换热站控制系统设计
换热站设计与工艺控制基础
换热站设计与⼯艺控制基础换热站虽⼩,但是配备很全⾯,换热站⼯艺涉及到:系统划分;负荷计算;换热器选型;循环⽔泵(如有混⽔泵)设置及选型;⽔处理,定压补⽔形式的确定及设备选型;设备布置及管路设计等。
所以,对换热站⼯艺做⼀些基础剖析有助于其他冷热源系统的设计,其中包含的基础理论都是相通的。
换热站热⼒系统由⼀次⽹供回⽔系统、⼆次⽹供回⽔系统、补⽔系统、热计量系统组成,各部分之间相互关联相互作⽤。
热源经过⼀次⽹供⽔管路进⼊热交换器,经过充分的热交换后,再由⼀次⽹回⽔管路流回热源。
⽽⼆次⽹中的⽔在热交换器中充分受热后经⼆次⽹供⽔管路进⼊热⽤户,⽤户取得热量后,⼆次⽹循环泵将⽔通过⼆次⽹回⽔管路再进⼊热交换器,如此循环供热给⽤户。
换热站本⾝不产⽣热,它只是热量的“搬运⼯”,热⼒公司⼀般是“望天烧煤”,根据室外的温度来计算当天的燃煤量,从严格意义上讲,换热站设备容量选择过⼤只会增加投资与运⾏成本,甚⾄加剧失调程度,对合理的热量输配意义不⼤。
所以换热站设计⼀定要注意负荷计算的准确,按照《城镇供热管⽹设计规范》要求:热⼒设计时宜采⽤经核实的建筑物设计热负荷;当⽆建筑物热负荷资料时,按⾯积热指标计算负荷。
以下表格是供暖⾯积热指标推荐值:对于热指标计算负荷⼀定要注意分区对热指标的影响,取表中住宅热指标为例:住宅采取节能措施热指标为40-45W/㎡,中低层⾼住宅选择这个热指标没有问题,但是针对超⾼层的住宅,由于风压与热压的共同作⽤加⼤,低区冷风渗透热指标在40-50 W/㎡左右,⾼区没有冷风渗透,造成低区与⾼区的热指标会差异很⼤,低区热指标70W/㎡左右,⾼区热指标仅仅为20W/㎡左右,所以所有分区都“⼀视同仁”选择40-45 W/㎡去计算负荷就会出问题,容易造成低区设备容量偏⼩⽽不热;⾼区设备容量偏⼤,造成不必要的浪费。
再看⼀下关于换热器台数设置要求,根据《民⽤建筑供暖通风与空⽓调节设计规范》8.11.3换热器的配置应符合下列规定:1、换热器总台数不应多于四台。
热力公司换热站控制系统设计
第一章绪论1.1 集中供暖旳发展概述集中供暖是在十九世纪末期, 随着经济旳发展和科学技术旳进步, 在集中供暖技术旳基本上发展起来旳, 它运用热水或蒸汽作为热媒, 由集中旳热源向一种都市或较大区域供应热能。
集中供暖不仅为都市提供稳定、可靠旳热源, 改善人民生活, 并且与老式旳分散供热相比, 能节省能源和减少污染, 具有明显旳经济效益和社会效益。
1.1.1 国外集中供暖发展概况集中供暖方式始于1877年, 当时在美国纽约, 建立了第一种区域锅炉房向附近14家顾客供热。
20世纪初期, 某些工业发达旳国家, 开始运用发电厂内汽轮机旳排气, 供应生产和生活用热, 其后逐渐成为现代化旳热电厂。
在上世纪中, 特别是二次世界大战后来, 西方某些发达国家旳城乡集中供暖事业得到迅速发展。
原苏联和东欧国家旳集中供暖事业长期以来是实行以积极发展热电厂为主旳发展政策。
原苏联集中供暖规模, 居世界首位。
地处寒冷气候旳北欧国家, 如瑞典、丹麦、芬兰等国家, 在第二次世界大战后来集中供暖事业发展迅速, 都市集中供暖普及率都较高。
据1982年资料, 如瑞典首都斯德哥尔摩市, 集中供暖普及率为35%;丹麦集中供暖系统遍及全国城乡, 向全国1/3以上旳居民供暖和热水供应。
第二次世界大战后德国在废墟中进行重建工作, 为发展集中供暖提供了有力旳条件。
目前除柏林、汉堡、慕尼黑等都市已有规模较大旳集中供暖系统外, 在鲁尔地区和莱茵河下游, 还建立了联结几种都市旳城际供暖系统。
在某些工业发达较早旳国家中, 如美、英、法等国家, 初期多以锅炉房供暖来发展集中供暖事业, 锅炉房供暖占较大比例。
但是这些国家已非常注重发展热电联产旳集中供暖方式。
1.1.2 国内集中供暖发展概况国内都市集中供暖真正起步是在50年代开始旳, 党旳十一届三中全会后来, 特别是国务院1986年下发《有关加强都市集中供热管理工作旳报告》, 对国内旳集中供暖事业旳发展起到了极大旳推动作用。
换热站自动节能控制系统
换热站自动节能控制系统换热站作为我国热供应系统中重要组成部分,直接关系到生产生活的稳定运行。
换热站主要是将一次网的80℃左右热水通过热交换器使二次网低温水水温达到6O℃左右,成为满足供暖送水温度的热水,通过二次网热水管道送到城市居民家中,流过各用户的散热器;通过循环泵的加压循环,流回换热站,进入换热站热交换器的二次回水温度有40℃左右。
一、换热站节能控制系统功能特点1.1节能控制系统的功能换热站节能控制系统具有高效节能、智能化、自动化等优点,可广泛用于:热力公司热网控制(多个换热站的集中管理和控制)或工厂、机关、住宅小区等商用建筑的供热、采暖、空调、生活用热水;各种需要换热的场所;各类换热站的新建、改建和扩建工程的配套。
1.2节能控制系统的特点换热站设计理念先进,既可节省基础建设的投资,又使安装维护简便。
实现系统的自动控制,使自动化、智能化程度提高,易于操作。
可实现无人值守、自动显示。
也可远程通信操作,并通过计算机网络进行监控,同时自动控制和人工操作可相互切换。
该智能控制装置具有自动控制、气候补偿、节能舒适等特点,是当今智能建筑采暖供热。
二、换热站节能控制存在的的问题2.1换热站根据室外温度的变化,自动控制一次网供水的流量和供热量由于目前的换热站大多缺乏先进的控制方式,虽回水温度按要求得到了保证,但远端用户的供热效果很难保证,通常是使供水温度远高与设计要求值,这种方式虽然满足了远端用户的要求,却增加了热损失及供热量,浪费了能源。
2.2换热站运行管理人员的素质的提高在换热站的设计和建造过程中,要充分考虑到换热站额调控。
虽然现在很多换热站都有了先进的设备,但大量闲置,究其原因是换热站的管理人员不会或不愿使用。
所以,要提高换热站运行管理人员的素质。
三、换热站节能控制系统设计为了保证换热站的安全、经济运行,必须保证换热站控制系统设计对现有规模的供热用户有合理的技术方案。
下面我们以某小区1000户住宅,建筑面积12万平方米的所建的换热站为例,介绍一下换热站控制系统节能设计和应用。
换热站系统改造方案
第1篇
换热站系统改造方案
一、项目背景
随着我国经济的快速发展,能源需求不断增长,换热站作为能源系统中重要的环节,其运行效率直接影响能源消耗和用户用热质量。为响应国家节能减排政策,提高换热站系统运行效率,降低能源消耗,现对某换热站系统进行改造。
二、现状分析
1.设备老化:现有换热站设备运行多年,部分设备老化严重,影响系统运行效率和稳定性。
2.自动化程度低:换热站控制系统自动化程度较低,缺乏远程监控和自动调节功能,导致能耗较高。
3.系统效率低:换热站系统设计不合理,存在一定的能源浪费现象。
4.安全隐患:部分设备存在安全隐患,如泄漏、爆炸等。
三、改造目标
1.提高换热站系统运行效率,降低能源消耗。
2.提高自动化程度,实现远程监控和自动调节。
2.自动化程度:换热站的控制系统较为落后,缺乏有效的自动化控制和远程监控功能。
3.系统效率:由于设计不合理和设备性能下降,换热站整体效率偏低,存在能源浪费现象。
4.安全性能:部分设备存在安全隐患,需进行相应的安全改造。
三、改造目标
1.提升换热站系统的热效率,减少能源消耗。
2.实现控制系统的自动化和远程监控,提高管理水平。
第2篇
换热站系统改造方案
一、前言
换热站作为城市供热系统的关键环节,其运行效率直接关系到能源消耗和用户用热质量。为响应国家节能减排政策,提高能源利用效率,降低运营成本,现针对某换热站系统存在的问题,制定如下改造方案。
二、现状评估
1.设备状况:经评估,现有换热站设备存在较严重的老化和性能下降问题,影响了系统的稳定性和效率。
2.经济效益:通过节能降耗,预计年运行成本降低XX万元。
3.社会效益:提高换热站自动化水平,保障安全运行,促进节能减排,符合社会可持续发展要求。
换热站控制方案
换热站控制方案1. 引言换热站是工业生产或居民小区中用于供热和供冷的重要设施。
其功能是将不同系统之间的热媒传递给不同的用户,以满足其热能需求。
为了提高能效和系统的稳定性,采用合适的换热站控制方案是至关重要的。
本文将介绍一种换热站控制方案,以实现高效、稳定和可靠的供热和供冷系统运行。
2. 控制策略针对换热站的控制,以下是一些常用的控制策略:2.1 温度控制策略换热站的主要任务是向用户提供热媒,并控制不同用户之间的供热或供冷温度。
温度控制策略包括以下几种:•定温差控制:通过控制供回水之间的温度差来调节用户的供热或供冷温度。
一般情况下,供回水温度差不宜过大,否则会造成能量浪费或用户不满。
•区域温度平衡控制:根据不同用户的热负荷和室温,进行动态调节热媒流量,以实现不同区域的温度平衡。
2.2 流量控制策略流量控制是换热站运行的关键,对系统能效和稳定性都有重要影响。
常见的流量控制策略有:•常规流量控制:根据用户的热负荷需求,通过阀门的调节来控制流量。
这种控制方式简单、易实施,但能效较低且稳定性较差。
•变频流量控制:通过变频器调节泵的转速,根据用户的需求动态调整流量。
这种控制方式能有效提高能效和系统稳定性。
2.3 压力控制策略换热站的正常运行需要保持合适的流体压力。
以下是一些常见的压力控制策略:•固定压力差控制:通过设置进口和出口之间的压力差,控制流体的流动。
这种控制方式简单可靠,但可能会导致流量变化较大,影响能效。
•压力稳定控制:通过采用压力稳定器或压力传感器,实时监测和调整流体的压力,以保持压力在一定范围内。
3. 控制方案配置根据实际系统的需求和性能要求,可以灵活配置不同的控制方案。
以下是一个典型的换热站控制方案配置示例:•温度控制策略:采用定温差控制和区域温度平衡控制相结合的方式,以实现精确的温度控制和能源节约。
•流量控制策略:采用变频流量控制方式,通过调整泵的转速,根据用户的需求动态控制流量,以提高能效和系统稳定性。
换热站控制系统设计
换热站控制系统设计引言:换热站是工业和居民建筑中必不可少的一部分,用于供暖、制冷和热水供应。
换热站控制系统是确保换热站运行稳定和高效的关键。
本论文将讨论换热站控制系统的设计和实施。
一、需求分析:首先,我们需要对换热站的需求进行分析。
根据不同的应用场景和需求,需要确定换热站的供热、制冷和热水供应的需求量以及温度要求。
还需要考虑换热站的稳定性和可靠性,以及节能和环保要求。
二、系统架构设计:1.监控模块:监控模块用于监测换热站的运行状态和参数。
这包括温度和压力传感器用于测量供热/制冷水和热水的温度和压力。
流量计用于测量流体的流量。
还可以使用液位传感器来监测储水罐中的水位。
这些传感器将数据传输给控制模块进行处理。
2.控制模块:控制模块负责处理监测模块传输的数据,并相应地控制换热站的运行。
首先,需要一个温度和压力的控制算法来确保供热/制冷和热水的温度和压力满足要求。
其次,需要一个流量控制算法来确保流体的流量控制在合理的范围内。
此外,还需要一个液位控制算法来保证储水罐的水位稳定。
3.执行模块:执行模块用于执行控制模块的指令。
这包括控制阀门、泵和调节阀等设备。
这些设备将根据控制模块传输的指令来控制换热站的运行。
三、设计和选择控制算法:为了确保换热站的高效和稳定运行,需要设计和选择相应的控制算法。
根据具体的需求,可以选择PID控制、模糊控制或模型预测控制等控制算法。
通过模拟和实验,可以评估和优化控制算法的性能,并确定最佳的控制策略。
四、设计安全措施:五、实施和测试:设计和开发完成后,换热站控制系统需要进行实施和测试。
在实施过程中,需要确保系统的正常运行和与其他系统的兼容性。
通过实验和测试,可以验证系统的性能和稳定性,并进行必要的调整和优化。
结论:本论文主要讨论了换热站控制系统的设计和实施。
通过系统架构设计、控制算法选择和一系列的实施和测试,可以确保换热站的高效、稳定和安全运行。
在未来的研究中,可以进一步探索新的控制算法和技术,以提高换热站的性能和能效。
无人值守换热站智能控制系统设计
无人值守换热站智能控制系统设计王治学;刘沂【摘要】冬季采暖是我国北方民生不可或缺的重要环节,随着供热管网的不断扩大,如何对热网进行有效地控制和管理,提高其经济效益和社会效益,成为供热企业急需解决的重要课题.以PLC为核心,辅助上位机软件、远传设备等,设计了一套无人值守换热站智能控制系统,已投入实际使用.节约了运行维护费用、煤的使用量、人工运行费等,实现了换热站无人值守,降低了故障率并提高了工作效率.【期刊名称】《电气传动》【年(卷),期】2019(049)008【总页数】5页(P57-61)【关键词】无人值守;可编程控制器;换热站;智能控制【作者】王治学;刘沂【作者单位】天津工业职业学院工业与信息化系,天津 300400;天津工业职业学院工业与信息化系,天津 300400【正文语种】中文【中图分类】TM28目前,北方大部分地区都采用集中供热的方式,适应了绿色环保发展的要求,减少了大气污染。
供热站所产生的热能必须经过中间的热量转换才能输送到用户室内,换热站是连接用户和热源的重要枢纽。
传统的换热站通过人工观测实时的温度、压力、液位等信息,来确定是否需要进行下一步操作以及进行哪项操作。
工作人员难以做到实时和及时的监测,甚至一瞬间的疏忽大意就可能会导致危险的发生,这就对故障诊断及排查故障的及时性提出了更高要求。
另外,人工成本、原材料成本等不断提高,企业需要开发新的技术和运营模式。
为解决上述问题,采用西门子S7-200 Smart PLC作为主控CPU,对温度、压力、流量、液位等采集数据进行处理,以RS485端口连接远传设备(data transfer unit,DΤU),采用Modbus协议传输,通过无线网络传给供热站的上位机,供热站上位机可以对其下位换热站的运行状态实施监视与控制,实现无人值守的换热站智能控制,具有实时、准确和快速等特点。
1 基于PLC的换热系统分析1.1 换热系统流程供热站中的管网通常称为一次网(后文简称一网),换热站中的管网称为二次网(后文简称二网)。
城市集中供暖系统节能及换热站控制系统的设计研究
创新观察—318—(一)设备更新与加强管理力度以配电网自动化建设为契机,将过去的老旧、落后设备统统进行更新替换,过去供电设备简陋,通常是户外开闭所,这种方式不利于维修。
出现故障就要等候专业的技术人员过来维修,为了安全,技术人员必须切断电源,导致周围停电,影响居民正常生活,供电可靠性较弱。
通过配网自动化这一技术的应用,不仅能实现自动操作,还能通过遥感技术对线路运行情况进行监控,避免了技术人员亲自维修,极大地保障了技术人员的生命安全。
为了能使配电网自动化得到有效地使用,各电力公司还应该建立起完善的管理机制,借此对各个部门进行严格要求,发挥出部门应有的作用,对配电网运行出现的问题提出合理的调整建议,以此来增加配电网运行的可靠性[2]。
(二)提高技术人员素质水平技术人员对配网自动化技术的影响很大,甚至可以说技术人员的水平影响着配网自动化技术与配电网系统融合的质量。
所以在配网自动化技术运用之前,就要对技术人员进行相应的培训,向他们讲述安装时的注意事项,这样不但提升了他们的专业技能,还让他们对配网自动化技术有了更加深入地了解,以便日后能够更好地解决突然出现的棘手问题。
培训时不应只顾及年轻人的进度,同样要照顾年龄稍大但是具有丰富经验的老员工。
在加强老员工与时俱进的工作理念时也让老员工分享自己的想法,让年轻技术人员增长经验。
公司也可以定期展开竞技比赛,让获得优胜的人讲解自己能获胜的原因,在验证自己能力的同时,也能从别人身上得到一些启发。
在技术与经验共同增长的良好形势下,才能促进我国电力事业的发展,保障供电的稳定性。
(三)根据实际情况灵活运用系统以往的检修方式主要是以周期进行检修维护,这样不但无法及时对故障进行处理,而且更无法主动或提前对事故进行预防。
如今技术人员可以通过配网自动化技术中的故障定位功能处理以上问题。
但是有两方面需要注意,一是多方面检测,小区要检测变电站、配电站等。
对用户则是检测电表以及分段开关。
另一方面则是需要技术人员对环境进行分析后,根据实际情况选择相应的设备。
阜新换热站智慧供热系统设计方案
阜新换热站智慧供热系统设计方案智慧供热系统是指将先进的信息技术与供热系统相结合,实现对供热设备、供热管网和热用户进行集中管理和智能控制的系统。
对于阜新换热站来说,设计一个智慧供热系统可以提高供热效率、节约能源、减少运营成本,并提升供热服务质量。
下面将就阜新换热站智慧供热系统的设计方案进行介绍。
一、系统整体架构智慧供热系统的整体架构主要包括数据采集、数据传输、数据处理和控制决策四个部分。
1. 数据采集:通过安装传感器和仪表,采集供热设备、供热管网和热用户的运行数据,包括温度、流量、压力等参数。
2. 数据传输:利用物联网技术,将采集到的数据传输给数据中心,实现数据的远程监测和管理。
3. 数据处理:在数据中心对采集到的数据进行处理和分析,实现数据的实时监测、历史记录和趋势分析,并生成运行状态报告和预警信息。
4. 控制决策:根据数据分析结果和运行状态报告,进行智能控制决策,对供热设备、供热管网和热用户进行集中控制和优化调度。
同时,通过智能算法和模型预测,提前发现设备故障和异常情况,并及时采取措施。
二、功能特点1. 远程监测和管理:通过智慧供热系统,可以实现对供热设备、供热管网和热用户的远程监测和管理。
无论是设备运行状态还是故障异常,都可以在数据中心进行实时监测和分析,方便运维人员及时发现和处理问题。
2. 数据分析和预警:智慧供热系统可以对采集到的数据进行处理和分析,并生成运行状态报告和预警信息。
运维人员可以通过这些数据分析结果,及时判断运行状态,预测设备故障,提前采取措施,避免停供和损失。
3. 智能控制和优化调度:智慧供热系统可以根据数据分析结果和运行状态报告,进行智能控制决策,对供热设备、供热管网和热用户进行集中控制和优化调度。
通过智能算法和模型预测,可以实现设备运行的最优化,提高供热效率,节约能源。
4. 用户互动和服务:智慧供热系统可以提供用户互动和服务功能。
用户可以通过移动APP或网页端,实时查看自己的供热情况,预约维修和检修服务,抱怨和建议等。
标准化换热站建设方案设计
标准换热站及二次网建设方案换热站作为供热配套设施使用的永久性建筑物,关系着供热企业的长期安全运行管理及百姓的宜居生活.为提高供热管网设计的经济可行性,便于建设施工与供热运行管理,结合供热发展现状,根据相关文件要求,对供热换热站的标准化建设制定以下统一要求:一、换热站建设标准1.换热站站房建设标准1.1 换热站标准化建设的施工与验收必须严格执行CJJ28-2014城镇供热管网工程施工及验收规范1.2根据建设项目供热面积,换热站位置选择以有利于供热管网合理布置为原则,尽量设在小区的中部位置.单套换热机组供热面积不超过10万平方米为最佳.高层建筑室内采暖系统分区需按现场地形和实际供热参数综合考虑,通常按10层划分,各区配套独立设备及管网进行供热.1.3换热站的面积、净高度及相关尺寸情况需满足使用要求,分设设备间、控制间和供热服务间.设备间内单套换热机组按使用面积不小于50平方米考虑,设备间内必须干净整洁,进、出通道畅通.地面为混凝土地面,地面刷浅蓝色油漆,内墙面刷内墙涂料, 机组设备悬挂功能牌,门口设置挡鼠板.控制间按使用面积不小于12平方米考虑,配电室门刷防火涂料,要张贴配电室警示标志:禁止入内<粘贴在配电室门口处,不可贴在门上>;当心触电<粘贴在配电室内配电柜下方>;配电室标识<粘贴在配电室门上方>.供热服务间主要为供热管理和服务准备,根据客户服务标准要求设办公室,面积不小于80平方米,内设独立卫生间.换热站净高度不低于3.3米,站内安置两套及以上机组的净高度不低于3.6米.1.4 换热站的建设尽量采用独立基础,框架结构.应合理预留管道基础孔洞.1.5 换热站的供水、供电须满足负荷要求.换热站的供水<自来水>、供电接至换热站内相应位置,在换热站外两米内设水表,在箱变内设供电专用装置.换热站主电缆为三相五线铜芯国标型号,并有可靠接地.高层建筑小区必须将二次加压自来水管道接入换热站内,并预留水表.1.6 换热站应具备完善的排水设施,排水管道与小区雨、污水管网相连,应排水畅通,保证外部积水无法进入站内.1.7换热站应具有良好的通风和采光.距离居民建筑较近的,外部应采取隔音措施,设备基础按《工业企业噪声控制设计规范》采取隔声减振措施.1.8 换热站应具备方便适用的交通通道,便于整体式换热机组的安装及检修,换热器侧面离墙不小于 0.8m,周围留有宽度不小于 0.7米的通道.1.9 换热站应设置照明设施,生活服务间、服务办公室预设电器插座.设备间照明设施应符合安全生产要求,采用防水防尘节能灯,同时应设置应急照明.1.10 卫生间内设卫生器具,墙面、地面铺贴瓷砖.设备间设排水沟并设盖板,地面可铺贴花岗岩.控制间与设备间设挡水门槛.服务间地面铺贴瓷砖.1.11 换热站设备间、服务间外门为卷帘门,设备间门宽不得小于2.5米.设备间外窗台高度不低于1.8米,均为中空双层隔音窗,外门为隔音门.所有外门窗均安装防盗门窗.1.12 换热站内应有完善的接地系统,接地电阻不大于4欧姆,应做好总等电位联结,总等电位联结端子板由紫铜板制成,安装高度为底边距所在地面0.3米,以便将进线配电柜PE〕PEN〔母排、金属管道、建筑物金属结构等进行联结,所有电气设备的金属外壳均应有良好的接地装置.使用中不准拆除接地装置或对其进行任何工作.所有转动设备必须配备防护罩,防护罩喷绿色底漆、黄色箭头标明转动方向.1.13 换热站内各种设备和阀门的布置便于操作和检修,站内各种水管道及设备的高处设有放气阀,低处设放水阀.1.14换热站内架设的管道不得阻挡通道,不得跨越配电盘.1.15换热站应备有必要的消防设备和用具,如消防栓、水龙带、灭火器等.消防设备应放在易于取用的位置,并保证随时可用.1.16 换热站需经常检查和操作的设备不应设在高处,如必须设在高处,位置较高且超过 2米时,需经常操作的设备处应设置移动扶梯、移动平台等设施;1.17 换热器、水泵基础高于地面不小于 0.1m,水泵基础距墙不小于 0.7m,两台以上水泵不做联合基础,设备间距不小于 0.7m;1.18电缆在进入控制室、电缆夹层、控制柜、开关柜等处的电缆孔洞,必须用防火材料严密封闭,并在封堵处的电缆两端按规定刷防火涂料;1.19换热站及其附属设施不得存在渗水、漏水的现象.1.20 若因特殊原因只能建设地下及半地下换热站,必须在建设时同时具备以下条件:①具备可靠的通风防潮措施,设立独立通风除湿系统和采光井.②具备消防报警系统,能够及时发现火灾隐患.③具备可靠措施避免外部原因带来的积水倒流进站.同时具备自动应急排水设施,使事故失水、检修排水、外部进水能够根据水位及时报警并自动启动排水设备,建设单位承担排水设施的正常使用管理责任.④具备良好的通讯设施,保证手机及网络等传输讯号的正常通畅,便于换热站设备运行数据上传所需的网线敷设.⑤设计阶段即充分考虑换热站内设备基础、管道支架施工减震防噪方案,设备基础按照供热公司委托的专业设计单位提供的设计方案施工,并保证建筑结构安全.换热站基础不得与居民建筑基础连接,从根本上解决低频噪音及振动扰民问题.⑥至少设置两个就近出口,保证站内设备安装及维修时的车辆进出通畅,同时便于人员维护检修及安全疏散.⑦地上配备供热服务需要的值班检修及生活场所.⑧换热站机组设置的一次侧安全阀出于安全要求必须能够以自然排水的方式将管路引致室外.⑨进出换热站的供热管网必须具备路由,预留安装及检修空间,避免因其他管路或设备影响坡度.建设单位负责热力管网穿地下墙壁洞口的套管预留及防水处理.⑩地下换热站建设需取得规划、消防、环保、安监部门书面同意意见.2.换热站站内设备选取标准:2.1换热站内设备选用模块化机组,供热面积小于5万平米的换热站选用单台模块化机组;供热面积大于 10万平米的换热站选用双台模块化机组.2.2换热站模块化机组由换热器、管道阀门、安全阀、循环水泵、补水泵、除污器以及软化水补水装置组成.2.3板式换热器主要零部件的材料应符合GB/T16049中的规定;密封材质:一、二次水侧为三元乙丙橡胶,框架材质: Q235-A,环氧煤沥青漆或环氧富锌漆防腐,压紧板采用整体材料,框架能力板片扩容数为≥ 20%.2.4板式换热器换热面积应为需求的 130%,换热效率 90%以上,传热系数 K=3000-6000W/m2·℃.2.5板式换热器的板片、压紧板、螺柱、法兰、接管、垫片等所用的材料及焊接材料,必须具备材料质量证明书.2.6单台板式换热器的板片数,不宜大于 150片;板换板片的材质要求不低于不锈钢 304L,板片厚度:≥ 0.6mm.2.7板式换热器应有打压试验合格证明;每台板式换热器必须有介质进、出口标记;每台板式换热器应有铭牌,其内容包括名称、型号、设计压力及试验压力〕MPa〔、设计温度〕℃〔、换热器换热有效面积〕m2〔、质量〕kg〔、流程组合、产品制造日期制造厂名及出厂编号.2.8设备基础地脚螺栓齐全且连接紧固,水泵基础和连接水泵的管道采取软连接等隔震措施.2.9管道与设备连接时,管道上宜设支吊架,以减少架在设备上的管道载荷,管道阀门符合国家有关制造标准.2.10循环水泵、补水泵的台数不得少于两台,其中一台为备用;要求循环泵、补水泵均采用变频调速控制.2.11循环泵总流量为二级网循环水量的 105-110%;循环泵采用低噪音单级离心泵,设备噪音须低于 50分贝;水泵必须能够满足各种运行工况的需要.2.12补水泵一般选两台,其中一台备用;补水泵的扬程为定压点压力加不低于 5mH2O<0.05Mpa>;补水泵采用低噪音离心泵,设备噪音昼间须低于 50分贝;水泵的流量、扬程、效率在正常运行点下不允许有负偏差.2.13全自动软化水处理器控制方式采用流量型双阀双罐控制,双阀双罐,一用一备,交替供水;交换罐材料为玻璃钢或不锈钢,其厚度应能满足强度及安全使用要求;盐罐材料其厚度应能满足强度及安全使用要求.2.14软化水箱的有效容积可满足 1-1.5小时的正常补水量;软化水箱严密不漏水,并进行防腐处理.2.15除污器应能除去≥2.0mm的微粒,滤网应使用不锈钢.手动反冲洗除污器应在供水状态下能连续反冲洗,不断排污.可在系统不停机的情况下随时反冲排污确保系统的正常运行;过滤器必须安装旁通管路及关断阀门.2.16除污器外表面应涂铁红酚醛底漆二道,蓝色面漆一道;每个除污器应附有铭牌,标有:编号、产品系列号、制造年月、公称直径、公称压力、极限温度、受压部件的材料代号、生产厂家的名称或商标.2.17进出换热器前的管道上均须设置压力表,进换热器前的管道上<一次网供水管和二次网回水管>均要加设除污器;2.18换热站根据小区形式分高低区供热,一、二次网各区供、回水管道均加装温度、压力变送器,并在控制室内设置温度集中显示屏.2.19管道和管道附件等应进行保温;保温后的外表面温度不得大于50℃;保温外护层应为可拆卸式的结构;站内管道及附件保温应采用岩棉材质,外层包镀锌铁皮.2.20站内管道保温必须完整,管道色环、介质流向、介质名称清晰明确,站内设备标识、铭牌清晰.2.21管道系统DN150及以下管道采用无缝钢管或直缝钢管,DN200以上的采用双面埋弧螺旋钢管.2.22管道焊接必须符合压力管道焊接标准,须进行焊口探伤及管道水压试验.2.23换热站一次侧关断阀门应采用球阀或蝶阀,二次侧管段阀门应采用球阀或蝶阀;循环泵的出、入口均为蝶阀.球阀<蝶阀>应为法兰连接,密封应为金属密封或弹性密封.2.24每个阀门均应附有铭牌,标有:阀门编号、产品系列号、制造年月、公称直径、公称压力、极限温度、受压部件的材料代号、生产厂家的名称或商标.2.25换热站模块化机组设备须有明确、详细的设备台帐.二、二次网建设标准:1.二次网管网建设标准1.1供热面积小于10万平米的换热站二次管网建议采用常规管网建设;供热面积大于10万平米的换热站二次管网建议采用环形网建设;供热区域为狭长型的管网,可建两个换热站以保证管网水力平衡.1.2二次管网工程建设严格执行《城镇供热管网设计规范》CJJ34--2010、《城镇直埋供热管道工程技术规程》CJJ/T81--98等规范.1.3热水管道直埋敷设必须采用预制聚胺酯保温管,蒸汽管道直埋敷设必须采用钢套钢保温管直埋敷设方式.1.4二次网各分支处必须加设分支隔断阀,各楼前必须加设楼前阀.1.5各楼及单元回水管道上设关断阀的同时设调节装置〕自力式流量控制器或数字式调节阀〔.1.6直埋管道必须采用预制保温管:钢管采用无缝钢管或螺旋焊缝管,壁厚符合《城镇直埋供热管道工程技术规程》<CJJ/T81-98>的要求;保温层为聚胺脂,厚度应符合《城市热力网设计规范》<CJJ34>的规定,密度不小于60Kg/M3;保护层为聚乙烯塑料管壳,厚度不低于3mm,密度不小于940Kg/ M3.1.7聚氨酯发泡保温必须满足《聚氨酯泡沫塑料预制保温管行业标准》CJ/T114-2000的要求;对进场保温管应进行现场取样,经检验合格后方可安装.1.8补偿器采用注填式套筒补偿器,做双井口检查井,并根据具体工程的回水温度计算回水补偿器是否可以去除;建议采用无补偿直埋敷设.1.9热水管网设备或阀门公称压力应选用不小于1.6MPa,并且采用铸钢阀门.对管道上的关断阀门大于DN50的,应采用质量可靠的蝶阀;小于DN50的应采用质量可靠的铜球阀或铜制锁闭阀;所有阀门必须有出厂的打压合格证.1.10弯头采用预制保温弯头;变径必须采用成品变径,不能使用自制缩口变径.2. 二次网阀门选取与配置标准2.1 供热二次管网中所采用的阀门质量应符合《工业阀门压力试验》<GB/T13927-2010>.2.2 供热二次管网中所采用的阀门的安装应符合《采暖与空调系统水力平衡阀》<GB/T28636-2012>、《城镇供热管网设计规范》<CJJ34-2010>和《城镇供热管网工程施工及验收规范》<J372-2004>.2.3 在对供热二次管网进行导通和关断时,可选取闸阀、截止阀、蝶阀、球阀和平衡阀,其中闸阀、截止阀、蝶阀在二次管网中应安装于换热站出口的主管道以及进入小区用户之前的支管道,球阀只能安装于分户热网管道.2.4 在供热二次管网中,除导通和关断,如还需对流量和压力进行粗略调节时,可选取截止阀、蝶阀、调节阀和平衡阀;除上述两点外,如需对供热二次管网进行流量和压力的高精度调节时,可选取调节型蝶阀、调节型球阀和平衡阀.2.5 在对供热二次管网水利平衡时,宜选用手动式和自力式水利平衡调节阀.其中手动式包含普通调节阀和平衡阀;自力式包含流量控制阀和压差控制阀.2.6 当二次网系统的运行调节为集中量调节〕比如水泵的变速调节等〔时,只能采用手动平衡阀;当二次网系统的运行调节为定流量质调节时,可采用平衡阀、自力式流量平衡阀和自力式压差平衡阀;当二次网系统采用分阶段改变流量的质调节时<即动态控制管网系统>,宜采用自力式压差平衡阀.2.7 当供热二次管网末端和末端之间的面积差别不大,同时系统末端的供热面积每年的变化不大时<每年的停热用户变化不大>,宜采用静态平衡阀.2.8 当供热二次管网系统中的面积符合比较大,同时可能增加了相应的温控区域<即会有新增供热面积或者新建小区>,宜采用动态压差平衡阀.其中,动态平衡阀又可分为动态流量平衡阀和动态压差平衡阀,一般变流量系统使用动态压差平衡阀较多,而保证局部流量恒定则使用流量平衡阀.2.9 当供热二次管网系统的各个末端节点处可以得到相应的电源<即小区内或小区外可连接电源的地方>,宜采用远程电动平衡阀.采取电动平衡阀时,系统调试过程为系统自动调试,能源管理系统软件可根据二次管网运行的实时数据对二次网进行水利和热力平衡.2.10 当二次网热源为多热源时,宜采用自力式流量调节阀.2.11 不同类型平衡阀在不同的管网系统中的安装位置如下所示:<1>静态平衡阀安装在换热站出口处水平主管道、进入小区之前的水平支管道以及进入用户之前的水平支管道,且安装了平衡阀的水管不再设截止阀.<2>区域供热管网中,平衡阀可安装在供热管网中的每条干管和每条直管上.<3>建筑物内供热管网系统中,平衡阀安装在总管、干管、立管和支管上;在热力站侧,平衡阀安装在其二次环路侧管道.<4> 动态平衡阀安装在供热管网水平主管道、进入小区之前的水平支管道以及进入用户之前的水平支管道,其中,动态平衡阀不具备关断功能,根据需要应另设关断阀门.<5>在定流量系统中,自力式流量控制阀安装在用户入口处的供水或回水管道上.<6>在动态管网系统中<即变流量供热系统>,自力式压差平衡阀安装在变流量系统的水平支、干管入口以及安装有温控阀或调节阀等的动态系统的支、干管入口处.如某处管路需要保持供、回水管之间压差时,也应在管路入口处安装自力式压差控制阀.2.12 在热水二次供热管网中,对阀门进行安装和选择时,应结合实际情况进行操作.3 二次管网建设材料选取标准3.1 管材:无缝钢管要符合《流体输送用无缝管》<GB/T8163-2008>、《螺旋管要符合低压液体输送管道用螺旋埋弧焊钢管》<SY/T 5037-2000>的要求.材质Q235--A或Q235--B3.2 预制直埋保温管要满足《高密度聚乙烯外护管聚氨酯泡沫塑料预制直埋保温》CJ/T114--2000、《玻璃纤维增强塑料外护层聚氨醋泡沫塑料预制直埋保温管》CJ/T129--20003.3 保温管件要满足《高密度聚乙烯外护管聚氨醋硬质泡沫塑料预制直埋保温管件》CJ/T 155一20014.热量表、抄表系统及室内温控装置建设要求4.1按户表法进行计量,强化室内温控装置的作用,将节能进行到极致.4.2工程建设要严格执行《供热计量计算规程》 JGJ173—2009备案号J860—2009;《采暖通风与空气调节设计规范》GB50019—2003 ;《地面辐射供暖技术规程》备案号J365—2004 JGJ142—2000;《住宅远传抄表系统应用技术规程》 CECS 303:20114.3 设备选取标准:<1>热量表:选择超声波热量表.各项技术指标符合《热量表》CJ128--2007的要求.为了保证热量表工作稳定,要求供表的厂家连续三年国家抽检合格,注册资金不少于3000万元.具有表阀联动功能,通过抄表系统可以对阀门进行远程关断;具有用户室内温度上传功能,可以将用户的室内温度随时上传到控制中心,管理人员可以及时掌握用户的供热效果.<2>温控系统:应选择智能的系统,进行程序控制,提倡分室控温.<3>对于分户控温的温控阀要求双电源供电,工作电压不大于24V,阀门应为等径大流道.<4>散热器用自力式温控阀要满足《散热器恒温控制阀》JG/T195--2007的要求.<5>系统中的其他材料要满足相关标准的要求.三、换热站控制系统建设标准:1换热站自控控制系统建设统一标准:1.1 换热站控制系统应由可编程控制器、变频器、监测仪表等组成,完成数据采集、就地显示、自动控制、故障报警等功能.<详见电气系统一般要求>.1.2 换热站内一次网加装流量计量装置,二次网及补水系统均加装流量计量装置<详见计量仪表一般要求>.1.3 补水系统通过变频定压的方式进行控制;换热站内应有停泵、换热器故障、站内漏水报警等报告措施<详见自动控制一般要求>.1.4 所有控制系统内通信线缆均采用0.5或1.0屏蔽线缆,线缆要沿专用桥架敷设.1.5 变频器箱体应具有一定的机械强度和严密的结构,并具备通风装置.箱内弱电及强电系统应独立设置<详见电气系统一般要求>.1.6 二次网及楼宇控制系统应由楼宇单元阀、户表系统、室温采集系统组成.1.7 搭建三级监控平台:具备换热站、楼宇到终端热用户的整个供热系统的实时数据监测、存储、控制平台,并开放对外接口.1.8 换热站自控系统应包含以下参数:<1>室外温度;<2>一、二次侧的供、回水温度;<3>一、二次侧的供、回水压力;<4>一次侧热量;<5>二次侧供水流量;<6>补水流量、补水水箱水位;<7>循环水泵和补水泵的启停及运行状态等;<8>单元流量、单元阀门开度;<9>分户计量热表、分户室温.执行机构应包括一次侧的电动调节阀、二次侧循环水泵变频器、补水泵变频器、电磁阀和单元阀门开度等;2 计量仪表建设标准:2.1 换热站要具有压力表和温度表等就地仪表,就地仪表安装应符合本规范要求<GB 50093━2002自动化仪表工程施工及验收规范>.2.2 仪表需安装在便于观察处.2.3 在设备或管道上安装取源部件的开孔和焊接工作,必须在设备或管道的防腐、衬里和压力试验前进行;取源部件安装完毕后,应随同设备和管道进行压力试验.2.4 流量取源部件在管道上安装时应符合以下规定:流量取源部件上、下游直管段的最小长度应符合设计要求,并符合产品技术文件的有关要求;在规定的直管段最小长度范围内,不得设置其他取源部件或检测元件.2.5 站内应加装就地显示补水流量计.3 电气系统建设标准:3.1 换热站可采用双路互备电源或单路电源,电源最大允许电流为站内设备运行电流的1.2倍.3.2 站内电源应设专用接地网,且接地电阻不得大于4Ω.3.3 配电室门、窗应关闭密合,且必须为由内向外打开.3.4 配电室内应配备数量适当、合格可用的消防器材,放置位置有明显标记.3.5 380V<或220V>电气电缆必须与仪表、通讯等要求避免电磁干扰的弱电线缆隔离敷设<电缆应符合GB12706 的规定>.3.6 电气线路宜采用金属穿管或架空的专用电缆桥架敷设,接线处不得裸露电线<电缆>,不得采用明线敷设<电缆应符合GB12706 的规定>.3.7 电动机电缆出口部分套装蛇皮管,两端必须分别插入电缆穿管和电动机接线盒内<电缆应符合GB12706 的规定>.3.8 循环水泵所配电机的设计、制造、测试、检验应条件/T8680.2 的规定,并应满足以下要求:<1>电机应为标准三相鼠笼异步电机,并能与变频器配套运行;<2>电机的额定电压为< 380 ± 10% > V ,电源频率为< 50 ± 2 > HZ ;<3>电机转矩应能满足水泵在调速范围内的转矩要求;<4>电机绕组和绝缘应能随来自变频器的电压和电流;<5>电机应有密封的接线盒,接线端子应连接每个绕组的末端,并保护接地,用铜导线使接线端子和电机.3.9 循环水泵所变频器的设计、制造、测试和检验应满足以下要求:<1>变频器应采用晶体模块型,用于三相鼠笼异步电机的无级调速,变频器应适合于电机和负载要求;<2>每个变频器应包括整流单元、线性电抗器、中间电路、递变单元、控制和电子监测系统、操作面板;<3>箱体应具有一定的机械强度和严密的结构.防护标准为IP40 .箱内弱电及强电系统应独立设置;<4>变频器所有强电元件应进行机械和电气强度的设计,使其能随大于 20KA 的冲击电流.<5>变频器的额定值如下:电源电压:< 380 ± 10% > V ;电源频率:< 50 ± 2 > HZ ;功率因数:≈ 0.98 ;频率控制范围:< 0 ~ 50 > HZ ;频率精度: 0.5% ;过载能力: 150% ,最小 60s ;控制方式:正弦波 PWM 控制.<6>台变频器的控制系数应具有调节上升的时间和下降时间的线性功能,上升和下降时间应单独可调.<7>应通过程序设定跳跃频率,应设置动力电缆的接线端子板,电缆接线全部为压接.控制电缆端子板应<8>变频器应有以下保护功能:过载保护;过电压保护;瞬间停电保护;输出短路保护;欠电压保护;接地故障保护;过电流保护;内部温升保护;欠相保护.<9>在故障状态下,应保护电路并报警,水泵和变频器应停止工作.<10>变频器应具有模拟量及数字量的输入输出< I/O >信号,所有模拟量信号应为< 4 ~ 20 > mA 及<1 ~ 5 > V ,变频器应符合电磁兼容的规定.<11>操作面板应有以下功能:变频器的起动、停止;变频器参数的设定控制;显示设定点和参数;显示故障并报警;应在变频器前的面板上设文字说明.3.10 板式换热机组应采用补水泵变频自动补水.补水泵电机、变频器的制造标准和技术条件应符合本标准8,9的规定.3.11 电动机、控制柜、配电箱、电缆穿管、电缆桥架等所有电气设备外壳均应与接地网牢固连接,连接处必须采用焊接方式.。
隔压换热站自控系统设计思路
隔压换热站自控系统设计思路张仲生【摘要】以太原市华能东山隔压换热站(简称隔压站)为例,对隔压站自控系统进行了分析,并着重介绍了隔压站自控测点及其控制思路,指出分布式隔压换热站具有占地面积小、系统规模小、可根据实际情况灵活布置等优点。
%Taking Huaneng Dongshan intervals-pressure heat exchange station( intervals-pressure station in brief)in Taiyuan city as an example, the paper analyzes automatic control system of intervals-pressure heat exchangestation,mainly introduces automatic control measurement points and control concept of intervals-pressure heat exchange station,and finally points out advantages of distribution-style intervals-pressure heat ex-change station,such as small land area,small-scale system,flexible distribution according to actual conditions and so on.【期刊名称】《山西建筑》【年(卷),期】2015(000)029【总页数】2页(P145-146)【关键词】隔压换热站;系统;自动控制【作者】张仲生【作者单位】太原市热力公司,山西太原 030012【正文语种】中文【中图分类】TU833分布式隔压换热站是指在负荷较为集中的区域,满足设计条件的位置设置小规模、小负荷的隔压换热系统,使其出口管线满足低海拔区域的供热参数,以适应供热区域内规划负荷的调整,可使该热源进一步解决供热区域两侧更低海拔区域的供热。
换热站控制系统设计
换热站控制系统设计1.引言换热站是供热系统中的重要部分,负责对热能进行集中供应和分配。
为了实现高效、稳定的供热过程,需要一个可靠的换热站控制系统来监测和控制热网的运行。
本文将介绍一种换热站控制系统的设计方案。
2.系统需求分析在设计换热站控制系统之前,我们需要对系统的需求进行分析。
主要的需求如下:2.1热能监测系统需要能够实时监测换热站的热网温度、流量和压力等参数,以便及时发现问题并进行调整。
2.2控制功能系统需要能够对换热站的设备进行自动控制,包括启停设备、调节温度和流量等。
2.3故障报警系统需要能够监测热网中的故障,并及时向操作人员发出警报,以便及时处理故障。
2.4数据记录与分析系统需要能够记录并存储换热站的运行数据,以便后续进行数据分析和故障排查。
3.系统设计方案基于上述需求,我们设计了以下的换热站控制系统方案:3.1硬件组成系统的硬件组成包括传感器、执行器、控制器和操作终端。
传感器负责实时监测热网的温度、流量和压力等参数,并将数据传输给控制器。
执行器负责根据控制指令进行设备的启停以及温度和流量的调节。
控制器负责接收传感器的数据,并进行数据处理和控制指令的生成。
操作终端用于操作和监控整个系统。
3.2控制策略系统采用分层控制策略,分为上位机控制和下位机控制。
上位机负责监控整个系统的运行状态,接收传感器数据并进行数据分析、故障排查和故障报警。
下位机负责控制设备的启停和温度、流量的调节,根据上位机发出的控制指令进行相应的操作。
3.3软件开发软件开发包括上位机软件和下位机软件的开发。
上位机软件主要负责数据分析、故障排查和故障报警等功能。
下位机软件主要负责控制设备和接收上位机发出的控制指令。
4.系统实施系统的实施包括硬件设备的安装、软件的开发和系统的调试。
硬件设备的安装需要按照设计方案进行,确保传感器和执行器的正确连接。
软件开发需要根据需求进行,编写相应的代码并进行测试。
系统调试需要将硬件和软件进行整体联调,确保系统的稳定性和可靠性。
热力公司换热站PLC控制系统设计
目录目录引言 (1)第一章绪论 (2)1.1 换热站的发展概述 (2)1.1.1 国外换热站发展概况 (2)1.1.2 国内换热站发展概况 (2)1.2 换热站的简介及运行现状 (3)1.3 课题的来源及意义 (3)第二章换热站的构成和总体设计方案 (5)2.1换热站的简介 (5)2.2换热站控制系统的构成 (5)2.3 换热站控制系统的硬件 (6)2.3.1换热器 (6)2.3.2 循环水泵 (7)2.3.3 阀门 (7)2.3.4 温度计、阀门 (8)2.3.5 PLC S7-200 (8)2.4 换热站工作原理 (11)2.5 系统总体方案设计思路 (12)2.6 该方案要实现的控制功能 (13)第三章控制系统实施方案 (15)3.1 换热站与热用户的连接方式 (15)3.2 温度的控制调节 (15)3.3 循环水流量的调节控制 (16)3.4 压力的调节控制 (17)3.5 换热站总体控制系统方案 (18)3.5.1 换热站控制系统设计 (18)3.5.2 控制系统硬件总体框架图 (18)3.5.3 换热站控制系统电气图 (18)参考文献 (20)引言温度控制系统在国内各行各业的应用虽然应用很广泛,但从国内生产的温度控制器来讲,总体发展水平仍然不高,同日本、美国、德国等先进国家相比仍然有着较大的差距。
目前,我国在这方面总体水平处于20世纪80年代中后期的水平,成熟产品主要以“点位”控制及常规的PID控制器为主,它只能适用于一般的温度系统的控制,难以控制滞后、复杂、时变温度系统控制。
能适应于较高的控制场合的智能化、自适应控制仪表,国内还不十分成熟。
随着国民经济的不断发展,人们对供暖质量的需求也在逐步提高。
在传统供热模式下,为满足供热需求,换热站内设备运行参数多为人工调节,随着室外温度及热负荷的不断改变,不断的人工调节二次供水温度以保证用户室内能够维持恒定的温度。
在这种情况下,人工手动调节必然存在着较大偏差,只能够根据经验达到粗调节,不能够居民对室内温度恒定。
换热站自控系统方案
锅炉及换热站远程监视控制系统概况随着互联网科技日益渗透到生活,生产的各个领域,各种工业组态软件及各种嵌入式硬件或PLC(可编程控制器)支持下,运用电脑进行工业过程自动化控制已然成为现实。
锅炉自动化控制及换热站远程监控是工业过程自动化中的体现。
操作者对锅炉自动控制及换热站远程监控系统有以下要求(控制指标)1,实时监测可视到:排烟温度,炉膛温度,炉膛压力,出水温度,出水压力,回水温度,回水压力,一次网供回水压力及温度,二次网回水温度及压力和二次网补水压力,及外加各种流量,压力,温度指标。
2,实时控制监视鼓风,引风,炉排,循环泵的启停,二次网循环泵启停,运行的全部情况(如果使用变频器可看到变频器的输出频率,输出电流等指标)及二次网补水泵的启停。
锅炉管理者通过互联网(或局域网)对锅炉自动控制系统有以下要求(控制指标)3,直观的看到锅炉现场及换热站的情况4,实时监测可视到:排烟温度,炉膛温度,炉膛压力,出水温度,出水压力,回水温度,回水压力,一次网供回水压力及温度,二次网回水温度及压力和二次网补水压力及外加各种流量,压力,温度指标。
5,通过互联网(或局域网)及电话与操作者进行通讯。
控制系统根据客户要求提供实时报表,历史报表和报警窗等系统控制指端可进行报表打印,报表数据下载等。
另外控制系统对操作者要进行用户身份验证,保证操作的安全性。
为实现以上各种要求,在控制系统中应用组态软件及与之相配套的电脑,扩展功能板,或PLC(可编程控制器),数模转换或模数转换,变送器,传感器。
整个监控系统共需处理的开关量输出点;开关量输入点;模拟量输入点和模拟量输出点若干(根据用户要求确定数量)。
主要采用组态王控制系统以及PLC 可编程控制器,换热站通过控制模块完成与SARO GPRS DTU的数据交互。
PLC 定时将数据发送给SARO GPRS DTU,同时PLC实时接收DTU发来的数据完成相应控制功能。
SARO GPRS DTU在收到PLC发来的数据会立即转发到操作者操作的系统。
换热站PLC仿真控制系统设计
收稿日期:2020-09-10作者简介:吴猛(1974—),男,毕业于吉林大学,博士,教授,从事测控技术等方面的研究工作。
DOI:10.16525/ki.14-1362/n.2020.12.19总第198期2020年第12期Total of198 No.12,2020工业设计现代工业经济和信息化Modern Industrial Economy and Informationization换热站PLC仿真控制系统设计吴猛(吉林化工学院信息与控制工程学院,吉林吉林132022)摘要:介绍一种新的换热站PLC控制系统设计。
应用西门子300系列PLC作为控制器,通过博途V15.1软件完成系统编程设计,建立一套换热站监控组态平台,进行远程参数设定、现场实时监控,实现控制系统自动运行,改善现有换热站的工作效率。
关键词:换热站;PLC;监控组态中图分类号:TP273+.5文献标识码:A文章编号:2095-0748(2020)12-0047-02引言中国北方地区由于地理因素导致冬天温度低,生存环境恶劣,长久以来供暖问题一直是较为重要的居民幸福生活指标,现有的城市供暖系统经过近一个世纪的长足发展已经有了很大的进步,但同时面临着诸多问题,比如:供暖冷热不均、温度达不到国家标准、环保问题、设备及管道老化损坏等等,由于上述等诸多问题导致人民群众正常生活无法保证的事件时有发生,为保障人民群众能够享受正常供暖,就必须升级现有的供暖体系[1]。
1控制系统方案换热站包括一次管网、二次管网、补水等环节,主要完成从供热一次网到二次网的热量交换[2-4]。
一次网流量的控制回路主要是通过调节一次回水调节阀来实现。
二次网的调节回路则是PLC系统根据换热站热网的实际情况,采用PID算法,通过调节二次网的循环泵和补水泵的转速来进行恒压控制。
在控制过程中,系统对热网的温度、压力、流量、开关量等进行信号采集、控制、远传,实时监控管网各参数的变化及泵的运行状态,从而对供热过程进行有效的监测和控制。
换热站自控系统方案
换热站自控系统方案1. 引言换热站是热力供应系统中重要的组成部分,负责将集中供热系统中的热能输送到用户热水和供暖系统中。
为了实现对换热站的高效管理和控制,需要采用自控系统来监测和调节换热站的运行状态。
本文将提出一种换热站自控系统方案,以提高换热站的效率和可靠性。
2. 方案设计2.1 系统架构换热站自控系统主要由以下几个部分组成:•传感器:用于监测换热站中的各种参数,比如流量、温度、压力等。
•控制器:根据传感器采集到的数据进行分析和控制,并给出相应的控制信号。
•执行机构:接收控制信号并执行相应的操作,如调节阀门的开度。
•通信网络:将传感器采集到的数据和控制信号传输到控制中心。
•控制中心:接收传感器数据并根据设定的参数进行控制策略的制定和优化。
2.2 控制策略换热站自控系统的控制策略主要包括以下几个方面:•温度控制:通过调节换热站中的阀门开度,控制进水温度和回水温度,以满足用户的热水和供暖需求。
•压力控制:监测换热站中的压力,并通过调节泵的运行状态来控制系统压力在合理范围内。
•流量控制:根据用户热水和供暖系统的需求,调节换热站中各支路的流量分配,以保证每个用户得到稳定的热力供应。
•故障诊断和报警:通过监测传感器的数据,及时发现系统的故障,并发送报警信号给操作人员,以便及时进行维修和处理。
3. 技术实现3.1 传感器选择选择合适的传感器对于换热站自控系统的正常运行至关重要。
常用的传感器包括温度传感器、压力传感器和流量传感器等。
根据具体的需求,选择可靠、精度高、稳定性好的传感器进行安装和使用。
3.2 控制器和执行机构控制器和执行机构是实现系统自控的关键部分。
可以采用PLC(可编程逻辑控制器)作为控制器,通过编程实现对传感器数据的采集和分析,并给出相应的控制信号。
执行机构可以选择电动阀门作为控制元件,通过调节阀门的开度来实现对流量和温度的控制。
3.3 通信网络和控制中心为了实现对换热站自控系统的远程监测和控制,可以利用现代的通信网络技术,如以太网、无线传输等,将传感器数据和控制信号传输到控制中心。
集中供热换热站控制系统设计与应用
集中供热换热站控制系统设计与应用摘要:在换热站运行管理方面,我国目前的技术水平还处于手动操作阶段,大部分的温度调节是依靠经验来调整,无法系统地分析和判断运行工况(水力工况和热力工况),难以消除系统运行的不平衡,导致水力工况失调,热力工况失调严重,造成热用户室温冷热不均;热量供给与需求不匹配,水耗、电耗、能耗很高,并且造成资源能源的浪费;运行数据不完整,难以实现供热运行的量化管理、信息整合。
科学有效的控制和管理热网,为供热企业的各级领导、管理和生产部门提供辅助决策和优化手段已成为许多供热企业的迫切需求。
关键词:集中供热;换热站;控制系统;设计;应用1换热站工作原理以及工作设备换热站是连接热源与热用户的重要环节,在供热系统的整体运行过程中具有关键作用。
一般情况下,热水管网分为一次网和二次网,二者的具体功能有较大差异,一次网主要是连接换热站与热用户之间的管网,而换热站主要是用于连接一次网与二次网,由换热器、循环泵、补水泵以及控制设备等部分组成。
换热器是核心设备,需要对其进行合理选择,以确保供热系统的经济性和可靠性。
在设计过程中,要最大限度提升系统运行的稳定性。
此外,为确保供热系统稳定运行,通常情况下,会配备2台换热器,且2台换热器同时运行,保证供热量超过总量的70%以上。
而循环水泵的选择需要经过精确的计算,在计算的基础上选择符合标准的循环水泵。
一般情况下,在热负荷和水温保持恒定不变的状况下,供热系统中循环水泵的流量保持不变。
在这种情况下,如果选择流量过大的循环水泵会对资源造成一定的浪费。
此外,循环水泵的配置与换热器相同,在工作过程中至少要配备2台,以防设备出现故障影响整个系统的运行。
2集中供热换热站控制系统设计与应用2.1换热站工程概况本工程以某小区换热站为实例,换热站供热总面积约为265125.72m2。
其中低区系统一至十一层,低区面积约为164375.94m2;中区系统十二至二十二层,中区面积约为53615.25m2;高区系统二十三至三十二层,高区面积约为47134.78m2。
基于plc的换热站控制系统设计
基于PLC的换热站控制系统设计目录第1章绪论 (4)1.1研究背景 (4)1.2研究目的和意义 (4)1.3研究现状 (4)1.4 本文研究内容 (5)第2章控制系统总体方案的设计 (5)2.1 换热站的简介 (5)2.2 换热站控制系统的构成 (5)2.3 系统总体设计方案思路 (6)2.4 该方案要实现的控制功能 (6)第3章系统的硬件设计 (7)3.1 PLC (7)3.1.1 PLC的应用 (7)3.1.2 PLC的系统性能特点............................... 错误!未定义书签。
3.1.3 S7-200PLC介绍 (8)3.2 I/O点表的确定 (9)3.3 变频器 (10)3.4 数字量输入输出 (10)3.5 电源 (10)3.6 换热站的接线设计 (11)3.6.1 主回路和二次回路 (11)3.6.2 数字量输入/输出回路 (11)3.6.3 模拟量输入/输出回路 (12)3.7 PID算法 (12)3.8 辅助模块设计 (15)3.8.1 稳压模块的设计 (15)3.8.2 保护电路的设计 (15)第4章系统的软件设计 (15)4.1 软件设计概述 (15)4.2 分析控制要求 (16)4.3 系统组态 (16)4.3.1 概念 (16)4.3.2 组态软件特点 (16)4.3.3 硬件组态 (16)4.3.4 编辑符号表 (17)4.4 梯形图的编程 (17)4.4.1 PID参数选择 (17)4.4.2 系统通信 (23)4.5 抗干扰设计 (24)4.5.1 硬件抗干扰设计 (24)4.5.2 软件抗干扰措施 (25)第5章系统实现与调试 (25)5.1 系统的实现 (26)5.1.1 建立工程 (26)5.1.2 变量的链接 (27)5.1.3 建立流程画面 (28)5.1.4 液位报警画面的建立 (30)5.1.5 变量记录与温度历史趋势 (30)5.1.6 压力实时趋势 (31)5.1.7 PID仿真调节画面 (32)5.2 系统的调试 (32)5.2.1 安装制作 (32)5.2.2 硬件调试 (33)5.2.3 软件调试 (33)5.2.4 故障分析和相应解决方案 (34)结论 (34)致谢.......................................................... 错误!未定义书签。
集中供热工程换热站专用控制系统设计和控制方案说明
集中供热工程换热站专用控制系统设计及控制方案技术方案**科达自控工程技术**2011年1月目录1. 第一章设计方案综述11.1热网控制系统技术方案21.1.1 设计原则21.1.2 方案简介21.1.3 功能特点31.2热网控制系统功能51.2.1 网络结构图51.2.2 网络结构概述51.2.3 监控调度中心软件功能61.2.4 本地换热站控制器功能71.2.5 热网平衡模块功能71.第一章设计方案综述本系统是集公司多年来供热工程应用经验,专门针对北方集中供热工程项目提供的换热站专用控制系统.该系统采用**中控自动化仪表**自主研发的U6-200一体化PLC,监控中心上位机软件采用Inscan HRC热网实时监控专用软件,配置热网管理软件包、热网平衡模块、Web发布软件包及GSM短消息报警模块,实现对各个小区换热站热网运行参数的采集存储,外界环境温度的补偿,热网温度流量、动力设备的启停及调节、安全报警以及自动分析、热网系统故障诊断、能源计量分析等功能,并配合现场网络视频监控系统,以达到整个热网系统的供热平衡、安全、经济运行,最终实现无人值守型换热站.换热站专用控制系统图示在自动化设计上,设置监控中心控制室<调度中心>一个,内含2台调度计算机同时通过通讯的方式对换热站进行监控,2台调度中心计算机为1主1备冗余.主监控操作站完成控制室内人机交互功能,在计算机上显示各站换热网的工艺管道、参数、控制流程图,包含各类热力参数、阀门等各类执行机构状态的显示和自/手动操作.监控操作站除完成基本的各换热站运行数据采集、远程调度控制、数据记录报表生成等之外,还具备热网平衡调节、提供热网负荷需求趋势预测、预测负荷与实际负荷对比、互联网web远程浏览、手机wap浏览、手机短信报警等热网管理功能.换热站采用就地与主控室远程控制协作方式.各站放置独立U6-200一体化PLC一套,该终端设备配有彩色触摸屏,方便巡检人员进行就地观测,实现小区热网运行参数的采集与监控,如压力、温度、流量、电流等,并集中将运行参数发送至远方控制中心;U6-200一体化PLC可就地存储至少一个采暖期的运行参数,实现根据室外温度值自动控制二次供回水温度,并可同时控制循环变频及补水变频,进行量值的调节;在启用换热平衡模块后,各站控制器接收主控室发送的平衡参数,结合各站过程参数调节二次供回水温度;控制器也可接收主控室下发的各项命令,完成远程控制热网温度、流量、动力设备的启停等.同时结合网络视频监控系统,通过变焦功能,手动调节远近焦距,最终实现换热站无人值守.1.1热网控制系统技术方案1.1.1设计原则本设计方案基于"集中管理,分散控制"的模式,数字化、信息化环保工程的思想,着眼于热网"管控一体化"信息系统的建设,建立一个先进、可靠、高效、安全且便于进一步扩充的集过程控制、监视和计算机调度管理于一体并且具备良好开放性的监控系统,完成对整个供热运行的监测与自动控制,实现"换热站无人值守"的目标.1.1.2方案简介自动化热网监控系统,采用分布式计算机系统结构,即采用中央与就地分工协作的监控方法.中央控制室负责全网参数的监视以及必要时的远程调控,在开启平衡模块情况下完成各换热站的流量和能量调配;各换热站根据中央控制室下发的平衡参数进行供回水温度自动,同时也可通过就地手动干预或者远程干预.本系统由调度监控中心、远程终端站、通讯网络和与监测控制有关的仪表等部分组成.调度监控中心起着调度中枢的作用,可以察看全网的供热参数,同时进行热力工况的分析来指导全网的运行.远程终端站由具有测控功能的控制装置和通讯系统组成.远程终端站通过与其相连的仪表和执行机构完成对一、二级换热站和其它现场设备的数据采集和控制功能.该热力站运行管理系统采用的策略为:中央监测、现场控制.中央管理工作站主要负责检测显示热网参数<必要时提供远程控制>和各站的协调;每个热力站独立地工作,互不干扰.即使某一个换热站出现故障也不会影响其它换热站的正常工作.各换热站主要实现以下三方面自动控制:①根据调度监控中心的各站调控参数以及二次侧供回水温度自动控制高温水进入换热器入口调节阀的开度;②根据定压点压力自动控制补水泵转速,若回水压力低于设定值时自动报警;③自动检测循环泵运行状态,并根据压力自动控制主循环泵的转速.整个通讯系统分调度监控中心、各换热站和通讯网络三个部分,通讯采用ADSL通讯方式,在调度监控中心设立专网,在每个换热站独立设立通讯方式,与U6-200一体化PLC的通讯模块相连,进行数据的收发.1.1.3功能特点换热站专用控制器功能:1.专用控制器:专门为换热站量身定做的U6-200一体化PLC,无需用户编程,简单易用,内置的常规功能即可满足所有换热机组控制需求;2.人性化显示:自带7寸真彩触摸屏,内置单双换热机组流程图画面,显示直观,操作方便,易学易懂,充分体现人性化,方便巡检人员进行就地观测,包括温度、压力、流量、循环泵、补水泵的状态等;3.参数检测功能:完成模拟量采集包括:一次网供水温度和压力、一次网回水温度和压力、二次网供水温度和压力、二次网回水温度和压力、室外温度、阀门开度、频率反馈、一次网流量、二次网流量等,状态量采集如:泵状态等;脉冲量采集如:累计补水量、累计耗热量等的测量;4.通讯功能:现场控制设备能够与调度中心进行数据通信,支持采用ADSL或GPRS通讯方式,即通过Internet和移动网络,主从站间进行数据传输,主站可远程监控各从站工况,无论距离远近;5.参数存储:可就地存储至少一个采暖期的运行参数,以便供热企业进行能效分析;6.控制模式:本地监控站可以自动识别中控室传来的控制模式的指令<本地控制、温度控制、直接阀位/频率控制>,经过判断执行其中一种控制指令,并运行对应的控制模式;7.控制功能:根据换热站实际运行情况进行相关控制;a)根据调度监控中心的各站调控参数以及二次侧供回水温度自动控制高温水进入换热器入口调节阀的开度;b)根据定压点压力自动控制补水泵转速,若回水压力低于设定值时自动报警;c)自动检测循环泵运行状态,并根据压力自动控制主循环泵的转速,;8.联锁保护功能:本地监控器诊断到设备出现故障<如电机过流、过压等>或现场工况发生异常变化<如二次网压力过高、过低等>,控制器可根据相应故障诊断软件及工况评估逻辑,立即停止对应的设备运行,同时将报警类型及信息上传至中控室,尽可能地保护系统的安全运行.9.报警功能:根据工艺要求,可将报警分为不同级别.a)各个温度、压力、水位等超限报警.至少包括:一次供水压力、二次回水压力、二次供水温度高限报警,补水箱水位高低限报警等.b)水泵、电机、电动阀、变频器、换热器、通讯系统等故障报警;c)停电报警:换热站配置UPS电源,作为现场控制器和调制解调器的后备电源,当换热站供电出现故障或停电时,控制器能够生成停电报警信号,并通知中央控制室的调度人员采取相应的措施.热网实时监控专用软件功能:1.专用软件功能:各个换热站控制器与调度中心Inscan HRC热网实时监控专用软件进行通讯,实现换热站无人值守,满足所有换热站功能需求;2.供热参数实时监测功能:调度中心直观显示各个换热站在区域内的分布图,点击可进入换热站运行参数详细图,实时显示热力站一级网和二级网供回水温度和压力、流量、热量、阀门开度、水泵开启状态、循环泵变频、补水泵变频、液位等参数;3.手自动控制模式:a)根据现场工况提供两种控制模式用于控制换热站的一次网阀门开度,分别为:本地温度控制、直接阀位控制.b)根据现场工况提供三种控制模式用于控制换热站的二次网循环水流量,分别为:本地手动控制、本地自动控制、直接转速控制.4.远程修正功能:中控计算机能对本地控制站进行参数组态,包括修改温度控制参数的给定值、控制模式及比例系数、积分系数及供热曲线等控制参数;参数修正要设定权限.5.故障诊断及报警功能:根据参数信息及时诊断各系统的故障并指导维护.应能诊断以下故障:压力、温度、流量传感器故障;通讯系统故障;各热力站水泵、电机、电动阀、变频器等设备的故障;各热力站的超限报警;第一时间接收各远端控制站报警和故障信号,能及时发出声光信号,并进行记录.6.多功能报表:运行记录、报表及图形打印功能:可以自动生成、打印多种多样的报表和参数变化曲线,至少包括各种运行记录的日报表,统计分析报表及设备的故障状态和维护清单,包括日/月/季等报表以及各个换热站对比统计分析,为供热企业分析热网运行提供数据分析依据.7.参数统计及能源计量功能:根据实测参数统计各站及全网的能耗和水耗,计算出其平均值和累计值.计量时间可以为时、日、月、年,计量结果将以数据文件的形式存储在外存储器内,为量化管理和收费提供依据.8.热网平衡功能:自动根据换热站远近距离、换热站负荷大小,现实换热站间热力/水力平衡;9.短信报警功能:可将报警信息发送到相关责任人的手机上,用于及时处理报警,排除险情10.手机监管:支持WAP手机浏览:通过手机,直接浏览关键的运行参数,真正做到远程监控的管理方式;11.视频监控:可结合网络视频监控系统,通过变焦功能,手动调节远近焦距,最终实现换热站无人值守;1.2热网控制系统功能1.2.1网络结构图集中供热工程换热站专用控制系统图示<adsl网络连接>1.2.2网络结构概述本方案将采用先进的分布式和模块化设计理念,利用成熟的软硬件产品完成整个系统体系结构的搭建.本系统由各换热站采集控制设备、通讯网络和监控中心组成.各换热站采集控制设备使用U6-200一体化PLC,该设备是一套相对独立运行的可编程控制设备,可对现场设备进行监测和控制;能够满足需要进行流量计算、PID闭环控制和逻辑顺序控制等应用的场合.通讯网络是监控中心与各换热站间连接的桥梁,承载着数据传送的功能.监控中心采用上位机软件Inscan HRC热网实时监控专用软件,配置热网管理软件包、热网平衡模块、Web发布软件包及GSM短消息报警模块,实现对监控数据进行高效采集、长期存储、查询、数据处理等功能;以数据库为核心构成完整的数据服务层,为上层应用系统提供稳定的数据源.1.2.3监控调度中心软件功能热力公司下属的各个换热站采集的实时数据,通过ADSL+VPN的方式传递到调度中心<调度中心需要有使用公网固定IP或域名>,由运行在调度中心的组态监控软件对换热站内的压力、温度和流量数据进行实时监控,统一调整各站参数,统一调整管网平衡.提供热网管线非矢量的地理分布图,地理分布图上标有各个换热站的实际位置,并显示换热站的主要运行参数,在该画面上通过按钮可以切换到任一个换热站,查看换热站的详细信息.换热站管网运行图提供换热站数据总貌画面,总貌画面以数据列表的形式,呈现了各个换热站在一次网、二环网中的实时采集数据以及通讯状态.热网换热站监控总貌提供单个换热站的运行监控画面,该画面显示单个换热站内的各数据采集点的实时运行数据.换热站远程监控提供单个换热站的补/回水泵远程控制画面,通过该画面可远程监控某个换热站内的补水泵和循环泵运行.换热站远程补水/回水控制提供数据的自动保存功能,保存的历史数据可随时供使用者调取、查询.提供数据报表生成和打印功能,可生成日报、月报、年报及同期比较报表,通过报表分析数据的变化情况,判断管路的失水情况,分析设备运行是否正常.能耗数据查询表热网关键参数报表提供多种数据曲线/图形显示功能,可选择任意换热站的数据点进行查看,比较实时或历史的曲线数据.运行数据曲线气温预测曲线各个换热站供热区域对比饼图提供位于实时数据采集和管理分析软件基础之上的换热站综合运行软件,拥有热网平衡轮询监视、气象数据更新、DCS数据采集报警、平衡数据分析等功能,是一套拥有强大扩展性的综合应用软件.换热站综合运行软件图示平衡运行前后数据对比图多级操作权限设置,不同的操作人员设置不同的功能权限,防止不同级别的操作人员越权操作.换热站综合管理登录系统登录异常情况报警<通信失败、循环泵全停、超流量、低流量、超温、低温等>,当发生系统报警时,自动出现报警提示,并提供报警历史查询功能.中控室报警画面具备异常情况报警信息短信通知功能,当变量报警产生后,按预先设定好的手机号码和报警内容进行发送,及时通知相关值班维护人员.短消息报警图示提供数据的分析功能,通过记录的热网运行历史数据,在一个采暖期结束后与前期数据进行比较分析,查出整个换热管网的主要问题,为今后的升级改造提供有针对性的分析.热网换热站统计报表能耗数据明细提供双机冗余备份功能,系统由两套组态相同的监控软件,一套设为主站,另一套设为从站,系统正常工作时只有主机和换热站通讯,从机不通讯,从机通过主站进行数据备份和同步.如果主机出现故障,其中一个从机接管主机工作.等主机恢复之后,可以通过自动或手动方式进行干预来恢复先前状态.本系统采用网络化设计,在服务器端运行WEB SERVER程序并发布监控画面后,用户可通过IE浏览器访问换热站数据采集系统采集到的各种运行数据.同时,可按用户需求,定制若干手机浏览页面,供用户便捷的进行访问.手机WAP浏览可结合网络视频监控系统,通过变焦功能,远程调节摄像头的观察位置和远近焦距,最终实现换热站无人值守.换热站视频监控同时,使用数据实时转发技术,可远程浏览控制专网内的DCS运行数据,真正实现全厂信息的集中监控.DCS运行数据的WEB发布1.2.4本地换热站控制器功能本地换热站在U6-200一体化PLC的7寸真彩触摸屏上提供单个换热站的运行监控流程图画面,显示直观,操作方便,易学易懂,充分体现人性化,方便巡检人员进行就地观测.双换热机组本地监控换热站本地补水/回水控制1.2.5热网平衡模块功能在运行与控制方面最重要的问题在于热网平衡.一个集中供热系统,特别是一个大的集中供热系统,要实现稳定运行和均衡供热的基本条件是保证管网的水力工况平衡.过去,热网平衡问题一直是难以解决的问题,一些系统中存在的工作压力不能满足正常工作需要,热力站不能获得需要的压差,用户普遍不热,或者前端用户压差高,流量超过设计值,而末端压差不足流量低于设计值因而造成近端用户过热,远端用户不热的原因,就是因为系统存在水力工况不平衡的问题.造成系统水力工况不平衡原因是多方面的主要有:受热源厂设备的限制,供给的压力不足,或者因为系统的循环水量超过原设计值,使循环水泵的供给压力下降;管网设计不合理,或者管网堵塞造成系统的压力损失过大,超出了热源厂设备所能提供的压力;系统〕管网和热力站〔缺少合理分配水量的手段,为解决末端用户不热的问题而加大循环水量,因而降低了一次供水温度.解决此类问题虽然需要由设备选型与管线铺设来保障,但是在控制上仍需要由控制手段来保障,特别是在整个热网负荷变化的情况下协调各换热站的能量分配.对于热网平衡来说,目的是使总能量在各站之间均匀分配,使各站的温度尽量均匀,但同时也要考虑到各站的暖气和地暖因素影响,这会造成有些地区的温度偏高或偏低.整个平衡是按照周期性进行控制<考虑二网滞后因素影响>,综合考虑各站的供回水温度和流量,经过平衡算法得到各站平衡参数,将参数下发给各换热站由各站控制器来合理地调整一网流量,使得整个网络中各站温度趋于平衡.算法中的主要模块配置参数和参数使用说明如下:一、优先级该参数表明换热站在整个平衡系统中的优先级,级别越高表明该站能优先从热网中得到更多的资源,往往也能获得较高的温度.二、敏感度该参数表明换热站覆盖区域温度变化对阀门开度大小变化的敏感性,级别越高表明一定的阀门开度变化造成的温度改变越大.该参数是匹配性参数,需根据换热站特性设置.三、回水相关度该参数表明平衡系统衡量标准与二次网回水温度的相关程度,级别越高表明二网回水温度在整个平衡效果评价体系中占的分量越重,同时也表明二网回水温度控制将会越平均. 四、鲁棒性该参数表明换热站区域温度的可控程度,鲁棒性越强表明该站温度的可调程度和范围越大.该参数是匹配性参数,强烈建议采用模块默认设置.。
基于PLC控制技术的换热站系统设计
第28卷 第4期2021年4月仪器仪表用户INSTRUMENTATIONVol.282021 No.4基于PLC控制技术的换热站系统设计李 炜,余延磊(吉林工程技术师范学院 电气工程学院,长春 130052)摘 要:供暖系统在国内北方地区发挥着极为重要的作用,但传统换热站基本靠人工经验对供暖系统进行调节,很容易造成不必要的能源浪费。
针对以上问题,以PLC 作为控制器对换热站进行结构改善,能及时有效地对整个供暖系统做出自动调节,提高系统的工作效率。
关键词:换热站;PLC ;变频器;系统设计中图分类号:TP272 文献标志码:AHeat Exchange Station Based on PLC Control TechnologyLi Wei ,Yu Yanlei(Jilin Normal College of Engineering and Technology, Electrical Engineering, Changchun, 130052,China)Abstract:The heating system plays an important role in the north of our country, but the traditional heat exchange station adjuststhe heating system by the artificial experience, which is easy to cause the unnecessary energy waste. In view of the above problems, uses PLC as the controller to improve the structure of the heat exchange station, which can adjust the whole heating system auto-matically and improve the efficiency of the system.Key words:heat exchange station;PLC;frequency converter;system designDOI:10.3969/j.issn.1671-1041.2021.04.005文章编号:1671-1041(2021)04-0016-03收稿日期:2020-11-11基金项目:吉林省教育厅项目(JJKH20190769KJ)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
吉林化工学院信控学院专业综合设计说明书换热站控制系统设计学生学号:学生姓名:专业班级:指导教师:职称:起止日期:2016.08.29~2016.09.18页脚内容吉林化工学院Jilin Institute of Chemical Technology页脚内容I专业综合设计任务书一、设计题目换热站控制系统设计二、适用专业测控技术与仪器专业三、设计目的1. 了解换热机组工艺流程;2. 了解温度、压力、液位及流量等工艺参数的信号测量及传输方法;3. 掌握PLC各种典型信号(二线制、四线制变送器及热电阻、热电偶)接线方法;4. 掌握PID控制算法及其在PLC中的编程和离线仿真及调试方法;5. 熟悉自控工程实践设计及应用的一般步骤和实现方法。
四、设计任务及要求某换热站工艺流程如下图所示,一次网进水由热水锅炉加热,经板式换热器与二次网进行换热后再返回锅炉。
二次网循环水由循环泵P201加压后进行换热器,加热后进入管网对居民住户进行循环供热。
页脚内容控制要求:1.二次网供水温度PID控制:通过一次网调节阀V101进行供水温度定值控制;2.二次网供水压力PID控制:通过循环泵调频进行供水压力定值控制;3.补水箱水位限值控制:水箱水位小于低限时开补水阀,大于高限时关补水阀;4.二次网回水压力限值控制:回水压力小于低限时启动补水泵,大于高限时停泵;5.连锁控制(选做):水箱水位小于低低限时,补水泵禁止运行;二次网回水压力小于低低限时,循环泵禁止运行;6.流量/热量累计(选做):增加一次网流量和回水温度仪表,实现流量和热量累计。
五、设计内容1. 总结IO点表,并进行PLC系统选型;2. 设计控制系统IO信号接线图纸;3. 按上述控制要求编写和设计PLC控制程序;页脚内容I4. 设计上位机操作画面,包括工艺流程画面、操作画面、趋势及报警等画面;5. 撰写设计说明书。
六、设计时间及进度安排设计时间共三周,具体安排如下表:七、指导教师评语及学生成绩页脚内容II目录第1章摘要 0第2章换热站系统的工艺 (1)2.1换热站系统的构成 (1)2.2 系统的工艺流程 (1)2.3 系统的功能及控制要求 (2)第3章系统硬件选型 (3)3.1 PLC的选型 (3)页脚内容III3.2 I/O点表 (4)3.3 电源选型 (6)3.4 CPU选型 (7)3.5 数字量输入输出模块选型 (7)3.6 硬件选型表 (7)第4章换热站的接线设计 (9)4.1 主回路和二次回路 (9)4.2 数字量输入/输出回路 (10)4.3模拟量输入/输出回路 (11)第5章下位机控制系统设计 (12)5.1 分析控制要求 (12)5.2硬件组态 (12)5.3 编辑符号表 (13)5.4编辑下位机梯形图程序 (13)第6章上位机监控画面设计 (18)6.1 Wincc组态软件简介 (18)6.2 Wincc组态软件使用 (20)页脚内容IV6.3 变量的链接 (21)6.4 画面的建立 (22)6.5 液位报警画面的建立 (25)6.6 变量记录与温度历史趋势 (25)6.7 压力实时趋势 (26)6.8 PID仿真调节画面 (27)结论 (28)参考文献 (29)页脚内容V第1章摘要随着大规模集成电路和微处理器在PLC中的应用,使PLC的功能不断得到增强,产品得到飞速发展。
由于PLC具有通用性强、使用方便、适应面广、可靠性高、抗干扰能力强、编程简单等特点。
因此PLC在工业自动化控制特别是顺序控制中的地位,在可预见的将来,是无法取代的,备受国内外工程技术人员和工业界厂商的极大关注。
通过PLC和上位机对二次网供水管道的压力和二次网回水管道的压力进行自动监控,同时在PLC中采用PID算法,从而可以通过控制循环泵和补水泵的转速来实现恒压控制,同时也通过对二次网供水温度的自动监控,从而通过控制一次网进水处的调节阀开度来实现恒温控制,实现了换热站系统的自动运行与人机交互。
文中介绍了一种基于PLC和WINCC的温度自动控制系统方案,针对过程控制装置中的换热站供水温度控制系统,通过介绍系统软硬件构成及其特点。
论述了PLC和WINCC如何实现温度监控。
实践证明,该系统具有良好的人机界面,能方便地在线修改参数,实现对整个换热系统工艺流程的控制。
系统上位机采用西门子WINCC工程组态软件,实现系统启动和停止的控制、参数设定、报警组态、历史数据查询、报表打印等功能。
页脚内容0第2章换热站系统的工艺2.1换热站系统的构成(1)换热站就地监控系统:以S7_300控制器为核心,现场的温度、压力、流量、热量、液位、阀门开度、变频器频率、泵的起停状态等传到控制器,由其进行判断和处理,从而实现现场的就地控制。
(2)现场仪表和执行机构:包括压力、温度、液位、流量、热量等传感器和变送器、阀门执行器等执行机构。
(3)通讯系统:以远程数据网络传输介质,实现中心控制室和换热站就地监控系统的通讯;以双绞线(以太网)为传输介质,实现中控室内部工作站与厂区办公管理系统通讯。
2.2 系统的工艺流程某换热站工艺流程如下图所示,一次网进水由热水锅炉加热,经板式换热器与二次网进行换热后再返回锅炉。
二次网循环水由循环泵P201加压后进行换热器,加热后进入管网对居民住户进行循环供热。
页脚内容1图2-1 换热站工艺流程图2.3 系统的功能及控制要求本系统的功能可分为监视功能和控制功能:(1)监视功能主要包括:数据处理和数据显示两部分。
(2) 控制功能主要包括:对循环泵及补水泵的控制,以及一次网调节阀开度和二次网补水阀启停的控制。
控制要求:(1)二次网供水温度PID控制:对二次网供水温度实时监控,通过对二次网供水温度的PID运算,调节一次网调节阀V101的开度,从而进行供水温度定值控制;(2)二次网供水压力PID控制:对二次网供水压力实时监控,通过对二次网供水压力的PID运算,控制变频器输出频率,间接地控制水泵的转速,从而进行供水压力的定值控制;(3)补水箱水位限值控制:通过液位变送器对水位实时监测,水当箱水位小于低限时开补水阀,大于高限时关补水阀;(4)二次网回水压力限值控制:通过压力变送器对二次网回水压力实时监页脚内容2测,当回水压力小于低限时启动补水泵,大于高限时停泵;(5)连锁控制:水箱水位小于低低限时,补水泵禁止运行;二次网回水压力小于低低限时,循环泵禁止运行;(6)流量/热量累计:增加一次网流量和回水温度仪表,实现流量和热量累计。
第3章系统硬件选型3.1 PLC的选型在本控制系统中,所需的开关量输入为6点,分别为补水泵的启动、停止、运行、故障和循环泵的运行、故障。
所需的开关量输出为2点,分别为补水泵启动、补水阀启动。
考虑到系统的可扩展性和维修方便性,选择模块式PLC。
S7_300 PLC一般包括CPU(中央处理单元)、存储器、输入输出接口、电源等。
页脚内容33.2 I/O点表表3-1 IO点表序号IO标识中文说明IO类型PLC地址量程1V101调节阀开度控制AOPQW2880-100%2V101调节阀开度反馈AI PIW2560-100%3V102补水阀启动DO Q0.04P201循环泵频率控制AOPQW290-50HZ5P201循环泵频率反馈AI PIW2580-50HZ8P201循环泵故障DI I0.2页脚内容49P201循环泵运行DI I0.31 0P201循环泵启动DO Q0.11 1P202补水泵启动DI I0.41 2P202补水泵停止DI I0.51 3P202补水泵故障DI I0.61 4P202补水泵运行DI I0.71 5P202补水泵启动DO Q0.21 6PT101一次网进水压力AI PIW2600-1.0Mpa页脚内容51 7TT101一次网进水温度AI PIW2621 8PT201二次网回水压力AI PIW2640-1.0Mpa1 9TT201二次网回水温度AI PIW2662 0PT202二次网供水压力AI PIW2680-1.0Mpa2 1PT202二次网供水温度AI PIW2702 2LT补水箱水位AI PIW2720-5m3.3 电源选型24V直流传感器电源可以作为CPU本机和数字量扩展模块的输入、扩展模块(如模拟量模块)的供电电源以及外部传感器电源使用。
如果容量不能满足所有需求,则必须增加外部24V直流电源。
此系统选用PS307 5A,型号为6ES7 307-1EAO1-0AA0。
页脚内容63.4 CPU选型300PLC中CPU作为整个控制系统的核心,主要有运算器、控制器、寄存器及实现它们之间联系的地址总线、数据总线和控制总线构成,此外还有外围芯片、总线接口及有关电路。
由于本系统的设计中用到了变频器,考虑到变频器与PLC 的PROFIBUS通讯,所以选择CPU 6ES7 315-2EH14-0AB0。
3.5 数字量输入输出模块选型输入模块和输出模块通常称为I/O 模块或I/O 单元。
PLC 的对外功能主要是通过各种I/O 接口模块与外界联系而实现的。
输入模块和输出模块是PLC 与现场I/O 装置或设备之间的连接部件。
起着PLC 与外部设备之间传递信息的作用。
通常I/O 模块上还有状态显示和I/O 接线端子排,以便于连接和监视。
由于所需的开关量输入为6点,所需的开关量输出为2点,所以选择16点输入的DI模块和16点输出的DO模块即可,多余的I/O点用来备用和扩展。
因此选择数字量输入型号为6ES7 321_1BH00_0AA0,数字量输出型号为6ES7322_1BH00_0AA0。
由于所需的模拟量输入为9路,所需的开关量输出为2路,所以选择两个8路输入的DI模块和一个8路输出的DO模块即可,多余的用来备用和扩展。
因此选择模拟量输入型号为6ES7 331-1KF02-0AB0,数字量输出型号为6ES7332-5HF00-0AB0。
3.6 硬件选型表为使系统安全可靠的运行,在进行硬件结构设计时,应充分了解各硬件设备的工作原理,以便选择合适的型号,如表3-2所示。
表3-2 硬件选型表序列符号名称型号/规格个数页脚内容71CPUCPU6ES7315-2EH14-0AB012PS电源模块(5A)6ES7307-1EA01-0AA013DI数字量输入模块16位6ES7321-1BH00-0AA014DO数字量输出模块16位6ES7322-1BH00-0AA015AI模拟量输入模块8路6ES7331-1KF02-0AB026AO模拟量输出模块8路6ES7332-5HF00-0AB017QS三相空气开关1 8FU熔断器19KM交流接触器CJX2-092页脚内容810KH热继电器AC380V211KA继电器MY4N-J413SB按钮LA58614SA转换开关LA391第4章换热站的接线设计4.1 主回路和二次回路补水泵和循环泵都是由三项380V电压供电,经总空开QS1供电,通过交流接触器KM1控制补水泵的启停,通过KM2控制变频器的启停,通过控制变频器的频率来控制循环泵的转速。