2021届福建省厦门双十中学高三上学期期中考试数学理试题Word版含解析
福建省厦门市双十中学2017-2018学年高三上学期期中数学试卷(理科) Word版含解析
2017-2018学年福建省厦门市双十中学高三(上)期中数学试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|﹣1<x<2},B={x|0<x<3},则A∪B=()A.(﹣1,3)B.(﹣1,0)C.(0,2)D.(2,3)2.已知=1﹣bi,其中a,b是实数,i是虚数单位,则|a﹣bi|=()A.3 B.2 C.5 D.3.已知等差数列{a n}的前n项和为S n,若a4=18﹣a5,则S8=()A.18 B.36 C.54 D.724.设a,b是互不垂直的两条异面直线,则下列命题成立的是()A.存在唯一平面α,使得a⊂α,且b∥αB.存在唯一直线l,使得l∥a,且l⊥bC.存在唯一直线l,使得l⊥a,且l⊥bD.存在唯一平面α,使得a⊂α,且b⊥α5.已知命题p:∀x∈R,2x<3x;命题q:∃x∈R,x3=1﹣x2,则下列命题中为真命题的是()A.p∧q B.¬p∧q C.p∧¬q D.¬p∧¬q6.已知函数f(x)=sinωx+cosωx(ω>0)的图象与直线y=﹣2的两个相邻公共点之间的距离等于π,则f(x)的单调递减区间是()A.[kπ+,kπ+],k∈z B.[kπ﹣,kπ+],k∈zC.[2kπ+,2kπ+],k∈z D.[2kπ﹣,2kπ+],k∈z7.如图,两块全等的直角边长为1的等腰直角三角形拼在一起,若D=B+k C,则λ+k=()A.B.C.2 D.8.已知定义在R上的函数f(x)=2|x﹣m|﹣1(m为实数)为偶函数,记a=f(log0.53),b=f (log25),c=f(2m),则a,b,c的大小关系为()A.a<b<c B.a<c<b C.c<a<b D.c<b<a9.已知一个几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.(4+π)10.若函数f(x)=x2+e x﹣(x<0)与g(x)=x2+ln(x+a)图象上存在关于y轴对称的点,则a的取值范围是()A.(﹣)B.()C.()D.()11.已知函数f(x)=sin2x+sinx+cosx,以下说法中不正确的是()A.f(x)周期为2πB.f(x)最小值为﹣C.f(x)在区间[0,]单调递增D.f(x)关于点x=对称12.如图,在棱长为1的正方体ABCD﹣A1B1C1D1的对角线AC1上任取一点P,以A为球心,AP为半径作一个球.设AP=x,记该球面与正方体表面的交线的长度和为f(x),则函数f(x)的图象最有可能的是()A.B.C.D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知向量夹角为60°,且||=1,|2﹣|=,则||=.14.已知f(x)是定义在R上的奇函数,且当x<0时,f(x)=2x,则f(log49)的值为.15.已知正项等比数列{a n}的前n项积为πn,已知a m﹣1•a m+1=2a m,π2m﹣1=2048,则m=.16.如图所示,在一个坡度一定的山坡AC的顶上有一高度为25m的建筑物CD,为了测量该山坡相对于水平地面的坡角θ,在山坡的A处测得∠DAC=15°,沿山坡前进50m到达B处,又测得∠DBC=45°,根据以上数据可得cosθ=.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.在直角坐标系中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,点A的极坐标为(3,),点B的极坐标为(6,),曲线C:(x﹣1)2+y2=1(1)求曲线C和直线AB的极坐标方程;(2)过点O的射线l交曲线C于M点,交直线AB于N点,若|OM||ON|=2,求射线l所在直线的直角坐标方程.18.在数列{a n}中,前n项和为S n,且S n=,数列{b n}的前n项和为T n,且b n=(1)求数列{a n}的通项公式;(2)是否存在m,n∈N*,使得T n=a m,若存在,求出所有满足题意的m,n,若不存在,请说明理由.19.在锐角△ABC中,角A,B,C所对的边分别为a,b,c,已知a=bcosC+csinB.(1)若a=2,b=,求c(2)设函数y=sin(2A﹣30°)﹣2sin2(C﹣15°),求y的取值范围.20.如图,斜三棱柱ABC﹣A1B1C1的底面是直角三角形,∠ACB=90°,点B1在底面内的射影恰好是BC的中点,且BC=CA=2.(1)求证:平面ACC1A1⊥平面B1C1CB;(2)若二面角B﹣AB1﹣C1的余弦值为,求斜三棱柱ABC﹣A1B1C1的侧棱AA1的长度.21.已知椭圆C: +=1(a>b>0)的右焦点为F,上顶点为A,短轴长为2,O为原点,直线AF与椭圆C的另一个交点为B,且△AOF的面积是△BOF的面积的3倍.(1)求椭圆C的方程;(2)如图,直线l:y=kx+m与椭圆C相交于P,Q两点,若在椭圆C上存在点R,使OPRQ 为平行四边形,求m的取值范围.22.已知函数f(x)=•e﹣ax(a>0).(1)当a=2时,求曲线y=f(x)在x=处的切线方程;(2)讨论方程f(x)﹣1=0根的个数.2016-2017学年福建省厦门市双十中学高三(上)期中数学试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|﹣1<x<2},B={x|0<x<3},则A∪B=()A.(﹣1,3)B.(﹣1,0)C.(0,2)D.(2,3)【考点】并集及其运算.【分析】根据集合的基本运算进行求解即可.【解答】解:∵A={x|﹣1<x<2},B={x|0<x<3},∴A∪B={x|﹣1<x<3},故选:A.2.已知=1﹣bi,其中a,b是实数,i是虚数单位,则|a﹣bi|=()A.3 B.2 C.5 D.【考点】复数求模.【分析】通过复数的相等求出a、b,然后求解复数的模.【解答】解:=1﹣bi,可得a=1+b+(1﹣b)i,因为a,b是实数,所以,解得a=2,b=1.所以|a﹣bi|=|2﹣i|==.故选:D.3.已知等差数列{a n}的前n项和为S n,若a4=18﹣a5,则S8=()A.18 B.36 C.54 D.72【考点】等差数列的前n项和.【分析】由等差数列的性质可得a1+a8=a4+a5=18,代入求和公式可得.【解答】解:由题意可得a4+a5=18,由等差数列的性质可得a1+a8=a4+a5=18,∴S8===72故选:D4.设a,b是互不垂直的两条异面直线,则下列命题成立的是()A.存在唯一平面α,使得a⊂α,且b∥αB.存在唯一直线l,使得l∥a,且l⊥bC.存在唯一直线l,使得l⊥a,且l⊥bD.存在唯一平面α,使得a⊂α,且b⊥α【考点】空间中直线与平面之间的位置关系.【分析】根据线面位置关系的判定与性质判断,或举出反例.【解答】解:对于A,在a上任取一点A,过A作b′∥b,设a,b′确定的平面为α,显然α是唯一的,且a⊂α,且b∥α.故A正确.对于B,假设存在直线l使得l∥a,且l⊥b,则a⊥b,与已知矛盾,故B错误.对于C,设a,b的公垂线为AB,则所有与AB垂直的直线与a,b都垂直,故C错误.对于D,若存在平面α,使得a⊂α,且b⊥α,则b⊥a,与已知矛盾,故D错误.故选:A.5.已知命题p:∀x∈R,2x<3x;命题q:∃x∈R,x3=1﹣x2,则下列命题中为真命题的是()A.p∧q B.¬p∧q C.p∧¬q D.¬p∧¬q【考点】复合命题的真假.【分析】举反例说明命题p为假命题,则¬p为真命题.引入辅助函数f(x)=x3+x2﹣1,由函数零点的存在性定理得到该函数有零点,从而得到命题q为真命题,由复合命题的真假得到答案.【解答】解:因为x=﹣1时,2﹣1>3﹣1,所以命题p:∀x∈R,2x<3x为假命题,则¬p为真命题.令f(x)=x3+x2﹣1,因为f(0)=﹣1<0,f(1)=1>0.所以函数f(x)=x3+x2﹣1在(0,1)上存在零点,即命题q:∃x∈R,x3=1﹣x2为真命题.则¬p∧q为真命题.故选B.6.已知函数f(x)=sinωx+cosωx(ω>0)的图象与直线y=﹣2的两个相邻公共点之间的距离等于π,则f(x)的单调递减区间是()A.[kπ+,kπ+],k∈z B.[kπ﹣,kπ+],k∈zC.[2kπ+,2kπ+],k∈z D.[2kπ﹣,2kπ+],k∈z【考点】正弦函数的图象;两角和与差的正弦函数;正弦函数的单调性.【分析】先利用两角和公式对函数解析式化简,根据题意求得周期,进而求得ω,函数的解析式可得,最后利用正弦函数的单调性求得函数的单调减区间.【解答】解:f(x)=2(sinωx+cosωx)=2sin(ωx+),依题意知函数的周期为T==π,∴ω=2,∴f(x)=2sin(2x+),由2kπ+≤2x+≤2kπ+,得kπ+≤x≤kπ+,k∈Z,∴f(x)的单调递减区间是[kπ+,kπ+](k∈Z),故选A.7.如图,两块全等的直角边长为1的等腰直角三角形拼在一起,若D=B+k C,则λ+k=()A.B.C.2 D.【考点】向量在几何中的应用.【分析】如图,以A为原点,AB、AC所在直线分别为x、y轴建立直角坐标系,可得A、B、C、D各点的坐标,从而得到向量、坐标,结合题意可算出λ和k的值,进而得到λ+k 的值.【解答】解:以A为原点,AB、AC所在直线分别为x、y轴建立如图直角坐标系,可得A(0,0),B(1,0),C(0,1)∵△ABC、△CDE是直角边长为1的等腰直角三角形∴=(,)因此,向量=+=(0,1)+(,)=(,1+)∵==λ(1,0)+k(0,1)=(λ,k)∴λ=,k=1+,可得λ+k=1+故选:A8.已知定义在R上的函数f(x)=2|x﹣m|﹣1(m为实数)为偶函数,记a=f(log0.53),b=f (log25),c=f(2m),则a,b,c的大小关系为()A.a<b<c B.a<c<b C.c<a<b D.c<b<a【考点】函数单调性的性质.【分析】根据f(x)为偶函数便可求出m=0,从而f(x)=2|x|﹣1,这样便知道f(x)在[0,+∞)上单调递增,根据f(x)为偶函数,便可将自变量的值变到区间[0,+∞)上:a=f(|log0.53|),b=f(log25),c=f(0),然后再比较自变量的值,根据f(x)在[0,+∞)上的单调性即可比较出a,b,c的大小.【解答】解:∵f(x)为偶函数;∴f(﹣x)=f(x);∴2|﹣x﹣m|﹣1=2|x﹣m|﹣1;∴|﹣x﹣m|=|x﹣m|;(﹣x﹣m)2=(x﹣m)2;∴mx=0;∴m=0;∴f(x)=2|x|﹣1;∴f(x)在[0,+∞)上单调递增,并且a=f(|log0.53|)=f(log23),b=f(log25),c=f(0);∵0<log23<log25;∴c<a<b.故选:C.9.已知一个几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.(4+π)【考点】棱柱、棱锥、棱台的体积;由三视图求面积、体积.【分析】由已知可得该几何体是一个半圆锥和三棱锥的组合体,代入体积公式,可得答案.【解答】解:由已知可得该几何体是一个半圆锥和三棱锥的组合体,半圆锥的底面半径为1,高为=,故体积为:π,三棱锥的底面面积S=×2×2=2高为=,故体积为:,故组合体的体积V=,故选:C.10.若函数f(x)=x2+e x﹣(x<0)与g(x)=x2+ln(x+a)图象上存在关于y轴对称的点,则a的取值范围是()A.(﹣)B.()C.()D.()【考点】函数的图象.【分析】由题意可得e x0﹣﹣ln(﹣x0+a)=0有负根,函数h(x)=e x﹣﹣ln(﹣x+a)为增函数,由此能求出a的取值范围.【解答】解:由题意可得:存在x0∈(﹣∞,0),满足x02+e x0﹣=(﹣x0)2+ln(﹣x0+a),即e x0﹣﹣ln(﹣x0+a)=0有负根,∵当x趋近于负无穷大时,e x0﹣﹣ln(﹣x0+a)也趋近于负无穷大,且函数h(x)=e x﹣﹣ln(﹣x+a)为增函数,∴h(0)=e0﹣﹣lna>0,∴lna<ln,∴a<,∴a的取值范围是(﹣∞,),故选:A11.已知函数f(x)=sin2x+sinx+cosx,以下说法中不正确的是()A.f(x)周期为2πB.f(x)最小值为﹣C.f(x)在区间[0,]单调递增D.f(x)关于点x=对称【考点】三角函数的周期性及其求法.【分析】①由f(x+2π)=f(x)即可得证;②换元法,设t=sinx+cosx,由三角函数知识可得t∈[﹣,],且sin2x=t2﹣1,可得y=t2+t ﹣1,由二次函数区间的最值可得.③举例即可排除;④证明f(﹣x)=f(x),即可判断正误.【解答】解:①∵f(x+2π)=sin[2(x+2π)]+sin(x+2π)+cos(x+2π)=sin2x+sinx+cosx=f (x),∴函数周期为2π,故①正确;②设t=sinx+cosx=sin(x+)∈[﹣,],∴t2=(sinx+cosx)2=1+sin2x,∴sin2x=t2﹣1,∴y=sin2x+sinx+cosx=t2﹣1+t=t2+t﹣1=(t+)2﹣,t∈[﹣,],由二次函数可知,当t∈[﹣,﹣]时,函数y=t2+t﹣1单调递减,当t∈[﹣,]时,函数y=t2+t﹣1单调递增,∴当t=﹣时,函数取最小值y min=﹣,故②正确;③∵f(x)=sin2x+sinx+cosx,当x=时,f(x)=1+,当x=时,f(x)=1,∴f(x)在区间[0,]不是单调递增.故③错误;④∵f(﹣x)=sin[2(﹣x)]+sin(﹣x)+cos(﹣x)=sin(π﹣2x)+sinx+cosx=sin2x+sinx+cosx=f(x),∴函数关于x=对称,故④正确.故答案为:C.12.如图,在棱长为1的正方体ABCD﹣A1B1C1D1的对角线AC1上任取一点P,以A为球心,AP为半径作一个球.设AP=x,记该球面与正方体表面的交线的长度和为f(x),则函数f(x)的图象最有可能的是()A.B.C.D.【考点】棱柱的结构特征;函数的图象与图象变化.【分析】球面与正方体的表面都相交,我们考虑三个特殊情形:①当x=1;②当x=;③当x=.其中①③两种情形所得弧长相等且为函数f(x)的最大值,根据图形的相似,②中弧长为①中弧长的一半.对照选项,即可得出答案.【解答】解:如图,球面与正方体的表面都相交,根据选项的特点,我们考虑三个特殊情形:①当x=1;②当x=;③当x=.①当x=1时,以A为球心,1为半径作一个球,该球面与正方体表面的交线分别是图中的红色的弧线,其弧长为:3××2π×1=,且为函数f(x)的最大值;②当x=时,以A为球心,为半径作一个球,该球面与正方体表面的交线分别是图中的兰色的弧线,根据图形的相似,其弧长为①中弧长的一半;③当x=.以A为球心,为半径作一个球,该球面与正方体表面的交线分别是图中的粉红色的弧线,其弧长为:3××2π×1=,且为函数f(x)的最大值;对照选项,B正确.故选B.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知向量夹角为60°,且||=1,|2﹣|=,则||=3.【考点】向量的模.【分析】利用数量积运算和性质即可得出.【解答】解:∵|2﹣|=,∴4﹣4•+=7,∴4×12﹣4×1×||cos60°+||2=7,解得||=3.故答案为:3.14.已知f(x)是定义在R上的奇函数,且当x<0时,f(x)=2x,则f(log49)的值为﹣.【考点】函数的值.【分析】由奇函数的性质得当x>0时,f(x)=﹣,由此利用对数函数的性质和换底公式能求出f(log49)的值.【解答】解:∵f(x)是定义在R上的奇函数,且当x<0时,f(x)=2x,∴当x >0时,f (x )=﹣,∴f (log 49)=﹣=﹣=﹣.故答案为:﹣.15.已知正项等比数列{a n }的前n 项积为πn ,已知a m ﹣1•a m +1=2a m ,π2m ﹣1=2048,则m= 6 . 【考点】数列递推式.【分析】由a m ﹣1a m +1﹣2a m =0,结合等比数列的性质可得a m =2,从而可表示T 2m ﹣1,由此可求m 的值.【解答】解:∵a m ﹣1a m +1=2a m ,∴由等比数列的性质可得,a m 2﹣2a m =0,∵a m >0,∴a m =2,∵π2m ﹣1=a 1a 2…a 2m ﹣1=(a 1a 2m ﹣1)•(a 2a 2m ﹣2)…a m =a m 2m ﹣2a m =a m 2m ﹣1=22m ﹣1=2048, ∴2m ﹣1=11,∴m=6. 故答案为:6.16.如图所示,在一个坡度一定的山坡AC 的顶上有一高度为25m 的建筑物CD ,为了测量该山坡相对于水平地面的坡角θ,在山坡的A 处测得∠DAC=15°,沿山坡前进50m 到达B 处,又测得∠DBC=45°,根据以上数据可得cos θ= ﹣1 .【考点】解三角形的实际应用.【分析】在△ABD 中,由正弦定理解出BD ,在△BCD 中,由正弦定理解出sin ∠BCD ,则cos θ=sin (π﹣∠BCD )=sin ∠BCD .【解答】解:∵∠DAC=15°,∠DBC=45°,∴∠ADB=30°,在△ABD 中,由正弦定理得,即,∴BD=25().在△BCD 中,由正弦定理得,即,∴sin ∠BCD=.∴cos θ=sin (π﹣∠BCD )=sin ∠BCD=.故答案为:.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.在直角坐标系中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,点A的极坐标为(3,),点B的极坐标为(6,),曲线C:(x﹣1)2+y2=1(1)求曲线C和直线AB的极坐标方程;(2)过点O的射线l交曲线C于M点,交直线AB于N点,若|OM||ON|=2,求射线l所在直线的直角坐标方程.【考点】直线的一般式方程.【分析】(1)求出A、B的直角坐标,求出直线AB的极坐标方程,根y=ρsinα,x=ρcosθ求出C的极坐标方程即可;(2)设射线l:θ=α,分别代入曲线C的方程和直线AB的方程,得到关于α的方程,求出tanα的值,从而求出答案.【解答】解:(1)A、B的直角坐标分别是A(0,3),B(3,3),故直线AB的极坐标方程是ρsinθ=3,曲线C化为极坐标为ρ=2cosθ;(2)设射线l:θ=α,代入曲线C得:ρM=2cosα,代入直线AB得:ρM=,依题意得•2cosα=2,解得:tanα=3.…所以射线l所在直线的直角坐标方程为:y=3x…18.在数列{a n}中,前n项和为S n,且S n=,数列{b n}的前n项和为T n,且b n=(1)求数列{a n}的通项公式;(2)是否存在m,n∈N*,使得T n=a m,若存在,求出所有满足题意的m,n,若不存在,请说明理由.【考点】数列的应用.=n,由此能求出数列{a n}的通项【分析】(1)当n=1时,a1=S1=1;当n≥2时,a n=S n﹣S n﹣1公式.(2)由已知:T n=++…+,由此利用错位相减法能求出数列{b n}的前n项和T n,即可得出结论.【解答】解:(1)当n=1时,a1=S1=1=n当n≥2时,a n=S n﹣S n﹣1经验证,a1=1满足上式,故数列{a n}的通项公式a n=n;…(2)由题意,易得T n=++…+∴T n=++…+,两式相减得T n=++…+﹣=1﹣﹣,所以T n=2﹣…由于T n<2,又2﹣=m,∴m=1,解得n=2.…19.在锐角△ABC中,角A,B,C所对的边分别为a,b,c,已知a=bcosC+csinB.(1)若a=2,b=,求c(2)设函数y=sin(2A﹣30°)﹣2sin2(C﹣15°),求y的取值范围.【考点】余弦定理.【分析】(1)由已知利用正弦定理,三角函数恒等变换的应用化简可得tanB=,可求∠B=,利用余弦定理即可解得c的值.(2)利用三角函数恒等变换的应用化简可得y=sin(2A﹣60°)﹣1,结合范围A∈(,),利用正弦函数的性质即可得解取值范围.【解答】(本题满分为12分)解:(1)∵a=bccosC+csinB,∴sinA=sinBcosC+sinCsinB,∴cosBsinC=sinCsinB,∴tanB=,∴∠B=.…∵b2=a2+c2﹣2accosB,∴c2﹣2c﹣3=0,∴c=3.…(2)∵y=sin(2A﹣30°)﹣2sin2(C﹣15°)=sin(2A﹣30°)﹣1+2cos(2C﹣30°)=sin(2A﹣30°)﹣cos(2A﹣30°)﹣1=sin(2A﹣60°)﹣1,…又∵△ABC为锐角三角形,∴A∈(,),∴y∈(﹣1,1].…20.如图,斜三棱柱ABC﹣A1B1C1的底面是直角三角形,∠ACB=90°,点B1在底面内的射影恰好是BC的中点,且BC=CA=2.(1)求证:平面ACC1A1⊥平面B1C1CB;(2)若二面角B﹣AB1﹣C1的余弦值为,求斜三棱柱ABC﹣A1B1C1的侧棱AA1的长度.【考点】平面与平面垂直的判定;点、线、面间的距离计算.【分析】(1)利用线面垂直的性质定理证明面面垂直(2)建立空间直角坐标系,写出对应点的坐标,利用余弦值求得边长.【解答】解:(1)取BC中点M,连接B1M,则B1M⊥面ABC,∴面BB1C1C⊥面ABC,∵BC=面BB1C1C∩面ABC,AC⊥BC,∴AC⊥面BB1C1C,∵AC⊂面ACC1A1∴面ACC1A1⊥面BCC1B1(2)取BC的中点为M,AB的中点M,连接OM,MB1,以MC为x轴,MO为y轴,MB1为z轴,建立空间直角坐标系.AC=BC=2,AB=2,设B1M=t,则A(1,2,0),B(﹣1,0,0),C(1,0,0),B1(0,0,t),C1(2,0,t),则=(﹣1,﹣2,t),=(﹣2,﹣2,0),=(2,0,0),设平面AB1C1法向量,∴,即,取=.同理可得面AB1B法向量=(1,﹣1,﹣).∵==,t4+29t2﹣96=0,∴t=,∴BB1=2.21.已知椭圆C :+=1(a >b >0)的右焦点为F ,上顶点为A ,短轴长为2,O 为原点,直线AF 与椭圆C 的另一个交点为B ,且△AOF 的面积是△BOF 的面积的3倍. (1)求椭圆C 的方程;(2)如图,直线l :y=kx +m 与椭圆C 相交于P ,Q 两点,若在椭圆C 上存在点R ,使OPRQ 为平行四边形,求m 的取值范围.【考点】椭圆的简单性质. 【分析】(1)由题意可得b=1,A (0,1),设F (c ,0),B (x 0,y 0),运用三角形的面积公式可得y 0=﹣,再由直线AF 的方程经过B ,可得B 的坐标,代入椭圆方程,解得a ,b ,进而得到椭圆方程; (2)设P (x 1,y 1),Q (x 2,y 2),由OPRQ 为平行四边形,可得x 1+x 2=x R ,y 1+y 2=y R ,R 在椭圆C 上,代入椭圆方程,再由直线l 与椭圆方程联立,运用韦达定理和判别式大于0,化简整理,解不等式即可得到所求m 的范围. 【解答】解:(1)短轴长为2,可得b=1, 即有A (0,1),设F (c ,0),B (x 0,y 0), △AOF 的面积是△BOF 的面积的3倍,即为c •1=3•c •|y 0|,可得y 0=﹣,由直线AF :y=﹣+1经过B ,可得x 0=c ,即B (c ,﹣),代入椭圆方程可得,+=1,即为a 2=2c 2,即有a 2=2b 2=2,则椭圆方程为+y2=1;(2)设P(x1,y1),Q(x2,y2),由OPRQ为平行四边形,可得x1+x2=x R,y1+y2=y R,R在椭圆C上,可得+(y1+y2)2=1,即为+(k(x1+x2)+2m)2=1,化为(1+2k2)((x1+x2)2+8km(x1+x2)+8m2=2,①由可得(1+2k2)x2+4kmx+2m2﹣2=0,由△=16k2m2﹣4(1+2k2)(2m2﹣2)>0,即为1+2k2>m2,②x1+x2=﹣,代入①可得﹣+8m2=2,化为1+2k2=4m2,代入②可得m≠0,又4m2=1+2k2≥1,解得m≥或m≤﹣.则m的取值范围是(﹣∞,﹣]∪[,+∞).22.已知函数f(x)=•e﹣ax(a>0).(1)当a=2时,求曲线y=f(x)在x=处的切线方程;(2)讨论方程f(x)﹣1=0根的个数.【考点】利用导数研究曲线上某点切线方程.【分析】(1)当a=2时,求函数的导数,利用导数的几何意义进行求解即可.(2)由f(x)﹣1=0得f(x)=1,求函数的导数f′(x),判断函数的单调性,利用函数单调性和最值之间的关系进行判断即可.【解答】解:(Ⅰ)当a=2时,f(x)=•e﹣2x.f()=3e﹣1,又f′(x)=•e﹣2x,∴f′()=2e﹣1,故所求切线方程为y﹣3e﹣1=2e﹣1(x﹣),即y=x+.(Ⅱ)方程f(x)﹣1=0即f(x)=1.f(x)的定义域为(﹣∞,1)∪(1,+∞),当x<﹣1或x>1时,易知f(x)<0,故方程f(x)=1无解;故只需考虑﹣1≤x≤1的情况,f ′(x )=•e ﹣2x ,当<a ≤2时,f ′(x )≥0,所以f (x )区间[﹣1,1)上是增函数,又易知f (0)=1, 所以方程f (x )=1只有一个根0;当a >2时,由f ′(x )=0可得x=±,且0<<1,由f ′(x )>0可得﹣1≤x <﹣或<x <1,由f ′(x )<0可得﹣<x <,所以f (x )单调增区间为[﹣1,﹣)和(,1)上是增函数,f (x )单调减区间为(﹣,),由上可知f ()<f (0)<f (﹣),即f ()<1<f (﹣),在区间(﹣,)上f (x )单调递减,且f (0)=1,所以方程f (x )=1有唯一的根x=0;在 区间[﹣1,﹣)上f (x )单调递增,且f (﹣1)=0<1,f (﹣)>1,所以方程f (x )=1存在唯一的根0在区间(,1)上,由f ()<1,x →1时,f (x )→+∞,所以方程f (x )=1有唯一的根;综上所述:当0<a ≤2时,方程f (x )=1有1个根; 当a >2时,方程f (x )=1有3个根.2016年12月22日。
福建源省厦门市双十中学高三级上学期期中试卷
20XX年中学测试中学试题试卷科目:年级:考点:监考老师:日期:2021届福建源省厦门市双十中学高三年级上学期期中试卷一、本题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确。
1.A、B两个点电荷在真空中所产生电场的电场线(方向未标出)如图所示。
图中C点为两点电荷连线的中点,MN为两点电荷连线的中垂线,D为中垂线上的一点,电场线的分布关于MN左右对称。
则下列说法中正确的是()A.这两个点电荷一定是等量异种电荷B.这两个点电荷一定是等量同种电荷C.D、C两点的电势一定相等D.C点的电场强度比D点的电场强度大2.如图所示,a、b和c分别表示点电荷的电场中的三个等势面,它们的电势分别为6V、4V 和1.5V。
一质子(H)从等势面a上某处由静止释放,仅受电场力作用而运动,已知它经过等势面b时的速率为v,则对质子的运动有下列判断,正确的是()A.质子从a等势面运动到c等势面电势能增加4.5eVB.质子从a等势面运动到c等势面动能增加4.5eVC.质子经过等势面c时速率为2.25vD.质子经过等势面c时速率为1.5v3.如图所示,在水平放置的平行板电容器之间,有一带电油滴P处于静止状态。
若从某时刻起,油滴所带的电荷开始缓慢减少,为维持该油滴仍处于静止状态,可采取下列哪些措施()A.其他条件不变,使电容器两极板缓慢靠近B.其他条件不变,使电容器两极板缓慢远离C.其他条件不变,将变阻器的滑片缓慢向左移动D.其他条件不变,使变阻器的滑片缓慢向右移动4.如下图所示,两根无限长的平行导线a和b水平放置,两导线中通以流向相反、大小不等的恒定电流,且I a> I b。
当加一个垂直于a、b所在平面的匀强磁场时;导线a 恰好不再受安培力的作用。
则跟加磁场B以前相比较()A.b也恰好不再受安培力的作用B.b受的安培力小于原来安培力的2倍,方向竖直向下C.b受的安培力等于原来安培力的2倍,方向竖直向下D.b受的安培力小于原来安培力的大小,方向竖直向下5.如图所示,正方形区域abcd中充满匀强磁场,磁场方向垂直纸面向里。
福建省厦门市双十中学高三(上)期中数学试卷含答案
轴 距离
【解答】
解:设퐴(1,0),퐵(−1,0),푃(푥,푦),
8 (푥 + 3) + 푦 = 则
(푥−1)2 + 푦2 (푥 + 1)2 + 푦2
高三(上)期中数学试卷
题号 得分
一
二
三
总分
一、选择题(本大题共 12 小题,共 60.0 分)
1. 已知集合퐴 = {푦|푦 = ln(푥−1)},퐵 = {0,1,2,3},则퐴 ∩ 퐵 = ( )
A. {0,1,2,3} B. {1,2,3}
C. {2,3}
D. {0,1}
2. 下列函数中,既是奇函数又存在极值的是( )
1,푙1与圆
C:푥2
+
푦2
=
4
相切,푙 与
2
C
相交
于 A,B 两点,则|퐴퐵| = ( )
A. 2
B. 3
C. 2 2
D. 2 3
7. △ 퐴퐵퐶的内角 A,B,C 所对的边分别为 a,b,푐.已知퐴 = 60°,푐 = 8, 푎 = 푏 + 2,那么 △ 퐴퐵퐶的周长等于( )
A. 12
B. 20
C. 26
D. 10 3
8. 在 △ 퐴퐵퐶中,若点 D 满足퐶퐷 = 2퐷퐵,点 M 为 AC 中点,则푀퐷 = ( )
A. 23퐴퐵−16퐴퐶
B. 13퐴퐵−16퐴퐶
C. 23퐴퐵−13퐴퐶
D. 2퐴퐵 + 1퐴퐶
3
6
9. 已知函数푓(푥) = sin휔푥(휔 > 0),则“函数푓(푥)的图象经过点(휋4,1)”是“函数푓(푥) 的图象经过点(휋2,0)”的( )
2024届厦门双十中学高三数学上学期期初考试卷附答案解析
2024届厦门双十中学高三数学上学期期初考试卷2023.9(试卷满分150分,考试时间120分钟)一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.全集U =R ,能表示集合{}2,1,0A =--和{}2|20B x x x =--≤关系的Venn 图是()A .B .C .D .2.不等式2210ax x -+>(R a ∈)恒成立的一个充分不必要条件是()A .a ≥1B .a >1C .102a <<D .a >23.已知825,log 3ab ==,则34a b -=()A .25B .5C .259D .534.设()()322f x x a x x =---+是定义在[]2,3b b +上的奇函数,则()f a b +=()A .-1B .0C .1D .-25.已知函数()1,2,x x x a f x x a +≤⎧=⎨>⎩,若()f x 的值域为R ,则实数a 的取值范围是()A .(,0]-∞B .[0,1]C .[0,)+∞D .(,1]-∞6.在三棱锥P -ABC 中,点O 为△ABC 的重心,点D ,E ,F 分别为侧棱PA ,PB ,PC 的中点,若a AF =,b CE = ,c BD = ,则OP =()A .111333a b c++B .111333a b c---C .212333a b c---D .222333a b c++7.已知函数()()22,f x x g x x =-+=,令()()()()()()(),=,<f x f x g x h x g x f x g x ≥⎧⎪⎨⎪⎩,则不等式()74h x >的解集是()A .1<2x x -⎧⎨⎩或17<<24x ⎫⎬⎭B .{<1x x -或71<<4x ⎫⎬⎭C .11<<22x x -⎧⎨⎩或7>4x ⎫⎬⎭D .{1<<1x x -或7>4x ⎫⎬⎭8.已知半径为4的球O ,被两个平面截得圆12O O 、,记两圆的公共弦为AB ,且122O O =,若二面角12O AB O --的大小为2π3,则四面体12ABOO 的体积的最大值为()A .83B .429C .829D .439二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得5分,选对但不全的得2分,有选错的得0分.9.设m ,n 为不同的直线,α,β为不同的平面,则下列结论中正确的是()A .若//m α,//n α,则//m nB .若m α⊥,n α⊥,则//m nC .若//m α,m β⊂,则//αβD .若m α⊥,n β⊥,m n ⊥,则αβ⊥10.已知实数a ,b ,则下面说法正确的是()A .若a b >,则33a ab b>B .若a ,b 均大于0且ln ln b a a b =,则a b >C .若0a >,0b >,2a b +=,则221111a b +++最大值为212+D .若221a b +=,则ab 的取值范围为11,22⎡⎤-⎢⎥⎣⎦11.已知函数()(),f x g x 的定义域为()()()()()()(),21,21,4f x f x g x g x g x f x f x +=++=-+R 为奇函数,则()A .函数()f x 的图象关于()4,0对称B .函数()f x 是周期函数C .()()2100f x f x -++=D .20231()0k f k ==∑12.如图,棱长为2的正四面体ABCD 中,M ,N 分别为棱AD ,BC 的中点,O 为线段MN 的中点,球O 的表面正好经过点M ,则下列结论中正确的是()A .AO ⊥平面BCDB .球O 的体积为2π3C .球O 被平面BCD 截得的截面面积为4π3D .过点O 与直线AB ,CD 所成角均为π3的直线可作4条三、填空题:本题共4小题,每小题5分,共20分.13.圆台的底半径为1和2,母线长为3,则此圆台的体积为.14.正实数,x y 满足142x y +=,且不等式24y x m m +≥-恒成立,则实数m 的取值范围为.15.已知函数()221ax bxf x x +=+在其定义域内为偶函数,且()112f =,则()()()111122022202220212f f f f f f ⎛⎫⎛⎫⎛⎫+++++++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.16.在OAB 中,2,120OA AB OAB ∠=== ,若空间点P 满足13PAB OAB S S = ,则OP 的最小值为;直线OP 与平面OAB 所成角的正切的最大值是.四、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.ABC 中,D 是BC 上的点,AD 平分,BAC ABD ∠ 面积是ADC △面积的3倍.(1)求sin sin BC;(2)若21,2AD DC ==,求BD 和AC 的长.18.如图,圆台上底面圆1O 半径为1,下底面圆2O 半径为2,AB 为圆台下底面的一条直径,圆2O 上点C 满足1,AC BC PO =是圆台上底面的一条半径,点,P C 在平面1ABO 的同侧,且1//PO BC .(1)证明:平面PAC ⊥平面ABC ;(2)若圆台的高为2,求直线1AO 与平面PBC 所成角的正弦值.19.设等差数列{}n a 的公差为d ,且1d >.令2n nn nb a +=,记,n n S T 分别为数列{}{},n n a b 的前n 项和.(1)若2133333,21a a a S T =++=,求{}n a 的通项公式;(2)若{}n b 为等差数列,且999999S T -=,求d .20.教育是阻断贫困代际传递的根本之策.补齐贫困地区义务教育发展的短板,让贫困家庭子女都能接受公平而有质量的教育,是夯实脱贫攻坚根基之所在.治贫先治愚,扶贫先扶智.为了解决某贫困地区教师资源匮乏的问题,某市教育局拟从5名优秀教师中抽选人员分批次参与支教活动.支教活动共分3批次进行,每次支教需要同时派送2名教师,且每次派送人员均从这5人中随机抽选.已知这5名优秀教师中,2人有支教经验,3人没有支教经验.(1)求5名优秀教师中的“甲”,在这3批次支教活动中恰有两次被抽选到的概率;(2)求第一次抽取到无支教经验的教师人数X 的分布列;(3)求第二次抽选时,选到没有支教经验的教师的人数最有可能是几人?请说明理由.21.已知椭圆2222:1(0)x y C a b a b+=>>左焦点为F ,离心率为12,以坐标原点O 为圆心,OF 为半径作圆使之与直线20x y -+=相切.(1)求C 的方程;(2)设点()4,0,,P A B 是椭圆上关于x 轴对称的两点,PB 交C 于另一点E ,求AEF △的内切圆半径的范围.22.已知函数()2ln 1,R f x x ax x a a =-++∈,()f x '为()f x 的导函数.(1)讨论()f x '的极值;(2)若存在[2,e]t ∈,使得不等式()0<f t 成立,求a 的取值范围.1.D【分析】化简集合B ,根据两集合的关系,即可得出答案.【详解】由已知,可得{}{}212||20B x x x x x =---≤=≤≤,所以{}1,0A B ⋂=-,根据选项的Venn 图可知选项D 符合.故选:D.2.D【分析】先求得不等式2210ax x -+>(R a ∈)恒成立的充要条件,再找其充分不必要条件.【详解】不等式2210ax x -+>(R a ∈)恒成立,显然0a =不成立,故应满足0Δ440a a >⎧⎨=-<⎩,解得1a >,所以不等式2210ax x -+>(R a ∈)恒成立的充要条件是1a >,A 、C 选项不能推出1a >,B 选项是它的充要条件,2a >可以推出1a >,但反之不成立,故2a >是1a >的充分不必要条件.故选:D 3.C【分析】根据指数式与对数式的互化,幂的运算性质以及对数的运算性质即可解出.【详解】因为25a=,821log 3log 33b ==,即323b =,所以()()22323232452544392a aa bbb -====.故选:C.4.B【分析】由奇函数的性质可求出,a b 的值,即可求出()f a b +.【详解】因为()()322f x x a x x =---+是定义在[]2,3b b +上的奇函数,所以20230a b b -=⎧⎨++=⎩,解得:21a b =⎧⎨=-⎩,所以()3f x x x =-+,则1a b +=,则()()1110f a b f +==-+=.故选:B.5.B【分析】分别画出分段函数对应的两个函数图象,再对实数a 的取值进行分类讨论即可.【详解】根据题意可得,在同一坐标系下分别画出函数1y x =+和()2x g x =的图象如下图所示:由图可知,当0x =或1x =时,两图象相交,若()f x 的值域是R ,以实数a 为分界点,可进行如下分类讨论:当0a <时,显然两图象之间不连续,即值域不为R ;同理当1a >,值域也不是R ;当01a ≤≤时,两图象相接或者有重合的部分,此时值域是R ;综上可知,实数a 的取值范围是01a ≤≤.故选:B 6.D【分析】根据空间向量的线性运算,结合重心的性质即可求解.【详解】取BC 中点为M ,1,21,212PF PA PC PA CE PE PC PB PC BD PD PB P a AF c A PBb ===-=-=-=-=-=-=三个式子相加可得()()122a b c PA PB PC PA PB PC a b c +=++⇒++=-++-+,又()()22113323OP AP AO PA AM PA AB AC PA PB PA PC PA=-==⨯+=-+- ------()()()111112333333PA PB PA PC PA PA PB PC PA PB PC a b c =-+----=++=+--=-+,故选:D7.C【分析】由()()()()()()(),=,<f x f x g x h x g x f x g x ≥⎧⎪⎨⎪⎩可知,()h x 的图像是()f x 与()g x 在同个区间函数值大的那部分图像,由此作出()h x 的图像,结合图像,即可求得()74h x >的解集.【详解】由()()()()()()(),=,<f x f x g x h x g x f x g x ≥⎧⎪⎨⎪⎩可知,()h x 的图像是()f x 与()g x 在同个区间函数值大的那部分图像,由此作出()h x 的图像,联立2=+2=y x y x -⎧⎨⎩,解得=2=2x y --⎧⎨⎩或=1=1x y ⎧⎨⎩,故12x =-,21x =,所以()2,2=+2,2<<1,>1x x h x x x x x ≤---⎧⎪⎨⎪⎩,又由()74h x >可知,其解集为()h x 的函数值比74大的那部图像的所在区间,结合图像易得,()74h x >的解集为{34<<x x x x 或}5>x x 联立2=+27=4y x y -⎧⎪⎨⎪⎩,解得1=27=4x y -⎧⎪⎪⎨⎪⎪⎩或1=27=4x y ⎧⎪⎪⎨⎪⎪⎩,故312x =-,412x =,联立=7=4y x y ⎧⎪⎨⎪⎩,解得7=47=4x y ⎧⎪⎪⎨⎪⎪⎩,故574x =,所以()74h x >的解集为11<<22x x -⎧⎨⎩或7>4x ⎫⎬⎭.故选:C..8.C【分析】根据圆的性质及球的截面的性质,利用正弦定理、余弦定理,均值不等式及三棱锥的体积公式求解即可.【详解】设弦AB 的中点为M ,连接12,O M O M ,依题意,可得如下图形,由圆的性质可知12,⊥⊥O M AB O M AB ,则12O MO ∠即为二面角的平面角,故122π3O MO ∠=,四面体12ABOO 的体积为121211sin 362π3MO O V AB S AB O M O M =⋅=⋅⋅⋅ 12312AB O M O M =⋅⋅,其中2221212121243O O O M O M O M O M O M O M=++⋅=≥⋅1243O M O M ⇒⋅≤,当且仅当12233O M O M ==时取等号,由球的截面性质,11OO O M ⊥,22OO O M ⊥,所以12,,,O O O M 四点共圆,则有外接圆直径2423i 23s πn R OM ===,从而2216862221633AB MB OB OM ==-=-=,1222224823339V O M O M ∴=⋅≤⨯=.故选:C 9.BD【分析】根据线线、线面、面面的位置关系,逐一分析各选项即可得答案.【详解】解:对A :若//m α,//n α,则//m n 或m 与n 相交或m 与n 异面,故选项A 错误;对B :若m α⊥,n α⊥,则//m n ,故选项B 正确;对C :若//m α,m β⊂,则//αβ或α与β相交,故选项C 正确;对D :若m α⊥,n β⊥,m n ⊥,则αβ⊥,故选项D 正确.故选:BD.10.ACD【分析】对于A ,分0a b >≥、0a b >>、0a b >>三种情况,结合不等式的性质即可判断;对于B ,令0a b =>可判断;对于C ,由2a b +=可得2242ab ab+=-,从而2221142(1)11(1)4ab a b ab --+=++-+,令1(0)t ab t =-≤,再令()424t m m -=≥,结合基本不等式即可判断;对于D ,由221a b +=可得21ab ≤,求解即可判断.【详解】对于选项A ,若0a b >≥,则3443a a a b b b =>=,若0a b ≥>,则330a a b b ≥>,若0a b >>,则3443a a ab b b =->-=,∴若a b >,都有33a a b b >,故A 正确;对于选项B ,当0a b =>,ln ln b a a b =显然成立,故B 错误;对于选项C ,∵2a b +=,2242ab ab+=-,∴2221142(1)11(1)4ab a b ab --+=++-+,∵2a b +=,212a b ab +⎛⎫∴≤= ⎪⎝⎭,当且仅当1a b ==时,等号成立.令1(0)t ab t =-≤,则2242(1)42(1)44ab t ab t ---=-++,令()424t m m -=≥,则42-=mt ,22424442132483228288t m t m m m m-+==≤=+-+-+-,当且仅当32m m=,即42m =时,等号成立.∴221111a b +++最大值为212+,故C 正确;对于选项D ,∵221a b +=,∴21ab ≤,1122ab -≤≤,则ab 的取值范围为11,22⎡⎤-⎢⎥⎣⎦,故D 正确.故选:ACD .11.ABD【分析】根据函数的对称性可得()f x 的图象关于()4,0对称,结合函数变换可推出函数()f x 是周期为8的函数,结合对称性与周期性逐项判断即可得答案.【详解】因为()4f x +为奇函数,则()()44f x f x +=--+,所以()()8f x f x =--+,则函数()f x 的图象关于()4,0对称,故A 正确;因为()()()21f x f x g x +=+①,()()()21g x g x f x +=-②,则①+②得:()()()()()2112222f x g x g x f x +++==⨯+,即()()2g x f x =+③,②-①得:()()()()()2112222g x f x f x g x +-+=-=⨯+,即()()2f x g x =-+④,由③得()()24g x f x +=+代入④得()()4f x f x =-+,所以()()48f x f x +=-+,则()()8f x f x =+,则函数()f x 是周期为8的函数,故B 正确;由于()f x 的图象关于()4,0对称,()f x 是周期为8的函数,无法确定是否关于点()6,0对称,故C 不正确;将③代入①可得()()()212f x f x f x +=++,所以()()()2213f f f =+,()()()2324f f f =+,()()()2435f f f =+,()()()2546f f f =+,()()()2657f f f =+,()()()2768f f f =+,()()()()()287971f f f f f =+=+,()()()()()()292181082f f f f f f ==+=+,累加得:()()()()()()()()()()2123821238f f f f f f f f ++++=++++ ,故可得()()()()12380f f f f ++++= ,所以20232024202481111()()(2024)()(8253)253()(8)000k k k k f k f k f f k f f k f =====-=-⨯=-=-=∑∑∑∑,故D 正确.故选:ABD.12.ABD【分析】设,E F 分别为,AB CD 的中点,连接,,,,,,ME EN NF MF EF AN DN ,根据线面垂直的判定定理可判断A ;求出球的半径,计算球的体积,进而判断B ;求出球O 被平面BCD 截得的截面圆的半径,可求得截面面积,进而判断C ;通过平移与补形法,通过角平分线的转化寻找平面进而找出直线,从而可判断D.【详解】设,E F 分别为,AB CD 的中点,连接,,,,,,ME EN NF MF EF AN DN ,则11,,,22EM BD NF BD EM BD NF BD ==∥∥,故,EM NF EM NF =∥,则四边形MENF 为平行四边形,故,EF MN 交于一点,且互相平分,即O 点也为EF 的中点,又,AB AC DB DC ==,故,AN BC DN BC ⊥⊥,,,AN DN N AN DN =⊂ 平面AND ,故BC ⊥平面AND ,由于,O MN MN ∈⊂平面AND ,则AO ⊂平面AND ,故BC AO ⊥,结合O 点也为EF 的中点,同理可证DC AO ⊥,,,BC DC C BC DC =⊂ 平面BCD ,故AO ⊥平面BCD ,A 正确;由球O 的表面正好经过点M ,则球O 的半径为OM ,棱长为2的正四面体ABCD 中,3AN DN ==,M 为AD 的中点,则MN AD ⊥,故22312MN ND MD =-=-=,则22OM =,所以球O 的体积为33442π()π()π33322OM ⨯=⨯=,B 正确;由BC ⊥平面AND ,BC ⊂平面BCD ,故平面AND ⊥平面BCD ,平面AND ⋂平面BCD DN =,由于AO ⊥平面BCD ,延长AO 交平面BCD 于G 点,则OG ⊥平面BCD ,垂足G 落在DN 上,且G 为正BCD △的中心,故1333NG ND ==,所以2222236()()236OG ON NG =-=-=,故球O 被平面BCD 截得的截面圆的半径为22263()()263-=,则球O 被平面BCD 截得的截面圆的面积为23ππ()33⨯=,C 错误;由题意得,正四面体可以放入正方体内,如下图所示,将AB 平移至正方体的底面内,过1A FC ∠和1B FD ∠的角平分线作垂直于底面的平面,即平面O P Q ,在平面内一定存在过O 点的两条直线12,l l 使得该直线与直线AB ,CD 所成角均为π3,同理可知,过1B FC ∠和1A FD ∠的角平分线作垂直于底面的平面也存在两条直线满足题意,所以过点O 与直线AB ,CD 所成角均为π3的直线可作4条,D 正确.故选:ABD【点睛】思路点睛:本题考查立体几何的综合问题.要结合图形的特点,作出适合的辅助线,要善于观察图形特点,放入特殊图形中从而快速求解.13.1423π【分析】由圆台的底半径为1和2,母线长为3,求出圆台高为22,由此能求出此圆台体积.【详解】∵圆台的底半径为1和2,母线长为3,∴圆台高h=223(21)--=22,∴此圆台体积V=3π(r 2+R 2+Rr )h=1423π.故答案为1423π.【点睛】本题考查圆台的体积的求法,解题关键点为在轴截面中求出圆台的高,属于基础题.14.[]1,2-【分析】将问题转化为2min ()4y x m m ≥+-,利用基本不等式求出4y x +的最小值,再解一元二次不等式即可.【详解】因为不等式24yx m m +≥-恒成立,所以2min ()34y x m m ≥+-,因为0,0x y >>,且142x y+=,所以11422()()121242488y y x y x y x x x y y x y x+=++=++≥⋅+=,当且仅当28x yy x=,即1,4x y ==时,等号是成立的,所以min ()24y x +=,所以22m m -≤,即(1)(2)0m m +-≤,解得12m -≤≤.故答案为:[]1,2-15.40432【分析】首先根据()f x 为偶函数和()112f =得到()221xf x x =+,再根据()11f x f x ⎛⎫+= ⎪⎝⎭求解即可.【详解】因为()221ax bxf x x +=+的定义域为R ,且为偶函数,所以()()f x f x -=,即222211ax bx ax bxx x -+=++,即0b =.所以()221ax f x x =+.又因为()1122a f ==,即1a =,所以()221x f x x =+.因为()2222222111111111x x x f x f x x x x x ⎛⎫+=+=+= ⎪+++⎝⎭+,所以()()()111122022202220212f f f f f f ⎛⎫⎛⎫⎛⎫+++++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()()()()111140432022202121202120222021222f f f f f f f ⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫+++++++=+= ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦故答案为:4043216.23324【分析】根据空间点P 满足的条件可知点P 在以直线AB 为旋转轴,底面圆半径为33的圆柱上,即可求得OP 的最小值;建立空间直角坐标系利用空间向量求得直线OP 与平面OAB 所成角的正弦值的表达式,再利用换元及基本不等式即可求得结果.【详解】过点O 作OD AB ⊥与点D ,过点P 作PC AB ⊥与点C ,如下图所示又2OA AB ==,则3OD =,又13PAB OAB S S = ,则1333PC OD ==,即点P 为空间中到直线AB 的距离为33,所以点P 在以直线AB 为旋转轴,底面圆半径为33的圆柱上,如图所示易知当点P 与点,O D 三点共线时,OP 最小,且最小值为323333-=;以OAB 所在平面为xO z ',建立B xyz -空间直角坐标,如下图所示:则平面OAB 的法向量为()0,1,0n =,不妨设CP 与x 轴正方向夹角为α,则()3,0,3O,33cos ,sin ,33P h αα⎛⎫ ⎪ ⎪⎝⎭,即33cos 3,sin ,333OP h αα⎛⎫=-- ⎪ ⎪⎝⎭,22223310cos 3sin (3)2cos (3)333OP h h ααα⎛⎫⎛⎫=-++-=-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭当3h =,且cos 1α=时,OP 最小,即当点P 与点O D 、三点共线时,OP 最小,且最小值为233;记直线OP 与平面OAB 所成角为θ,则23sin 3sin 102cos (3)3OP nOP nh αθα⋅==⋅-+-,因为2(3)0h -≥,所以23sin 31cos sin 106cos 102cos 3ααθαα-≤=--,令53cos ,28t t α=-≤≤,则5cos 3t α-=,则2(5)11169sin 10232t t t t θ--≤=--,而16161610101022t t t t t t ⎛⎫--=-+≤-⋅= ⎪⎝⎭,所以1sin 3θ≤,当且仅当4t =,等号成立,此时12tan 422θ==,故答案为:233;24【点睛】关键点点睛:本题关键在于根据已知条件确定空间中点P 的轨迹,再利用空间向量解决线面角取值范围的问题.17.(1)13(2)322BD =,306AC =【分析】(1)利用三角形面积之间的关系,结合正弦定理可得结果;(2)利用三角形角平分线定理可求得BD ;设AC x =,则3AB x =,由πADB ADC ∠+∠=,知cos cos ADB ADC ∠=-∠,由余弦定理得到cos ADB ∠和cos ADC ∠,建立方程求解即可得AC .【详解】(1)11sin ,sin 22ABD ACD S AB AD BAD S AC AD CAD ∠∠=⋅⋅=⋅⋅ ,3,,3ABD ACD S S BAD CAD AB AC ∠∠==∴= ,由正弦定理可知sin 1.sin 3B AC C AB ==(2)23,2BD AB DC DC AC ===,322BD ∴=.设AC x =,则3AB x =,在ABD △与ACD 中,由余弦定理可知,22221192cos 232x AD BD AB ADB AD BD ∠-+-==⋅,222232cos 22x AD CD AC ADC AD CD ∠-+-==⋅,π,cos cos ,ADB ADC ADB ADC ∠∠∠∠+=∴=- 22113922322x x --∴=-,解得306x =,即306AC =.18.(1)证明见解析(2)23015【分析】(1)取AC 中点M ,四边形12PO O M 为平行四边形,从而得到12//PM O O ,根据12O O ⊥平面ABC 可得PM ⊥平面ABC ,从而得到需求证的面面垂直.(2)建立如图所示的空间直角坐标系,求出1AO及平面PBC 的法向量后可求线面角的正弦值.【详解】(1)取AC 中点M ,由题意,121,22PO BC AB ===,又1//PO BC ,故1111//,22PO BC PO BC =.又2211//,22O M BC O M BC =,故1212//,PO O M PO O M =,所以四边形12PO O M 为平行四边形,则12//PM O O .由12O O ⊥平面ABC ,故PM ⊥平面ABC ,又PM ⊂面PAC ,故平面PAC ⊥平面ABC .(2)以2O 为坐标原点,2221,,O B O C O O的方向为,,x y z 轴的正方向,建立如图所示的空间直角坐标系.则有:()()()()1222,0,0,2,0,0,0,2,0,,,2,0,0,222A BC P O ⎛⎫-- ⎪ ⎪⎝⎭,故()12,0,2.AO =设平面PBC 的法向量(),,n x y z =而()222,2,0,,,222BC CP ⎛⎫=-=-- ⎪ ⎪⎝⎭ ,故220222022n BC x y n CP x y z ⎧⋅=-+=⎪⎨⋅=--+=⎪⎩,令1z =,得()2,2,1.n = 设所求角的大小为θ,则11122230sin cos ,1565AO n AO n AO nθ⋅+====⋅⋅ .所以直线1AO 与平面PBC 所成角的正弦值为23015.19.(1)3n a n =(2)5150d =【分析】(1)根据等差数列的通项公式建立方程求解即可;(2)由{}n b 为等差数列得出1a d =或12a d =,再由等差数列的性质可得50501ab -=,分类讨论即可得解.【详解】(1)21333a a a =+ ,132d a d ∴=+,解得1a d =,32133()6d d S a a =+==∴,又31232612923T b b b d d d d=++=++=,339621S T d d∴+=+=,即22730d d -+=,解得3d =或12d =(舍去),1(1)3n a a n d n ∴=+-⋅=.(2){}n b 为等差数列,2132b b b ∴=+,即21312212a a a =+,2323111616()d a a a a a ∴-==,即2211320a a d d -+=,解得1a d =或12a d =,1d > ,0n a ∴>,又999999S T -=,由等差数列性质知,5050999999a b -=,即50501a b -=,505025501a a ∴-=,即2505025500a a --=,解得5051a =或5050a =-(舍去)当12a d =时,501495151a a d d =+==,解得1d =,与1d >矛盾,无解;当1a d =时,501495051a a d d =+==,解得5150d =.综上,5150d =.20.(1)36125(2)分布列见解析(3)最有可能是1人,理由见解析【分析】(1)由独立重复事件的概率公式求解即可;(2)先写出X 的可能取值,再求出每个值的概率即可求解;(3)设ξ表示第二次抽取到的无支教经验的教师人数可能的取值为0、1、2,分别求出相应的概率,比较()0P ξ=、()1P ξ=、()2P ξ=的大小关系,由此可得出结论.【详解】(1)5名优秀教师中的“甲”在每轮抽取中,被抽取到的概率为25,则三次抽取中,“甲”恰有两次被抽取到的概率为2232336C 55125P ⎛⎫⎛⎫=⨯⨯= ⎪ ⎪⎝⎭⎝⎭;(2)X 表示第一次抽取到的无支教经验的教师人数,X 的可能取值有0,1,2.2225C 1(0)C 10P X ===;112325C C 6(1)C 10P X ===;2325C 3(2)C 10P X ===.所以分布列为:X12P 0.10.60.3(3)设ξ表示第二次抽取到的无支教经验的教师人数,ξ可能的取值有0,1,2,则有:11222222333224222222555555C C C C C C C 37(0)C C C C C C 100P ξ⋅==⋅+⋅+⋅=,11111122112323233241222222555555C C C C C C C C C C 54(1)C C C C C C 100P ξ⋅==⋅+⋅+⋅=,2112223233222222255555C C C C C C 9(2)0C C C C C 100P ξ⋅==⋅+⋅+⋅=,因为(1)(0)(2)P P P ξξξ=>=>=,故第二次抽取到的无支教经验的教师人数最有可能是1人.21.(1)22143x y +=(2)30,4⎛⎫ ⎪⎝⎭.【分析】(1)由题意得22221212c OF c a a b c ⎧===⎪⎪⎪=⎨⎪=+⎪⎪⎩,解方程组可求出,a b ,从而可得椭圆的方程;(2)设AE 的方程为()0x my t m =+≠,代入椭圆方程化简利用根与系数的关系,再由点,,P B E 三点共线且斜率一定存在,可求得1t =,得直线AE 过定点()1,0Q ,且Q 为椭圆右焦点,所求内切圆半径为r ,则12124AQ y y r ⋅-=,化简换元后可求出其范围.【详解】(1)依题意22221212c OF c a a b c ⎧===⎪⎪⎪=⎨⎪=+⎪⎪⎩,解得2,3a b ==,所以C 的方程为22143x y +=.(2)因为AE 不与x 轴重合,所以设AE 的方程为()0x my t m =+≠,设点()()()11122,0,,A x y y E x y ≠,则()11,B x y -联立22143x my t x y =+⎧⎪⎨+=⎪⎩,得()2223463120m y mty t +++-=,则()222121222631248340,,3434mt t m t y y y y m m --∆=-+>+==++因为点,,P B E 三点共线且斜率一定存在,所以2112114y y y x x x +-=--,所以()1221124x y x y y y +=+,将1122,x my t x my t =+=+代入化简可得121224y y m y y t +=-,故2264312m mtt t -=--,解得1t =,满足()248330m ∆=+>所以直线AE 过定点()1,0Q ,且Q 为椭圆右焦点设所求内切圆半径为r ,因为1442AEF S a r r =⨯⋅= ,所以()22121212214312444434FQA FQEAEF AQ y y y y y y S S Sm r m ⋅-+-++=====+ 令21(1)u m u =+>,则221m u =-,所以2331313u r u u u==++,因为1u >,对勾函数13y u u=+在()1,+∞上单调递增,所以134u u +>,则304r <<.所以内切圆半径r 的范围为30,4⎛⎫⎪⎝⎭..【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下:(1)设直线方程,设交点坐标为()()1122,,,x y x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆;(3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x (或12y y +、12y y )的形式;(5)代入韦达定理求解.22.(1)答案见解析(2)2e 1,e 1⎛⎫++∞⎪-⎝⎭【分析】(1)求得()2(1ln )f x x a x '=-+,设2(1ln ())x a g x x -+=,求得2()x ag x x-=',分0a ≤和0a >,两种情况讨论,结合函数的单调性和极值的定义,即可求解;(2)根据题意转化为存在[2,e]t ∈,使得1ln 0at a t t +-+<,构造函数1()ln a h t t a t t+=-+,求得2(1)(1)()t t a h t t +--'=,分12a +≤、21e a <+<和1e a +≥,结合函数()h t 的单调性和极值、最值,即可求解.【详解】(1)由题意,函数2()ln 1,R f x x ax x a a =-++∈,可得函数()f x 的定义域为(0,)+∞,且()2(1ln )f x x a x '=-+,设2(1()()(0,)ln ),x a g x f x x x =-+∈'=+∞,则2()2ax ag x xx-'=-=,①当0a ≤时,可得()0g x '>,所以()g x 在(0,)+∞上单调递增,所以()f x '没有极值;②当0a >时,若0,2a x ⎛⎫∈ ⎪⎝⎭,则()0g x '<,()f x '在0,2a ⎛⎫ ⎪⎝⎭上单调递减,若,2a x ⎛⎫∈+∞ ⎪⎝⎭,则()0g x '>,()f x '在,2a ⎛⎫+∞ ⎪⎝⎭上单调递增,所以()f x '在2a x =处取得极小值,且极小值为ln 22a a f a ⎛⎫'=- ⎪⎝⎭,在(0,)+∞上没有极大值,综上,当0a ≤时,()f x '没有极值;当0a >时,()f x '的极小值为ln 2aa -,无极大值.(2)由题意知,存在[2,e]t ∈,使得2()ln 10f t t at t a =-++<,即存在[2,e]t ∈,使得1ln 0at a t t+-+<,构造函数1()ln a h t t a t t+=-+,则221(1)(1)()1a a t t a h t t t t ++--'=--=,当12a +≤,即1a ≤时,()0h t '≥在[2,e]上恒成立,()h t 单调递增,所以()20h <,可得52ln 21a >-,与1a ≤矛盾,不满足题意;21当21e a <+<,即1e 1a <<-时,若[2,1]t a ∈+,则()0h t '≤,()h t 单调递减,若[1,e]t a ∈+,则()0h t '≥,()h t 单调递增,此时min ()(1)h t h a =+,由min ()(1)0h t h a =+<,可得(1)ln(1)10a a a +-++<,所以2ln(1)a a a +<+,因为21e a <+<,所以不等式2ln(1)a a a +<+不成立;当1e a +≥,即e 1a ≥-时,()0h t '≤在[2,e]t ∈上恒成立,()h t 单调递减,所以(e)0h <,可得2e 1e 1a +>-,满足题意.综上,实数a 的取值范围为2e 1,e 1⎛⎫++∞ ⎪-⎝⎭.【点睛】方法技巧:对于利用导数研究不等式的恒成立与有解问题的求解策略:1、通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;2、利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.3、根据恒成立或有解求解参数的取值时,一般涉及分离参数法,但压轴试题中很少碰到分离参数后构造的新函数能直接求出最值点的情况,进行求解,若参变分离不易求解问题,就要考虑利用分类讨论法和放缩法,注意恒成立与存在性问题的区别.。
2020-2021厦门市双十中学高中必修三数学上期中试卷(附答案)
2020-2021厦门市双十中学高中必修三数学上期中试卷(附答案)一、选择题1.如图所示,墙上挂有边长为a 的正方形木板,它的四个角的空白部分都是以正方形的顶点为圆心,半径为2a的圆弧,某人向此板投镖,假设每次都能击中木板,且击中木板上每个点的可能性都一样,则它击中阴影部分的概率是 ( )A .18π-B .4π C .14π-D .与a 的值有关联2.一组数据的平均数为m ,方差为n ,将这组数据的每个数都乘以()0a a >得到一组新数据,则下列说法正确的是( ) A .这组新数据的平均数为m B .这组新数据的平均数为a m + C .这组新数据的方差为an D .这组新数据的标准差为a n3.在区间上随机取两个数,x y ,记1p 为事件“12x y +≥”的概率,2p 为事件“12x y -≤”的概率,3p 为事件“12xy ≤”的概率,则 ( ) A .123p p p << B .231p p p << C .312p p p <<D .321p p p <<4.在去年的足球甲A 联赛上,一队每场比赛平均失球数是1.5,全年比赛失球个数的标准差为1.1;二队每场比赛平均失球数是2.1,全年失球个数的标准差是0.4,你认为下列说法中正确的个数有( )①平均来说一队比二队防守技术好;②二队比一队防守技术水平更稳定;③一队防守有时表现很差,有时表现又非常好;④二队很少不失球. A .1个 B .2个C .3个D .4个5.设a 是甲抛掷一枚骰子得到的点数,则方程220x ax ++=有两个不相等的实数根的概率为( ) A .23B .13C .12D .5126.统计某校n 名学生的某次数学同步练习成绩,根据成绩分数依次分成六组:[)[)[)[)[)[]90,100,100,110,110,120,120,130,130,140,140,150,得到频率分布直方图如图所示,若不低于140分的人数为110.①0.031m =;②800n =;③100分以下的人数120,140的人数占大半.则说法正确的是()为60;④分数在区间[)A.①②B.①③C.②③D.②④7.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分别为()A.2,5 B.5,5 C.5,8 D.8,88.微信中有个“微信运动”,记录一天行走的步数,小王的“微信步数排行榜”里有120个人,今天,他发现步数最少的有0.85万步,最多的有1.79万步.于是,他做了个统计,作出下表,请问这天大家平均走了多少万步?()A.1.19B.1.23C.1.26D.1.319.远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”,如图所示的是一位母亲记录的孩子自出生后的天数,在从右向左依次排列的不同绳子上打结,满七进一,根据图示可知,孩子已经出生的天数是()A.336B.510C.1326D.360310.若框图所给的程序运行结果为,那么判断框中应填入的关于k 的条件是A .?B .?C .?D .?11.已知函数()cos3xf xπ=,根据下列框图,输出S的值为()A.670B.16702C.671D.67212.已知平面区域()2,4yx yy x⎧⎫≥⎧⎪⎪Ω=⎨⎨⎬≤-⎪⎪⎪⎩⎩⎭,直线2y mx m=+和曲线24y x=-有两个不的交点,它们围成的平面区域为M,向区域Ω上随机投一点A,点A落在区域M内的概率为()P M.若01m≤≤,则()P M的取值范围为()A.22,π-⎛⎤⎥π⎝⎦B.22,π+⎛⎤⎥π⎝⎦C.212,π+⎡⎤⎢⎥π⎣⎦D.212,π-⎡⎤⎢⎥π⎣⎦二、填空题13.已知某人连续5次投掷飞镖的环数分别是8,9,10,10,8,则该组数据的方差为______.14.执行如下图所示的程序框图,若输入n的值为6,则输出S的值为__________.15.执行如图所示的程序框图,则输出S的结果为________.16.用秦九韶算法计算多项式f(x)=2x 4-x 3+3x 2+7,在求x=2时对应的值时,v 3的值为___. 17.以下四个命题错误的序号为_______(1) 样本频率分布直方图中小矩形的高就是对应组的频率.(2) 过点P(2,-2)且与曲线33y x x =-相切的直线方程是9160x y +-=.(3) 若样本1210,,x x x L 的平均数是5,方差是3,则数据121021,21,,21x x x +++L 的平均数是11,方差是12.(4) 抛掷一颗质地均匀的骰子,事件“向上点数不大于4”和事件“向上点数不小于3”是对立事件.18.已知样本数据12345,,,,a a a a a 的方差222222123451(20)5s a a a a a =++++-,则样本数据1234521,21,21,21,21a a a a a +++++的平均数为__________.19.为了了解某地区高三学生的身体发育情况,抽查了该地区400名年年龄为17岁~18岁的男生体重()kg ,得到频率分布直方图如图5所示:根据图2可得这200名学生中体重在[64.5,76.5]的学生人数是__________. 20.已知变量,x y 之间的一组数据如下表:x0 1 2 3 y 1357则y 与x 的线性回归方程y b x a ∧∧∧=+必过点_______________三、解答题21.一台还可以用的机器由于使用的时间较长,它按不同的转速生产出来的某机械零件有一些会有缺陷,每小时生产有缺陷零件的多少随机器运转的速率而变化,下表为抽样试验结果:(1)画出散点图;(2)如果y 与x 有线性相关的关系,求回归直线方程;(3)若实际生产中,允许每小时生产的产品中有缺陷的零件最多为10个,那么机器的运转速度应控制在什么范围内?22.某车间为了规定工时额定,需要确定加工零件所花费的时间,为此作了6次试验,得到数据如下:(1)试对上述变量x 与y 的关系进行相关性检验,如果x 与y 具有线性相关关系,求出y 对x 的回归直线方程;(2)根据(1)的结论,你认为每小时加工零件的数量额定为多少(四舍五入为整数)比较合理?附:相关性检验的临界值表()()nniii ix x y y x y nx yr ---==∑∑()()()1122211n niii ii i nni i i i x x y y x y nx ybx xx nx====---==--∑∑∑∑$,$$y abx =+$42.0≈27.5≈23.现从某医院中随机抽取了7位医护人员的关爱患者考核分数(患者考核:10分制),用相关的特征量y 表示;医护专业知识考核分数(试卷考试:100分制),用相关的特征量x 表示,数据如下表:(1)求y 关于x 的线性回归方程(计算结果精确到0.01);(2)利用(1)中的线性回归方程,分析医护专业考核分数的变化对关爱患者考核分数的影响,并估计当某医护人员的医护专业知识考核分数为95分时,他的关爱患者考核分数(精确到0.1).参考公式及数据:回归直线方程ˆˆˆybx a =+中斜率和截距的最小二乘法估计公式分别为 121(x x)(y y)ˆˆˆ,(x x)niii nii ba y bx ==--==--∑∑,其中72193,9.3,()()9.9i ii x y x x y y ===--=∑. 24.从某居民区随机抽取10个家庭,获得第i 个家庭的月收入i x (单位:千元)与月储蓄i y (单位:千元)的数据资料,计算得10180i i x ==∑,101120i i y ==∑,101184i i i x y ==∑,1021720ii x==∑.(1)求家庭的月储蓄y 关于月收入x 的线性回归方程y bx a =+$$$,并判断变量x 与y 之间是正相关还是负相关;(2)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.(注:线性回归方程y bx a =+$$$中,1221ni ii nii x y nx yb xnx==-⋅=-∑∑$,其中x ,y 为样本平均值.)25.一个盒子中装有4张卡片,每张卡片上写有1个数字,数字分别是1、2、3、4,现从盒子中随机抽取卡片.(Ⅰ)若一次从中随机抽取3张卡片,求3张卡片上数字之和大于或等于7的概率; (Ⅱ)若第一次随机抽取1张卡片,放回后再随机抽取1张卡片,求两次抽取的卡片中至少一次抽到数字2的概率.26.[2019·朝鲜中学]在如图所示的程序框图中,有这样一个执行框1()i i x f x -=,其中的函数关系式为42()1x f x x -=+,程序框图中的D 为函数()f x 的定义域.(1)若输入04965x =,请写出输出的所有x 的值; (2)若输出的所有i x 都相等,试求输入的初始值0x .【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】试题分析:本题考查几何概型问题,击中阴影部分的概率为222()214a a a ππ-=-.考点:几何概型,圆的面积公式.2.D解析:D 【解析】 【分析】计算得到新数据的平均数为am ,方差为2a n ,标准差为a n ,结合选项得到答案. 【详解】根据题意知:这组新数据的平均数为am ,方差为2a n ,标准差为a n . 故选:D 【点睛】本题考查了数据的平均值,方差,标准差,掌握数据变化前后的关系是解题的关键.3.B解析:B 【解析】 【分析】 【详解】因为,[0,1]x y ∈,对事件“12x y +≥”,如图(1)阴影部分,对事件“12x y -≤”,如图(2)阴影部分, 对为事件“12xy ≤”,如图(3)阴影部分,由图知,阴影部分的面积从下到大依次是,正方形的面积为,根据几何概型公式可得231p p p <<.(1) (2) (3) 考点:几何概型.4.D解析:D 【解析】在(1)中,一队每场比赛平均失球数是1.5,二队每场比赛平均失球数是2.1, ∴平均说来一队比二队防守技术好,故(1)正确;在(2)中,一队全年比赛失球个数的标准差为1.1,二队全年比赛失球个数的标准差为0.4,∴二队比一队技术水平更稳定,故(2)正确;在(3)中,一队全年比赛失球个数的标准差为1.1,二队全年比赛失球个数的标准差为0.4,∴一队有时表现很差,有时表现又非常好,故(3)正确;在(4)中,二队每场比赛平均失球数是2.1,全年比赛失球个数的标准差为0.4, ∴二队很少不失球,故(4)正确. 故选:D .5.A解析:A 【解析】分析:可以按照等可能时间的概率来考虑,可以先列举出试验发生包含的事件数,再求出满足条件的事件数,从而根据概率计算公式求解.详解:因为a 是抛掷一枚骰子得到的点数,所以试验发生包含的事件总数为6, 方程220x ax ++=有两个不等实根,所以280a ->, 以为a 为正整数,所以3,4,5,6a =,即满足条件的事件有4种结果,所以所求的概率为4263P ==,故选A. 点睛:本题主要考查的是古典概型及其概率计算公式.,属于基础题.解题时要准确理解题意,先要判断该概率模型是不是古典概型,利用排列组合有关知识,正确找出随机事件A 包含的基本事件的个数和试验中基本事件的总数代入公式()()n A P n =Ω.6.B解析:B 【解析】 【分析】根据频率分布直方图的性质和频率分布直方图中样本估计总体,准确运算,即可求解. 【详解】由题意,根据频率分布直方图的性质得10(0.0200.0160.0160.0110.006)1m +++++=,解得0.031m =.故①正确;因为不低于140分的频率为0.011100.11⨯=,所以11010000.11n ==,故②错误; 由100分以下的频率为0.00610=0.06⨯,所以100分以下的人数为10000.06=60⨯,故③正确;分数在区间[120,140)的人数占0.031100.016100.47⨯+⨯=,占小半.故④错误. 所以说法正确的是①③. 故选B. 【点睛】本题主要考查了频率分布直方图的应用,其中解答熟记频率分布直方图的性质,以及在频率分布直方图中,各小长方形的面积表示相应各组的频率,所有小长方形的面积的和等于1,着重考查了分析问题和解答问题的能力,属于基础题.7.C解析:C 【解析】试题分析:由题意得5x =,116.8(915101824)85y y =+++++⇒=,选C. 考点:茎叶图8.C解析:C 【解析】 【分析】根据频率分布直方图中平均数的计算方法求解即可. 【详解】由题,区间[)[)[)[)0.8,1.0,1.0,1.2,1.2,1.4,1.6,1.8所占频率分别为:0.20.50.1,0.2 1.250.25,0.2 2.250.45,0.20.250.05,⨯=⨯=⨯=⨯=故区间[)1.4,1.6所占频率为10.10.250.450.050.15----=. 故0.90.1 1.10.25 1.30.45 1.50.15 1.70.05 1.26x =⨯+⨯+⨯+⨯+⨯=. 故选:C 【点睛】本题主要考查了补全频率分布直方图的方法以及根据频率分布直方图计算平均数的问题.属于中档题.9.B解析:B 【解析】试题分析:由题意满七进一,可得该图示为七进制数, 化为十进制数为321737276510⨯+⨯+⨯+=,故选B.考点:1、阅读能力及建模能力;2、进位制的应用.10.A【解析】 【分析】根据所给的程序运行结果为,执行循环语句,当计算结果S 为20时,不满足判断框的条件,退出循环,从而到结论.【详解】由题意可知输出结果为, 第1次循环,,, 第2次循环,,,此时S 满足输出结果,退出循环,所以判断框中的条件为.故选:A . 【点睛】本题主要考查了循环结构,是当型循环,当满足条件,执行循环,同时考查了推理能力,属于基础题.11.C解析:C 【解析】 【分析】根据框图的流程,依次计算前六次的运算结果,判断终止运行的n 值,再根据余弦函数的周期性计算即可. 【详解】由程序框图知:第一次运行()11cos 32f π==,10.1122S n =+=+=; 第二次运行()212cos32f π==-,12S =,213n =+=, 第三次运行()3cos 1f π==-,12S =,314n =+=, 第四次运行()414cos 32f π==-,12S =,415n =+=, 第五次运行()515cos32f π==,1S =,6n =, 第六次运行()6cos21f π==,2S =,7n =, 直到2016n =时,程序运行终止,Q 函数cos3n y π=是以6为周期的周期函数,201563355=⨯+, 又()()2016cos336cos 21381f ππ==⨯=,∴若程序运行2016次时,输出2336672S =⨯=, ∴程序运行2015次时,输出33621671S =⨯-=.【点睛】本题考查了循环结构的程序框图,根据框图的流程判断算法的功能是解答本题的关键.12.D解析:D 【解析】 【分析】判断平面区域,利用特殊值法排除选项,然后利用特殊法,即可求解相应概率的范围,得到答案. 【详解】由题意知,平面区域()20,4y x y y x ⎧⎫≥⎧⎪⎪⎪Ω=⎨⎨⎬≤-⎪⎪⎪⎩⎩⎭,表示的图形是半圆是半圆以及内部点的集合,如图所示,又由直线2y mx m =+过半圆24y x =-上一点(2,0)-,当0m =时直线与x 轴重合,此时()1P M =,故可排除,A B , 若1m =,如图所示,可求得2()2P M ππ-=, 所以()P M 的取值范围为212,π-⎡⎤⎢⎥π⎣⎦.【点睛】本题主要考查了集合概型的应用,其中解答中判断平面区域,利用特殊值法排除选项,然后利用特殊法,求解相应概率的范围是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.二、填空题13.【解析】14.15【解析】程序执行过程为:当i=1s=1i<6s=1当i=3i<6s=3当i=5i<6s=15当i=7i>6退出s=15填15解析:15 【解析】 程序执行过程为:当i=1,s=1,i<6,s=1,当i=3,i<6,s=3,当i=5,i<6,s=15,当i=7,i>6,退出s=15.填15.15.30【解析】时继续时继续时停止输出点睛:本题考查的是算法与流程图算法与流程图的的考查侧重于对流程图循环结构的考查先明晰算法及流程图的相关概念包括选择结构循环结构伪代码其次要重视循环起点条件循环次数循解析:30 【解析】3i =时,0236S =+⨯=,继续, 5i =时,62516S =+⨯=,继续,7i =时,162730S =+⨯=,停止, 输出30S =.点睛:本题考查的是算法与流程图.算法与流程图的的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.16.【解析】f(x)=2x4-x3+3x2+7=(((2x-1)x+3)x)x+7∴v0=2v1=2×2-1=3v2=3×2+3=9v3=9×2=18故答案为:18解析:【解析】f (x )=2x 4-x 3+3x 2+7=(((2x -1)x +3)x )x +7, ∴v 0=2,v 1=2×2-1=3,v 2=3×2+3=9,v 3=9×2=18. 故答案为:18.17.(1)(2)(4)【解析】分析:(1)频率分布直方图中每个小矩形的高不该组的频率值;(2)先考虑点是切点的情形求出切线方程然后设切点为(x0y0)根据切点与点(2-2)的斜率等于切线的斜率建立等量关解析:(1)(2)(4) 【解析】分析:(1)频率分布直方图中每个小矩形的高不该组的频率值;(2)先考虑点22-(,)是切点的情形,求出切线方程,然后设切点为(x 0,y 0),根据切点与点(2,-2)的斜率等于切线的斜率建立等量关系,解之即可求出切点,从而求出切线方程.对于(3),利用平均数与方差的性质分别进行解答即可得出答案. 对于(4),由对立事件的定义可知其错误.详解:对于(1),频率分布直方图中每个小矩形的高是该组的频率与组距的比值,∴(1)错误;对于(2), 设直线222233|9x l y k x y x y =+=-'=-∴'=-Q :().,, 又∵直线与曲线均过点22-(,),于是直线22y k x ()+=- 与曲线33y x x =- 相切于切点22-(,)时,9k =-. 若直线与曲线切于点0002x y x ≠(,)(), 则320000000002232122y y k y x x x x x x ++==-∴=-----Q ,,,又200|33k y x x x ='==-Q ,2220000021332240x x x x x ∴---=-∴--=,, 200021330x x k x ≠∴=-∴=-=Q ,,,故直线l 的方程为9160x y +-=或2y =-.故(2)错;对于(3),若样本1210,,x x x L 的平均数是5,方差是3,则数据121021,21,,21x x x +++L 的平均数是25111,⨯+= ,方差是22312⨯=.故(3)正确;对于(4),掷一颗质地均匀的骰子,事件“向上点数不大于4”和事件“向上点数不小于3”不是对立事件.故(4)错误. 故选(1)(2)(4)点睛:本题考查了频率分布直方图的应用问题,考查了利用导数研究曲线上某点切线方程,考查了样本平均数,方差,考查了对立事件的定义,是基础题..18.或【解析】设样本数据的平均数为则方差:结合可得:即样本数据的平均数为2或-2则样本数据的平均数为:或故答案为或点睛:平均数与方差都是重要的数字特征是对总体的一种简明的描述它们所反映的情况有着重要的实解析:5或3- 【解析】设样本数据的平均数为a ,则方差:()()522152215522115221522115125125512555155i i i i i i i i i i i i i s a a a aa a a a a a a a a a a a =======-=-+⎛⎫=-+ ⎪⎝⎭⎛⎫=-⨯+ ⎪⎝⎭⎛⎫=- ⎪⎝⎭∑∑∑∑∑∑ 结合()222222123451205s a a a a a =++++-可得:2520,2a a =∴=±, 即样本数据12345,,,,a a a a a 的平均数为2或-2,则样本数据1234521,21,21,21,21a a a a a +++++的平均数为:2215⨯+=或()2213⨯-+=-.故答案为5或3-.点睛:平均数与方差都是重要的数字特征,是对总体的一种简明的描述,它们所反映的情况有着重要的实际意义,平均数、中位数、众数描述其集中趋势,方差和标准差描述其波动大小.要注意其区别与联系.19.232【解析】由图可知:段的频率为则频数为人解析:232 【解析】由图可知:64.576.5~段的频率为1(0.010.030.050.050.07)20.58-++++⨯=, 则频数为4000.58232⨯=人.20.【解析】由题意∴x 与y 组成的线性回归方程必过点(154) 解析:()1.5,4【解析】由题意,()()110123 1.5,1357444x y =+++==+++= ∴x 与y 组成的线性回归方程必过点(1.5,4)三、解答题21.(1)见解析;(2)ˆ0.72860.8575yx =-;(3)机器的转速应控制在14.9转/秒以下 【解析】 【分析】(1)由表中数据做图(2)根据线性回归方程中公式求ˆ,ba 即可写出方程(3)利用线性回归方程建立不等式求解. 【详解】(1)画出散点图,如图所示:(2)4421112.5,8.25,438,660,i ii i i x y x yx ======∑∑41422214438412.58.250.7286660412.ˆ54i i i i i x y xy bx x ==--⨯⨯∴==≈-⨯-∑∑,8.250.728612.50.857ˆˆ5ay bx =-≈-⨯=-. 故回归直线方程为0.72860.8575ˆyx =-. (3)要使100.72860.857510y x ≤-≤,则,14.9019x ≤.故机器的转速应控制在14.9转/秒以下. 【点睛】本题主要考查了散点图,线性回归方程,利用线性回归方程解决问题,属于中档题. 22.(1)答案见解析.(2)96 【解析】 【分析】(1)根据表中所给数据,计算出||r ,即可求得答案.(2)每小时加工零件的数量,即60x =,将60x =代入ˆ0.65757yx =+,即可求得答案. 【详解】(1)由表中数据得:6117950i ii x y==∑,6219100i i x ==∑,62139158i i y ==∑,35,80x y ==∴0.05||0.997r r ==>从而有95%的把握认为x 与y 之间具有线性相关关系,∴此求回归直线方程是有意义的.计算得:ˆˆ0.657,57ba== ∴ˆ0.65757yx =+ (2)Q 每小时加工零件的数量,即60x =将60x =代入ˆ0.65757y x =+ ˆ96.42y= 故每小时加工零件的数量额定为96比较合理 【点睛】本题考查回归直线方程以及应用,考查基本分析与求解能力,属基本题.23.(1) ˆ0.12 1.93yx =-. (2) 随着医护专业知识的提高,个人的关爱患者的心态会变得更温和,耐心。
福建省厦门双十中学2023届高三上学期期中考试数学试题(解析版)
厦门双十中学2022-2023学年(上)期中考试高三数学试题注意事项:1.答题前,考生务必用0.5mm 黑色签字笔将自己的姓名、准考证号、考场号、座位号填写在答题卡上,并认真核准条形码上的准考证号、姓名、考场号、座位号,在规定的位置贴好条形码.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将答题卡交回.一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集=U R ,集合2{0,1,2},{|0}A B x x x ==+=,则下列关于集合,A B 关系的韦恩图正确的是()A. B. C. D.【答案】A 【解析】【分析】解出集合B ,结合集合A 即可得答案.【详解】由集合2{|0}B x x x =+=,{0,1}B =-,又集合{0,1,2}A =,所以{0}A B = ,结合选项就得A 故选:A.2.已知复数z =,则z 的共轭复数z =()A.14-- B.13i 2- C.14-+ D.13i 2-+【答案】C 【解析】【分析】根据复数代数形式的四则运算求出z,再根据共轭复数的概念即可解出.【详解】由)()2i i13i41z---===+,知14z-+=.故选:C.3.已知a,R,0b ab∈≠,则使11a b<成立的一个充分不必要条件是()A.a b>B.0a b<< C.()0ab a b-> D.0a b>>【答案】D【解析】【分析】由题意只要利用不等式的性质即可判断.【详解】解:由题意得:对于选项A:a b>不能推出11a b<,若1,2a b==-,则11a b>,故a b>不是11a b<的充分条件,故A 错误;对于选项B:11a ba b<<⇒>,故0a b<<不是11a b<的充分条件,故B错误;对于选项C:()()221110,000ab a b ab ab a ba b b a->≠⇒⋅->⇒->,故可知()0ab a b->是11a b<成221110,00()0ab a b ab a bb a b⎛⎫<≠⇒-<⇒->⎪⎝⎭所以()0ab a b->是11a b<的充分必要条件,故C错误;对于选项D:11a ba b>>⇒<,故0a b>>是11a b<的充分条件,但是11a b<不能推出0a b>>,若2a=-,=3b,则不满足0a b>>,故0a b>>是11a b<的充分不必要条件,故D正确.故选:D4.将3πsin34y x⎛⎫=-⎪⎝⎭图象上每一个点的横坐标变为原来的3倍(纵坐标不变),得到()y g x=的图象,再将()y g x=图象向左平移3π4,得到()y xϕ=的图象,则()y xϕ=的解析式为()A.siny x= B.cosy x= C.sin9y x= D.3πsin92y x⎛⎫=-⎪⎝⎭【答案】A【解析】【分析】根据三角函数图象平移规律可得答案.【详解】将3πsin 34y x ⎛⎫=- ⎪⎝⎭图象上每一个点的横坐标变为原来的3倍(纵坐标不变),得到()3πsin 4⎛⎫- ⎪⎝⎭=x g x 的图象,再将()y g x =图象向左平移3π4,得到()3π3πsin sin 44x x x ϕ⎡⎤⎛⎫=+-= ⎪⎢⎝⎭⎣⎦的图象,故选:A.5.如图,在ABC 中,π3BAC ∠=,2AD DB =,P 为CD 上一点,且满足12AP mAC AB =+ ,若2AC = ,3AB =,则||AP 的值为()A.B.132C.3D.4【答案】B 【解析】【分析】设CP CD λ=,根据平面向量线性运算及平面向量基本定理求出λ、m 的值,依题意可得ADC△为等边三角形,求出CP ,再由余弦定理求出AP 即可;【详解】解:设CP CD λ=,则221()(1)332AP AC CP AC CD AC AB AC AB AC AB mAC λλλλ=+=+=+-=+-=+,∴21=32=1m λ-λ⎧⎪⎨⎪⎩,解得3=41=4m λ⎧⎪⎪⎨⎪⎪⎩.因为3AB = ,所以223AD AB ==,又2AC = ,π3BAC ∠=,所以ADC △为等边三角形,所以π3ACD ∠=,3342CP CD ==,由余弦定理22222331132cos 2222224AP A A C C CD C C D D A ⎛⎫=+-⋅+-⨯⨯⨯= ⎪⎝⎭∠=,所以2AP =;故选:B6.已知()0,πα∈,且3cos 28cos 5αα-=,则sin 2α=()A.459-B.C.49-D.4527-【答案】A 【解析】【分析】结合二倍角公式、同角三角函数的基本关系式求得正确答案.【详解】由于3cos 28cos 5αα-=,所以()232cos18cos 5αα--=,解得2cos 3α=-或cos 2α=(舍去),由于()0,πα∈,所以5sin 3α==,所以45sin 22sin cos 9ααα==-.故选:A7.纳皮尔是苏格兰数学家,其主要成果有球面三角中的纳皮尔比拟式、纳皮尔圆部法则(1614)和纳皮尔算筹(1617),而最大的贡献是对数的发明,著有《奇妙的对数定律说明书》,并且发明了对数表,可以利用对数表查询出任意对数值.现将物体放在空气中冷却,如果物体原来的温度是1T (℃),空气的温度是0T (℃),经过t 分钟后物体的温度T (℃)可由公式()()310304log log t T T T T =---⎡⎤⎣⎦得出;现有一杯温度为70℃的温水,放在空气温度为零下10℃的冷藏室中,则当水温下降到10℃时,经过的时间约为()参考数据:lg 20.301≈,lg 30.477≈.A.3.048分钟 B.4.048分钟C.5.048分钟D.6.048分钟【答案】C 【解析】【分析】先将已知数据代入公式,再用对数运算性质得到34log 4,用换底公式将3为底的对数换成10为底的对数,代入已知对数值计算即可.【详解】依题意,170T =,010T =-,10T =,代入公式得:()()()31030334log log 4log 80log 20t T T T T =---=-⎡⎤⎣⎦33804lg 44log 4log 420lg 3===8lg 280.301 5.048lg 30.477⨯=≈≈(分钟),故选:C.8.设0.010.01e a =,199b =,ln 0.99c =-,则()A.c<a<b B.c b a <<C.a b c << D.a c b<<【答案】A 【解析】【分析】根据给定数的特征,构造对应的函数,借助导数探讨单调性比较函数值大小作答.【详解】令函数e ,,ln(1)1xxy x t u x x===---,1)x ∈-,显然0,0y t >>,则ln ln ln [ln ln(1)]ln(1)y t x x x x x x -=+---=+-,令()ln(1)f x x x =+-,1)x ∈-,求导得1()1011x f x x x '=+=<--,即()f x 在1)上单调递减,1)x ∀∈-,()(0)0f x f <=,即ln ln y t y t <⇔<,因此当1)x ∈-时,e 1xx x x <-,取0.01x =,则有0.010.0110.01e 10.0199a b =<==-,令()e ln(1)xg x y u x x =-=+-,1)x ∈-,21(1)e 1()(1)e 11x xx g x x x x -+'=++=--,令2()(1)e 1x h x x =-+,1)x ∈-,2()(21)e 0x h x x x '=+-<,()h x在1)-上单调递减,1)x ∀∈-,()(0)0h x h <=,有()0g x '>,则()g x 在1)-上单调递增,1)x ∀∈-,()(0)0g x g >=,因此当1)x ∈-时,e ln(1)x x x >--,取0.01x =,则有0.010.01e ln(10.01)ln 0.99a c =>--=-=,所以c<a<b .故选:A【点睛】思路点睛:涉及某些数或式大小比较,探求它们的共同特性,构造符合条件的函数,利用函数的单调性求解即可.二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合得题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知1sin cos 5αα-=,且α为锐角,则下列选项中正确的是()A.12sin cos 25αα= B.7sin cos 5αα+=C.0,4πα⎛⎫∈ ⎪⎝⎭D.4tan 3α=【答案】ABD 【解析】【分析】根据()2sin cos 12sin cos αααα±=±,并结合α为锐角求解即可.【详解】解:因为1sin cos 5αα-=,所以242sin cos 25αα=,即12sin cos 25αα=所以()249sin cos 12sin cos 25αααα+=+=,因为α为锐角,所以7sin cos 5αα+=,所以43sin ,cos 55αα==,所以4tan 13α=>,所以,42⎛⎫∈⎪⎝⎭ππα故选:ABD10.已知1F ,2F 是双曲线E :()222210,0x y a b a b-=>>的左、右焦点,过1F 作倾斜角为30°的直线分别交y 轴与双曲线右支于点M ,P ,1PM MF =,下列判断正确的是()A.21π3PF F Ð=B.2112MF PF =C.ED.E 的渐近线方程为y =【答案】BD 【解析】【分析】根据题意得2//OM PF ,212PF F F ⊥,2112MF PF =;由212PF F F ⊥知:22b PF a=,又122F F c =,1230PF F ∠= ,求解离心率,根据离心率求解渐近线方程即可判断.【详解】如下图所示,因为1PM MF =,即M 为1PF 中点,O 为12F F 中点,所以2//OM PF ,因为12OM F F ⊥,所以212PF F F ⊥,所以21π2PF F ∠=,2112MF PF =,A 错误,B 正确;由212PF F F ⊥知222221PF c a b -=,所以22b PF a =,又122F F c =,1230PF F ∠= ,所以22c a=)222c a ac -=220e --=,解得:e =C 错误;所以==c e a ,所以223c a =,所以22222b c a a =-=,所以ba=所以E 的渐近线方程为y =,D 正确.故选:BD .11.已知()[]()sin 1,1f x x x x =+∈-,且实数a ,b 满足()()10f a f b +-=成立,则以下正确的是()A.ab 的最大值为14B.ab 的最小值为2-C.14a b+的最小值为9 D.b a -的最大值为3【答案】ABD 【解析】【分析】根据条件可得1a b +=,其中[]1,1a ∈-,[]0,2b ∈,即可判断每个选项正误.【详解】()f x 为奇函数,()()()()()10111f a f b f a f b f b a b +-=⇒=--=-⇒=-,()f x 定义域为[]1,1-,则[]1,1a ∈-,[][]11,10,2b b -∈-⇒∈,并且1a b +=,()21111424ab b b b ⎛⎫=-=--≤ ⎪⎝⎭,A 正确;当2b =,1a =-时,ab 最小值为2-,b a -最大值为3,B 、D 正确;14121a b+=-+=,C 错误.故选:ABD.【点睛】本题考查函数奇偶性的应用,属于基础题.12.如图,若正方体的棱长为1,点M 是正方体1111ABCD A B C D -的侧面11ADD A 上的一个动点(含边界),P 是棱1CC 的中点,则下列结论正确的是()A.当M 为AD 中点时,三棱锥M -BDP 的体积为124B.沿正方体的表面从点A 到点P 的最短路程为132C.若保持PM =,则点M 在侧面内运动路径的长度为3πD.若M 在平面11ADD A 内运动,且111MD B B D B ∠=∠,点M 的轨迹为抛物线【答案】ABC 【解析】【分析】求得三棱锥M -BDP 的体积判断选项A ;依据同一平面内两点之间线段最短判断选项B ;先判断出点M 在侧面内运动的轨迹,再去求得其长度判断选项C ;建立空间直角坐标系求得点M 的轨迹方程判断选项D.【详解】选项A :当M 为AD 中点时,11111113322224M BDP P BDM BDM V V S PC --==⋅=⨯⨯⨯⨯=△.判断正确;选项B :将平面ABCD 与平面11BB C C 展开在同一平面,连接AP ,则2222313122AP AD PD ⎛⎫=+=+=⎪⎝⎭又将平面ABCD 与平面11DD C C 展开在同一平面,连接AP ,则2222313122AP AB PB ⎛⎫=+=+= ⎪⎝⎭综上,沿正方体的表面从点A 到点P 的最短路程为132.判断正确;选项C :取1DD 中点E ,连接,PE ME PM,则PE ⊥平面11AA D D ,PE ME ⊥,则()2222=211ME PM PE -=-则点M 在侧面11AA D D 内运动轨迹为以E 为圆心半径为1的劣弧,分别交11AD A D 、于21M M 、,则121π3D E D M M E ∠=∠=则21π3M M E ∠=,劣弧21M M 的长为ππ1=33⨯.判断正确;选项D :以D 为原点,分别以DA 、DC 、1DD 为x 、y 、z 轴建立空间直角坐标系如图:则11(1,1,0),(1,1,1),(0,0,0),(0,0,1)B B D D ,设(,0,)M m n ,[],0,1m n ∈则1111(1,1,1),(,0,1),(1,1,0)D B D M m n D B =-=-=11122111cos 3(1)D B D M MD B D B D M m n ⋅∠==⋅⋅+- 11111111116cos 332D B D B B D B D B D B ⋅∠==⋅⋅ 又()1110,πMD B B D B ∠=∠∈,则111cos cos MD B B D B ∠=∠221633(1)m n =⋅+-整理得2222210m n mn m n ++--+=即10m n +-=10m n +-=,[],0,1m n ∈表示线段,则点M 的轨迹不为抛物线.判断错误.故选:ABC三、填空题:本题共4小题,每小题5分,共20分.13.已知平面向量a ,b 满足()3,4a =r ,6a b ⋅=,7a b -= ,则b = ______.【答案】6【解析】【分析】先由a的坐标,得到a r ,然后根据7a b -= ,两边同时平方,即可求得b .【详解】因为()3,4a =r,则5a = ,又因为6a b ⋅=,7a b -= ,所以22249a a b b -⋅+=r r r r ,即2366b b =⇒=r r 故答案为:6.14.若函数2())f x x x =为奇函数,则=a ________.【答案】1【解析】【分析】根据题意,求出()f x 的表达式,由奇函数的定义可得()()0f x f x +-=,变形计算可得a 的值,验证即可得答案.【详解】解:因为函数())2lnf x x x =-为奇函数,所以()()0f x f x -+=,而())2lnf x x x -=,则()()))22lnlnf x f x x x x x+-=-++)))()22222lnlnlnln x x x x xx x x a x ⎡⎤=-++=-+=+-⎢⎥⎣⎦2ln 0x a ==,所以ln 0a =,则=1a .故答案为:1.15.写出与圆221x y +=和圆()()224316x y -++=都相切的一条切线方程___________.【答案】1y =或247250x y ++=或4350x y --=【解析】【分析】先判断两圆位置关系,再分情况依次求解可得.【详解】圆221x y +=的圆心为()0,0O ,半径为1;圆()()224316x y -++=的圆心为()4,3C -,半径为4,圆心距为5OC =,所以两圆外切,如图,有三条切线123,,l l l ,易得切线1l 的方程为1y =,因为3l OC ⊥,且34OC k =-,所以343l k =,设34:3l y x b =+,即4330x y b -+=,则()0,0O 到3l 的距离315b =,解得53b =(舍去)或53-,所以343:50x y l --=,可知1l 和2l 关于3:4OC y x =-对称,联立341y x y ⎧=-⎪⎨⎪=⎩,解得4,13⎛⎫- ⎪⎝⎭在2l 上,在1l 上任取一点()0,1,设其关于OC 的对称点为()00,x y ,则0000132421314y x y x +⎧=-⨯⎪⎪⎨-⎛⎫⎪⨯-=- ⎪⎪⎝⎭⎩,解得002425725x y ⎧=-⎪⎪⎨⎪=-⎪⎩,则27124252447253l k --==--+,所以直线2244:173l y x ⎛⎫-=-+ ⎪⎝⎭,即247250x y ++=,综上,切线方程为1y =或247250x y ++=或4350x y --=.故答案为:1y =或247250x y ++=或4350x y --=.16.如图,在四棱锥P ABCD -的平面展开图中,四边形ABCD 是矩形,ABE 是等边三角形,AD AH ⊥,1AD =,2AB =.则平面展开图中sin GCF ∠=___________,四棱锥P ABCD -的外接球半径为___________.【答案】①.35##0.6②.6【解析】【分析】由题意可得sin sinBCF DCG ∠=∠=22GCF BCF DCG ππ∠=-∠-∠-,然后利用三角恒等变换公式可求得sin GCF ∠的值,如图,连接,AC BD 交于点M ,四棱锥P ABCD -的外接球球心为O ,由已知条件可得平面ABCD ⊥平面ABP ,取AB 的中点H ,连接PH ,则PH ⊥平面ABCD ,设ABP 的外接圆圆心为N ,连接,OM ON ,从而可得四边形OMHN 是矩形,连接OD ,利用勾股定理可求得结果【详解】因为在四棱锥P ABCD -的平面展开图中,四边形ABCD 是矩形,ABE 是等边三角形,AD AH ⊥,1AD =,2AB =,所以sin sinBCF DCG ∠=∠=所以sin sin(2)2GCF BCF DCG ππ∠=-∠-∠-,sin(222DCG ππ=-∠-,cos 2DCG=-∠2432sin 12155DCG =∠-=⨯-=,如图,连接,AC BD 交于点M ,四棱锥P ABCD -的外接球球心为O ,在四棱锥P ABCD -中,,AD AP AD AB ⊥⊥,AP AB A = ,所以AD ⊥平面ABP ,因为AD ⊂平面ABCD ,所以平面ABCD ⊥平面ABP ,取AB 的中点H ,连接PH ,因为PAB 为等边三角形,所以PH AB ⊥,因为平面ABCD ⋂平面ABP AB =,PH ⊂平面ABP ,所以PH ⊥平面ABCD ,设ABP 的外接圆圆心为N ,连接,OM ON ,则OM ⊥平面ABCD ,ON ⊥平面ABP ,则OM ∥PH ,可证得ON ∥MN ,所以四边形OMHN 是矩形,连接OD ,由于PAB 为等边三角形,所以113323323NH PH ==⨯⨯=,所以33OM =,设四棱锥P ABCD -的外接球半径为R ,则22215193412R OM DM =+=+=,解得576R =,故答案为:35,576四、共解答题:本题共6小题,共70分.解答应写出文字说明、、证明过程或演算步骤.17.正项等差数列{}n a 满足14a =,且247,2,28+-a a a 成等比数列,{}n a 的前n 项和为n S .(1)求数列{}n a 的通项公式;(2)令12n n b S =+,求数列{}n b 的前n 项和n T .【答案】(1)22n a n =+;(2)24n n +【解析】【分析】(1)假设公差,由等比中项列式,解出公差由等差数列通项公式即可求出;(2)求出n S ,表示出n b ,由其特点,利用裂项相消的方法求前n 项和.【详解】(1)设数列{}n a 公差为0d d (>),由已知得:()()2274282a a a -=+,化简得:24120d d +-=,解得:2d =或6d =-(舍),所以()1122n a a n d n =+-=+.(2)因为()()1226+322n n a a n n Sn n n ++===,所以()()2111112321212n n b S n n n n n n ====-+++++++,所以123n n T b b b b ⋯=++++=11111111-+-+-+...23344512n n ⎛⎫⎛⎫⎛⎫⎛⎫+- ⎪ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭⎝⎭=11-2224n n n =++.【点睛】本题考查数列通项公式及前n 项和的求法,求通项时若已知数列类型可设首项及公差或公比然后列式解方程,求和时若通项为分式类型,则可考虑尝试裂项相消的求法.18.如图,在ABC 中,2AB =,3cos cos cos a B b C c B -=,点D 在线段BC 上.(1)若34ADC π∠=,求AD 的长;(2)若2BD DC =,ACD 的面积为423,求sin sin BAD CAD ∠∠的值.【答案】(1)83AD =;(2).【解析】【分析】(1)利用正弦定理结合两角和的正弦公式化简可得出cos B ,利用同角三角函数的平方关系可求得sin B 的值,然后在ABD △中,利用正弦定理可求得AD 边的长;(2)设CD t =,则2BD t =,利用三角形的面积公式可求得t 的值,然后在ABD △、ACD 中利用正弦定理,再结合sin sin ADB ADC ∠=∠,可求得结果.【小问1详解】解:因为3cos cos cos a B b C c B -=,由正弦定理可得()()3sin cos sin cos cos sin sin sin sin A B B C B C B C A A π=+=+=-=,()0,A π∈ ,则sin 0A >,故1cos 3B =,则B为锐角,所以,sin 3B ==,34ADC π∠=,则4ADB π∠=,在ABD △中,由正弦定理得sin sin AD ABB ADB=∠,∴22232=,解得83AD =.【小问2详解】解:设CD t =,则2BD t =,423ACD S =△,则3ABC ACD S S ==△△,即1222323t ⨯⨯⨯=2t =,故36BC t ==,由余弦定理可得AC =在ABD △中,由正弦定理可得sin sin BD ABBAD ADB =∠∠,故sin 2sin BAD ADB ∠=∠,在ACD 中,由正弦定理可得sin sin CD AC CAD ADC=∠∠,故2sin 4CAD ADC ∠=∠,因为()sin sin sin ADB ADC ADC π∠=-∠∠,所以,sin sin 24BAD CAD ∠==∠19.平潭国际“花式风筝冲浪”集训队,在平潭龙凤头海滨浴场进行集训,海滨区域的某个观测点观测到该处水深y (米)是随着一天的时间t (0≤t ≤24,单位小时)呈周期性变化,某天各时刻t 的水深数据的近似值如表:t (时)03691215182124y (米)1.52.41.50.61.42.41.60.61.5(1)根据表中近似数据画出散点图(坐标系在答题卷中).观察散点图,从①sin()y A t ωϕ=+,②cos()y A t b ωϕ=++,③sin y A t b ω=-+(0,0,0)A ωπϕ>>-<<.中选择一个合适的函数模型,并求出该拟合模型的函数解析式;(2)为保证队员安全,规定在一天中的5~18时且水深不低于1.05米的时候进行训练,根据(1)中的选择的函数解析式,试问:这一天可以安排什么时间段组织训练,才能确保集训队员的安全.【答案】(1)作图见解析;选②cos()y A t b ωϕ=++做为函数模型,0.9sin 1.56y t π⎛⎫=+ ⎪⎝⎭(2)安排早上5点至7点以及11点至18点【解析】【分析】(1)根据表中近似数据画出散点图,选②cos()y A t b ωϕ=++做为函数模型,由此利用三角函数的图象和性质求出该拟合模型的函数解析式即可.(2)由0.9sin 1.56y t π⎛⎫=+ ⎪⎝⎭,令y ≥1.05,得1sin 62t π⎛⎫≥- ⎪⎝⎭,从而解出121127k t k -≤≤+,即可求出结果.【小问1详解】根据表中近似数据画出散点图,如图所示:结合散点图可知,图形进行了上下平移和左右平移,故选②cos()y A t b ωϕ=++做为函数模型,∴ 2.40.6 2.40.60.9 1.522A b -+====,,∵2126T ππωω==∴=,,∴0.9cos 1.56y t πϕ⎛⎫=++ ⎪⎝⎭,又∵函数y =0.9cos (6t π+φ)+1.5的图象过点()3,2.4,∴2.40.9cos(3) 1.56πϕ=⨯++,∴cos 12πϕ⎛⎫+=⎪⎝⎭,∴sin 1ϕ=-,又∵0πϕ-<<,∴φ2π=-,∴0.9cos 1.50.9sin 1.5626y t t πππ⎛⎫⎛⎫=-+=+⎪ ⎪⎝⎭⎝⎭,【小问2详解】由(1)知:0.9sin 1.56y t π⎛⎫=+⎪⎝⎭令y ≥1.05,即0.9sin 1.5 1.056t π⎛⎫+≥ ⎪⎝⎭,∴1sin 62t π⎛⎫≥- ⎪⎝⎭,∴()722666k t k k Z πππππ-≤≤+∈,∴121127k t k -≤≤+,又∵5≤t ≤18,∵5≤t ≤7或11≤t ≤18,∴这一天可以安排早上5点至7点以及11点至18点的时间段组织训练,才能确保集训队员的安全.20.如图,三棱柱111ABC A B C -,底面ABC 是边长为2的正三角形,11A A A B =,平面ABC⊥平面11AA C C .(1)证明:1A C ⊥平面ABC ;(2)若BC 与平面1AA B 所成角的正弦值为7,求平面1AA B 与平面11BB C C 夹角的余弦值.【答案】(1)证明过程见解析(2)57【解析】【分析】(1)作出辅助线,由面面垂直得到线面垂直,进而得到线线垂直,得到BD ⊥1AC ,再证明出AB ⊥1AC ,从而得到1A C ⊥平面ABC ;(2)建立空间直角坐标系,利用空间向量求解面面角的余弦值.【小问1详解】取AB 的中点N ,AC 的中点D ,连接BD ,1A N ,CN ,因为底面ABC 是边长为2的正三角形,11A A A B =,所以1A N AB ⊥,BD ⊥AC ,CN ⊥AB ,因为ABC⊥平面11AA C C ,交线为AC ,因为BD ⊥AC ,所以BD ⊥平面1A AC ,因为1AC ⊂平面1A AC ,所以BD ⊥1AC ,因为1A N NC N = ,1,A N NC ⊂平面1A NC ,所以AB ⊥平面1A NC ,因为1AC ⊂平面1A NC ,所以AB ⊥1AC ,因为AB BD B = ,,AB BD ⊂平面ABC ,所以1A C ⊥平面ABC ;【小问2详解】过点C 作CF //AB ,以C 为坐标原点,CN 所在直线为x 轴,CF 所在直线为y 轴,1CA 所在直线为z 轴,建立空间直角坐标系,则()))()()()1110,0,0,,1,0,0,0,,0,2,,C BAA mB mC m --,0m >,()()()1,0,2,0,1,0AA m AB BC ===- ,()10,2,2CB =,设平面1AA B 的法向量为(),,t x y z =,则()()()()1,,0,,0,2,020t AA x y z m y mz t AB x y z y ⎧⋅=⋅=++=⎪⎨⎪⋅=⋅==⎩,解得:0y =,设1x =,则z m=,故31,0,t m ⎛⎫= ⎪ ⎪⎝⎭,故21cos ,7BC t BC t BC t⋅==⋅ ,因为0m >,解得:2m =,故31,0,2t ⎛⎫= ⎪ ⎪⎝⎭设平面11BB C C 的法向量为(),,n ab =,则()()()()1,,0,2,2220,,1,00nCB a b c b c n BC a b c b ⎧⋅=⋅=+=⎪⎨⋅=⋅-=-=⎪⎩,设1b =,则31,3c a =-=-,则3,1,13n ⎛⎫=-- ⎪ ⎪⎝⎭,设平面1AA B 与平面11BB C C 夹角的余弦值为θ,则5cos cos ,7t n t n t nθ⋅===⋅ ,故平面1AA B 与平面11BB C C 夹角的余弦值为57.21.在平面直角坐标系xOy 中,已知双曲线C :22221(0,0)x y a b a b -=>>的右焦点为()3,0,且经过点().(1)求双曲线C 的标准方程;(2)已知A ,B 是双曲线C 上关于原点对称的两点,垂直于AB 的直线l 与双曲线C 有且仅有一个公共点P .当点P 位于第一象限,且PAB 被x 轴分割为面积比为3:2的两部分时,求直线AB 的方程.【答案】(1)22163x y -=;(2)y =.【解析】【分析】(1)由题意可得22229811a b a b⎧+=⎪⎨-=⎪⎩,解方程组即可求出结果;(2)分别将直线AB 以及直线l 的方程与双曲线联立,表示出点B 与点P 的坐标,然后根据题意得到关于,k m 的方程组,解方程组即可求出结果.【小问1详解】因为22221(0,0)x y a b a b -=>>的右焦点为()3,0,且经过点(),所以22229811a b a b ⎧+=⎪⎨-=⎪⎩,解得2263a b ⎧=⎨=⎩.故双曲线C 的标准方程为22163x y -=.【小问2详解】由题意知,直线AB 的斜率存在且不为0,设AB 的方程为y kx =.联立22163x x y kx ⎧-=⎪⎨⎪=⎩消去y ,得()221260k x --=.由21200k k ⎧->⎨≠⎩得22k -<<且0k ≠,解得22612x k =-.因为l 与AB 垂直,所以设l 的方程为1y x m k=-+.联立221631x y y x m k ⎧-=⎪⎪⎨⎪=-+⎪⎩消去y ,化简得()()222224230k x kmx k m -+-+=.由22k -<<且0k ≠,得220k -≠.因为l 所以Δ0=,即()()22222168320k m km k ++-=,化简得()22232k m k =-,且点2222,22km mk P k k ⎛⎫- ⎪--⎝⎭.因为P 点位于第一象限,所以0m <,202k -<<.不妨设A ,B 分别位于双曲线的左、右两支上,记BP 与x 轴的交点为M .因为PAB 被x 轴分割为面积比为3:2的两部分,且PAO 与PBO 面积相等,所以POM 与BOM 的面积比为1:4,由此可得4P B y y =-.因此2242mk k ⨯=--,即()22222616122m k k k ⨯=--.又因为()22232k m k =-,所以223616212k k ⨯=--,解得225k =.因为02k -<<,所以5k =-,故直线AB的方程为y x =.【点睛】求双曲线的标准方程的基本方法是待定系数法.具体过程是先定形,再定量,即先确定双曲线标准方程的形式,然后再根据a ,b ,c ,e 及渐近线之间的关系,求出a ,b 的值.如果已知双曲线的渐近线方程,求双曲线的标准方程,可利用有公共渐近线的双曲线方程为()22220x y a bλλ-=≠,再由条件求出λ的值即可.22.已知函数ln ()()a x f x a R x+=∈.(1)当函数()f x 与函数()ln g x x =图象的公切线l 经过坐标原点时,求实数a 的取值集合;(2)证明:当10,2a ⎛⎫∈ ⎪⎝⎭时,函数()()h x f x ax =-有两个零点12,x x ,且满足12111x x a +<.【答案】(1)1ln 22⎧⎫⎨⎬⎩⎭;(2)证明见解析.【解析】【分析】(1)先利用导数的几何意义和函数()ln g x x =求出公切线方程,再将公切线方程与函数()f x 联立,表示21ln a x x e =-,再构造函数21()ln m x x x e=-利用导数求出其单调区间和值域,可求出a 的取值;(2)要证()h x 有两个零点,只要证2()ln k x ax x a =--有两个零点即可,而1x =时函数()k x 的一个零点,所以只需再利用导数研究此函数的性质即可,由于两个零点,一个是1x =,另一个在区间⎫+∞⎪⎭上,若设121,x x =>则12211111x x x +=+<+,所以只需利用导数证明11a <即可.【详解】解:(1)设公切线l 与函数()ln g x x =的切点为()00,x y ,则公切线l 的斜率()001k g x x '==,公切线l 的方程为:()0001y y x x x -=-,将原点坐标(0,0)代入,得01y =,解得0x e =,公切线l 的方程为:1y x e=,将它与ln ()a x f x x +=联立,整理得21ln a x x e=-.令21()ln m x x x e =-,对之求导得:22()x e m x ex-'=,令()0m x '=,解得x =当x ∈时,()0,()m x m x '<单调递减,值域为ln 2,2⎛⎫+∞ ⎪⎝⎭,当)x ∈+∞时,()0,()m x m x '>单调递增,值域为ln 2,2⎛⎫+∞ ⎪⎝⎭,由于直线l 与函数()f x 相切,即只有一个公共点,故实数a 的取值集合为1ln 22⎧⎫⎨⎬⎩⎭.(2)证明:2ln ()a x ax h x x+-=,要证()h x 有两个零点,只要证2()ln k x ax x a =--有两个零点即可.(1)0k =,即1x =时函数()k x 的一个零点.对()k x 求导得:1()2k x ax x '=-,令()0k x '=,解得x =x >()0,()k x k x '>单调递增;当0x <<时,()0,()k x k x '<单调递减.当x =()k x取最小值,(1)0k k <=,22221()ln (1)12k x ax x a ax x a ax x a ax x =-->---=-+->-+,必定存0x >2001()02u x ax x =-+>,即()()000k x u x >>.因此在区间上0x ⎫⎪⎭必定存在()k x 的一个零点.练上所述,()h x 有两个零点,一个是1x =,另一个在区间⎫+∞⎪⎭上.下面证明12111x x a+<.由上面步骤知()h x 有两个零点,一个是1x =,另一个在区间⎫+∞⎪⎭上.不妨设121,x x =>12211111x x x +=+<+11a +<即可.令1()1v a a =-,对之求导得21()0v a a'=--<,故()v a在定义域内单调递减,11()102v a v a ⎛⎫=->= ⎪⎝⎭,即11a <.【点睛】此题考查切线与导数的关系,利用导数研究函数零点个数,利用导数证明不等式,考查数学转换思想和计算能力,属于难题.第26页/共26页。
2023-2024学年福建省厦门市思明区双十中高三(上)期中数学试卷【答案版】
2023-2024学年福建省厦门市思明区双十中高三(上)期中数学试卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x |1<x <7},B ={x |x 2﹣4x ﹣5≤0},则A ∩B =( ) A .(﹣1,1) B .(﹣1,1)∪(5,7)C .[﹣1,7)D .(1,5]2.若2+ai 3−i=bi ,其中i 是虚数单位,a ,b ∈R 且b ≠0,设z =a +bi ,则|z|为( )A .2B .2√5C .6D .2√103.在平行四边形ABCD 中,点E 满足BD →=4BE →,CE →=λBA →+μBC →(λ,μ∈R),则λμ=( ) A .−316B .−38C .316D .14.记等比数列{a n }的前n 项和为S n .若S 3=3,S 8﹣S 5=﹣96,则S 6=( ) A .﹣3B .﹣6C .﹣21D .﹣245.已知tan(θ+π4)=2tanθ−7,则sin2θ=( )A .2B .±2C .±45D .456.已知正三棱柱ABC ﹣A 1B 1C 1与以△ABC 的外接圆为底面的圆柱的体积相等,则正三棱柱与圆柱的侧面积的比值为( ) A .12B .2πC .22D .27.已知抛物线C :y 2=4x 的焦点为F ,直线y =2x ﹣4与C 交于A ,B 两点,则cos ∠AFB =( ) A .45B .35C .−35D .−458.已知平面向量a →,b →,c →.满足|a →|=2,|a →−b →|=2√3,若对于任意实数x 都有|b →−x a →|≥|b →−a →|成立,且|c →−a →|≤1,则b →•c →的最大值为( ) A .2B .4C .6D .8二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分. 9.关于函数f (x )=2sin (2x −134π)的图象,下列说法正确的是( ) A .(π8,0)是曲线y =f (x )的一个对称中心B.x=5π8是曲线y=f(x)的一个对称轴C.曲线y=2sin2x向左平移58π个单位,可得曲线y=f(x)D.曲线y=2sin2x向右平移58π个单位,可得曲线y=f(x)10.声强级Li(单位:dB)与声强I(单位:W/m2)之间的关系是:Li=10lg II0,其中I0指的是人能听到的最低声强,对应的声强级称为闻阈.人能承受的最大声强为1W/m2,对应的声强级为120dB,称为痛阈.某歌唱家唱歌时,声强级范围为[70,80](单位:dB),下列选项中正确的是()A.闻阈的声强级为0.1dBB.此歌唱家唱歌时的声强范围为[10﹣5,10﹣4](单位:W/m2)C.如果声强变为原来的2倍,对应声强级也变为原来的2倍D.声强级增加10dB,则声强变为原来的10倍11.在三棱锥P﹣ABC中,P A⊥平面ABC,AC⊥BC,且P A=AC=BC=2,E为线段PC上的一个动点,则下列选项正确的是()A.三棱锥P﹣ABC的表面积是4+4√2B.直线PC与直线AB所成的角为60°C.|AE|+|BE|的最小值为√2+√6D.三棱锥P﹣ABC外接球的表面积为12π12.已知a>0,b>0,a2+b2﹣ab=2,|a2﹣b2|≤2,下面结论正确的是()A.a+b≥2√2B..a−b≤√63C.log2a+log2b≤1D.log2a+log23b≥2三、填空题:本题共4小题,每小题5分,共20分.13.若f(x)=1a x+1−m(a>0,且a≠1)是奇函数,则m=.14.从2至8的7个整数中随机取3个不同的数,则3个数的积为3的倍数的不同取法有.15.已知双曲线C:x2a2−y2b2=1(a>0,b>0)的右焦点为F,过F分别作C的两条渐近线的平行线与C交于A,B两点,若|AB|=2√3b,则C的离心率为.16.已知函数f(x)=x3+bx2+cx+c有三个零点,且它们的和为0,则b﹣c的取值范围是.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且(a ﹣c )(a +c )sin C =c (b ﹣c )sin B . (1)求A ;(2)若△ABC 的面积为√3,sin B sin C =14,求a 的值.18.(12分)记S n 为数列{a n }的前n 项和,且a 1=3,S n =na n −n 2+n . (1)求数列{a n }的通项公式; (2)设b n =(−1)n+1⋅a n +a n+1a n ⋅a n+1,求数列{b n }的前n 项和T n .19.(12分)如图所示,△ABC 为等边三角形,EA ⊥平面ABC ,EA ∥BD ,AB =BD =2,AE =1,M 为线段AB 上一动点.(1)若M 为线段AB 的中点,证明:ED ⊥MC . (2)若AM =3MB ,求二面角D ﹣CM ﹣E 的余弦值.20.(12分)小李从家出发步行前往公司上班,公司要求不晚于8点整到达,否则视为迟到.小李上班路上需要经过4个路口,每个路口遇到红灯的概率均为12,且相互独立.已知每遇到红灯的平均等候时长皆为1分钟,若没有遇到任何红灯则小李仅需10分钟即可到达公司.求: (1)要保证不迟到的概率高于90%,小李最晚在几点几分从家出发; (2)若小李连续两天7点48分从家出发,则恰有一天迟到的概率; (3)小李上班路上的平均时长.21.(12分)已知椭圆C :x 28+y 24=1,点N (0,1),斜率不为0的直线l 与椭圆C 交于点A ,B ,与圆N 相切且切点为M ,M 为AB 中点. (Ⅰ)求圆N 的半径r 的取值范围; (Ⅱ)求|AB |的取值范围.22.(12分)已知函数f (x )=e 2x +(a ﹣2)e x ﹣ax ﹣1. (1)讨论f (x )的单调性;(2)若g (x )=f (x )+(2﹣a )e x 在区间(0,+∞)上存在唯一零点x 0,求证:x 0<a ﹣2.2023-2024学年福建省厦门市思明区双十中高三(上)期中数学试卷参考答案与试题解析一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x |1<x <7},B ={x |x 2﹣4x ﹣5≤0},则A ∩B =( ) A .(﹣1,1) B .(﹣1,1)∪(5,7)C .[﹣1,7)D .(1,5]解:集合A ={x |1<x <7},B ={x |x 2﹣4x ﹣5≤0}={x |﹣1≤x ≤5},则A ∩B =(1,5]. 故选:D .2.若2+ai 3−i=bi ,其中i 是虚数单位,a ,b ∈R 且b ≠0,设z =a +bi ,则|z|为( )A .2B .2√5C .6D .2√10解:2+ai3−i=bi ,则2+ai =bi (3﹣i )=b +3bi ,故{b =23b =a ,解得a =6,b =2,所以|z|=|6−2i|=√62+(−2)2=2√10. 故选:D .3.在平行四边形ABCD 中,点E 满足BD →=4BE →,CE →=λBA →+μBC →(λ,μ∈R),则λμ=( ) A .−316B .−38C .316D .1解:因为BD →=4BE →,则CD →−CB →=4(CE →−CB →),整理得CE →=14CD →+34CB →=14BA →−34BC →,由平面向量基本定理可得:λ=14,μ=−34,所以λμ=14×(−34)=−316.故选:A .4.记等比数列{a n }的前n 项和为S n .若S 3=3,S 8﹣S 5=﹣96,则S 6=( ) A .﹣3B .﹣6C .﹣21D .﹣24解:根据题意,设等比数列{a n }的公比为q ,若S 3=3,S 8﹣S 5=﹣96,即a 1+a 2+a 3=3,a 6+a 7+a 8=q 5(a 1+a 2+a 3)=﹣96, 变形可得:q 5=﹣32,则q =﹣2;又由a 1+a 2+a 3=3,即a 1﹣2a 1+4a 1=3a 1=3,则有a 1=1,故S 6=a 1(1−q 6)1−q =1−643=−21.故选:C .5.已知tan(θ+π4)=2tanθ−7,则sin2θ=( )A .2B .±2C .±45D .45解:因为tan(θ+π4)=tanθ+tan π41−tanθtan π4=tanθ+11−tanθ=2tanθ−7,整理得tan 2θ﹣4tan θ+4=0,解得tan θ=2, 所以sin2θ=2sinθcosθsin 2θ+cos 2θ=2tanθtan 2θ+1=45.故选:D .6.已知正三棱柱ABC ﹣A 1B 1C 1与以△ABC 的外接圆为底面的圆柱的体积相等,则正三棱柱与圆柱的侧面积的比值为( ) A .12B .2πC .22D .2解:设△ABC 的边长为a ,外接圆半径为r ,AA 1=b ,由正弦定理得√32=2r ,则r =√33a ,V ABC−A 1B 1C 1=12⋅a ⋅a ⋅√32b =√34a 2b ,设圆柱的高为h ,V 圆柱=13a 2πℎ=√34a 2b ,∴b =4π3√3,正三棱柱的侧面积S 棱柱=3ab =4π33,圆柱的侧面积S 圆柱=2πrℎ=2π⋅√33aℎ,正三棱柱与圆柱的侧面积的比值为3a⋅3√3ℎ2π⋅√33a⋅ℎ=2,故选:D .7.已知抛物线C :y 2=4x 的焦点为F ,直线y =2x ﹣4与C 交于A ,B 两点,则cos ∠AFB =( ) A .45B .35C .−35D .−45解:∵抛物线C :y 2=4x 的焦点为F ,∴F 点的坐标为(1,0)又∵直线y =2x ﹣4与C 交于A ,B 两点,则A ,B 两点坐标分别为(1,﹣2)(4,4), 则FA →=(0,﹣2),FB →=(3,4),则cos ∠AFB =FA →⋅FB→|FA →|⋅|FB →|=−810=−45, 故选:D .8.已知平面向量a →,b →,c →.满足|a →|=2,|a →−b →|=2√3,若对于任意实数x 都有|b →−x a →|≥|b →−a →|成立,且|c →−a →|≤1,则b →•c →的最大值为( )A .2B .4C .6D .8解:设a →=OA →,b →=OB →,c →=OC →,xa →=OM →,b →,c →则如图所示,因为|b →−xa →|⩾|b →−a →|,所以|OB →−OM →|⩾|OB →−OA →|,即|MB →|⩾|AB →|,所以BA ⊥OA , 因为|a →|=2,|a →−b →|=2√3,所以∠AOB =60°,|b →|=4,由|c →−a →|⩽1,可得点C 在以A 为圆心,半径为1的圆面上(包括边界),过圆周上一点C 作OB 的垂线,垂足为D ,且DC 与⊙A 相切,延长DC 交OA 于N ,则b →⋅c →=|b →|⋅|c →|cos <b →,c →>⩽|b →||OD →|=4|OD →|,又根据相似知识可得OD =CA ⋅OA AN +CA =cos60°OA +CA =12×2+1=2,所以b →⋅c →的最大值为8,故选:D .二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分. 9.关于函数f (x )=2sin (2x −134π)的图象,下列说法正确的是( ) A .(π8,0)是曲线y =f (x )的一个对称中心B .x =5π8是曲线y =f (x )的一个对称轴 C .曲线y =2sin2x 向左平移58π个单位,可得曲线y =f (x )D .曲线y =2sin2x 向右平移58π个单位,可得曲线y =f (x )解:函数f(x)=2sin(2x−134π)的图象,对于A:当x=π8时,f(π8)=2sin(﹣3π)=0,故A正确;对于B:当x=5π8时,f(5π8)=2sin(5π4−13π4)=0,故B错误;对于C:曲线y=2sin2x向左平移58π个单位,得到y=f(x)=2sin(2x+5π4)=﹣2sin(2x+π4)的图象,故C错误;对于D:曲线y=2sin2x向右平移58π个单位,可得曲线y=f(x)=2sin(2x−5π4)=2sin(2x−134π)的图象,故D正确.故选:AD.10.声强级Li(单位:dB)与声强I(单位:W/m2)之间的关系是:Li=10lg II0,其中I0指的是人能听到的最低声强,对应的声强级称为闻阈.人能承受的最大声强为1W/m2,对应的声强级为120dB,称为痛阈.某歌唱家唱歌时,声强级范围为[70,80](单位:dB),下列选项中正确的是()A.闻阈的声强级为0.1dBB.此歌唱家唱歌时的声强范围为[10﹣5,10﹣4](单位:W/m2)C.如果声强变为原来的2倍,对应声强级也变为原来的2倍D.声强级增加10dB,则声强变为原来的10倍解:因为Li=101g II0=10lgI﹣10lgI0,当I=1W/m2时,Li=120,代入公式可得I0=10﹣12W/m2,对于A,当I=I0时,Li=10lg1=0,故选项A错误;对于B,由题意可得,70≤10lgI﹣10lg10﹣12≤80,即70≤10lgI+120≤80,所以﹣5≤lgI≤﹣4,解得10﹣5≤I≤10﹣4,故选项B正确;对于C,当I变为2I时,代入Li'=10lg(2I)﹣10lgI0≠2Li,故选项C错误;对于D,设声强变为原来的k倍,则10lg(kI)﹣10lgI=10,解得k=10,故选项D正确.故选:BD.11.在三棱锥P﹣ABC中,P A⊥平面ABC,AC⊥BC,且P A=AC=BC=2,E为线段PC上的一个动点,则下列选项正确的是()A .三棱锥P ﹣ABC 的表面积是4+4√2B .直线PC 与直线AB 所成的角为60°C .|AE |+|BE |的最小值为√2+√6D .三棱锥P ﹣ABC 外接球的表面积为12π解:如图所示,三棱锥P ﹣ABC 的表面积S =S △P AC +S △ACB +S △P AB +S △PCB =12×2×2+12×2×2+12×2√2×2+12×2×2√2=4+4√2,故A 正确; 建立如图所示空间直角坐标系,则C (0,0,0),A (2,0,0), B (0,2,0),P (2,0,2),AB →=(−2,2,0),CP →=(2,0,2),设直线PC 与直线AB 所成的角为θ,则cos θ=|cos <AB →,CP →>|=|AB →⋅CP→|AB →||CP →||=−422×22=12,∴θ=60°,即直线PC 与直线AB 所成的角为60°,故B 正确; 把三角形PCB 沿PC 翻折至平面P AC 内,则AB 1为所求,由题意可知,B 1G =CG =√2,则AB 12=(√2)2+(2+√2)2=8+4√2, 则AB 1=2√2+√2,即|AE |+|BE |的最小值为2√2+√2,故C 错误;取PB 中点O ,则OP =OA =OB =OC ,即O 为三棱锥P ﹣ABC 外接球的球心, 半径为12PB =12√22+22+22=√3,外接球的表面积为4π×(√3)2=12π,故D 正确.故选:ABD .12.已知a >0,b >0,a 2+b 2﹣ab =2,|a 2﹣b 2|≤2,下面结论正确的是( ) A .a +b ≥2√2 B ..a −b ≤√63C .log 2a +log 2b ≤1D .log 2a +log 23b ≥2解:a 2+b 2﹣ab =(a +b )2﹣3ab ≥(a +b )2−3(a+b)24=(a+b)24,所以a +b ≤2√2,a 2+b 2﹣ab ≥2ab ﹣ab =ab ,所以ab ≤2,log 2a +log 2b =log 2ab ≤1, A 选项错,C 选项对,令m=a+b,n=a﹣b,由对称性,不妨设a>b,所以m>n>0,4(a2+b2﹣ab)=m2+3n2=8,(a2﹣b2)2=(mn)2=(8﹣3n2)n2≤4,解得,n2≤23或n2≥2,若n2≥2,则m2≤2,与假设矛盾,所以n2≤23,所以a﹣b≤√63,所以有ab=m2−n24=2﹣n2≥43,所以log2a+log23b≥2,B,D选项正确,故选:BCD.三、填空题:本题共4小题,每小题5分,共20分.13.若f(x)=1a x+1−m(a>0,且a≠1)是奇函数,则m=12.解:∵f(x)=1a x+1−m,∴f(−x)=1a−x+1−m=a xa x+1−m,又f(x)是奇函数,则f(x)+f(﹣x)=0,∴1a x+1−m+a xa x+1−m=0,解得m=12.故答案为:1 2.14.从2至8的7个整数中随机取3个不同的数,则3个数的积为3的倍数的不同取法有25.解:2至8的7个整数中是3的倍数的有3和6两个,从2至8的7个整数中任取3个数,按3和6中取1个和2个分类可得取法数为C21C52+C22C51=25.故答案为:25.15.已知双曲线C:x2a2−y2b2=1(a>0,b>0)的右焦点为F,过F分别作C的两条渐近线的平行线与C交于A,B两点,若|AB|=2√3b,则C的离心率为√3+2.解:如图所示:设直线方程为y=ba(x−c),与双曲线方程x2a2−y2b2=1(a>0,b>0)联立,解得x=a2+c22c,y=−b32ac,因为|AB|=2√3b,所以2×b32ac=2√3b,即b2=2√3ac,即c2−2√3ac−a2=0,解得e=ca=√3+2.故答案为:√3+2.16.已知函数f (x )=x 3+bx 2+cx +c 有三个零点,且它们的和为0,则b ﹣c 的取值范围是 (274,+∞) .解:设x 1,x 2,x 3是f (x )的三个零点,则f (x )=(x ﹣x 1)(x ﹣x 2)(x ﹣x 3), 所以b =﹣(x 1+x 2+x 3)=0,所以f (x )=x 3+cx +c ,f ′(x )=3x 2+c , 若f (x )有三个零点,则f (x )有两个极值点, 故对于方程f ′(x )=0,Δ=﹣12c >0,c <0,f (x )的两个极值点分别为x 4=−√−c 3和x 5=√−c3,其中x 4为极大值点,x 5为极小值点.若f (x )存在三个零点,则需满足f (x 4)>0,且f (x 5)<0, 所以(−√−c 3)3−c√−c 3+c >0,解得c <−274,又因为f (x 5)<f (0)=c <0,所以b ﹣c 的取值范围是(274,+∞). 故答案为:(274,+∞). 四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且(a ﹣c )(a +c )sin C =c (b ﹣c )sin B . (1)求A ;(2)若△ABC 的面积为√3,sin B sin C =14,求a 的值.解:(1)因为(a ﹣c )(a +c )sin C =c (b ﹣c )sin B ,所以由正弦定理可得(a ﹣c )(a +c )c =bc (b ﹣c ),整理可得b 2+c 2﹣a 2=bc , 所以cos A =b 2+c 2−a 22bc =bc 2bc =12,因为A ∈(0,π), 所以A =π3;(2)因为A =π3,△ABC 的面积为√3=12bc sin A =√34bc ,所以bc =4,又sin B sin C =14,a sinA =b sinB =c sinC,所以bc sinBsinC=(a sinA)2,即414=(√32)2,解得a =2√3.18.(12分)记S n 为数列{a n }的前n 项和,且a 1=3,S n =na n −n 2+n . (1)求数列{a n }的通项公式;(2)设b n=(−1)n+1⋅a n+a n+1a n⋅a n+1,求数列{b n}的前n项和T n.解:(1)由题意,由S n=na n−n2+n,①可得S n+1=(n+1)a n+1−(n+1)2+n+1,②②﹣①,可得a n+1=(n+1)a n+1−(n+1)2+n+1−na n+n2−n,化简整理,得a n+1﹣a n=2,∴数列{a n}是以3为首项,2为公差的等差数列,∴a n=3+2•(n﹣1)=2n+1,n∈N*.(2)由(1),可得b n=(−1)n+1⋅a n+a n+1a n⋅a n+1=(−1)n+1⋅(1a n+1a n+1)=−(−1)na n+(−1)n+1a n+1,则T n=b1+b2+…+b n=[−−1a1+(−1)2a2]+[−(−1)2a2+(−1)3a3]+⋯+[−(−1)na n+(−1)n+1a n+1]=−−1a1+(−1)n+1a n+1=13+(−1)n+12n+3,∴T n=13+(−1)n+12n+3.19.(12分)如图所示,△ABC为等边三角形,EA⊥平面ABC,EA∥BD,AB=BD=2,AE=1,M为线段AB上一动点.(1)若M为线段AB的中点,证明:ED⊥MC.(2)若AM=3MB,求二面角D﹣CM﹣E的余弦值.(1)证明:因为M为线段AB的中点,且△ABC为等边三角形,所以CM⊥AB,因为EA⊥平面ABC,所以EA⊥CM,因为EA∥BD,所以A,B,D,E四点共面,因为AB∩AE=A,AB⊂平面ABDE,AE⊂平面ABDE,所以CM⊥平面ABDE,因为DE⊂平面ABDE,所以ED⊥MC;(2)解:设AB 的中点为O ,连接OC ,在平面ABDE 内,过点O 作ON ⊥AB 交ED 于点N ,所以ON ⊥平面ABC ,以O 为坐标原点,分别以OB ,OC ,ON 所在直线为x ,y ,z 轴建立空间直角坐标系,如图所示, 因为AB =BD =2,AE =1,AM =3MB ,所以M (12,0,0),C (0,√3,0),E (﹣1,0,1),D (1,0,2),所以MC →=(−12,√3,0),ME →=(−32,0,1),MD →=(12,0,2),设平面MCE 的一个法向量为m →=(x ,y ,z ),则{m →⋅MC →=−12x +√3y =0m →⋅ME →=−32x +z =0,令x =2√3,则y =1,z =3√3, 所以平面MCE 的一个法向量为m →=(2√3,1,3√3), 设平面MCD 的法向量为n →=(a ,b ,c ),则{n →⋅MC →=−12a +√3b =0n →⋅MD →=12a +2c =0,令a =2√3,则b =1,c =−√32,所以平面MCD 的法向量为n →=(2√3,1,−√32),所以cos <m →,n →>=m →⋅n →|m →|⋅|n →|=17240×√554=17√22220, 所以二面角D ﹣CM ﹣E 的余弦值为17√22220. 20.(12分)小李从家出发步行前往公司上班,公司要求不晚于8点整到达,否则视为迟到.小李上班路上需要经过4个路口,每个路口遇到红灯的概率均为12,且相互独立.已知每遇到红灯的平均等候时长皆为1分钟,若没有遇到任何红灯则小李仅需10分钟即可到达公司.求: (1)要保证不迟到的概率高于90%,小李最晚在几点几分从家出发; (2)若小李连续两天7点48分从家出发,则恰有一天迟到的概率;(3)小李上班路上的平均时长.解:(1)易知可知若7点46分出门,则一定不会迟到; 若7点47分出门,仅当遇到4个红灯时才会迟到, 此时迟到的概率为(12)4=116,不迟到的概率为1516>90%;若7点48分出门,则遇到3个或4个红灯会迟到,此时迟到的概率为C 43×(12)3×12+(12)4=516,不迟到的概率为1116<90%,所以若保证不迟到的概率高于90%,小李最晚在7点47分从家出发; (2)由(1)可知,小李7点48分从家出发迟到的概率为516,不迟到的概率为1116, 所以若两天都是7点48分出发,则恰有一天迟到的概率P =C 21×516×1116=55128; (3)易知X 的所有可能取值为10,11,12,13,14, 此时P(X =10)=P(X =14)=(12)4=116,P(X =11)=P(X =13)=C 41×(12)4=14,P(X =12)=C 42×(12)4=38,则X 的分布列为:故上班路平均时长为E(X)=10×116+11×14+12×38+13×14+14×16=12(分钟). 21.(12分)已知椭圆C :x 28+y 24=1,点N (0,1),斜率不为0的直线l 与椭圆C 交于点A ,B ,与圆N 相切且切点为M ,M 为AB 中点. (Ⅰ)求圆N 的半径r 的取值范围; (Ⅱ)求|AB |的取值范围.解:(1)如图所示, 由题意知,直线l 的斜率存在且不为0,设直线/方程 为 y =kx +m (k ≠0),A (x 1,y 1),B (x 2,y 2),设圆N 的半径为r , 联立方程组得{y =kx +mx 28+y 24=1,消去y 得(2k 2+1)x 2+4kmx +2m 2﹣8=0,Δ=16k 2m 2﹣4(2k 2+1)(2m 2﹣8)=8(8k 2﹣m 2+4)>0,x 1+x 2=−4km 2k 2+1,x 1x 2=2m 2−82k 2+1, 所以 y 1+y 2=k(x 1+x 2)+2m =−4k 2m 2k 2+1+2m =2m2k 2+1,又因为M为AB的中点,所以M(−2km2k2+1,m2k2+1),又因为圆N与直线l相切于点M,所以NM⊥l,且r=|MN|,k NM×k1=﹣1,所以k NM=m2k2+1−1−2m2k2+1−0=−1k,解得2k2+1=﹣m,所以M(2k,﹣1),Δ=8(8k2﹣m2+4)=8(8k2﹣(2k2+1)2+4]=8(2k2+1)(3﹣2k2)>0,解得:0<k2<32,所以r=|MN|=√(2k−0)2+(−1−1)2=2√k2+1(0<k2<3),所以1<k2+1<52⇒2<2√k2+1<√10,即2<r<√10,所以圆N的半径r的取值范围为(2,√10).(Ⅱ)由(Ⅰ)知,2k2+1=﹣m,所以|AB|=√1+k2×√(x1+x2)2−4x1x2=√1+k2×√(−4km2k2+1)2−4×2m2−82k2+1=√8(3−2k2)(k2+1)2k2+1(0<k2<32),令t=2k2+1,则k2=t−12(1<t<4),所以|AB|=√8(4−t)⋅t+12t=2√−t+4t+3,显然y=−t+4t+3在(1,4)上单调递减,所以0<−t+4t+3<6,所以0<2√−t+4t+3<2√6,即0<|AB|<2√6.故|AB|的取值范围为(0,2√6).22.(12分)已知函数f(x)=e2x+(a﹣2)e x﹣ax﹣1.(1)讨论f(x)的单调性;(2)若g(x)=f(x)+(2﹣a)e x在区间(0,+∞)上存在唯一零点x0,求证:x0<a﹣2.解:(1)由f(x)=e2x+(a﹣2)e x﹣ax﹣1,得f'(x)=2e2x+(a﹣2)e x﹣a=(e x﹣1)(2e x+a).(i)当a<0时,令f′(x)=0,则x1=0,x2=ln(−a ),①当ln(−a2)>0,即a<﹣2时,若0<x<ln(−a2),则f′(x)<0,f(x)在(0,ln(−a2))上递减;若x<0或x>ln(−a2),则f′(x)>0,f(x)在(﹣∞,0),(ln(−a2),+∞)上递增.②当ln(−a2)<0,即﹣2<a<0时,若ln(−a2)<x<0,则f′(x)<0,f(x)在(ln(−a2),0)上递减;若x>0或x<ln(−a2),则f′(x)>0,f(x)在(−∞,ln(−a2)),(0,+∞)上递增.③当ln(−a2)=0,即a=﹣2时,则f′(x)≥0,f(x)在R上递增.(ii)当a≥0时,令f′(x)=0,则x=0.若x<0,则f′(x)<0,f(x)在(﹣∞,0)上递减;若x>0,则f′(x)>0,f(x)在(0,+∞)上递增.综上,当a≥0时,f(x)的递减区间为(﹣∞,0),递增区间为(0,+∞);当﹣2<a<0时,f(x)的递减区间为(ln(−a2),0),递增区间为(−∞,ln(−a2)),(0,+∞);当a=﹣2时,f(x)的在R上单调递增;当a<﹣2时,f(x)的递减区间为(0,ln(−a2)),递增区间为(﹣∞,0),(ln(−a2),+∞).(2)证明:g(x)=e2x﹣ax﹣1,g'(x)=2e2x﹣a,g(0)=0.当a≤2时,g'(x)>0在(0,+∞)上恒成立,故g(x)在(0,+∞)上递增,则g(x)>g(0)=0,故不可能有零点.当a>2时,g(x)在(0,12lna2)上递减,在(12lna2,+∞)上递增,且g(0)=0,所以在(0,12lna2)上g(x)<0无零点,即g(12lna2)<0,且x趋向于正无穷时g(x)趋向正无穷,所以在(12lna2,+∞)上存在唯一x0,使g(x0)=e2x0−ax0−1=0.要证x0<a﹣2,只需g(a﹣2)=e2(a﹣2)﹣a(a﹣2)﹣1>0在a>2上恒成立即可.令t=a﹣2>0,h(t)=e2t﹣t(t+2)﹣1则h'(t)=2(e2t﹣t﹣1).令p(t)=e2t﹣t﹣1,则p'(t)=2e2t﹣1>0,即p(t)在(0,+∞)上递增,p(t)>p(0)=0.所以h'(t)>0,即h(t)在(0,+∞)上递增,h(t)>h(0)=0.所以g(a﹣2)=e2(a﹣2)﹣a(a﹣2)﹣1>0在a>2上恒成立,得证.故x0<a﹣2.。
福建省厦门双十中学2021届高三上学期期中考试数学试题(解析版)
福建省厦门双十中学2021届高三上学期期中考试数学试题一、单选题1.已知集合{}2230A x x x =--=,{}10B x ax =-=,若B A ⊆,则实数a 的值构成的集合是( ) A .11,03⎧⎫-⎨⎬⎩⎭,B .{}1,0-C .11,3⎧⎫-⎨⎬⎩⎭D .103⎧⎫⎨⎬⎩⎭,2.已知0a b >>,则下列不等式中总成立的是( )A .11a b b a +>+B .11a b a b +>+ C .11b b a a +>+D .11b a b a->-3.“跺积术”是由北宋科学家沈括在《梦溪笔谈》中首创,南宋数学家杨辉、元代数学家朱世杰丰富和发展的一类数列求和方法,有茭草垛、方垛、三角垛等.现有100根相同的圆柱形铅笔,某同学要将它们堆放成横截面为正三角形的垛,要求第一层为1根且从第二层起每一层比上一层多1根,并使得剩余的圆形铅笔根数最少,则剩余的铅笔的根数是( ) A .9B .10C .12D .134.已知函数()=f x 1x ,[)21x ∈+∞,,都有不等式()()12120f x f x x x ->-,则a 的取值范围是( )A .[]2,4B .[)2,+∞C .(]0,2D .[)4,+∞ 5.3D 打印属于快速成形技术的一种,它是一种以数字模型文件为基础,运用粉末状金属或塑料等可粘合材料,通过逐层堆叠累积的方式来构造物体的技术(即“积层造型法”).过去常在模具制造、工业设计等领域被用于制造模型,现正用于一些产品的直接制造,特别是一些高价值应用(比如髋关节、牙齿或一些飞机零部件等).已知利用3D 打印技术制作如图所示的模型.该模型为在圆锥底内挖去一个正方体后的剩余部分(正方体四个顶点在圆锥母线上,四个顶点在圆锥底面上),圆锥底面直径为,母线与底面所成角的正.打印所用原料密度为31 g/cm ,不考虑打印损耗,制作该模型所需原料的质量约为( )(取π 3.14=,精确到0.1)A .609.4gB .447.3gC .398.3gD .357.3g6.已知正项等比数列{}n a 中979a a =,若存在两项m a 、n a ,使2127m n a a a =,则116m n+的最小值为( ) A .5 B .215C .516D .6547.设O 为ABC 所在平面内一点,满足2730OA OB OC ++=,则ABC 的面积与BOC 的面积的比值为( ) A .6B .83C .127D .48.已知函数()()sin 0x f x x ωωω=>的图象与x 轴的两个相邻交点的距离为π,把()f x 图象上每一点的横坐标缩小到原来的一半,再沿x 轴向左平移3π个单位长度,然后纵坐标扩大到原来的2倍得到函数()g x 的图象,若()g x 在[],a a -上单调递增,则a 的最大值为( )A .12πB .6π C .4π D .512π二、多选题9.一副三角板由一块有一个内角为60︒的直角三角形和一块等腰直角三角形组成,如图所示,90,B F ∠=∠=︒60,45,A D BC DE ∠=︒∠=︒=,现将两块三角形板拼接在一起,得三棱锥F CAB -,取BC 中点O 与AC 中点M ,则下列判断中正确的是( )A .直线BC ⊥面OFMB .AC 与面OFM 所成的角为定值 C .设面ABF面MOF l =,则有l ∥ABD .三棱锥F COM -体积为定值.10.已知数列{}n a 满足:13a =,当2n ≥时,)211n a =-,则关于数列{}n a 说法正确的是( ) A .28a =B .数列{}n a 为递增数列C .数列{}n a 为周期数列D .22n a n n =+11.已知正数x ,y ,z 满足3212x y z ==,下列结论正确的有( )A .623z y x >>B .121x y z+=C.(3x y z +>+D .28xy z >12.在ABC 中,已知cos cos 2b C c B b +=,且111tan tan sin A B C+=,则( ) A .a 、b 、c 成等比数列 B.sin :sin :sin 2:1:A B C =C .若4a =,则ABC S =△D .A 、B 、C 成等差数列三、填空题13.记n S 为数列{}n a 的前n 项和,若21n n S a =-,则6a 等于_________. 14.若π1sin 33α-=⎛⎫⎪⎝⎭,则πcos 23α+=⎛⎫⎪⎝⎭________. 15.三棱锥P ABC -中,PA ⊥平面ABC ,60A ∠=,BC =4PA =,则三棱锥P ABC -外接球的表面积为__________.16.若对任意正实数,x y ,不等式()()2ln ln 1xx y y x a--+≤恒成立,则实数a 的取值范围a 为______.四、解答题17.在①1(1)(1)(41)n n n a n a n ++=+++;②1n n a a +-=;③184n n a a n --=-(2n ≥)三个条件中任选一个,补充在下面问题中,并求解. 问题:已知数列{}n a 中,13a =,__________. (1)求n a ; (2)若数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,证明:1132nT ≤<. 18.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c,且2sin cos sin b A B a B =+. (1)求角B 的大小;(2)设点D 是AC的中点,若BD =a c +的取值范围.19.如图,矩形ADFE 和梯形ABCD 所在平面互相垂直,//AB CD ,90ABC ADB ︒∠=∠=,1,2CD BC ==.(1)求证://BE 平面DCF ;(2)当AE 的长为何值时,直线AD 与平面BCE 所成角的大小为45°? 20.某快递公司在某市的货物转运中心,拟引进智能机器人分拣系统,以提高分拣效率和降低物流成本,已知购买x 台机器人的总成本21()150600p x x x =++万元. (1)若使每台机器人的平均成本最低,问应买多少台?(2)现按(1)中的数量购买机器人,需要安排m 人将邮件放在机器人上,机器人将邮件送达指定落袋格口完成分拣,经实验知,每台机器人的日平均分拣量()8(60),13015480,30m m m q m m ⎧-⎪=⎨⎪>⎩(单位:件),已知传统人工分拣每人每日的平均分拣量为1200件,问引进机器人后,日平均分拣量达最大值时,用人数量比引进机器人前的用人数量最多可减少多少?21.已知椭圆()2222:10x y C a b a b+=>>的离心率为12,1F 、2F 分别是椭圆的左、右焦点,P 是椭圆上一点,且12PF F △的周长是6. (1)求椭圆C 的方程;(2)设直线l 经过椭圆的右焦点2F 且与C 交于不同的两点M ,N ,试问:在x 轴上是否存在点Q ,使得直线QM 与直线QN 的斜率的和为定值?若存在,请求出点Q 的坐标;若不存在,请说明理由.22.已知函数1()211f x x a nx x=--+,a R ∈. (1)讨论函数()f x 的单调性;(2)当1a =时,正数1x ,2x 满足12()()2f x f x +=,证明:122x x +≥.参考答案1.A 【分析】解方程求得集合A ,分别在B =∅和B ≠∅两种情况下,根据包含关系构造方程求得结果. 【详解】由2230x x --=得:1x =-或3x =,即{}1,3A =-; ①当0a =时,B =∅,满足B A ⊆,符合题意; ②当0a ≠时,{}110B x ax a ⎧⎫=-==⎨⎬⎩⎭,B A ⊆,11a ∴=-或13a =,解得:1a =-或13a =;综上所述:实数a 的值构成的集合是11,0,3⎧⎫-⎨⎬⎩⎭. 故选:A . 【点睛】本题考查根据集合的包含关系求解参数值的问题,易错点是忽略子集为空集的情况,造成求解错误. 2.A 【分析】作差可判断A ,进而判断D ,取特殊值可判断B ,反证法可判断C. 【详解】 对于A ,()()()()11111a b ab a b a b a b a b b a b a ab ab -+-⎛⎫⎛⎫⎛⎫+-+=-+-=-+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,0a b >>,0a b ∴->,0ab >,110ab ∴+>>,()()1110a b ab a b b a ab -+⎛⎫⎛⎫∴+-+=> ⎪ ⎪⎝⎭⎝⎭,11a b b a∴+>+,选项A 正确; 对于选项B ,取1a =,12b =,则11121a a +=+=,115222b b +=+=,故11a b a b+>+不成立,故B 错误;对于C 选项,要是11b b a a +>+成立,则有()()11b a a b +>+,即ab b ab a +>+,b a ⇒>,这与已知条件矛盾,选项C 错误; 对于选项D ,若有11b a b a ->-,则有11b a a b+>+,这与选项A 矛盾,错误. 故选:A . 【点睛】本题考查不等式的性质,属于基础题. 3.A 【分析】设只能堆放n 层,由已知得从最上层往下,每层铅笔数组成以首项为1、公差为1的等差数列,且余下的铅笔数小于1n +,根据等差数列的前n 项和公式可求得选项. 【详解】设只能堆放n 层,则从最上层往下,每层铅笔数组成以首项为1、公差为1的等差数列,且余下的铅笔数小于1n +, 于是()11002n n +≤,且()110012n n n +-<+,解得13n =,剩余的根数为131410092⨯-=. 故选:A. 【点睛】本题考查数列的实际应用,关键在于将生活中的数据,转化为数列中的基本量,属于中档题. 4.A 【分析】由题意利用复合函数的单调性,二次函数的、根式函数的性质,可得021(1)a a f ⎧>⎪⎪⎨⎪⎪=⎩,由此求得a 的范围. 【详解】解:函数()f x =1x ,2[1x ∈,)+∞,都有不等式1212()()0f x f x x x ->-, ∴当1x 时,()f x 为增函数,∴021(1)a a f ⎧>⎪⎪⎨⎪⎪=⎩,解得24a ,故选:A . 【点睛】本题主要考查复合函数的单调性,二次函数的、根式函数的性质,属于基础题. 5.C 【分析】作出圆锥的轴截面,截正方体得对角面,由这个轴截面中可计算出正方体的棱长和圆锥的高,再由体积公式计算出体积.体积乘密度即得质量. 【详解】如图,是几何体的轴截面,因为圆锥底面直径为,所以半径为OB =.因为母线与底面所成角的正切值为tan B =,所以圆锥的高为10cm PO=.设正方体的棱长为a,DE =1010a -=,解得5a =. 所以该模型的体积为(()2331500ππ105125cm 33V =⨯⨯-=-. 所以制作该模型所需原料的质量为()500π500π1251125398.3g 33⎛⎫-⨯=-≈ ⎪⎝⎭. 故选:C .【点睛】本题考查求组合体的体积,掌握圆锥与正方体的体积公式是解题关键. 6.A 【分析】根据条件可先求出数列的公比,再根据2127m n a a a =可得出5m n +=,利用基本不等式即可求出116m n+的最小值.【详解】正项等比数列中,2979a q a ==,所以3q =. 因为11222111127m n m n m n a a a q a q a qa --+-=⋅==,所以5m n +=.因为11611161161()()(17)17)5555n m m n m n m n m n +=++=++≥=, 当且仅当16n mm n=,即4n m =时取等号,因为m 、n *N ∈,所以1m =,4n =, 所以116m n+的最小值为5. 故选:A. 【点睛】本题考查等比数列的基本量的计算,考查利用基本不等式求最值,属于基础题. 7.A 【分析】作2OA OA '=,7OB OB '=,3OC OC '=,由已知可得O 是'''A B C 的重心,由重心性质可得所求面积比. 【详解】作2OA OA '=,7OB OB '=,3OC OC '=,如图,∵2730OA OB OC ++=,∴O 是'''A B C 的重心,则''''''OA B OB C OC A S S S ==△△△,设''''''OA B OB C OC A S S S t ===△△△,设,,OAB OAC y OBC S x S S z ===△△△,∵2OA OA '=,7OB OB '=,3OC OC '=,∴''1''sin ''2141sin 2OA B OABOA OB A OB S S OA OB AOB ⋅∠==⋅∠△△,即114x t =,同理16y t =,121z t =,11161462121ABC S x y z t t t t =++=++=△, ∴6216121ABC OBCt S S t ==△△. 故选:A .【点睛】本题考查三角形面积的计算,考查向量的加法与数乘法则,体现了向量在解决平面图形问题中的优越性. 8.A 【分析】化简函数()2sin 3f x x πω⎛⎫=-⎪⎝⎭,根据题意求得1ω=,得到()2sin 3f x x π⎛⎫=-⎪⎝⎭,再结合三角函数的图象变换,求得函数()4sin 23g x x π⎛⎫+ ⎝=⎪⎭,最后结合三角函数的单调性,列出不等式组,即可求解. 【详解】由题意,函数()sin 2sin 3f x x x x πωωω⎛⎫=-=- ⎪⎝⎭,因为函数()f x 的图象与x 轴的两个相邻交点的距离为π, 所以函数()f x 的最小正周期22T ππω==,所以1ω=,所以()2sin 3f x x π⎛⎫=- ⎪⎝⎭,将函数()f x 图象上每一点的横坐标缩小到原来的一半,可得2sin 23y x π⎛⎫=-⎪⎝⎭再沿x 轴向左平移3π个单位长度,可得2sin 22sin 2333y x x πππ⎡⎤⎛⎫⎛⎫=+-=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 最后纵坐标扩大到原来的2倍得到函数()4sin 23g x x π⎛⎫+ ⎝=⎪⎭, 令()222232k x k k πππππ-+≤+≤+∈Z ,可得()51212k x k k ππππ-+≤≤+∈Z , 因此[]5,,1212a a ππ⎡⎤-⊂-⎢⎥⎣⎦,则51212a a a a ππ⎧⎪-<⎪⎪-≥-⎨⎪⎪≤⎪⎩,解得012a π<≤, 所以实数a 的最大值为12π.故选:A. 【点睛】本题主要考查了三角函数的图象变换求解解析式,以及三角函数的图象与性质的综合应用,其中解答中熟记三角函数的图象变换,以及三角函数的图象与性质是解答的关键,着重考查推理与运算能力,属于中档试题. 9.ABC 【分析】对于A ,利用线面垂直的判定定理即可解决;对于B ,C ,依托于选项A 即可较容易得到.点F 到平面COM 的距离不等确定,即可判断选项D .【详解】对于A ,由BC 中点O 与AC 中点M ,得//MO AB ,90,B F ∠=∠=︒得BC MO ⊥,由BCF △为等腰直角三角形得BC FO ⊥,由MO FO O ⋂=,MO FO ⊂,面OFM ,得直线BC ⊥面OFM ,故A 正确;对于B ,由A 得,AC 与面OFM 所成的角为C ∠,为定值30,故B 正确; 对于C ,由A 得,//MO AB ,故//AB 面OFM ,由AB 面ABF ,面ABF面MOF l =,所以l ∥AB ,故C 正确;对于D ,COM 的面积为定值,但三棱锥F COM -的高会随着F 点的位置移动而变化, 故D 错误. 故选:ABC. 【点睛】此题考立体几何中关于线面垂直,线面角,线面平行的判定与性质,属于简单题. 10.ABD 【分析】由已知递推式可得数列2=,公差为1的等差数列,结合选项可得结果. 【详解】)211n a =-得)211n a +=,1=,即数列2=,公差为1的等差数列,2(1)11n n =+-⨯=+,∴22n a n n =+,得28a =,由二次函数的性质得数列{}n a 为递增数列,所以易知ABD 正确, 故选:ABD. 【点睛】本题主要考查了通过递推式得出数列的通项公式,通过通项公式研究数列的函数性质,属于中档题. 11.BCD 【分析】设3212x y z ==m =1>,求得3log x m =,2log y m =,12log z m =,然后根据对数的运算法则和基本不等式判断各选项. 【详解】设3212x y z ==m =1>,则3log x m =,2log y m =,12log z m =,226622log log 23log 2log 8m m m y m ====,336633log log 32log 3log 9m m m x m ====, 又0log 8log 9m m <<,所以23y x >,12666log log 12m z m ==,而log 12log 8m m >,所以62z y <,A 错;则3212121log 32log 2log 12log log m m m x y m m z+=+=+==,B 正确; 23232312log log (log log )log 12(log log )(2log 2log 3)log m m m m m x y m m m m z m ++==+=++322323322log log 21(log log )()3log log log log m m m m m m m m=++=++33≥+=+32322log log log log m m m m =,即23log m m =,这个等式不可能成立,因此等号不能取到,3x yz+>+,即(3x y z +>+,C 正确;因为(222(log 12)(2log 2log 3)8log 2log 3m m m m m =+≥=,所以21118z x y ⎛⎫≥⨯⨯ ⎪⎝⎭,即28xy z >,D 正确.故选:BCD . 【点睛】本题考查对数的运算法则,考查基本不等式的应用,解题关键是由题设指数式改写为对数式,实质就是表示出变量,,x y z ,然后证明各个不等式. 12.BC 【分析】首先根据已知条件化简得到2a b =,2c ab =,再依次判断选项即可得到答案. 【详解】因为cos cos 2b C c B b +=,所以()sin cos sin cos sin sin 2sin B C C B B C A B +=+==,即2a b =. 又因为111tan tan sin A B C+=, 所以()sin cos cos sin cos cos sin sin 1sin sin sin sin sin sin sin sin sin A B A B B A B A C A B A B A B A B C+++====, 即2sin sin sin C A B =,2c ab =.对选项A ,因为2c ab =,所以a 、c 、b 成等比数列,故A 错误. 对选项B ,因为2a b =,2c ab =,所以::2a b c =,即sin :sin :sin 2A B C =B 正确. 对选项C ,若4a =,则2b =,c =则22242cos 8B +-==,因为0B π<<,所以sin B =故1428ABC S =⨯⨯=△,故C 正确. 对选项D ,若A 、B 、C 成等差数列,则2B A C =+. 又因为A B C π++=,则3Bπ=.因为::2a b c =2a k =,b k =,c =,0k >,则()22221cos 82k k B +-==≠,故D 错误.故选:BC 【点睛】本题主要考查正弦定理和余弦定理解三角形,同时考查了三角函数的恒等变换,属于中档题.13.32 【分析】利用1(2)n n n S S a n --=≥得到数列n a 与1n a - 的递推关系,可得数列{}n a 是等比数列,即可得到其通项公式,则可解出6a 的值. 【详解】因为n S 为数列{}n a 的前n 项和,且21n n S a =-,① 当1n =得11a =; 故1121n n S a --=-,②①﹣②得:11222(2)n n n n n a a a a a n --⇒=≥-=, 所以数列{}n a 是首项为1,公比为2的等比数列,即:561232a =⨯=.故答案为:32. 【点睛】本题考查了利用公式1(2)n n n S S a n --=≥求解数列的通项公式,题目主要是公式的应用,属于简单题,解题中需要注意的是写出1121n n S a --=-,利用公式得到数列项与项之间的递推关系. 14.79-, 【分析】由二倍角公式可得2πcos 2379α-⎛⎫= ⎪⎝⎭,再由诱导公式即可得解. 【详解】 因为π1sin 33α-=⎛⎫⎪⎝⎭, 所以22πππcos 2cos 212sin 33379ααα-=-=--⎛⎫⎛⎫⎛⎫=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以π2π2πcos 2cos 2cos 233379αααπ+=--⎡⎤⎛⎫⎛⎫⎛⎫-=-=-⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.故答案为:79-. 【点睛】本题考查了余弦的二倍角公式及诱导公式的应用,考查了运算求解能力,属于基础题. 15.32π 【分析】设三角形ABC 的外接圆的圆心为1O ,半径为r ,三棱锥P ABC -外接球的球心为O ,半径为R ,根据正弦定理求出r ,根据球的性质,得到12OO =,再根据勾股定理得到28R =,根据球的表面积公式可求得结果. 【详解】如图:设三角形ABC 的外接圆的圆心为1O ,半径为r ,三棱锥P ABC -外接球的球心为O ,半径为R ,PA 的中点为E ,连接11,,,OE OA OO AO ,因为PA ⊥平面ABC ,所以1PA AO ⊥,又1OO ⊥平面ABC ,所以1//OO PA , 因为E 为PA 的中点,所以OE PA ⊥,所以四边形1OEAO 为矩形,所以1122OO EA PA ===, 在三角形ABC中,由正弦定理得224sin sin 603BC r A ====,所以2r ,在直角三角形1OO A 中,得2221R r OO =+22228=+=,所以三棱锥P ABC -外接球的表面积为2432R ππ=.故答案为:32π. 【点睛】本题考查了正弦定理,考查了球的性质,考查了球的表面积公式,考查了直线与平面垂直的性质定理,属于中档题. 16.(]0,1 【分析】由题意可得1(2)(1)y y ln x x a -+,可设(0)yt t x=>,可得()(2)(1)f t t lnt =-+,求得导数和单调性,极值、最值,可得a 的不等式,解不等式可得所求范围. 【详解】解:不等式(2)(1)xx y lny lnx a--+对x 、0y >恒成立, 可得1(2)(1)y y ln x x a-+,可设(0)yt t x=>,可得()(2)(1)f t t lnt =-+, 22()(1)2t f t lnt lnt t t-'=-++=-+-, 由y lnt =-和22y t=-在0t >递减,可得()f t '在0t >递减, 则()10f '=,当1t >时,()()10f t f '<'=,()f t 递减;01t <<时,()()10f t f '>'=,()f t 递增,可得()f t 在1t =处取得极大值,且为最大值()11f =, 则11a,即10a a -,解得01a <, 故答案为:(]0,1. 【点睛】本题考查不等式恒成立问题解法,注意运用参数分离和换元法、构造函数法,以及导数的运用:求单调性和极值、最值,考查运算能力和推理能力,属于中档题. 17.(1)241=-n a n ;(2)证明见解析. 【分析】(1)选①:转化条件得11141+++-=+n n a a n n ,再由等差数列的性质可得14+=n a n n,即可得解;2=2n =,即可得解;选③:由累加法可得当2n ≥时,241=-n a n ,代入1n =即可得解; (2)由裂项相消法可得11242n T n =-+,即可得证. 【详解】 (1)选①:由1(1)(1)(41)n n n a n a n ++=+++可得11411++++=+n n a a n n n, 即11141+++-=+n n a a n n, 又1141+=a ,所以1n a n +⎧⎫⎨⎬⎩⎭是首项为4,公差为4的等差数列, 所以14+=n a n n,所以241=-n a n ; 选②:由1n n a a +-=,13a =2=,2=,2=,所以是首项为2,公差为2的等差数列,2n =,所以241=-n a n ; 选③:由184n n a a n --=-(2n ≥)可得: 当2n ≥时,112211()()()n n n n n a a a a a a a a ---=-+-++-+(84)(812)123n n =-+-+++[(84)12](1)32n n -+-=+241n =-,当1n =时,13a =,符合241=-n a n ,所以当*n N ∈时,241=-n a n ;(2)证明:由(1)得2111114122121n a n n n ⎛⎫==- ⎪--+⎝⎭, 所以1111111213352121n T n n ⎡⎤⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪⎢⎥-+⎝⎭⎝⎭⎝⎭⎣⎦111221n ⎛⎫=- ⎪+⎝⎭11242n =-+, 因为1042n >+,所以12n T <, 又因为11242n T n =-+随着n 的增大而增大,所以113n T T ≥=, 综上1132n T ≤<.【点睛】本题考查了数列通项公式的求解及裂项相消法求数列前n 项和的应用,考查了运算求解能力,属于中档题.18.(1)3B π=;(2).【分析】(1)由2sin cos sin b A B a B =+可得sin cos()6b A a B π=-,由正弦定理得sin sin b A a B =,从而得sin cos()6a B a B π=-,化简可求得tan B =,进而可求出角B ;(2)如图,延长BD 到E ,满足DE BD =,连接AE CE ,,则ABCE 为平行四边形,且2,,3BE BAE AB c AE BC a π=∠====,然后在BAE △中,利用余弦定理可得2()12ac a c =+-,再利用基本不等式可得4a c +≤,又由AE AB BE +>,即a c +>从而可求出a c +的取值范围 【详解】解:(1)在ABC 中,由正弦定理sin sin a b A B=,可得sin sin b A a B =,因为2sin cos sin b A B a B =+, 所以sin cos()6b A a B π=-, 所以sin cos()6a B a B π=-,即sin cos()6B Bπ,即31sin cos sin 2B B B ,可得tan B = 又因为(0,)B π∈,所以3B π=.(2)如图,延长BD 到E ,满足DE BD =,连接AE CE ,,则ABCE 为平行四边形,且2,,3BE BAE AB c AE BC a π=∠====,在BAE △中,由余弦定理得22222cos 3a c ac π=+-,即2212a c ac ++=,可得2()12a c ac +-=,即2()12ac a c =+-, 由基本不等式得:22()12()2a c ac a c +=+-≤, 即23()124a c +≤,即2()16a c +≤,可得4a c +≤ (当且仅当2a c ==取等号号)又由AE AB BE +>,即a c +>故a c +的取值范围是. 【点睛】此题考查正弦定理和余弦定理的应用,考查三角恒等变换公式的应用,考查基本不等式的应用,考查计算能力,属于中档题19.(1)答案见解析【分析】(1)(法一)以D 为原点,AD 所在直线为x 轴,BD 所在直线为y 轴,DF 所在直线为z 建系.根据三角形相似可得5AB =,故由勾股定理可知AD =求得面CDF的法向量(5,2n =,再由向量的数量积求得0BE n ⋅=,可得证;(法二)由矩形和梯形的几何性质得出线线平行,再由面面平行的判定定理可证得面//ABE 面CDF ,由面面平行的性质可得证;(2)由(1)可得面BCE 的法向量(2,n h h =-,由线面角的向量计算方法建立方程可求得. 【详解】(1)(法一)如图,以D 为原点,AD 所在直线为x 轴,BD 所在直线为y 轴,DF 所在直线为z 建系.设AE h =,由1CD =,2BC =,90ADB ︒∠=,依据三角形相似可得5AB =,故由勾股定理可知AD =在CBD 中,可得BD =所以各点坐标为(0,0,0),,),(0,0,)D A B C E h F h ⎛⎫ ⎪⎝⎭.(2)BE h =,设面CDF 的法向量为(,,)n x y z=,所以00x y z ⎧+=⎪⎨⎪=⎩, 化简得20y xz =⎧⎨=⎩,令1x =得(5,2n =,得0BE n ⋅=,故BE n ⊥.又BE 不在面CDF 上,所以//BE 面CDF . (法二)因为矩形HDEF ,故//AE DE .又//AB CD ,且ABAE A =,CD DF D ⋂=,AB、AE在面ABE上,CD、DF在面CDF上,故面//ABE面CDF. 又BE在面ABE上,且BE不在面CDF上,故//BE面CDF.(2)(25,0,0),,(25,)DA BC BE h⎛⎫=-=⎪⎝⎭,设面BCE法向量为(,,)nx y z=,所以x yhz⎧=⎪⎨⎪+=⎩,化简得2x yz=-⎧⎪⎨=⎪⎩,令y h=,得(2,n hh=-.由题得||cos45||||2DA nn DA︒⋅===.故h=,因为h为正,所以AD h==.【点睛】本题考查空间的线面平行的证明,线面角的计算方法,关键在于建立空间直角坐标系,求得面的法向量,运算线面角的向量计算方法求解,属于中档题.20.(1)300台(2)90【分析】(1)由总成本21()150600p x x x=++万元,可得每台机器人的平均成本()p xyx=,然后利用基本不等式求最值;(2)引进机器人后,每台机器人的日平均分拣量8(60)(130)()15480(30)m m mq mm⎧-≤≤⎪=⎨⎪>⎩,分段求出300台机器人的日平均分拣量的最大值及所用人数,再由最大值除以1200,可得分拣量达最大值时所需传统分拣需要人数,则答案可求.【详解】解:(1)由总成本21()150600p x x x =++,可得每台机器人的平均成本21150()1150600112600x x p x y x x x x ++===++≥=, 当且仅当1150600x x=,即300x =时,等号成立, ∴若使每台机器人的平均成本最低,则应买300台;(2)引进机器人后,每台机器人的日平均分拣量8(60)(130)()15480(30)m m m q m m ⎧-≤≤⎪=⎨⎪>⎩,当130m ≤≤时,300台机器人的日平均分拣量为()2160601609600m m m m -=-+,∴当30m =时,日平均分拣量有最大值144000; 当30m >时,日平均分拣量为480300144000⨯=, ∴300台机器人的日平均分拣量的最大值为144000件. 若传统人工分拣144000件,则需要人数为1440001201200=(人).∴日平均分拣量达最大值时,用人数量比引进机器人前的用人数量最多可减少1203090-=.【点睛】本题考查函利用均值定理求最值,考查简单的数学建模思想方法.21.(1)22143x y +=;(2)存在;()4,0Q . 【分析】(1)由椭圆的定义知12PF F △的周长为22a c +,结合离心率可求出椭圆C 的方程; (2)当直线l 的斜率k 存在时,设()1y k x =-,与椭圆方程联立,表示出直线QM 与直线QN 的斜率的和,代入韦达定理计算,可得定值,进而求出点Q 的坐标,当直线l 与x 轴垂直时也成立. 【详解】(1)由椭圆的定义知12PF F △的周长为22a c +,所以226a c +=, 又因为椭圆()2222:10x y C a b a b+=>>的离心率12c e a ==, 所以2a c =,联立解得2a =,1c =,所以b == 所求椭圆方程为22143x y +=. (2)若存在满足条件的点(),0Q t .当直线l 的斜率k 存在时,设()1y k x =-,联立22143x y +=, 消y 得()22223484120k x k x k +-+-=.设()11,M x y ,()22,N x y ,则2122834k x x k +=+,212241234k x x k -=+x , ∵()()()()()()122112121211QM QN k x x t k x x t y y k k x t x t x t x t --+--+=+=---- ()()()()222212122222121222818242212343441283434k t k t kx x k t x x kt k k k k k x x t x x t t t k k +--+-+++++==⋅--++-+++ ()()()()()()222222222282481234644128344134k k t t k k t k k k t t k t k t --+++-=⋅=--++-+-,∴要使对任意实数k ,QM QN k k +为定值,则只有4t =,此时,0QM QN k k +=.当直线l 与x 轴垂直时,若4t =,也有0QM QN k k +=.故在x 轴上存在点()4,0Q ,使得直线QM 与直线QN 的斜率的和为定值0.【点睛】本题考查直线与椭圆的位置关系,考查韦达定理的应用,考查定值问题,考查椭圆的标准方程,属于中档题.22.(1)答案见解析;(2)证明见解析.【分析】(1)求得导数22(01),,2()x ax f x x -+'=+∞,令()221h x x ax =-+,则()()411a a ∆=-+,分0∆≤和0∆>两种情况分类讨论,结合导数的符号,即可求解;(2)当1a =时,得到1()2ln 1f x x x x=--+,根据函数()f x 的单调性,不妨设1201x x <≤≤,得到11())220(f x f x -+-≤,构造函数()()()22g x f x f x =-+-﹐(0,1]x ∈,结合导数求得函数()g x 的单调性和极值,即可求解.【详解】(1)由题意,函数1()211f x x a nx x=--+的定义域为(0,)+∞, 可得2222121()1a x ax f x x x x-+'=-+=, 令()221h x x ax =-+,则()()244411a a a ∆=-=-+. ①当11a -≤≤时,0∆≤,可得()0f x '≥对(0,)x ∀∈+∞恒成立,则()f x 在区间(0,)+∞上单调递增.②当1a <-或1a >时,0∆>,令()0f x '=,得1x a =2x a =+ (i )当1a <-时,120x x <<,所以()0f x '≥对(0,)x ∀∈+∞恒成立.则()f x 在区间(0,)+∞上单调递增.(ⅱ)当1a >时,120x x <<.若1(0,)x x ∈,()0f x '>,函数()f x 单调递增;若12(,)x x x ∈,()0f x '<,函数()f x 单调递减;若2(,)x x ∈+∞,()0f x '>,函数()f x 单调递增.综上所述:当1a ≤时,()f x 在区间(0,)+∞上单调递增.当1a >时,在(0,a 和()a +∞,上()f x 单调递增;在(a a ()f x 单调递减.(2)当1a =时,函数1()2ln 1f x x x x =--+, 由(1)可知()f x 在区间(0,)+∞上单调递增,又易知()11f =,且12()()2f x f x +=,不妨设1201x x <≤≤,要证122x x +≥,只需证212x x ≥-,只需证21()2()f x f x ≥-,即证11()2()2f x f x -≥-,即证11())220(f x f x -+-≤,构造函数()()()22g x f x f x =-+-﹐(0,1]x ∈, 所以11()22ln(2)2ln 2g x x x x x=------,(]0,1x ∈, 则32322222221214(331)4(1)()2(2)(2)(2)x x x x g x x x x x x x x x --+---'=--+==----, 当(0,1]x ∈时,()0g x '≥,所以函()g x 数在区间(0,1]上单调递增,则()()10g x g ≤=,所以11())220(f x f x -+-≤得证,从而122x x +≥.【点睛】本题主要考查导数在函数中的综合应用,以及不等式的证明,着重考查了转化与化归思想、分类讨论、及逻辑推理能力与计算能力,对于此类问题,通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围;也可分离变量,构造新函数,直接把问题转化为函数的最值问题.。
福建省厦门市双十中学高三数学上学期期中试卷 理(含解析)
2015-2016学年福建省厦门市双十中学高三(上)期中数学试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={y|y=x2+1,x∈R},集合N={y|y=ln(x+1)+1,x∈R},则M∩N等于()A.{(0,1)} B.(0,1)C.[﹣1,+∞)D.[1,+∞)2.命题“若¬p则q”是真命题,则p是¬q的()条件.A.充分 B.充分非必要C.必要 D.必要非充分3.已知,的夹角是120°,且=(﹣2,﹣4),||=,则在上的投影等于()A.﹣B.C.2 D.4.已知p:存在x∈R,mx2+1≤0,q:任意x∈R,x2+mx+1>0,若p且q为真命题,则实数m的取值范围是()A.m<2 B.﹣2<m<2 C.0<m<2 D.﹣2<m<05.在△ABC中,角A,B,C,的对边分别为a,b,c,若(a2+c2﹣b2)tanB=ac,则角B 的值为()A.B.或C.D.或6.已知点C在以O为圆心的圆弧AB上运动(含端点)., =x+2y(x,y∈R),则的取值范围是()A.B.C.D.7.若函数f(x)=sin(x+φ)﹣cos(x+φ)(0<φ<π)为奇函数,将函数f(x)图象上所有点横坐标变为原来的一半,纵坐标不变;再向右平移个单位得到函数g(x),则g(x)的解析式可以是()A.B.C.D.8.已知如图(1)的图象对应的函数为y=f(x),给出①y=f(|x|);②y=|f(x)|﹣a;③y=﹣f(|x|);④y=f(﹣|x|).⑤y=|f(|x|)|﹣a,则如图(2)的图象对应的函数可能是五个式子中的()A.④B.②④ C.①② D.②③④⑤9.已知定义域为R的奇函数y=f(x)的导函数为y=f′(x),当x≠0时,,若a=f(),,c=(ln)f(ln),则a,b,c的大小关系正确的是()A.a<c<b B.b<c<a C.a<b<c D.c<a<b10.若函数f(x)(x∈R)关于对称,且则下列结论:(1)f(x)的最小正周期是3,(2)f(x)是偶函数,(3)f(x)关于对称,(4)f(x)关于对称,正确的有()A.1个B.2个C.3个D.4个11.如图,已知l1⊥l2,圆心在l1上,半径为1m的圆O在t=0时与l2相切于点A,圆O沿l1以1m/s的速度匀速向上移动,圆被直线l2所截上方圆弧长记为x,令y=,则y与时间t(0≤t≤1,单位:s)的函数y=f(t)的图象大致为()A. B. C. D.12.设函数f(x)=,若f(x)恰有2个零点,则实数a 的取值范围是()A.a≥2 B.≤a<1 C.<a<1 D.a≥2或≤a<1二、填空题:(本大题共4小题,每小题5分,共20分).13.若tan(θ+)=,则sin2θ=.14.设等差数列{a n}前n项和S n,a3+a8+a13=C,a4+a14=2C,其中C<0,则S n在n等于时取到最大值.15.已知f(x)=x2﹣4x+3在[0,a]的值域是[﹣1,3].实数a的取值范围记为集合A,g (x)=cos2x+sinx.记g(x)的最大值为g(a).若g(a)≥b,对任意实数a∈A恒成立,则实数b的取值范围是.16.若函数f(x)=(1﹣x2)(x2+ax+b)的图象关于直线x=﹣1对称,则f(x)的最大值为.三、解答题:(本大题共7小题,共70分,解答应写出文字说明、证明过程或演算步骤).17.18题两题选出一题作答,两题都答只给一题的分数.17.已知直线l的参数方程为(t为参数),圆C的参数方程为(θ为参数).(1)当a=0时,求直线l和圆C交点的极坐标(ρ,θ)(其中ρ>0,0<θ<2π);(2)若直线l与圆C交于P、Q两点,P、Q间的劣弧长是,求直线l的极坐标方程.18.(2015秋•厦门校级期中)(1)若不等式|2x﹣1|+|x+2|≥m2+m+2对任意实数x恒成立,求实数m的取值范围;(2)设a,b,c大于0,且1≤++≤(|2x﹣1|+|x+2|)对任意实数x恒成立,求证:a+2b+3c≥9.19.已知函数f(x)=sin(ωx+φ)(ω>0,0<φ<)的图象经过点(0,),且相邻两条对称轴间的距离为.(Ⅰ)求函数f(x)的解析式及其单调递增区间;(Ⅱ)在△ABC中,a,b,c分别是角A、B、C的对边,若f()﹣cosA=,且bc=1,b+c=3,求a的值.20.设数列{a n}的前n项和为S n,满足2S n=a n+1﹣2n+1+1,(n∈N*),且a1=1.(1)设c n=(n∈N+),求数列{a n}的通项公式;(2)设数列{b n}满足b n=n(a n+2n),求数列{b n}的前n项和T n.21.已知⊥,|AB1|=3,|AB2|=4, =+.(1)若B1,P,B2三点共线,求||的最小值,并用,表示;(2)设Q是AB1B2的内心,若||≤2,求•的取值范围.22.某山体外围有两条相互垂直的直线型公路,为开发山体资源,修建一条连接两条公路沿山区边界的直线型公路.记两条相互垂直的公路为l1,l2,山区边界曲线为C,计划修建的公路为L.如图所示,M,N为C的两个端点,测得点M到l1,l2的距离分别为5千米和80千米,点N到l1的距离为100千米,以l1,l2所在的直线分别为x、y轴建立平面直角坐标系xOy,假设曲线C符合函数y=模型(其中a为常数).(1)设公路L与曲线C相切于P点,P的横坐标为t.①请写出公路L长度的函数解析式f(t),并写出其定义域;②当t为何值时,公路L的长度最短?求出最短长度.(2)在公路长度最短的同时要求美观,需在公路L与山体之间修建绿化带(如图阴影部分),求绿化带的面积.23.设函数f(x)=e mx﹣mx2.(1)当m=2时,求曲线y=f(x)在点(0,f(0))处的切线L1的方程;(2)当m>0时,要使f(x)≥1对一切实数x≥0恒成立,求实数m的取值范围;(3)求证:.2015-2016学年福建省厦门市双十中学高三(上)期中数学试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={y|y=x2+1,x∈R},集合N={y|y=ln(x+1)+1,x∈R},则M∩N等于()A.{(0,1)} B.(0,1)C.[﹣1,+∞)D.[1,+∞)【考点】交集及其运算.【专题】计算题;集合.【分析】求出M中y的范围确定出M,求出N中y的范围确定出N,找出两集合的交集即可.【解答】解:由M中y=x2+1≥1,即M=[1,+∞),由N中y=ln(x+1)+1,即N=(﹣∞,+∞),则M∩N=[1,+∞),故选:D.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.命题“若¬p则q”是真命题,则p是¬q的()条件.A.充分 B.充分非必要C.必要 D.必要非充分【考点】必要条件、充分条件与充要条件的判断.【专题】对应思想;综合法;简易逻辑.【分析】原命题和其逆否命题同真假,故只需找出命题“若¬p,则q”的逆否命题即可.【解答】解:四种命题中原命题和其逆否命题同真假,而“若¬p,则q”的逆否命题为“若¬q,则p”即¬q⇒p,p是¬q的必要条件,故选:C.【点评】本题考查四种命题的关系及复合命题真假判断,难度不大.3.已知,的夹角是120°,且=(﹣2,﹣4),||=,则在上的投影等于()A.﹣B.C.2 D.【考点】平面向量数量积的运算.【专题】向量法;平面向量及应用.【分析】由向量模的公式可得||,再由向量投影的概念可得在上的投影等于||cos120°.【解答】解: =(﹣2,﹣4),可得||=2,由题意可得在上的投影为||cos120°=2×(﹣)=﹣.故选B.【点评】本题考查向量的数量积的模的公式,以及向量的投影的计算,考查运算能力,属于基础题.4.已知p:存在x∈R,mx2+1≤0,q:任意x∈R,x2+mx+1>0,若p且q为真命题,则实数m的取值范围是()A.m<2 B.﹣2<m<2 C.0<m<2 D.﹣2<m<0【考点】复合命题的真假.【专题】函数思想;综合法;简易逻辑.【分析】分别求出p,q成立的m的范围,取交集即可.【解答】解:关于p:存在x∈R,mx2+1≤0,∴m<0,关于q:任意x∈R,x2+mx+1>0,则△=m2﹣4<0,解得:﹣2<m<2,若p且q为真命题,则p,q均为真命题,则实数m的取值范围是:﹣2<m<0,故选:D.【点评】本题考查了复合命题的判断,考查函数恒成立问题,是一道基础题.5.在△ABC中,角A,B,C,的对边分别为a,b,c,若(a2+c2﹣b2)tanB=ac,则角B 的值为()A.B.或C.D.或【考点】余弦定理.【专题】解三角形.【分析】利用余弦定理表示出cosB,整理后代入已知等式,利用同角三角函数间基本关系化简,求出sinB的值,即可确定出B的度数.【解答】解:∵cosB=,∴a2+c2﹣b2=2accosB,代入已知等式得:2ac•cosBtanB=ac,即sinB=,则B=或.故选:B.【点评】此题考查了余弦定理,以及同角三角函数间的基本关系,熟练掌握余弦定理是解本题的关键.6.已知点C在以O为圆心的圆弧AB上运动(含端点)., =x+2y(x,y∈R),则的取值范围是()A.B.C.D.【考点】平面向量数量积的运算.【专题】数形结合;换元法;三角函数的图像与性质;平面向量及应用.【分析】以O为原点,OA方向为x轴正方向建立坐标系,分别求出A,B的坐标,进而根据则=(cosα,sinα),根据正弦函数的性质,即可得到的取值范围.【解答】解:建立如图所示的坐标系,可设A(1,0),B(0,1),设∠AOC=α(0≤α≤),则=(cosα,sinα).由=(x,2y)=(cosα,sinα),则=(cosα+sinα)=sin(α+)(0≤α≤),由≤α+≤,可得sin(α+)∈[,1],即有∈[,].故选:B.【点评】本题考查的知识点是平面向量的综合应用,三角函数的性质,其中建立坐标系,分别求出A,B,C点的坐标,将一个几何问题代数化,是解答本题的关键.7.若函数f(x)=sin(x+φ)﹣cos(x+φ)(0<φ<π)为奇函数,将函数f(x)图象上所有点横坐标变为原来的一半,纵坐标不变;再向右平移个单位得到函数g(x),则g(x)的解析式可以是()A.B.C.D.【考点】函数y=Asin(ωx+φ)的图象变换;由y=Asin(ωx+φ)的部分图象确定其解析式.【专题】计算题;转化思想;分析法;三角函数的求值;三角函数的图像与性质.【分析】化简函数的表达式为一个角的一个三角函数的形式,利用函数是奇函数,求出φ.根据函数y=Asin(ωx+φ)的图象变换规律即可得解.【解答】解:∵f(x)=sin(x+φ)﹣cos(x+φ)=2sin(x+φ﹣),(0<φ<π)为奇函数,∴φ=,f(x)=2sinx,将函数f(x)图象上所有点横坐标变为原来的一半,纵坐标不变,可得函数的解析式为:y=2sin2x;再向右平移个单位得到函数g(x),则g(x)的解析式:g(x)=2sin2(x﹣)=2sin (2x﹣).故选:A.【点评】本题主要考查了函数y=Asin(ωx+φ)的图象变换,由y=Asin(ωx+φ)的部分图象确定其解析式,考查三角函数的化简,三角函数的奇偶性,考查基本知识的应用能力,计算能力,属于中档题.8.已知如图(1)的图象对应的函数为y=f(x),给出①y=f(|x|);②y=|f(x)|﹣a;③y=﹣f(|x|);④y=f(﹣|x|).⑤y=|f(|x|)|﹣a,则如图(2)的图象对应的函数可能是五个式子中的()A.④B.②④ C.①② D.②③④⑤【考点】函数的图象.【专题】转化思想;分析法;函数的性质及应用.【分析】由图(2)知,图象对应的函数是偶函数,对选项一一利用排除法分析可得答案.【解答】解:由图(2)知,图象对应的函数是偶函数,对于①,当x>0时,y=f(|x|)=y=f(x),其图象在y轴右侧与图一的相同,不合题意,故排除①.对于②,当x>0时,对应的函数是y=f(x)﹣a,是把(1)中图象位于y轴右侧的部分向下平移a个单位得到的,显然不正确,故排除②.对于③,当x>0时,对应的函数是y=﹣f(x),是把(1)中图象位于y轴右侧的部分关于x轴对称得到的,显然不正确,故排除③.对于④,当x>0时,对应的函数是y=f(﹣x),是把(1)中图象位于y轴左侧的部分关于y轴对称得到的,满足条件.对于⑤,当x>0时,对应的函数是y=|f(x)|﹣a,是把(1)中图象位于y轴右侧的部分向下平移a个单位得到的,显然不正确,故排除⑤,故选:A.【点评】本题考查函数的图象、函数的图象与图象变化,考查学生读图能力,分析问题解决问题的能力,属于中档题.9.已知定义域为R的奇函数y=f(x)的导函数为y=f′(x),当x≠0时,,若a=f(),,c=(ln)f(ln),则a,b,c的大小关系正确的是()A.a<c<b B.b<c<a C.a<b<c D.c<a<b【考点】函数的单调性与导数的关系.【专题】函数思想;构造法;导数的概念及应用.【分析】构造函数g(x)=xf(x),判断g(x)的单调性与奇偶性即可得出结论.【解答】解:令g(x)=xf(x),则g(﹣x)=﹣xf(﹣x)=xf(x)∴g(x)是偶函数.g′(x)=f(x)+xf′(x)∵∴当x>0时,xf′(x)+f(x)<0,当x<0时,xf′(x)+f(x)>0.∴g(x)在(0,+∞)上是减函数.∵<ln2<1<∴g()<g(ln2)<g()∵g(x)是偶函数.∴g(﹣)=g(),g(ln)=g(ln2)∴g(﹣)<g(ln)<g()故选:B.【点评】本题考查了导数与函数单调性的关系,函数单调性的应用,属于中档题.10.若函数f(x)(x∈R)关于对称,且则下列结论:(1)f(x)的最小正周期是3,(2)f(x)是偶函数,(3)f(x)关于对称,(4)f(x)关于对称,正确的有()A.1个B.2个C.3个D.4个【考点】命题的真假判断与应用.【专题】转化思想;函数的性质及应用;简易逻辑.【分析】根据已知中函数f(x)(x∈R)关于对称,且,分析出函数的周期性,对称性和奇偶性,可得答案.【解答】解:∵,∴f(x+3)===f(x),故f(x)的最小正周期是3,故(1)正确;又∵函数f(x)(x∈R)关于对称,∴f(x)=﹣==f(﹣x),即f(x)是偶函数,故(2)正确;又∵f(3﹣x)=f(﹣x)=f(x),故f(x)关于对称,故(3)正确;又∵函数f(x)(x∈R)关于对称,f(x)的最小正周期是3,故f(x)关于对称,故(4)正确;故正确的命题有4个,故选:D【点评】本题考查的知识点是函数的奇偶性,函数的对称性和函数的周期性,其中熟练掌握函数对称性的法则“对称变换二倍减”,是解答的关键.11.如图,已知l1⊥l2,圆心在l1上,半径为1m的圆O在t=0时与l2相切于点A,圆O沿l1以1m/s的速度匀速向上移动,圆被直线l2所截上方圆弧长记为x,令y=,则y与时间t(0≤t≤1,单位:s)的函数y=f(t)的图象大致为()A. B. C. D.【考点】函数的图象.【专题】数形结合;数形结合法;函数的性质及应用.【分析】通过t=0时y=0,排除选项C、D,利用x的增加的变化率,说明y=sin2x的变化率,得到选项即可.【解答】解:因为当t=0时,x=0,对应y=0,所以选项C,D不合题意,当t由0增加时,x的变化率先快后慢,又y=sin2x在[0,1]上是增函数,所以函数y=f(t)的图象变化先快后慢,所以选项B满足题意,C正好相反,故选:B.【点评】本题考查函数图象的变换快慢,考查学生理解题意以及视图能力,属于中档题.12.设函数f(x)=,若f(x)恰有2个零点,则实数a的取值范围是()A.a≥2 B.≤a<1 C.<a<1 D.a≥2或≤a<1【考点】函数的零点与方程根的关系.【专题】综合题;函数的性质及应用.【分析】分别设h(x)=2x﹣a,g(x)=4(x﹣a)(x﹣2a),分两种情况讨论,即可求出a 的范围.【解答】解:设h(x)=2x﹣a,g(x)=4(x﹣a)(x﹣2a)若在x<1时,h(x)=2x﹣a与x轴有一个交点,所以a>0,并且当x=1时,h(1)=2﹣a>0,所以0<a<2,而函数g(x)=4(x﹣a)(x﹣2a)有一个交点,所以2a≥1,且a<1,所以≤a<1,若函数h(x)=2x﹣a在x<1时,与x轴没有交点,则函数g(x)=4(x﹣a)(x﹣2a)有两个交点,当a≤0时,h(x)与x轴无交点,g(x)无交点,所以不满足题意(舍去),当h(1)=2﹣a≤时,即a≥2时,g(x)的两个交点满足x1=a,x2=2a,都是满足题意的,综上所述a的取值范围是≤a<1,或a≥2.故选:D.【点评】本题考查了分段函数的问题,以及函数的零点问题,培养了学生的转化能力和运算能力以及分类能力,属于中档题.二、填空题:(本大题共4小题,每小题5分,共20分).13.若tan(θ+)=,则sin2θ=.【考点】两角和与差的正切函数.【专题】计算题;函数思想;三角函数的求值.【分析】利用两角和的正切函数,求出正切函数值,然后求解即可.【解答】解:tan(θ+)=,=,可得tanθ=﹣.sin2θ===.故答案为:;【点评】本题考查两角和的正切函数以及三角函数的化简求值,考查计算能力.14.设等差数列{a n}前n项和S n,a3+a8+a13=C,a4+a14=2C,其中C<0,则S n在n等于7 时取到最大值.【考点】等差数列的前n项和.【专题】函数思想;综合法;等差数列与等比数列.【分析】由等差数列的性质和题意可得通项公式,可得前7项为正数,从第8项开始为负数,可得结论.【解答】解:由题意和等差数列的性质可得a3+a8+a13=3a8=C,a4+a14=2a9=2C,∴a8=,a9=C,∴公差d=,∴a1=﹣7×=﹣,∴a n=﹣+(n﹣1)=C(2n﹣15),令a n=C(2n﹣15)≤0可得2n﹣15≥0,解得n≥∴递减的等差数列{a n}前7项为正数,从第8项开始为负数,∴当n=7时,S n取最大值.故答案为:7【点评】本题考查等差数列的前n项和,从数列项的正负入手是解决问题的关键,属基础题.15.已知f(x)=x2﹣4x+3在[0,a]的值域是[﹣1,3].实数a的取值范围记为集合A,g (x)=cos2x+sinx.记g(x)的最大值为g(a).若g(a)≥b,对任意实数a∈A恒成立,则实数b的取值范围是b≤.【考点】函数恒成立问题.【专题】计算题;作图题;函数的性质及应用;三角函数的图像与性质;集合.【分析】作函数f(x)=x2﹣4x+3的图象,从而可得A=[2,4];再化简g(x)=﹣(sinx﹣)2+1+,从而可得g(a)=1+,再求g(a)的最小值即可.【解答】解:作函数f(x)=x2﹣4x+3的图象如下,,∵f(x)=x2﹣4x+3在[0,a]的值域是[﹣1,3],∴2≤a≤4,故A=[2,4];g(x)=cos2x+sinx=1﹣sin2x+sinx=﹣(sinx﹣)2+1+,∵≤≤1,∴g(a)=1+,∵A=[2,4],∴g min(a)=1+=,∵g(a)≥b对任意实数a∈A恒成立,∴b≤,故答案为:b≤.【点评】本题考查了二次函数的性质与应用,三角函数的最值的求法,同时考查了恒成立问题.16.若函数f(x)=(1﹣x2)(x2+ax+b)的图象关于直线x=﹣1对称,则f(x)的最大值为 6 .【考点】函数的最值及其几何意义;函数的图象.【专题】综合题;转化思想;分类法;函数的性质及应用.【分析】由题意得f(0)=f(﹣2)=0且f(﹣4)=f(2)=0,由此求出a=4且b=0,可得f(x)=﹣x4﹣x3+x2+4x.利用导数研究f(x)的单调性,可得到f(x)的最大值.【解答】解:∵函数f(x)=(1﹣x2)(x2+ax+b)的图象关于直线x=﹣1对称,∴f(0)=f(﹣2)=0且f(﹣4)=f(2)=0,即b=0且(1﹣4)[(﹣4)2+a•(﹣4)+b]=0,解之得a=4,b=0,因此,f(x)=(1﹣x2)(x2+4x)=﹣x4﹣x3+x2+4x,求导数,得f′(x)=﹣x3﹣3x2+2x+4=﹣(x+1)(x+1+)(x+1﹣)当x∈(﹣∞,﹣1﹣)∪(﹣1,﹣1+)时,f'(x)>0,当x∈(﹣1﹣,﹣1)∪(﹣1+,+∞)时,f'(x)<0,∴f(x)在(﹣∞,﹣1﹣)单调递增,在(﹣1﹣,﹣1)单调递减,在(﹣1,﹣1+)单调递增,在(﹣1+,+∞)单调递减,故当x=﹣1﹣和x=﹣1+时取极大值,f(﹣1﹣)=f(﹣1+)=6.故答案为:6.【点评】本题给出多项式函数的图象关于x=﹣1对称,求函数的最大值.着重考查了函数的奇偶性、利用导数研究函数的单调性和函数的最值求法等知识,属于中档题.三、解答题:(本大题共7小题,共70分,解答应写出文字说明、证明过程或演算步骤).17.18题两题选出一题作答,两题都答只给一题的分数.17.已知直线l的参数方程为(t为参数),圆C的参数方程为(θ为参数).(1)当a=0时,求直线l和圆C交点的极坐标(ρ,θ)(其中ρ>0,0<θ<2π);(2)若直线l与圆C交于P、Q两点,P、Q间的劣弧长是,求直线l的极坐标方程.【考点】参数方程化成普通方程;简单曲线的极坐标方程.【专题】计算题;函数思想;综合法;坐标系和参数方程.【分析】(1)先求出圆的直角坐标方程和直线l:,由此能求出直线l和圆C交点的极坐标.(2)圆心C到直线的距离d是2,直线的直角坐标方程是:,先求出直线直角坐标方程,由此能求出直线l的极坐标方程.【解答】解:(1)∵圆C的参数方程为(θ为参数),∴圆的直角坐标方程是x2+y2=16,….(1分),∵直线l的参数方程为(t为参数),∴当a=0时,直线l:,…(2分)代入x2+y2=16得x=±2,P,Q….(3分)则直线l和圆C交点的极坐标分别是,….(5分)(2)由于P、Q间的劣弧长是,则圆心角,….(6分)圆心C到直线的距离d是2,直线的直角坐标方程是:,….(7分),,直线直角坐标方程是:或,….(8分)直线l的极坐标方程:或….(10分)即或(写成或给满分)【点评】本题考查直线和圆交点的极坐标及直线的极坐标方程的求法,是中档题,解题时要认真审题,注意极坐标和直角坐标的互化公式的合理运用.18.(2015秋•厦门校级期中)(1)若不等式|2x﹣1|+|x+2|≥m2+m+2对任意实数x恒成立,求实数m的取值范围;(2)设a,b,c大于0,且1≤++≤(|2x﹣1|+|x+2|)对任意实数x恒成立,求证:a+2b+3c≥9.【考点】不等式的证明;函数恒成立问题.【专题】函数思想;综合法;函数的性质及应用;推理和证明.【分析】(1)由绝对值的含义,将|2x﹣1|+|x+2|写成分段函数式,分别求出各段的范围,可得最小值,进而得到m2+m+2≤,解不等式可得m的范围;(2)运用两边夹法则,可得++=1,且a,b,c大于0,即有a+2b+3c=(a+2b+3c)(++),展开后运用基本不等式,即可得证.【解答】解:(1)|2x﹣1|+|x+2|=,当x≤﹣2时,﹣1﹣3x递减,取值范围是[5,+∞);当﹣2<x≤时,3﹣x的范围是[,5);当x>时,3x+1的范围是(,+∞).从而|2x﹣1|+|x+2|≥,解不等式m2+m+2≤,得m∈[﹣1,].(2)证明:由(1)知(|2x﹣1|+|x+2|)≥1,则++≤1,又1≤++,则++=1,且a,b,c大于0,即有a+2b+3c=(a+2b+3c)(++)=3+(+)+(+)+(+)≥3+2+2+2=9.当且仅当a=2b=3c=时,等号成立.因此a+2b+3c≥9.【点评】本题考查绝对值函数的最值的求法,不等式恒成立问题的解法和不等式的证明,注意运用函数的单调性求最值,以及基本不等式的运用,属于中档题.19.已知函数f(x)=sin(ωx+φ)(ω>0,0<φ<)的图象经过点(0,),且相邻两条对称轴间的距离为.(Ⅰ)求函数f(x)的解析式及其单调递增区间;(Ⅱ)在△ABC中,a,b,c分别是角A、B、C的对边,若f()﹣cosA=,且bc=1,b+c=3,求a的值.【考点】余弦定理;三角函数的周期性及其求法;正弦函数的单调性.【专题】解三角形.【分析】(Ⅰ)把已知点坐标代入求出φ的值,根据题意确定出周期,利用周期公式求出ω的值,即可确定出函数f(x)的解析式,利用正弦函数的单调性确定出单调递增区间即可;(Ⅱ)由第一问确定出的解析式,表示出f(),代入已知等式求出A的度数,利用余弦定理列出关系式,把cosA的值代入,变形后将bc与b+c的值代入即可求出a的值.【解答】解:(Ⅰ)把(0,)代入解析式得:sinφ=,∵0<φ<,∴φ=,∵相邻两条对称轴间的距离为,∴函数的周期为π,即ω=2,∴函数f(x)的解析式为f(x)=sin(2x+),令﹣+2kπ≤2x+≤+2kπ,k∈Z,得到﹣+kπ≤x≤+kπ,k∈Z,则f(x)的单调递增区间为[﹣+kπ,+kπ],k∈Z;(Ⅱ)由第一问得:f()=sin(A+),代入得:sin(A+)﹣cosA=sinA+cosA﹣cosA=sinA﹣cosA=sin(A﹣)=,∴A﹣=或,即A=或A=π(舍去),∵bc=1,b+c=3,∴由余弦定理得:a2=b2+c2﹣2bccosA=b2+c2﹣bc=(b+c)2﹣3bc=9﹣3=6,则a=.【点评】此题考查了余弦定理,正弦函数的单调性,以及特殊角的三角函数值,熟练掌握余弦定理是解本题的关键.20.设数列{a n}的前n项和为S n,满足2S n=a n+1﹣2n+1+1,(n∈N*),且a1=1.(1)设c n=(n∈N+),求数列{a n}的通项公式;(2)设数列{b n}满足b n=n(a n+2n),求数列{b n}的前n项和T n.【考点】数列的求和;数列递推式.【专题】等差数列与等比数列.【分析】(1)2S n=a n+1﹣2n+1+1,(n∈N*),当n≥2时,2S n﹣1=a n﹣2n+1,相减可得:,c n=(n∈N+),利用等比数列的通项公式即可得出.(2)利用“错位相减法”与等比数列的前n项和公式即可得出.【解答】解:(1)∵2S n=a n+1﹣2n+1+1,(n∈N*),∴当n≥2时,2S n﹣1=a n﹣2n+1,相减可得:2a n=a n+1﹣a n﹣2n,化为:,∵c n=(n∈N+),∴,∴{c n}是等比数列,公比为,首项为.∴c n+1=,∴c n=﹣1,∴=﹣1,可得a n=3n﹣2n.(2)b n=n(a n+2n)=n•3n,∴数列{b n}的前n项和T n=3+2×32+3×23+…+n•3n,∴3T n=32+2×33+…+(n﹣1)•3n+n•3n+1,∴﹣2T n=3+32+…+3n﹣n•3n+1=﹣n•3n+1=,∴T n=.【点评】本题考查了“错位相减法”、等比数列的通项公式及其前n项和公式、递推关系的应用,考查了推理能力与计算能力,属于中档题.21.已知⊥,|AB1|=3,|AB2|=4, =+.(1)若B1,P,B2三点共线,求||的最小值,并用,表示;(2)设Q是AB1B2的内心,若||≤2,求•的取值范围.【考点】平面向量数量积的运算.【专题】综合题;转化思想;配方法;换元法;平面向量及应用.【分析】(1)利用B1,P,B2三点共线, =+,可求得+=1;再结合⊥,|AB1|=3,|AB2|=4,可得||2=λ2+μ2=μ2﹣μ+9,于是可求得||的最小值及取得最小值时λ、μ的值,从而可用,表示;(2)以A为原点,AB1、AB2所在的直线分别为x轴、y轴建立直角坐标系,则B1(3,0),B2(0,4),Q(1,1),P(λ,μ),于是利用||2=(λ﹣1)2+(μ﹣1)2≤4,再令λ﹣1=rcosθ,μ﹣1=sinθ(0<r≤2)可得•=λ2+μ2﹣3λ﹣4μ=r2﹣rcosθ﹣2rsinθ﹣5,利用辅助角公式及配方法即可求得•∈[﹣,2﹣1].【解答】解:(1)∵B1,P,B2三点共线, =+,∴+=1.又⊥,|AB1|=3,|AB2|=4,∴||2=||2+||2=λ2+μ2=μ2﹣μ+9,当时,||min=,此时, =+;(2)以A为原点,AB1、AB2所在的直线分别为x轴、y轴建立直角坐标系,则B1(3,0),B2(0,4),Q(1,1),P(λ,μ),||2=(λ﹣1)2+(μ﹣1)2≤4,令λ﹣1=rcosθ,μ﹣1=sinθ,0<r≤2.=(λ﹣3,μ),=(λ,μ﹣4),•=λ2+μ2﹣3λ﹣4μ=r2﹣rcosθ﹣2rsinθ﹣5=r2﹣rsin(θ+φ)﹣5,其中tanφ=.又r2﹣rsin(θ+φ)﹣5≤r2+r﹣5≤2﹣1,r2﹣rsin(θ+φ)﹣5≥r2﹣r﹣5=(r﹣)2﹣≥﹣,∴•∈[﹣,2﹣1].【点评】本题考查平面向量数量积的运算,突出考查共线向量基本定理、向量垂直性质的应用,也考查了三角换元思想及辅助角公式的综合应用,考查运算能力,属于难题.22.某山体外围有两条相互垂直的直线型公路,为开发山体资源,修建一条连接两条公路沿山区边界的直线型公路.记两条相互垂直的公路为l1,l2,山区边界曲线为C,计划修建的公路为L.如图所示,M,N为C的两个端点,测得点M到l1,l2的距离分别为5千米和80千米,点N到l1的距离为100千米,以l1,l2所在的直线分别为x、y轴建立平面直角坐标系xOy,假设曲线C符合函数y=模型(其中a为常数).(1)设公路L与曲线C相切于P点,P的横坐标为t.①请写出公路L长度的函数解析式f(t),并写出其定义域;②当t为何值时,公路L的长度最短?求出最短长度.(2)在公路长度最短的同时要求美观,需在公路L与山体之间修建绿化带(如图阴影部分),求绿化带的面积.【考点】导数在最大值、最小值问题中的应用;函数模型的选择与应用.【专题】转化法;函数的性质及应用;导数的综合应用.【分析】(1)①由题知M(5,80)代入y=,则a=400,进而求出y=,得出坐标N(100,4),利用导数求出斜率,得出直线的方程,进而求出与坐标轴的交点A(0,),B(2t,0),利用勾股定理可得(t∈[5,100]);②运用基本不等式可得最小值,注意求出等号成立的条件;(2)山体与x=5,x=100之间的面积为,得出山体与L1、L2围成的面积是400+400ln20,进而得出绿化带的面积是400+400ln20﹣800=400ln20﹣400.【解答】解:(1)①由题意M(5,80)代入y=,则a=400,∴y=,N(100,4),∴定义域为[5,100].∴P(t,),∵,则公路l的方程:,令x=0,可得y=;令y=0,可得x=2t.∴(t∈[5,100]);②A(0,),B(2t,0),=,当且仅当t=20∈[5,100]时等号成立,所以当t为20时,公路l的长度最短长度是3200千米;(2)山体与x=5,x=100之间的面积为dx=400lnx|=400(ln100﹣ln5)=400ln20,山体与L1、L2围成的面积是400+400ln20,L与y,x轴交点分别是A(0,40),B(40,0),公路与L1、L2围成的面积是800,所以绿化带的面积是400+400ln20﹣800=400ln20﹣400(平方公里).答:当t为20时,公路L的长度最短,最短长度是3200千米;在公路长度最短时,需在公路L与山体之间修建绿化带的面积是400ln20﹣400平方公里.【点评】本题考查了利用导数求直线方程和积分的应用,考查运算求解能力,难点是对题意的理解.23.设函数f(x)=e mx﹣mx2.(1)当m=2时,求曲线y=f(x)在点(0,f(0))处的切线L1的方程;(2)当m>0时,要使f(x)≥1对一切实数x≥0恒成立,求实数m的取值范围;(3)求证:.【考点】导数在最大值、最小值问题中的应用;利用导数研究曲线上某点切线方程.【专题】方程思想;导数的概念及应用;导数的综合应用;不等式的解法及应用.【分析】(1)求出f(x)的导数,求得切线的斜率和切点,即可得到所求切线的方程;(2)求出f(x)的导数,设g(x)=f′(x),求出g(x)的导数,讨论m的范围,结合单调性,即可得到m的范围;(3)令m=1,由(2)得e x>x2+1,则,令x=i(i+1)(i=2,3,…n),由裂项相消求和和不等式的性质,即可得证.【解答】解:(1)m=2时,f(x)=e2x﹣2x2,f′(x)=2e2x﹣4x;∴f′(0)=2,又f(0)=1;则切线L1方程为:y=2x+1;(2)f′(x)=me mx﹣2mx,设g(x)=f′(x),g′(x)=m2e mx﹣2m=m(me mx﹣2),令g′(x)=0,由m>0,;①当m≥2时,因为x≥0,则e mx≥1,所以me mx﹣2≥m﹣2≥0,g'(x)≥0,∴f′(x)在[0,+∞)单调递增;∴f′(x)≥f′(0)=m>0;∴f(x)在[0,+∞)单调递增,f(x)≥f(0)=1;所以当m≥2时满足条件;②当时,1≥,x0∈(0,+∞);∴f′(x)在(0,x0)单调递减,在(x0,+∞)单调递增,所以=;∴f(x)在[0,+∞)单调递增,f(x)≥f(0)=1;∴当时满足条件;③当时,,x0∈(0,+∞);∴f′(x)在(0,x0)单调递增,f′(x)=0在(0,x0)至多只有一个零点x1;又因为=,f′(0)=1>0,所以f′(x)=0在(0,x0)有且只有一个零点x1;则当x∈(0,x1)时,f′(x)>0,所以f(x)在(0,x1)单调递增,在(x1,x0)单调递减,所以存在x使得f(x)<f(0)=1,不满足条件.终上所述:当时,f(x)≥1对一切x≥0的实数恒成立.(3)令m=1,由(2)得e x>x2+1,则,令x=i(i+1)(i=2,3,…n),则,当i=1时,,当i=2时,,当i=3时,,…,当i=n时,,所以.【点评】本题考查导数的运用:求切线的方程和单调性,考查不等式恒成立问题和不等式的证明,注意运用分类讨论的思想方法和裂项相消求和及不等式的性质,考查运算能力,属于中档题.。
福建省厦门市双十中学2021届高三年(上)半期考试 数学(文)
福建省厦门市双十中学2021届高三年(上)半期考试 数学(文)高三 数学考试时间:120分钟学校:___________班级:___________姓名:___________学号:___________一 、 选择题:(本大题共12 小题,每小题5分共60分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案填入答题卡填空题的相应位置.)1.已知集合A={y|y=ln(x-1)},B={0,1,2,3},则A B=( )A.{0,1,2,3}B.{1,2,3}C.{2,3}D.{0,1}∩2.下列函数中,既是奇函数又存在极值的是( )A.B.y=ln(-x)C.D.y =x 3y =xe −xy =x +2x3.如图为几何体的三视图,根据三视图可以判断这个几何体为( )A.圆锥B.三棱锥C.三棱柱D.三棱台4.已知,则=( )A.-B.-C.D.cos α=,a ∈(−π,0)2√10cos (α−)π4354535455.函数的图象如图所示,其中a ,b 为常数,则下列结论正确的是( )f (x )=a x −bA.a>1,b<0B.a>1,b>0C.0<a<1,b>0D.0<a<1,b<06.已知两条平行直线之间的距离为1,与圆相切,与C 相交于A ,B 两点,则|AB|=( )A.B.C.3D.,l 1l 2l 1C :+=4x 2y 2l 22‾√3‾√23‾√7.的内角A ,B ,C 所对的边分别为a ,b ,c.已知A=60°,c=8,a=b+2,那么的周长等于( )A.12B.20C.26D.△ABC △ABC 103‾√8.在中,若点D 满足,点M 为AC 中点,则=( )A.B.C.D.△ABC =2CD −→−DB −→−MD −→−−−23AB −→−13AC −→−+13AB −→−16AC −→−−23AB −→−16AC −→−+23AB −→−16AC−→−9.已知函数f(x)= sinωx(ω>0),则“函数f(x)的图象经过点”是“函数f(x)的图象经过点”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件(,1)π4(,0)π210.已知圆台轴截面ABCD 的高为2,AB=2,CD=4,E 是该圆台底面圆弧CD 的中点,则直线AE 与平面ABCD 所成角的正弦值为( )A.B.1223C.D.5√325√511.阿波罗尼斯(约公元前262-190年)证明过这样一个命题:平面内到两定点距离之比为常数k(k>0,k≠1)的点的轨迹是圆,后人将这个圆称为阿氏圆.若平面内两定点A 、B 间的距离为2,动点P 满足,当P 、A 、B 不共线时,三角形PAB 面积的最大值是( )A.B.C.D. =|PA ||PB |2‾√2‾√22‾√22√32√312.已知函数,若,则( )A.f(a)<f(b)<f(c)B.f(b)<f(c)<f(a)C.f(a)<f(c)<f(b)D.f(c)<f(b)<f(a)f (x )=+e x −a e −x +a =lo b =c 3ag 3二、填空题(本大题共4小题,每小题5分,共20分.请将答案填入答题卡填空题的相应位置.)13.已知向量a =(1,2),b =(2,m),若,则m= .(a +b =+)2a 2b 214.已知函数的图象关于直线对称,则φ的值为 .y=2sin (2x +φ)(−<φ<)π2π2x =π615.若椭圆的焦点在x 轴上,过点(2,1)作圆的切线,切点分别为A ,B ,直线AB 恰好经过椭圆的右焦点和上顶点,则椭圆方程为 .+=1(a >0,b >0)x 2a 2y 2b 2+=4x 2y 216.已知函数,若,且,则的取值范围 .f (x )={1+lnx ,x ≥1x +,x <11212≠x 1x 2f ()+f ()=2x 1x 2+x 1x 2三、解答题:(本大题6小题,计70分.解答应写出必要的文字说明,证明过程或演算步骤)17.已知a ,b ,c 分别为内角A ,B ,C 的对边,.(1).求A ;(2).已知点D 在BC 边上,DC=2BD=2,AC=,求AD.△ABC cosC =c +2b 2a3‾√18.如图,在多面体中,四边形为矩形,⊥面ABC ,,E ,F 分别是,AC 的中点,G 是线段上的任一点.ABCC 1B 1A 1B C B 1C 1AB =BC =,C 5‾√C 1A //C ,2A =C =AC =2A 1C 1A 1C 1A 1C 1BB 1(1).求证:AC ⊥EG ;(2).求三棱锥的体积.F −EG A 119.某工厂每日生产某种产品x(x≥1)吨,当日生产的产品当日销售完毕,当1≤x≤20时,每日的销售额y(单位:万元)与当日的产量x 满足y=alnx+b ,当日产量超过20吨时,销售额只能保持日产量20吨时的状况.已知日产量为2吨时销售额为4.5万元,日产量为4吨时销售额为8万元.(1).把每日销售额y 表示为日产量x 的函数;(2).若每日的生产成本(单位:万元),当日产量为多少吨时,每日的利润可以达到最大?并求出最大值.(注:计算时取1n2=0.7,1n5=1.6)c (x )=x +11220.已知椭圆的离心率为,F 是椭圆C 的一个焦点.点M(0,2),直线MF 的斜率为.(1).求椭圆C 的方程;(2).若过点M 的直线l 与椭圆C 交于A ,B 两点,线段AB 的中点为N ,且|AB|=|MN|.求l 的方程.C:+=1(a >b >0)x 2a 2y 2b 23√26√321.已知函数.(1).讨论f(x)的单调性;(2).当0≤a≤1时,证明:xf(x)>a(sinx+1).f (x )=lnx +a +1x22.[选修4-4:坐标系与参数方程]在直角坐标系xOy 中,曲线C 的参数方程为(φ为参数),直线l 的方程为(1).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,求曲线C 的极坐标方程和直线l 的极坐标方程;(2).在(1)的条件下,直线m 的极坐标方程为,设曲线C 与直线l 的交于点O 和点A ,曲线C 与直线m 的交于点O 和点B ,求的面积.{x =1+cos φ5‾√y =2+sin φ5‾√y =x 3‾√θ=(ρ∈R )π6△OAB。
福建省厦门双十中学届高三上学期期中考试 数学(理)试题(缺答案).pdf
教学目标 通过本课学习,使学生了解和掌握以下基础知识:改革开放后邓小平提出的“四项基本原则”;十二大上邓小平提出建设有中国特色的社会主义;十三大上邓小平提出党在社会主义初级阶段的基本路线;邓小平视察南方的重要讲话;邓小平理论的形成;十四大邓小平理论指导地位的确立;十五大邓小平理论确立为党的指导思想。
通过对“改革开放的总设计师邓小平”介绍,使学生认识邓小平解决了建设有中国特色的社会主义等一系列基本问题,成为中国改革开放和现代化建设的总设计师,激发学生对总设计师的敬爱之情;通过“邓小平理论指导地位的确立” 的学习,使学生认识邓小平理论是马克思主义在中国的新发展,逐步确立为祖国的改革开放和现代化建设事业做贡献的人生理想。
重点和难点 本课重点“改革开放的总设计师邓小平”。
本课难点是理论性强,学生不易理解,特别是难于理解为什么说邓小平理论是马克思主义在中国的新发展。
为什么说邓小平是中国改革开放和现代化建设的总设计师? 十一届三中全会前,邓小平提出要实行;实行改革开放后,邓小平提出现代化建设必须坚持;十二大上邓小平提出;十三大上邓小平;十三大根据他的设想,做出了的战略部署。
总之,在中国改革开放和现代化建设中,邓小平解决了什么是社会主义,怎样建设社会主义等一系列基本问题,为中国改革开放和现代化建设指明了前进的方向和道路,因此说他是我国实行改革开放和现代化建设的总设计师。
邓小平1992年,邓小平南巡讲话 ①内容——特区姓“社”不姓“资”。
要抓住机遇,发展自己,关键是发展经济。
发展才是硬道理。
②影响——。
邓小平理论指导地位的确立:①1992年,中共十四大确立邓小平理论。
并形成了以为核心的第三代领导集体。
②1997年,中共十五大把邓小平理论确立为。
【达标练习】 一、轻松入门 1、提出党在社会主义初级阶段的基本路线的会议是 A.中共八大 B.第一届全国人民代表大会 C.中共十一届三中全会 D.中共十三大 2、下列哪一项不是社会主义初级阶段基本路线的内容 A.以经济建设为中心 B.坚持改革开放 C.坚持四项基本原则 D.分三步走的战略部署 3、搞好改革开放的根本保证是A.坚持四项基本原则B.始终以经济建设为中心C.坚持实事求是D.安定团结的政治局面 4、明确提出“建设有中国特色的社会主义”的大会是A.党的十二大B.党的十三大C.党的十四大D.党的十五大 5、党的十五大召开于A.1982年B.1987年C.1992年D.1997年 6、1992年召开党的 大,形成了以 为核心的第三代领导集体。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021届福建省厦门双十中学高三上学期期中考试数学理试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{|12},{|03}A x x B x x =-<<=<<,则AB =( )A .(1,3)-B .(1,0)-C . (0,2)D .(2,3) 2.已知11abi i=-+,其中,a b 是实数,i 是虚数单位,则||a bi -= ( ) A .3 B . 2 C .5 D .5 3. 已知等差数列{}n a 的前n 项和为n S ,若4518a a =-,则8S =( ) A .18 B .36 C .54 D .72 4.设,a b 是互不垂直的两条异面直线,则下列命题成立的是 ( )A .存在唯一直线l ,使得l a ⊥,且l b ⊥B .存在唯一直线l ,使得//l a ,且l b ⊥C .存在唯一平面α,使得a α⊂,且//b αD .存在唯一平面α,使得a α⊂,且b α⊥ 5. 已知命题:,23x x p x R ∀∈<;命题32q :,1x R x x ∃∈=-,则下列命题中为真命题的是( ) A .p q ∧ B .p q ⌝∧ C .p q ∧⌝ D .p q ⌝∧⌝ 6. 已知函数()3sin cos (0)f x x x ωωω=+>的图像与直线2y =-的两个相邻公共点之间的距离等于π,则()f x 的单调减区间是( )A .2[,]()63k k k Z ππππ++∈ B .[,]()36k k k Z ππππ-+∈C .4[2,2]()33k k k Z ππππ++∈ D .5[2,2]()1212k k k Z ππππ-+∈ 7. 如图,两块全等的直角边长为1的等腰直角三角形拼在一起,若AD AB k AC λ=+,则k λ+=( )A .12+. 22.2 D .228. 已知定义在R 上的函数||()21(x m f x m -=-为实数)为偶函数,记0.52(log 3),(log 5),c (2)a f b f f m ===,则,,a b c 的大小关系为( )A .a b c <<B .a c b <<C . c a b <<D .c b a << 9. 已知一个几何体的三视图如图所示,则该几何体的体积为( )A .(4)33π+B .(4)32π+C .(4)36π+ D .(4)3π+10. 已知函数21()(0)2x f x x e x =+-<与2()ln()g x x x a =++的图像上存在关于y 轴对称的点,则a 的取值范围是( ) A .1(,)e -∞ B .(,)e -∞ C .1(,)e e - D .1(,)e e- 11. 已知函数()sin 2sin cos f x x x x =++,以下说法中不正确的是( ) A .()f x 周期为2π B .()f x 最小值为54- C .()f x 为单调函数 D .()f x 关于点(,0)4π对称12. 如图,在棱长为1的正方体1111ABCD A B C D -的对角线1AC 上取一点P ,以A 为球心,AP 为半径作一个球,设AP x =,记该球面与正方体表面的交线的长度和为()f x ,则函数()f x 的图像最有可能的是( )第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知向量,a b 夹角为60,且||1,|2|7a a b =-=,则||b =_______.14. 已知函数()f x 是定义在R 上的奇函数,且当0x <时,()2,x f x =则4(log 9)f 的值为_______. 15. 已知正项等比数列{}n a 的前n 项积为n π,已知11212,2048m m m m a a a π-+-⋅==,则m =_______. 16. 如右图所示,在一个坡度一定的山坡AC 的顶上有一高度为25m 的建筑物CD ,为了测量该山坡相对于水平地面的坡角θ,在山坡的A 处测得15DAC ∠=,沿山坡前进50m 到达B 处,又测得45DBC ∠=,根据以上数据计算可得cos θ=_______.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. (本小题满分10分)在直角坐标系中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,点A 的极坐标为(3,)2π,点B 的极坐标为(6,)6π,曲线22:(1)1C x y -+=(1)求曲线C 和直线AB 的极坐标方程;(2)过点O 的射线l 交曲线C 于M 点,交直线AB 于N 点,若||||2OM ON =,求射线l 所在直线的直角坐标方程.18. (本小题满分12分)在数列{}n a 中,前n 项和为n S ,且(1)2n n n S +=,数列{b }n 的前n 项和为n T ,且2n n na b = (1)求数列{}n a 的通项公式;(2)是否存在*,m n N ∈,使得n m T a =,若存在,求出所有满足题意的,m n ,若不存在,请说明理由. 19. (本小题满分12分)在锐角ABC ∆中,角,,A B C 所对的边分别为,,a b c ,已知3cos sin a b C B =+ (1)若2,7a b ==,求c ;(2)设函数2330)2sin (15)y A C =---,求y 的取值范围. 20. (本小题满分12分)如图,斜三棱柱111ABC A B C -的底面是直角三角形,90ACB ∠=,点1B 在底面内的射影恰好是BC 的中点,且2BC CA ==(1)求证:平面11ACC A ⊥平面11B C CB ;(2)若二面角11B AB C --的余弦值为57-,求斜三棱柱111ABC A B C -的高.21. (本小题满分12分)已知椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,上顶点为A ,短轴长为2,O 为原点,直线AF 与椭圆C的另一个交点为B ,且AOF ∆的面积是BOF ∆的面积的3倍 (1)求椭圆C 的方程;(2)直线:l y kx m =+与椭圆C 相交于,P Q 两点,若在椭圆C 上存在点R ,使OPRQ 为平行四边形,求m 取值范围.22. (本小题满分12分) 已知函数1()(0)1axx f x e a x-+=>- (1)当2a =时,求曲线()y f x =在12x =处的切线方程; (2)讨论方程()10f x -=根的个数.2021届福建省厦门双十中学高三上学期期中考试数学理试题参考答案一、选择题:本大题共12个小题,每小题5分,共60分.1 2 3 4 5 6 7 8 9 10 11 12 ADDCBAACCBCB二、填空题(本大题共4个小题,每小题5分,共20分). 13. 3 14. 13- 15. 6 16. 31-三、解答题:(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.) 17.依题意得32cos 2tan 3sin ααα⋅=⇒=.…………8分 所以射线l 所在直线的直角坐标方程为3y x =…………10分 18.(1)当1n =时111a S == 当2n ≥时1(1)(1)22n n n n n n n a S S n -+-=-=-= 经验证,11a =满足上式,故数列{}n a 的通项公式n a n =;…………6分(2)由题意,易得231232222n n n T =++++,则234+1112322222n n nT =++++, 两式相减得234+1+1111231122222222n n n n n n T =++++-=--,所以222n n n T +=-…………10分由于2n T <,又2212n n m m +-=∴=,解得2n =.…………12分19.(1) cos sin sin sin cos a b C B A B C B =+∴=+;cos sin tan 3B C B B B π∴=∴==…………4分 22222cos 2303b a c ac B c c c =+-∴--=∴=…………6分(2)23sin(230)2sin (15)3sin(230)12cos(230)y A C A C =---=--+-30)cos(2102)13sin(230)cos(230)13sin(260)1A A A A A =-+--=----=--……10分又ABC ∆为锐角三角形,(,)(1,1]62A y ππ∴∈∴∈-.…………12分20.(1)取BC 中点M ,连接1B M ,则1B M ⊥平面ACB ∴1B M AC ⊥…………1分 又AC BC ⊥,且1B MBC M AC =∴⊥平面11B C CB因为AC ⊂平面11ACC A ,所以平面11ACC A ⊥平面11B C CB ;…………4分(2)以CA 为ox 轴,CB 为oy 轴,过点C 与面ABC 垂直方向为oz 轴,建立空间直角坐标系…………5分2CA BC ==,设1B M t =,则11(200),(020),(010),(01,),C (0,1,t)A B M B t -,,,,,,,…………6分即111(21,),(2,2,0),(0,2,0)AB t AB B C =-=-=-, 设面1AB B 法向量111(,,)(1,1,)n x y z n t=∴=…………8分 面11AB C 法向量21(,,)(,0,1)2t n x y z n =∴=…………10分125cos ,7n n t <>=-∴.…………12分21.(1) 短轴长为2,可得1b =,即(0,1)A ,设(,0),(,)F c B x yAOF ∆的面积是BOF ∆的面积的3倍,即为1113||22c c y ⋅=⋅⋅可得13y =-,由直线:1x AF y c =-+经过B 可得43x c =,即41(,)33B c -,代入椭圆方程可得 22161199c a +=即为222a c =,即有2222a b ==,则椭圆C 的方程为2212x y +=;…………4分 (2)设1122(,),(,)P x y Q x y ,由OPRQ 为平行四边形可得1212,R R x x x y y y +=+=R 在椭圆C 上可得221212()()12x x y y +++=,即为221212()((x )2m)12x x k x ++++= 化为2221212(12)()8()82k x x km x x m +++++=…………6分由2212x y +=,y kx m =+可得222(12)422k x kmx m +++=,由0∆>即为2212k m +> 122412kmx x k +=-+…………8分代入可得2222244(12)()8()821212km kmk km m k k+-+-+=++,化为221240k m m +=⇒≠…………10分 又221241k m +=≥,解得12m ≥或12m ≤-,则m 取值范围是11(,][,)22-∞-+∞.…………12分22.(1)当2a =时,21()1x x f x e x -+=-又2222()(1)x x f x e x -'=- 1111()2,()322f e f e --'∴==故所求切线方程为;1112232(),2y e e x y x e e---=-=+(2) 方程()10f x -=即()1f x =,()f x 的定义域为(,1)(1,)-∞+∞当11x x <->或时,易知()0f x <,故方程()10f x -=无解,故只需考虑11x -≤<的情况设222()()1,()(1)ax ax a g x f x g x e x -+-'=-=-,令()0g x '>得220ax a +->,又220a a x a ->∴> 当02a <≤时,()0g x '≥所以()g x 在区间[-1,1)上是增函数,又(0)0,()0g g x =∴=,只有一个根0当2a >时,由()0f x '>得x x <>又11x -≤<,所以()g x 在[1,-和递增,在(递减(1)10g -=-<,()g x 在(递减(g(0)0g ∴>=又()g x 在[1,-递增,()0g x ∴=在[1,-有一个根()g x 在(递减(g(0)0g(0)0g g ∴>=<=,()0g x ∴=在(有一个根0g(0)0,1,()g x g x <=→→+∞,又()g x 在递增()0g x ∴=在有一个根 综上所述,当02a <≤时方程()10f x -=有一个根,当2a >时方程()10f x -=有三个根.。