数字信号处理实验一(上机)报告

合集下载

数字信号处理实验报告

数字信号处理实验报告

实验一 信号、系统及系统响应一、实验目的1、熟悉理想采样的性质,了解信号采样前后的频谱变化,加深对时域采样定理的理解。

2、熟悉离散信号和系统的时域特性。

3、熟悉线性卷积的计算编程方法:利用卷积的方法,观察、分析系统响应的时域特性。

4、掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号、系统及其系统响应进行频域分析。

二、 实验原理1.理想采样序列:对信号x a (t)=A e −αt sin(Ω0t )u(t)进行理想采样,可以得到一个理想的采样信号序列x a (t)=A e −αt sin(Ω0nT ),0≤n ≤50,其中A 为幅度因子,α是衰减因子,Ω0是频率,T 是采样周期。

2.对一个连续时间信号x a (t)进行理想采样可以表示为该信号与一个周期冲激脉冲的乘积,即x ̂a (t)= x a (t)M(t),其中x ̂a (t)是连续信号x a (t)的理想采样;M(t)是周期冲激M(t)=∑δ+∞−∞(t-nT)=1T ∑e jm Ωs t +∞−∞,其中T 为采样周期,Ωs =2π/T 是采样角频率。

信号理想采样的傅里叶变换为X ̂a (j Ω)=1T ∑X a +∞−∞[j(Ω−k Ωs )],由此式可知:信号理想采样后的频谱是原信号频谱的周期延拓,其延拓周期为Ωs =2π/T 。

根据时域采样定理,如果原信号是带限信号,且采样频率高于原信号最高频率分量的2倍,则采样以后不会发生频率混叠现象。

三、简明步骤产生理想采样信号序列x a (n),使A=444.128,α=50√2π,Ω0=50√2π。

(1) 首先选用采样频率为1000HZ ,T=1/1000,观察所得理想采样信号的幅频特性,在折叠频率以内和给定的理想幅频特性无明显差异,并做记录;(2) 改变采样频率为300HZ ,T=1/300,观察所得到的频谱特性曲线的变化,并做记录;(3) 进一步减小采样频率为200HZ ,T=1/200,观察频谱混淆现象是否明显存在,说明原因,并记录这时候的幅频特性曲线。

数字信号处理上机实验1

数字信号处理上机实验1

数字信号处理实验信息252120502123赵梦然实验一快速傅里叶变换与信号频谱分析一.实验目的1. 在理论学习的基础上,通过本实验加深对离散傅里叶变换的理解。

2. 熟悉并掌握按时间抽取编写快速傅里叶变换(FFT)算法的程序。

3. 了解应用FFT 进行信号频谱分析过程中可能出现的问题,例如频谱混淆、泄漏、栅栏效应等,以便在实际中正确使用FFT 算法进行信号处理。

二.实验内容1. 仔细分析教材第六章“时间抽取法FFT 的FORTRAN 程序”,编写出相应的使用FFT 进行信号频谱分析的Matlab 程序。

2. 用FFT 程序分析正弦信号,分别在以下情况进行分析,并讨论所得的结果:a) 信号频率F=50Hz,采样点数N=32,采样间隔T=0.000625s;b) 信号频率F=50Hz,采样点数N=32,采样间隔T=0.005s;c) 信号频率F=50Hz,采样点数N=32,采样间隔T=0.0046875s;d) 信号频率F=50Hz,采样点数N=32,采样间隔T=0.004s;e) 信号频率F=50Hz,采样点数N=64,采样间隔T=0.000625s;f) 信号频率F=250Hz,采样点数N=32,采样间隔T=0.005s;g) 将c)中信号后补32 个0,做64 点FFT,并与直接采样64 个点做FFT 的结果进行对比。

3. 思考题:1) 在实验a)、b)、c)和d)中,正弦信号的初始相位对频谱图中的幅度特性是否有影响?为什么?信号补零后做FFT 是否可以提高信号频谱的分辨率?为什么?三.实验程序function pushbutton1_Callback(hObject, eventdata, handles)F=str2double(get(handles.f,'string'));N=str2double(get(handles.n,'string'));T=str2double(get(handles.t,'string'));fai=str2double(get(handles.fai,'string'));zero=get(handles.zero,'value');%进行采样t=0:T:(N-1)*T;x=cos(2*pi*F*t+fai);%进行fft运算if zeroy=abs(fft(x,N+32));y=y/max(y);elsey=abs(fft(x));y=y/max(y);end%画图axes(handles.axes2);stem((0:N-1),x,'*');axes(handles.axes1);if zerostem((0:N+31),y,'.');elsestem((0:N-1),y);endxlabel('频率/Hz');ylabel('振幅');grid on;四.实验结果实验数据记录:(a)输入信号频率:50输入采样点数:32输入间隔时间:0.000625是否增加零点?否信号频率F=50Hz,采样长N=32,采样周期T=0.000625s,fs=1/T=1600Hz,基频为fs/N=50Hz,50/50=1.故此在频谱图上的第1个点和第31个点有值。

数字信号处理实验一 实验报告

数字信号处理实验一 实验报告

数字信号处理实验一1.完成本文档内容的自学阅读和其中各例题后子问题;Q1.1运行程序P1.1,以产生单位样本序列u[n]并显示它。

答: clf;n=-10:20;u=[zeros(1,10) 1 zeros(1,20)];stem(n,u);xlabel('时间序号n');ylabel('振幅');title('单位样本序列');axis([-10 20 0 1.2])Q1.2命令clf,axis,title,xlabel和ylabel的作用是什么?答:clf清除图对象,axis 控制轴刻度和风格的高层指令,title 设置图名,xlabel和ylabel设置横纵坐标轴名称。

Q1.3修改程序P1.1以产生带有延时11个单位样本的延迟单位样本序列ud[n]。

运行修改的程序并显示产生的序列。

答:clf;n=0:30;ud=[zeros(1,11) 1 zeros(1,19)];stem(n,ud);xlabel('时间序号n');ylabel('振幅');title('单位样本序列');axis([0 30 0 1.2])Q1.4修改程序P1.1以产生单位步长序列s[n].运行修改后程序并显示产生的序列。

答:clf;n = 0:30;u = [1.*n];stem(n,u);title('Unit Sample Sequence');axis([0 30 0 30])Q1.5修改程序P1.1,以产生带有超前7个样本的延时单位阶跃序列sd[n]。

运行修改后的程序并显示产生的序列。

答:clf;n = -15:30;s=[zeros(1,8) ones(1,38)];stem(n,s);xlabel('Time index n');ylabel('Amplitude'); title('Unit Sample Sequence');axis([-15 30 0 1.2]);Q1.6 运行程序P1.2,以产生复数值的指数序列。

《数字信号处理》实验报告

《数字信号处理》实验报告

《数字信号处理》上机实验指导书一、引言“数字信号处理”是一门理论和实验密切结合的课程,为了深入地掌握课程内容,应当在学习理论的同时,做习题和上机实验。

上机实验不仅可以帮助学生深入地理解和消化基本理论,而且能锻炼初学者的独立解决问题的能力。

所以,根据本课程的重点要求编写了四个实验。

第一章、二章是全书的基础内容,抽样定理、时域离散系统的时域和频域分析以及系统对输入信号的响应是重要的基本内容。

由于第一、二章大部分内容已经在前期《信号与系统》课程中学习完,所以可通过实验一帮助学生温习以上重要内容,加深学生对“数字信号处理是通过对输入信号的一种运算达到处理目的” 这一重要概念的理解。

这样便可以使学生从《信号与系统》课程顺利的过渡到本课程的学习上来。

第三章、四章DFT、FFT是数字信号处理的重要数学工具,它有广泛的使用内容。

限于实验课时,仅采用实验二“用FFT对信号进行谱分析”这一实验。

通过该实验加深理解DFT的基本概念、基本性质。

FFT是它的快速算法,必须学会使用。

所以,学习完第三、四章后,可安排进行实验二。

数字滤波器的基本理论和设计方法是数字信号处理技术的重要内容。

学习这一部分时,应重点掌握IIR和FIR两种不同的数字滤波器的基本设计方法。

IIR滤波器的单位冲激响应是无限长的,设计方法是先设计模拟滤波器,然后再通过S~Z平面转换,求出相应的数字滤波器的系统函数。

这里的平面转换有两种方法,即冲激响应不变法和双线性变换法,后者没有频率混叠的缺点,且转换简单,是一种普遍应用的方法。

学习完第六章以后可以进行实验三。

FIR滤波器的单位冲激响应是有限长的,设计滤波器的目的即是求出符合要求的单位冲激响应。

窗函数法是一种基本的,也是一种重要的设计方法。

学习完第七章后可以进行实验四。

以上所提到的四个实验,可根据实验课时的多少恰当安排。

例如:实验一可根据学生在学习《信号与系统》课程后,掌握的程度来确定是否做此实验。

若时间紧,可以在实验三、四之中任做一个实验。

《数字信号处理》上机实习报告

《数字信号处理》上机实习报告

数字信号处理实习报告一、从给定的程序(文件包Friday.rar)中,选择一个源程序做详细标注。

(目的:熟悉Matlab程序)程序名:Gibbs_Phenomena_CFSTzhushi.m程序思路:学习matlab基础程序二、能够利用Matlab熟悉地画图,内容包括:X、Y坐标轴上的label,每幅图上的title,绘画多条曲线时的legend,对图形进行适当的标注等。

(1)在一副图上画出多幅小图;(2)画出一组二维图形;(3)画出一组三维图形;(4)画出复数的实部与虚部。

(5)完成对一个源程序进行详细注释。

例1X、Y坐标轴上的label,每幅图上的title,(1)在一副图上画出多幅小图;(3)画出一组三维图形;(5)完成对一个源程序进行详细注释。

使用subplot画出两个三维椭球,一个制作三维网格图,一个为表面图。

x轴范围[-3,3],y轴范围[-16,16],z轴范围[-2,2]程序名:tuoqiu.m对此源程序的注释:sita=0:0.1:2*pi;%设置sita角度的范围arfa=sita'; %确定arfa的范围X = 9*cos(arfa)*cos(sita); %用三角坐标将x表示出来Y =256*cos(arfa)*sin(sita); %用三角坐标将y表示出来Z = 4*sin(arfa)*ones(size(sita)); %用三角坐标将z表示出来subplot(1,2,1),mesh(X,Y,Z) %画三维椭球网格图使用meshtitle('三维网格图');%注释命令xlabel ('x区间(-3:3)'); %在x轴上添加注释x的坐标ylabel ('y区间(-16:16)'); %在y轴上添加注释y的坐标zlabel ('z区间(-2:2)'); %在z轴上添加注释z的坐标subplot(1,2,2),surf(X,Y,Z)% 在第二个小图上画出椭球的三维曲面图title('三维曲面图') %注释命令xlabel ('x区间(-3:3)'); %在x轴上添加注释x的坐标ylabel ('y区间(-16:16)'); %在y轴上添加注释y的坐标zlabel ('z区间(-2:2)'); %在z轴上添加注释z的坐标运行结果:例2绘画多条曲线时的legend,对图形进行适当的标注等。

数字信号处理上机实验报告

数字信号处理上机实验报告

实验一系统响应及系统稳定性一、实验目的(1)掌握求系统响应的方法。

(2)掌握时域离散系统的时域特性。

(3)分析、观察及检验系统的稳定性。

二、实验内容(1)给定一个低通滤波器的差分方程为y(n)=(n)+(n-1)+(n-1)输入信号x1(n)=R8(n)x2(n)=u(n)(a) 分别求出系统对x1(n)=R8(n) 和x2(n)=u(n)的响应序列,并画出其波形。

(b) 求出系统的单位冲响应,画出其波形。

实验程序:A=[1,];B=[,]; %%系统差分方程系数向量 B 和 Ax1n=[1 1 1 1 1 1 1 1 zeros(1,50)]; %产生信号 x1(n)=R8(n) x2n=ones(1,128); %产生信号 x2(n)=u(n)y1n=filter(B,A,x1n); %求系统对 x1(n)的响应 y1(n)n=0:length(y1n)-1;subplot(2,2,1);stem(n,y1n,'.');title('(a) 系统对 R_8(n)的响应y_1(n)');xlabel('n');ylabel('y_1(n)');y2n=filter(B,A,x2n); %求系统对 x2(n)的响应 y2(n)n=0:length(y2n)-1;subplot(2,2,2);stem(n,y2n,'.');title('(b) 系统对 u(n)的响应y_2(n)');xlabel('n');ylabel('y_2(n)');hn=impz(B,A,58); %求系统单位脉冲响应 h(n) n=0:length(hn)-1;subplot(2,2,3);y=hn;stem(n,hn,'.');title('(c) 系统单位脉冲响应h(n)');xlabel('n');ylabel('h(n)');运行结果图:(2)给定系统的单位脉冲响应为h1(n)=R10(n)h2(n)= δ(n)+δ(n-1)+δ(n-2)+δ(n-3)用线性卷积法分别求系统h1(n)和h2(n)对x1(n)=R8(n)的输出响应,并画出波形。

实验一 数字信号处理 实验报告

实验一 数字信号处理 实验报告

1.已知系统的差分方程如下式:y1(n)=0.9y1(n-1)+x(n)程序编写如下:(1)输入信号x(n)=R10 (n),初始条件y1(-1)=1,试用递推法求解输出y1(n);a=0.9; ys=1; %设差分方程系数a=0.9,初始状态: y(-1)=1xn=ones(1,10); %矩型序列R10(n)=u(n)-u(n-10),定义其宽度为0~9n=1:35; %设差分方程系数a=0.9,初始状态: y(-1)=1xn=sign(sign(10-n)+1);B=1;A=[1,-a]; %差分方程系数xi=filtic(B,A,ys); %由初始条件计算等效初始条件输入序列xiyn=filter(B,A,xn,xi); %调用filter解差分方程,求系统输出y(n)n=0:length(yn)-1;subplot(2,1,1);stem(n,yn,'linewidth',2); axis([-5,15,0,8]); grid ontitle('图(a) y1(n)=0.9y1(n-1)+x(n) 初始条件y1(-1)=1 ');xlabel('n');ylabel('y(n)')(2) 输入信号x(n)=R10 (n),初始条件y1(-1)=0,试用递推法求解输出y1(n)。

a=0.9; ys=0; %设差分方程系数a=0.9,初始状态: y(-1)=1xn=ones(1,10); %矩型序列R10(n)=u(n)-u(n-10)B=1;A=[1,-a]; %差分方程系数xi=filtic(B,A,ys); %由初始条件计算等效初始条件输入序列xiyn=filter(B,A,xn,xi); %调用filter解差分方程,求系统输出y(n)n=0:length(yn)-1;subplot(2,1,2);stem(n,yn, 'linewidth',2); axis([-5,15,0,8]); grid ontitle('图(b) y1(n)=0.9y1(n-1)+x(n) 初始条件y1(-1)=0 ');xlabel('n');ylabel('y(n)') 图形输出如下:-505101502468图(a) y1(n)=0.9y1(n-1)+x(n) 初始条件y1(-1)=1ny (n )-55101502468图(b) y1(n)=0.9y1(n-1)+x(n) 初始条件y1(-1)=0ny (n )2. 已知系统差分方程为: y 1(n )=0.9y 1(n -1)+x (n ) 用递推法求解系统的单位脉冲响应h (n ),要求写出h (n )的封闭公式,并打印h (n )~n 曲线。

数字信号处理(西电上机实验)

数字信号处理(西电上机实验)

数字信号处理实验报告实验一:信号、系统及系统响应一、实验目的:(1) 熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解。

(2) 熟悉时域离散系统的时域特性。

(3) 利用卷积方法观察分析系统的时域特性。

(4) 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对连续信号、离散信号及系统响应进行频域分析。

二、实验原理与方法:(1) 时域采样。

(2) LTI系统的输入输出关系。

三、实验内容、步骤(1) 认真复习采样理论、离散信号与系统、线性卷积、序列的傅里叶变换及性质等有关内容,阅读本实验原理与方法。

(2) 编制实验用主程序及相应子程序。

①信号产生子程序,用于产生实验中要用到的下列信号序列:a. xa(t)=A*e^-at *sin(Ω0t)u(t)A=444.128;a=50*sqrt(2)*pi;b. 单位脉冲序列:xb(n)=δ(n)c. 矩形序列:xc(n)=RN(n), N=10②系统单位脉冲响应序列产生子程序。

本实验要用到两种FIR系统。

a. ha(n)=R10(n);b. hb(n)=δ(n)+2.5δ(n-1)+2.5δ(n-2)+δ(n-3)③有限长序列线性卷积子程序用于完成两个给定长度的序列的卷积。

可以直接调用MATLAB语言中的卷积函数conv。

conv用于两个有限长度序列的卷积,它假定两个序列都从n=0 开始。

调用格式如下:y=conv (x, h)四、实验内容调通并运行实验程序,完成下述实验内容:①分析采样序列的特性。

a. 取采样频率fs=1 kHz, 即T=1 ms。

b. 改变采样频率,fs=300 Hz,观察|X(ejω)|的变化,并做记录(打印曲线);进一步降低采样频率,fs=200 Hz,观察频谱混叠是否明显存在,说明原因,并记录(打印)这时的|X(ejω)|曲线。

②时域离散信号、系统和系统响应分析。

a. 观察信号xb(n)和系统hb(n)的时域和频域特性;利用线性卷积求信号xb(n)通过系统hb(n)的响应y(n),比较所求响应y(n)和hb(n)的时域及频域特性,注意它们之间有无差别,绘图说明,并用所学理论解释所得结果。

数字信号处理上机实验

数字信号处理上机实验

实验1 抽样定理的实验体会实验内容:把下述三个连续时间信号()x t 转换成离散时间信号()s x nT ,在计算机上绘出()s x nT 的图形。

1/s s f T =为抽样频率。

自行依次选取不同的抽样频率,如00000.5,,2,5s f f f f f =等。

(1) 工频信号:10()sin(2)x t A f t π=,220A =,050f Hz =Dt=0.00005;t=-0.005:Dt:0.05; A=220; fo=50;xa=A*sin(2*pi*fo*t); Ts=0.04;n=-25:1:25; x=A*sin(2*pi*fo*n*Ts); stem(n,x,'fill'); grid on ;图1.1 fs=25Hz 时()s x nT 的图形x nT的图形图1.2 fs=50Hz时()sx nT的图形图1.3 fs=100Hz时()s图1.3 fs=250Hz 时()s x nT 的图形(2) 衰减正弦信号:20()sin(2)t x t Ae f t απ-=,2A =,0.5α=,02f Hz =Dt=0.00005;t=-0.005:Dt:0.05; A=2;a=0.5;fo=2;xa=A*exp(-a*t).*sin(2*pi*fo*t); Ts=1;n=-25:1:25;x=A*exp(-a*n*Ts).*sin(2*pi*fo*n*Ts); stem(n,x,'fill'); grid on ;图2.1 fs=1Hz 时()s x nT 的图形x nT的图形图2.2 fs=2Hz时()sx nT的图形图2.3 fs=4Hz时()sx nT的图形图2.4 fs=10Hz时()s(3)谐波信号:3201()sin(2)iix t A f itπ==∑,11A=,20.5A=,30.2A=,5f Hz=Dt=0.00005;t=-0.005:Dt:0.05;A1=1;A2=0.5;A3=0.2;fo=5;xa=A1*sin(2*pi*fo*t)+A2*sin(2*pi*fo*2*t)+A3*sin(2*pi*pi*3*t);Ts=0.4;n=-25:1:25;x=A1*sin(2*pi*fo*n*Ts)+A2*sin(2*pi*fo*2*n*Ts)+A3*sin(2*pi*pi*3* n*Ts);stem(n,x,'fill');grid on;图3.1 fs=2.5Hz时()sx nT的图图3.2 fs=5Hz时()sx nT的图形x nT的图形图3.3 fs=10Hz时()sx nT的图形图3.4 fs=25Hz时()s实验2 离散信号的DTFT 和DFT实验内容: 分别计算16点序列 150,165cos )(≤≤=n n n x π的16点和32点DFT ,绘出幅度谱图形,并绘出该序列的DTFT 图形。

数字信号处理上机实验

数字信号处理上机实验

对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力通根保1据过护生管高产线中工敷资艺设料高技试中术卷资0配不料置仅试技可卷术以要是解求指决,机吊对组顶电在层气进配设行置备继不进电规行保范空护高载高中与中资带资料负料试荷试卷下卷问高总题中体2资2配,料置而试时且卷,可调需保控要障试在各验最类;大管对限路设度习备内题进来到行确位调保。整机在使组管其高路在中敷正资设常料过工试程况卷中下安,与全要过,加度并强工且看作尽护下可关都能于可地管以缩路正小高常故中工障资作高料;中试对资卷于料连继试接电卷管保破口护坏处进范理行围高整,中核或资对者料定对试值某卷,些弯审异扁核常度与高固校中定对资盒图料位纸试置,卷.编保工写护况复层进杂防行设腐自备跨动与接处装地理置线,高弯尤中曲其资半要料径避试标免卷高错调等误试,高方要中案求资,技料编术试写5交、卷重底电保要。气护设管设装备线备置4高敷、调动中设电试作资技气高,料术课中并3试、中件资且卷管包中料拒试路含调试绝验敷线试卷动方设槽技作案技、术,以术管来及架避系等免统多不启项必动方要方式高案,中;为资对解料整决试套高卷启中突动语然过文停程电机中气。高课因中件此资中,料管电试壁力卷薄高电、中气接资设口料备不试进严卷行等保调问护试题装工,置作合调并理试且利技进用术行管,过线要关敷求运设电行技力高术保中。护资线装料缆置试敷做卷设到技原准术则确指:灵导在活。分。对线对于盒于调处差试,动过当保程不护中同装高电置中压高资回中料路资试交料卷叉试技时卷术,调问应试题采技,用术作金是为属指调隔发试板电人进机员行一,隔变需开压要处器在理组事;在前同发掌一生握线内图槽部纸内 故资,障料强时、电,设回需备路要制须进造同行厂时外家切部出断电具习源高题高中电中资源资料,料试线试卷缆卷试敷切验设除报完从告毕而与,采相要用关进高技行中术检资资查料料和试,检卷并测主且处要了理保解。护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

数字信号处理实验报告完整版[5篇模版]

数字信号处理实验报告完整版[5篇模版]

数字信号处理实验报告完整版[5篇模版]第一篇:数字信号处理实验报告完整版实验 1利用 T DFT 分析信号频谱一、实验目的1.加深对 DFT 原理的理解。

2.应用 DFT 分析信号的频谱。

3.深刻理解利用DFT 分析信号频谱的原理,分析实现过程中出现的现象及解决方法。

二、实验设备与环境计算机、MATLAB 软件环境三、实验基础理论T 1.DFT 与与 T DTFT 的关系有限长序列的离散时间傅里叶变换在频率区间的N 个等间隔分布的点上的 N 个取样值可以由下式表示:212 /0()|()()0 1Nj knjNk NkX e x n e X k k Nπωωπ--====≤≤-∑由上式可知,序列的 N 点 DFT ,实际上就是序列的 DTFT 在 N 个等间隔频率点上样本。

2.利用 T DFT 求求 DTFT方法 1 1:由恢复出的方法如下:由图 2.1 所示流程可知:101()()()Nj j n kn j nNn n kX e x n e X k W eNωωω∞∞----=-∞=-∞=⎡⎤==⎢⎥⎣⎦∑∑∑由上式可以得到:IDFT DTFT第二篇:数字信号处理实验报告JIANGSUUNIVERSITY OF TECHNOLOGY数字信号处理实验报告学院名称:电气信息工程学院专业:班级:姓名:学号:指导老师:张维玺(教授)2013年12月20日实验一离散时间信号的产生一、实验目的数字信号处理系统中的信号都是以离散时间形态存在的,所以对离散时间信号的研究是数字信号的基本所在。

而要研究离散时间信号,首先需要产生出各种离散时间信号。

使用MATLAB软件可以很方便地产生各种常见的离散时间信号,而且它还具有强大绘图功能,便于用户直观地处理输出结果。

通过本实验,学生将学习如何用MATLAB产生一些常见的离散时间信号,实现信号的卷积运算,并通过MATLAB中的绘图工具对产生的信号进行观察,加深对常用离散信号和信号卷积和运算的理解。

数字信号处理实验一报告

数字信号处理实验一报告

实验一:用FFT 对信号作频谱分析1.实验目的学习用FFT 对连续信号和时域离散信号进行谱分析的方法,了解可能出现的分析 误差及其原因,以便正确应用FFT 。

2. 实验原理用FFT 对信号作频谱分析是学习数字信号处理的重要内容。

经常需要进行谱分析的信号是模拟信号和时域离散信号。

对信号进行谱分析的重要问题是频谱分辨率D 和分析误差。

频谱分辨率直接和FFT 的变换区间N 有关,因为FFT 能够实现的频率分辨率是N /2π,因此要求D N ≤/2π。

可以根据此式选择FFT 的变换区间N 。

误差主要来自于用FFT 作频谱分析时,得到的是离散谱,而信号(周期信号除外)是连续谱,只有当N 较大时离散谱的包络才能逼近于连续谱,因此N 要适当选择大一些。

周期信号的频谱是离散谱,只有用整数倍周期的长度作FFT ,得到的离散谱才能代表周期信号的频谱。

如果不知道信号周期,可以尽量选择信号的观察时间长一些。

对模拟信号进行谱分析时,首先要按照采样定理将其变成时域离散信号。

如果是模拟周期信号,也应该选取整数倍周期的长度,经过采样后形成周期序列,按照周期序列的谱分析进行。

3.实验步骤及内容(1)对以下序列进行谱分析。

⎪⎩⎪⎨⎧≤≤-≤≤-=⎪⎩⎪⎨⎧≤≤-≤≤+==其它nn n n n n x 其它nn n n n n x n R n x ,074,330,4)(,074,830,1)()()(3241选择FFT 的变换区间N 为8和16 两种情况进行频谱分析。

分别打印其幅频特性曲线。

并进行对比、分析和讨论。

(2)对以下周期序列进行谱分析。

4()cos4x n n π=5()cos(/4)cos(/8)x n n n ππ=+选择FFT 的变换区间N 为8和16 两种情况分别对以上序列进行频谱分析。

分别打印其幅频特性曲线。

并进行对比、分析和讨论。

(3)对模拟周期信号进行谱分析6()cos8cos16cos20x t t t t πππ=++选择 采样频率Hz F s 64=,变换区间N=16,32,64 三种情况进行谱分析。

数字信号处理上机实验

数字信号处理上机实验

数字信号处理上机实验一声音信号的频谱分析班级___________________ 学号_____________________ 姓名____________________一、实验目的1、了解声音信号的基本特征2、掌握如何用Matlab处理声音信号3、掌握FFT变换及其应用二、实验原理与方法根据脉动球表面波动方程可知,声压与该球的尺寸和振动的频率的乘积成正比,即声压一定时,球的尺寸越大,振动的频率越小。

可以将此脉动球看作人的声带,人说话的声压变化在0.1~0.6pa的很小范围内,可以看作恒定,所以声带越大,声音频率就越小,反之,声带越小,声音频率就越大。

女子的声带为11~15mm,男子的声带为17~21mm,由此可见,女声频率高,男声频率低,因此听起来女声尖利而男声低沉。

人类歌唱声音频率最大范围的基频:下限可达65.4 Hz,上限可达1046.5 Hz,不包括泛音。

出色的女高音的泛音最高的可达2700hz。

童声:童高音:261.6Hz~880Hz,童低音:196Hz~698.5Hz;女声:女高音:220Hz~1046.5Hz,女低音:174.6Hz~784Hz;男声:男高音:110Hz~523.3Hz,男低音:24.5Hz~349.2Hz。

FFT方法是处理声音信号的基本方法,详细原理参见参考书三、实验内容1、应用Windows录音机录入一段声音文件;2、应用Matlab分析该声音文件的信息,包括采样频率、数据位数,数据格式等;3、应用Matlab画出该声音文件的时域曲线;(如果是双声道数据,只处理左声道数据)4、应用FFT分析该声音文件的频谱信息,并画出频域曲线;5、以100Hz为间隔,在0-1100Hz的基频范围内统计声音能量分布情况,并画出柱形图。

四、思考题1、同一个人不同的声音文件是否具有相同的频谱信号?2、试分析男女声的频谱区别。

3、能否从频谱信号中将自己的声音与其他人的声音区分开来?五、实验报告要求1、简述实验目的及原理2、按实验要求编写Matlab文件,并附上程序及程序运行结果;3、结合所学知识总结实验中的主要结论;4、简要回答思考题。

数字信号处理上机报告-一

数字信号处理上机报告-一

数字信号处理上机报告-一数字信号处理第一次上机实验报告实验一:设给定模拟信号()1000t a x t e -=,的单位是ms 。

(1) 利用MATLAB 绘制出其时域波形和频谱图(傅里叶变换),估计其等效带宽(忽略谱分量降低到峰值的3%以下的频谱)。

(2) 用两个不同的采样频率对给定的进行采样。

○1。

○2。

比较两种采样率下的信号频谱,并解释。

实验一MATLAB 程序:(1)N=10; Fs=5; Ts=1/Fs;n=[-N:Ts:N];xn=exp(-abs(n)); w=-4*pi:0.01:4*pi; X=xn*exp(-j*(n'*w)); subplot(211) plot(n,xn);title('x_a(t)时域波形');xlabel('t/ms');ylabel('x_a(t)');t ()a x t ()()15000s a f x t x n =以样本秒采样得到。

()()11j x n X e ω画出及其频谱()()11000s a f x t x n =以样本秒采样得到。

()()11j x n X e ω画出及其频谱axis([-10, 10, 0, 1]);subplot(212);plot(w/pi,abs(X));title('x_a(t)频谱图');xlabel('\omega/\pi');ylabel('X_a(e ^(j\omega))');ind = find(X >=0.03*max(X))*0.01; eband = (max(ind) -min(ind));fprintf('等效带宽为 %fKHZ\n',eband); 运行结果:等效带宽为 12.110000KHZ(2).N=10;omega=-3*pi:0.01:3*pi;%Fs=5000Fs=5;Ts=1/Fs;n=-N:Ts:N;xn=exp(-abs(n));X=xn*exp(-j*(n'*omega));subplot(221);stem(n,xn);grid on;axis([-10, 10, 0, 1.25]);title('时域波形(f_s=5000)');xlabel('n');ylabel('x_1(n)');subplot(222);plot(omega/pi,abs(X));title('频谱图(f_s=5000)');xlabel('\omega/\pi');ylabel('X_1(f)');%Fs=1000Fs=1;Ts=1/Fs;n=-N:Ts:N;xn=exp(-abs(n));X=xn*exp(-j*(n'*omega));subplot(223);stem(n,xn);grid on;axis([-10, 10, 0, 1.25]);title('时域波形(f_s=1000)');xlabel('n');ylabel('x_2(n)');subplot(224);plot(omega/pi,abs(X));title('频谱图(f_s=1000)');xlabel('\omega/\pi');ylabel('X_2(f)');运行结果:实验二:给定一指数型衰减信号,采样率,为采样周期。

数字信号处理上机实验报告

数字信号处理上机实验报告

数字信号处理上机实验报告实验一熟悉MATLAB环境一、实验目的1、熟悉 MATLAB的主要操作命令。

2、学会简单的矩阵输入和数据读写。

3、掌握简单的绘图命令。

4、用 MATLAB编程并学会创建函数。

5、观察离散系统的频率响应。

二、实验容认真阅读本章附录,在MATLAB环境下重新做一遍附录中的例子,体会各条命令的含义。

在熟悉 MATLAB基本命令的基础上,完成以下实验。

上机实验容:1、数组的加减乘除和乘方运算,输入A1234,B3456,求C A B ,D A B,E A. B,F A./ B,G A.^ B ,并用stem语句画出A、 B、C、 D、 E、F、 G。

程序:>> A=[1 2 3 4];B=[3 4 5 6];C=A+B; D=A-B; E=A.*B; F=A./B; G=A.^B;subplot(2,4,1);stem(A,'.'); subplot(2,4,2);stem(B,'.');subplot(2,4,3);stem(C,'.'); subplot(2,4,4);stem(D,'.');subplot(2,4,5);stem(E,'.'); subplot(2,4,6);stem(F,'.');subplot(2,4,7);stem(G,'.')2、用MATLAB实现下列序列。

a)x(n)0.8n0n15b) x(n)e(0. 2 3 j ) n0n 15c)x(n)3cos(0.125 n0.2 ) 2sin(0.25 n 0.1 ) 0 n 15程序:A)clear;clc;n=[0:15];x1=0.8.^n;subplot(3,1,1),stem(x1)title('x1=0.8^n')xlabel('n'); ylabel('x1');B)clear;clc;n=[0:15];x2=exp((0.2+3j)*n);subplot(3,1,1),stem(x2)title('x2=exp((0.2+3j)*n)')xlabel('n'); ylabel('x2');C)clear;clc;n=[0:15];x3=3*cos(0.125*pi*n+0.2*pi)+2*sin(0.25*pi*n+0.1*pi); subplot(3,1,1),stem(x3)title('x3=3*cos(0.125*pi*n+0.2*pi)+2*sin(0.25*pi*n+0.1*pi)') xlabel('n'); ylabel('x3');3、绘出下列时间常数的图形,对x 轴,y轴以及图形上方均须加上适当的标注:a)x(t )sin( 2 t )0t10sb)x(t )cos(100t )sin(t )0 t 4s>>m=0:0.01:10;n=0:0.01:4;x1t=sin(2*pi*m);x2t=cos(100*pi*n).*sin(pi*n);subplot(2,1,1);plot(m,x1t);subplot(2,1,2);plot(n,x2t);4、给定一因果系统 H(z)=(1+ 2z- 1z-2)/( 1- 0.67z 1z 2),求出并绘制H(z)的幅频响应与相频响应。

数字信号处理实验报告

数字信号处理实验报告

实验一 基于LMS 算法的自适应滤波器设计一、自适应算法的概括包括最小均方算法LMS 、最小高阶均方算法LMP 、最小平方算法OLS 、递推最小算法RLS 。

自适应算法主要根据滤波器输入的统计特性进行处理,存在开环算法和闭环算法;开环算法的控制输出仅取决于滤波器的输入和其他输入数据;闭环的控制输出则是滤波器输出及其他输入信号的函数。

闭环控制利用输出反馈,不但能在滤波器输入信号变化时保持最佳输出,而且在某种程度上补偿滤波元件参数的变化和误差以及运算误差。

二、自适应滤波器的结构自适应滤波器由参数可调的数字滤波器和自适应算法两部分组成。

如图1.1所示为自适应滤波器的一般结构。

输入信号)(n x 通过参数可调数字滤波器后产生输出信号(或响应))(n y ,将其与参考信号(或期望响应))(n d 进行比较,形成误差信号)(n e ,)(n e 通过某种自适应算法对滤波器参数进行调整,最终使)(n e 得均方值最小。

所以,自适应滤波器实际上是一种能够自动调整本身参数的特殊的Wiener 模型。

)(n d 自适应滤波器算法滤波器结构)(n x )(n e )(n y +-图1.1 自适应滤波器的一般结构上面的自适应滤波器设计不需要知道关于输入信号和噪声的统计特性,能够在工作过程中估计出所需的统计特性,并以此为依据自动调整自己的参数,以达到最佳的滤波效果。

一旦输入信号统计特性发生变化,其又能跟踪这种变化,自动调整参数,从而使滤波器性能达到最佳效果。

三、滤波器采用的结构采用FIR 横向滤波器(由于IIR 滤波器存在稳定性问题)作为自适应滤波器结构,如图1.2所示。

)(n x )(0n w )(1n w )(2n w )(1n w N -1-Z 1-Z ....1-Z )1(+-N n x ∑)(n y图1.2 FIR 横向滤波器结构图中所示自适应滤波器的输入矢量:T N n x n x n x n X )]1(),...,1(),([)(+--= , 权重系数矢量:T N n w n w n w n W )](),...,(),([)(110-=,即自适应滤波器的冲击响应。

数字信号处理上机实习报告

数字信号处理上机实习报告

数字信号处理上机实习报告————————————————————————————————作者:————————————————————————————————日期:2专题一 离散卷积的计算一、实验内容设线性时不变(LTI )系统的冲激响应为h(n),输入序列为x (n) 1、h (n)=(0.8)n,0≤n ≤4; x (n)=u (n)—u (n-4) 2、h (n)=(0.8)n u (n), x (n )=u(n)—u (n-4) 3、h(n)=(0。

8)nu (n ), x(n)=u (n) 求以上三种情况下系统的输出y (n )。

二、实验目的1、掌握离散卷积计算机实现.2、进一步对离散信号卷积算法的理解.三、原理及算法概要算法:把冲激响应h(n)与输入序列x (n)分别输入到程序中,然后调用离散卷积函数y=conv (x 。

,h)即可得到所要求的结果.原理:离散卷积定义为 ∑∞-∞=-=k k n h k x n y )()()(当序列为有限长时,则∑=-=nk k n h k x n y 0)()()(四.理论计算1、h (n)=(0。

8)n,0≤n≤4; x(n )=u (n )—u(n —4) ∑∞-∞=-=*=m m n h m x n h n x n y )()()()()((a) 当n 〈0 时,y (n )=0 (b ) 当30≤≤n 时,∑==nm n y 0)((0。

8)n(c ) 当74≤≤n 时,∑-==43)(n m n y (0.8)n(d ) 当n 〉7时,y (n )=0理论结果与上图实验结果图中所示吻合。

2、h(n)=(0.8)nu(n ), x(n )=u(n)—u(n-4) ∑∞-∞=-=*=m m n h m x n h n x n y )()()()()((a) 当n <0 时,y (n )=0 (b) 当30≤≤n 时,∑==nm n y 0)((0。

数字信号处理上机实验汇总(原创)

数字信号处理上机实验汇总(原创)

信 号 y=u(t+3)-2u(t) 1.5
1
0.5
0
y
-0.5
-1
-1.5 -5
-4
-3
-2
-1
0 t
1
2
3
4
5
(2)绘出复指数信号 x(t ) e0.2t cos(2t 0.5) 的波形。
2
运行结果:
连 续 复 指 数 信 号 x[t]=cos(2*t+0.5).*exp(0.2*t) 2000 1500 1000 500 0
验证结合律
y1(n)=(x1[n]*x2[n])*x3[n]
6000 4000 2000 0 -2000 -100
-80
-60
-40
-20
0 n
20
40
60
80
100
y2(n)=x1[n]*(x2[n]*x3[n])
10000
5000
0
-5000 -100
-80
-60
-40
-20
0 n
20
40
60
80
5
1
x(n)
0.5
0 -2
-1.5
-1
-0.5
0 n
0.5
1
1.5
2
1
h(n)
0.5
0 -2
-1.5
-1
-0.5
0 n
0.5
1
1.5
2
6
y ( n) =x(n)*h(n)
4
2
0 -4
-3
-2
-1
0 n
1
2
3
4
(2) 对下面三个序列, 用 conv_m()函数来验证卷积特性 (交换律、 结合律、 分配律) 交换律 结合律 分配律 其
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数字信号处理实验报告实验名称:实验一离散时间信号的时域表示实验时间: 2014 年 9 月 16 日学号:201211106134 姓名:孙舸成绩:评语:一、实验目的1、熟悉MATLAB命令,掌握离散时间信号-序列的时域表示方法;2、掌握用MATLAB描绘二维图像的方法;3、掌握用MATLAB对序列进行基本的运算和时域变换的方法。

二、实验原理与计算方法(一)序列的表示方法序列的表示方法有列举法、解析法和图形法,相应的用MATLAB也可以有这样几种表示方法,分别介绍如下:1、列举法在MATLAB中,用一个列向量来表示一个有限长序列,由于一个列向量并不包含位置信息,因此需要用表示位置的n和表示量值的x两个向量来表示任意一个序列,如:例1.1:>>n=[-3,-2,-1,0,1,2,3,4];>>x=[2,1,-1,0,1,4,3,7];如果不对向量的位置进行定义,则MATLAB 默认该序列的起始位置为n=0。

由于内存有限,MATLAB 不能表示一个无限序列。

2、解析法对于有解析表达式的确定信号,首先定义序列的范围即n 的值,然后直接写出该序列的表达式,如:例1.2:实现实指数序列n n x )9.0()(=,100≤≤n 的MATLAB 程序为: >>n=[0:10];>>x=(0.9).^n;例1.3:实现正余弦序列)5.0sin(2)31.0cos(3)(n n n x πππ++=,155≤≤n 的MATLAB 程序为:>>n=[5:15];>>x=3*cos(0.1*pi*n+pi/3)+2*sin(0.5*pi*n);3、图形法在MATLAB 中用图形法表示一个序列,是在前两种表示方法的基础上将序列的各个量值描绘出来,即首先对序列进行定义,然后用相应的画图语句画图,如:例1.4:绘制在1中用列举法表示的序列的图形,则在向量定义之后加如下相应的绘图语句:>>stem(n,x);此时得到的图形的横坐标范围由向量n的值决定,为-3到4,纵坐标的范围由向量x的值决定,为-1到7。

应用stem函数时应确保自变量n和函数值x的个数相等。

此外可用函数axis([x1,x2,y1,y2])对横纵坐标进行限定,以完善图形,其中x1和x2分别为横坐标的起始和截止位置,y1和y2分别为纵坐标的起始和截止位置。

也可用xlabel(‘’)、ylabel(‘’)和title(‘’)为该图添加横、纵坐标说明和标题。

subplot(m,n,k)函数可以将当前窗口分成m行n列个子窗口,并在第k 个子窗口绘图。

窗口的排列顺序为从左至右,从上至下分别为1,2,…m*n。

以上为几个常用绘图函数的基本用法,有关各函数的其他参数可参考MATLAB的帮助文件。

下面给出产生单位抽样序列和单位阶跃序列的两个函数,供参考。

例1.5:产生单位抽样序列的函数impseq(n0,n1,n2)。

function [n,x] = impseq(n0,n1,n2)% Generates x(n) = delta(n-n0); n1 <= n,n0 <= n2% ----------------------------------------------% [x,n] = impseq(n0,n1,n2)%if ((n0 < n1) | (n0 > n2) | (n1 > n2))error('arguments must satisfy n1 <= n0 <= n2')endn = [n1:n2];%x = [zeros(1,(n0-n1)), 1, zeros(1,(n2-n0))];x = [(n-n0) = = 0];该函数产生一个抽样位置在n0,序列范围在n1和n2之间的单位抽样序列。

例1.6:产生单位阶跃序列的函数stepseq(n0,n1,n2)。

function [n,x] = stepseq(n0,n1,n2)% Generates x(n) = u(n-n0); n1 <= n,n0 <= n2% ------------------------------------------% [x,n] = stepseq(n0,n1,n2)%if ((n0 < n1) | (n0 > n2) | (n1 > n2))error('arguments must satisfy n1 <= n0 <= n2')endn = [n1:n2];%x = [zeros(1,(n0-n1)), ones(1,(n2-n0+1))];x = [(n-n0) >= 0];该函数产生一个起始位置在n0,序列范围在n1和n2之间的单位阶跃序列。

注意:由function产生的函数文件,不能直接运行,并且要放在当前路径下的文件夹里,供其他M文件调用。

(二)序列的基本运算和时域变换1、加法:x1(n)+x2(n)序列的加法运算为对应位置处量值的相加,在MATLAB中可用运算符“+”实现,但要求参与运算的序列的长度必须相等。

如果长度不等或者长度相等但采样位置不同,则不能直接应用该运算符,此时需要先给定参数使序列具有相同的位置向量和长度。

下面给出sigadd函数实现任意两序列的加法运算。

例1.7:function [y,n] = sigadd(x1,n1,x2,n2)% implements y(n) = x1(n)+x2(n)%% [y,n] = sigadd(x1,n1,x2,n2)% y = sum sequence over n, which includes n1 and n2% x1 = first sequence over n1% x2 = second sequence over n2 (n2 can be different from n1) %n = min(min(n1),min(n2)):max(max(n1),max(n2)); % duration of y(n)y1 = zeros(1,length(n)); y2 = y1; % initializationy1(find((n>=min(n1))&(n<=max(n1))==1))=x1; % x1 withduration of yy2(find((n>=min(n2))&(n<=max(n2))==1))=x2; % x2 with duration of yy = y1+y2; % sequence addition其中x1和x2为参与加法运算的两序列,n1和n2分别为x1和x2的位置向量。

2、乘法:x1(n)·x2(n)序列的乘法运算为对应位置处量值的相乘,在MATLAB中由数组运算符“.*”实现,也受到“+”运算符同样的限制。

3、反折:x(n)→x(-n)序列的反折指序列的每个量值都对n=0做一个对称操作,从而得到一个新序列。

在MATLAB中可由fliplr(x)函数实现,此时序列位置的反折则由-fliplr(n)实现。

4、平移:x(n)→x(n-m)平移操作是将序列的每个量值都移动m个位置,在得到的新序列中,量值和原序列相同,只是位置向量n发生变化,当m>0时,表示序列向右平移,此时新序列的位置向量为n+m;当m<0时,表示序列向左平移,此时新序列的位置向量为n-m。

三、实验内容及结果(一)内容:参考示例程序,产生一个有延迟的单位抽样序列:δ(n-11),15≤n,5≤绘出序列的图形。

(二)结果:(1)源程序代码:(2)运行结果:(一)内容:参考示例程序,产生一个向前时移7个时刻的单位阶跃序列:u(n+7),-n,绘出序列的图形。

≤10≤10(二)结果:(1)源程序代码:(2)运行结果:(一)内容:产生一个指数为[-0.1+(pi/6)*i]n的复指数序列,20≤n,并绘出0≤序列的实部、虚部、幅度和相位的波形。

(二)结果:(1)源程序代码:(2)运行结果:(一)内容:已知x(n)={1,2,3,4,5,6,7,6,5,4,3,2,1},10-n,参考示例程序,2≤≤绘出下列序列的波形。

a.x1(n)=2x(n-5)-3x(n+4)b.x2(n)=x(3-n)+x(n)x(n-2)(二)结果:(1)源程序代码:(2)运行结果:四、思考:1、代数运算符号*和.*的区别是?答:因为matlab中的变量都是矩阵存储的,故与实际袋数的乘除有所不同,所以乘除是须要参考矩阵的乘除法。

“*”表示一般的矩阵相乘(矩阵的乘法);“.*”表示数组中各个元素分别相乘。

五、实验总结:本次实验掌握了Matlab的离散时间信号的三种表示方法。

Stem函数可以用于画出系列的图形,它要求向量的维度一致。

进一步熟悉了二维图像的Matlab表示法。

但是离散时间信号的图形在Matlab中默认为空圈,需要用“fill”或“.”将其填实。

相关文档
最新文档