换热站自动节能控制系统

合集下载

换热站自动节能控制系统

换热站自动节能控制系统

换热站自动节能控制系统换热站作为我国热供应系统中重要组成部分,直接关系到生产生活的稳定运行。

换热站主要是将一次网的80℃左右热水通过热交换器使二次网低温水水温达到6O℃左右,成为满足供暖送水温度的热水,通过二次网热水管道送到城市居民家中,流过各用户的散热器;通过循环泵的加压循环,流回换热站,进入换热站热交换器的二次回水温度有40℃左右。

一、换热站节能控制系统功能特点1.1节能控制系统的功能换热站节能控制系统具有高效节能、智能化、自动化等优点,可广泛用于:热力公司热网控制(多个换热站的集中管理和控制)或工厂、机关、住宅小区等商用建筑的供热、采暖、空调、生活用热水;各种需要换热的场所;各类换热站的新建、改建和扩建工程的配套。

1.2节能控制系统的特点换热站设计理念先进,既可节省基础建设的投资,又使安装维护简便。

实现系统的自动控制,使自动化、智能化程度提高,易于操作。

可实现无人值守、自动显示。

也可远程通信操作,并通过计算机网络进行监控,同时自动控制和人工操作可相互切换。

该智能控制装置具有自动控制、气候补偿、节能舒适等特点,是当今智能建筑采暖供热。

二、换热站节能控制存在的的问题2.1换热站根据室外温度的变化,自动控制一次网供水的流量和供热量由于目前的换热站大多缺乏先进的控制方式,虽回水温度按要求得到了保证,但远端用户的供热效果很难保证,通常是使供水温度远高与设计要求值,这种方式虽然满足了远端用户的要求,却增加了热损失及供热量,浪费了能源。

2.2换热站运行管理人员的素质的提高在换热站的设计和建造过程中,要充分考虑到换热站额调控。

虽然现在很多换热站都有了先进的设备,但大量闲置,究其原因是换热站的管理人员不会或不愿使用。

所以,要提高换热站运行管理人员的素质。

三、换热站节能控制系统设计为了保证换热站的安全、经济运行,必须保证换热站控制系统设计对现有规模的供热用户有合理的技术方案。

下面我们以某小区1000户住宅,建筑面积12万平方米的所建的换热站为例,介绍一下换热站控制系统节能设计和应用。

换热站控制系统功能

换热站控制系统功能

《《》》一、换热站安装自动控制系统的目的在蒸汽首站中安装自动化控制系统其目的当然是为了能使工艺控制更先进、供热参数更优化、整体系统更节能,并给投资者能带来一定的经济效益,其总结一下优点共有以下四类:2.1 提高供热温度、压力、流量等过程参数的控制精度,改善供热品质。

2.2 减少操作人员、降低工人劳动强度、节约人力投资。

2.3 全面及时的掌握供热系统的温度、压力、流量等过程参数变化情况,相当于供热系统安装了眼睛,运行人员可以不用再到现场就地仪表上观看记录和填写运行报表。

2.4 控制系统提供完整的故障诊断及报警功能,使得运行人员可以快速掌握报警发生地点及原因,对超温、超压、泄漏、堵塞、仪表故障、PLC故障、断电等各种故障的发生做到及时诊断,及时检修,保证系统安全运行。

三、控制系统的选择及配置在选择首站控制系统时首先要考虑到首站的重要性,同时也要考虑到供热公司一般维护人员技术水平较差,首站运行人员文化有限。

所以必须选择一种运行界面全中文且自动化控制水平较高、持久运行故障率低的DCS系统。

经过调查西门子S7300PLC多年来被各行业所用,可靠性高故障率低I/O点扩展也方便,所以在“天津碱厂永利新河供热站”下位机选择了西门子S7300CPU。

上位机人机界面它的友好性和可操作性直接影响着系统的安全运行,本工程中上位机采用两台计算机控制平台另加一台西门子HMI MP270触摸人机界面。

上位机软件选用国产(MCGS)全中文组态软件,使控制系统构成DCS结构。

整个DCS系统软硬件配置如下:3.1 PLC控制柜硬件组成PLC独立的安装在弱电控制柜中,PLC由中央控制器CPU214(本机自带2DP接口,32K工作内存,位操作时间0.1μs,集成14DI/10DO, DI/DO最大1008点,AI/AO最大248点,MMC微存储卡128K ),最多扩展模拟量输入输出模块 ×8个。

由于选用了2DP接口的CPU,所以在PLC弱电控制柜门上还嵌入了一款MT6070触摸面板HMI(65536色,7英寸,480×234),触摸面板HMI与PLCDP-2接口进行通讯。

换热站自控系统的作用与意义研究

换热站自控系统的作用与意义研究

换热站自控系统的作用与意义研究摘要:换热站是集中供暖的重要组成部分,换热站自控系统是基于计算机智能技术发展而设计的具有节能环保性能的控制设备。

实践证明构建完善的换热站自控系统对保障集中供暖安全运行、降低能源消耗具有重要意义。

本文结合多年工作实践,以换热站自动系统的作用与意义作为切入点,阐述换热站自控系统的组成及设计原则,最后提出完善换热站自控系统性能的具体对策,以此为居民提供舒适的供热服务。

关键词:换热站;自控系统;大数据技术;作用;意义引言换热站是供暖终端上游调节控制单元,换热站工作质量将直接影响集中供暖的效果。

换热站的作用就是根据热网工作状况和不同条件,采取不同的连接方式,将热网输送的热媒加以调节、转换等向热用户系统分配热量以此满足用户的需求。

当前换热站主要分为液体和气体两种形式,随着远程大数据技术的发展,自动控制管理系统成为换热站的重要发展趋势。

一、换热站自控系统的作用与意义对于换热站而言构建自控系统具有极为重要的作用与现实意义:首先自控系统有助于实现供热管道的实时监测,降低故障发生率。

供热工程属于民生工程,近些年公众对供热质量要求比较高。

供热管网跑冒滴漏不仅会造成能源浪费,而且还会影响到供热质量,降低群众的生活指数。

换热站自控系统能够通过对瞬时流量、回水压力等参数的监测,实时监测水量的变化,以此及时发现管网故障并且第一时间制定相应的应对措施;其次自控系统有助于提升换热站运行设备的使用寿命,达到节约能源的目的。

随着“双碳战略”的实施,降低能源消耗成为换热站经营管理的重要目标。

传统的人工监测管理模式不仅存在遗漏安全隐患风险,而且还会延长故障检修时间,最终降低居民的热舒适度。

构建自控系统后期不能可以实时在线监测换热站运行设备的运行状态,而且还可以根据流量负荷变化智能调节设备的运行状态,进而有效配置热资源,为供热企业节省大量的用电费用。

例如根据统计换热站在没有实施自控系统之前,供热系统的耗电情况非常严重,高达3~4度/平米,而采用自控系统之后,电费可低至原来的50%~70%;最后有助于减轻人工劳动,构建无人值守管理模式。

浅析自动化控制系统在换热站改造中的应用

浅析自动化控制系统在换热站改造中的应用

由于我 国北方冬季温度较低 , 所 以城市供热是 一件 关系到国计 民生的 大事 , 近几年 , 城市 中都采用 了集 中供热系统 , 虽然 比传统 的分散式供热有 了较大 的进 步, 但仍避免 不掉高能耗 、 污染重及运行 和管理 自动 化程度低 的问题, 不 仅 造 成 了能 源 的 大 量 浪 费 , 而且对环境的污染较为严重。 所 以目 前急需对供热 系统进行改造 , 加强其智 能化控制水平 , 同时利用 数字化技 术来进行管理 , 有效的提高供热质量 , 实现减排 降耗。目前集中供热系统 与 用户之 间是通 过换热站来进 行连接 的, 换热站作 为中间环境 , 保 证其运行 的稳定性 , 提 高其对水温 的控 制能力 , 这对于改善热 网的热力工 况将起到 积极的作用 , 同时也能够在很大程度上确保供热质量的提 升。 1现有 的换热站存在 的问题 1 . 1高 耗 能 。目前 的换 热 站 普 通 大 在 着 耗 能 泵 和 补 水 泵 的 输 出 流 量 则 不 会 随着 负 荷 和 压 力的变化而发生变化, 这样就导致高能耗的存在。 1 . 2水温控制困难。由于无法实现对二次供水温度进行很好 的控制, 所 以所输 向热 网的热水温度 的稳定性则会 受到影响 ,直接 影响到供 暖的质
改 变 电 动机 的 电流 和 频率 , 从 而 实现 节 能 。 由 于利 用 变 频 技 术 进 行 调 节 时 ,
1 . 3目前换热 站内在数据传输 方面存在着许多不完善 的地 方,导致不 能稳 定的对 数据进 行传输, 运 行管理 水平较 低, 无 形中加大 了运行 的成本 。 2 自动 化 控 制 系统 在 变 热 站 的应 用 由于现有换热站存在着许多不完善的地方, 所 以需要针对存 在的问题 对其 升级改造, 目前多采用恒 压变频调速技术和远程监控技术用 于集 中供 热系统 的升级改造工程 首先利用可编程控制器来进行恒压变频调速系统 的设计 , 使其在换热站 内进行 应用。此系统 可以能过对室外温度进行 连续 性 的采 集、 反馈 , 从而 使二次网的供水温度 实现 实时调节的功能 , 从而有 效 的保证 了换热站与用户之间供水温 度的恒定性, 使室 内温度保持 在一个稳 定的数 值范围内。在智能化的控 制系统 基础上, 再有效 的运用远程监控 手 段, 这样可 以利用计 算机实现对 多座换热站 的统一 一 管理和控 制, 使无人 值 守换 热站变为可能 , 这 样不仅有 效的实现 了节 能, 而且也 降低了集 中供 热 系统运 行时的成本 。 2 . 1 恒压变频控制系统 的应用 由微机给水控 制器 、 变频器和 压力变送器 组成, 有手动 和 自动两种 功 能和一种工频 功能。该系统采用有其独特 的节 能降耗功能变频器 , 其 不仅 节能效 果明显 , 而 且还 具有可扩展功 能、 紧密相 关的安全性、 易于控制等优 点。 使用 的微机 给水控 制器可实现 在线设定参数 , 调整方便 , 采用数字 P I D 调节 、 控制精确 , 软件 引入容错概念和抗干扰算法 , 输 出继电器采用压敏 电 阻保护 , 抗干扰能力特别强 。内部采用开关 电源供 电, 电压适应范围宽。 2 . 1 . 1换热站 是为用户供热 的能源 中心 , 所 以要求工作模式 多, 安全 系 数大 。 在变频模式下, 手 动时可以人为随意设定压力 , 控制循环泵 的输 出流 量, 调节供 暖温度 ; 自动 时微机给水 控制器 、 变频器 和压力 变送 器 自动跟 踪, 通过控 制电机转速 调节 循环泵输 出流量 , 从而达 到 调节供热 负荷的 目 的。而且 自动化控制系统具备工频运行与变频相 结合 的功能, 在工频运行 不能满足循环泵的输 出流量时加入变频运行, 微机给水控制 器根 据管 网压 力控制变频器频率来满足循环泵的输 出流量 , 调节供 热负荷。当变频器 出 现故障时, 可手动切换到工频运行, 以保证不问断供热。 2 . 1 . 2对 于补水系统 , 采用 此方法进行失水补充 , 若系 统失水低 于二次 回水管 网设定 点压 力时 , 微机 给水控制器 启动补水变频 器, 补水泵 进行失 水补 充 , 自动跟踪 二次回水管 网压力 , 当二次回水管 网压 力达到设 定点压 力 时, 补水 变频 器会 自动停止 处于待机 状态 。 2 . 1 . 3对 补水箱采用此方法进 行恒 压补水 , 在补水箱 安装压力变送 器, 用微机 给水控 制器控 制补水箱液位 启动 变频器,当液位达到设 定值 时, 变 频器会 自动停止处 于待机状态 , 当管 网失水 过多, 变频器会 全速跟进 为水

换热站供热自动化控制系统的原理及应用探讨

换热站供热自动化控制系统的原理及应用探讨

换热站供热自动化控制系统的原理及应用探讨作者:陈鑫冯立来源:《科学与财富》2020年第21期摘要:换热站是将一次管网提供的高温热量进行二次转换,进而供给终端用户,以满足用户的基本生活需求。

近年来,换热站运行系统逐步实现了自动化管理,该系统不仅降低了能源消耗量,减少了环境污染,而且供热效果较之过去相比,有了显著提升。

因此,本文分析了换热站供热自动化控制系统的结构和工作原理,详细探讨了换热站供热自动化控制系统的应用方式。

关键词:换热站;供热;自动化控制系统为了提升供暖质量,减少资源能源浪费,热力公司不断提升自动化技术水平,优化自动化控制系统的各方面性能,积极响应国家关于“节能降耗、绿色环保”的号召,并取得了阶段性成果。

借助于自动化控制系统实时监控的功能,供热全过程实现了透明化管理,尤其在温度与热量控制方面,实现了一次达标、一次通过的愿景,用户满意率呈现出逐年升高态势。

1换热站供热自动化控制系统的结构组成与工作原理1.1;;;; 结构组成换热站供热自动化控制系统主要包括:传感器、测量仪表、执行机构、PLC、现场液位计以工控机等结构组成。

其中测量装置主要对换热站的运行状态以及各项运行参数进行测量,测量参数涵盖一次供温温度、二次供水温度、二次供水流量、用户暖气温度以及二次回水温度等参数。

执行机构对供暖锅炉传输蒸汽管道的开关阀门进行有效控制。

而 PLC 则是接收换热站控制系統传输来的数据信息,并对其进行运算和处理,然后借助于I/O 模块,写入自动运行控制程序,进而完成变频器、电动调节阀以及补水泵的相关动作行为。

现场液位计主要测量补水箱内的液位高低,工控机则是有效监测系统运行过程中的各项参数,如果发现运行异常,工控机的报警装置会发出报警信号。

换热站的控制柜对循环水泵以及补水泵进行有效控制,运行模式包括手动、自动、工频以及变频。

而保障换热器正常运转的独立运行程序则存储在 PLC 内,在运行时,无需借助于上位机的监控管理软件。

换热站自动控制系统使用说明书

换热站自动控制系统使用说明书

换热站自动控制系统使用说明一、概述本换热站自动控制系统,包括受柜、循环泵变频器柜、补水泵变频器柜和控制柜组成,对换热机组进行全面的自动控制。

控制系统使用西门子S7-200系列PLC作为控制器,通过模拟量扩展模块读取现场变送器采集到的现场数据,用于内部控制和送至触摸屏进行显示。

现场操作使用EView触摸屏,简单直观。

本系统触摸屏主要包括一下画面初始画面参数显示参数总览参数设定控制设定巡检画面电流显示报警一览报警设定下面对这些画面作简单说明初始画面为系统上电时屏幕显示的画面,点击手型按钮进入操作各画面。

进入操作画面后不再显示此画面。

参数显示在这个画面显示系统的基本参数,包括高温侧和低温侧压力、温度、流量。

还包括电机温度数据。

参数总览将参数显示在换热系统的示意图上,包括高温侧和低温侧压力、温度、流量及流量累积。

参数设定设定控制参数,包括一次网供水流量设定,二次网捕水压力设定、泻压压力设定。

进入报警设置的密码输入也在这个页面上。

控制设定在这个画面设定控制模式及输入手动时的输出值。

可设定补水泵、泻压阀和电动阀的状态,手动开启补水泵和泻压阀,设定补水泵和电动阀在手动时的输出值。

巡检画面用于上传巡检信息。

电流显示显示循环泵的三相电流大小,并显示一次网和二次网的热量及热量积算。

报警一览显示当前的报警信息报警设定设定报警限。

本画面只有在输入安全密码后才可以进入。

二、操作使用说明1、基本操作说明控制系统使用触摸屏作为人机界面。

触摸屏通过通讯电缆与PLC进行通讯交换数据。

可以通过点击触摸屏上的开关来切换开关的状态。

如果要输入数据,可以用手指点击要输入的数据,将会弹出一个数字小键盘,可以用手指点击相应的数字输入你想要的数值,然后点击小键盘上的ENT确认,便可以输入数据了,如下图所示画面切换可以通过点击画面底部的两个箭头实现。

2、自动补水设定使用自动补水需要按以下规程操作A、将变频补水柜面板上的转换开关调整至1#自动或2#自动状态。

城市集中供暖系统节能及换热站控制系统的设计研究

城市集中供暖系统节能及换热站控制系统的设计研究

创新观察—318—(一)设备更新与加强管理力度以配电网自动化建设为契机,将过去的老旧、落后设备统统进行更新替换,过去供电设备简陋,通常是户外开闭所,这种方式不利于维修。

出现故障就要等候专业的技术人员过来维修,为了安全,技术人员必须切断电源,导致周围停电,影响居民正常生活,供电可靠性较弱。

通过配网自动化这一技术的应用,不仅能实现自动操作,还能通过遥感技术对线路运行情况进行监控,避免了技术人员亲自维修,极大地保障了技术人员的生命安全。

为了能使配电网自动化得到有效地使用,各电力公司还应该建立起完善的管理机制,借此对各个部门进行严格要求,发挥出部门应有的作用,对配电网运行出现的问题提出合理的调整建议,以此来增加配电网运行的可靠性[2]。

(二)提高技术人员素质水平技术人员对配网自动化技术的影响很大,甚至可以说技术人员的水平影响着配网自动化技术与配电网系统融合的质量。

所以在配网自动化技术运用之前,就要对技术人员进行相应的培训,向他们讲述安装时的注意事项,这样不但提升了他们的专业技能,还让他们对配网自动化技术有了更加深入地了解,以便日后能够更好地解决突然出现的棘手问题。

培训时不应只顾及年轻人的进度,同样要照顾年龄稍大但是具有丰富经验的老员工。

在加强老员工与时俱进的工作理念时也让老员工分享自己的想法,让年轻技术人员增长经验。

公司也可以定期展开竞技比赛,让获得优胜的人讲解自己能获胜的原因,在验证自己能力的同时,也能从别人身上得到一些启发。

在技术与经验共同增长的良好形势下,才能促进我国电力事业的发展,保障供电的稳定性。

(三)根据实际情况灵活运用系统以往的检修方式主要是以周期进行检修维护,这样不但无法及时对故障进行处理,而且更无法主动或提前对事故进行预防。

如今技术人员可以通过配网自动化技术中的故障定位功能处理以上问题。

但是有两方面需要注意,一是多方面检测,小区要检测变电站、配电站等。

对用户则是检测电表以及分段开关。

另一方面则是需要技术人员对环境进行分析后,根据实际情况选择相应的设备。

换热站及其自动控制系统

换热站及其自动控制系统

换热站及其自动控制系统The heat exchange station is now widely used in automatic control system. However, good heating system and good automatic control system, sometimes can not be combination well. Investigate its reason, is mainly the HVAC engineers do not understand automatic control, automatic control technology personnel do not understand the HVAC, neither can achieve the best results. In the heating project, comparing HVACengineering and automation, HVAC is the leading part, and automatic control is its auxiliary. Therefore, as a heating technology personnel, it is necessary to have a rudimentary understanding of automatic control system. At the sametime, should be based on their knowledge of automation and HVACunderstanding to coordination and guidance control personnel to do the debugging work.s Central Heating Supply System; Control system of heat exchanger; PID Regulation换热站如今已广泛使用自动控制系统。

换热站供热自动化控制系统的原理及应用探讨

换热站供热自动化控制系统的原理及应用探讨

换热站供热自动化控制系统的原理及应用探讨为了提升供暖质量,减少资源能源浪费,热力公司不断提升自动化技术水平,优化自动化控制系统的各方面性能,积极响应国家关于“节能降耗、绿色环保”的号召,并取得了阶段性成果。

借助于自动化控制系统实时监控的功能,供热全过程实现了透明化管理,尤其在温度与热量控制方面,实现了一次达标、一次通过的愿景,用户满意率呈现出逐年升高态势。

1换热站供热自动化控制系统的结构组成与工作原理1.1 结构组成换热站供热自动化控制系统主要包括:传感器、测量仪表、执行机构、PLC、现场液位计以工控机等结构组成。

其中测量装置主要对换热站的运行状态以及各项运行参数进行测量,测量参数涵盖一次供温温度、二次供水温度、二次供水流量、用户暖气温度以及二次回水温度等参数。

执行机构对供暖锅炉传输蒸汽管道的开关阀门进行有效控制。

而PLC 则是接收换热站控制系統传输来的数据信息,并对其进行运算和处理,然后借助于I/O 模块,写入自动运行控制程序,进而完成变频器、电动调节阀以及补水泵的相关动作行为。

现场液位计主要测量补水箱内的液位高低,工控机则是有效监测系统运行过程中的各项参数,如果发现运行异常,工控机的报警装置会发出报警信号。

换热站的控制柜对循环水泵以及补水泵进行有效控制,运行模式包括手动、自动、工频以及变频。

而保障换热器正常运转的独立运行程序则存储在PLC 内,在运行时,无需借助于上位机的监控管理软件。

换热站的中央控制室时时监测出口位置的暖气温度,如果温度不达标,可以及时进行智能化调整,使供暖温度能够满足终端用户需求。

1.2 工作原理从供暖锅炉内部出来的蒸汽借助于供热管道传输到换热站,在这传输过程中,蒸汽主要是由电动调节阀的自动开、关与手动阀门进行有效控制。

当蒸汽传导到双纹管换热器中后,与管网中的冷水介质发生热交换反应,使蒸汽温度下降而成为液态的冷凝水,此时,冷凝水贮存到水箱中,在循环泵的作用下,冷凝水进入到供暖管道当中。

换热站节能控制系统研究

换热站节能控制系统研究

不够 , 观感差 ;) 3 折弯不 规范 ; ) 4 遇墙 栓没 有 明敷 ; ) 门洞引 下 开 裂 现 象 。8 每 个 连 接 部 位 附近 的 表 面 , 刷 绿 色 和 黄 色 相 间 的 5绕 ) 涂
点 距 门洞 太 远 ; ) 接 长 度 不 符 合 规 范 要 求 。 6搭
条纹标识 , 刷时要有保 护措施 , 涂 防止污染墙 面 , 同颜 色用胶带 不 纸分 隔。改进 安装工艺后符合规 范搭接 长度的要求 , 观感 有 了明
也对 运行 成本有显著 影响 。水 泵的流量 和扬 程 网是 指 连 接 于 换 热 站 与 热 用 户 之 间 的 管 网 。 换 热 站 是 指 连 接 于 对 电资源有影 响 ,

选择与配 置得 当, 装机电功率合适 , 次网与二次 网并装有与用户 连接 的相关设 备 、 仪表 和控 制设备 的选择 与配置是 十分 重要 的, 运 行 工 作 点 处 于 设 备 高 效 率 区 域 , 耗 少 。选 择 与 配 置 不 当 ( 电 一 的机 房 。
固 , 缝 应平 直 , 漏 焊 、 焊 、 渣 、 裂 现 象 。 9热 镀 锌 钢 材 焊 接 接 方 法 : 4倍 B+2道 焊 缝 宽 度 的 长 度 扁 钢 , 焊在 接 地 均 压 带 焊 无 虚 夹 开 ) 用 搭
时将破坏热镀锌防腐 , 没有 在焊痕外 10li 0 n内做 防腐处理 。1 ) 水平接头装 置的背面靠墙侧 。5 支持件 问的距离 , n 0 ) 在水平 直线部 遇到门 口时 , 两边不对称引下 。一般距门洞 03m~0 4m为宜 。 . .
能 、 效 、 低劳动强度… 。 高 降
端用户 的供热效果 得到保证 , 常是使供水 温度远高 于设计要求 通 值, 这种 方式虽然满 足了远 端用 户 的要求 , 增加 了热损 失及 供 却

换热站自控系统方案

换热站自控系统方案

锅炉及换热站远程监视控制系统概况随着互联网科技日益渗透到生活,生产的各个领域,各种工业组态软件及各种嵌入式硬件或PLC(可编程控制器)支持下,运用电脑进行工业过程自动化控制已然成为现实。

锅炉自动化控制及换热站远程监控是工业过程自动化中的体现。

操作者对锅炉自动控制及换热站远程监控系统有以下要求(控制指标)1,实时监测可视到:排烟温度,炉膛温度,炉膛压力,出水温度,出水压力,回水温度,回水压力,一次网供回水压力及温度,二次网回水温度及压力和二次网补水压力,及外加各种流量,压力,温度指标。

2,实时控制监视鼓风,引风,炉排,循环泵的启停,二次网循环泵启停,运行的全部情况(如果使用变频器可看到变频器的输出频率,输出电流等指标)及二次网补水泵的启停。

锅炉管理者通过互联网(或局域网)对锅炉自动控制系统有以下要求(控制指标)3,直观的看到锅炉现场及换热站的情况4,实时监测可视到:排烟温度,炉膛温度,炉膛压力,出水温度,出水压力,回水温度,回水压力,一次网供回水压力及温度,二次网回水温度及压力和二次网补水压力及外加各种流量,压力,温度指标。

5,通过互联网(或局域网)及电话与操作者进行通讯。

控制系统根据客户要求提供实时报表,历史报表和报警窗等系统控制指端可进行报表打印,报表数据下载等。

另外控制系统对操作者要进行用户身份验证,保证操作的安全性。

为实现以上各种要求,在控制系统中应用组态软件及与之相配套的电脑,扩展功能板,或PLC(可编程控制器),数模转换或模数转换,变送器,传感器。

整个监控系统共需处理的开关量输出点;开关量输入点;模拟量输入点和模拟量输出点若干(根据用户要求确定数量)。

主要采用组态王控制系统以及PLC 可编程控制器,换热站通过控制模块完成与SARO GPRS DTU的数据交互。

PLC 定时将数据发送给SARO GPRS DTU,同时PLC实时接收DTU发来的数据完成相应控制功能。

SARO GPRS DTU在收到PLC发来的数据会立即转发到操作者操作的系统。

谈换热站自控系统的作用与意义

谈换热站自控系统的作用与意义

谈换热站自控系统的作用与意义摘要:自从供热行业引入自控系统来管理热网的运行,供热模式就由原来的手动操作转变为精准快速的自动化模式,这一转变可以很好地实现节约能源,减少环境污染,节约成本,扩大供热面积等优点,因此,越来越多的热力公司采用自动化控制技术,不仅响应了国家倡导的“十三五”节能减排的号召,也给企业带来可观的经济效益。

本文就换热站自控系统的作用与意义进行了分析和探讨。

关键词:换热站;自控系统;组成一、热力站的简介在整个供热流程中,热力站作为供热终端的上游调节控制单元,它工作状况的好坏直接关系到居民的冷暖。

热力站将一次侧的热媒与二次侧的媒介进行能量传递,被加热的二次侧的热媒流向用户,其中冷热交换的部件为换热器,动力为循环泵。

热力站的分类:按照热媒的状态可分为液体和气体两种热力站;依照热力站多种用途大致上可以分为生活所用与工业所用的热力站,生活所用的热力站的服务对象为广大居民,一般在一个小区建立一个热力站。

工业所用的热力站面对的热用户为除了居民生活之外的群体,热源一般多采用气体。

热力站根据媒介的用途可分为三种模式,即采暖模式,空调模式和生活所需热水模式。

由于我国供用热事业起步晚,各种因素的限制,空调模式与生活所需热水模式并没有跟着采暖模式一起发展起来。

二、换热站自控系统建立的意义1、换热站的调节现状目前多数的换热站仍然是独立运行、手工操作和人工监控,这一方面增加了供热人力成本;另一方面操作人员的素质低造成设备事故的情况也很常见,这都大大影响了集中供热安全性。

而且由于换热站的监控数据与热源厂热力调度不能实时传输,造成热力调度无法对热源厂运行状况进行系统的分析判断,导致热力失调,用户冷热不均,不能实现供热系统整体最佳状态,影响供热效果而造成能源的极大浪费。

2、换热站自控系统建立的意义按照国家“十二五”节能规划,建筑节能指标要实现节能50%的目标,其中建筑物约承担节能35%的任务,供热系统约承担节能24%的任务。

换热站自控系统方案

换热站自控系统方案

换热站自控系统方案1. 引言换热站是热力供应系统中重要的组成部分,负责将集中供热系统中的热能输送到用户热水和供暖系统中。

为了实现对换热站的高效管理和控制,需要采用自控系统来监测和调节换热站的运行状态。

本文将提出一种换热站自控系统方案,以提高换热站的效率和可靠性。

2. 方案设计2.1 系统架构换热站自控系统主要由以下几个部分组成:•传感器:用于监测换热站中的各种参数,比如流量、温度、压力等。

•控制器:根据传感器采集到的数据进行分析和控制,并给出相应的控制信号。

•执行机构:接收控制信号并执行相应的操作,如调节阀门的开度。

•通信网络:将传感器采集到的数据和控制信号传输到控制中心。

•控制中心:接收传感器数据并根据设定的参数进行控制策略的制定和优化。

2.2 控制策略换热站自控系统的控制策略主要包括以下几个方面:•温度控制:通过调节换热站中的阀门开度,控制进水温度和回水温度,以满足用户的热水和供暖需求。

•压力控制:监测换热站中的压力,并通过调节泵的运行状态来控制系统压力在合理范围内。

•流量控制:根据用户热水和供暖系统的需求,调节换热站中各支路的流量分配,以保证每个用户得到稳定的热力供应。

•故障诊断和报警:通过监测传感器的数据,及时发现系统的故障,并发送报警信号给操作人员,以便及时进行维修和处理。

3. 技术实现3.1 传感器选择选择合适的传感器对于换热站自控系统的正常运行至关重要。

常用的传感器包括温度传感器、压力传感器和流量传感器等。

根据具体的需求,选择可靠、精度高、稳定性好的传感器进行安装和使用。

3.2 控制器和执行机构控制器和执行机构是实现系统自控的关键部分。

可以采用PLC(可编程逻辑控制器)作为控制器,通过编程实现对传感器数据的采集和分析,并给出相应的控制信号。

执行机构可以选择电动阀门作为控制元件,通过调节阀门的开度来实现对流量和温度的控制。

3.3 通信网络和控制中心为了实现对换热站自控系统的远程监测和控制,可以利用现代的通信网络技术,如以太网、无线传输等,将传感器数据和控制信号传输到控制中心。

换热站及其自动控制系统的调试-初稿

换热站及其自动控制系统的调试-初稿

换热站及其自动控制系统---暖通工程师应了解自控系统天津海河教育园区投资开发有限公司王昊周文涛摘要换热站如今已广泛使用自动控制系统。

然而,良好的供暖系统,完善的自动控制系统,有时却不能很好的结合,发挥不出理想的作用。

究其原因,主要是暖通工程师不懂自控,自控技术人员不懂暖通,个自顾个自,结果两者都不能达到最佳状态。

在供热工程中,暖通工程与其自控比较而言,暖通是主导的部分,而自控只是它的辅助。

因此,作为一名暖通技术人员,有必要对自控系统有起码的了解。

同时,应以自身的暖通知识和对自控的了解去配合和指导自控人员做好调试工作。

Abstract The heat exchange station is now widely used in automatic control system. However, good heating system and good automatic control system, sometimes can not be combination well. Investigate its reason, is mainly the HVAC engineers do not understand automatic control, automatic control technology personnel do not understand the HVAC, neither can achieve the best results. In the heating project, comparing HVAC engineering and automation, HVAC is the leading part, and automatic control is its auxiliary. Therefore, as a heating technology personnel, it is necessary to have a rudimentary understanding of automatic control system. At the same time, should be based on their knowledge of automation and HVAC understanding to coordination and guidance control personnel to do the debugging work.关键词集中供热系统;换热站控制系统;PID调节Key Words Central Heating Supply System; Control system of heat exchanger; PID Regulation换热站如今已广泛使用自动控制系统。

换热站自动控制系统使用说明

换热站自动控制系统使用说明

换热站自动控制系统使用说明换热站自动控制系统使用说明一、概述本换热站自动控制系统,包括受柜、循环泵变频器柜、补水泵变频器柜和控制柜组成,对换热机组进行全面的自动控制。

控制系统使用西门子S7-200系列PLC作为控制器,通过模拟量扩展模块读取现场变送器采集到的现场数据,用于内部控制和送至触摸屏进行显示。

现场操作使用EView触摸屏,简单直观。

本系统触摸屏主要包括一下画面初始画面参数显示参数总览参数设定控制设定巡检画面电流显示报警一览报警设定下面对这些画面作简单说明初始画面为系统上电时屏幕显示的画面,点击手型按钮进入操作各画面。

进入操作画面后不再显示此画面。

参数显示在这个画面显示系统的基本参数,包括高温侧和低温侧压力、温度、流量。

还包括电机温度数据。

参数总览将参数显示在换热系统的示意图上,包括高温侧和低温侧压力、温度、流量及流量累积。

参数设定设定控制参数,包括一次网供水流量设定,二次网捕水压力设定、泻压压力设定。

进入报警设置的密码输入也在这个页面上。

控制设定在这个画面设定控制模式及输入手动时的输出值。

可设定补水泵、泻压阀和电动阀的状态,手动开启补水泵和泻压阀,设定补水泵和电动阀在手动时的输出值。

巡检画面用于上传巡检信息。

电流显示显示循环泵的三相电流大小,并显示一次网和二次网的热量及热量积算。

报警一览显示当前的报警信息报警设定设定报警限。

本画面只有在输入安全密码后才可以进入。

二、操作使用说明1、基本操作说明控制系统使用触摸屏作为人机界面。

触摸屏通过通讯电缆与PLC进行通讯交换数据。

可以通过点击触摸屏上的开关来切换开关的状态。

如果要输入数据,可以用手指点击要输入的数据,将会弹出一个数字小键盘,可以用手指点击相应的数字输入你想要的数值,然后点击小键盘上的ENT确认,便可以输入数据了,如下图所示画面切换可以通过点击画面底部的两个箭头实现。

2、自动补水设定使用自动补水需要按以下规程操作A、将变频补水柜面板上的转换开关调整至1#自动或2#自动状态。

换热站气候补偿节能控制系统案例

换热站气候补偿节能控制系统案例
按值班人员工资2000元/采暖季。
此改造共节约蒸汽费用和人工费约99830元。
投资回收期:n=59748÷99830=0.59
不到一个采暖季即可收回投资,由此可见,采用气候补偿器加无人值守的自动控制的节能效果非常显著。
换热温控技术+气候补偿及分时段控制技术
1.换热温控技术
换热温控技术就是通过电动调节阀一次侧供汽流量(汽—水换热系统),以达到控制二次侧供水温度的目的,避免供热过量,在满足热舒适的前提下节约热能。
2.气候补偿及分时段控制技术
所谓气候补偿:指的是根据室外气候温度的变化情况,自动调整热源(换热站)的供热量,充分利用自然热,节省系统供热量;如白天暖和气温升高,系统会自动关小一次侧蒸汽的阀门开度,减小进汽量,节省供热量;反之,当室外气温下降,系统会自动开大一次侧的阀门开度,加大供热量,满足采暖需要。气候补偿器可以根据供热需要,选择不同的供热曲线,自动进行气候补偿控制。
节能投资:59748.00元(详细报价见附页)
节能收益:
节约蒸汽费用:这里按保守的节能率预估,即按15%进行估算。
本设计是按照40000m2,24小时供暖进行设计计算。估算每个采暖季的蒸汽用量约8696吨按蒸汽的价格75元/吨,此改造每年可节约蒸汽费用:
8696×15%×75=97830元
节省人工费:经过此改造后,换热站属于无人值守的自动控制系统,现场无需设置专人看管,只需要对换热站进行定期或异常状况的维护、巡检,此管理人员还可以完成对用户端(室内采暖系统)的维护或服务。
据有关资料调查,采用气候补偿器及分时段控制可节能15%~50%,而实际上节能效果跟当地的气候特点、当年冬季的气候状况、建筑的特性(民用建筑和公共建筑)及生活习惯有很大关系。如:若当地气候比较暖和,或当年冬季气温比较高,使用气候补偿控制后,其节能效果比冷气候条件下要高;另外,公共建筑由于其建筑的使用性质决定,时间段的共性比较强,分时控制的节能效果更加明显。根据我公司实施的公建节能改造案例,2005年冬季对高新区12000平方米的办公大楼实施节能改造,投资4.3万元,2005年冬季及2006年冬季,节能率分别为51.9%和53.6%。

浅析换热站电气自控系统

浅析换热站电气自控系统

浅析换热站电气自控系统摘要:北方的供暖是民生大计,随着近些年对节能减排的号召和对空气质量的高标准和严要求,北方的大部分供暖已由换热站集中供暖,电采暖等多种形式替代了烧锅炉供暖的方式。

本文介绍分析基于PLC控制技术,变频技术和上位机组态联网,结合供热仪器仪表等电气设备的集中供热换热站自控系统,即与百姓息息相关的二次换热系统。

从常见的换热站热网工艺到站内温度,压力,流量,热量仪表,变频及PLC控制,上位机监控作以呈现。

关键词:电气自控换热站电气仪表1. 换热站的主要设备及作用1.1非电控设备及作用(1)换热器:常见的有板式换热器,它是连接一次管网与二次管网并进行热交换的设备,也是换热站内核心设备之一。

(2)管网与水箱:管网大体可分为一次管网的供水管和回水管,二次网的供水管和回水管,如果二次网供热面积较大,就有多个换热器机组的二次网供回水网管。

即一次网管可看作是换热站的热源,二次网管是输送分配给热用户的路径。

水箱内储存的水主要为保证二网供水压力的平衡以及供暖初期打水试压所用。

(3)水泵:可分为循环泵和补水泵。

循环泵是保证二次网路中水的流量;补水泵是保证二次网中管路的压力。

(4)管道上的各类一次仪表:主要是压力,温度仪表,可直观的反映出管网当前的压力值和温度值。

(5)阀门和过滤器:各种阀门保证水路的隔离和流通,过滤器用来过滤掉水中较大的杂质。

1.2电控设备及作用(1)电气柜:给整个站内输配电源,保证电气运作。

(2)RTU控制柜:配有PLC可编程控制器和HMI人机界面等,是换热站内自控的主体。

(3)变频柜:控制水泵电机,为调速所用,以达到流量和压力的预期值,同时节约电能。

(4)各类电气仪表:压力变送器通常以4~20mA或者0~10V的信号将管道的压力值反馈给PLC;温度传感器也可配有变送器将电压或电流信号传送给PLC,也可以是热电阻或热电偶等,以阻值反映出温度的变化;电动调节阀也有手动模式,主要作为质调节来控制一网的流量大小。

换热站气候补偿节能控制系统案例

换热站气候补偿节能控制系统案例

换热站气候补偿节能控制系统案例换热站是城市集中供暖系统中至关重要的组成部分,它用于将热能从集中供热源输送到各个用户处。

然而,传统的换热站存在一些问题,如气候变化的影响、能源浪费和设备磨损等。

为了解决这些问题,提高换热站的能源利用效率和运行可靠性,很多地区开始采用气候补偿节能控制系统。

气候补偿节能控制系统是一种基于气象数据和室外温度补偿的控制系统,它可以根据外界环境的变化自动调整换热站的工作状态。

该系统通过与前置机、传感器、执行器和集中控制器等设备的联动工作,实现对换热设备的控制和调节,从而提高能源利用效率和减少能源浪费。

下面以地区的换热站气候补偿节能控制系统为例进行介绍:该系统包括以下几个关键部分:1.气象数据监测:系统通过传感器实时监测外界气象数据,包括室外温度、湿度、风速等,以及太阳辐射、降雨等数据。

2.前置机:气象数据通过前置机进行数据采集和处理,将处理后的数据传输给集中控制器。

3.传感器:换热站内安装了多个传感器,用于监测关键参数,如供回水温度、流量、压力等。

4.集中控制器:集中控制器是系统的核心,它接收前置机和传感器的数据,并根据预定的控制策略进行分析和决策。

5.执行器:根据集中控制器的指令,执行器对换热站的设备进行控制和调节,包括主机、泵和阀门等。

具体的工作流程如下:1.数据采集:前置机通过传感器采集和处理外界气象数据,以及换热站内部的关键参数数据,并将处理后的数据传输给集中控制器。

2.数据分析:集中控制器根据采集到的数据,利用预定的控制策略进行分析和决策,确定最佳的换热站运行状态。

3.控制指令下达:集中控制器根据分析结果,向执行器发送指令,控制换热站内的设备进行相应的调节,如调整主机的启停、调整泵的转速、调节阀门的开度。

4.设备调节:执行器根据集中控制器的指令,对换热站内的设备进行相应的调节和控制,以满足用户的热量需求,同时尽量减少能源的浪费。

5.运行监测:系统在运行过程中实时监测各个设备的运行状态和性能参数,并通过集中控制器进行故障诊断和报警处理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

换热站自动节能控制系统
摘要:文章介绍换热站温度自动控制系统的构成和基本原理
关键词:换热站S7-300PLC 电动调节阀PID控制
包钢热电厂炼钢换热站采用人工操作、控制及运行管理,生产过程中大致根据生产生活需要,采用人工手动调节蒸汽阀门、回水阀门,以蒸汽加热凉水的方式来调节供热管道的温度,实现需要的供暖温度,但存在的问题如下:
首先入冬及初春季节早午晚温差较大,最高可达20℃,人工难以实时调节,此时存在能源浪费或者不能满足用户的要求的情况较多。

其次由于阀门的尺寸较大,蒸汽压力较高,所以调节阀门不可能按照要求实时控制,存在较大的滞后现象,实际供热调节温度误差高达±10%左右,造成控制温度不能够准确反映实际需要的温度,控制精度较差,并造成大量的蒸汽损耗。

另一方面由于人为手动调节,在户外温度高或低时,不能够及时调节供热温度,不是造成不必要的浪费,就是不能满足实际的需要,实现舒适的供热环境。

1、系统配置清单(表1)
2、原理说明
(1)整个换热站采用一台蒸汽电子调节阀门,针对汽水换热器的总进汽,采集供热系统的供水温度,综合当时环境温度后,给出一个供水温度给定值,打入蒸汽调节供水温度,当供水温度和回水温度差值满足正常需要以及出水温度达到要求时,控制进汽量,保障正常恒温,进汽阀采用高精度数字调节阀门进行PID闭环控制,稳定供热系统的供水温度。

由此可免去人工调节进汽阀门,避免随机性、误差性、难操作及难控制的问题,同时可实现远程控制进汽阀门,达到自动控制的目的,杜绝±10%的调节误差,大量节约蒸汽。

(2)系统采用SIEMENS公司的S7-300PLC 进行现场压力及温度信号的采集,进行信号的运算及处理,实时向数字调节阀控制器发送数据,调节电子蒸汽调节阀门开度,以适时调节供热温度,达到最佳的供热效果。

系统可监视或控制的温度有:每台换热器供水温度、回水温度、环境温度;系统可监视的压力有:汽水换热器供水压力、回水压力。

以上参数可使用SIEMENS 操作员面板进行控制或显示。

(3)针对换热站冷凝水箱采用一台电动蝶阀进行水箱的恒液位差值控制,免去经常由人工进行调节。

(4)系统改造后安全性强,运行率高,供热系统仍保留原有系统所有手动控制功能,又增加了一套自动化控制系统,两套系统可实现互为备用,整个供热系统安全性增加一倍,增强了整个系统的运行稳定性。

3、改造内容
(1)蒸汽量的自控系统实现供水温度的在线控制,系统可根据用户设定及外部气温进行调质控制。

(2)水箱采用电动蝶阀进行恒水位差控制。

(3)全系统运行参数通过SIEMENS人机界面的集中监控。

(4)系统全部运算功能由SIEMENS公司S7-300PLC实现
4、改造意义
(1)本改造方案将换热站的人工操作改为全自动智能控制。

操作人员可在控制柜上控制并监视系统的全部运行参数,节省了人力资源,提高了劳动效率,合理的保证了操作人员的人身安全。

(2)采用了数字调节电动阀门,控制精度大幅度提高,可以合理、适量的使用蒸汽,供热温差≤±5%,降低供热系统的调节惯性,同时本系统可根据环境温度实时调节供热温度又产生很大的节能效果,节热率>10%,实现恒温供热,大幅度节约蒸汽能源。

(3)系统可选用SIEMENS操作员面板设置系统参数,实现系统控制监视功能(4)系统改造后可随环境温度的变化对进汽量进行调节,在节约能源的同时,可使职工及设备均处在一个比较合适温度的生活环境中。

5、实际运行情况
经过近3个月的实际运行,系统运行稳定,控制精度高,节约热量大约在15%左右。

参考文献
[1] 韩安荣.通用变频器及其应用[M].北京:机械工业出版社.
[2] 刘保录.电机拖动与控制.西安电子科技大学出版社.。

相关文档
最新文档