数据处理与误差分析报告1. 简介数据处理是科学研究和实验中不可或缺的一部分。

在进行实验和收集数据后,常常需要对数据进行处理和分析,从而揭示数据背后的规律和意义。

本报告将对数据处理的方法进行介绍,并分析误差来源和处理。

2. 数据处理方法2.1 数据清洗数据清洗是数据处理的第一步,用于去除无效数据、异常数据和重复数据。

通过筛选和校对,确保数据的准确性和一致性。

2.2 数据转换数据转换是将数据转化为适合分析的形式,通常包括数据的格式转换、单位转换和数据归一化等。

这样可以方便进行后续的分析和比较。

2.3 数据归约数据归约是对数据进行压缩和简化,以便于聚类、分类和预测分析。

常见的数据归约方法包括维度约简和特征选择等。

2.4 数据统计数据统计是对数据进行整体分析和总结,通常采用统计学的方法,包括均值、方差、标准差、相关系数等。

通过统计分析,可以从整体上了解和描述数据的特征和分布情况。

3. 误差来源和分析3.1 观测误差观测误差是由于测量和观测过程中的不确定性引起的误差。

观测误差可以分为系统误差和随机误差两种类型。

系统误差是由于仪器偏差、人为因素等引起的,通常具有一定的规律性;随机误差是由于种种不可预测的因素引起的,通常呈现为无规律的波动。

3.2 数据采集误差数据采集误差包括采样误差和非采样误差。

采样误差是由于采样过程中的抽样方法和样本大小等因素引起的误差;非采样误差是由于调查对象的选择、问卷设计的不合理等因素引起的误差。

采取合理的抽样策略和数据校正方法,可以减小这些误差。

3.3 数据处理误差数据处理误差是由于处理方法和算法的选择、参数设置的不合理等因素引起的误差。

不同的处理方法和算法可能会导致不同的结果,因此需要进行误差分析和对比,选择最合适的方法。

3.4 模型误差如果使用数学模型对数据进行分析和预测,模型误差是不可避免的。

模型误差主要是由于模型的简化、假设条件的不严谨等因素引起的。

通过对模型进行误差分析和验证,可以评估模型的可靠性和精度。

误差与数据处理

误差与数据处理
1、将各数据从小到大排列x1, x2, x3……xn,计
相对偏差 有效数字位数
c.
0.5180 ±0.0001 ±0.02%
4
(3、4)计有算效舍数弃字商的Q运计算=规则0d.(5先/ 1R修8约,后计算±)0.001
±0.2%
3
2、计算可疑值与其相邻值差值的;
第一位数字大于8时,多取一位,如:8.
(一)有效数字 若Q 计 Q表 可疑值应舍去
(三)准确度和精密度的关系
因此,增加测定次数,可以提高平均值精密
(1)概念: 就是在实验中实际测到的数字。 ②相对误差Er = Ea / XT(%)
两者的差别主要是由于系统误差的存在。
如1、E数a>字0前(,0则不X2计偏,)数高字;后有的0效计入有数效位字数;的记录规则:数值中只有最后一位是
(二)可疑值的取舍
(1)Q-检验法
(3~10次测定适用,且只有一个可疑数据)
1、将各数据从小到大排列x1, x2, x3……xn,计
算极差R; 2、计算可疑值与其相邻值差值的;
3、计算舍弃商 Q计 = d/ R 4、根据n 和P 查Q 值表得 Q表 5、比较 Q表 与 Q 计 :
若Q 计 Q表 可疑值应舍去 Q 计 < Q表 可疑值应保留
2、乘除法:由有效数字位数最少者为准,即取于
数字不仅表示数量的大小,而且要正确地反 5、改变单位,不改变有效数字的位数;
记录数据的位数与测定准确度有关。
映测量的精确程度。如: 误差(E)的定义:E = X – XT
X 为测定值
两者的差别主要是由于系统误差的存在。
2、计算可疑值与其相邻值差值的;
结果 绝对偏差 若Q 计 Q表 可疑值应舍去

滴定分析中的误差及数据处理

滴定分析中的误差及数据处理

滴定分析中的误差及数据处理引言概述:滴定分析是一种常见的定量分析方法,广泛应用于化学、生物化学、环境科学等领域。

然而,在滴定分析过程中,由于实验条件、仪器设备等因素的影响,往往会产生误差。

正确处理这些误差并进行数据处理,对于保证分析结果的准确性和可靠性至关重要。

本文将从五个方面详细阐述滴定分析中的误差及数据处理方法。

一、体积误差1.1 仪器误差:滴定分析中常用的仪器有分析天平、容量瓶、滴定管等。

在使用这些仪器时,应注意校准和使用规范,以减小仪器误差。

1.2 液面误差:滴定分析中,液面的读取对于结果的准确性有着重要影响。

因此,在读取液面时,应注意垂直读取、避免液面的折光等因素对读数的影响。

1.3 滴定管的容量误差:滴定管的容量误差是滴定分析中常见的误差来源。

为减小这一误差,可以使用一定体积的滴定管,或者采用称量法确定滴定管的容量。

二、滴定试剂误差2.1 试剂纯度误差:滴定试剂的纯度对于滴定分析结果的准确性有着重要影响。

因此,在滴定分析中,应选择高纯度的试剂,并进行纯度检验。

2.2 试剂滴定度误差:试剂滴定度是指滴定试剂与被滴定物质的化学反应当量比。

在实际操作中,试剂滴定度的确定是十分重要的,应根据实验条件和反应特性精确测定。

2.3 试剂保存误差:试剂的保存条件对于滴定分析结果的准确性也有着重要影响。

应将试剂保存在干燥、避光、低温的条件下,避免因试剂的降解或者氧化而引起误差。

三、指示剂误差3.1 选择合适的指示剂:指示剂的选择应根据被滴定物质的性质和滴定反应的特点来确定。

应选择颜色变化明显、与被滴定物质反应快速的指示剂。

3.2 指示剂的浓度误差:指示剂的浓度对于滴定分析结果的准确性有着重要影响。

应根据实际需要精确配制指示剂,并在使用前进行浓度检验。

3.3 指示剂的添加量误差:指示剂的添加量过多或者过少都会对滴定分析结果产生影响。

应根据滴定试剂的滴定度和指示剂的滴定反应比确定适当的添加量。

四、操作误差4.1 滴定速度误差:滴定速度的快慢会对滴定分析结果产生影响。

误差与实验数据处理实验报告

误差与实验数据处理实验报告

误差与实验数据处理实验报告误差与实验数据处理实验报告引言:实验是科学研究的基础,而数据处理则是实验结果的关键环节。

在实验中,我们不可避免地会遇到误差,而正确处理误差对于实验结果的准确性和可靠性至关重要。

本实验旨在探讨误差的来源、分类以及如何进行实验数据处理,以提高实验结果的可信度。

一、误差的来源1.1 人为误差人为误差是由实验操作者的技术能力、主观判断和个人经验等因素引起的误差。

例如,在使用仪器时,操作者的手部不稳定、读数不准确等都可能导致人为误差的产生。

1.2 仪器误差仪器误差是由于仪器本身的设计、制造和使用不完美而产生的误差。

每个仪器都有其精度和灵敏度限制,而这些限制会对实验结果产生影响。

因此,在进行实验前,我们需要了解仪器的精度和灵敏度,并在数据处理时进行相应的修正。

1.3 环境误差环境误差是由实验环境中的温度、湿度、气压等因素引起的误差。

这些因素会对实验结果产生影响,因此,在实验过程中,我们需要控制环境条件,或者在数据处理时进行环境误差的修正。

二、误差的分类2.1 系统误差系统误差是由于实验装置、仪器或操作方法等造成的误差,其特点是在多次实验中具有一定的规律性。

系统误差可以通过校正仪器、改进操作方法等方式进行减小。

2.2 随机误差随机误差是由于实验过程中的偶然因素引起的误差,其特点是在多次实验中无规律可循。

随机误差可以通过增加实验次数、采用统计方法等方式进行减小。

三、实验数据处理方法3.1 平均值处理平均值处理是最常用的实验数据处理方法之一。

通过多次实验,取得的数据可以计算出平均值,从而减小随机误差的影响。

在计算平均值时,需要注意排除掉明显与其他数据不符的异常值,以保证结果的准确性。

3.2 不确定度分析不确定度是对实验结果的精度进行评估的指标。

在实验数据处理中,我们需要对每个数据的不确定度进行分析,以确定实验结果的可靠程度。

不确定度的计算可以采用传统的“合成法”或“最大偏差法”,具体选择哪种方法取决于实验的特点和要求。

数据处理及误差分析

数据处理及误差分析

数据处理及误差分析1. 引言数据处理及误差分析是科学研究和工程实践中一个至关重要的领域。

在收集和处理数据的过程中,往往会受到各种因素的干扰和误差的影响。

因此,正确地处理这些数据并进行误差分析,对于准确得出结论和进行科学决策至关重要。

2. 数据处理数据处理是指对收集到的数据进行整理、分析和解释的过程。

它包括了数据清洗、数据转换、数据提取和数据集成等步骤。

2.1 数据清洗数据清洗是指对原始数据进行筛选、剔除异常值和填充缺失值等处理。

清洗后的数据更加可靠和准确,能够更好地反映实际情况。

2.2 数据转换数据转换主要是将原始数据转化为符合分析需求的形式。

比如,将连续型数据离散化、进行数据标准化等。

2.3 数据提取数据提取是指从庞大的数据集中挑选出有意义和相关的数据进行分析。

通过合理选择变量和提取特征,可以提高数据分析的效率和准确性。

2.4 数据集成数据集成是指将来自不同数据源的数据进行整合和合并,以满足分析需求。

通过数据集成,可以获得更全面、更综合的数据集,提高分析结果的可信度。

3. 误差分析误差分析是对数据处理过程中产生的误差进行评估和分析。

误差可以分为系统误差和随机误差两种类型。

3.1 系统误差系统误差是由于数据收集和处理过程中的系统性偏差导致的。

它们可能是由于仪器精度不高、实验环境变化等原因引起的。

系统误差一般是可纠正的,但要确保误差产生的原因被消除或减小。

3.2 随机误差随机误差是由于抽样误差、观察误差等随机因素导致的。

它们是不可预测和不可消除的,只能通过多次重复实验和统计方法进行分析和控制。

4. 误差分析方法误差分析通常采用统计学和数学方法进行。

其中,常用的方法有误差传递法、误差平均法、误差椭圆法等。

4.1 误差传递法误差传递法是将各个步骤中产生的误差逐步传递,最终计算出整个数据处理过程中的总误差。

它能够帮助我们了解每个步骤对最终结果的影响程度,并找出影响结果准确性的关键因素。

4.2 误差平均法误差平均法是通过多次实验重复测量,并计算平均值来减小随机误差的影响。

误差理论与数据处理知识总结

误差理论与数据处理知识总结

1.1.1 研究误差的意义为:1)正确认识误差的性质,分析误差产生的愿意,以消除或者减小误差2)正确处理测量和试验数据,合理计算所得结果,以便在一定条件下得到更接近于真值的数据3)正确组织实验过程,合理设计仪器或者选用仪器和测量方法,以便在最经济条件下,得到理想的结果。

1.2.1 误差的定义:误差是测得值与被测量的真值之间的差。

1.2.2 绝对误差:某量值的测得值之差。

1.2.3 相对误差:绝对误差与被测量的真值之比值。

1.2.4 引用误差:以仪器仪表某一刻度点的示值误差为份子,以测量范围上限值或者全量程为分母,所得比值为引用误差。

1.2.5 误差来源: 1)测量装置误差 2)环境误差 3)方法误差 4)人员误差1.2.6 误差分类:按照误差的特点,误差可分为系统误差、随机误差和粗大误差三类。

1.2.7 系统误差:在同一条件下,多次测量同一量值时,绝对值和符号保持不变,或者在条件改变时,按一定规律变化的误差为系统误差。

1.2.8 随机误差:在同一测量条件下,多次测量同一量值时,绝对值和符号以不可预定方式变化的误差称为随机误差。

1.2.9 粗大误差:超出在规定条件下预期的误差称为粗大误差。

1.3.1 精度:反映测量结果与真值接近程度的量,成为精度。

1.3.2 精度可分为:1)准确度:反映测量结果中系统误差的影响程度2)精密度:反映测量结果中随机误差的影响程度3) 精确度:反映测量结果中系统误差和随机误差综合的影响程度,其定量特征可用测量的不确定度来表示。

1.4.1 有效数字:含有误差的任何近似数,如果其绝对误差界是最末位数的半个单位,那末从这个近似数左方起的第一个非零的数字,称为第一位有效数字。

从第一位有效数字起到最末一位数字止的所有数字,不管是零或者非零的数字,都叫有效数字。

1.4.2 测量结果应保留的位数原则是:其最末一位数字是不可靠的,而倒数第二位数字应是可靠的。

1.4.3 数字舍入规则:保留的有效数字最末一位数字应按下面的舍入规则进行凑整:1)若舍去部份的数值,大于保留部份的末位的半个单位,则末位加一2)若舍去部份的数值,小于保留部份的末位的半个单位,则末位不变3)若舍去部份的数值,等于保留部份的末位的半个单位,则末位凑成偶数。

物理实验中的数据处理与误差分析

物理实验中的数据处理与误差分析

物理实验中的数据处理与误差分析在物理实验中,数据处理与误差分析是非常重要的环节。

准确地处理实验数据并分析误差,可以提高实验结果的可靠性和准确性。

本文将介绍一些常见的数据处理方法和误差分析技巧,帮助读者更好地理解和应用这些知识。

一、数据处理方法1.平均值的计算在实验中,经常需要多次测量同一物理量,然后将测量结果求平均值。

计算平均值可以减小测量误差的影响,提高结果的准确性。

求平均值的方法很简单,只需要将所有测量结果相加,然后除以测量次数即可。

2.误差的传递在物理实验中,往往需要通过测量一些基本物理量来计算其他物理量。

当存在多个物理量的测量误差时,需要对误差进行传递计算。

常见的误差传递公式有乘法、除法和幂函数的误差传递公式。

3.直线拟合与斜率的计算在一些实验中,我们需要通过实验数据拟合一条直线来获得一些重要信息,如斜率、截距等。

直线拟合可以通过最小二乘法来完成,根据实验数据点与拟合直线的最小距离来确定直线的参数。

而斜率的计算可以通过拟合得到的直线参数来得出。

二、误差分析技巧1.随机误差与系统误差在物理实验中,误差通常分为随机误差和系统误差。

随机误差是由实验条件不完全相同或测量仪器精度的限制造成的,它的值在一定范围内变化。

系统误差是由于实验条件的固有缺陷或仪器的固有误差造成的,它的值通常是恒定的。

在误差分析中,需要分别考虑和处理这两种误差。

2.误差的类型与来源误差可以分为绝对误差和相对误差。

绝对误差是指测量结果与真实值之间的差值,而相对误差是指绝对误差与测量结果之间的比值。

误差的来源主要有仪器误差、人为误差和环境误差等。

3.误差的评估与控制误差的评估是确定测量结果可靠性和准确性的重要步骤。

通常可以采用标准差、百分误差和置信区间等方法来评估误差。

同时,通过合理地控制实验条件、使用精密的仪器和注意操作技巧等措施,可以降低误差的产生。

三、实例分析为了更好地理解数据处理与误差分析的应用,我们以一次重力实验为例进行分析。

误差分析和数据处理

误差分析和数据处理

误差和分析数据处理1 数据的准确度和精度在任何一项分析工作中,我们都可以看到用同一个分析方法,测定同一个样品,虽然经过多少次测定,但是测定结果总不会是完全一样。

这说明在测定中有误差。

为此我们必须了解误差产生的原因及其表示方法,尽可能将误差减到最小,以提高分析结果的准确度。

1。

1 真实值、平均值与中位数(一)真实值真值是指某物理量客观存在的确定值.通常一个物理量的真值是不知道的,是我们努力要求测到的。

严格来讲,由于测量仪器,测定方法、环境、人的观察力、测量的程序等,都不可能是完善无缺的,故真值是无法测得的,是一个理想值。

科学实验中真值的定义是:设在测量中观察的次数为无限多,则根据误差分布定律正负误差出现的机率相等,故将各观察值相加,加以平均,在无系统误差情况下,可能获得极近于真值的数值。

故“真值”在现实中是指观察次数无限多时,所求得的平均值(或是写入文献手册中所谓的“公认值”)。

(二)平均值然而对我们工程实验而言,观察的次数都是有限的,故用有限观察次数求出的平均值,只能是近似真值,或称为最佳值.一般我们称这一最佳值为平均值。

常用的平均值有下列几种:(1)算术平均值这种平均值最常用。

凡测量值的分布服从正态分布时,用最小二乘法原理可以证明:在一组等精度的测量中,算术平均值为最佳值或最可信赖值。

n x n x x x x ni in ∑=++==121 式中: n x x x 21、——各次观测值;n ――观察的次数.(2)均方根平均值n x n x x x x n i in∑=++==1222221 均(3)加权平均值设对同一物理量用不同方法去测定,或对同一物理量由不同人去测定,计算平均值时,常对比较可靠的数值予以加重平均,称为加权平均。

∑∑=++++++===n i i n i ii n n n w x w w w w x w x w x w w 11212211式中;n x x x 21、—-各次观测值;n w w w 21、—-各测量值的对应权重。

误差与数据处理

误差与数据处理
45
2. 两组数据平均值的比较(用标准方法做对照实验时)
x1 ,
s1, n1
x2 ,
s 2, n 2
① F检验法-s1,s2 差异 ② t检验法-
x1 , x2
差异
46
F 检验法
2 s大 F计算= 2 s小
检验精密度的差异
两组数据的精密度存在显著差异
F计算> F表 t 检验法
t计算= x1 x2 s
19
2. 随机误差(random error)
形成:不确定的原因造成的。
特点:可正可负,无方向性,
服从统计规律(正态分布);
不可以消除,但可以减少 (增加测定次数)。
结果:影响测定结果的精密度。
20
x1
x2
x3
x4
21
3. 测量误差
由仪器的测量精度决定 50mL滴定管(Burette)、分析天平 (Analytical balance)的测量误差:
ห้องสมุดไป่ตู้
解: 理解为在 47 .50 % 0.10 %的区间内 包括总体均值 在内的概率为 95 %
36
例1.4:对某未知试样中Cl-的百分含量进行测定,4次结 果为47.64%,47.69%,47.52%,47.55%,计算置信度 为90%,95%和99%时的总体均值μ的置信区间。 解: x 47.64% 47.69% 47.52% 47.55% 47.60%
第二章
误差与数据处理
1
定量测定结果的二特征:
永远不可能得到绝对准确的测定结果;
平行实验结果不可能完全相同。
定量分析中,误差是不可避免的。
2
必须根据要求和样品的复 杂程度,采取措施,减小 误差对测定结果的影响, 并对结果的可靠性做出正 确评价。

实验数据误差分析和数据处理

实验数据误差分析和数据处理

实验数据误差分析和数据处理数据误差分析是首要的步骤,它通常包括以下几个方面:1.随机误差:随机误差是指在重复实验的过程中,由于个体差异等原因引起的测量结果的离散性。

随机误差是不可避免的,并且符合一定的统计规律。

通过进行多次重复测量,并计算平均值和标准差等统计指标,可以评估随机误差的大小。

2.系统误差:系统误差是由于仪器、测量方法或实验条件所引起的,使得测量结果与真实值的偏离。

系统误差可能是由于仪器刻度的不准确、环境温度的变化等原因导致的。

通过合理校准仪器、控制环境条件等方式可以减小系统误差。

在数据误差分析的基础上,进行数据处理是必不可少的步骤。

数据处理的目的是通过对实验结果的合理处理,得到更为准确的结论。

1.统计处理:统计方法是最常用的数据处理方法之一、通过使用统计学中的概率分布、假设检验、方差分析等方法,可以对实验数据进行科学、客观的分析和处理。

2.回归分析:回归分析是一种通过建立数学模型来研究变量之间关系的方法。

通过对实验数据进行回归分析,可以确定变量之间的数学关系,并预测未知数据。

3.误差传递与不确定度评定:在实验中,不同参数之间的误差如何相互影响,以及这些误差如何传递到最终结果中,是一个重要的问题。

通过不确定度评定方法,可以定量评估各个参数的不确定度,并估计最终结果的不确定度。

4.数据可视化和图表展示:通过绘制合适的图表,可以更直观地展示实验数据的分布规律、趋势以及变化情况。

例如,折线图、散点图、柱状图等可以有效地展示数据的分布和相关关系。

综上所述,实验数据误差分析和数据处理是进行科学研究的重要环节。

准确评估和处理数据误差可以提高实验结果的可靠性和准确性,为研究结果的正确性提供基础。

通过合理选择和应用适当的数据处理方法,可以从实验数据中得出有意义的结论,并为进一步研究提供指导。

误差以及数据处理

误差以及数据处理

定义
粗大误差是由于观测者疏 忽或外界干扰引起的误差, 其大小和方向都是不定的。
产生原因
观测者的疏忽、记录错误、 外界干扰等。
特性
单次测量结果明显偏离正 常值,且多次测量结果的 平均值也不稳定。
02
数据处理方法
数据清洗
数据预处理
对原始数据进行必要的预处理,包括数据格式化、缺失值处理、 异常值处理等。
误差处理
误差来源识别
识别并分类误差来源 是误差处理的第一步, 这有助于确定哪些因 素最可能导致误差。
误差估计
对每个来源的误差进 行量化评估,这可以 通过统计分析、实验 或经验公式来完成。
误差校正
根据误差的性质和量 级,可以采用不同的 校正方法,如系统校 准、数据平滑等。
预防措施
为了避免误差的产生, 可以采取一系列预防 措施,如提高测量设 备的精度、标准化操 作流程等。
03 特性
单次测量结果难以预测,但大量测量结果的平均 值是稳定的。
系统误差
01 定义
系统误差是由某些固定因素引起的误差,其大小 和方向是固定的。
02 产生原因
测量工具的固有偏差、实验方法的缺陷、理论公 式的近似等。
03 特性
单次测量结果具有一致性,多次测量结果的平均 值也不变。
粗大误差
01
02
03
案例分析
例如,某医院进行一项临床试验,通过误差处理发现实验 数据存在偏差,经过重复实验和数据校准后,得到了更为 准确的结果。
气象数据误差传递
01
气象数据误差来源
气象数据误差可能来源于观测站网布局、观测仪器、观测方法等方面,
如观测误差、传输延迟等。
02
误差和时间传递,空间传递是指误差随

误差理论与数据处理

误差理论与数据处理

误差理论与数据处理
1误差理论
误差(error)理论是科学测量中一项重要的理论,它描述了测量结
果与理论结果之间的差异,以及这种差异的大小和方向。

当一项测量
结果与理论相符时,这种差异就会减少到一定的程度,从而减少测量
不确定性,使测量结果更精确和准确。

误差分析也是一种重要的测量方法,它主要是根据实际测量结果
来估算实际测量数据与理论测量数据之间的差异,从而决定测量后的
数据处理方式[1]。

通过分析误差,可以有效估算测量数据的有效位数,进而使测量结果更加准确。

2数据处理
数据处理是控制实验测量的一个重要步骤,它可以改善实验测量
的精确程度。

通过数据处理,可以提供准确可靠的实验结果,这对于
建立精确的模型以及验证理论,都有着重要的意义。

数据处理有很多种方法,但最重要的一点是要确定准确的误差结果。

通常可以采用统计方法,如均值、标准差和变异系数,对实验数
据进行精确的数据分析,从而估算实验数据的有效位数和有效位数之
间的差值。

一旦变值较大,就可以采取一定的措施进行纠偏,使实验
数据趋于稳定,从而提高实验数据的准确性。

数据处理本身也可以用于处理和优化测量误差,从而提高测量精度。

这一过程通常包括:编辑测量误差数据,对某些超出预想范围的测量数据进行排除处理,将误差分布情况用图表展示出来,并从中分析出结论性结果。

综上所述,误差理论和数据处理在科学测量中起着非常重要的作用,准确的误差分析可以令实验结果更加有效可靠,而精确的数据处理也可以改善测量精度,可以提供准确的实验数据,为理论的验证和模型的建立提供有力支撑。

误差及数据处理

误差及数据处理

误差与数据处理一、名词解释1)误差:测量结果与被测量真值之差。

2)精密度:在确定的条件下重复测定的数值之间相互接近的程度。

用重复性和再现性表示。

重复性(repeatability):同一实验室,分析人员用相同的分析法在短时间内对同一样品重复测定结果之间的相对标准偏差;再现性(reproducibility):不同实验室的不同分析人员用相同分析对同一被测对象测定结果之间的相对标准偏差。

3)准确度:测量结果与被测真值之间的一致程度。

4)真值:与给定的特定量的定义一致的值。

5)绝对误差:测量结果与被测量(约定)真值之差。

6)绝对差值:两个数值之差的绝对值。

7)相对误差:测量误差除以被测量(约定)真值。

8)算数平均值:数值的总和除以其个数。

9)加权算数平均值:给每个数值指定一个称为“权”的非负系数,各个数值与相应的乘积之和除以权的总和。

10)标准值:由特定机关或组织以一定的精密度决定并保证的标准物质物理性能或组成的数值。

11)方差、标准差:各测定值和平均值之差的平方和除以自由度(测定数量减1)而得的商叫方差。

标准差为方差的正平方根。

12)极差:一个定量特征的观测值中最大值和最小值之差。

13)系统误差:在重复性条件下,对同一被测量进行无限多次测量所得结果的平均值与被测量的真值之差。

14)随机误差:测量结果与在重复性条件下,对同一被测量进行无限多次测量所得结果的平均值之差。

15)测量不确定度:表征合理地赋予被测量之值的分散性,与测量结果相联系的参数。

16)变异系数:标准偏差在样本均值中所占的百分数,又称相对标准偏差。

即标准偏差与测量结果算术平均值的比值。

17)偏差:一个值减去其参考值。

18)绝对偏差:个别测定值与平均值之差。

19)相对偏差:绝对偏差相对于测量平均值的百分数。

20)平均偏差:各单次测量偏差的绝对值之和与测量次数之比。

用d表示。

21)置信界限:真实值落在平均值的一个指定的范围内,这个范围就称为置信界限。

误差分析与数据处理

误差分析与数据处理

产生原因-人操作上的粗心大意,外界的强大干扰。
消除方法-当发现粗大误差时,应予以剔除。 结论:在进行误差分析时,粗差剔除,系统误差和随机误 差要用适当的方法进行处理和估算。
课堂提问:
1.请举出生话中的系统误差、随机误差、粗大误差的 实例。 2.第1章讲过一些仪表性能指标,其中就涉及哪个误 差概念?
系统误差: 与真值之差。 随机误差:某一测量值与 的差值。 2.对称性:xi大致地分布于 两侧。 剩余误差(残差)Vi= xi - 残差基本互相抵消。残差总和:
3.有界性:在一定的条件下, xi有一定的分布范围,超过这个范围的可能性很 小,一般作为粗大误差处理。

当n→∞时,测量列xi的算术平均值 可认为是测量值的最可信值,但无 法表达出测量值的误差范围和精度高低。一般用下式表示存在随机误差时的 测量结果:
解: 1.按照测量读数的顺序列成表格。 2.计算测量列xi的算术平均值: =(633.97/16)=39.623 mm。 3.算出每个测量读数的残差Vi ,填写在xi的右边。并验证了 。 4.在每个残差旁算出 和 必须的中间过程值 , 然后求出 =2.140mm2 5.计算出方均根误差 =0.378mm
2.2.1随机误差的统计特性
单次测量具有随机性,但多次测量其总体误差具有规律性特征。 测量列:保持测量条件不变,对同一测量对象进行多次重复测量得到一系列包含 随机误差的读数x1、x2、…,xn。 统计直方图:以测得的数据为横坐标,出现的次数为纵坐标。 正态分布曲线(随机误差的概率密度,高斯误差):当测量次数n→∞ 时,则无 限多的直方图的顶点中线的连线就形成一条光滑的连续曲线。有如下规律: 1.集中性:大量的测量值集中分布于算术平均值 附近。
2.随机误差-在同一条件下,多次测量同一被测量,有时 会发现测量值时大时小,机误差。随机误差反映了测 量值离散性的大小。 产生原因(随机效应)-随机误差是测量过程中许多独立 的、微小的、偶然的因素引起的综合结果。 消除方法-单个测量值误差是随机的,难以消除或修正; 但误差的整体服从正态分布统计规律,因此可以增加测量 次数,并对测量结果进行数据统计处理。 3.粗大误差-明显偏离真值的误差称为粗大误差(过失误 差)。

第二章 误差及数据处理

第二章 误差及数据处理

第二章误差及数据处理§1 误差概述一、误差的来源1.测定值分析过程是通过测定被测物的某些物理量,并依此计算欲测组分的含量来完成定量任务的,所有这些实际测定的数值及依此计算得到的数值均为测定值。

2.真实值 true value真实值是被测物质中某一欲测组分含量客观存在的数值。

在实验中,由于应用的仪器,分析方法,样品处理,分析人员的观察能力以及测定程序都不十全十美,所以测定得到的数据均为测定值,而并非真实值。

真实值是客观存在的,但在实际中却难以测得。

真值一般分为:<1>理论真值:三角形内角和等于1800。

<2>约定真值:统一单位(m.k g,.s)和导出单位、辅助单位。

1)时, <3>相对真值:高一级的标准器的误差为低一级标准器的误差的51(31~20则认为前者为后者的相对真值。

思考:滴定管与量筒、天平与台称3.误差的来源真值是不可测的,测定值与真实值之差称为误差。

在定量分析中,误差主要来源于以下六个方面:<1> 分析方法由于任何一种分析方法都仅是在一定程度上反映欲测体系的真实性。

因此,对于一个样品来说,采用不同的分析方法常常得到不同的分析结果。

实验中,当我们采用不同手段对同一样品进行同一项目测定时,经常得到不同的结果,说明分析方法和操作均会引起误差。

例如:在酸碱滴定中,选用不同的指示剂会得到不同的结果,这是因为每一种指示剂都有着特定的pH变化范围,反应的变色点与酸、碱的化学计量点有或多或少的差距。

另外在样品处理过程中,由于浸取、消化、沉淀、萃取、交换等操作过程,不能全部回收欲测物质或引入其他杂质,对测定结果也会引入误差。

<2> 仪器设备由于仪器设备的结构,所用的仪表及标准量器等引起的误差称为仪器设备误差。

如:天平两臂不等、仪表指示有误差、砝码锈蚀、容量瓶刻度不准等。

<3> 试剂误差试剂中常含有一定的杂质或由贮存不当给定量分析引入不易发现的误差。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三、有效数字的运算法则
根据误差传递规律
加减法中 按小数点后位数最少的(绝对误差传递) 0.5362 + 0.001 + 0.25 = 0.79
0.5362 0.001 0.25
绝对误差 0.0001 0.001
0.01
29
有效数字的运算法则
根据误差传递规律
乘除法中 按有效数字位数最少的(相对误差传递) 0.0121 25.64 1.0578 = 0.328
例2-5:用8-羟基喹啉测定Al含量,9次测定的标准偏差为0.042%,
平均值为10.79%。估计真值在95%和99%置信水平时应是多大?
95%置信度时:
P =0.95 a =1-P =0.05 f=9-1=8
查表 t0.05,8=2.306
代入公式 =x tS/n =10.79 0.032%
测量步骤的准确度应与分析方 法的准确度相当
增加平行测定的次数
(四)消除测量中的系统误差
19
提高分析结果准确度的方法
(一)选择恰当的分析方法 (二)减小测量误差 (三)减小偶然误差的影响
(四)消除测量中的系统误差
经典方法比较 校准仪器 对照实验 回收实验 空白实验
试样中组分含量
标样中组分含量

试样中组分测得量
26
有效数字的修约规则
在修约标准偏差等时 修约的结果应使准确度 降低 例如:标准偏差(S)=0.213
取两位时,修约为 0.22 取一位时,修约为 0.3
27
有效数字的修约规则
与标准限度值比较时不应修约
例如:
某标准试样中镍含量≤0.03%为合格
获得的测量值为
0.033%
修约为
0.03% 不合理
28
1.极值误差法
运算式
极值误差法
误差最大且叠加 R=x+y-z R x y z
R=x· y/z
R x y z Rx y z
例如:滴定度的计算
w% TVF 100 m
w v F m wV F m
16
2.标准偏差法
和(差)结果的标准偏差的平方,等于各测量值标准偏差的 平方和
积(商)结果的相对标准偏差的平方,等于各测量值的相对
标偶准然偏差误的差平的方和传递
例4:天平称量时的标准偏差为0.1,求测量样品时的标准偏差。
运算式 R=x+y-z R=x· y/z
标准偏差法
S
2 R
S
2 x
S
2 y
S
2 z
SR R
2
Sx x
2
Sy y
2
Sz z
2
S
2 R
S
2 x
S
2 y
S
2 z
Sm
S12
S
2 2
2S 2 2 (0.1)2
正态分布
(高斯分布)
y 1 exp[ 1 ( x )2 ]
2
2
y
令 u x
标准正态 分布曲线
x
x-
31
二、t 分布
对于有限次实验数据要用t分布 进行统计处理
正态分布
令 u x
y 1 exp[ 1 ( x )2 ]
2
2
以 S 代替
t 代替 u
标准正态 分布曲线
t分布曲线
t x
S x
浓度的相对误差
m=m前-m后 m= m前- m后 M=0 V=250-249.93
c c
=
m m
-(
M M
+
V V
)
=-0.04%
绝对误差
C =-0.04% 0.1013mol/L
减重法
实际浓度
c =0.1013- c = 0.10134mol/L ≈0.1013mol/L
15
(二)偶然误差的传递
查表:Q90% = 0.64 Q < Q90% ,0.1026不应该舍弃。
43
(二)G检验法
xq x
• 求出包括可疑数据在内的平均值 G
• 计算可疑值与平均值之差
S
• 算出包括可疑值在内的标准偏差S
• 求G值:G计算 • 查表:Gn, • 比较: G计算>Gn,, 舍弃
44
0.749、0.730、0.749、0.751、0.747、0.752 试用G检验法确定数据0.730,是否应舍弃?
0.0121 25.64 1.0578
相对误差
(0.0001/0.0121)100% = 0.83% (0.01/25.64) 100% = 0.028% (0.0001/1.0578) 100% = 0.0095%
乘方/开方时 有效数字位数不变
30
第三节 有限量测量数据的统计处理
一、偶然误差和正态分布
22
“0”既可作为有效数字,也可作定位用的无效数字
数字前面的0,起定位作用 数字中间的0,是有效数字 数字后面的0,?
有效数字的位数反映了测量和结果的准确程度,绝 不能随意增加或减少
20.50L
ml ?
pH、pKa等对数值,其有效数字仅取决于小数部分 数字的位数
pH=2.88 pKa=7.21
[H+]=1.3×10-3 Ka=6.9×10-8
标样中组分测得量
加入后测得量-加入前测得量 回收率%=
标品加入量
20
第二节 有效数字及其运算法则
分析化学中的数字
非测量值 测量值
自然数,无准确度问题
测量所得,其位数应与 分析方法的准确度及仪 器的精度相适应
21
一、有效数字
实际能测到的数字。只允许数的最末一 位为可疑值。 不仅能表示数值的大小,还可反映测量 的精确程度,不能随意增加或减少 滴定分析和重量分析,允许误差一般为 0.2%,各测量数据一般保留4位有效 数字
0.14mg
五、提高分析结果准确度的方法
(一)选择恰当的分析方法
不同方法能达到的灵敏度和准确度是不同的
(二)减小测量误差 (三)减小偶然误差的影响 (四)消除测量中的系统误差
18
提高分析结果准确度的方法
(一)选择恰当的分析方法
100%
(二)减小测量误差 减小每个步骤的测量误差
(三)减小偶然误差
3次测定时
X=33.5 S=0.153 t0.05,2=4.303
=x tS/n =33.5 0.38%
5次测定时
X=33.6 S=0.164 t0.05,4=2.776
=x tS/n =33.6 0.20%
在相同置信水平下,适当增加测定次数n,可使 置信度区间显著缩小,从而提高分析测定的准 确度
首位为8或9,其有效数字位数可多计一位
二、数字的修约规则
四舍六入五成双
4 舍弃 6 进位 = 5且5后面无数时
进位后成偶数 进位后成奇数
例如:将以下数值修约为三位数字
2.0149
2.01
5.2386
5.24
3.125001
3.131.7551.764.1054.10
进位 舍弃
有效数字的修约规则 只允许修约一次,禁止分次修约
• 查Q临界值表,比较Q值,决定取舍
Q计 >Q表,舍弃;反之保留
42
例2-12 标定一个标准溶液,测得如下数据:0.1014、0.1012、
0.1019、0.1016、0.1026 mol/L。试用Q检验法确定数据0.1026, 是否应舍弃?
Q x可疑 x紧邻 0.1026 0.1019 0.5 x最大 x最小 0.1026 0.1012
8
1. 偏差(deviation;d)
d =xi-x
2. 平均偏差 3. 相对平均偏差
Xi X
d=
n
d
X 100%
Xi X /n
=
x
4. 标准偏差
s
XiX 2
n1
5. 相对标准偏差
RSD = S 100% x
例2-2
四次标定某溶液的浓度,结果为0.2041, 0.2049, 0.2039, 和0.2043mol/L。计算测定的平均值、平均偏 差、相对平均偏差、标准偏差,以及相对标准偏差
统计判断时: • 置信水平定得越高,置信区间就越宽;置信水平
越低,置信区间就越窄
例2-5中:
P =0.95时
=10.79 0.032%
P =0.99时
=10.79 0.047%
但置信水平定得过高,会使置信区间过宽而实用 价值不大
分析化学中常取95%置信水平,有时也采用90%、 99%置信水平
40
四、可疑数据的取舍
(一)舍弃商法(Q检验法) (二)G检验法(Grubbs检验法) 0.1014、0.1012、0.1019、0.1016 、0.1026 mol/L
41
(一) 舍弃商法 测定次数3~10次,P常取90%
检验步骤:
• 将数据排序 • 计算Q值
Q x可疑 x紧邻 x最大 x最小
范围 概率%
1 68.3
1.64 90.0
1.96 95.0
2 95.5
增加置信水平则相应需要扩大置信区间。
36
=x u
多次测量
μ x u/ n
以 S 代替
t 代替 u
少量测量样本
μ x tS/ n XU x tS / n
X L x tS / n
双侧置信区间:在一定置信水平下,XL < < XU 单侧置信区间: <XL 或 > XU
第二章 误差和分析数据处理
1
误差和分析数据处理
• 定量分析 • 准确性和可靠性 • 误差是客观存在的
相关文档
最新文档