六年级比例应用题练习
六年级下册第四单元《比例》应用题练习2023
1.长征五号运载火箭总长约为57m。
有一个长征五号运载火箭的模型,它的总长与火箭总长的比是1:10。
这个模型总长约为多少米?答:这个模型总长约为米。
2.餐馆给餐具消毒,要用100mL消毒液配成消毒水,如果消毒液与水的比是1:150,应加入多少升水?答:应加入升水。
3.相同质量的水和冰的体积之比是9:10。
一块体积是50dm3的冰,化成水后的体积是多少?答:化成水后的体积是dm3。
4.汽车厂按1:20的比生产了一批汽车模型。
(1)轿车模型长24.3cm,轿车的实际长度是多少?答:轿车的实际长度是m。
(2)公共汽车长11.76m,公共汽车模型的长度是多少?答:公共汽车模型的长度是cm。
5.一个秦代高级军吏俑模型的高度与实际高度的比是1:10,模型高度是19.6cm。
这个高级军吏俑的实际高度是多少?答:这个高级军吏俑的实际高度是cm。
6.某小区1号楼的实际高度是35m,与模型高度的比是50:1。
模型的高度是多少厘米?答:模型的高度是厘米。
7.李老师买了6个足球和8个篮球,买两种球所花钱数相等。
(1)足球与篮球的单价之比是多少?答:足球与篮球的单价之比是。
(2)足球的单价是40元,篮球的单价是多少?答:篮球的单价是元。
8.两地之间的实际距离是120km,在一幅地图上量得两地的图上距离是2.4cm。
这幅地图的比例尺是多少?答:这幅地图的比例尺是。
9.一个圆柱形零件的高是5mm,在图纸上的高是2cm。
这幅图纸的比例尺是多少?答:这幅图纸的比例尺是。
10.在一幅比例尺为1:30000的地图上,北京地铁2号线的长度大约是77cm。
北京地铁2号线的实际长度大约是多少千米?答:北京地铁2号线的实际长度大约是千米。
11.一套房子的客厅东西方向长4m,在图纸上的长度是4cm。
这幅图纸的比例尺是多少?答:这幅图纸的比例尺是。
12.在一幅比例尺是1:5000000的地图上,量得两个城市的图上距离是3.4cm,这两个城市之间的实际距离是多少?答:这两个城市之间的实际距离是千米。
六年级比例应用题
六年级比例应用题1.A、B两地相距480千米,甲、乙两辆汽车同时从A、B两地出发相向开出,4小时后相遇。
已知甲、乙两车的速度是7:5,甲车每小时行多少千米?解:设甲车每小时行X千米,则乙车每小时行(480÷4-X)千米。
X:(480÷4-X)=7:55X=7(120-X)12X=840X=70答:甲车每小时行70千米.2.一个三角形三个内角的度数比是1:4:5,这个三角行是什么三角形?180°X 5/(1+4+5)=90°答:这个三角行是直角三角形。
3.一个三角形三个内角的度数比是1:4:5,这个三角行是什么三角形?180°X 5/(1+4+5)=90°答:这个三角行是直角三角形。
4.小明2分钟做了10道口算题,照这样计算,做40道题,需要几分钟?解:设需要X分钟。
10/2=40/X答:(略)。
5.某超级市场促销苦瓜汽水,3瓶特价25元,找这样计算,购买9瓶苦瓜汽水,要花多少元?解:要花X元。
25/3=X/9X=75答:(略)。
6.4张邮票6.4元,96元可买几张邮票?解:设96元可买X张邮票。
6.4/4=96/XX=60答:(略)。
7.48只鸡蛋可装成4盒,144只鸡蛋,可装成多少盒?解:设可装成X盒。
48/4=144/XX=12答:(略)。
8.王师傅3小时加工了120个零件,照这样计算,7小时能加工多少个零件?解:设7小时能加工X个零件。
120/3=X/7答:(略)。
9.2辆的士可载8人,25辆的士可载多少人?解:设25辆的士可载X人。
8/2=X/25X=100答:(略)。
10.小红看一本儿童小说,每天看12页,10天可以看完;如果每天看15页,多少天可以看完?解:设X天可以看完。
15X=12×10X=8答:(略)。
11.某车间生产一批零件,计划每天生产160个,15天可以完成,实际每天超产80个,可以提前几天完成?解:设可以提前X天完成。
六年级比例应用题
六年级比例应用题一、比例的基本性质相关应用题1. 题目:已知比例公式,求公式的值。
- 解析:根据比例的基本性质,两个外项的积等于两个内项的积。
在比例公式中,公式,即公式,然后等式两边同时除以公式,得到公式。
2. 题目:如果公式,公式,求公式。
- 解析:因为公式,公式,要统一公式的值。
公式,所以公式。
二、正比例应用题1. 题目:一辆汽车公式小时行驶公式千米,照这样的速度,公式小时行驶多少千米?- 解析:- 首先判断路程和时间成正比例关系,因为速度一定(速度 = 路程÷时间)。
- 设公式小时行驶公式千米。
根据正比例关系可得公式。
- 交叉相乘得到公式,即公式,解得公式千米。
2. 题目:小明买公式本笔记本花了公式元,照这样计算,买公式本笔记本需要多少钱?- 解析:- 因为笔记本的单价是一定的,所以总价和数量成正比例关系。
- 设买公式本笔记本需要公式元。
可得公式。
- 交叉相乘得公式,即公式,解得公式元。
三、反比例应用题1. 题目:一辆汽车从甲地开往乙地,如果每小时行公式千米,公式小时到达。
如果要公式小时到达,每小时应行多少千米?- 解析:- 路程是一定的(路程 = 速度×时间),速度和时间成反比例关系。
- 设每小时应行公式千米。
根据反比例关系可得公式。
- 即公式,解得公式千米。
2. 题目:一间教室,如果用边长为公式分米的方砖铺地,需要公式块。
如果改用边长为公式分米的方砖铺地,需要多少块?- 解析:- 教室地面的面积是一定的(面积 = 方砖面积×方砖块数),方砖面积和方砖块数成反比例关系。
- 边长为公式分米的方砖面积是公式平方分米,边长为公式分米的方砖面积是公式平方分米。
- 设需要公式块边长为公式分米的方砖。
可得公式。
- 即公式,解得公式块。
小学六年级数学比例应用题专项练习
小学六年级数学比例应用题专项练习
1. 长度比例题
题目1
小明骑自行车去学校,半小时能骑行6公里。
如果小明用同样的速度骑行,那么1小时能骑行多远?
题目2
小红花了10分钟走完家到学校的路程,这段路程是4公里。
如果她用同样的速度走,那么20分钟能走多远?
题目3
小王从家到学校的路程是12公里。
如果他用1小时走完这段路程,他的速度是多少?
2. 面积比例题
题目1
一个矩形的长是3厘米,宽是5厘米。
如果长宽比例为1:2,
这个矩形的面积是多少平方厘米?
题目2
一个正方形的面积是25平方米,另一个正方形的面积是50平
方米。
这两个正方形的边长比例是多少?
题目3
一个圆的直径是10厘米,另一个圆的直径是20厘米。
这两个
圆的面积比是多少?
3. 比例综合应用题
题目1
小明所在班级有男生和女生,男生比例是1:3,女生比例是1:2。
班级一共有多少学生?
题目2
一个长方形的长和宽的比例是1:3,面积是12平方米。
这个长
方形的周长是多少?
题目3
根据统计,一车间有工人72人,其中男工人的比例是3:8。
女工人比男工人多多少人?
以上是小学六年级数学比例应用题专项练题目,希望能够帮助到你!。
六年级按比例分配应用题练习
六年级按比例分配应用题练习六年级按比例分配应用题(一)一、填空题1、故事书和科技书的本数比是5:8,故事书本数是科技书的3/13;科技书本数比故事书多3,故事书本数是两种书总本数的8/13.2、甲组人数是乙组人数的3/5,甲组人数和乙组人数的比是3:5,甲组人数和两组总人数比是3/8.二、解答下面应用题。
1、XXX分到320本书,为民小学分到240本书。
2、甲筐重40千克。
3、应配20千克水。
4、XXX四、五、六年级分别捐款900元、1350元、1800元。
5、长方形长为60厘米,宽为48厘米。
6、人数最多的一组有24人。
7、甲植树40棵,乙植树30棵,丙植树30棵。
8、长为64厘米,宽为48厘米,高为32厘米。
六年级按比例分配应用题(二)1、含氢22.5千克,含氧180千克。
2、男生有32人,女生有24人。
3、白昼时间是9小时,黑夜时间是5小时。
4、三条边长分别为40厘米、60厘米、80厘米。
5、可配制5千克的药粉。
6、长为180厘米,宽为60厘米,高为120厘米。
7、西红柿为162千克,茄子为81千克。
8、面积为525平方厘米。
9、农药“乐果”乳剂可以用来治棉花的虫害。
已知药液和水的重量比为1:1000.1) 如果要使用5克药液,需要加多少千克的水?2) 如果要使用1500千克的水,需要多少千克的药液?3) 如果要配制2002千克的药水,需要多少千克的药液和水?12、一批图书按2:3的比例分配给五年级和六年级。
五年级获得了400本图书。
如果按照3:5的比例分配,六年级可以获得多少本图书?13、甲队和乙队一起修路,两队修路的长度比是6:7.甲队比乙队少修了50米。
甲队和乙队各修了多少米?14、某车间需要加工一批零件任务的85%。
这批零件按照2:3:5的比例分配给甲、乙、丙三个组。
已知甲组应该加工零件170个,那么这批零件一共有多少个?15、某工厂有三个车间,共有250名工人。
第一车间的工人占全厂人数的48%。
六年级正比例应用题
六年级正比例应用题一、行程问题中的正比例关系。
1. 一辆汽车2小时行驶120千米,照这样的速度,5小时行驶多少千米?- 解析:因为速度一定,路程和时间成正比例关系。
先求出速度,速度 = 路程÷时间,即120÷2 = 60(千米/小时)。
设5小时行驶x千米,根据正比例关系可得(120)/(2)=(x)/(5),解得x = 300千米。
2. 小明步行的速度是一定的,他走1500米用了30分钟,那么他走2500米需要多少分钟?- 解析:速度一定,路程与时间成正比例。
先求速度,速度=1500÷30 = 50(米/分钟)。
设走2500米需要x分钟,可得(1500)/(30)=(2500)/(x),交叉相乘得1500x = 2500×30,x=(2500×30)/(1500)=50分钟。
3. 飞机飞行的速度不变,飞行1800千米需要3小时,若要飞行3000千米需要多少小时?- 解析:速度不变,路程和时间成正比例。
速度为1800÷3 = 600(千米/小时)。
设飞行3000千米需要x小时,(1800)/(3)=(3000)/(x),解得x = 5小时。
二、工作效率问题中的正比例关系。
4. 工人师傅3小时生产零件180个,照这样计算,7小时生产多少个零件?- 解析:工作效率一定,工作总量和工作时间成正比例。
工作效率=180÷3 = 60(个/小时)。
设7小时生产x个零件,(180)/(3)=(x)/(7),解得x = 420个。
5. 某工厂的一台机器,4天可以生产240个产品,照这样计算,8天能生产多少个产品?- 解析:工作效率一定,工作总量和工作时间成正比例。
这台机器的工作效率为240÷4 = 60(个/天)。
设8天生产x个产品,(240)/(4)=(x)/(8),解得x = 480个。
6. 一个打字员2小时打了12000字,按照这样的速度,5小时能打多少字?- 解析:打字速度一定,打字总量和打字时间成正比例。
六年级解比例应用题
六年级比例应用题练习
例1小明家养了一些兔子,白兔的只数与黑兔的只数比为7:6,卖出6只白兔后,白兔和黑兔的只数比为11:12,原来白兔黑兔共多少只?
练习1.一个运动队原来男女生人数比为5:7,后来又增加了4名男生,这时男女生的人数比为7:9,男女生现在各是多少人?
练习2.小明去县城参加比赛,他已走的路程和未走的路程比是1:2,他再走1千米,则他已走的路和未走的路程比是2:3,小明到县城有多少千米?
练习3.甲、乙两班人数之比为5:4 ,新学期乙班转走2名学生,甲班人数没有变,因此,甲、乙两班人数之比变为4:3 .则甲班有多少名学生?
例2.甲、乙两个盒子里的巧克力的数量之比是5:1 ,如果从甲盒中取出14块
放入乙盒后,甲、乙两盒巧克力的块数比变为3 : 2 .请问:这两盒巧克力共有多少块?
练习1.甲乙两人所有故事书的本数比为3:2,如果乙给甲3本,,两人本数比为3:1,两人共有多少本书?
练习2.某学校二年级和三年级的人数比为8:7,如果将二年级的8名同学放到三年级去,那么二年级和三年级的人数比为4:5,,原来两个年级各多少人?
练习3.甲乙两个课外小组的人数比为3:2,如果从甲组调入乙组4人,则甲乙两组人数比是2:3,求甲乙两组原来个多少人?。
6年级比例应用题
6年级比例应用题一、简单比例关系应用题(1 10题)1. 一辆汽车3小时行驶180千米,照这样的速度,5小时行驶多少千米?解析:首先根据速度 = 路程÷时间,求出汽车的速度。
汽车3小时行驶180千米,速度为公式千米/小时。
然后根据路程 = 速度×时间,5小时行驶的路程为公式千米。
设5小时行驶公式千米,根据速度一定,路程和时间成正比例关系,可得公式,解得公式。
2. 配制一种农药,药粉和水的比是1:500,现有水6000千克,配制这种农药需要药粉多少千克?解析:药粉和水的比是公式,即水是药粉的500倍。
现有水6000千克,那么药粉的重量为公式千克。
设需要药粉公式千克,根据比例关系公式,解得公式。
3. 学校图书馆科技书与故事书的比是3:5,科技书有180本,故事书有多少本?解析:因为科技书与故事书的比是公式,设故事书有公式本,则公式,交叉相乘得公式,公式本。
思路是根据两种书数量的比例关系列方程求解。
4. 一块长方形菜地长和宽的比是5:3,长是40米,宽是多少米?解析:设宽是公式米,因为长和宽的比是公式,所以公式,交叉相乘得公式,公式米。
利用长和宽的比例关系来建立方程求解宽的长度。
5. 某工厂男职工与女职工的人数比是4:3,男职工有320人,女职工有多少人?解析:设女职工有公式人,根据男职工与女职工人数比是公式,可得公式,交叉相乘得公式,公式人。
依据给定的人数比例关系列方程求解女职工人数。
6. 一种混凝土是由水泥、沙子和石子按2:3:5配制而成的。
现在要配制150吨这种混凝土,需要水泥、沙子和石子各多少吨?解析:水泥、沙子和石子的比例为公式,总份数为公式份。
水泥占公式,沙子占公式,石子占公式。
水泥的重量为公式吨,沙子的重量为公式吨,石子的重量为公式吨。
先求出各成分占总量的比例,再根据总量求出各成分的量。
7. 小明和小红的零花钱之比是7:5,如果小明有56元零花钱,小红有多少元零花钱?解析:设小红有公式元零花钱,因为小明和小红零花钱之比是公式,所以公式,交叉相乘得公式,公式元。
小学六年级数学比例应用题及答案
小学六年级数学比例应用题及答案
小学六年级数学比例是孩子学习数学的重要内容。
学好比例能够有效提高孩子的逻辑思维能力,把数学应用到日常生活中去。
下面我们就一起来学习小学六年级数学比例应用题及答案。
一、数学比例题
1、小明参加了一次知识竞赛,但他总分为180分,卷面分为150分,考官给予他的附加分是多少?
答案:附加分为30分。
2、某体育比赛,红队赢了4场,黑队赢了2场,平局2场,则红队胜率是多少?
答案:红队胜率为66.7%,即2/3。
3、在一个购物店中,某件洋原价160元,现在7折,则打折后的价格是多少?
答案:打折后的价格为112元。
二、比例的实际应用
1、在布料的购买中,购买的是一种卷布,它的长度是20米,宽度是3米,那么卷布的面积是多少?
答案:卷布的面积为60平方米。
2、在变形金刚的动画片中,Optimus Prime的比例是25:42,那么它的真实尺寸应该是多少?
答案:Optimus Prime的真实尺寸应该是25米高,42米长。
3、某一礼品盒中共有若干个玩具,其中一共有9枚小汽车,18
个小船,6个小飞机,那么汽车在所有玩具中占的比例是多少?
答案:汽车占的比例是 9: 33,即9/33。
以上就是小学六年级数学比例应用题及答案的内容。
总而言之,比例是学习数学的重要内容,是培养孩子逻辑思维能力的基础。
家长要注意重视孩子数学学习,让孩子能够熟练掌握数学比例,有效利用比例应用在日常生活中去。
六年级数学比应用题
六年级数学比应用题一、简单的比的计算应用题(1 - 5题)1. 已知甲、乙两数的比是3:5,甲数是12,求乙数。
- 解析:- 因为甲、乙两数的比是3:5,设乙数为x,则(甲)/(乙)=(3)/(5)。
- 已知甲数是12,即(12)/(x)=(3)/(5)。
- 根据比例的性质,内项之积等于外项之积,可得3x = 12×5。
- 解得x=(12×5)/(3)=20。
2. 某班男、女生人数比是4:3,男生有24人,女生有多少人?- 解析:- 设女生有x人,因为男、女生人数比是4:3,所以(24)/(x)=(4)/(3)。
- 由比例性质可得4x = 24×3。
- 解得x=(24×3)/(4)=18人。
3. 一种药水是把药粉和水按照1:100的比配成的。
要配制这种药水4040克,需要药粉多少克?- 解析:- 药粉和水的比是1:100,那么药水就是1 + 100=101份。
- 这种药水共4040克,那么一份就是4040÷101 = 40克。
- 药粉占1份,所以需要药粉40克。
4. 学校图书馆里科技书和故事书的比是3:4,科技书有180本,故事书有多少本?- 解析:- 设故事书有x本,因为科技书和故事书的比是3:4,所以(180)/(x)=(3)/(4)。
- 根据比例性质3x=180×4。
- 解得x=(180×4)/(3)=240本。
5. 甲、乙两个数的比是5:6,它们的和是66,求甲、乙两数。
- 解析:- 甲、乙两个数的比是5:6,设甲数是5x,乙数是6x。
- 它们的和是66,则5x + 6x=66。
- 即11x = 66,解得x = 6。
- 所以甲数5x = 5×6 = 30,乙数6x=6×6 = 36。
二、比在几何中的应用题(6 - 10题)6. 一个长方形的长和宽的比是5:3,长是25厘米,宽是多少厘米?- 解析:- 设宽是x厘米,因为长和宽的比是5:3,所以(25)/(x)=(5)/(3)。
比例的应用题六年级
比例的应用题六年级一、按比例分配问题。
1. 学校把栽70棵树的任务,按照六年级三个班的人数分配给各班,一班有46人,二班有44人,三班有50人。
三个班各应栽树多少棵?- 解析:首先求出三个班的总人数:46 + 44+50=140(人)。
然后计算各班人数占总人数的比例,一班:(46)/(140),二班:(44)/(140),三班:(50)/(140)。
最后用树的总数乘以各班所占比例得到各班应栽树的棵数。
- 一班应栽树:70×(46)/(140) = 23(棵);- 二班应栽树:70×(44)/(140)=22(棵);- 三班应栽树:70×(50)/(140)=25(棵)。
2. 一种混凝土是由水泥、沙子和石子按2:3:5的比例混合而成的。
如果要配制20吨这种混凝土,需要水泥、沙子和石子各多少吨?- 解析:首先求出总份数:2 + 3+5 = 10份。
然后计算每份的重量:20÷10 = 2吨。
最后根据各自的份数求出水泥、沙子和石子的重量。
- 水泥:2×2 = 4吨;- 沙子:2×3 = 6吨;- 石子:2×5 = 10吨。
3. 某工厂有三个车间,第一车间、第二车间、第三车间的人数比是8:12:21,第一车间比第二车间少80人,三个车间共有多少人?- 解析:设第一车间有8x人,第二车间有12x人。
根据第一车间比第二车间少80人,可列方程12x-8x = 80,解得x = 20。
则三个车间总人数为(8 +12+21)×20=41×20 = 820人。
二、比例尺问题。
4. 在比例尺是1:6000000的地图上,量得A、B两地的距离是5厘米。
一辆汽车以每小时75千米的速度从A地开往B地,需要多少小时?- 解析:根据比例尺公式,实际距离=图上距离÷比例尺,所以A、B两地的实际距离为5÷(1)/(6000000)=5×6000000 = 30000000厘米=300千米。
六年级关于比例的应用题
六年级关于比例的应用题一、比例应用题。
1. 一辆汽车3小时行驶180千米,照这样的速度,行驶300千米需要几小时?- 解析:首先根据速度 = 路程÷时间,求出汽车的速度。
已知汽车3小时行驶180千米,那么速度为180÷3 = 60(千米/小时)。
设行驶300千米需要x小时,因为速度一定,路程和时间成正比例,所以可列出比例式180:3 = 300:x,即180x=300×3,180x = 900,解得x = 5小时。
2. 用同样的方砖铺地,铺20平方米要320块,如果铺42平方米,要用多少块方砖?- 解析:因为每块方砖的面积是一定的,所以方砖的块数和铺地的面积成正比例。
设铺42平方米要用x块方砖。
可列出比例式20:320 = 42:x,20x=320×42,20x = 13440,解得x = 672块。
3. 配制一种农药,药粉和水的比是1:500。
- 现有水6000千克,配制这种农药需要药粉多少千克?- 解析:药粉和水的比是1:500,设需要药粉x千克,可列出比例式1:500=x:6000,500x = 6000,解得x = 12千克。
- 现有药粉3.6千克,配制这种农药需要水多少千克?- 解析:设需要水y千克,根据比例1:500 = 3.6:y,y=3.6×500 = 1800千克。
4. 学校操场长120米,宽80米,画在比例尺为1:4000的图纸上,长和宽各应画多少厘米?- 解析:因为比例尺=图上距离:实际距离,所以图上距离 = 实际距离×比例尺。
操场长120米=12000厘米,宽80米=8000厘米。
长应画12000×(1)/(4000)=3厘米,宽应画8000×(1)/(4000) = 2厘米。
5. 一个机器零件长5毫米,画在图纸上是4厘米,求这幅图纸的比例尺。
- 解析:首先统一单位,4厘米= 40毫米。
比例尺=图上距离:实际距离=40:5 = 8:1。
六年级数学比例应用题
六年级数学比例应用题
1. 如果5 本书的价格是25 元,那么8 本相同的书的价格是多少?
2. 甲班有30 名学生,乙班有45 名学生,如果要保持两个班级的学生数比是2:3,那么甲班应该增加多少名学生?
3. 一辆汽车开120 公里需要6 升汽油,那么开180 公里需要多少升汽油?
4. 如果用2 箱苹果可以给6 人分,那么5 箱苹果可以给多少人分?
5. 一块面积是36 平方米的房间,如果按照比例缩小为原来的3/4,新房间的面积是多少平方米?
6. 有两种果汁:一种是橙汁,每瓶2.5 元;另一种是苹果汁,每瓶3 元。
如果两种果汁按照比例2:3 混合在一起,求混合果汁每瓶的价格。
7. 一根长12 厘米的绳子刚好可以分成4 段,那么长18 厘米的绳子可以分成几段?
8. 有一批铅笔,甲盒5 支铅笔,乙盒7 支铅笔,如果要按照比例3:5 分配到两个盒子里,求每个盒子里应该有多少支铅笔?
9. 一堆苹果中有熟苹果和生苹果,比例是3:5,如果其中熟苹果有36 个,求生苹果有多少个?
10. 甲组有15 台电脑,乙组有20 台电脑,如果要按比例1:2 分配到两组中,求每组应分配多少台电脑?。
六年级比例应用题50道含答案难
六年级比例应用题50道含答案难
一、题目
1. 小明有50元,买了一件衣服,价格是30元,小明还剩多少钱?
答案:小明还剩20元。
2. 小红有100元,买了一双鞋,价格是60元,小红还剩多少钱?
答案:小红还剩40元。
3. 小刚有120元,买了一件外套,价格是90元,小刚还剩多少钱?
答案:小刚还剩30元。
4. 小芳有150元,买了一件裙子,价格是100元,小芳还剩多少钱?
答案:小芳还剩50元。
5. 小强有200元,买了一件衬衫,价格是120元,小强还剩多少钱?
答案:小强还剩80元。
6. 小李有250元,买了一条裤子,价格是150元,小李还剩多少钱?
答案:小李还剩100元。
7. 小燕有300元,买了一件外套,价格是180元,小燕还剩多少钱?
答案:小燕还剩120元。
8. 小虎有350元,买了一双鞋,价格是210元,小虎还剩多少钱?
答案:小虎还剩140元。
9. 小龙有400元,买了一件衣服,价格是240元,小龙还剩多少钱?
答案:小龙还剩160元。
10. 小马有450元,买了一件裙子,价格是270元,小马还剩多少钱?
答案:小马还剩180元。
小学六年级数学家庭作业用比例解应用题练习151道
小学六年级数学家庭作业用比例解应用题练习151道学校名称:班级:学号:姓名:1.服装厂用一批布料做服装,计划每套用料3.2米,可以做120套.如果改做儿童服装,每套用料2.4米,这批布料可以做多少套?2.修一段长400米的路,3天修了120米,照这样计算,修完这段路还需几天?3.修路队修一段路,3天修了全长的40%,照这样算,修完这段路共要多少天?4.某厂装配一批小汽车,计划每天装配20辆,15天可以完成,实际用了12天,实际每天装配多少辆?5.一辆汽车从甲地开往乙地,3小时行195千米,照这样的速度,再行驶1.2小时到达,两地相距多少千米?6.一项工程,原计划15个工人工作,18天可以完成,现在要求提前3天完成,需增加几个工人?7.把一根长2米的竹竿直立地面,量得影长0.8米,同时量得一根旗杆的影长4.8米,这根旗杆高多少米?8.用方砖铺教室地板,原计划用9平方米的方砖铺,需要800块,现用面积大的方砖铺,需要多少块?9.测量小组的同学们测得一烟囱的影长为22.5米,同时把2米长的竹竿立在地上,测得影长1.8米。
那么烟囱有多高?10.榨油厂用100千克黄豆可以榨出13千克豆油。
照这样计算,用3吨黄豆可以榨出多少吨豆油?11.化肥厂把一批化肥运往农村,原计划用载重量4.5吨的汽车运,需要10辆;如果改用载重量是3吨的汽车运,需要多少辆汽车?12.一间房子用边长3分米的方砖铺底,需要96块。
如果改用边长2分米的方砖铺地,需要多少块?13.用边长2分米的方砖铺一块地面,需要砖块。
如果改用面积为9平方分米的方砖铺这块地面,需要多少块?14.一个筑路队修一条公路,原计划每天修1.5千米,28天完成,实际每天修2.1千米。
实际修了多少天?15.学校搞维修,准备用方砖铺走廊,如用面积是9平方分米的方砖,则需480块;如改用面积16平方分米的方砖,则至少需要多少块?16.在一幅地图上量得A到B的铁路长10厘米,地图的比例尺上1:17000000,A到B的铁路长实际是多少千米?17.修一条公路,前6天修了468米,照这样的速度,25天能修多少米?18.甲齿轮有120个齿,它带动的乙齿轮有45个齿,甲齿轮每分钟转90转,乙齿轮每分钟转多少转?19.一辆汽车6小时行驶了360千米,照这样计算,从甲地到乙地900千米,需要行驶多少小时?20.甲乙两地的实际距离是1120千米,把它画在比例尺是1:4000000的地图上,应画多少厘米?21.某工地运来一批水泥,每天用75吨,可以用8天。
六年级比例应用题练习
六年级比例应用题练习(一)姓名成绩1、用同样的方砖铺地,铺20平方米要320块,如果铺42平方米,要用多少块方砖?2、一间教室,用面积是0.16平方米的方砖铺地,需要275块,如果用面积是0.25平方米的方砖铺地,需要方砖多少块?3、建筑工地原来用4辆汽车,每天运土60立方米,如果用6辆同样的汽车来运,每天可以运土多少立方米?4我国发射的人造地球卫星绕地球运行3周约3.6小时,运行20周约需多少小时?5一辆汽车从甲地开往乙地,3.5小时行了全程的5∕9照这样计算,行完全程要几小时?6、一种铁丝,7.5米长重3千克,现在有19.5米长的这种铁丝,重多少千克?7、汽车在高速公路上3小时行240千米,照这样计算,5小时行多少千米?8、修一条公路,4天修了200米,照这样计算,又修了6天,又修了多少米?9、小明读一本书,每天读12页,8天可以读完。
如果每天多读4页,几天可以读完?10、小华看一本240页的小说,4天看了64页,照这样计算,看完这本书还需多少天?11、今春分配给学校一些植树任务,每天栽200棵6天可以完成任务,现在需要4天完成任务,实际每天比原计划多栽多少棵?12、农场用3辆拖拉机耕地,每天共耕225公顷,照这样速度,用5辆同样拖拉机,每天共耕地多少公顷?13、一艘轮船,从甲地从开往乙地,每小时航行20千米,12小时到达,从乙地返回甲地时,每小时多航行4千米,几小时可以到达?14、100千克黄豆可以榨油13千克,照这样计算,要榨豆油6.5吨,需黄豆多少吨?15学校计划买54张桌子,每张30元,如果这笔钱买椅子,可以买90张,每张椅子多少钱?16、一对互相咬合的齿轮,主动轮有20个齿,每分钟转60转,如果要使从动轮每分钟转40转,从动轮的齿数应是多少?17、把3米长的竹竿直立在地面上,测得影长1.2米,同时测得一根旗杆的影长为4.8米,求旗杆的高是多少米?18、李师傅计划生产450个零件,工作8小时后还差330个零件没有完成,照这样速度,共要几小时完成任务?19、用一批纸装订同样的练习本,如果每本30页,可以装订80本。
六年级比例题100道应用题
六年级比例题100道应用题1.如果10个苹果的价格是20元,那么5个苹果的价格是多少元。
2.一个班级有15个男生和10个女生,男生和女生的比例是多少。
3.如果一个水桶可以装12升水,2个水桶可以装多少升水。
4.一辆车每小时行驶60公里,5小时能行驶多少公里。
5.小明的身高是120厘米,小红的身高是80厘米,他们的身高比例是多少。
6.如果一盒巧克力有30颗,3盒巧克力有多少颗。
7.在一场比赛中,甲队得了90分,乙队得了60分,甲队和乙队的得分比例是多少。
8.如果4个小时可以完成一项工作,2个小时能完成多少工作。
9.一条长5米的绳子,剪成5段,每段多长。
10.小华买了6本书,每本书的价格是15元,他总共花了多少钱。
11.一个果园有300棵苹果树,150棵梨树,苹果树和梨树的比例是多少。
12.如果一个班有30个学生,男生占60%,那么班上有多少个男生。
13.6个鸡蛋的价格是18元,12个鸡蛋的价格是多少元。
14.一辆自行车的轮子有2个,5辆自行车一共有多少个轮子。
15.如果一件衣服打8折后价格是80元,那么原价是多少元。
16.在一个学校里,80%的学生喜欢足球,若学校有200名学生,喜欢足球的学生有多少人。
17.如果一包饼干有24块,3包饼干一共有多少块。
18.小张的成绩是90分,小李的成绩是75分,他们的成绩比例是多少。
19.如果一辆车加满油可以行驶500公里,那么加满油后,行驶250公里还剩多少油。
20.一盒彩色铅笔有12支,买了5盒,那么一共有多少支铅笔。
21.如果每个足球的价格是80元,买3个足球需要多少钱。
22.一支铅笔的长度是15厘米,5支铅笔的总长度是多少厘米。
23.一部电影的时长是120分钟,那么1小时可以看多少部电影。
24.如果一个水果篮里有20个苹果和30个橙子,苹果和橙子的比例是多少。
25.如果4本书的总价格是60元,那么每本书的价格是多少元。
26.一辆车每加仑油能行驶30公里,10加仑油能行驶多少公里。
小学数学比例应用题(共6篇)
小学数学比例应用题〔共6篇〕篇1:六年级数学比例应用题练习题六年级数学比例应用题练习题(1)水果店一天运进苹果、香蕉、梨共390千克,苹果的重量是梨的1.5倍,香蕉的重量是梨的3/4,三种水果各运进多少千克?(2)一缸水,用去1/2和5桶,还剩30%,这缸水有多少桶?(3)有一快棱长20厘米的正方体木料,刨成一个底面直径的圆柱体,刨去木料的体积是多少?(4)一根钢管长10米,第一次截去它的7/10,第二次又截去余下的1/3,还剩多少米?(5)两个小组装配收音机,甲组每天装配50台,第一天完成了总任务的10%,这时乙组才开场装配,每天装配40台,完成这批任务时,甲组做了多少天?(6)修筑一条公路,完成了全长的2/3后,离中点16。
5千米,这条公路全长多少千米?(7)师徒两人合做一批零件,徒弟做了总数的2/7,比师傅少做21个,这批零件有多少个?(8)两队修一条公路,甲队每天修全长的1/5,乙队独做7.5天修好。
假如两队合修2天后,其余由乙队独修,还要几天完成?(9)仓库里有一批化肥,第一次取出总数的2/5,第二次取出总数的1/3少12袋,这时仓库里还剩24袋,两次共取出多少袋?(10)前轮在720米的间隔里比后轮多转40周,假如后轮的周长是2米,求前轮的周长。
11、为创立海华公司,张、王、李三人分别投资100万元、120万元和80万元。
在他们三人的共同努力下,到年末,公司共盈利60万元,你认为该如何合理分配这笔钱,每人分别得多少?12、甲乙两地相距360千米,一辆汽车从甲地到乙地方案7小时行完全程,汽车的速度如下表,问能否在规定的时间内行完全程?(计算后简要说明)13、在比例尺是的地图上,量得甲乙两地的间隔为4.5厘米,假如一辆客车和货车同时从甲乙两地相对开出,经过3小时相遇。
客车每小时行65千米,那么这辆货车每小时行多少千米?14、在比例尺是1:3000000的地图上,量得A、B两城之间的间隔是2.4厘米。
小学六年级比例应用题例题精选十五道
比例应用题经典例题1. 伍角人民币与贰角人民币的张数比为24:5,那么伍角和贰角的总钱数比值为 。
2. 一个直角三角形的两个锐角度数的比是2:1,较小的锐角是 度。
3. 大、小两瓶油共重2.7千克,大瓶油用去0.2千克后,剩下的油与小瓶油重量比为3:2,原来大瓶油重 千克。
(填小数)4. 一个直角三角形的三条边总和是60厘米,已知三条边的长度之比是3:4:5,那么这个直角三角形的面积为 平方厘米。
5. 甲、乙、丙三个数的平均数是60,三个数的比是3:2:1,丙数等于 。
6. 盒子里有三种颜色的球,黄球与红球的个数比为2:3,红球与白球的个数比为4:5,已知三种球共175个,那么红球有 个。
7. 某医院有医生、护士共3800人,其中医生和护士的人数比是3:7,男护士与女护士的人数比是1:69,那么男护士有 人。
8. 一个长方形的周长是24厘米,长与宽的比为2:1,这个长方形的面积是 平方厘米。
9. 六年级有三个班,已知一班人数是二班人数的43,二、三班人数之比是5:6,一、三班共有78名同学,那么六年级一共有学生 名。
10. 阿呆的妈妈买了西瓜、桃子、苹果三种水果,其中西瓜重量的31与桃子的21相等,桃子重量的21与苹果重量的41相等,已知西瓜比苹果少买了1千克,那么阿呆的妈妈买了 千克桃子。
11. 故事书是科技书的65,科技书是文学书的21,又知道故事书和 文学书一共有102本,那么科技书有 本。
12. 老师给班里的学生准备了 120颗糖果,老师自己吃掉51后,按照3:5分配给班里的男生和女生,那么女生总共可以分到 颗糖果。
13. 十一小学六年级共有师生320人,已知老师和学生的人数比是1:15,而且男同学和女同学的人数比是2:3,那么六年级一共有女同学 人。
14. 甲数是乙数的56,丙数是乙数的 65,且甲数比丙数大121,那么三个数之和是。
15.两人分别从甲、乙两地同时出发,相向而行,已知两地相距200千米,两车2小时后相遇,而且两车的速度比是2:3,那么当两车相遇时,快车行驶的距离为千米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六年级比例应用题练习一、对号入座。
1.在比例尺是1:4000000的地图上,图上距离1厘米表示实际距离()千米。
也就是图上距离是实际距离的()倍,实际距离是图上距离的()倍。
0 20 40 60千米2.一幅图的比例尺是,那么图上的1厘米表示实际距离();实际距离50千米在图上要画()厘米。
把这个线段比例尺改写成数值比例尺是()。
3.一种微型零件的长5毫米,画在图纸上长20厘米,这幅图的比例尺是()。
4.判断下列各题中两种量是否成比例成什么比例(1)路程一定,车轮的周长和车轮滚动的圈数。
()(2)长方形的长一定,宽和面积。
()(3)大米的总量一定,吃掉的质量和剩下的质量。
()(4)圆的半径和周长。
()(5)分数的分子一定,分数值和分母。
()(6)铺地面积一定,方砖的边长和所需块数。
()(7)铺地面积一定,方砖面积和所需块数。
()(8)除数一定,被除数和商。
()5.A、B 、C 三种量的关系是:A×B = C(1)如果 A一定,那么 B和 C成()比例;(2)如果 B一定,那么 A和C 成()比例;(3)如果 C一定,那么 A和 B成()比例.6.4X=Y,X和Y成()比例。
4÷X=Y ,X和Y成()比例。
:()=20÷16==()%=()(填小数)8.因为X=2Y,所以X:Y=():(),X和Y成()比例。
9.一个长方形的长比宽多20%,这个长方形的长和宽的最简整数比是()。
4.向阳小学三年级与四年级人数比是3:4,三年级人数比四年级少()%四年级比三年级多()%10.甲乙两个正方形的边长比是2:3,甲乙两个正方形的周长比是(),甲乙两个正方形的面积比是()。
12.一个比例由两个比值是2的比组成,又知比例的外项分别是和5,这个比例是()。
13.已知被减数与差的比是5:3,减数是100,被减数是()。
14.在一幅地图上量得甲乙两地距离6厘米,乙丙两地距离8厘米;已知甲乙两地间的实际距离是 120千米,乙丙两地间的实际距离是()千米;这幅地图的比例尺是()。
15.从2:8、: 和 : 这三个比中,选两个比组成的比例是()。
16.一块铜锌合金重180克,铜与锌的比是2:3,锌重()克。
如果再熔入30克锌,这时铜与锌的比是()。
17、图上距离3厘米表示实际距离180千米,这幅图的比例尺是()。
一幅地图的比例尺是图上6厘米表示实际距离()千米。
实际距离150千米在图上要画()厘米。
18、 12的约数有(),项工程,甲队40天可以完成,乙队50天可以完成。
甲乙两队的工作效率比是4:5。
()2.圆柱体与圆锥体的体积比是3:1,则圆柱体与圆锥体一定等底等高。
()3.甲数与乙数的比是3:4,甲数就是乙数的。
()4.比的前项和后项同时乘以同一个数,比值不变。
()5.总价一定,单价和数量成反比例。
()6.实际距离一定,图上距离与比例尺成正比例。
()7.正方体体积一定,底面积和高成反比例。
()8.订阅《今日泰兴》的总钱数和分数成正比例。
()9.由两个比组成的式子叫做比例。
()10.正方形的面积一定,它的边长和边长不成比例。
()11.如果8A = 9B那么B :A = 8 :9 ()12.15:16和6 :5能组成比例。
()三、选择题.12%1.把一个直径4毫米的手表零件,画在图纸上直径是8厘米,这幅图纸的比例尺是( C )。
:2 :1 :20 :12.已知=、=,所以X和Y比较()A、X大B、YC、一样大3.如果A×2=B÷3,那么A:B=( C )。
A、2:3B、3:2C、1:6D 6:14.一个三角形的三个内角的度数比是2:3:4,这个三角形是( A )。
A、锐角三角形B、直角三角形C、钝角三角形5.体积和高都相等的圆柱体和圆锥体,它们底面积的比是()。
A、1:3B、3:1C、1:6D、6:16.配置一种淡盐水,盐占盐水的20%,盐与水的比是()。
A、1:20B、1:21C、1:197、图上6厘米表示表示实际距离240千米,这幅图的比例尺是()。
A、1:40000B、1:400000C、1:40000008、小正方形和大正方形边长的比是2:7小正方形和大正方形面积的比是( )A、2:7B、6:21C、4:149、下面第( )组的两个比不能组成比例。
A、8:7和14:16B、:和3:1C、19: 110 和10:910、三角形的高一定,它的面积和底( )A、成正比例B、成反比例C、不成比例11、与:能组成比例的是()。
A、:B、:5C、 5:6D、6:512、在盐水中,盐占盐水的,盐和水的比是()。
A、1:8B、1:9C、 1:10D、1:1113、如果X= Y,那么Y:X=()。
A 、1: B、:1 C、3:4 D、4:314、圆的半径与圆周长()。
A、成正比例B、成反比例C、不成比例D、没有关系15、在一幅地图上,量得AB两城市距离是7厘米,而AB两城市之间的实际距离是350千米,这幅地图的比例尺是()。
A、150 B 、15000 C、150000 D、 1500 00016、把、、、这四个数组成比例,其内项的积是()。
A、 B、 C、D、17、小明从家里去学校,所需时间与所行速度()。
A、成正比例B、成反比例C、不成比例18、一件工作,甲单独做12天完成,乙单独做18天完成。
甲乙效率的最简比是()。
A、 6:9B、 3:2C、 2:3D、 9:619、一个三角形三个内角度数的比是6:2:1,这个三角形是()。
A、直角三角形B、锐角三角形C、钝角三角形D、无法确定20、甲与乙的工作效率比是6:5,两人合做一批零件共计880个,乙比甲少做()。
A、 480个B、400个C、80个D、40个四、(1)求比值。
14 ::13 :2(2)化简比。
7 :::1五、解比例25:7=X:35 514: 35= 57:x 23:X= 12: 14X:15=13: 56 34:X= 54:2 =X:1 =::=:X ==5 :=2 :X :=:X六、路队修一条公路,已修部分与未修部分的比是5:3,又知已修部分比未修部分长600米,这条路长多少米44.一块直角三角形钢板用1:200的比例尺画在图上,两条直角边共长厘米,它们的比是5:4.这块钢板的实际面积是多少45. 甲乙两地在比例尺是1:的地图上长4厘米,乙丙两地相距500千米,画在这幅地图上,应画多长一辆汽车以每小时200千米的速度从甲地经过乙地,去丙地需要多少小时46. 学校图书馆的科技书、文艺书和故事书共12000本,其中科技书占,科技书与故事书的比是2:3,故事书有多少本47. 小明读一本书,已经读了全书的,如果再读15页,则读过的页数与未读的页数的比是 2:3,这本书有多少页48. 每条男领带20元,每支女胸花10元,某个体商店进领带与胸花件数的比是3∶2,共值4000元。
领带与胸花各多少49、一幅地图,图上20厘米表示实际距离10千米,求这幅地图的比例尺50、甲地到乙地的实际距离是120千米,在一幅比例尺是1:6000000的地图上,应画多少厘米51、在一幅比例尺是1:300的地图上,量得东、西两村的距离是厘米,东、西两村的实际距离是多少米52、朝阳小学的操场是一个长方形,长120米,宽75米,用的比例尺画成平面图,长和宽各是多少厘米53、在比例尺是1:6000000的地图上,量得两地之间的距离是3厘米,这两地之间的实际距离是多少千米54、右图是一个梯形地平面图(单位:厘米),求它的实际面积55、修一条路,如果每天修120米,8天可以修完;如果每天修150米,几天可以修完(用比例方法解)56、同学们做操,每行站20人,正好站18行。
如果每行站24人,可以站多少行(用比例方法解)57、飞机每小时飞行480千米,汽车每小时行60千米。
飞机行4 小时的路程,汽车要行多少小时(用比例方法解)58、修一条公路,每天修千米,36天完成。
如果每天修千米,多少天可修完(用比例方法解)59、一个晒盐场用500千克海水可以晒15千克盐;照这样的计算,用100吨海水可以晒多少吨盐(用比例方法解答)60、一个车间装配一批电视机,如果每天装50台,60天完成任务,如果要用40天完成任务,每天应装多少台(用比例方法解)61、生产一批零件,计划每天生产160个,15天可以完成,实际每天超产80个,可以提前几天完成(用比例方法解)62、小明买4本同样的练习本用了元,元可以买多少本这样的练习本。