高三数学南方凤凰台高2021届高2018级高三一轮数学提高版完整版第10章第52讲排列与组合
高三数学南方凤凰台高2021届高2018级高三一轮数学提高版完整版学案第八章
第八章 解析几何第41讲 直线的斜率与方程A 应知应会一、 选择题1. (2019·开封模拟)过点A (-1,-3),斜率是直线y =3x 的斜率的-14的直线方程为( )A. 3x +4y +15=0B. 3x +4y +6=0C. 3x +y +6=0D. 3x -4y +10=02. 直线2x cos α-y -3=0⎝⎛⎭⎫α∈⎣⎡⎦⎤π6,π3 的倾斜角的取值范围是 ( ) A. ⎣⎡⎦⎤π6,π3 B. ⎣⎡⎦⎤π4,π3 C. ⎣⎡⎦⎤π4,π2 D. ⎣⎡⎦⎤π4,2π33. (2019·湖北四地七校联考)已知函数f (x )=a sin x -b cos x (a ≠0,b ≠0),若f ⎝⎛⎭⎫π4-x =f ⎝⎛⎭⎫π4+x ,则直线ax -by +c =0的倾斜角为( )A. π4B. π3C. 2π3D. 3π44. 如果A ·C <0且B ·C <0,那么直线Ax +By +C =0不通过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限5. (2019·张家口模拟)若直线mx +ny +3=0在y 轴上的截距为-3,且它的倾斜角是直线3 x -y =33 的倾斜角的2倍,则( )A. m =-3 ,n =1B. m =-3 ,n =-3C. m =3 ,n =-3D. m =3 ,n =1二、 解答题6. 求过点A (1,3),斜率是直线y =-4x 的斜率的13的直线方程.7. 求适合下列条件的直线方程.(1) 经过点P(3,2),且在两坐标轴上的截距相等;(2) 求过点(2,1)且在x轴上的截距与在y轴上的截距之和为6的直线方程.B巩固提升一、填空题1. 直线x+3y+1=0的倾斜角是________.2. 过点P(2,3)且在两坐标轴上截距相等的直线方程为________.3. 已知直线l:(a-2)x+(a+1)y+6=0,则直线l恒过定点________.4. (2019·江苏姜堰中学)已知△ABC的三个顶点A(-5,0),B(3,-3),C(0,2),则BC边上中线所在的直线方程为________.二、解答题5. (2019·启东检测)已知直线l:(2+m)x+(1-2m)y+4-3m=0.(1) 求证:不论m为何实数,直线l过一定点M;(2) 过定点M作一条直线l1,使夹在两坐标轴之间的线段被M点平分,求直线l1的方程.6. 如图,射线OA,OB分别与x轴正半轴成45°和30°角,过点P(1,0)作直线AB分别交OA,OB于A,B两点,当AB的中点C恰好落在直线y=12x上时,求直线AB的方程.(第6题)第42讲两条直线的位置关系A应知应会一、选择题1. 若直线2x+3y-1=0与直线4x+my+11=0平行,则m的值为()A. 83 B. -83 C. -6 D. 62. 若直线l过点(3,1)且与直线2x-y-2=0平行,则直线l的方程为()A. 2x-y-5=0B. 2x-y+1=0C. x+2y-7=0D. x+2y-5=03. (2019·石家庄模拟)若直线2x+3y-k=0和直线x-ky+12=0的交点在x轴上,则k 的值为()A. -24B. 24C. 6D. ±64. 若直线a1x+b1y=2和a2x+b2y=2交于点P(3,2),则过点A(a1,b1),B(a2,b2)的直线方程是()A. 2x+3y-2=0B. 3x+2y-2=0C. 3x+2y+2=0D. 2x+3y+2=05. 已知直线l1:(m-4)x-(2m+4)y+2m-4=0与l2:(m-1)x+(m+2)y+1=0,则“m =-2”是“l1∥l2”的()A. 充要条件B. 充分不必要条件C. 必要不充分条件D. 既不充分也不必要条件二、解答题6. 已知三角形三边所在的直线方程分别为2x-y+4=0,x+y-7=0,2x-7y-14=0,求边2x-7y-14=0上的高所在的直线方程.7. 已知△ABC的顶点B(2,1),C(-6,3),其垂心为H(-3,2),求顶点A的坐标.B 巩固提升一、 填空题1. 若三条直线y =2x ,x +y =3,mx +2y +5=0相交于同一点,则m 的值为________.2. 如果直线ax +2y +3a =0与直线3x +(a -1)y =a -7平行,则a =________.3. 已知直线l 1:ax +y -6=0与l 2:x +(a -2)y +a -1=0相交于点P ,若l 1⊥l 2,则a =________,此时点P 的坐标为________.4. (2019·南通中学)已知直线l 的倾斜角为3π4,直线l 1经过点A (3,2),B (a ,-1),且l 1与l 垂直,直线l 2:2x +by +1=0与直线l 1平行,则a +b =________.二、 解答题5. (2019·海门实验中学)已知两直线l 1:x +y sin α-1=0和l 2:2x ·sin α+y +1=0,求α的值,使得:(1) l 1∥l 2;(2) l 1⊥l 2.6. 已知点P (a ,b )在x ,y 轴上的射影分别为点A ,B .(1) 求直线AB 的方程;(2) 求过点P 且垂直于AB 的直线m 的方程.第43讲 距离公式与对称问题A 应知应会一、 选择题1. 点A (2,5)到直线l :x -2y +3=0的距离为( )A. 25B. 55C. 5D. 2552. 两条平行直线3x +4y -12=0与ax +8y +11=0之间的距离为( )A. 235B. 2310C. 7D. 723. 已知坐标原点关于直线l 1:x -y +1=0的对称点为A ,设直线l 2经过点A ,则当点B (2,-1)到直线l 2的距离最大时,直线l 2的方程为( )A. 2x +3y +5=0B. 3x -2y +5=0C. 3x +2y +5=0D. 2x -3y +5=04. 已知动直线l 0:ax +by +c -2=0(a >0,c >0)恒过点P (1,m ),且Q (4,0)到动直线l 的最大距离为3,则12a +2c的最小值为( ) A. 92 B. 94C. 1D. 9 5. (多选)在平面直角坐标系中,定义d (P ,Q )=|x 1-x 2|+|y 1-y 2|为两点P (x 1,y 1),Q (x 2,y 2)之间的“折线距离”,则下列命题中为真命题的是( )A. 若点A (-1,3),B (1,0),则有d (A ,B )=5B. 到原点的“折线距离”等于1的所有点的集合是一个圆C. 若点C 在线段AB 上,则有d (A ,C )+d (C ,B )=d (A ,B )D. 到M (-1,0),N (1,0)两点的“折线距离”相等的点的轨迹是直线x =0二、 解答题6. (2019·江苏启东中学)已知直线l :y =12x -1. (1) 求点P (3,4)关于l 对称的点Q ;(2) 求l 关于点(2,3)对称的直线方程.7. 已知直线l :(2a +b )x +(a +b )y +a -b =0及点P (3,4).(1) 证明:直线l 过某定点,并求该定点的坐标;(2) 当点P 到直线l 的距离最大时,求直线l 的方程.B 巩固提升一、 填空题1. 已知点(a ,2)(a >0)到直线l :x -y +3=0的距离为1,则a =________.2. 直线l 1:y =2x +3关于直线l :y =x +1对称的直线l 2的方程为________.3. 已知l 1,l 2是分别经过A (2,1),B (0,2)两点的两条平行直线,当l 1,l 2之间的距离最大时,直线l 1的方程是________.4. “c =5”是“点(2,1)到直线3x +4y +c =0的距离为3”的________条件.(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”)二、 解答题5. 已知直线l 经过直线l 1:2x +y -5=0与l 2:x -2y =0的交点.(1) 若点A (5,0)到l 的距离为3,求l 的方程;(2) 求点A (5,0)到l 的距离的最大值.6. 已知三条直线l 1:2x -y +a =0(a >0);l 2:-4x +2y +1=0;l 3:x +y -1=0,且l 1与l 2间的距离是7510. (1) 求a 的值;(2) 能否找到一点P ,使P 同时满足下列三个条件:①点P 在第一象限;②点P 到l 1的距离是点P 到l 2的距离的12;③点P 到l 1的距离与点P 到l 3的距离之比是2 ∶5 ?若能,求点P 的坐标;若不能,说明理由.第44讲 圆的方程A 应知应会一、 选择题1. (2019·太原模拟)若两条直线y =x +2a ,y =2x +a 的交点P 在圆(x -1)2+(y -1)2=4的内部,则实数a 的取值范围是( )A. ⎝⎛⎭⎫-15,1B. ⎝⎛⎭⎫-∞,-15 ∪(1,+∞) C. ⎣⎡⎭⎫-15,1 D. ⎝⎛⎦⎤-∞,-15 ∪[1,+∞) 2. (2019·长沙模拟)已知三点A (1,0),B (0,3 ),C (2,3 ),则△ABC 外接圆的圆心到原点的距离为( )A. 53B. 213C. 253D. 433. 方程|x |-1=1-(y -1)2 所表示的曲线是( )A. 一个圆B. 两个圆C. 半个圆D. 两个半圆4. (2019·邯郸一模)若x ,y 满足约束条件(x -1)2+(y -1)2≤1,则x 2+y 2的最小值为( )A. 2 -1B. 3-22C. 2 +1D. 3+225. (2019·黄冈调研)若长度为定值4的线段AB 的两端点分别在x 轴正半轴和y 轴正半轴上移动,P (x ,y )为△OAB 的外心轨迹上一点,则x +y 的最大值为( )A. 1B. 4C. 2D. 22二、 解答题6. 已知以点P 为圆心的圆经过点A (-1,0)和B (3,4),线段AB 的垂直平分线交圆P 于点C 和D ,且CD =410 .(1) 求直线CD 的方程;(2) 求圆P 的方程.7. 已知圆经过点A (2,-3)和B (-2,-5).(1) 若圆的面积最小,求圆的方程;(2) 若圆心在直线x -2y -3=0上,求圆的方程.B巩固提升一、填空题1. 若直线3x+y+a=0过圆x2+y2+2x-4y=0的圆心,则a=________.2. 已知圆C的圆心在x轴上,并且经过点A(-1,1),B(1,3),若M(m,6)在圆C内,则m的取值范围为________.3. (2019·南师附中)经过三点A(-1,0),B(3,0),C(1,2)的圆的面积S=________.4. 已知点A(-2,0),B(0,2).若点M是圆x2+y2-2x+2y=0上的动点,则△ABM面积的最小值为________.二、解答题5. 已知圆x2+y2=4上一定点A(2,0),B(1,1)为圆内一点,P,Q为圆上的动点.(1) 求线段AP中点的轨迹方程;(2) 若∠PBQ=90°,求线段PQ中点的轨迹方程.6. 如图,已知圆O的直径AB=4,定直线l到圆心的距离为4,且直线l垂直于直线AB,点P 是圆O上异于A,B的任意一点,直线P A,PB分别交l于M,N两点.(1) 若∠P AB=30°,求以MN为直径的圆的方程;(2) 当点P变化时,求证:以MN为直径的圆必过圆O内的一定点.(第6题)第45讲直线与圆、圆与圆的位置关系课时1直线与圆相关问题A应知应会一、选择题1. 以点(2,-1)为圆心且与直线3x-4y+5=0相切的圆的方程为()A. (x-2)2+(y+1)2=3B. (x+2)2+(y-1)2=3C. (x-2)2+(y+1)2=9D. (x+2)2+(y-1)2=92. (2019·湖南十四校二联)已知直线x-2y+a=0与圆O:x2+y2=2相交于A,B两点(O 为坐标原点),且△AOB为等腰直角三角形,则实数a的值为()A. 6或-6B. 5或-5C. 6D. 53. “a=3”是“直线y=x+4与圆(x-a)2+(y-3)2=8相切”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件4. 已知圆C:x2+y2=4,若点P(x0,y0)在圆C外,则直线l:x0x+y0y=4与圆C的位置关系为()A. 相离B. 相切C. 相交D. 不确定5. (多选)(2019·合肥模拟)设圆x2+y2-2x-2y-2=0的圆心为C,直线l过(0,3),且与圆C交于A,B两点,若|AB|=23,则直线l的方程为()A. 3x+4y-12=0B. 4x-3y+9=0C. x=0D. 4x+3y+9=0二、解答题6. (2019·启东模拟)已知直线l:kx-y+k-3=0与圆x2+y2=12交于A,B两点,过A,B 分别作l的垂线与x轴交于C,D两点,若|AB|=43,求|CD|.7. 已知圆C经过点A(2,-1),与直线x+y=1相切,且圆心在直线y=-2x上.(1) 求圆C的方程;(2) 已知直线l经过原点,并且被圆C截得的弦长为2,求直线l的方程.B 巩固提升一、 填空题1. (2019·衡水调研)过M (-3,1),N (0,a )两点的光线经y 轴反射后所在直线与圆x 2+y 2=1存在公共点,则实数a 的取值范围为________.2. (2019·扬州期末)已知直线l :y =-x +4与圆C :(x -2)2+(y -1)2=1相交于P ,Q 两点,则CP → ·CQ → =________.3. 已知过点P ⎝⎛⎭⎫32,32 的直线l 与圆C :(x -1)2+y 2=4交于A ,B 两点,当∠ACB 最小时,直线l 的方程为________,∠ACB =________.4. (2019·启东考前卷)如图,已知圆C 与x 轴相切于点T (1,0),与y 轴正半轴交于两点A ,B (B 在A 的上方),且|AB |=2,则圆C 在点B 处的切线在x 轴上的截距为________.(第4题)二、 解答题5. 已知圆C :x 2+y 2-4x -6y +12=0,点A (3,5).(1) 求过点A 的圆的切线方程;(2) 点O 是坐标原点,连接OA ,OC ,求△AOC 的面积S .6. 已知圆C 的方程为x 2+(y -4)2=4,点O 是坐标原点,直线l :y =kx 与圆C 交于M ,N 两点.(1) 求k 的取值范围;(2) 直线l 能否将圆C 分割成弧长的比为13的两段弧?若能,求出直线l 的方程;若不能,请说明理由.课时2圆与圆的位置关系A应知应会一、选择题1. 圆C1:x2+y2+4x+8y-5=0与圆C2:x2+y2+4x+4y-1=0的位置关系为()A. 相交B. 外切C. 内切D. 外离2. 已知圆O1的方程为x2+y2=4,圆O2的方程为(x-a)2+y2=1,如果这两个圆有且只有一个公共点,那么a的所有取值构成的集合是()A. {1,-1}B. {3,-3}C. {1,-1,3,-3}D. {5,-5,3,-3}3. 若圆(x-a)2+(y-b)2=b2+1始终平分圆(x+1)2+(y+1)2=4的周长,则a,b应满足的关系式是()A. a2-2a-2b-3=0B. a2+2a+2b+5=0C. a2+2b2+2a+2b+1=0D. 3a2+2b2+2a+2b+1=04. 两圆x2+y2=16与(x-4)2+(y+3)2=r2(r>0)在交点处的切线互相垂直,则r等于()A. 5B. 4C. 3D. 225. 已知A={(x,y)|x2+y2=1},B={(x,y)|(x-5)2+(y-5)2=4},则A∩B等于()A. ∅B. {(0,0)}C. {(5,5)}D. {(0,0),(5,5)}二、解答题6. 已知圆A:x2+y2+2x+2y-2=0,若圆B平分圆A的周长,且圆B的圆心在直线l:y =2x上,求满足上述条件的半径最小的圆B的方程.7. 圆O1的方程为x2+(y+1)2=4,圆O2的圆心坐标为(2,1).(1) 若圆O1与圆O2外切,求圆O2的方程;(2) 若圆O1与圆O2相交于A,B两点,且|AB|=22,求圆O2的方程.B 巩固提升一、 填空题1. 若圆C 1:x 2+y 2=1与圆C 2:x 2+y 2-6x -8y +m =0外切,则m =________.2. 已知线段AB 的长为2,动点C 满足CA → ·CB →=λ(λ<0),且点C 总不在以点B 为圆心,12为半径的圆内,则负数λ的最大值是________.3. (2019·江苏天一中学)若圆O :x 2+y 2=5与圆O 1:(x -m )2+y 2=20(m ∈R)相交于A ,B 两点,且两圆在点A 处的切线互相垂直,则线段AB 的长度是________.4. 如图,在平面四边形ABCD 中,AB =4,AD =2,∠DAB =60°,AC =3BC ,则边CD 长的最小值为________.(第4题)二、 解答题 5. (2019·江苏准阴中学)已知点P (2,2),圆C :x 2+y 2-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点.(1) 求M 的轨迹方程;(2) 当|OP |=|OM |时,求l 的方程及△POM 的面积.6. (2019·泰州中学)在平面直角坐标系xOy 中,过点P (0,1)且互相垂直的两条直线分別与圆O :x 2+y 2=4交于点A ,B ,与圆M :(x -2)2+(y -1)2=1交于点C ,D .(1) 若AB =327 ,求CD 的长;(2) 若CD 中点为E ,求△ABE 面积的取值范围.(第6题)第46讲 椭圆A 应知应会一、 选择题1. 过点A (3,-2)且与椭圆x 29 +y 24 =1有相同焦点的椭圆的方程为( )A. x 215 +y 210 =1B. x 225 +y 220 =1 C. x 210 +y 215 =1 D. x 220 +y 215 =12. 设F 1,F 2分别是椭圆x 225 +y 216 =1的左、右焦点,P 为椭圆上一点,M 是F 1P 的中点,|OM |=3,则P 点到椭圆左焦点的距离为( )A. 4B. 3C. 2D. 53. (多选)已知P 为椭圆x 25 +y 24 =1上一点,以点P 及焦点F 1,F 2为顶点的三角形的面积为S ,则( )A. 若S =1,则满足条件的点P 有4个B. 若S =2,则满足条件的点P 有2个C. 若S =5 ,则满足条件的点P 有2个D. 若S =12 ,则满足条件的点P 有4个4. 若中心为(0,0),一个焦点为F (0,52 )的椭圆,截直线y =3x -2所得弦中点的横坐标为12,则该椭圆的方程是( ) A. 2x 275 +2y 225 =1 B. x 275 +y 225 =1C. x 225 +y 275 =1D. 2x 225 +2y 275 =15. 已知椭圆x 2a 2 +y 2b 2 =1(a >b >0)的右顶点和上顶点分别为A ,B ,左焦点为F .以原点O 为圆心的圆与直线BF 相切,且该圆与y 轴的正半轴交于点C ,过点C 的直线交椭圆于M ,N 两点.若四边形F AMN 是平行四边形,则该椭圆的离心率为( )A. 35B. 12C. 23D. 34二、 解答题6 . 分别求出满足下列条件的椭圆的标准方程.(1) 与椭圆x 24 +y 23=1有相同的离心率且经过点(2,-3 );(2) 已知点P 在以坐标轴为对称轴的椭圆上,且P 到两焦点的距离分别为5,3.7. (2019·厦门期中)如图,已知椭圆C :x 2a 2 +y 2b 2 =1(a >b >0)的左、右顶点分别为A ,B ,右焦点为F ,一条准线方程是x =-4,短轴一端点与两焦点构成等边三角形,点P ,Q 为椭圆C上异于A ,B 的两点,点R 为PQ 的中点.(1) 求椭圆C 的标准方程;(2) 直线PB 交直线x =-2于点M ,记直线P A 的斜率为k P A ,直线FM 的斜率为k FM ,求证:k FM ·k P A 为定值.(第7题)B 巩固提升一、 填空题1. 已知椭圆G 的中心在坐标原点,长轴在x 轴上,离心率为32,且G 上一点到G 的两个焦点的距离之和为12,则椭圆G 的方程为________.2. 已知F 1,F 2分别为椭圆C :x 2a 2 +y 2=1(a >1)的左、右焦点,点F 2关于直线y =x 的对称点Q 在椭圆上,则长轴长为________;若P 是椭圆上的一点,且PF 1·PF 2=43 ,则S △F 1PF 2=________.3. (2019·江苏海门中学)设F 1,F 2分别为椭圆x 24 +y 2=1的左、右焦点,点P 在椭圆上,且|PF 1+PF 2|=23 ,则∠F 1PF 2=________.4. (2019·淮北一模)在平面直角坐标系xOy 中,点P 是椭圆C :x 2a 2 +y 24 =1(a >0)上一点,F为椭圆C 的右焦点,直线FP 与圆O :x 2+y 2=1相切于点Q ,若Q 恰为线段FP 的中点,则a =________.二、 解答题5. (2019·南昌一模)已知椭圆C :x 2a 2 +y 2b 2 =1(a >b >0)经过点M (0,-1),长轴长是短轴长的2倍.(1) 求椭圆C 的方程;(2) 设直线l 经过点N (2,1)且与椭圆C 相交于A ,B 两点(异于点M ),记直线MA 的斜率为k 1,直线MB 的斜率为k 2,求证:k 1+k 2为定值.6. (2019·揭阳二模)已知椭圆C :x 2a 2 +y 2=1(a >1)的上顶点为A ,右焦点为F ,直线AF 与圆M :(x -3)2+(y -1)2=3相切.(1) 求椭圆C 的方程;(2) 若不过点A 的动直线l 与椭圆C 交于P ,Q 两点,且AP → ·AQ →=0,试探究:直线l 是否过定点?若是,求该定点的坐标;若不是,请说明理由.第47讲 双曲线 A 应知应会一、 选择题1. (多选)下列各条件下求得的双曲线标准方程,正确的是( )A. 与x 轴交于两点A (-2,0),B (2,0),c =3,则方程为x 24 -y 25 =1B. a =25 ,过点A (2,-5),焦点在y 轴上,则方程为y 220 -x 216=1C. 与椭圆x 227 +y 236 =1有相同的焦点,它们的一个交点的纵坐标为4,则方程为y 24 -x 25=1D. 过P 1⎝⎛⎭⎫-2,352 ,P 2⎝⎛⎭⎫473,4 两点,则方程是y 29 -x 216 =12. 若双曲线E :x 29 -y 216 =1的左、右焦点分别为F 1,F 2,点P 在双曲线E 上,且|PF 1|=3,则|PF 2|等于( )A. 11B. 9C. 5D. 33. 已知双曲线x 2a 2 -y 2b 2 =1(a >0,b >0)的一个焦点为F (-2,0),且双曲线的两条渐近线的夹角为60°,则双曲线的方程为( )A. x 23 -y 2=1B. x 26 -y 22=1C. x 23 -y 2=1或x 2-y 23 =1 D. x 2-y 23 =1或x 26 -y 22=1 4. (2019·济宁期末)已知抛物线C 1:y 2=2px (p >0)的焦点为F ,准线与x 轴的交点为E ,线段EF 被双曲线C 2:x 2a 2 -y 2b 2 =1(a >0,b >0)的顶点三等分,且两曲线C 1,C 2的交点连线过曲线C 1的焦点F ,则双曲线C 2的离心率为( )A. 2B.322 C. 113 D. 2225. (2019·秦皇岛模拟)已知双曲线x 2a 2 -y 2b 2 =1(a >0,b >0)的一条渐近线平行于直线l :y=2x +10,双曲线的一个焦点在直线l 上,则双曲线的方程为( )A. x 25 -y 220 =1B. x 220 -y 25 =1C. 3x 225 -3y 2100 =1D. 3x 2100 -3y 225 =1二、 解答题6. 根据下列条件,求双曲线的标准方程. (1) 虚轴长为12,离心率为54 ;(2) 焦距为26,且经过点M (0,12);(3) 经过两点P (-3,27 )和Q (-62 ,-7).7. 根据下列条件,求双曲线的标准方程. (1) 经过点P ⎝⎛⎭⎫3,154 ,Q ⎝⎛⎭⎫-163,5 ; (2) c =6 ,经过点(-5,2),焦点在x 轴上.B 巩固提升一、 填空题1. (2019·江苏卷)在平面直角坐标系xOy 中,若双曲线x 2-y 2b2 =1(b >0)经过点(3,4),则该双曲线的渐近线方程是________.2. (2019·晋中二模)过双曲线y 2a 2 -x 2b 2 =1(a >0,b >0)的下焦点F 1作y 轴的垂线,交双曲线于A ,B 两点,若以AB 为直径的圆恰好过其上焦点F 2,则双曲线的离心率为________.3. 已知M (x 0,y 0)是双曲线C :x 22 -y 2=1上的一点,F 1,F 2是C 的两个焦点,若MF 1·MF 2<0,则y 0的取值范围是________.4. (2019·马鞍山一检)已知双曲线C :x 24 -y 25 =1的焦点为F 1,F 2,P 为双曲线C 上的一点,且△F 1PF 2的内切圆半径为1,则△F 1PF 2的面积为________.二、 解答题5. 已知双曲线过点(3,-2)且与椭圆4x 2+9y 2=36有相同的焦点. (1) 求双曲线的标准方程;(2) 若点M 在双曲线上,F 1,F 2为左、右焦点,且|MF 1|+|MF 2|=63 ,试判断△MF 1F 2的形状.6. 已知双曲线y 2a 2 -x 2b 2 =1(a >0,b >0)的两个焦点分别为F 1,F 2,一条渐近线方程为2x +y=0,且焦点到这条渐近线的距离为1.(1) 求此双曲线的方程;(2) 若点M ⎝⎛⎭⎫55,m 在双曲线上,求证:点M 在以F 1F 2为直径的圆上.第48讲 抛物线A 应知应会一、 选择题 1. (2019·南昌一模)已知抛物线方程为x 2=-2y ,则其准线方程为( ) A. y =-1 B. y =1 C. y =12 D. y =-122. 过抛物线y 2=4x 的焦点的直线l 交抛物线于P (x 1,y 1),Q (x 2,y 2)两点,如果x 1+x 2=6,则|PQ |等于( )A. 9B. 8C. 7D. 6 3. (2019·石家庄检测)已知抛物线y 2=4x 的焦点为F ,过点F 和抛物线上一点M (2,22 )的直线l 交抛物线于另一点N ,则|NF |∶|FM |等于( )A. 1∶2B. 1∶3C. 1∶2D. 1∶3 4. (2019·武汉调研)已知A ,B 为抛物线y 2=4x 上两点,O 为坐标原点,且OA ⊥OB ,则|AB |的最小值为( )A. 42B. 22C. 8D. 825. (多选)设抛物线y 2=2px (p >0)上有A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)三点,F 是它的焦点,若AF ,BF ,CF 成等差数列,则( )A. x 1,x 2,x 3成等差数列B. x 1,x 2,x 3成等比数列C. y 21 ,y 22 ,y 23 成等差数列D. y 21 ,y 22 ,y 23 成等比数列 二、 解答题6. 已知抛物线y 2=2px (p >0),过点C (-2,0)的直线l 交抛物线于A ,B 两点,坐标原点为O ,且OA → ·OB → =12.(1) 求抛物线的方程;(2) 当以AB 为直径的圆与y 轴相切时,求直线l 的方程.7. 一种高脚酒杯的轴截面近似一条抛物线如图所示,已知杯口宽4 cm,杯深8 cm.若将一些大小不等的玻璃球放入酒杯中,试问:半径为多大时,玻璃球触及酒杯底部?(第7题)B 巩固提升一、 填空题1. 若直线l 过抛物线C :y 2=2px (p >0)的焦点F (1,0),且与抛物线C 交于A ,B 两点,则p =________,1AF +1BF=________.2. (2019·河南六市二联)已知抛物线y 2=4x 的焦点为F ,其准线为直线l ,过点M (5,25 )作直线l 的垂线,垂足为H ,则∠FMH 的平分线所在直线的斜率是________.3. (2019·福州一模)已知直线l 经过抛物线y 2=4x 的焦点F ,且与抛物线交于A ,B 两点,若AF → =5FB →,则直线l 的斜率为________.4. (2019·深圳二调)已知抛物线C :y 2=2px (p >0)上一点P 到焦点F 和到点(2,0)的距离之和的最小值为3,过点F 作斜率为3 的直线l 与抛物线C 及其准线从上到下依次交于点A ,B ,M ,则|AF ||BF | +|AF ||MF |=________.二、 解答题 5. (2019·唐山摸底)斜率为k (k ≠0)的直线l 与抛物线y =x 2交于A (x 1,y 1),B (x 2,y 2)两点,O 为坐标原点.(1) 当x 1+x 2=2时,求k ;(2) 若OB ⊥l ,且|AB |=3|OB |,求|AB |.6. (2019·合肥二模)已知抛物线C :x 2=2py (p >0)上一点M (m ,9)到其焦点F 的距离为10.(1) 求抛物线C 的方程;(2) 设过焦点F 的直线l 与抛物线C 交于A ,B 两点,且抛物线在A ,B 两点处的切线分别交x 轴于P ,Q 两点,求|AP |·|BQ |的取值范围.第49讲 解析几何的综合问题课时1 解析几何中的最值、范围问题A 应知应会一、 选择题1. 设A ,B 为椭圆C :x 23 +y 2m=1长轴的两个端点,若C 上存在点M 满足∠AMB =120°,则m 的取值范围是( )A. (0,1]∪[9,+∞)B. (0,3 ]∪[9,+∞)C. (0,1]∪[4,+∞)D. (0,3 ]∪[4,+∞)2. (2019·襄阳调研)已知F 1,F 2是双曲线x 2a 2 -y 2b 2 =1(a >0,b >0)的左、右焦点,若在右支上存在点A 使得点F 2到直线AF 1的距离为2a ,则离心率e 的取值范围是( ) A. [2 ,+∞) B. (2 ,+∞) C. (1,2 ) D. (1,2 ]3. (多选)已知O 是坐标原点,A ,B 是抛物线y =x 2上不同于O 的两点,OA ⊥OB ,则下列结论中正确的是( )A. OA ·OB ≥2B. OA +OB ≥22C. 直线AB 过抛物线y =x 2的焦点D. O 到直线AB 的距离小于等于1二、 解答题4. (2019·安庆二模)已知椭圆x 2a 2 +y 2b 2 =1(a >b >0)的离心率为22,且过点(2,2 ). (1) 求椭圆C 的标准方程;(2) 设A ,B 为椭圆C 的左、右顶点,过C 的右焦点F 作直线l 交椭圆于M ,N 两点,分别记△ABM ,△ABN 的面积为S 1,S 2,求|S 1-S 2|的最大值.5. (2019·荆州二模)已知椭圆C :x 2a 2 +y 2b2 =1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为13,点P 在椭圆C 上,且△PF 1F 2的面积的最大值为22 . (1) 求椭圆C 的方程;(2) 已知直线l :y =kx +2(k ≠0)与椭圆C 交于不同的两点M ,N ,若在x 轴上存在点G ,使得|GM |=|GN |,求点G 的横坐标的取值范围.B 巩固提升一、 填空题1. (2017·全国卷Ⅱ)若a >1,则双曲线x 2a 2 -y 2=1的离心率的取值范围是________. 2. 已知线段|AB |=4,|P A |+|PB |=6,M 是AB 的中点,当P 点在同一平面内运动时,PM 的长度的最小值为________.3. 已知F 1,F 2是双曲线x 2a 2 -y 2b 2 =1(a >0,b >0)的左、右焦点,若双曲线上存在点P 满足PF 1·PF 2=-a 2,则双曲线离心率的取值范围为________.二、 解答题4. (2019·新乡三模)已知抛物线E :y 2=2px (p >0)的准线与x 轴交于点K ,过点K 作圆C :(x -5)2+y 2=9的两条切线,切点为M ,N ,|MN |=33 .(1) 求抛物线E 的方程;(2) 若直线AB 是过定点Q (2,0)的一条直线,且与抛物线E 交于A ,B 两点,过定点Q 作AB 的垂线与抛物线交于G ,D 两点,求四边形AGBD 面积的最小值.5. (2019·江西质检)已知椭圆C :x 2a 2 +y 2b 2 =1(a >b >0)的离心率e =22,过点A (-m ,0),B (m ,0)(m >0)分别作两平行直线l 1,l 2,l 1与椭圆C 相交于M ,N 两点,l 2与椭圆C 相交于P ,Q两点,且当直线l 2过右焦点和上顶点时,四边形MNQP 的面积为163. (1) 求椭圆C 的标准方程;(2) 若四边形MNQP 是菱形,求正数m 的取值范围.课时2 解析几何中的定点、定值问题A 应知应会一、 选择题1. (2019·武汉模拟)曲线x 225 +y 29 =1与曲线x 225-k +y 29-k=1(k <9)的( )A. 长轴长相等B. 短轴长相等C. 离心率相等D. 焦距相等2. 已知直线l 与抛物线C :y 2=2x 交于A ,B 两点,O 为坐标原点,若直线OA ,OB 的斜率k 1,k 2满足k 1k 2=23,则l 一定过点( ) A. (-3,0) B. (3,0) C. (-1,3) D. (-2,0)3. (2019·德阳模拟)设P 为椭圆C :x 249 +y 224=1上一点,F 1,F 2分别是椭圆C 的左、右焦点,且△PF 1F 2的重心为点G ,若|PF 1|∶|PF 2|=3∶4,那么△GPF 1的面积为( )A. 24B. 12C. 8D. 6二、 解答题4. (2015·全国卷Ⅰ)在直角坐标系xOy 中,曲线C :y =x 24与直线l :y =kx +a (a >0)交于M ,N 两点.(1) 当k =0时,分别求C 在点M 和N 处的切线方程;(2) y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由.5. 已知椭圆C :x 23+y 2=1,圆O :x 2+y 2=4上一点A (0,2). (1) 过点A 作两条直线l 1,l 2都与椭圆C 相切,求直线l 1,l 2的方程并判断其位置关系;(2) 同学甲:过圆O 上任意一点P 作椭圆C 的两条切线l 1,l 2,则直线l 1,l 2始终相互垂直; 同学乙:过圆O 上任意一点P 作椭圆C 的两条切线l 1,l 2,则直线l 1,l 2始终不垂直. 请判定两个同学观点是否正确,并证明.B 巩固提升一、 填空题1. 过抛物线y 2=8x 上的任意一点为圆心作与直线x +2=0相切的圆,这些圆必过一定点,则定点的坐标是________.2. 设A (x 1,y 1),B ⎝⎛⎭⎫4,95 ,C (x 2,y 2)是右焦点为F 的椭圆x 225 +y 29 =1上三个不同的点,若AF ,BF ,CF 成等差数列,则x 1+x 2=________.二、 解答题3. (2019·烟台一模)已知F 为抛物线C :y 2=2px (p >0)的焦点,过F 的动直线交抛物线C 于A ,B 两点.当直线与x 轴垂直时,|AB |=4.(1) 求抛物线C 的方程;(2) 若直线AB 与抛物线的准线l 相交于点M ,在抛物线C 上是否存在点P ,使得直线P A ,PM ,PB 的斜率成等差数列?若存在,求出点P 的坐标;若不存在,说明理由.4. (2019·池州期末)已知定点A (-3,0),B (3,0),直线AM ,BM 相交于点M ,且它们的斜率之积为-19,记动点M 的轨迹为曲线C . (1) 求曲线C 的方程;(2) 过点T (1,0)的直线l 与曲线C 交于P ,Q 两点,是否存在定点S (s ,0),使得直线SP 与SQ 斜率之积为定值?若存在,求出S 的坐标;若不存在,请说明理由.微难点10 解析几何运算中的常用技巧一、 选择题1. 已知双曲线x 2a 2 -y 2b 2 =1(a >0,b >0)的一条渐近线方程是y =3 x ,它的一个焦点在抛物线y 2=24x 的准线上,则双曲线的方程为( )A. x 236 -y 2108 =1B. x 29 -y 227=1 C. x 2108 -y 236 =1 D. x 227 -y 29=12. 已知椭圆E :x 2a 2 +y 2b 2 =1(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的标准方程为( )A. x 245 +y 236 =1B. x 236 +y 227=1 C. x 227 +y 218 =1 D. x 218 +y 29=13. 已知双曲线x 2a 2 -y 2b 2 =1(a >0,b >0)的左、右焦点分别为F 1(-c ,0),F 2(c ,0),P 为双曲线上任一点,且PF 1·PF 2最小值的取值范围是⎣⎡⎦⎤-34c 2,-12c 2 ,则该双曲线的离心率的取值范围为( ) A. (1,2 ] B. [2 ,2] C. (0,2 ] D. [2,+∞)二、 填空题4. (2019·清江中学)已知F (2,0)为椭圆x 2a 2 +y 2b 2 =1(a >b >0)的右焦点,过F 且垂直于x 轴的弦长为6,若A (-2,2 ),点M 为椭圆上任一点,则|MF |+|MA |的最大值为________.5. 如图,已知椭圆C 的中心为原点O ,F (-25 ,0)为C 的左焦点,P 为C 上一点,满足OP =OF ,且PF =4,则椭圆C 的方程为________.(第5题)三、 解答题6. 已知椭圆C :x 2a 2 +y 2b 2 =1(a >b >0)上的点到两个焦点的距离之和为23 ,短轴长为12,直线l 与椭圆C 交于M ,N 两点.(1) 求椭圆C 的方程;(2) 若直线l 与圆O :x 2+y 2=125相切,求证:OM → ·ON → 为定值.7. 已知椭圆C 的中心在坐标原点,焦点在x 轴上,离心率e =12,且椭圆C 经过点P (2,3),过椭圆C 的左焦点F 1且不与坐标轴垂直的直线交椭圆C 于A ,B 两点.(1) 求椭圆C 的方程;(2) 设线段AB 的垂直平分线与x 轴交于点G ,求△PF 1G 的面积S 的取值范围.8. 如图,O 为坐标原点,点F 为抛物线C 1:x 2=2py (p >0)的焦点,且抛物线C 1上点P 处的切线与圆C 2:x 2+y 2=1相切于点Q .(1) 当直线PQ 的方程为x -y -2 =0时,求抛物线C 1的方程;(2) 当正数p 变化时,记S 1 ,S 2分别为△FPQ ,△FOQ 的面积,求S 1S 2的最小值.(第8题)。
高三数学南方凤凰台高2021届高2018级高三一轮数学提高版完整版学案第二章
第二章 基本初等函数第6讲 函数的概念及其表示方法A 组 应知应会一、 选择题1. (2019·北京一模)已知函数f (x )=x 3-2x ,则f (3)等于( )A. 1B. 19C. 21D. 352. (2019·石家庄二模)设集合M ={x |0≤x ≤2},N ={y |0≤y ≤2},给出如下四个图形,其中能表示从集合M 到集合N 的函数关系的是( )A BCD3. (2019·厦门质检)已知函数f (x )=⎩⎪⎨⎪⎧3x ,x ≤0,-⎝⎛⎭⎫12x ,x >0, 则f (f (log 23))等于( ) A. -9 B. -1C. -13D. -1274. (2019·河南名校段测)设函数f (x )=⎩⎪⎨⎪⎧log 3x ,0<x ≤9,f (x -4),x >9,则f (13)+2f ⎝⎛⎭⎫13 的值为( ) A. 1 B. 0 C. -2 D. 25. (2019·河北衡水)若函数y =x 2-3x -4的定义域为[0,m ],值域为⎣⎡⎦⎤-254,-4 ,则实数m的取值范围是( )A. (0,4]B. ⎣⎡⎦⎤32,4C. ⎝⎛⎭⎫32,+∞D. ⎣⎡⎦⎤32,3二、 解答题6. (1) 已知f (x )是二次函数且f (0)=2,f (x +1)-f (x )=x -1,求f (x )的解析式.(2) 已知函数f (x )的定义域为(0,+∞),且f (x )=2f ⎝⎛⎭⎫1x ·x -1,求f (x )的解析式.7. 已知f (x )=x 2-1,g (x )=⎩⎪⎨⎪⎧x -1,x >0,2-x ,x <0.(1) 求f (g (2))和g (f (2))的值;(2) 求f (g (x ))和g (f (x ))的表达式.B 组 能力提升一、 填空题1. 已知函数f (x )=-x 2+3x +4 ,则函数y =f (x )的定义域为________,函数y =f (2x +1)的定义域为________.2. (2019·南京三模)若函数f (x )=⎩⎪⎨⎪⎧2x ,x ≤0,f (x -2),x >0, 则f (log 23)=________. 3. (2018·南阳一模)已知函数y =f (x )满足f (x )=2f ⎝⎛⎭⎫1x +3x ,则f (x )的解析式为________.4. (2018·郴州质量监测)已知f (x )=⎩⎪⎨⎪⎧12x +1,x ≤0,-(x -1)2,x >0,则使f (a )=-1成立的a 值是________.二、 解答题5. (1) 已知一次函数f (x )满足f (f (x ))=4x -1,求f (x ).(2) 已知定义在(-1,1)内的函数f (x )满足2f (x )-f (-x )=lg (x +1),求f (x ).6. 对于每个实数x ,设f (x )取y =4x +1,y =x +2,y =-2x +4三个函数中的最小值,用分段函数写出f (x )的解析式,并求f (x )的最大值.第7讲 函数的单调性与最值A 组 应知应会一、 选择题1. (多选)已知f (x )是定义在[0,+∞)上的函数,根据下列条件可以断定f (x )为增函数的是( )A. 对任意x ≥0,都有f (x +1)>f (x )B. 对任意x 1,x 2∈[0,+∞),且x 1≥x 2,都有f (x 1)≥f (x 2)C. 对任意x 1,x 2∈[0,+∞),且x 1-x 2<0,都有f (x 1)-f (x 2)<0D. 对任意x 1,x 2∈[0,+∞),且x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0 2. 下列函数中,在区间(-1,1)上为减函数的是( )A. y =11-xB. y =cos xC. y =ln (x +1)D. y =2-x 3. 若函数y =2-x x +1,x ∈(m ,n ]的最小值为0,则m 的取值范围是( ) A. (1,2) B. (-1,2) C. [1,2) D. [-1,2)4. (2019·郑州调研)若函数f (x )=x -1x 2 在x ∈[1,4]上的最大值为M ,最小值为m ,则M -m 的值是( )A. 3116B. 2C. 94D. 1145. (2019·武汉质检)若函数y =log 12(x 2-ax +3a )在区间(2,+∞)上是减函数,则a 的取值范围为( )A. (-∞,-4)∪[2,+∞)B. (-4,4]C. [-4,4)D. [-4,4]二、 解答题6. 已知f (x )=x x 2+1,判断并证明函数f (x )在区间[-1,0]上的单调性.7. 求下列函数的值域.(1) f (x )=⎩⎪⎨⎪⎧x 2-x +1,x <1,1x,x >1; (2) y =x -x .B 巩固提升一、填空题1. 函数f (x )=1-2x +1的单调增区间是________. 2. (2019·太原期末)已知函数f (x )=x +1x -1,x ∈[2,5],则f (x )的最大值是________. 3. (2018·全国卷Ⅰ)设函数f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x,x ≤0,1,x >0,则满足f (x +1)<f (2x )的x 的取值范围是________.4. 已知f (x )=⎩⎪⎨⎪⎧(2-a )x +1,x <1,a x ,x ≥1 满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2 >0成立,那么实数a 的取值范围是________.二、 解答题5. 已知函数f (x )=1a -1x(a >0,x >0). (1) 求证:f (x )在(0,+∞)上是增函数;(2) 若f (x )在⎣⎡⎦⎤12,2 上的值域是⎣⎡⎦⎤12,2 ,求a 的值.6. 已知函数f (x )的定义域D ={x |x ≠0},且满足对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2).(1) 求f (1)的值;(2) 判断f (x )的奇偶性并证明;(3) 如果f (4)=1,f (3x +1)+f (2x -6)≤3,且f (x )在(0,+∞)上是增函数,求x 的取值范围.第8讲 函数的奇偶性与周期性课时1 函数奇偶性判定与周期性A 组 应知应会一、 选择题1. 下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的函数是( )A. y =x 3B. y =ln 1|x |C. y =2|x |D. y =cos x 2. (2019·济宁二模)已知f (x )是定义在R 上的周期为4的奇函数,当x ∈(0,2)时,f (x )=x 2+ln x ,则f (2 019)等于( )A. -1B. 0C. 1D. 23. (2019·烟台一模)若函数f (x )是定义在R 上的奇函数,f ⎝⎛⎭⎫14 =1,当x <0时,f (x )=log 2(-x )+m ,则实数m 等于( )A. -1B. 0C. 1D. 24. 已知f (x )在R 上是奇函数,且满足f (x +4)=f (x ),当x ∈(-2,0)时,f (x )=2x 2,则f (2 019)等于( )A. -2B. 2C. -98D. 985. (多选)设函数f (x )的定义域为R,且f ⎝⎛⎭⎫π2 =0,f (0)≠0,若对于任意实数x ,y ,恒有f (x )+f (y )=2f ⎝⎛⎭⎫x +y 2 ·f ⎝⎛⎭⎫x -y 2 ,则下列说法正确的是( )A. f (0)=1B. f (x )=f (-x )C. f (x +2π)=f (x )D. f (2x )=2f (x )-1二、 解答题6. 已知f (x )是定义在R 上的奇函数,且当x ∈(-∞,0)时,f (x )=-x lg (2-x ),求函数f (x )的解析式.7. 已知f (x )是定义在[-1,1]上的奇函数,且f (1)=1,若a ,b ∈[-1,1],且a +b ≠0时,有f (a )+f (b )a +b>0恒成立. (1) 用定义证明函数f (x )在[-1,1]上是增函数;(2) 解不等式:f ⎝⎛⎭⎫x +12 <f (1-x ).B 组 能力提升一、 填空题1. (2019·日照一模)若函数f (x )=x 2+(3-a )x +1为偶函数,则a =________.2. 设f (x )是定义在R 上以2为周期的偶函数,当x ∈[0,1]时,f (x )=log 2(x +1),则当x ∈[1,2]时,f (x )=________.3. (2019·苏州期初调查)已知函数f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≥0,-x 2+ax ,x <0 为奇函数,则实数a 的值为________.4. (2019·南通、泰州、扬州一调)已知函数f (x )是定义在R 上的奇函数,且f (x +2)=f (x ).当0<x ≤1时,f (x )=x 3-ax +1,则实数a 的值为________.二、 解答题5. 设f (x )是(-∞,+∞)上的奇函数,f (x +2)=-f (x ),当0≤x ≤1时,f (x )=x .(1) 求f (π)的值;(2) 当-4≤x ≤4时,求f (x )的图象与x 轴所围成图形的面积.6. 设f (x )是定义在R 上的奇函数,且对任意实数x 恒有f (x +2)=-f (x ),当x ∈[0,2]时,f (x )=2x -x 2.(1) 求证:f (x )是周期函数;(2) 当x ∈[2,4]时,求f (x )的解析式;(3) 计算f (0)+f (1)+…+f (2 020)的值.课时2 函数性质的应用A 组 应知应会一、 选择题1. (2019·山西考前训练)下列函数中,既是奇函数,又在区间(0,1)内是增函数的是( )A. y =x ln xB. y =x 2+xC. y =sin 2xD. y =e x -e -x2. (2018·全国卷Ⅱ)已知f (x )是定义域为(-∞,+∞)的奇函数,满足f (1-x )=f (1+x ).若f (1)=2,则f (1)+f (2)+f (3)+…+f (50)等于 ( )A. -50B. 0C. 2D. 503. (2019·九江二模)已知函数f (x )满足:①对任意x ∈R,f (x )+f (-x )=0,f (x +4)+f (-x )=0成立;②当x ∈(0,2]时,f (x )=x (x -2),则f (2 019)等于( )A. 1B. 0C. 2D. -14. (多选)已知定义在R 上的奇函数y =f (x )和偶函数y =g (x )满足f (x )+g (x )=4x ,下列结论正确的有( )A. f (x )=4x -4-x 2,且0<f (1)<f (2) B. ∀x ∈R,总有[g (x )]2-[f (x )]2=1C. ∀x ∈R,总有f (-x )g (-x )+f (x )g (x )=0D. ∃x 0∈R,使得f (2x 0)>2f (x 0)g (x 0)5. (2019·临沂一模)已知函数g (x )=f (x )+x 2是奇函数,当x >0时,函数f (x )的图象与函数y =log 2x 的图象关于y =x 对称,则g (-1)+g (-2)等于( )A. -7B. -9C. -11D. -13二、 解答题6. 若f (x )是定义在(-1,1)上的奇函数,且x ∈[0,1)时f (x )为增函数,求不等式f (x )+f ⎝⎛⎭⎫x -12 <0的解集.7. 已知函数f (x )是(-∞,+∞)上的偶函数,若对于x ≥0,都有f (x +2)=-f (x ),且当x ∈[0,2)时,f (x )=log 2(x +1).(1) 求f (0)与f (2)的值;(2) 求f (3)的值;(3) 求f (2 021)+f (-2 022)的值.B 组 能力提升一、 填空题1. 已知函数f (x )同时满足条件:①偶函数;②值域为[0,+∞);③周期为2 020,请写出f (x )的一个解析式:______________.2. 已知奇函数f (x )在R 上是增函数,g (x )=xf (x ).若a =g (-log 25.1),b =g (20.8),c =g (3),则a ,b ,c 的大小关系是________.3. 设函数f (x )=ln (1+|x |)-11+x 2,则使得f (x )>f (2x -1)成立的x 的取值范围是________. 4. 函数f (x )=x 3-3x 2的对称中心是________.二、 解答题5. 若f (x )和g (x )都是奇函数,且F (x )=af (x )+bg (x )+2在(0,+∞)上有最大值8,求F (x )在(-∞,0)上的最小值.6. 设函数f (x )是定义在R 上的奇函数,对任意实数x 都有f ⎝⎛⎭⎫32+x =-f ⎝⎛⎭⎫32-x 成立. (1) 证明:y =f (x )是周期函数,并指出其周期;(2) 若f (1)=2,求f (2)+f (3)的值;(3) 若g (x )=x 2+ax +3,且y =|f (x )|·g (x )是偶函数,求实数a 的值.第9讲二次函数与幂函数A组应知应会一、选择题1. 若a=3221⎪⎭⎫⎝⎛,b=3251⎪⎭⎫⎝⎛,c=3121⎪⎭⎫⎝⎛,则a,b,c的大小关系是()A. a<b<cB. c<a<bC. b<c<aD. b<a<c2. 若幂函数y=f(x)的图象过点(4,2),则幂函数y=f(x)的大致图象是()A BC D3. (2019·安阳模拟)已知函数f(x)=-x2+4x+a,x∈[0,1],若f(x)有最小值-2,则f(x)的最大值为()A. 1B. 0C. -1D. 24. 将进价为40元的商品按50元一件销售,一个月恰好卖500件,而价格每提高1元,就会少卖10个,商店为使该商品利润最大,应将每件商品定价为()A. 50元B. 60元C. 70元D. 100元5. (多选)已知函数f(x)=|x2-2ax+b|(x∈R),给出下列命题,其中是真命题的是()A. 若a2-b≤0,则f(x)在区间[a,+∞)上是增函数B. 存在a∈R,使得f(x)为偶函数C. 若f(0)=f(2),则f(x)的图象关于x=1对称D. 若a2-b-2>0,则函数h(x)=f(x)-2有2个零点二、解答题6. 已知二次函数f(x)同时满足条件:①对称轴方程是x=1;②f(x)的最大值为15;③f(x)=0的两根立方和等于17.求f(x)的解析式.7. 已知函数f(x)=x2-2tx+1在(-∞,1]上单调递减,且对任意的x1,x2∈[0,t+1],总有|f(x1)-f(x2)|≤2,求实数t的取值范围.B 组 能力提升一、 填空题1. 已知函数f (x )=ax 2-2x -3在区间为(-∞,4)上单调递减,则a 的取值范围是________.2. 若二次函数f (x )=-x 2+2ax +4a +1有一个零点小于-1,一个零点大于3,则实数a 的取值范围是________.3. 函数f (x )=⎩⎪⎨⎪⎧x 2+2x -3,-2≤x <0,x 2-2x -3,0≤x ≤3 的值域是________. 4. 已知二次函数f (x )=ax 2-4x +c +1(a ≠0)的值域为(-∞,1],则1a +4c的最大值是________.二、 解答题5. (1) 已知函数f (x )=4x 2-kx -8在[5,20]上具有单调性,求实数k 的取值范围.(2) 已知关于x 的方程mx 2+2(m +3)x +2m +14=0有两个不同的实根,且一个大于4,另一个小于4,求m 的取值范围.6. 已知函数f (x )=x 2-kx +3.(1) 若f (x )在[-2,2]上存在单调减区间,求k 的取值范围;(2) 从下面三个函数中:①g (x )=mx +5-m ;②h (x )=2x -m ;③r (x )=log 2(3-x )-m ,任选一个函数补充在下列问题中,若m 存在,求m 的取值范围;若不存在,请说明理由.问题:当k =0时,若对任意的x 1∈[1,2],总存在x 2∈[-1,2],使得f (2x 1)=k (x 2)成立.(其中k (x )是你选择的函数)第10讲 指数式与指数函数A 组 应知应会一、 选择题1. (多选)下列结论中不正确的是( )A. 函数f (x )=x x -⎪⎭⎫⎝⎛221的单调增区间为⎝⎛⎭⎫-∞,12 B. 函数f (x )=2x -12x +1为奇函数 C. 函数y =1x +1的单调减区间是(-∞,1)和(1,+∞) D. 1x>1是x <1的必要不充分条件 2. 已知a =243 ,b =425 ,c =2513,则( )A. b <a <cB. a <b <cC. b <c <aD. c <a <b3. 若3x =a ,5x =b ,则45x 等于( )A. a 2bB. ab 2C. a 2+bD. a 2+b 24. (2019·东北三校联考)已知函数f (x )=a x -1(a >0,a ≠1)的图象恒过点A ,下列函数中图象不经过点A 的是( )A. y =1-xB. y =|x -2|C. y =2x -1D. y =log 2(2x )5. (多选)已知函数f (x )=e x -e -x 2 ,g (x )=e x +e -x 2,则f (x ),g (x )满足( ) A. f (-x )=-f (x ),g (-x )=g (x )B. f (-2)<f (3)C. f (2x )=2f (x )g (x )D. [f (x )]2-[g (x )]2=1二、 解答题6. 已知函数f (x )=⎝⎛⎭⎫12 ax ,a 为常数,且函数的图象过点(-1,2).(1) 求a 的值;(2) 若g (x )=4-x -2,且g (x )=f (x ),求满足条件的x 的值.7. 已知函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=2x -1.(1) 求f (3)+f (-1);(2) 求f (x )在R 上的解析式;(3) 求不等式-7≤f (x )≤3的解集.B 组 能力提升一、 填空题1. (2019·菏泽九校联考)已知函数f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a 满足f (32a -1)≥f (-3 ),则a 的最大值是________.2. (2019·石家庄二模)若函数f (x ),g (x )分别是定义在R 上的偶函数、奇函数,且满足f (x )+2g (x )=e x ,则g (-1),f (-2),f (-3)从大到小的顺序是________.3. (2018·苏锡常镇调研)已知函数f (x )=⎩⎪⎨⎪⎧a -e x ,x <1,x +4x,x ≥1 (e 是自然对数的底).若函数y =f (x )的最小值是4,则实数a 的取值范围为________.4. (2019·聊城一模)设函数f (x )=1e x -1+a ,若f (x )为奇函数,则不等式f (x )>1的解集为________.二、解答题5. 已知函数f (x )=b ·a x (a >0,且a ≠1,b ∈R)的图象经过点A (1,6),B (3,24).(1) 设g (x )=1f (x )+3 -16,确定函数g (x )的奇偶性; (2) 若对任意x ∈(-∞,1],不等式⎝⎛⎭⎫a b x≥2m +1恒成立,求实数m 的取值范围.6. 设f (x )=a x +a -x 2 ,g (x )=a x -a -x 2,其中a 为常数,且a >0,a ≠1. (1) 求证:g (5)=g (2)f (3)+f (2)g (3);(2) 试写出一个f (x )和g (x )的函数值满足的等式,使得第(1)问的结论是这个等式的一个特例,并证明它在f (x )和g (x )的公共定义域R 上恒成立;(3) 试再写出一个f (x )和g (x )的函数值满足的等式.第11讲 对数与对数函数A 组 应知应会一、 选择题1. (2019·全国卷Ⅰ) 已知a =log 20.2,b =20.2,c =0.20.3,则( )A. a <b <cB. a <c <bC. c <a <bD. b <c <a2. (多选)已知函数f (x )=ax 3-1x+b (a >0,b ∈Z),选取a ,b 的一组值计算f (lg a )和f ⎝⎛⎭⎫lg 1a 所得出的结果可以是( )A. 3和4B. -2和5C. 6和2D. -2和23. (2019·枣庄一模)已知2x =5y =t ,1x +1y=2,则t 等于( ) A. 110 B. 1100C. 10D. 100 4. (2019·汕头一模)已知当0<x ≤12时,不等式log a x <-2恒成立,则实数a 的取值范围是( ) A. (2 ,2) B. (1,2 )C. ⎝⎛⎭⎫22,1 D. (0,2 ) 5. (2019·肇庆二模)已知f (x )=lg (10+x )+lg (10-x ),则( )A. f (x )是奇函数,且在(0,10)上是增函数B. f (x )是偶函数,且在(0,10)上是增函数C. f (x )是奇函数,且在(0,10)上是减函数D. f (x )是偶函数,且在(0,10)上是减函数二、 解答题6. 已知函数f (x )=log 4(ax 2+2x +3).(1) 若f (1)=1,求f (x )的单调区间;(2) 若f (x )的最小值为0,求a 的值.7. 已知函数f (x )是定义在R 上的偶函数,且f (0)=0,当x >0时,f (x )=log 12x . (1) 求函数f (x )的解析式;(2) 解不等式f (x 2-1)>-2.B 组 能力提升一、 填空题1. (2019·南京、盐城一模)已知y =f (x )为定义在R 上的奇函数,且当x >0时,f (x )=e x +1,则f (-ln 2)的值为________.2. (2019·孝义二模)若函数y =log 2(x 2-ax +3a )在[2,+∞)上是增函数,则a 的取值范围是________.3. 若函数f (x )=log a ⎝⎛⎭⎫x 2+32x (a >0,a ≠1)在区间⎝⎛⎭⎫12,+∞ 内恒有f (x )>0,则f (x )的单调增区间为________.4. 设函数f (x )=⎩⎪⎨⎪⎧e x ,x ≤0,ln x ,x >0, 则f ⎝⎛⎭⎫f ⎝⎛⎭⎫12 =________, 方程f (f (x ))=1的解集是________. 二、 解答题5. 已知函数f (x )=log a (x +1)(a >0,a ≠1)在区间[1,7]上的最大值比最小值大12,求a 的值.6. 已知函数f (x )=ln (1+x )+ln (a -x )为偶函数,a ∈R .(1) 求a 的值,并讨论f (x )的单调性;(2) 若f ⎝⎛⎭⎫12 <f (lg x ),求x 的取值范围.第12讲函数的图象课时1图象变换及识别A组应知应会一、选择题1. (2019·黄山一模)已知图(1)中的图象对应的函数为y=f(x),则图(2)中的图象对应的函数为()(第1题)A. y=f(|x|)B. y=f(-|x|)C. y=|f(x)|D. y=-f(|x|)2. (2019·厦门质检)函数y=cos x+ln (|x|+1)(x∈[-2π,2π])的图象大致为()A BC D3. (2019·泉州质检)函数f(x)=e|x|2x的部分图象大致为()A BC D4. (2019·长沙月考)函数f(x)=ln (x-1)+ln (x+1)+cos x的大致图象是()A BC D5. (2019·济南一模)若函数f (x )=a x -a -x (a >0)在R 上为减函数,则函数y =log a (|x |-1)的图象可以是( )A BC D二、解答题6. 如图,定义在[-1,+∞)上的函数f (x )的图象由一条线段及抛物线的一部分组成,求f (x )的解析式.(第6题)7. 已知函数f (x )=1+|x |-x 2(-2<x ≤2). (1) 用分段函数的形式表示该函数;(2) 画出该函数的图象;(3) 写出该函数的值域.B 组 能力提升一、 填空题1. 设函数f (x )=⎩⎪⎨⎪⎧|x +1|,x <1,-x +3,x ≥1, 使得f (x )≥1的自变量x 的取值范围是________. 2. 已知函数f (x )=1x,则y =f (x -1)+1的单调减区间为________. 3. 若函数f (x )=|2x -4|-a 存在两个零点,且一个为正数,另一个为负数,则a 的取值范围为________.4. (2019·龙岩质检)已知定义在R 上的可导函数f (x ),g (x )满足f (x )+f (-x )=6x 2+3,f (1)-g (1)=3,g ′(x )=f ′(x )-6x ,如果g (x )的最大值为M ,最小值为N ,则M +N =________.二、 解答题5. 已知函数f (x )=|x |(x -a ),a >0.(1) 作出函数f (x )的图象;(2) 写出函数f (x )的单调区间;(3) 当x ∈[0,1]时,由图象写出f (x )的最小值.6. 设函数f (x )=ax +1x +b(a ,b 为常数),且方程f (x )=32 x 的两个实根分别为x 1=-1,x 2=2.(1) 求y =f (x )的解析式;(2) 证明:函数y =f (x )的图象是一个中心对称图形,并求其对称中心.课时2以函数图象为背景的问题A组应知应会一、选择题1. (2019·合肥质检)函数f(x)=x2+x sin x的图象大致为()A BC D2. (2019·芜湖期末)函数f(x)=ln |x+1|x+1的部分图象大致为()A BC D3. (2019·广州一模)如图,一高为H且装满水的鱼缸,其底部装有一排水小孔,当小孔打开时,水从孔中匀速流出,水流完所用时间为T.若鱼缸水深为h时,水流出所用时间为t,则函数h =f(t)的图象大致是()(第3题)ABCD4. (多选)函数f (x )=|x |+ax2 (其中a ∈R)的图象可能是( )ABCD二、 填空题5. 已知函数f (x )=|log 3x |,实数m ,n 满足0<m <n ,且f (m )=f (n ),若f (x )在[m 2,n ]上的最大值为2,则nm=________.6. 若函数f (x )=⎩⎪⎨⎪⎧ax +b ,x <-1,ln (x +a ),x ≥-1 的图象如图所示,则f (-3)=________.(第6题)7. 若函数f (x )=x +1x 的图象与直线y =kx +1交于不同的两点(x 1,y 1),(x 2,y 2),则y 1+y 2=________.8. (2019·长沙统测)已知f (x )=|e x -1|+1,若函数g (x )=[f (x )]2+(a -2)f (x )-2a 有三个零点,则实数a 的取值范围是________.9. 不等式3sin ⎝⎛⎭⎫π2x -log 12x <0的整数解的个数为________.B 组 能力提升一、 选择题 1. (2019·潍坊模拟)函数y =4cos x -e |x |的图象可能是( )ABCD2. (2019·河南省六市联考)设实数a ,b ,c 分别满足a =5-12 ,b ln b =1,3c 3+c =1,则a ,b ,c 的大小关系为( )A. c >b >aB. b >c >aC. b >a >cD. a >b >c3. 已知函数f (2x +1)是奇函数,则函数y =f (2x )的图象成中心对称的点为( )A. (1,0)B. (-1,0)C. ⎝⎛⎭⎫12,0D. ⎝⎛⎭⎫-12,04. 若函数f (x )=(2-m )xx 2+m的图象如图所示,则m 的取值范围为( )(第4题)A. (-∞,-1)B. (-1,2)C. (0,2)D. (1,2)二、 填空题 5. (2019·新余模拟)若函数y =f (x )的图象过点(1,1),则函数y =f (4-x )的图象一定经过点________.6. (2019·荆州三模)已知偶函数f (x )和奇函数g (x )的图象如图所示,若关于x 的方程f (g (x ))=1,g (f (x ))=2的实根个数分别为m ,n ,则m +n =________.(第6题)7. 已知函数f (x )=log a x (a >0且a ≠1)和函数g (x )=sin π2 x ,若f (x )与g (x )的图象有且只有3个交点,则a 的取值范围是________.8. 已知函数f (x )对于任意实数x ∈[a ,b ],当a ≤x 0≤b 时,记|f (x )-f (x 0)|的最大值为D [a ,b ](x 0). (1) 若f (x )=(x -1)2,则D [0,3](2)=________;(2) 若f (x )=⎩⎪⎨⎪⎧-x 2-2x ,x ≤0,2-|x -1|,x >0, 则D [a ,a +2](-1)的取值范围是________.第13讲 函数与方程A 组 应知应会一、 选择题1. 若函数f (x )=2x -2x -a 的一个零点在区间(1,2)内,则实数a 的取值范围是( )A. (1,3)B. (1,2)C. (0,3)D. (0,2)2. 已知函数f (x )=⎩⎪⎨⎪⎧2x -1,x ≤1,1+log 2x ,x >1, 则函数f (x )的零点为( )A. 12 ,0B. -2,0C. 12D. 0 3. 已知函数f (x )=2x +x +1,g (x )=log 2x +x +1,h (x )=log 2x -1的零点依次为a ,b ,c ,则( )A. a <b <cB. a <c <bC. b <c <aD. b <a <c4. 已知函数y =f (x )的周期为2,当x ∈[-1,1]时f (x )=x 2,那么函数y =f (x )的图象与函数y =|lg x |的图象的交点共有( )A. 10个B. 9个C. 8个D. 1个 5. (2019·九江模拟)已知函数f (x )=a +log 2(x 2+a )(a >0)的最小值为8,则实数a 的取值范围是( )A. (5,6)B. (7,8)C. (8,9)D. (9,10) 二、 解答题6. 若关于x 的方程3x 2-5x +a =0的一个根在(-2,0)内,另一个根在(1,3)内,求a 的取值范围.7. 已知函数f (x )=x 2+ax +2,a ∈R .(1) 若不等式f (x )≤0的解集为[1,2],求不等式f (x )≥1-x 2 的解集;(2) 若函数g (x )=f (x )+x 2+1在区间(1,2)上有两个不同的零点,求实数a 的取值范围.B 组 能力提升一、 填空题1. 方程log 2(x -1)=2-log 2(x +1)的解集为________.2. 设f (x )是定义在R 上的偶函数,满足f (x )=f (2-x ),当0≤x ≤1时,f (x )=-x 2+1,方程f (x )=⎝⎛⎭⎫12 |x |在区间[-5,5]内实根的个数为________.3. 在平面直角坐标系xOy 中,若直线y =2a 与函数y =|x -a |-1的图象只有一个交点,则a 的值为________.4. 设函数f (x )=⎩⎪⎨⎪⎧3x -a ,x <1,π(x -3a )(x -2a ),x ≥1, 若f (x )恰有2个零点,则实数a 的取值范围是________.二、 解答题5. 已知y =f (x )是定义域为R 的奇函数,当x ∈[0,+∞)时,f (x )=x 2-2x . (1) 求函数y =f (x )的解析式;(2) 若方程f (x )=a 恰有3个不同的解,求a 的取值范围.6. (2019·全国卷Ⅰ)已知函数f (x )=2sin x -x cos x -x ,f ′(x )为f (x )的导数. (1) 求证:f ′(x )在区间(0,π)上存在唯一零点; (2) 若x ∈[0,π]时,f (x )≥ax ,求a 的取值范围.第14讲数学建模——函数的模型及其应用A组应知应会一、选择题1. 国家规定个人稿费纳税办法为:不超过800元的不纳税;超过800元而不超过4 000元的按超过部分的14%纳税;超过4 000元的按全稿酬的11%纳税.若某人共纳税420元,则这个人的稿费为()A. 3 000元B. 3 800元C. 3 818元D. 5 600元2. 某公司为激励创新,计划逐年加大研发资金投入.若该公司2017年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30)()A. 2020年B. 2021年C. 2022年D. 2023年3. (2019·三明联考)用清水洗衣服,若每次能洗去污垢的34,要使存留的污垢不超过1%,则至少要洗的次数是(参考数据:lg 2≈0.3 010)()A. 3B. 4C. 5D. 64. (2019·安庆二模)设甲、乙两地的距离为a(a>0),小王骑自行车以匀速从甲地到乙地用了20 min,在乙地休息10 min后,他又以匀速从乙地返回到甲地用了30 min,则小王从出发到返回原地所经过的路程y和其所用的时间x的函数图象为()A BC D5. (多选)汽车的“燃油效率”是指汽车每消耗1 L汽油行驶的里程.如图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况,则下列叙述不正确的是()(第5题)A. 消耗1 L汽油,乙车最多可行驶5 kmB. 以相同速度行驶相同路程,三辆车中,甲车消耗汽油最少C. 甲车以80 km/h的速度行驶1 h,消耗10 L汽油D. 某城市机动车最高限速80 km/h,相同条件下,在该市用丙车比用乙车更省油二、解答题6. 网店销售某一品牌的商品,购买人数n是商品标价x的一次函数,标价越高,购买人数越少.已知标价为每件300元时,购买人数为零;标价为每件225元时,购买人数为75人.若这种商品的成本价是100元/件,网店以高于成本价的相同价格(标价)出售.(1) 网店要获取最大利润,商品的标价应定为每件多少元?(2) 通常情况下,获取最大利润只是一种“理想结果”,如果网店要获得最大利润的75%,那么商品的标价为每件多少元?7. 某商场销售某种商品的经验表明,该商品每日的销售量y(单位:kg)与销售价格x(单位:元/kg)满足关系式y=ax-3+10(x-6)2,其中3<x<6,a为常数.已知销售价格为5元/kg时,每日可售出该商品11 kg.(1) 求a的值;(2) 若该商品的成本为3元/kg,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大.B组能力提升一、填空题1. (2019·唐山联考)“好酒也怕巷子深”,许多著名品牌是通过广告宣传进入消费者视线的.已知某品牌商品靠广告销售的收入R与广告费A之间满足关系R=a A (a为常数),广告效应为D=a A -A.那么精明的商人为了取得最大广告效应,投入的广告费应为________.(用常数a表示)2. (2019·湖北八校联考)某人根据经验绘制了2019年春节前后,从12月21日至1月8日自己种植的西红柿的销售量y(kg)随时间x(天)变化的函数图象,如图所示,则此人在12月26日大约卖出了西红柿________kg.(第2题)3. 某公司一年购买某种货物600 t,每次购买x t,运费为6万元/次, 一年的总存储费用为4x万元.要使一年的总运费与总存储费用之和最小,则x的值是________.4. 根据相关规定,机动车驾驶员血液中的酒精含量大于(等于)20毫克/100毫升时属于醉酒驾车.假设饮酒后,血液中的酒精含量为p0毫克/100毫升,经过x h,酒精含量降为p毫克/100毫升,且满足关系式p=p0·e rx(r为常数).若某人饮酒后血液中的酒精含量为89毫克/100毫升,2 h后,测得其血液中酒精含量降为61毫克/100毫升,则此人饮酒后需经过________h方可驾车.(精确到h)二、解答题5. 某创业团队拟生产A、B两种产品,根据市场预测,A产品的利润与投资额成正比(如图(1)),B产品的利润与投资额的算术平方根成正比(如图(2)).(注:利润与投资额的单位均为万元)(1) 分别将A、B两种产品的利润f(x)、g(x)表示为投资额x的函数;(2) 该团队已筹集到10万元资金,并打算全部投入A、B两种产品的生产,问:当B产品的投资额为多少万元时,生产A、B两种产品能获得最大利润?最大利润为多少?图(1)图(2)(第5题)6. 某快递公司在某市的货物转运中心,拟引进智能机器人分拣系统,以提高分拣效率和降低物流成本,已知购买x 台机器人的总成本p (x )=1600x 2+x +150(万元). (1) 若使每台机器人的平均成本最低,则应买多少台?(2) 现按(1)中的数量购买机器人,需要安排m 人将邮件放在机器人上,机器人将邮件送达指定落袋格口完成分拣(如图),经实验知,每台机器人的日平均分拣量q (m )=⎩⎪⎨⎪⎧815m (60-m ),1≤m ≤30,480,m >30(单位:件),已知传统人工分拣每人每日的平均分拣量为1 200件,问:引进机器人后,日平均分拣量达最大值时,用人数量比引进机器人前的用人数量最多可减少百分之多少?(第6题)微难点2 分段函数的研究一、 选择题1. (2019·湖北四地联考)已知函数f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x-7,x <0,log 2(x +1),x ≥0, 若f (a )<1,则实数a 的取值范围是( )A. (-∞,-3)∪[0,1)B. (-3,0)∪(-1,1)C. (-3,1)D. (1,+∞)2. (2019·开封一模)已知函数f (x )=⎩⎪⎨⎪⎧e x -1,x <2,log 3(x 2-1),x ≥2, 若f (a )≥1,则a 的取值范围是( )A. [1,2)B. [1,+∞)C. [2,+∞)D. (-∞,-2]3. (2019·廊坊三模)若函数f (x )=⎩⎪⎨⎪⎧e 2x -2x +a ,x >0,ax +3a -2,x ≤0 在(-∞,+∞)上是单调函数,且f (x )存在负的零点,则a 的取值范围是( )A. ⎝⎛⎭⎫23,1B. ⎝⎛⎦⎤23,32C. ⎝⎛⎦⎤0,32D. ⎝⎛⎭⎫23,+∞4. 已知函数f (x )=⎩⎪⎨⎪⎧|log 3x |,0<x <3,13x 2-103x +8,x ≥3, 若存在实数a ,b ,c ,d ,满足f (a )=f (b )=f (c )=f (d ),其中d >c >b >a >0,则abcd 的取值范围是( )A. (21,25)B. (21,24)C. (20,24)D. (20,25)5. (2019·驻马店期末)已知函数f (x )=⎩⎪⎨⎪⎧2x 3+3x 2+2,x ≤0,e ax x >0 在[-2,2]上的最大值为3,则实数a 的取值范围是( )A. (ln 3,+∞)B. ⎣⎡⎦⎤0,12ln 3C. ⎝⎛⎦⎤-∞,12ln 3 D. (-∞,ln 3]二、 填空题6. (2019·佛山二模)若函数f (x )=⎩⎪⎨⎪⎧e x ,x ≥0,-x 2+2x +1,x <0 (其中e 是自然对数的底数),且函数y=|f (x )|-mx 有两个不同的零点,则实数m 的取值范围是________.7. 设f (x )=⎩⎪⎨⎪⎧(1-2a )x,x ≤1,log a x +13,x >1. 若存在x 1,x 2∈R,x 1≠x 2,使得f (x 1)=f (x 2)成立,则实数a 的取值范围是________.8. (2019·滨州期末)已知函数f (x )=⎩⎪⎨⎪⎧|x +1|,x ≤0,|log 2x |,x >0.若方程f (x )=a 恰有4个不同的实根x 1,x 2,x 3,x 4,且x 1<x 2<x 3<x 4,则x 3(x 1+x 2)+1x 23 x 4的取值范围为________.微难点3 由函数的性质求参数范围一、 填空题1. 已知函数f (x )=⎩⎪⎨⎪⎧-x 2,x ≥0,x 2,x <0, 若f (a -1)+f (a )>0,则实数a 的取值范围是________.2. 若f (x )=-x 2+2ax 与g (x )=ax +1在区间[1,2]上都是减函数,则a 的取值范围是________.3. 已知函数f (x )=⎩⎪⎨⎪⎧x 2-mx ,x >1,⎝⎛⎭⎫4-m 2x +2,x ≤1 是R 上的增函数,则实数m 的取值范围是________.4. 若函数f (x )=ax 2+x +a +1在(-2,+∞)上单调递增,则a 的取值范围是________.5. 已知f (x )=log a (8-3ax )在[-1,2]上是减函数,则实数a 的取值范围是________.6. 已知函数f (x )=ax +1x +2 在区间(-2,+∞)上为增函数,则实数a 的取值范围是________.7. 已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x ,x ≥0,-x 2+2x ,x <0, 若f (2-a 2)<f (a ),则实数a 的取值范围是________.二、解答题8. 设定义在[-2,2]上的函数f(x)在区间[0,2]上单调递减,且f(1-m)<f(3m).(1) 若函数f(x)在区间[-2,2]上是奇函数,求实数m的取值范围;(2) 若函数f(x)在区间[-2,2]上是偶函数,求实数m的取值范围.。
高三数学南方凤凰台高2021届高2018级高三一轮数学提高版完整版学案第三章
第三章 导数及其应用第15讲 导数的几何意义和四则运算A 应知应会一、 选择题1. 已知f (x )=x (2 018+ln x ),若f ′(x 0)=2 019,则x 0等于( )A. e 2B. 1C. ln 2D. e2. 若函数f (x )=33x 3+ln x -x ,则曲线y =f (x )在点(1,f (1))处的切线的倾斜角是( ) A. π6 B. π3 C. 2π3 D. 5π63. 已知函数f (x )=ln (x +1)·cos x -ax 在(0,f (0))处的切线倾斜角为45°,则a 等于( )A. -2B. -1C. 0D. 34. (2019·泰安一模)已知函数f (x )满足f ⎝⎛⎭⎫x 2 =x 3-3x ,则函数f (x )的图象在x =1处的切线斜率为( )A. 0B. 9C. 18D. 275. 已知曲线y =sin x 在点P (x 0,sin x 0)(0≤x 0≤π)处的切线为l ,则下列各点中不可能在直线l 上的是( )A. (-1,-1)B. (-2,0)C. (1,-2)D. (4,1)二、 解答题6. 求下列函数的导数.(1) y =5x 3 ; (2) y =1x4 ; (3) y =-2sin x 2 ⎝⎛⎭⎫1-2cos 2x 4 ; (4)y =log 2x 2-log 2x .7. 已知曲线y =x 3+x -2在点P 0处的切线l 1平行于直线4x -y -1=0,且点P 0在第三象限.(1) 求P 0的坐标;(2) 若直线l ⊥l 1,且l 也过切点P 0,求直线l 的方程.B 巩固提升一、 填空题1. (2019·全国卷Ⅰ)曲线y =3(x 2+x )e x 在点(0,0)处的切线方程为________.2. 已知函数f (x )满足满足f (x )=f ′(1)e x -1-f (0)x +12x 2,则f (x )的解析式为________________.3. (2019·江苏卷)在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e,-1)(e 为自然对数的底数),则点A 的坐标是________.4. (2019·厦门一模)在平面直角坐标系xOy 中,已知x 21 -ln x 1-y 1=0,x 2-y 2-2=0,则(x 1-x 2)2+(y 1-y 2)2的最小值为________.二、 解答题5. 已知曲线y =(ax -1)e x 在点A (x 0,y 1)处的切线为l 1,曲线y =1-x e x 在点B (x 0,y 2)处的切线为l 2.若存在x 0∈⎣⎡⎦⎤0,32 ,使得l 1⊥l 2,求实数a 的取值范围.6. 已知函数f (x )=ax 3+3x 2-6ax -11,g (x )=3x 2+6x +12和直线m :y =kx +9,且f ′(-1)=0.(1) 求a 的值;(2) 是否存在k ,使直线m 既是曲线y =f (x )的切线,又是曲线y =g (x )的切线?如果存在,求出k 的值;如果不存在,请说明理由.第16讲 导数与函数的单调性A 应知应会一、 选择题1. (2019·福建四校二联)函数f (x )=(x 2-2x )e x 的图象大致是( )A BC D2. 若函数y =f (x )的导函数f ′(x )的图象如图所示,则下列判断中正确的是 ( )(第2题)A. 在区间(-3,1)内f (x )是增函数B. 在区间(1,3)内f (x )是增函数C. 在区间(5,6)内f (x )是增函数D. 在区间(-∞,1)内f (x )是增函数3. (2019·宣城二调)若函数f (x )=43x 3-2ax 2-(a -2)x +5恰好有三个单调区间,则实数a 的取值范围为( )A. [-1,2]B. [-2,1]C. (-∞,-1)∪(2,+∞)D. (-∞,-2)∪(1,+∞)4. 若函数f (x )=e x (-x 2+2x +a )在区间[a ,a +1]上单调递增,则实数a 的最大值为( )A. -1+52B. 1+52C. 1-52D. -1-525. (多选)已知函数f (x )=e x -1,对于满足0<x 1<x 2<e 的任意x 1,x 2,下列结论中正确的是( )A. (x 2-x 1)[f (x 2)-f (x 1)]<0B. x 2f (x 1)>x 1f (x 2)C. f (x 2)-f (x 1)>x 2-x 1D. f (x 1)+f (x 2)2 >f ⎝⎛⎭⎫x 1+x 22二、 解答题 6. (2019·太原一模节选)已知函数f (x )=x 3-32 ax 2(a >0),若函数h (x )=f (x )·e x x 在(0,1)上单调递减,求a 的取值范围.7. (2019·南昌一模)已知函数f (x )=(x +a )e x (x >-3),其中a ∈R .(1) 若曲线y =f (x )在点A (0,a )处的切线l 与直线y =|2a -2|x 平行,求直线l 的方程;(2) 讨论函数y =f (x )的单调性.B 巩固提升一、 填空题1. (2019·泰州一模)已知函数f (x )=2x 4+4x 2,若f (a +3)>f (a -1),则实数a 的取值范围为________.2. 已知函数f (x )的定义域为R,f (0)=2,对任意x ∈R,都有f (x )+f ′(x )>1,则不等式e x ·f (x )>e x +1的解集为________.3. 已知函数f (x )=-12x 2+4x -3ln x 在区间[t ,t +1]上不单调,则t 的取值范围是________.4. (2019·盐城期中)已知函数f (x )=(x -a )ln x (a ∈R),若函数f (x )存在三个单调区间,则实数a 的取值范围是________.二、 解答题5. 已知函数f (x )=x e x -a ⎝⎛⎭⎫x 22+x (a ∈R),讨论函数f (x )的单调性.6. 已知函数f (x )=e x ln x -a e x (a ∈R).(1) 若f (x )在点(1,f (1))处的切线与直线y =1ex +1垂直,求a 的值; (2) 若f (x )在(0,+∞)上是单调函数,求实数a 的取值范围.第17讲 导数与函数的极值、最值A 应知应会一、 选择题1. 函数f (x )=x 3+3x 2+3x -a 的极值点的个数为( )A. 0B. 1C. 2D. 32. (2019·安庆二模)已知函数f (x )=2e f ′(e)ln x -x e(e 是自然对数的底数),则f (x )的极大值为( )A. 2e -1B. -1eC. 1D. 2ln 2 3. 若函数f (x )=x 3-3x 在(a ,6-a 2)上有最小值,则实数a 的取值范围是( )A. (-5 ,1)B. [-5 ,1)C. [-2,1)D. (-2,1)4. 设直线x =t 与函数f (x )=x 2,g (x )=ln x 的图象分别交于点M ,N ,则当|MN |达到最小时t 的值是( )A. 1B. 12C. 52D. 225. (多选)设函数f (x )=ax 22e-ln |ax |(a >0),若f (x )有4个零点,则a 的可能取值个数为( ) A. 1 B. 2 C. 3 D. 4二、 解答题6. 已知函数f (x )=e x cos x -x .(1) 求曲线y =f (x )在点(0,f (0))处的切线方程;(2) 求函数f (x )在区间⎣⎡⎦⎤0,π2 上的最大值和最小值.7. (2019·邵阳期末)已知a ∈R,函数f (x )=a x+ln x -1. (1) 当a =1时,求曲线y =f (x )在点(2,f (2))处的切线方程;(2) 求f (x )在区间(0,e]上的最小值.B 巩固提升一、 填空题1. 若函数f (x )=12x 2f ′(2)+ln x ,则f (x )的极大值点为________,极大值为________. 2. 已知函数f (x )=13x 3+x 2-2ax +1,若函数f (x )在(1,2)上有极值,则实数a 的取值范围为________.3. (2019·滁州期末)已知函数f (x )=⎩⎪⎨⎪⎧2x 3-3x 2+1,x ≥0,e ax +1,x <0 在[-2,2]上的最大值为5,则实数a 的取值范围是________.4. (2019·唐山一模)在△ABC 中,a ,b ,c 分别为A ,B ,C 所对的边,若函数f (x )=13x 3+bx 2+(a 2+c 2-ac )x +1有极值点,则sin ⎝⎛⎭⎫2B -π3 的最小值为________. 二、 解答题5. (2019·全国卷Ⅲ)已知函数f (x )=2x 3-ax 2+2.(1) 讨论f (x )的单调性;(2) 当0<a <3时,记f (x )在区间[0,1]的最大值为M ,最小值为m ,求M -m 的取值范围.6. 解答一个问题后,将结论作为条件之一,提出与原问题有关的新问题,我们把它称为原问题的一个“逆向问题”.例如:原问题是“若矩形的边长为3和4,则其周长为14”,它的一个“逆向问题”是:“若矩形的周长为14,一边长为3,求另一边长”,也可以是“若矩形的周长为14,求其面积的最大值”等等.已知函数f (x )=⎩⎪⎨⎪⎧-x 3+x 2,x <1,a ln x ,x ≥1. (1) 求f (x )在[-1,e](e 为自然对数的底数)上的最大值; (2) 请对(1)提出两个“逆向问题”,并作解答.第18讲生活中的优化问题举例A应知应会一、解答题1. 某连锁分店销售某种商品,每件商品的成本为4元,并且每件商品需向总店交a(1≤a≤3)元的管理费,预计当每件商品的售价为x(8≤x≤9)元时,一年的销售量为(10-x)2万件.(1) 求该连锁分店一年的利润L(万元)与每件商品的售价x的函数关系式L(x);(2) 当每件商品的售价为多少元时,该连锁分店一年的利润L最大?并求出L的最大值.2. 如图所示是一个帐篷,它下部分的形状是一个正六棱柱,上部分的形状是一个正六棱锥,其中帐篷的高为PO,正六棱锥的高为PO1,且PO=3PO1.设PO1=x.(1) 当x=2 m,P A1=4 m时,求搭建的帐篷的表面积;(2) 在P A1的长为定值l m的条件下,已知当且仅当x=23m时,帐篷的容积V最大,求l的值.(第2题)B 巩固提升一、 解答题1. (2019·徐州期中)如图所示是一个半径为2 km,圆心角为π3的扇形游览区的平面示意图,点C 是半径OB 上一点,点D 是圆弧AB 上一点,且CD ∥OA .现在线段OC 、线段CD 及圆弧DB 三段所示位置设立广告位,经测算广告位出租收入是:线段OC 处每千米为2a 元,线段CD 及圆弧DB 处每千米均为a 元.设∠AOD =x 弧度,广告位出租的总收入为y 元.(1) 求y 关于x 的函数解析式,并指出该函数的定义域;(2) 试问x 为何值时,广告位出租的总收入最大?并求出其最大值.(第1题)2. (2019·盐城期中)某厂生产一种仪器,由于受生产能力和技术水平的限制,会产生一些次品.根据以往的经验知道,该厂生产这种仪器次品率P 与日产量x (件)之间近似满足关系:P =⎩⎨⎧196-x ,1≤x ≤c ,x ∈N ,1≤c <96,23,x >c ,x ∈N (注:次品率P =次品数总生产量,如P =0.1表示每生产10件产品,约有1件为次品,其余为合格品).已知每生产一件合格的仪器可以盈利A 元,但每生产一件次品将亏损A 2元,故厂方希望定出合适的日产量. (1) 试将生产这种仪器每天的盈利额T (元)表示为日产量x (件)的函数;(2) 当日产量x 为多少时,可获得最大利润?微难点4 构造函数研究不等关系一、 选择题1. 当x ∈[-2,1]时,不等式ax 3-x 2+4x +3≥0恒成立,则实数a 的取值范围是( )A. [-5,-3]B. ⎣⎡⎦⎤-6,-98 C. [-6,-2] D. [-4,-3] 2. (2019·上饶一模)已知函数f (x )=ln x +a 的导数为f ′(x ),若方程f ′(x )=f (x )的根x 0小于1,则实数a 的取值范围为( )A. (1,+∞)B. (0,1)C. (1,2 )D. (1,3 )3. 已知函数f (x )=x +1x 2 ,g (x )=log 2x +m ,若对x 1∈[1,2],x 2∈[1,4],使得f (x 1)≥g (x 2),则m 的取值范围是( )A. ⎝⎛⎦⎤-∞,-54B. (-∞,2]C. ⎝⎛⎦⎤-∞,34 D. (-∞,0] 二、 填空题4. 设函数f (x )在R 上存在导数f ′(x ),对任意的x ∈R,有f (-x )+f (x )=x 2,当x ∈(0, +∞)时,f ′(x )<x .若f (4-m )-f (m )≥8-4m ,则实数m 的取值范围为________.5. 已知f (x )是定义在R 上的偶函数,其导函数为f ′(x ),若f ′(x )<f (x ),且f (x +1)=f (3-x ),f (2 019)=2,则不等式f (x )<2e x -1的解集为________.6. 若定义在R 上的函数f (x )满足f (x )+f ′(x )>1,f (0)=4,则不等式e x f (x )>e x +3(其中e 为自然对数的底数)的解集为________.三、 解答题7. 已知函数f (x )=(x 2-3x +3)e x ,若不等式f (x )ex +7x -2>k (x ln x -1)(k 为正整数)对任意正实数x 恒成立,求k 的最大值.(参考数据:ln 7≈1.95,ln 8≈2.08)8. 已知函数f (x )=ln x -ax 3,g (x )=a e xe. (1) 若直线y =x 与y =g (x )的图象相切,求实数a 的值;(2) 若存在x 0∈[1,e],使得f (x 0)>(1-3a )x 0+1成立,求实数a 的取值范围.微难点5 利用导数研究函数的零点一、 解答题1. 已知函数f (x )=2e x +ax .(1) 求f (x )的单调区间;(2) 讨论f (x )在(0,+∞)上的零点个数.2. (2019·抚州调研)已知函数f (x )=a 6 x 3-a 4x 2-ax -2的图象过点A ⎝⎛⎭⎫4,103 . (1) 求函数f (x )的单调增区间;(2) 若函数g (x )=f (x )-2m +3有3个零点,求m 的取值范围.3. 已知函数f (x )=ln x ,g (x )=3x -2a 2x. (1) 求函数F (x )=f (x )-x +2在x ∈[4,+∞)上的最大值;(2) 若函数H (x )=2f (x )-ln [g (x )]在区间⎣⎡⎦⎤12,1 上有零点,求实数a 的取值范围.4. 已知函数f (x )=(2-a )(x -1)-2ln x (a ∈R,e 为自然对数的底数).(1) 当a =1时,求f (x )的单调区间;(2) 若函数f (x )在⎝⎛⎭⎫0,12 上无零点,求a 的最小值.。
高三数学南方凤凰台高2021届高2018级高三一轮数学提高版完整版第7章第37讲直线平面垂直的判定与性质
第七章 立体几何
第七章 立体几何 第37讲 直线、平面垂直的判定与性质
第1页
栏目导航
高考总复习 一轮复习导学案 ·数学提高版
栏 目 导 航
第2页
栏目导航
链教材 ·夯基固本 研题型 ·技法通关
第七章 立体几何
高考总复习 一轮复习导学案 ·数学提高版
链教材 ·夯基固本
第15页
栏目导航
高考总复习 一轮复习导学案 ·数学提高版
研题型 ·技法通关
第16页
栏目导航
第七章 立体几何
高考总复习 一轮复习导学案 ·数学提高版
第七章 立体几何
分类解析
目标 1 直线与平面垂直的判定与性质 如图,在直三棱柱 ABC-A1B1C1 中,AB=AC=AA1=3,BC=2,D 是 BC
第6页
栏目导航
高考总复习 一轮复习导学案 ·数学提高版
第七章 立体几何
【解析】 因为 DD1⊥平面 ABCD,所以 AC⊥DD1.又因为 AC⊥BD,DD1∩BD =D,所以 AC⊥平面 BDD1B1.因为 OM⊂平面 BDD1B1,所以 OM⊥AC.设正方体的棱 长为 2,则 OM= 1+2= 3,MN= 1+1= 2,ON= 1+4= 5,所以 OM2+MN2 =ON2,所以 OM⊥MN.故选 A.
α⊥β,
lα⊂∩ββ,=a,⇒l⊥α
l⊥a
高考总复习 一轮复习导学案 ·数学提高版
第七章 立体几何
ቤተ መጻሕፍቲ ባይዱ
5.常用结论 (1) 过一点有且只有一条直线与已知平面垂直. (2) 过一点有且只有一个平面与已知直线垂直. (3) 若两平行线中的一条垂直于一个平面,则另一条也垂直于这个平面(不能直接 应用). (4) 若一条直线和两个不重合的平面都垂直,那么这两个平面平行.
高2021届高2018级高三数学一轮专题训练试题及参考答案 (64)
[高2021届高2018级高三数学一轮专题训练64]第三讲 二项式定理A 组基础巩固一、单选题1.(2020·郑州模拟)(x -1x )9的展开式中的常数项为( D )A.64B.-64C.84D.-84【试题解答】 (x -1x )9的展开式的通项公式为T r +1=C r 9·(x )9-r ·(-1x )r =(-1)r ·C r 9·x 9-3r 2,由9-3r 2=0,得r =3,∴(x -1x)9的展开式中的常数项为T 4=(-1)3×C 39=-84.故选D. 2.(2020·河北保定期末)(3x -1x)6的展开式中,有理项共有( D ) A.1项 B.2项 C.3项D.4项【试题解答】 (3x -1x)6的展开式的通项公式为T r +1=C r 6·(-1)r ·36-r ·x 6-32r ,令6-32r 为整数,求得r =0,2,4,6,共计4项.3.(2019·甘肃张掖诊断)已知(1+x )n 的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为( D )A.212B.211C.210D.29【试题解答】 已知(1+x )n 的展开式中第4项与第8项的二项式系数相等,可得C 3n =C 7n,可得n =3+7=10.(1+x )10的展开式中奇数项的二项式系数和为:12×210=29.故选D.4.(2020·广州调研)(x -12x )9的展开式中x 3的系数为( A )A.-212B.-92C.92D.212【试题解答】 二项展开式的通项T r +1=C r 9x 9-r (-12x )r =(-12)r C r 9x 9-2r ,令9-2r =3,得r =3,展开式中x 3的系数为(-12)3C 39=-212.故选A. 5.(2019·烟台模拟)已知(x 3+2x )n 的展开式的各项系数和为243,则展开式中x 7的系数为( B )A.5B.40C.20D.10【试题解答】 由(x 3+2x )n 的展开式的各项系数和为243,令x =1得3n =243,即n =5,∴(x 3+2x )n =(x 3+2x )5,则T r +1=C r 5·(x 3)5-r ·(2x )r =2r ·C r 5·x 15-4r ,令15-4r =7,得r =2,∴展开式中x 7的系数为22×C 25=40.6.(ax +1x )(2x -1)5的展开式中各项系数的和为2,则该展开式中常数项为( C )A.-20B.-10C.10D.20【试题解答】 令x =1,可得a +1=2,所以a =1,所以(ax +1x )(2x -1)5=(x +1x)(2x -1)5,则展开式中常数项为(2x -1)5展开式中x 项的系数,即2C 45(-1)4=10.7.(2019·内蒙古包头模拟)已知(2x -1)5=a 5x 5+a 4x 4+a 3x 3+a 2x 2+a 1x +a 0,则|a 0|+|a 1|+…+|a 5|=( B )A.1B.243C.121D.122【试题解答】 令x =1,得a 5+a 4+a 3+a 2+a 1+a 0=1,① 令x =-1,得-a 5+a 4-a 3+a 2-a 1+a 0=-243,② ①+②,得2(a 4+a 2+a 0)=-242, 即a 4+a 2+a 0=-121.①-②,得2(a 5+a 3+a 1)=244, 即a 5+a 3+a 1=122.所以|a 0|+|a 1|+…+|a 5|=122+121=243.故选B.8.(2019·广州测试)使(3x +1x x )n(n ∈N +)的展开式中含有常数项的最小的n 为( B )A.4B.5C.6D.7【试题解答】 T r +1=C r n (3x )n -r·x -32r =C r n ·3n -r ·xn -5r 2(r =0,1,2,…,n ),若T r +1是常数项,则有n -52r =0,即2n =5r (r =0,1,…,n ),当r =0,1时,n =0,52,不满足条件:当r =2时,n =5,故选B.9.(2020·四川省联合诊断)(1-x 3)(1-x )9的展开式中x 4的系数为( B ) A.124 B.135 C.615D.625【试题解答】 (1-x )9的展开式的通项公式为T r +1=C r 9(-x )r ,故所求x 4项的系数为C 49-(-1)C 19=135.故选B.二、多选题10.若(1x -x x )n 展开式中含有x 2项,则n 的值可以是( BD )A.15B.8C.7D.3【试题解答】 注意到二项式(1x -x x )n 的展开式的通项是T r +1=C r n ·(1x )n -r ·(-x x )r =C r n ·(-1)r ·x 52r -n .令52r -n =2,即r =2(n +2)5有正整数解;又2与5互质,因此n +2必是5的倍数,即n +2=5k ,n =5k -2,故选BD.11.已知(x +1)10=a 1+a 2x +a 3x 2+…+a 11x 10.若数列a 1,a 2,a 3,…,a k (1≤k ≤11,k ∈Z )是一个单调递增数列,则k 的值可以是( ABC )A.4B.5C.6D.7【试题解答】 由二项式定理知a n =C n -110(n =1,2,3,…,n ).又(x +1)10展开式中二项式系数最大项是第6项.∴a 6=C 510,则k 的最大值为6.故选ABC.三、填空题12.(2018·天津高考)在(x -12x )5的展开式中,x 2的系数为 52 .【试题解答】 (x -12x)5的展开式的通项为T r +1=C r 5x5-r (-12x)r =(-12)r C r 5x 5-3r2. 令5-3r2=2,可得r =2.所以(x -12x)5的展开式中的x 2的系数为(-12)2C 25=52. 13.(2020·河南八校重点高中联盟联考)已知(2x -1)(x +a )6的展开式中x 5的系数为24,则a = 1或-45. 【试题解答】 根据题意,(x +a )6的展开式的通项为T r +1=C r 6x 6-r a r ,其中当r =1时,有T 2=C 16x 5a ,当r =2时,有T 3=C 26x 4a 2,则(2x -1)(x +a )6的展开式中x 5的系数为-C 16a +2C 26a 2=-6a +30a 2,则有-6a+30a 2=24,可得5a 2-a -4=0,∴(a -1)(5a +4)=0,∴a =1或a =-45.14.(2020·广东省东莞市期末)若(3+ax )(1+x )4展开式中x 的系数为13,则展开式中各项系数和为__64__.(用数字作答)【试题解答】 由题意得3C 14+a =13,∴a =1.令x =1得(3+ax )(1+x )4的展开式中各项系数和为(3+1)(1+1)4=64.15.(2019·陕西西安模拟)已知(1+x )10=a 0+a 1(1-x )+a 2(1-x )2+…+a 10(1-x )10,则a 8=__180__. 【试题解答】 令1-x =t ,则x =1-t , ∴(2-t )10=a 0+a 1t +a 2t 2+…+a 10t 10,由T r +1=C r 10210-r (-t )r 知r =8时, a 8=22C 810(-1)8=180.B 组能力提升1.(2019·浙江,13)在二项式(2+x )9的展开式中,常数项是 162 ,系数为有理数的项的个数是__5__.【试题解答】 (2+x )9展开式的通项T r +1=C r 9(2)9-r x r=C r 9·29-r 2·x r(r =0,1,2,…,9),令r =0,得常数项T 1=C 09·292·x 0=292=162,要使系数为有理数,则只需9-r 2∈Z ,则r 必为奇数,满足条件的r 有1,3,5,7,9,共五种,故系数为有理数的项的个数是5.2.(2020·广西柳州铁路一中、玉林一中联考)(2-x )·(1+2x )5展开式中,含x 2项的系数为__70__. 【试题解答】 (1+2x )5展开式的通项公式为:T k +1=C k 5(2x )k =2k·C k 5·x k , 故所求x 2项的系数为2×22C 25-2C 15=70.3.(2019·上海普陀区二模)502 019+1被7除后的余数为__2__.【试题解答】 502 019+1=(1+72)2019+1=1+C 12 019·72+C 22 019·74+…+C 2 0192 01974 038+1=72C 12 019+C 22 01974+…+C 2 0192 01974 038+2.故余数为2. 4.(2019·吉林实验中学月考)若(2x -3)5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5,则a 1+2a 2+3a 3+4a 4+5a 5=__10__.【试题解答】 等式两边求导得10(2x -3)4=a 1+2a 2x +3a 3x 2+4a 4x 3+5a 5x 4, 令x =1得a 1+2a 2+3a 3+4a 4+5a 5=10(2-3)4=10. 5.(2020·广东茂名联考)在(x +x )6(1+1y )6的展开式中,x 4y2项的系数为( C ) A.200 B.180 C.150D.120【试题解答】 (x +x )6展开式的通项公式为T r +1=C r 6(x )6-r x r =C r 6x 6+r 2,令6+r 2=4,得r =2,则T 3=C 26x 6+22=15x 4. (1+1y )5展开式的通项公式为T r +1=C r 5(1y )r =C r 5y -r ,令r =2可得T 3=C 25y -2=10y -2.故x 4y 2项的系数为15×10=150.6.(2019·衡水模拟)S =C 127+C 227+…+C 2727除以9的余数为( B )A.8B.7C.6D.5【试题解答】 依题意S =C 127+C 227+…+C 2727=227-1=89-1=(9-1)9-1=C 09×99-C 19×98+…+C 89×9-C 99-1=9(C 09×98-C 19×97+…+C 89)-2.∵C 09×98-C 19×97+…+C 89是正整数,∴S 被9除的余数为7.7.(2020·河北省邢台市期末)(x +y -1x -1y )4的展开式中的常数项为( A )A.36B.-36C.48D.-48【试题解答】 ∵(x +y -1x -1y )4=(x +y -x +y xy )4=(x +y )4(1-1xy )4,∴(x +y -1x -1y)4的展开式中的常数项为C 24×C 24=36.8.(2019·江西重点中学联考)若多项式(2x+3y)n展开式仅在第5项的二项式系数最大,则多项式(x2+1x2-4)n-4展开式中x2的系数为(A)A.-304B.304C.-208D.208【试题解答】多项式(2x+3y)n展开式仅在第5项的二项式系数最大,故n=8,多项式(x2+1x2-4)4展开式中x2的系数为C14·(-4)3+C24·C12·(-4)=-256-48=-304,故选A.。
高三数学南方凤凰台高2021届高2018级高三一轮数学提高版完整版第7章第38讲直线平面平行与垂直的综合问题
第16页
栏目导航
高考总复习 一轮复习导学案 ·数学提高版
D为等腰梯形,且AB=2a,AC=a,所以AC⊥BC, 又平面ACEF⊥平面ABCD,平面ACEF∩平面ABCD=AC, 所以BC⊥平面ACEF.
第8页
栏目导航
高考总复习 一轮复习导学案 ·数学提高版
第七章 立体几何
4.(必修2P44习题改编)在三棱锥P-ABC中,点P在平面ABC中的射影为点O. (1) 若PA=PB=PC,则点O是△ABC的_____外___心. 【 解 析 】 (1) 如 图 (1), 连 接 OA,OB,OC,OP, 在 Rt△POA 、 Rt△POB 和 Rt△POC 中,PA=PC=PB,所以OA=OB=OC,即O为△ABC的外心.
第17页
第4页
栏目导航
高考总复习 一轮复习导学案 ·数学提高版
第七章 立体几何
2.如图(1),四边形ABCD是边长为1的正方形,MD⊥平面ABCD,NB⊥平面ABCD,且
MD=NB=1,G为MC的中点,则下列结论中不正确的是
(C)
A.MC⊥AN
B.GB∥平面AMN
C.平面CMN⊥平面AMN
D.平面DCM∥平面ABN
第9页
栏目导航
高考总复习 一轮复习导学案 ·数学提高版
第七章 立体几何
(2) 若PA⊥PB,PB⊥PC,PC⊥PA,则点O是△ABC的________垂心.
【 解 析 】 如 图 (2), 延 长 AO,BO,CO 分 别 交 BC,AC,AB 于 点 H,D,G. 因 为 PC⊥PA,PB⊥PC,PA∩PB = P, 所 以 PC⊥ 平 面 PAB,AB⊂ 平 面 PAB, 所 以 PC⊥AB, 又 AB⊥PO,PO∩PC = P, 所 以 AB⊥ 平 面 PGC, 又 CG⊂ 平 面 PGC, 所 以 AB⊥CG, 即 CG 为 △ABC边AB的高.同理可证BD,AH为△ABC底边上的高,即O为△ABC的垂心.
2020年江苏省高中数学一轮复习南方凤凰台基础版课件第十章第56课圆的综合问题
第11页
栏目导航
高考总复习 一轮复习导学案 ·数学
第十章 解析几何初步
3. 直线与圆:设圆心到直线的距离为 d,圆的半径为 r;将直线方程代入圆的方 程得到关于 x 或 y 的一元二次方程,其判别式为 Δ.
(1) 相离:几何法,d>r;代数法,Δ<0. (2) 相切:几何法,d=r;代数法,Δ=0. 圆的切线方程的求法. (3) 相交:几何法,d<r;代数法,Δ>0. 弦长为 2 r2-d2,经过直线 ax+by+c=0 与圆交点的圆的方程——圆系:
第9页
栏目导航
高考总复习 一轮复习导学案 ·数学
第十章 解析几何初步
知识梳理
1. 圆 的 方 程 : 以 点 C(a , b) 为 圆 心 、 r 为 半 径 的 圆 的 标 准 方 程 为 __(x_-__a_)_2_+__(y_-__b_)_2_=_r_2_ ; 方 程 x2 + y2 + Dx + Ey + F = 0 表 示 圆 的 充 分 条 件 是 ____D_2_+__E_2_-__4_F_>_0____,此圆的圆心为-D2 ,-E2,半径为___12__D__2+__E__2-__4_F________.
第8页
栏目导航
高考总复习 一轮复习导学案 ·数学
第十章 解析几何初步
5. (必修 2P132 习题改编)以点 N(1,-1)为圆心,并且与直线 3x-4y+3=0 相切 的圆的标准方程是____(x_-__1_)_2_+__(y_+__1_)_2_=__4______.
【解析】由题意知圆 N 的半径 r=|3-4×32+-412+3|=2,所以圆 N 的标准方程是 (x-1)2+(y+1)2=4.
x2+y2+Dx+Ey+F+λ(ax+by+c)=0.
高2021届高2018级苏教版步步高大一轮高三数学复习课件学案第十章 10.1
§10.1分类计数原理与分步计数原理1.分类计数原理如果完成一件事,有n类方式,在第1类方式中有m1种不同的方法,在第2类方式中有m2种不同的方法,……,在第n类方式中有m n种不同的方法,那么完成这件事共有N=m1+m2+…+m n 种不同的方法.2.分步计数原理如果完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,……,做第n步有m n种不同的方法,那么完成这件事共有N=m1×m2×…×m n种不同的方法.3.分类和分步的区别,关键是看事件能否一步完成,事件一步完成了就是分类;必须要连续若干步才能完成的则是分步.分类要用分类计数原理将种数相加;分步要用分步计数原理,将种数相乘.概念方法微思考1.在解题过程中如何判定是用分类计数原理还是分步计数原理?提示如果已知的每类办法中的每一种方法都能完成这件事,应该用分类计数原理;如果每类办法中的每一种方法只能完成事件的一部分,就用分步计数原理.2.两种原理解题策略有哪些?提示①明白要完成的事情是什么;②分清完成该事情是分类完成还是分步完成,“类”间互相独立,“步”间互相联系;③有无特殊条件的限制;④检验是否有重复或遗漏.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)在分类计数原理中,两类不同方案中的方法可以相同.(×)(2)在分类计数原理中,每类方案中的方法都能直接完成这件事.(√)(3)在分步计数原理中,每个步骤中完成这个步骤的方法是各不相同的.(√)(4)在分步计数原理中,事情是分两步完成的,其中任何一个单独的步骤都能完成这件事.(×)题组二教材改编2.已知集合M={1,-2,3},N={-4,5,6,-7},从M,N这两个集合中各选一个元素分别作为点的横坐标,纵坐标,则这样的坐标在直角坐标系中可表示第一、第二象限内不同的点的个数是()A.12B.8C.6D.4答案 C解析分两步:第一步先确定横坐标,有3种情况,第二步再确定纵坐标,有2种情况,因此第一、二象限内不同点的个数是3×2=6,故选C.3.(2020·山东模拟)某元宵灯谜竞猜节目,有6名守擂选手和6名复活选手,从复活选手中挑选1名选手为攻擂者,从守擂选手中挑选1名选手为守擂者,则攻擂者、守擂者的不同构成方式共有__________种.答案36解析从6名守擂选手中选1名,选法有C16=6(种);复活选手中挑选1名选手,选法有C16=6(种).由分步计数原理,不同的构成方式共有6×6=36(种).4.书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放有2本不同的体育书.从书架中任取1本书,则不同取法的种数为________.答案9解析分三类:第一类,从第1层取一本书有4种,第二类,从第2层取一本书有3种,第三类,从第3层取一本书有2种.共有4+3+2=9(种).题组三易错自纠5.从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为()A.24B.18C.12D.6答案 B解析分两类情况讨论:第1类,奇偶奇,个位有3种选择,十位有2种选择,百位有2种选择,共有3×2×2=12(个)奇数;第2类,偶奇奇,个位有3种选择,十位有2种选择,百位有1种选择,共有3×2×1=6(个)奇数.根据分类计数原理知,共有12+6=18(个)奇数.6.某人有3个电子邮箱,他要发5封不同的电子邮件,则不同的发送方法有________种.答案243解析因为每个邮件选择发的方式有3种不同的情况.所以要发5个电子邮件,发送的方法有3×3×3×3×3=35=243(种).分类计数原理1.满足a,b∈{-1,0,1,2},且关于x的方程ax2+2x+b=0有实数解的有序数对(a,b)的个数为()A.14B.13C.12D.10答案 B解析方程ax2+2x+b=0有实数解的情况应分类讨论.①当a=0时,方程为一元一次方程2x +b=0,不论b取何值,方程一定有解.此时b的取值有4个,故此时有4个有序数对.②当a≠0时,需要Δ=4-4ab≥0,即ab≤1.显然有3个有序数对不满足题意,分别为(1,2),(2,1),(2,2).a≠0时,(a,b)共有3×4=12(个)实数对,故a≠0时满足条件的实数对有12-3=9(个),所以答案应为4+9=13.2.如果一个三位正整数如“a1a2a3”满足a1<a2,且a2>a3,则称这样的三位数为凸数(如120,343,275等),那么所有凸数的个数为()A.240B.204C.729D.920答案 A解析若a2=2,则百位数字只能选1,个位数字可选1或0,“凸数”为120与121,共2个.若a2=3,则百位数字有两种选择,个位数字有三种选择,则“凸数”有2×3=6(个).若a2=4,满足条件的“凸数”有3×4=12(个),…,若a2=9,满足条件的“凸数”有8×9=72(个).所以所有凸数有2+6+12+20+30+42+56+72=240(个).3.如果把个位数是1,且恰有3个数字相同的四位数叫做“好数”,那么在由1,2,3,4四个数字组成的有重复数字的四位数中,“好数”共有________个.答案12解析当组成的数字有三个1,三个2,三个3,三个4时共有4种情况.当有三个1时:2111,3111,4111,1211,1311,1411,1121,1131,1141,有9种,当有三个2,3,4时:2221,3331,4441,有3种,根据分类计数原理可知,共有12种结果.思维升华分类标准是运用分类计数原理的难点所在,应抓住题目中的关键词,关键元素,关键位置.(1)根据题目特点恰当选择一个分类标准.(2)分类时应注意完成这件事情的任何一种方法必须属于某一类,并且分别属于不同种类的两种方法是不同的方法,不能重复.(3)分类时除了不能交叉重复外,还不能有遗漏.分步计数原理例1(1)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为()A.24B.18C.12D.9答案 B解析从E点到F点的最短路径有6条,从F点到G点的最短路径有3条,所以从E点到G点的最短路径有6×3=18(条),故选B.(2)有六名同学报名参加三个智力项目,每项限报一人,且每人至多参加一项,则共有________种不同的报名方法.答案120解析每项限报一人,且每人至多参加一项,因此可由项目选人,第一个项目有6种选法,第二个项目有5种选法,第三个项目有4种选法,根据分步计数原理,可得不同的报名方法共有6×5×4=120(种).本例(2)中若将条件“每项限报一人,且每人至多参加一项”改为“每人恰好参加一项,每项人数不限”,则有多少种不同的报名方法?解每人都可以从这三个比赛项目中选报一项,各有3种不同的报名方法,根据分步计数原理,可得不同的报名方法共有36=729(种).本例(2)中若将条件“每项限报一人,且每人至多参加一项”改为“每项限报一人,但每人参加的项目不限”,则有多少种不同的报名方法?解每人参加的项目不限,因此每一个项目都可以从这六人中选出一人参赛,根据分步计数原理,可得不同的报名方法共有63=216(种).思维升华(1)利用分步计数原理解决问题要按事件发生的过程合理分步,即分步是有先后顺序的,并且分步必须满足:完成一件事的各个步骤是相互依存的,只有各个步骤都完成了,才算完成这件事.(2)分步必须满足两个条件:一是步骤互相独立,互不干扰;二是步与步之间确保连续,逐步完成. 跟踪训练1(1)(2020·洛阳联考)2019年牡丹花会期间,5名志愿者被分配到我市3个博物馆为外地游客提供服务,其中甲博物馆分配1人,另2个博物馆各分配2人,则不同的分配方法共有()A.15种B.30种C.90种D.180种答案 B解析分两步完成:第一步,选1人到甲博物馆,有5种分配方法;第二步,将余下的4人各分配2人到另2个博物馆,有6种分配方法.根据分步计数原理可得,不同的分配方法共有5×6=30(种).(2)已知a∈{1,2,3},b∈{4,5,6,7},则方程(x-a)2+(y-b)2=4可表示不同的圆的个数为()A.7B.9C.12D.16答案 C解析得到圆的方程分两步:第一步:确定a有3种选法;第二步:确定b有4种选法,由分步计数原理知,共有3×4=12(个).两个计数原理的综合应用例2(1)现有5种不同颜色的染料,要对如图所示的四个不同区域进行涂色,要求有公共边的两个区域不能使用同一种颜色,则不同的涂色方法的种数是()A.120B.140C.240D.260答案 D解析由题意,先涂A处共有5种涂法,再涂B处有4种涂法,然后涂C处,若C处与A处所涂颜色相同,则C处共有1种涂法,D处有4种涂法;若C处与A处所涂颜色不同,到C处有3种涂法,D处有3种涂法,由此可得不同的涂色方法有5×4×(1×4+3×3)=260(种).故选D. (2)中国古代儒家要求学生掌握六种基本才能(六艺):礼、乐、射、御、书、数,某校国学社团周末开展“六艺”课程讲座活动,一天连排六节,每艺一节,排课有如下要求:“射”不能排在第一,“数”不能排在最后,则“六艺”讲座不同的排课顺序共有________种.答案504解析 根据题意,分2种情况讨论:①“数”排在第一,将剩下的“五艺”全排列,安排在剩下的5节,有A 55=120(种)情况.②“数”不排在第一,则“数”的排法有4种,“射”的排法有4种,将剩下的“四艺”全排列,安排在剩下的4节,有A 44=24(种)情况,则此时有4×4×24=384(种)情况.则一共有120+384=504(种)排课顺序.(3)用0,1,2,3,4,5,6这7个数字可以组成________个无重复数字的四位偶数.(用数字作答) 答案 420解析 要完成的“一件事”为“组成无重复数字的四位偶数”,所以千位数字不能为0,个位数字必须是偶数,且组成的四位数中四个数字不重复,因此应先分类,再分步.①第1类,当千位数字为奇数,即取1,3,5中的任意一个时,个位数字可取0,2,4,6中的任意一个,百位数字不能取与这两个数字重复的数字,十位数字不能取与这三个数字重复的数字. 根据分步计数原理,有3×4×5×4=240(种)取法.②第2类,当千位数字为偶数,即取2,4,6中的任意一个时,个位数字可以取除首位数字的任意一个偶数数字,百位数字不能取与这两个数字重复的数字,十位数字不能取与这三个数字重复的数字.根据分步计数原理,有3×3×5×4=180(种)取法.③根据分类计数原理,共可以组成240+180=420(个)无重复数字的四位偶数.思维升华 利用两个计数原理解决应用问题的一般思路(1)弄清完成一件事是做什么.(2)确定是先分类后分步,还是先分步后分类.(3)弄清分步、分类的标准是什么.(4)利用两个计数原理求解.跟踪训练2 (1)(2020·郑州质检)将数字“124467”重新排列后得到不同的偶数的个数为( )A.72B.120C.192D.240答案 D解析 将数字“124467”重新排列后所得数字为偶数,则末位数应为偶数,(1)若末位数字为2,因为含有2个4,所以有5×4×3×2×12=60(种)情况;(2)若末位数字为6,同理有60种情况;(3)若末位数字为4,因为有两个相同数字4,所以共有5×4×3×2×1=120(种)情况.综上,共有60+60+120=240(种)情况.(2)从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有( )A.24对B.30对C.48对D.60对答案 C解析 如图,在正方体ABCD -A 1B 1C 1D 1中,与面对角线AC 成60°角的面对角线有B 1C ,BC 1,A 1D ,AD 1,AB 1,A 1B ,D 1C ,DC 1,共8条,同理与DB 成60°角的面对角线也有8条.因此一个面上的2条面对角线与其相邻的4个面上的8条对角线共组成16对.又正方体共有6个面,所以共有16×6=96(对).又因为每对被计算了2次,因此成60°的面对角线有12×96=48(对).1.有不同的语文书9本,不同的数学书7本,不同的英语书5本,从中选出不属于同一学科的书2本,则不同的选法有()A.21种B.315种C.143种D.153种答案 C解析可分三类:一类:语文、数字各1本,共有9×7=63(种);二类:语文、英语各1本,共有9×5=45(种);三类:数字、英语各1本,共有7×5=35(种),∴共有63+45+35=143(种)不同选法.2.(2020·南京质检)三个人踢毽子,互相传递,每人每次只能踢一下,由甲开始踢,经过4次传递后,毽子又被踢回给甲,则不同的传递方式共有()A.4种B.6种C.10种D.16种答案 B解析分两类:甲第一次踢给乙时,满足条件的有3种传递方式(如图),同理,甲先传给丙时,满足条件的也有3种传递方式. 由分类计数原理可知,共有3+3=6(种)传递方式.3.十字路口来往的车辆,如果不允许回头,则行车路线共有( ) A.24种 B.16种 C.12种 D.10种 答案 C解析 根据题意,车的行驶路线起点有4种,行驶方向有3种,所以行车路线共有4×3=12(种),故选C.4.若a ∈{1,2,3,4},b ∈{1,2,3,4},则y =ba x 表示不同直线的条数为( )A.8B.11C.14D.16 答案 B解析 若使ba 表示不同的实数,则当a =1时,b =1,2,3,4;当a =2时,b =1,3;当a =3时,b =1,2,4;当a =4时,b =1,3.故y =bax 表示的不同直线的条数共有4+2+3+2=11.5.从2,3,4,5,6,7,8,9这8个数中任取2个不同的数分别作为一个对数的底数和真数,则可以组成不同对数值的个数为( ) A.56 B.54 C.53 D.52 答案 D解析 在8个数中任取2个不同的数共有8×7=56(个)对数值;但在这56个数值中,log 24=log 39,log 42=log 93,log 23=log 49,log 32=log 94,即满足条件的对数值共有56-4=52(个). 6.(2020·石家庄模拟)将“福”“禄”“寿”填入到如图所示的4×4小方格中,每格内只填入一个汉字,且任意的两个汉字既不同行也不同列,则不同的填写方法有( )A.288种B.144种C.576种D.96种答案 C解析依题意可分为以下3步:(1)先从16个格子中任选一格放入第一个汉字,有16种方法;(2)任意的两个汉字既不同行也不同列,第二个汉字只有9个格子可以放,有9种方法;(3)第三个汉字只有4个格子可以放,有4种方法,根据分步计数原理可得不同的填写方法有16×9×4=576(种).7.(2020·安阳模拟)如图为我国数学家赵爽(约3世纪初)在为《周髀算经》作注时验证勾股定理的示意图,现在提供5种颜色给其中5个小区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不相同,则不同的涂色方案共有()A.120种B.260种C.340种D.420种答案 D解析由题意可知上下两块区域可以相同,也可以不同,则共有5×4×3×1×3+5×4×3×2×2=180+240=420(种).故选D.8.(多选)将四个不同的小球放入三个分别标有1,2,3号的盒子中,不允许有空盒子,下列结果正确的有( )A.C 13C 12C 11C 13B.C 24A 33C.C 13C 24A 22D.18答案 BC解析 根据题意,四个不同的小球放入三个分别标有1,2,3号的盒子中,且没有空盒,则三个盒子中有1个放2个球,剩下的2个盒子各放1个, 有2种解法: (1)分2步进行分析:①先将四个不同的小球分成3组,有C 24种分组方法; ②将分好的3组全排列,对应放到3个盒子中,有A 33种放法,则没有空盒的放法有C 24A 33种.(2)分2步进行分析:①在4个小球中任选2个,在3个盒子中任选1个,将选出的2个小球放入选出的小盒中,有C 13C 24种情况; ②将剩下的2个小球全排列,放入剩下的2个小盒中,有A 22种放法,则没有空盒的放法有C 13C 24A 22种.故选BC.9.若椭圆x 2m +y 2n =1的焦点在y 轴上,且m ∈{1,2,3,4,5},n ∈{1,2,3,4,5,6,7},则这样的椭圆的个数为________. 答案 20解析 当m =1时,n =2,3,4,5,6,7,共6个; 当m =2时,n =3,4,5,6,7,共5个; 当m =3时,n =4,5,6,7,共4个; 当m =4时,n =5,6,7,共3个; 当m =5时,n =6,7,共2个.故共有6+5+4+3+2=20(个)满足条件的椭圆.10.直线方程Ax +By =0,若从0,1,2,3,5,7这6个数字中任取两个不同的数作为A ,B 的值,则可表示________条不同的直线. 答案 22解析 分成三类:A =0,B ≠0;A ≠0,B =0和A ≠0,B ≠0,前两类各表示1条直线;第三类先取A 有5种取法,再取B 有4种取法,故5×4=20(种). 所以可以表示22条不同的直线.11.如果一条直线与一个平面垂直,那么称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是________.答案36解析第1类,对于每一条棱,都可以与两个侧面构成“正交线面对”,这样的“正交线面对”有2×12=24(个);第2类,对于每一条面对角线,都可以与一个对角面构成“正交线面对”,这样的“正交线面对”有12个.所以正方体中“正交线面对”共有24+12=36(个).12.如图所示,用五种不同的颜色分别给A,B,C,D四个区域涂色,相邻区域必须涂不同颜色,若允许同一种颜色多次使用,则不同的涂色方法共有________种.答案180解析按区域分四步:第一步,A区域有5种颜色可选;第二步,B区域有4种颜色可选;第三步,C区域有3种颜色可选;第四步,D区域也有3种颜色可选.由分步计数原理,可得共有5×4×3×3=180(种)不同的涂色方法.13.从集合{1,2,3,4,…,10}中,选出5个数组成该集合的子集,使得这5个数中任意两个数的和都不等于11,则这样的子集有()A.32个B.34个C.36个D.38个答案 A解析先把数字分成5组:{1,10},{2,9},{3,8},{4,7},{5,6},由于选出的5个数中,任意两个数的和都不等于11,所以从每组中任选一个数字即可,故共可组成2×2×2×2×2=32(个)这样的子集.14.工人在安装一个正六边形零件时,需要固定如图所示的六个位置的螺栓.若按一定顺序将每个螺栓固定紧,但不能连续固定相邻的2个螺栓.则不同的固定螺栓方式的种数是________.答案60解析根据题意,第一个可以从6个螺栓里任意选一个,共有6种选择方法,并且是机会相等的,若第一个选1号螺栓,第二个可以选3,4,5号螺栓,依次选下去,共可以得到10种方法,所以总共有10×6=60(种)方法,故答案是60.15.(2019·凌源模拟)中国有十二生肖,又叫十二属相,每一个人的出生年份对应了十二种动物(鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪)中的一种,现有十二生肖的吉祥物各一个,三位同学依次选一个作为礼物,甲同学喜欢牛和马,乙同学喜欢牛、狗和羊,丙同学哪个吉祥物都喜欢,如果让三位同学都选取到喜欢的礼物,则不同的选法有()A.30种B.50种C.60种D.90种答案 B解析①甲同学选择牛,乙有2种选择,丙有10种选择,选法有1×2×10=20(种);②甲同学选择马,乙有3种选择,丙有10种选择,选法有1×3×10=30(种),所有总共有20+30=50(种)选法.16.若给一个各边不等的凸五边形的各边染色,每条边可以染红、黄、蓝三种颜色中的一种,但是不允许相邻的边有相同的颜色,则不同的染色方法共有________种.答案30解析方法一如图,染五条边总体分五步,染每一边为一步.当染边1时有3种染法,则染边2有2种染法.(1)当3与1同色时有1种染法,则4有2种,5有1种,此时染法总数为3×2×1×2×1=12(种).(2)当3与1不同色时,3有1种,①当4与1同色时,4有1种,5有2种;②当4与1不同色时,4有1种,5有1种,则此时有3×2×1×(1×2+1×1)=18(种).综合(1)、(2),由分类计数原理,可得染法的种数为30种.方法二通过分析可知,每种颜色至少要涂1次,至多只能涂2次,即有一色涂1次,剩余两种颜色各涂2次.一次的有C13C15种涂法,涂2次的有2种涂法,故一共有2C13C15=30(种)涂法.。
2020年江苏省高中数学一轮复习南方凤凰台基础版课件第十章第53课圆的方程
第5页
栏目导航
高考总复习 一轮复习导学案 ·数学
第十章 解析几何初步
2. (必修 2P102 习题 3 改编)若圆 x2+y2+4x+2by+b2=0 经过原点,则 b= ____0____;若该圆与 x 轴相切,则 b=___±__2___.
第6页
栏目导航
高考总复习 一轮复习导学案 ·数学
第十章 解析几何初步
4. (必修 2P100 习题 9 改编)若直线 x-y+3=0 平分圆 x2+y2+2ax-2ay+1=0 3
的周长,则实数 a=____2____.
【解析】由题意知直线 x-y+3=0 过圆心(-a, ·数学
第十章 解析几何初步
第十章 解析几何初步
第1页
栏目导航
高考总复习 一轮复习导学案 ·数学
第53课 圆的方程
第十章 解析几何初步
第2页
栏目导航
高考总复习 一轮复习导学案 ·数学
栏 目 导 航
第3页
栏目导航
链教材 ·夯基固本 研题型 ·技法通关
第十章 解析几何初步
高考总复习 一轮复习导学案 ·数学
第10页
栏目导航
高考总复习 一轮复习导学案 ·数学
研题型 ·技法通关
第11页
栏目导航
第十章 解析几何初步
高考总复习 一轮复习导学案 ·数学
第十章 解析几何初步
分类解密
圆的标准方程 根据下列条件求圆的方程: (1) 经过点 P(1,1)和坐标原点,且圆心在直线 2x+3y+1=0 上; 【思维引导】(1) 可以利用“待定系数法”求出圆的方程.(2) 几何法,通过研 究圆的性质进而求出圆的基本量.例如,圆心和半径.
高三数学南方凤凰台高2021届高2018级高三一轮数学提高版完整版学案第七章
第七章立体几何第34讲空间几何体的表面积和体积A应知应会一、选择题1. 如图的几何体是由下面哪个平面图形旋转得到的()(第1题)A B C D2. 已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为()A. 122πB. 12πC. 82πD. 10π3. 如图,一个水平放置的平面图形的直观图(斜二测画法)是一个底角为45°,腰和上底长均为2的等腰梯形,则这个平面图形的面积是()(第3题)A. 2+2B. 1+2C. 4+22D. 8+424. 已知正方体外接球的体积是323 π,那么正方体的棱长等于( )A. 22B.233 C. 423 D. 4335. (2019·江西重点中学联考)《算术书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典著,其中记载有求“囷盖”的术:置如其周,令相乘也,又以高乘之,三十六成一,该术相当于给出圆锥的底面周长l 与高h ,计算其体积V 的近似公式V =136 l 2h ,它实际上是将圆锥体积公式中的圆周率π近似取3,那么,近似公式V ≈25942 l 2h 相当于将圆锥体积公式中的π近似取( )A.227 B. 258 C. 15750 D. 355113二、 解答题6. 已知正四棱锥底面正方形的边长为4 cm,高与斜高的夹角为30°,求正四棱锥的侧面积和表面积.(单位:cm 2 )7. 如图,四棱锥P ABCD 的底面ABCD 是半径为R 的圆的内接四边形,其中BD 是圆的直径,∠ABD =60°,∠BDC =45°,△ADP ∽△BAD .(1) 求线段PD 的长;(2) 若PC =11 R ,求三棱锥P ABC 的体积.(第7题)B巩固提升一、填空题1. 如图,一个底面半径为R的圆柱形量杯中装有适量的水.若放入一个半径为r的实心铁球,水面高度恰好升高r,则Rr=________.(第1题)2. (2019·通州、海门、启东期末)已知正三棱柱ABC A1B1C1的各棱长均为2,点D在棱AA1上,则三棱锥D BB1C1的体积为________.(第2题)3. 如图,已知正三棱柱ABC A1B1C1的底面边长为2 cm,高为5 cm,一质点自点A出发,沿着三棱柱的侧面绕行两周到达点A1的最短路线的长为________cm.(第3题)4. 给出下列命题:①棱柱的侧棱都相等,侧面都是全等的平行四边形;②若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直;③在四棱柱中,若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;④存在每个面都是直角三角形的四面体.其中正确的命题是________.(填序号)二、解答题5. 已知等边圆柱(轴截面是正方形的圆柱)的全面积为S,求其内接正四棱柱的体积.6. 如图,四边形ABCD为菱形,G为AC与BD的交点,BE⊥平面ABCD.(1) 求证:平面AEC⊥平面BED;(2) 若∠ABC=120°,AE⊥EC,三棱锥E ACD的体积为63,求该三棱锥的侧面积.(第6题)第35讲空间点、线、面之间的位置关系A应知应会一、选择题1. 下列图形中不一定是平面图形的是()A. 三角形B. 菱形C. 梯形D. 四边相等的四边形2. 如图,ABCD A1B1C1D1是长方体,O是B1D1的中点,直线A1C交平面AB1D1于点M,则下列结论正确的是()(第2题)A. A,M,O三点共线B. A,M,O,A1不共面C. A,M,C,O不共面D. B,B1,O,M共面3. 如图,平面α∩平面β=l,A∈α,B∈α,AB∩l=D,C∈β,C l,则平面ABC与平面β的交线是()(第3题)A. 直线ACB. 直线ABC. 直线CDD. 直线BC4. (多选)下列四个命题中正确的是()A. 存在与两条异面直线都平行的平面B. 过空间一点,一定能作一个平面与两条异面直线都平行C. 过平面外一点可作无数条直线与该平面平行D. 过直线外一点可作无数个平面与该直线平行5. (2019·湖北八校联考)已知直三棱柱ABC A1B1C1中,∠ABC=120°,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为()A.32 B.155 C.105 D.33二、解答题6. 如图,在棱长为a的正方体ABCD A1B1C1D1中,M,N分别是AA1,D1C1的中点,过D,M,N 三点的平面与正方体的下底面相交于直线l.(1) 画出l的位置;(2) 设l∩A1B1=P,求PB1的长.(第6题)7. 如图,A是△BCD所在平面外的一点,E,F分别是BC,AD的中点.(1) 求证:直线EF与BD是异面直线;(2) 若AC⊥BD,AC=BD,求EF与BD所成的角.(第7题)B巩固提升一、填空题1. 下列命题正确的是________.(填序号)①三个点确定一个平面;②一条直线和一个点确定一个平面;③两条相交直线确定一个平面;④两条平行直线确定一个平面.2. 已知l1,l2,l3是空间三条不同的直线,给出下列四个命题:①l1⊥l2,l2⊥l3⇒l1∥l3;②l1⊥l2,l2∥l3⇒l1⊥l3;③l1∥l2∥l3⇒l1,l2,l3共面;④l1,l2,l3共点⇒l1,l2,l3共面.其中正确的命题是________.(填序号)3. (2019·深圳调研)若P是两条异面直线l,m外的任意一点,给出四个命题:①过点P有且仅有一条直线与l,m都平行;②过点P有且仅有一条直线与l,m都垂直;③过点P有且仅有一条直线与l,m都相交;④过点P有且仅有一条直线与l,m都异面.其中正确的是________.(填序号)4. 设E,F,G,H依次是空间四边形ABCD的边AB,BC,CD,DA的中点,且AC+BD=a,AC·BD=b,则EG2+FH2=________.二、解答题5. 已知a,b,c,d是不共点且两两相交的四条直线,求证:a,b,c,d共面.6. 已知三棱柱ABC A1B1C1的侧棱长和底面边长均为2,A1在底面ABC内的射影O为底面三角形ABC的中心,如图所示.(1) 连接BC1,求异面直线AA1与BC1所成角的大小;(2) 连接A1C,A1B,求三棱锥C1-BCA1的体积.(第6题)第36讲直线、平面平行的判定与性质A应知应会一、选择题1. 已知平面α,β和直线m,若α⊥β,m⊥α,则()A. m⊥βB. m∥βC. m⊂βD. m∥β或m⊂β2. (2019·湘中名校联考)已知m,n是两条不同的直线,α,β,γ是三个不重合的平面,下列命题中正确的是()A. 若m∥α,n∥α,则m∥nB. 若m∥α,m∥β,则α∥βC. 若α⊥γ,β⊥γ,则α∥βD. 若m⊥α,n⊥α,则m∥n3. (2019·泰安调研)已知α,β,γ是三个不重合的平面,l是直线.给出下列命题:①若l上两点到α的距离相等,则l∥α;②若l⊥α,l∥β,则α⊥β;③若α∥β,lβ,且l∥α,则l∥β.其中正确的命题是()A. ①②B. ①②③C. ①③D. ②③4. 设l,m,n表示不同的直线,α,β,γ表示不重合的平面,给出下列三个命题:①若m∥l,且m⊥α,则l⊥α;②若α∩β=l,β∩γ=m,γ∩α=n,则l∥m∥n;③若α∩β=m,β∩γ=l,γ∩α=n,且n∥β,则l∥m.其中正确命题的个数是()A. 0B. 1C. 2D. 35. (2019·深圳调研)在空间四边形ABCD中,E,F分别为AB,AD上的点,且AE∶EB=AF∶FD=1∶4.又H,G分别为BC,CD的中点,则()A. BD∥平面EFG,且四边形EFGH是平行四边形B. EF∥平面BCD,且四边形EFGH是梯形C. HG∥平面ABD,且四边形EFGH是平行四边形D. EH∥平面ADC,且四边形EFGH是梯形二、解答题6. 如图,四棱锥P ABCD的底面为平行四边形,PD⊥平面ABCD,M为PC的中点.求证:AP∥平面MBD.(第6题)7. (2019·南昌模拟)如图,在四棱锥P ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD =60°,P A⊥平面ABCD,P A=2,AB=1.设M,N分别为PD,AD的中点.(1) 求证:平面CMN∥平面P AB;(2) 求三棱锥P-ABM的体积.(第7题)B巩固提升一、填空题1. 若一直线上有相异的三个点A,B,C到平面α的距离相等,那么直线l与平面α的位置关系是________.2. 如图,正方体ABCD-A1B1C1D1中,AB=2,点E为AD的中点,点F在CD上.若EF∥平面AB1C,则线段EF的长度等于________.(第2题)3. 在空间中,用a,b,c表示三条不同的直线,γ表示平面,给出下列四个命题:①若a∥b,b∥c,则a∥c;②若a⊥b,b⊥c,则a⊥c;③若a∥γ,b∥γ,则a∥b;④若a⊥γ,b⊥γ,则a∥b.其中真命题为________.(填序号)4. (2019·九江调研)如图,正方体的底面与正四面体的底面在同一平面α上,且AB∥CD,则直线EF与正方体的六个面所在的平面相交的平面个数为________.(第4题)二、解答题5. 如图,四边形ABCD与四边形ADEF为平行四边形,M,N,G分别是AB,AD,EF的中点.(1) 求证:BE∥平面DMF;(2) 求证:平面BDE∥平面MNG.(第5题)6. 如图,四棱锥P ABCD中,AB∥CD,AB=2CD,E为PB的中点.(1) 求证:CE∥平面P AD;(2) 在线段AB上是否存在一点F,使得平面P AD∥平面CEF?若存在,证明你的结论,若不存在,请说明理由.(第6题)第37讲直线、平面垂直的判定与性质A应知应会一、选择题1. 已知互相垂直的平面α,β交于直线l,若直线m,n满足m∥α,n⊥β,则()A. m∥lB. m∥nC. n⊥lD. m⊥n2. (2019·焦作期中)设m,n是两条不同的直线,α,β,γ是三个不重合的平面,给出下列命题,正确的是()A. 若mβ,α⊥β,则m⊥αB. 若m∥α,m⊥β,则α⊥βC. 若α⊥β,α⊥γ,β⊥γD. 若α∩γ=m,β∩γ=n,m∥n,则α∥β3. (2019·合肥调研)如图,在正方体ABCD-A1B1C1D1中,M,N分别是BC1,CD1的中点,则下列说法错误的是()(第3题)A. MN与CC1垂直B. MN与AC垂直C. MN与BD平行D. MN与A1B1平行4. 如图,在斜三棱柱ABC A1B1C1中,∠BAC=90°,BC1⊥AC,则点C1在底面ABC上的射影H必在()(第4题)A. 直线AB上B. 直线BC上C. 直线AC上D. △ABC内部5. 如图,在四面体D ABC中,若AB=CB,AD=CD,E是AC的中点,则下列结论正确的是()(第5题)A. 平面ABC⊥平面ABDB. 平面ABD⊥平面BDCC. 平面ABC⊥平面BDE,且平面ADC⊥平面BDED. 平面ABC⊥平面ADC,且平面ADC⊥平面BDE二、解答题6. (2019·潍坊期末)如图,四棱锥E ABCD中,底面ABCD是平行四边形,∠ADC=60°,CD =2AD,EC⊥底面ABCD.(1) 求证:平面ADE⊥平面ACE;(2) 若AD=CE=2,求三棱锥C ADE的高.(第6题)7. (2019·蚌埠二模)在如图所示的几何体中,四边形ABCD是正方形,P A⊥平面ABCD,E,F 分别是线段AD,PB的中点,P A=AB=1.(1) 求证:EF∥平面PDC;(2) 求点F到平面PDC的距离.(第7题)B巩固提升一、填空题1. (2019·青岛调研)已知P为△ABC所在平面外一点,且P A,PB,PC两两垂直,有下列结论:①P A⊥BC;②PB⊥AC;③PC⊥AB;④AB⊥BC.其中正确的有________.(填序号)2. 如图,在棱长为2的正方体ABCD A1B1C1D1中,E为BC的中点,点P在线段D1E上,则点P到直线CC1的距离的最小值为________.(第2题)3. (2019·武汉调研)在矩形ABCD中,AB<BC,现将△ABD沿矩形的对角线BD所在的直线进行翻折,在翻折的过程中,给出下列结论:①存在某个位置,使得直线AC与直线BD垂直;②存在某个位置,使得直线AB与直线CD垂直;③存在某个位置,使得直线AD与直线BC垂直.其中正确的结论是________.(填序号)4. (2019·滨州期末)已知正方体ABCD A1B1C1D1的棱长为2,点P是棱AA1的中点,则过点P且与直线BC1垂直的平面截正方体所得的截面的面积为________.二、解答题5. 如图,在正三棱柱ABC A1B1C1中,D为AB的中点.(1) 求证:BC1∥平面A1CD.(2) 请从图中所标点中,选择直线或平面将命题补充完整,并证明.求证:__________⊥平面ABB1A1.(第5题)6. (2019·漳州调研)在如图所示的五面体ABCDEF中,四边形ABCD为菱形,且∠DAB=60°,EA=ED=AB=2EF=2,EF∥AB,M为BC的中点.(1) 求证:FM∥平面BDE;(2) 若平面ADE⊥平面ABCD,求点F到平面BDE的距离.(第6题)第38讲直线、平面平行与垂直的综合问题A应知应会一、选择题1. 若直线a⊥b,且直线a∥平面α,则直线b与平面α的位置关系是()A. b⊂αB. b∥αC. b⊂α或b∥αD. b与α相交或b⊂α或b∥α2. 设平面α与平面β相交于直线m,直线a在平面α内,直线b在平面β内,且b⊥m,则“α⊥β”是“a⊥b”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件3. 给出下列关于互不相同的直线l,m,n和平面α,β,γ的三个命题:①若l与m为异面直线,l⊂α,m⊂β,则α∥β;②若α∥β,l⊂α,m⊂β,则l∥m;③若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,则m∥n.其中真命题的个数为()A. 3B. 2C. 1D. 04. (2019·深圳调研)已知a,b,c是空间中三条不同的直线,α,β,γ为空间三个不重合的平面,则下列说法中正确的是()A. 若α⊥β,aα,a⊥β,则a∥αB. 若α⊥β,且α∩β=a,b⊥a,则b⊥αC. 若α∩β=a,β∩γ=b,α∩γ=c,则a∥b∥cD. 若α∩β=a,b∥a,则b∥α5. (多选)已知平面α,β,γ和直线l,m,且l⊥m,α⊥γ,α∩γ=m,β∩γ=l,下列结论中一定正确的是()A. β⊥γB. l⊥αC. m⊥βD. α⊥β二、解答题6. 如图,在直四棱柱ABCD A1B1C1D1中,DB=BC,DB⊥AC,点M是棱BB1上一点.(1) 求证:B1D1∥平面A1BD;(2) 求证:MD⊥AC;(3) 试确定点M的位置,使得平面DMC1⊥平面CC1D1D.(第6题)7. 如图,在三棱柱ABC A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别是A1C1,BC的中点.(1) 求证:平面ABE⊥平面B1BCC1;(2) 求证:C1F∥平面ABE;(3) 求三棱锥E ABC的体积.(第7题)B 巩固提升一、 填空题1. (多选)如图,正三棱柱ABC A 1B 1C 1的各条棱的长度均相等,D 为AA 1的中点,M ,N 分别是线段BB 1和线段CC 1上的动点(含端点),且满足BM =C 1N ,当点M ,N 运动时,下列结论正确的是( )(第1题)A. 在△DMN 内总存在与平面ABC 平行的线段B. 平面DMN ⊥平面BCC 1B 1C. 三棱锥A 1 DMN 的体积为定值D. △DMN 可能为直角三角形2. (多选)如图,在棱长为1的正方体ABCD A 1B 1C 1D 1中,P 为线段A 1B 上的动点,则下列结论中正确的是( )(第2题)A. 平面D 1A 1P ⊥平面A 1APB. ∠APD 1的取值范围是⎝⎛⎭⎫0,π2C. 三棱锥B 1 D 1PC 的体积为定值D. DC 1⊥D 1P3. (多选)如图,一张A4纸的长、宽分别为22 a ,2a ,A ,B ,C ,D 分别是其四条边的中点,现将其沿图中虚线折起,使得P 1,P 2,P 3,P 4四点重合为一点P ,从而得到一个多面体,下列关于该多面体的命题,正确的是( )(第3题)A. 该多面体是三棱锥B. 平面BAD⊥平面BCDC. 平面BAC⊥平面ACDD. 该多面体外接球的表面积为5πa2二、解答题4. 如图,在四棱锥P ABC中,P A⊥底面ABCD,AD∥BC,AB=AD=AC=3,P A=BC=4,M 为线段AD上一点,AM=2MD,N为PC的中点.(1) 求证:MN∥平面P AB;(2) 求直线AN与平面PMN所成角的正弦值.(第4题)5. 如图(1),在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点.将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图(2).(1) 求证:DE∥平面A1CB;(2) 求证:A1F⊥BE;(3) 线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.图(1)图(2)(第5题)第39讲 用向量法解决空间中的位置关系A 应知应会一、 选择题1. 已知a =(2,1,-3),b =(-1,2,3),c =(7,6,λ),若a,b,c 三向量共面,则λ等于( ) A. 9 B. -9 C. -3 D. 32. 若平面α,β的法向量分别为n 1=(2,-3,5),n 2=(-3,1,-4),则( ) A. α∥β B. α⊥βC. α,β相交但不垂直D. 以上均不正确3. 在空间四边形ABCD 中,AB → ·CD → +AC → ·DB → +AD → ·BC →等于( )A. -1B. 0C. 1D. 不确定4. 已知平面α内有一点M (1,-1,2),平面α的一个法向量为n =(6,-3,6),则下列点P 中,在平面α内的是( )A. P (2,3,3)B. P (-2,0,1)C. P (-4,4,0)D. P (3,-3,4)5. 如图,F 是正方体ABCD A 1B 1C 1D 1的棱CD 的中点,E 是BB 1上一点,若D 1F ⊥DE ,则有( )(第5题)A. B 1E =EBB. B 1E =2EBC. B 1E =12EB D. E 与B 重合二、 解答题6. 已知a =(1,-3,2),b =(-2,1,1),A (-3,-1,4),B (-2,-2,2). (1) 求|2a +b|;(2) 在直线AB 上,是否存在一点E ,使得OE →⊥b(O 为原点)?7. (2019·江西调研)如图,在直三棱柱ABC A 1B 1C 1中,侧面AA 1C 1C 和侧面AA 1B 1B 都是正方形且互相垂直,M 为AA 1的中点,N 为BC 1的中点.(1) 求证:MN ∥平面A 1B 1C 1;(2) 求证:平面MBC 1⊥平面BB 1C 1C .(第7题)B 巩固提升一、 填空题1. 已知法向量为n =(1,-1,1)的平面σ过点M (1,2,-1),则平面σ上任意一点P 的坐标(x ,y ,z )满足的方程为________.2. 已知a =(x ,4,1),b =(-2,y ,-1),c =(3,-2,z ),若a ∥b,b ⊥c,则c =________.3. 已知V 为矩形ABCD 所在平面外一点,且VA =VB =VC =VD ,VP →=13 VC → ,VM → =23VB → ,VN →=23VD → ,则VA 与平面PMN 的位置关系是________.4. (2019·丽水调研)如图,圆锥的轴截面SAB 是边长为2的等边三角形,O 为底面中心,M 为SO 的中点,动点P 在圆锥底面内(包括圆周).若AM ⊥MP ,则点P 形成的轨迹长度为________.(第4题)二、 解答题5. 如图,正方形ABCD 所在平面与四边形ABEF 所在平面互相垂直,△ABE 是等腰直角三角形,AB =AE ,F A =FE ,∠AEF =45°.(1) 求证:EF ⊥平面BCE ;(2) 设线段CD ,AE 的中点分别为P ,M ,求证:PM ∥平面BCE .(第5题)6. (2019·芜湖调研)如图,在长方体ABCD A 1B 1C 1D 1中,AA 1=AD =1,E 为CD 中点. (1) 求证:B 1E ⊥AD 1;(2) 在棱AA 1上是否存在一点P ,使得DP ∥平面B 1AE ?若存在,求AP 的长;若不存在,说明理由.(第6题)第40讲 空间角的计算课时1 线线角与线面角A 应知应会一、 选择题1. 已知A (-1,0,1),B (0,0,1),C (2,2,2),D (0,0,3),则sin 〈AB → ,CD →〉等于( ) A. -23 B. 23 C. 53 D. -532. (2019·江门调研)如图,在三棱柱ABC A 1B 1C 1中,AA 1⊥底面ABC ,AB =BC =AA 1,∠ABC=90°,点E ,F 分别是棱AB ,BB 1的中点,则直线EF 和BC 1所成的角是( )(第2题)A. 30°B. 45°C. 60°D. 90°3. 已知空间三点A (0,2,3),B (-2,1,6),C (1,-1,5).若|a|=3 ,且a 分别与AB → ,AC →垂直,则向量a 为( )A. (1,1,1)B. (-1,-1,-1)C. (1,1,1)或(-1,-1,-1)D. (1,-1,1)或(-1,1,-1) 4. (2019·日照调研)如图,已知长方体ABCD A 1B 1C 1D 1中,AD =AA 1=1,AB =3,E 为线段AB 上一点,且AE =13AB ,则DC 1与平面D 1EC 所成角的正弦值为( )A.33535 B. 277 C. 33 D. 24(第4题)5.如图,正方形ACDE 与等腰直角三角形ACB 所在的平面互相垂直,且AC =BC =2,∠ACB =90°,F ,G 分别是线段AE ,BC 的中点.则AD 与GF 所成角的余弦值为( )(第5题)A.36 B. -36 C.33 D. -33二、解答题6. 如图,在四棱锥P ABCD中,底面ABCD是矩形,P A⊥底面ABCD,E是PC的中点.已知AB=2,AD=22,P A=2.求异面直线BC与AE所成的角的大小.(第6题)7. (2019·宿迁调研)如图,在四棱锥P ABCD中,P A⊥底面ABCD,AD⊥AB,AB∥DC,AD=DC=AP=2,AB=1,点E为棱PC的中点.(1) 求证:BE⊥DC;(2) 求直线BE与平面PBD所成角的正弦值.(第7题)B 巩固提升一、 填空题1. 已知O 点为空间直角坐标系的原点,向量OA → =(1,2,3),OB → =(2,1,2),OP →=(1,1,2),且点Q 在直线OP 上运动,当QA → ·QB → 取得最小值时,OQ →的坐标是________.2. 如图,已知正四面体ABCD 中,AE =14 AB ,CF =14 CD ,则直线DE 和BF 所成角的余弦值为________.(第2题)3. 在正四棱柱ABCD A 1B 1C 1D 1中,AA 1=2AB ,则直线CD 与平面BDC 1所成角的正弦值为________.4. 如图,菱形ABCD 中,∠ABC =60°,AC 与BD 相交于点O ,AE ⊥平面ABCD ,CF ∥AE ,AB =2,CF =3.若直线OF 与平面BED 所成的角为45°,则AE =________.(第4题)二、解答题5. (2019·宁波调研)如图,在三棱锥P ABC中,P A⊥底面ABC,∠BAC=90°.点D,E,N分别为棱P A,PC,BC的中点,M是线段AD的中点,P A=AC=4,AB=2.(1) 求证:MN∥平面BDE;(2) 已知点H在棱P A上,且直线NH与直线BE所成角的余弦值为721,求线段AH的长.(第5题)6. (2019·洛阳二模)如图,在四棱柱ABCD A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点.(1) 求证:B1C1⊥CE;(2) 设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为26,求线段AM的长.(第6题)课时2二面角A应知应会一、解答题1. (2019·保定期末)如图,正三棱柱(底面为正三角形,侧棱垂直于底面)ABC A1B1C1中,侧棱长AA1=2,底面边长AB=1,N是CC1的中点.(1) 求证:平面ANB1⊥平面AA1B1B;(2) 设M是线段AB1的中点,求直线C1M与平面ABC1所成的角的正弦值.(第1题)2. (2019·江苏天一中学)如图,在直三棱柱ABC A1B1C1中,AB=4,AC=BC=3,D为AB的中点.(1) 求点C到平面A1ABB1的距离;(2) 若AB1⊥A1C,求二面角A1-CD-C1的平面角的余弦值.(第2题)3. (2019·临汾一模)在四棱锥P ABCD中,平面ABCD⊥平面PCD,底面ABCD为梯形,AB∥CD,AD⊥PC且AB=1,AD=DC=DP=2,∠PDC=120°.(1) 求证:AD⊥平面PDC;(2) 求二面角B-PD-C的余弦值.(第3题)4. (2019·如皋中学)如图,以正四棱锥V ABCD 的底面中心O 为坐标原点建立空间直角坐标系O-xyz ,其中Ox ∥BC ,Oy ∥AB ,E 为VC 的中点.正四棱锥V-ABCD 的底面边长为2a ,高为h ,且有cos 〈BE → ,DE →〉=-1549.(1) 求ha的值;(2) 求二面角B-VC-D 的余弦值.(第4题)B 巩固提升一、 填空题1. 如图,在直三棱柱ABC A 1B 1C 1中,AA 1=BC =AB =2,AB ⊥BC ,则二面角B 1-A 1C-C 1的大小是________.(第1题)2. 如图,在四棱锥P ABCD 中,底面ABCD 是矩形,PD ⊥平面ABCD ,且PD =AD =1,AB =2,点E 是AB 上一点,当AE =________时,二面角P-EC- D 的平面角为π4.(第2题)二、 解答题3. 如图,四棱锥P ABCD 的底面ABCD 是平行四边形,P A ⊥底面ABCD ,P A =3,AD =2,AB =4,∠ABC =60°.(1) 求证:BC ⊥平面P AC ;(2) 若E 是侧棱PB 上一点,记PEPB =λ(0<λ<1),且________,求λ的值.①二面角E-AD-B 为30°; ②二面角E-AD-P 为60°;③二面角E-AD-B 与E-AD-P 相等.请从上面三个条件中任选一个,填入横线处,并完成.(第3题)4. (2019·合肥调研)如图,在梯形ABCD 中,AB ∥CD ,AD =DC =CB =1,∠BCD =2π3 ,四边形BFED 为矩形,平面BFED ⊥平面ABCD ,BF =1.(1) 求证:AD ⊥平面BFED ;(2) 点P 在线段EF 上运动,设平面P AB 与平面ADE 所成锐二面角为θ,试求θ的最小值.(第4题)微难点8翻折问题一、填空题1. 如图表示一个正方体表面的一种展开图,图中的四条线段AB,CD,EF和GH在原正方体中相互异面的有______对.(第1题)2.如图所示是一个正方体的表面展开图,A,B,C均为棱的中点,D是顶点,则在正方体中,异面直线AB,CD所成角的余弦值为________.(第2题)3. 已知一个凸多面体共有9个面,所有棱长均为1,其平面展开图如图所示,则该凸多面体的体积V=________.(第3题)4. 如图是一几何体的平面展开图,其中四边形ABCD 为正方形,E ,F 分为P A ,PD 的中点,在此几何体中,给出下面四个结论:①直线BE 与直线CF 是异面直线;②直线BE 与直线AF 是异面直线;③直线EF ∥平面PBC ;④平面BCE ⊥平面P AD .其中正确的结论是________.(填序号)(第4题)二、 解答题5. 如图(1),四边形ABCD 为等腰梯形,AD ∥BC ,且AD =13 BC =a ,∠BAD =135°,AE ⊥BC于点E ,F 为BE 的中点.将△ABE 沿着AE 折起至△AB ′E 的位置,得到如图(2)所示的四棱锥B ′ ADCE .图(1)图(2) (第5题)(1) 求证:AF ∥平面B ′CD ;(2) 若平面AB ′E ⊥平面AECD ,求二面角B ′- CD-E 的余弦值.6. 如图,在平面四边形ABCD 中,△ABC 等边三角形,AC ⊥DC ,以AC 为折痕将△ABC 折起,使得平面ABC ⊥平面ACD .(1) 设E 为BC 的中点,求证:AE ⊥平面BCD .(2) 若BD 与平面ABC 所成角的正切值为32,求二面角A-BD-C 的余弦值.(第6题)7. 如图,已知等边三角形ABC 中,E ,F 分别为AB ,AC 边的中点,M 为EF 的中点,N 为BC 边上一点,且CN =14BC ,将△AEF 沿EF 折到△A ′EF 的位置,使平面A ′EF ⊥平面EFCB .(1) 求证:平面A ′MN ⊥平面A ′BF ; (2) 求二面角E-A ′F-B 的余弦值.(第7题)微难点9 球的相关问题一、 选择题1. 若球的表面积扩大为原来的2倍,则球的体积比原来增加了( )A. 2倍B. 4倍C. 2 2D. (2 2 -1)倍2. (2019·长沙调研)圆柱形容器的内壁底半径为5 cm,两个直径为5 cm 的玻璃小球都浸没于容器的水中,若取出这两个小球,则容器内水面将下降( )A. 53 cmB. 103 cmC. 403 cmD. 56cm3. 在四面体S ABC 中,SA ⊥平面ABC ,∠BAC =120°,SA =AC =2,AB =1,则该四面体的外接球的表面积为( )A. 11πB. 7πC.103 π D. 4034. 已知某球半径为R ,则该球内接长方体的表面积的最大值是( ) A. 8R 2 B. 6R 2 C. 4R 2 D. 2R 25. 两球O 1和O 2在棱长为1的正方体ABCD A 1B 1C 1D 1的内部,且互相外切,若球O 1与过点A 的正方体的三个面相切,球O 2与过点C 1的正方体的三个面相切,则球O 1和O 2的表面积之和的最小值为( )A. (6-33 )πB. (8-43 )πC. (6+33 )πD. (8+43 )π二、 填空题6. 如果三棱锥的三个侧面两两垂直,它们的面积分别为6,4,3,那么它的外接球的表面积是________.7. 将长、宽分别为4和3的长方形ABCD 沿对角线AC 折起,得到四面体A BCD ,则四面体A BCD 的外接球的体积为________.8. 底面半径为1 cm 的圆柱形容器里放有四个半径为12 cm 的实心铁球,四个球两两相切,其中底层两球与容器底面相切.现往容器里注水,使水面恰好浸没所有铁球,则需要注水________cm 3.9. 已知三棱锥S ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S ABC 的体积为9,则球O 的表面积为________.10. 已知一个四面体的一条边长为6 ,其余边长均为2,则此四面体的外接球的半径为________.三、解答题11. 有一个倒圆锥形容器,它的轴截面是一个正三角形,在容器内放一个半径为r的铁球,并注入水,使水面与球正好相切,然后将球取出,求这时容器中水的深度.(第11题)。
高2021届高2018级苏教版步步高大一轮高三数学复习课件学案第一章 1.4
§1.4 不等关系与不等式1.两个实数比较大小的方法(1)作差法⎩⎪⎨⎪⎧a -b >0⇔a >b a -b =0⇔a =b a -b <0⇔a <b(a ,b ∈R )(2)作商法⎩⎪⎨⎪⎧ab>1⇔a >b ab =1⇔a =ba b <1⇔a <b(a ∈R ,b >0)2.不等式的基本性质概念方法微思考1.若a >b ,且a 与b 都不为0,则1a 与1b的大小关系确定吗?提示 不确定.若a >b ,ab >0,则1a <1b ,即若a 与b 同号,则分子相同时,分母大的反而小;若a >0>b ,则1a >1b ,即正数大于负数.2.两个同向不等式可以相加和相乘吗?提示 可以相加但不一定能相乘,例如2>-1,-1>-3.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)两个实数a ,b 之间,有且只有a >b ,a =b ,a <b 三种关系中的一种.( √ ) (2)若ab>1,则a >b .( × )(3)一个不等式的两边同加上或同乘以同一个数,不等号方向不变.( × )(4)a >b >0,c >d >0⇒a d >bc .( √ )题组二 教材改编2.若a ,b 都是实数,则“a -b >0”是“a 2-b 2>0”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件答案 A 解析a -b >0⇒a >b ⇒a >b ⇒a 2>b 2,但a 2-b 2>0⇏a -b >0.3.若a >b >0,c <d <0,则一定有( ) A.a c -bd >0 B.a c -b d <0 C.a d >b c D.a d <b c答案 D解析 ∵c <d <0,∴0<-d <-c , 又0<b <a ,∴-bd <-ac ,即bd >ac , 又∵cd >0,∴bd cd >ac cd ,即b c >ad .题组三 易错自纠4.设a ,b ∈R ,则“a >2且b >1”是“a +b >3且ab >2”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件 答案 A解析 若a >2且b >1,则由不等式的同向可加性可得a +b >2+1=3,由不等式的同向同正可乘性可得ab >2×1=2.即“a >2且b >1”是“a +b >3且ab >2”的充分条件;反之,若“a +b >3且ab >2”,则“a >2且b >1”不一定成立,如a =6,b =12.所以“a >2且b >1”是“a+b >3且ab >2”的充分不必要条件.故选A. 5.(多选)下列命题为真命题的是( ) A.若a >b >0,则ac 2>bc 2 B.若a <b <0,则a 2>ab >b 2 C.若a >b >0且c <0,则c a 2>cb 2D.若a >b 且1a >1b ,则ab <0答案 BCD解析 当c =0时,不等式不成立,∴A 命题是假命题;⎩⎪⎨⎪⎧ a <b ,a <0⇒a 2>ab ,⎩⎪⎨⎪⎧a <b ,b <0⇒ab >b 2,∴a 2>ab >b 2,∴B 命题是真命题;a >b >0⇒a 2>b 2>0⇒0<1a 2<1b 2,∵c <0,∴c a 2>cb 2,∴C 命题是真命题;1a >1b ⇒1a -1b >0⇒b -a ab >0,∵a >b ,∴b -a <0,ab <0,∴D 命题是真命题,∴本题选BCD.6.(2019·北京市海淀区育英学校期中)若实数a, b 满足0<a <2, 0<b <1,则a -b 的取值范围是________. 答案 (-1,2)解析 ∵0<b <1,∴-1<-b <0, ∵0<a <2,∴-1<a -b <2.比较两个数(式)的大小例1 (1)若a <0,b <0,则p =b 2a +a 2b 与q =a +b 的大小关系为( )A.p <qB.p ≤qC.p >qD.p ≥q答案 B解析 (作差法)p -q =b 2a +a 2b -a -b=b 2-a 2a +a 2-b 2b =(b 2-a 2)·⎝⎛⎭⎫1a -1b =(b 2-a 2)(b -a )ab =(b -a )2(b +a )ab ,因为a <0,b <0,所以a +b <0,ab >0. 若a =b ,则p -q =0,故p =q ; 若a ≠b ,则p -q <0,故p <q . 综上,p ≤q .故选B.(2)已知a >b >0,比较a a b b 与a b b a 的大小. 解 ∵a a b b a b b a =a a -b b a -b =⎝⎛⎭⎫a b a -b,又a >b >0,故ab >1,a -b >0,∴⎝⎛⎭⎫a b a -b >1,即a a b ba b b a >1, 又a b b a >0,∴a a b b >a b b a ,∴a a b b 与a b b a 的大小关系为a a b b >a b b a . 思维升华 比较大小的常用方法(1)作差法:①作差;②变形;③定号;④结论.(2)作商法:①作商;②变形;③判断商与1的大小关系;④结论.跟踪训练1 (1)已知p ∈R ,M =(2p +1)(p -3),N =(p -6)(p +3)+10,则M ,N 的大小关系为________. 答案 M >N解析 因为M -N =(2p +1)(p -3)-[(p -6)(p +3)+10]=p 2-2p +5=(p -1)2+4>0,所以M >N .(2)若a >0,且a ≠7,则( ) A.77a a <7a a 7 B.77a a =7a a 7 C.77a a >7a a 7D.77a a 与7a a 7的大小不确定 答案 C解析 77a a 7a a7=77-a a a -7=⎝⎛⎭⎫7a 7-a ,则当a >7时,0<7a <1,7-a <0,则⎝⎛⎭⎫7a 7-a>1,∴77a a >7a a 7; 当0<a <7时,7a >1,7-a >0,则⎝⎛⎭⎫7a 7-a>1,∴77a a >7a a 7. 综上,77a a >7a a 7.不等式的基本性质例2 (1)(2020·武汉部分市级示范高中联考)下列命题中正确的是( ) A.若a >b ,则ac 2>bc 2 B.若a >b ,c <d ,则a c >bdC.若a >b ,c >d ,则a -c >b -dD.若ab >0,a >b ,则1a <1b答案 D解析 对于A 选项,当c =0时,不成立,故A 选项错误;当a =1,b =0,c =-2,d =-1时,a c <bd ,故B 选项错误;当a =1,b =0,c =1,d =0时,a -c =b -d ,故C 选项错误,故D 选项正确. (2)(多选)若1a <1b <0,则下列结论正确的是( )A.a 2<b 2B.ab <b 2C.a +b <0D.|a |+|b |>|a +b |答案 ABC解析 由题意可知b <a <0,所以A,B,C 正确,而|a |+|b |=-a -b =|a +b |,故D 错误.思维升华判断不等式的常用方法:一是用性质逐个验证;二是用特殊值法排除.利用不等式的性质判断不等式是否成立时要特别注意前提条件.跟踪训练2(1)(多选)(2019·天津市河北区模拟)若a,b,c∈R,给出下列命题中,正确的有()A.若a>b,c>d,则a+c>b+dB.若a>b,c>d,则b-c>a-dC.若a>b,c>d,则ac>bdD.若a>b,c>0,则ac>bc答案AD解析∵a>b,c>d,由不等式的同向可加性得a+c>b+d,故A正确;由A正确,可知B不正确;取4>-2,-1>-3,则4×(-1)<(-2)×(-3),故C不正确;∵a>b,c>0,∴ac>bc.故D 正确.综上可知,只有AD正确.故选AD.(2)已知a,b,c满足c<b<a,且ac<0,那么下列选项中一定成立的是()A.ab>acB.c(b-a)<0C.cb2<ab2D.ac(a-c)>0答案 A解析由c<b<a且ac<0,知c<0且a>0.由b>c,得ab>ac一定成立.不等式性质的综合应用命题点1判断不等式是否成立例3(2019·北京师范大学附属中学期中)若b<a<0,则下列不等式:①|a|>|b|;②a+b<ab;③a2b<2a-b中,正确的不等式有()A.0个B.1个C.2个D.3个答案 C解析 对于①,因为b <a <0,所以|b |>|a |,故①错误;对于②,因为b <a <0,所以a +b <0,ab >0,a +b <ab ,故②正确;对于③,a 2b -2a +b =a 2-2ab +b 2b =(a -b )2b <0,a 2b <2a -b ,故③正确.故选C.命题点2 求代数式的取值范围例4 已知-1<x <4,2<y <3,则x -y 的取值范围是________,3x +2y 的取值范围是________. 答案 (-4,2) (1,18)解析 ∵-1<x <4,2<y <3,∴-3<-y <-2, ∴-4<x -y <2.由-1<x <4,2<y <3,得-3<3x <12,4<2y <6, ∴1<3x +2y <18.若将本例条件改为-1<x +y <4,2<x -y <3,求3x +2y 的取值范围.解 设3x +2y =m (x +y )+n (x -y ),则⎩⎪⎨⎪⎧m +n =3,m -n =2,∴⎩⎨⎧m =52,n =12.即3x +2y =52(x +y )+12(x -y ),又∵-1<x +y <4,2<x -y <3, ∴-52<52(x +y )<10,1<12(x -y )<32,∴-32<52(x +y )+12(x -y )<232,即-32<3x +2y <232,∴3x +2y 的取值范围为⎝⎛⎭⎫-32,232. 思维升华 (1)判断不等式是否成立的方法 ①逐一给出推理判断或反例说明.②结合不等式的性质,对数函数、指数函数的性质进行判断. (2)求代数式的取值范围一般是利用整体思想,通过“一次性”不等关系的运算求得整体范围. 跟踪训练3 (1)设b >a >0,c ∈R ,则下列不等式中不一定成立的是( ) A.1122<a b B.1a -c >1b -c C.a +2b +2>ab D.ac 2<bc 2答案 D解析 因为y =12x 在(0,+∞)上是增函数,所以1122<a b ; 因为y =1x -c 在(0,+∞)上是减函数,所以1a -c >1b -c ;因为a +2b +2-a b =2(b -a )(b +2)b >0,所以a +2b +2>ab ;当c =0时,ac 2=bc 2,所以D 不成立.故选D.(2)已知π<α+β<5π4,-π<α-β<-π3,则2α-β的取值范围是________.答案 ⎝⎛⎭⎫-π,π8 解析 设2α-β=m (α+β)+n (α-β),则⎩⎪⎨⎪⎧m +n =2,m -n =-1,∴⎩⎨⎧m =12,n =32,即2α-β=12(α+β)+32(α-β),∵π<α+β<5π4,-π<α-β<-π3,∴π2<12(α+β)<5π8,-3π2<32(α-β)<-π2, ∴-π<12(α+β)+32(α-β)<π8,即-π<2α-β<π8,∴2α-β的取值范围是⎝⎛⎭⎫-π,π8.1.(2019·张家界期末)下列不等式中,正确的是( )A.若ac 2>bc 2,则a >bB.若a >b ,则a +c <b +cC.若a >b ,c >d ,则ac >bdD.若a >b ,c >d ,则a c >b d答案 A解析 若a >b ,则a +c >b +c ,故B 错;设a =3,b =1,c =-1,d =-2,则ac <bd ,a c <b d所以C,D 错,故选A.2.若a ,b ∈R ,且a >|b |,则( )A.a <-bB.a >bC.a 2<b 2D.1a >1b答案 B 解析 由a >|b |得,当b ≥0时,a >b ,当b <0时,a >-b ,综上可知,当a >|b |时,则a >b 成立,故选B.3.若a <b <0,则下列不等式一定成立的是( )A.1a -b >1b B.a 2<abC.|b ||a |<|b |+1|a |+1 D.a n >b n答案 C解析 (特值法)取a =-2,b =-1,n =0,逐个检验,可知A,B,D 项均不正确;C 项,|b ||a |<|b |+1|a |+1⇔|b |(|a |+1)<|a |(|b |+1)⇔|a ||b |+|b |<|a ||b |+|a |⇔|b |<|a |,∵a <b <0,∴|b |<|a |成立,故选C.4.已知c 3a <c 3b <0,则下列选项中错误的是( )A.|b |>|a |B.ac >bcC.a -b c >0D.ln a b >0答案 D解析 c 3a <c 3b <0,当c <0时, 1a >1b >0,即b >a >0,∴|b |>|a |, ac >bc, a -b c >0成立,即A,B,C 成立;此时0<a b <1,∴ln a b <0,D 错误.同理,当c >0时,A,B,C 也正确.故选D.5.设M =3x+3y 2,N =(3)x +y ,P =其中0<x <y ),则M ,N ,P 的大小顺序是() A.P <N <M B.N <P <MC.P <M <ND.M <N <P答案 A解析 M =3x +3y 2>3x +y =(3)x +y =N ,又N =(3)x +y =23x y>P ,∴M >N >P .6.(2020·天津模拟)若α,β满足-π2<α<β<π2,则2α-β的取值范围是( ) A.-π<2α-β<0B.-π<2α-β<πC.-3π2<2α-β<π2D.0<2α-β<π 答案 C解析 ∵-π2<α<π2,∴-π<2α<π. ∵-π2<β<π2,∴-π2<-β<π2, ∴-3π2<2α-β<3π2. 又α-β<0,α<π2,∴2α-β<π2. 故-3π2<2α-β<π2. 7.(多选)若a <b <0,则下列不等式关系中,正确的有( )A.1a >1bB.1a >1a -bC.2233>a bD.1a 2>1b 2 答案 ABC解析 对于A,∵a <b <0,∴1a >1b,故A 正确;对于B,∵a <b <0 ,∴a <a -b <0,两边同时除以a (a -b )可得1a >1a -b,故B 正确;根据幂函数的单调性可知C 正确;对于D,∵a <b <0,∴a 2>b 2>0,∴1a 2<1b 2,故D 错误. 8.(多选)已知a ,b ∈(0,1),若a >b ,则下列所给命题中错误的为( ) A.1(1-)>(1-)aa b b B.2(1-)>(1-)a a b bC.(1+b )b >(1+a )aD.(1-b )b >(1-a )a答案 ABC解析 因为a ,b ∈(0,1)且a >b ,所以1>1-b >1-a >0,因为指数函数y =a x (0<a <1)单调递减,1>a >b >0,所以1a >a ,a >a 2,故A,B 错误. (1+b )b <(1+a )b <(1+a )a ,故C 错误.(1-b )b >(1-b )a >(1-a )a ,故D 正确.9.已知a +b >0,则a b 2+b a 2与1a +1b的大小关系是________. 答案a b 2+b a 2≥1a +1b 解析 a b 2+b a 2-⎝⎛⎭⎫1a +1b =a -b b 2+b -a a 2 =(a -b )·⎝⎛⎭⎫1b 2-1a 2=(a +b )(a -b )2a 2b 2. ∵a +b >0,(a -b )2≥0,∴(a +b )(a -b )2a 2b 2≥0. ∴a b 2+b a 2≥1a +1b. 10.已知有三个条件:①ac 2>bc 2;②a c >b c;③a 2>b 2,其中能成为a >b 的充分条件的是________.(填序号)答案 ①解析 由ac 2>bc 2可知c 2>0,即a >b ,故“ac 2>bc 2”是“a >b ”的充分条件;②当c <0时,a <b ;③当a <0,b <0时,a <b ,故②③不是a >b 的充分条件.11.(1)若bc -ad ≥0,bd >0,求证:a +b b ≤c +d d; (2)已知c >a >b >0,求证:a c -a >b c -b. 证明 (1)∵bc ≥ad ,bd >0,∴c d ≥a b, ∴c d +1≥a b +1,∴a +b b ≤c +d d. (2)∵c >a >b >0,∴c -a >0,c -b >0.∵a >b >0,∴1a <1b, 又∵c >0,∴c a <c b ,∴c -a a <c -b b,又c -a >0,c -b >0,∴a c -a >bc -b .12.已知1<a <4,2<b <8,试求a -b 与a b 的取值范围.解 因为1<a <4,2<b <8,所以-8<-b <-2.所以1-8<a -b <4-2,即-7<a -b <2.又因为18<1b <12,所以18<a b <42=2,即18<a b <2.故a -b 的取值范围为(-7,2),a b 的取值范围为⎝⎛⎭⎫18,2.13.已知a ,b ,c ,d 为实数,则“a >b 且c >d ”是“ac +bd >bc +ad ”的() A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分又不必要条件答案 A解析 因为c >d ,所以c -d >0.又a >b ,所以两边同时乘(c -d ),得a (c -d )>b (c -d ),即ac +bd >bc +ad .若ac +bd >bc +ad ,则a (c -d )>b (c -d ),也可能a <b 且c <d ,所以“a >b 且c >d ”是“ac +bd >bc +ad ”的充分不必要条件.14.若a =ln 33,b =ln 44,c =ln 55,则( )A.a <b <cB.c <b <aC.c <a <bD.b <a <c答案 B解析 方法一 对于函数y =f (x )=ln x x (x >e),y ′=1-ln xx 2,易知当x >e 时,函数f (x )单调递减.因为e <3<4<5,所以f (3)>f (4)>f (5),即c <b <a .方法二 易知a ,b ,c 都是正数,因为b a =3ln 44ln 3=log 8164<1,所以a >b ;因为b c =5ln 44ln 5=log 6251 024>1,所以b >c .即c <b <a .15.(2019·抚州临川第一中学模拟)设m =log 0.30.6,n =12log 20.6,则() A.m -n >mn >m +n B.m -n >m +n >mnC.mn >m -n >m +nD.m +n >m -n >mn答案 B解析 因为m =log 0.30.6>log 0.31=0,n =12log 20.6<12log 21=0,所以mn <0,m -n >0,因为-1n =-2log 0.62=log 0.60.25>0,1m =log 0.60.3>0,而log 0.60.25>log 0.60.3,所以-1n >1m>0,即可得m +n >0, 因为(m -n )-(m +n )=-2n >0,所以m -n >m +n ,所以m -n >m +n >mn .故选B.16.设0<b <a <1,则下列不等式成立的是( )A.a ln b >b ln aB.a ln b <b ln aC.a e b <b e aD.a e b =b e a答案 B解析 观察A,B 两项,实际上是在比较ln b b 和ln a a 的大小,引入函数y =ln x x ,0<x <1.则y ′=1-ln x x 2,可见函数y =ln x x 在(0,1)上单调递增.所以ln b b <ln a a,B 正确.对于C,D 两项,引入函数f (x )=e x x ,0<x <1,则f ′(x )=x e x -e x x 2=(x -1)e x x 2<0,所以函数f (x )=e x x在(0,1)上单调递减,又因为0<b <a <1,所以f (a )<f (b ),即e a a <e b b ,所以a e b >b e a ,故选B.。
2021高考数学人教版一轮复习多维层次练:第十章+第3节+二项式定理+Word版含解析
多维层次练59[A 级 基础巩固]1.已知⎝ ⎛⎭⎪⎫x -1x 7的展开式的第4项等于5,则x 等于( )A.17 B .-17C .7D .-7解析:由T 4=C 37x 4⎝⎛⎭⎪⎫-1x 3=5,得x =-17.答案:B2.(2020·合肥八校联考)已知(1+x )n 的展开式中第5项与第7项的二项式系数相等,则奇数项的二项式系数和为( )A .29B .210C .211D .212解析:由题意得C 4n =C 6n ,由组合数性质得n =10,则奇数项的二项式系数和为2n -1=29.答案:A3.(x 2+x +y )5的展开式中,x 5y 2的系数为( ) A .10 B .20 C .30D .60解析:(x 2+x +y )5=[(x 2+x )+y ]5的展开式中只有C 25(x 2+x )3y 2中含x 5y 2,易知x 5y 2的系数为C 25C 13=30.答案:C4.(2020·佛山质检)若⎝⎛⎭⎪⎫ax -1x 6的展开式的常数项是60,则a 的值为( )A .4B .±4C .2D .±2解析:⎝ ⎛⎭⎪⎫ax -1x 6的展开式的通项为T r +1=C r 6(ax )6-r ·⎝⎛⎭⎪⎫-1x r =(-1)r a 6-r ·C r 6x 6-32r , 令6-32r =0,解得r =4.所以常数项为(-1)4a 2C 46=15a 2=60,则a =±2. 答案:D5.C 1n +2C 2n +4C 3n +…+2n -1C n n 等于( ) A .3n B .2·3n C.3n2-1 D.3n -12解析:C 1n +2C 2n +4C 3n +…+2n -1C n n =12(C 0n +2C 1n +22C 2n +…+2n C nn )-12=12(1+2)n-12=3n-12. 答案:D6.(x +y )(2x -y )5的展开式中x 3y 3的系数为( ) A .-80 B .-40 C .40D .80解析:因为x 3y 3=x ·(x 2y 3),其系数为-C 35·22=-40, x 3y 3=y ·(x 3y 2),其系数为C 25·23=80.所以x 3y 3的系数为80-40=40. 故选C. 答案:C7.(2020·青岛质检)在⎝ ⎛⎭⎪⎫x +2x 2n(n ∈N *)的展开式中,若二项式系数最大的项仅是第六项,则展开式中常数项是( )A .180B .120C .90D .45解析:依题意,展开式共11项,所以n =10.则⎝ ⎛⎭⎪⎫x +2x 210展开式的通项T r +1=C r 10·2r·x 5-5r 2. 令5-5r2=0,所以r =2.所以展开式中的常数项T 3=C 210·22=180. 答案:A8.(2020·衡水中学调研)(1+x 2)·⎝⎛⎭⎪⎫1-1x 6的展开式中,常数项为( )A .-15B .16C .15D .-16解析:⎝ ⎛⎭⎪⎫1-1x 6的展开式的通项为T r +1=C r 6⎝ ⎛⎭⎪⎫-1x r =C r 6(-1)r ·x -r, 令-r =0,得r =0;令-r =-2,得r =2.所以展开式的常数项为C 06(-1)0+C 26(-1)2=16.答案:B9.若⎝ ⎛⎭⎪⎫ax 2+b x 6的展开式中x 3项的系数为20,则a 2+b 2的最小值为________.解析:T r +1=C r6(ax 2)6-r ⎝⎛⎭⎪⎫b x r =C r 6a 6-r b r x 12-3r , 令12-3r =3,则r =3.所以C 36a 3b 3=20,即ab =1.所以a 2+b 2≥2ab =2,即a 2+b 2的最小值为2. 答案:210.已知幂函数y =x a的图象过点(3,9),则⎝ ⎛⎭⎪⎫a x -x 8的展开式中x 的系数为________.解析:由幂函数的图象过点(3,9),可得a =2.则⎝ ⎛⎭⎪⎫2x -x 8展开式的第r +1项为T r +1=C r8⎝ ⎛⎭⎪⎫2x 8-r ·(-x )r =(-1)r C r 8·28-r x 32r -8,由32r -8=1,得r =6,故含x 的项的系数为C 68×22×(-1)6=112.答案:11211.(2017·浙江卷)已知多项式(x +1)3(x +2)2=x 5+a 1x 4+a 2x 3+a 3x 2+a 4x +a 5,则a 4=________,a 5=________.解析:a 4是x 项的系数,由二项式的展开式得a 4=C 33·C 12·2+C 23·C 22·22=16; a 5是常数项,由二项式的展开式得a 5=C 33·C 22·22=4. 答案:16 412.⎝ ⎛⎭⎪⎫x +a x ⎝ ⎛⎭⎪⎫2x -1x 5的展开式中各项系数的和为2,则该展开式中常数项为________.解析:令x =1,得展开式各项系数的和为(1+a )·(2-1)5=2, 所以a =1.因为二项式⎝ ⎛⎭⎪⎫2x -1x 5的展开式的通项公式为T r +1=C r 5(-1)r ·25-r ·x 5-2r,所以⎝ ⎛⎭⎪⎫x +1x ⎝ ⎛⎭⎪⎫2x -1x 5展开式中的常数项为x ·C 35(-1)3·22·x -1+1x·C 25·(-1)2·23·x =-40+80=40. 答案:40[B 级 能力提升]13.(一题多解)(2020·广州模拟)(2-x 3)(x +a )5的展开式的各项系数和为32,则该展开式中x 4的系数是( )A .5B .10C .15D .20解析:法一 因为(2-x 3)(x +a )5的展开式的各项系数和为32,所以(2-1)(1+a )5=32,所以a =1,因为(x +1)5的展开式的通项为T r +1=C r 5·x 5-r ,所以原多项式的展开式中x 4的系数是2×C 15+(-1)×C 45=5.法二 因为(2-x 3)(x +a )5的展开式的各项系数和为32,所以(2-1)·(1+a )5=32,所以a =1,因为(x +1)5=x 5+5x 4+10x 3+10x 2+5x +1,所以(2-x 3)(x +a )5的展开式中x 4的系数是2×5+(-1)×5=5.答案:A14.在(1+x )6(1+y )4的展开式中,记x m y n 项的系数为f (m ,n ),则f (3,0)+f (2,1)+f (1,2)+f (0,3)=( )A .45B .60C .120D .210解析:在(1+x )6的展开式中,x m 的系数为C m 6,在(1+y )4的展开式中,y n 的系数为C n 4,故f (m ,n )=C m6·C n 4, 所以f (3,0)+f (2,1)+f (1,2)+f (0,3)=C 36C 04+C 26C 14+C 16C 24+C 06C 34=120.答案:C15.(2019·江苏卷节选)设(1+x )n =a 0+a 1x +a 2x 2+…+a n x n ,n ≥4,n ∈N *,已知a 23=2a 2a 4.则n =________.解析:因为(1+x )n =C 0n +C 1n x +C 2n x 2+…+C n n x n,n ≥4,所以a 2=C 2n =n (n -1)2,a 3=C 3n =n (n -1)(n -2)6, a 4=C 4n =n (n -1)(n -2)(n -3)24.因为a 23=2a 2a 4,所以⎣⎢⎡⎦⎥⎤n (n -1)(n -2)62=2×n (n -1)2×n (n -1)(n -2)(n -3)24.解得n =5. 答案:5[C 级 素养升华]16.(2019·浙江卷)在二项式(2+x )9的展开式中,常数项是________,系数为有理数的项的个数是________.解析:由二项展开式的通项公式可知T r +1=C r 9·(2)9-r ·x r ,r ∈N ,0≤r ≤9,当为常数项时,r =0,T 1=C 09·(2)9·x 0=(2)9=16 2.当项的系数为有理数时,9-r 为偶数,可得r =1,3,5,7,9,即系数为有理数的项的个数是5. 答案:162 5。
高2021届高2018级高三数学一轮专题训练试题及考试参考答案 (1)
[考案1]第一章综合过关规范限时检测(时间:45分钟满分100分)一、单选题(本大题共7个小题,每小题5分,共35分,在每小题给出的四个选项中只有一个是符合题目要求的)1.(2020·兰州市高三诊断考试)已知集合A={x∈N|-1<x<4},B⊆A,则集合B中的元素个数至多是(B)A.3B.4C.5D.6【试题解答】因为A=|x∈N|-1<x<4}={0,1,2,3},且B⊆A,所以集合B中的元素个数至多是4,故选B.2.(2018·课标全国Ⅲ,1)已知集合A={x|x-1≥0},B={0,1,2},则A∩B=(C)A.{0}B.{1}C.{1,2}D.{0,1,2}【试题解答】本题考查集合的运算.∵A={x|x-1≥0}={x|x≥1},B={0,1,2},∴A∩B={1,2},故选C.3.(2020·成都市二诊)设全集U=R,集合A={x|-1<x<3},B={x|x≤-2或x≥1},则A∩(∁U B)=(A)A.{x|-1<x<1}B.{x|-2<x<3}C.{x|-2≤x<3}D.{x|x≤-2或x>-1}【试题解答】由题意知∁U B={x|-2<x<1},则A∩(∁U B)={x|-1<x<3}∩{x|-2<x<1}={x|-1<x<1}.4.(2020·宁夏中卫模拟)命题“若a2+b2=0,则a=0且b=0”的逆否命题是(D)A.若a2+b2≠0,则a≠0且b≠0B.若a2+b2≠0,则a≠0或b≠0C.若a=0且b=0,则a2+b2≠0D.若a≠0或b≠0,则a2+b2≠0【试题解答】命题“若a2+b2=0,则a=0且b=0”的逆否命题是“若a≠0或b≠0,则a2+b2≠0”,故选D.5.(2020·山东潍坊重点高中联考)毛泽东同志在《清平乐·六盘山》中的两句诗为“不到长城非好汉,屈指行程二万”,假设诗句的前一句为真命题,则“到长城”是“好汉”的(B)A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【试题解答】解法一:由“不到长城非好汉”可知,要想成为好汉必须到过长城,因此“到长城”是“好汉”的必要不充分条件.解法二:设¬p为不到长城,推出¬q非好汉,即¬p⇒¬q,由原命题与其逆否命题等价可知q⇒p,即好汉⇒到长城,故“到长城”是“好汉”的必要不充分条件.故选B.6.下列命题中,真命题是( D )A.命题“若a >b ,则ac 2>bc 2”B.命题“若a =b ,则|a |=|b |”的逆命题C.命题“当x =2时,x 2-5x +6=0”的否命题D.命题“终边相同的角的同名三角函数值相等”的逆否命题【试题解答】 命题“若a >b ,则ac 2>bc 2”是假命题,如a >b 且c =0时,ac 2=bc 2;命题“若a =b ,则|a |=|b |”的逆命题为“若|a |=|b |,则a =b ”是假命题;命题“当x =2时,x 2-5x +6=0”的否命题为“若x ≠2,则x 2-5x +6≠0”是假命题;命题“终边相同的角的同名三角函数值相等”是真命题,其逆否命题与原命题等价,为真命题,故选D.7.(2020·广东汕头模拟)已知命题p :关于x 的方程x 2+ax +1=0没有实根;命题q :∀x >0,均有2x -a >0.若“¬p ”和“p ∧q ”都是假命题,则实数a 的取值范围是( C )A.(-∞,-2)B.(-2,1]C.(1,2)D.(1,+∞)【试题解答】 若方程x 2+ax +1=0没有实根,则判别式Δ=a 2-4<0,即-2<a <2,即p :-2<a <2.∀x >0,2x -a >0则a <2x ,当x >0时,2x >1,则a ≤1,即q :a ≤1.∵¬p 是假命题,∴p 是真命题.∵p ∧q 是假命题,∴q 是假命题,即⎩⎪⎨⎪⎧-2<a <2,a >1,得1<a <2.故选C. 二、多选题(本大题共3个小题,每小题5分,共15分,在每小题给出的四个选项中,有多项符合题目要求全部选对的得5分,部分选对的得3分,有选错的得0分)8.(2020·重庆市第一次调研抽测改编)已知集合A ={1,2,m },B ={3,4},若A ∪B ={1,2,3,4},则实数m 可以为( CD )A.1B.2C.3D.4 【试题解答】 解法一:由题意知m 是B 中的元素,则m =3或4,故选C 、D.解法二:由集合中元素的互异性知,m ≠1且m ≠2,故排除选项A 、B ,选C 、D.9.(2020·福建三明一中期中改编)下列选项中错误的有( ABC )A.命题“若x 2=1,则x =1”的否命题为:“若x 2=1,则x ≠1”B.“A ≠∅”是“A ∩B ≠∅”的充分不必要条件C.命题“∃x ∈R ,使得x 2+x -1<0”的否定是“∀x ∈R ,均有x 2+x -1>0”D.命题“若x =y ,则sin x =sin y ”的逆否命题为真命题【试题解答】 对于A ,命题“若x 2=1,则x =1”的否命题为:“若x 2≠1,则x ≠1”∴A 错误; 对于B ,由“A ≠∅”是得不到“A ∩B ≠∅”,即“A ≠∅”是“A ∩B ≠∅”不充分条件,由“A ∩B ≠∅”可知“A ≠∅”,即“A ≠∅”是“A ∩B ≠∅”必要条件,故“A ≠∅”是“A ∩B ≠∅”必要不充分条件,∴B 错误;对于C ,命题“∃x ∈R ,使得x 2+x -1<0”的否定是“∀x ∈R ,使得x 2+x -1≥0”,∴C 错误; 对于D ,命题“若x =y ,则sin x =sin y ”为真命题,根据互为逆否命题的两个命题同真假,可知,命题“若x =y ,则sin x =sin y ”的逆否命题为真命题,∴D 正确;故A 、B 、C.10.(2020·凤城市第一中学高一月考改编)不等式1≤|x |≤4成立的充分不必要条件为( AB )A.[-4,-1]B.[1,4]C.[-4,-1]∪[1,4]D.[-4,4]【试题解答】 由不等式1≤|x |≤4,解得:-1≤x ≤-1或1≤x ≤4,对于A ,B 选项中的集合是不等式解集的真子集,∴不等式1≤|x |≤4成立的充分不必要条件为A ,B.故选A 、B.三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)11.(2018·湖南卷)已知集合U ={1,2,3,4},A ={1,3},B ={1,3,4},则A ∪(∁U B )=__{1,2,3}__. 【试题解答】 ∵∁U B ={2},∴A ∪(∁U B )={1,2,3}.12.(2020·江西上饶模拟)命题“∀x ∈R ,|x |+x 2≥0”的否定是 ∃x 0∈R ,|x 0|+x 20<0 .【试题解答】 因为全称命题的否定是特称命题,所以命题“∀x ∈R ,|x |+x 2≥0”的否定是“∃x 0∈R ,|x 0|+x 20<0”.13.(2020·湖南常德一中模拟)条件p :1-x <0,条件q :x >a ,若p 是q 的充分不必要条件,则a 的取值范围是__(-∞,1)__.【试题解答】 p :x >1,若p 是q 的充分不必要条件,则p ⇒q 但qp ,也就是说,p 对应的集合是q 对应的集合的真子集,所以a <1.14.(2020·衡水金卷A 信息卷(五),14)命题p :若x >0,则x >a ;命题q :若m ≤a -2,则m <sin x (x ∈R )恒成立.若p 的逆命题,q 的逆否命题都是真命题,则实数a 的取值范围是__[0,1)__.【试题解答】 命题p 的逆命题是若x >a ,则x >0,故a ≥0.因为命题q 的逆否命题为真命题,所以命题q 为真命题,则a -2<-1,解得a <1.则实数a 的取值范围是[0,1).四、解答题(本大题共2个小题,共30分,解答应写出文字说明、证明过程或演算步骤)15.(本小题满分15分)已知集合A ={x |x 2-6x +8<0},B ={x |(x -a )(x -3a )<0},a ∈R .(1)若x ∈A 是x ∈B 的充分条件,求实数a 的取值范围;(2)若A ∩B =∅,求实数a 的取值范围.【试题解答】 A ={x |x 2-6x +8<0}={x |2<x <4},B ={x |(x -a )(x -3a )<0}.(1)当a =0时,B =∅,不符合题意,当a >0时,B ={x |a <x <3a },要满足题设条件,则⎩⎪⎨⎪⎧a ≤2,3a ≥4,解得43≤a ≤2. 当a <0时,B ={x |3a <x <a },要满足题设条件,则⎩⎪⎨⎪⎧3a ≤2,a ≥4,无解. 综上可知:43≤a ≤2. (2)要满足A ∩B =∅.当a >0时,B ={x |a <x <3a },则a ≥4或3a ≤2,即0<a ≤23或a ≥4, 当a <0时,B ={x |3a <x <a },则a ≤2或3a ≥4,即a <0,当a =0时,B =∅,满足题意.综上可知:a ≤23或a ≥4. 16.(本小题满分15分)设命题p :方程x 28-a +y 2a -4=1表示焦点在x 轴上的椭圆,命题q :函数f (x )=13x 3+3(3-a )2x 2+9x 无极值. (1)若p 为真命题,求实数a 的取值范围;(2)若“p ∧q ”为假命题,“p ∨q ”为真命题,求实数a 的取值范围.【试题解答】 (1)由⎩⎪⎨⎪⎧ 8-a >0a -4>08-a >a -4得4<a <6, ∴实数a 的取值范围为(4,6).(2)由题意知p ,q 一真一假,q 为真时,则f ′(x )=x 2+3(3-a )x +9≥0恒成立,∴Δ=9(3-a )2-36≤0得1≤a ≤5,若p 真q 假,5<a <6;若q 真p 假,1≤a ≤4.综上,实数a 的取值范围是[1,4]∪(5,6).。
高三数学南方凤凰台高2021届高2018级高三一轮数学提高版完整版学案第五章
第五章 平面向量与复数第26讲 平面向量的概念与线性运算A 应知应会一、 选择题1. (多选)如图,若D ,E ,F 分别是△ABC 的边AB ,BC ,CA 的中点,则下列等式中正确的是( )(第1题)A. FD → +DA → +DE →=0 B. AD → +BE → +CF →=0C. FD → +DE → +AD → =AB →D. AD → +EC → +FD → =BD →2. 在平行四边形ABCD 中,对角线AC 与BD 交于点O ,若AB → +AD → =λAO →,则λ等于( )A. 1B. 2C. 4D. 63. 在等腰梯形ABCD 中,AB → =-2CD → ,M 为BC 的中点,则AM →等于( ) A. 12 AB → +12 AD → B. 34 AB → +12 AD → C. 34 AB → +14 AD → D. 12 AB → +34AD → 4. 在△ABC 中,设三边AB ,BC ,CA 的中点分别为E ,F ,D ,则EC → +F A →等于( ) A. BD → B. 12 BD → C. AC →D. 12AC →5. (2019·河北三市联考)已知e 1,e 2是不共线向量,a =m e 1+2e 2,b =n e 1-e 2,且mn ≠0,若a ∥b,则mn等于( )A. -12B. 12 C. -2 D. 2二、 解答题6. 设e 1,e 2是两个不共线向量,已知AB → =2e 1-8e 2,CB → =e 1+3e 2,CD →=2e 1-e 2. (1) 求证:A ,B ,D 三点共线;(2) 若BF →=3e 1-k e 2,且B ,D ,F 三点共线,求k 的值.7. 在△ABC 中,D ,E 分别为BC ,AC 边上的中点,G 为BE 上一点,且GB =2GE ,设AB →=a,AC → =b,试用a,b 表示AD → ,AG → .B 组 能力提升一、 填空题1. 在△ABC 中,若AD → =2DB → ,CD → =13 CA → +λCB →,则λ=________.2. (2019·无锡期末)在四边形 ABCD 中,已知AB → =a +2b,BC → =-4a -b,CD →=-5a -3b,其中a,b 是不共线的向量,则四边形ABCD 的形状是________.3. (2019·潍坊一模改编)若M 是△ABC 内一点,且满足BA → +BC → =4BM → ,则△ABM 与△ACM 的面积之比为________.4. (2019·泰州期末)已知点P 为平行四边形ABCD 所在平面上一点,且满足P A → +PB → +2PD → =0,λP A → +μPB → +PC →=0,则λμ=________.二、 解答题5. 在直角梯形ABCD 中,∠A =90°,∠B =30°,AB =23 ,BC =2,点E 在线段CD 上,若AE →=AD → +μAB →,求μ的取值范围.6. (1) 如图(1),在同一个平面内,向量OA → ,OB → ,OC → 的模分别为1,1,2 ,OA → 与OC →的夹角为α,且tan α=7,OB → 与OC → 的夹角为45°.若OC → =mOA → +nOB →(m ,n ∈R),求m +n 的值.(2) 如图(2),在△ABC 中,AH ⊥BC 于点H ,M ∈AH ,AM =13 AH ,若AM → =xAB → +yAC →,求x+y 的值.图(1)图(2)(第6题)第27讲 平面向量的基本定理与坐标表示A 应知应会一、 选择题1. 已知a =(3,-1),b =(-1,2),则-3a -2b 等于( )A. (7,1)B. (-7,-1)C. (-7,1)D. (7,-1)2. 已知A ,B ,C 三点共线,且A (3,-6),B (-5,2),若点C 的横坐标为6,则点C 的纵坐标为( )A. -13B. 9C. -9D. 133. 已知a =(1,2),b =(x ,1),若a +2b 与2a -b 平行,则x 等于( )A. 12B. 1C. -1D. 2 4. 在△ABC 中,P ,Q 分别是AB ,BC 的三等分点,且AP → =13 AB → ,BQ → =13 BC → .若AB →=a,AC → =b,则PQ →等于( )A. 13 a +13 bB. -13 a +13 bC. 13 a -13 bD. -13 a -13b5. (多选)设e 1,e 2为平面α上不共线的两个向量,则下列命题中正确的是( ) A. λe 1+u e 2(λ,u ∈R)可以表示平面α内的所有向量B. 对于平面α内任一向量a,使a =λe 1+u e 2的实数对(λ,u )有无穷多个C. 若向量λ1e 1+u 1e 2与λ2e 1+u 2e 2共线,则有且只有一个实数λ,使得λ1e 1+u 1e 2=λ(λ2e 1+u 2e 2)D. 若实数λ,u 使得λe 1+u e 2=0,则λ=u =0二、 解答题6. 设OA → =(1,-2),OB → =(a ,-1),OC →=(-b ,0),a >0,b >0,O 为坐标原点,若A ,B ,C 三点共线,求1a +2b的最小值.7. 如图,以向量OA → =a,OB → =b 为邻边作OADB ,BM →=13 BC → ,CN → =13 CD → ,用a,b 表示OM → ,ON → ,MN →.(第7题)B 组 能力提升一、 填空题1. 已知梯形ABCD 中,AB ∥CD ,且DC =2AB ,若三个顶点分别为A (1,2),B (2,1),C (4,2),则点D 的坐标为________.2. 已知|OA → |=1,|OB → |=3 ,OA → ·OB → =0,点C 在∠AOB 内,且OC → 与OA →的夹角为30°,设OC → =mOA → +nOB →(m ,n ∈R),则m n的值为________.3. (2019·南昌十校二模)已知向量a =(1,-2),b =(x ,3y -5),且a ∥b,若x ,y 均为正数,则xy 的最大值是________.4. 在平面直角坐标系xOy 中,已知A (1,0),B (0,1),C 为坐标平面内第一象限内一点且∠AOC =π4,且|OC |=2,若OC → =λOA → +μOB →,则λ+μ=________.二、 解答题5. (2019·长沙模拟改编)在平面直角坐标系xOy 中,已知点A (3 ,0),B (1,2),动点P 满足OP → =λOA → +μOB →,其中λ,μ∈[0,1],λ+μ∈[1,2],求所有点P 构成的图形的面积.6. 已知正三角形ABC 的边长为23 ,平面ABC 内的动点P ,M 满足|AP → |=1,PM → =MC →,求|BM →|2的最大值.第28讲 平面向量数量积的应用A 应知应会一、 选择题 1. (2019·深圳二调)已知向量a =(1,-1),b =(-2,3).若a ⊥(a +m b),则m 等于( ) A. 25 B. -25 C. 0 D. 152. (2019·芜湖期末)已知向量a,b 满足a =(cos α,sin α),α∈R,a·b =-1,则a·(2a -b)等于( )A. 3B. 2C. 1D. 03. (2019·太原期末)设向量a,b,c 都是单位向量,且2a =b -3 c,则a,b 的夹角为( ) A. π6 B. π4 C. π3 D. 2π34. (2019·长沙检测)在△ABC 中,AB =10,BC =6,CA =8,且O 是△ABC 的外心,则CA → ·AO → 等于( )A. 16B. 32C. -16D. -325. (多选)给出下列四个命题,其中正确的选项有( )A. 非零向量a,b 满足|a|=|b|=|a -b|,则a 与a +b 的夹角是30°B. 若(AB → +AC → )·(AB → -AC → )=0,则△ABC 为等腰三角形C. 若单位向量a,b 的夹角为120°,则当|2a +x b|(x ∈R)取最小值时x =1D. 若OA → =(3,-4),OB → =(6,-3),OC →=(5-m ,-3-m ),∠ABC 为锐角,则实数m 的取值范围是m >-34二、 解答题6. 已知两向量e 1,e 2满足|e 1|=2,|e 2|=1,e 1,e 2所成的角为60°,若向量2t e 1+7e 2与向量e 1+t e 2所成的角为钝角,求实数t 的取值范围.7. 已知|a|=4,|b|=3,(2a -3b)·(2a +b)=61. (1) 求a 与b 的夹角θ; (2) 求|a +b|;(3) 若AB → =a,BC →=b,求△ABC 的面积.B 组 能力提升一、 填空题1. (2019·合肥检测)若非零向量a,b 满足a ⊥(a +2b),则|a +b||b|=________.2. (2019·福州抽测改编)已知点O 是△ABC 内部一点,且满足OA → +OB → +OC →=0,又AB → ·AC → =23 ,∠BAC =60°,则△OBC 的面积为________.3. (2019·郑州模拟)已知平面向量a,b,c 满足|a|=|b|=|c|=1,若a·b =12 ,则(a +b)·(2b -c)的最小值为________.4. (2019·江苏淮阴中学)在△ABC 中,∠A =60°,AB =3,AC =2.若BD → =2DC → ,AE → =λAC →-AB → (λ∈R),且AD → ·AE → =-4,则λ的值为________.二、 解答题5. 已知在△ABC 中,角A ,B ,C 的对边分别为a,b,c,向量m =(sin A ,sin B ),n =(cos B ,cos A ),m·n =sin 2C .(1) 求角C 的大小;(2) 若sin A ,sin C ,sin B 成等差数列,且CA → ·(AB → -AC →)=18,求边c 的长.6. (2019·山东德州模拟)在平面直角坐标系xOy 中,已知四边形OABC 是等腰梯形,A (6,0),C (1,3 ),点M 满足OM →=12OA → ,点P 在线段BC 上运动(包括端点),如图所示.(1) 求∠OCM 的余弦值;(2) 是否存在实数λ,使(OA → -λOP → )⊥CM →?若存在,求出满足条件的实数λ的取值范围;若不存在,请说明理由.(第6题)第29讲 复 数 A 应知应会一、 选择题1. 若复数z 满足(2-i)z =|1+2i|,则z 的虚部为( ) A.55 B. 55i C. 1 D. i 2. 已知复数z =|(3 -i)i|+i 5(i 为虚数单位),则复数z 的共轭复数为( ) A. 2-i B. 2+i C. 4-i D. 4+i3. 设i 是虚数单位,如果复数a +i2-i 的实部与虚部相等,那么实数a 的值为( )A. 13B. -13C. 3D. -3 4. 设复数z =lg (m 2-1)+1-m i,则z 在复平面内对应的点( ) A. 一定不在第一、二象限 B. 一定不在第二、三象限 C. 一定不在第三、四象限D. 一定不在第二、三、四象限5. (多选)(2019·山东枣庄模拟改编)设z 1,z 2是复数,则下列命题中的真命题是( ) A. 若|z 1-z 2|=0,则z 1=z 2 B. 若z 1=z 2,则z 1=z 2 C. 若|z 1|=|z 2|,则z 1·z 1=z 2·z 2D. 若|z 1|=|z 2|,则z 21 =z 22二、 解答题6. 已知z 是复数,z +2i,z2-i 均为实数(i 为虚数单位),且复数(z +a i)2在复平面内对应的点在第一象限,求实数a 的取值范围.7. 设z 1是虚数,z 2=z 1+1z 1 是实数,且-1≤z 2≤1.(1) 求|z 1|的值以及z 1的实部的取值范围; (2) 若ω=1-z 11+z 1,求证:ω为纯虚数.B 组 能力提升一、 填空题1. 设z 2=z 1-i z 1(其中z 1表示z 1的共轭复数),已知z 2的实部是-1,则z 2的虚部为________.2. 已知i 是虚数单位,若⎝ ⎛⎭⎪⎫2+i 1+m i 2<0(m ∈R),则m 的值为________.3. 定义:若z 2=a +b i(a ,b ∈R,i 为虚数单位),则称复数z 是复数a +b i 的平方根.根据定义,复数-3+4i 的平方根是________.4. 已知复数z =a 2-b 2+(|a |+a )i(a ,b ∈R),使复数z 为纯虚数的充要条件是________,写出一个使复数z 为纯虚数的充分不必要条件是________.二、 解答题5. 已知O 为坐标原点,向量OZ 1,OZ 2分别对应的复数z 1,z 2,且z 1=3a +5+(10-a 2)i,z 2=21-a+(2a -5)i(a ∈R),若z 1+z 2是实数. (1) 求实数a 的值;(2) 求以OZ 1,OZ 2为邻边的平行四边形的面积.6. 已知复数z 和ω满足:zω+2i z -2i ω+1=0. (1) 若ω -z =2i,求z 和ω;(2) 求证:若|z |=3 ,则|ω-4i|的值是一个常数,并求出这个常数.。
高三数学南方凤凰台高2021届高2018级高三一轮数学提高版完整版学案第一章
第1讲 集合及其运算A 应知应会一、 选择题 1. (2019·全国卷Ⅱ)设集合A ={x |x 2-5x +6>0},B ={x |x -1<0},则A ∩B 等于( ) A. (-∞,1) B. (-2,1) C. (-3,-1) D. (3,+∞) 2. (2019·全国卷Ⅲ)已知集合A ={-1,0,1,2},B ={x |x 2≤1},则A ∩B 等于( ) A. {-1,0,1} B. {0,1} C. {-1,1} D. {0,1,2} 3. (2019·宁德质检)已知集合A ={x |x ≥1},B ={x |x 2-2x -3<0},则A ∪B 等于( ) A. {x |1≤x <3} B. {x |x >-1} C. {x |1<x <3} D. {x |x ≥1}4. (多选)设集合A ={x |x 2-8x +15=0},B ={x |ax -1=0},若A ∩B =B ,则实数a 的值可以为( )A. 15B. 0C. 3D. 135. (多选)给出下列关系,其中正确的选项是( ) A. ∈{{}} B. ⊆{{}} C. ∈{} D. ⊆{}二、 解答题6. 已知M ={2,a ,b },N ={2a ,2,b 2},且M =N ,求实数a ,b 的值.7. 若A ={x |x 2-ax +a 2-19=0},B ={x |x 2-5x +6=0},C ={x |x 2+2x -8=0}. (1) 若A =B ,求a 的值;(2) 若B ∩A ≠,C ∩A =,求a 的值.∅∅∅∅∅∅∅∅∅∅B 巩固提升一、 填空题 1. (2018·南通模拟)已知集合A ={0,e x },B ={-1,0,1},若A ∪B =B ,则x =________. 2. (2018·青岛模拟)设集合A ={x |(x +3)(x -6)≥0},B =⎩⎨⎧⎭⎬⎫x |2x ≤14 ,则(∁R A )∩B =________.3. (2019·张家口期末)已知全集U =Z,A ={x |x =3n -1,n ∈Z},B ={x ||x |>3,x ∈Z},则A ∩(∁U B )中元素的个数为________.4. (2019·深圳调研)已知集合M ={x |x >0},N ={x |x 2-4≥0},则M ∪N =________. 二、 解答题5. 设集合U ={2,3,a 2+2a -3},A ={|2a -1|,2},∁U A ={5},求实数a 的值.6. 已知全集S ={1,3,x 3+3x 2+2x },A ={1,|2x -1|},如果∁S A ={0},则这样的实数x 是否存在?若存在,请说明理由.第2讲 充分条件与必要条件A 应知应会一、 选择题1. 设a ,b ,c ,d 是非零实数,则“ad =bc ”是“a ,b ,c ,d 成等比数列”的( ) A. 充分不必要条件 B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件 2. (2019·淄博诊断)若a ,b ∈R,则“|a |+|b |>1”是“|a +b |>1”的( ) A. 充分不必要条件 B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件3. 已知直线b 和平面α,则“b α”是b 与α平行的( ) A. 充分不必要条件 B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件4. (2019·江西九校联考)已知命题p :A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x -21-x ≤0 ,命题q :B ={x |x -a <0},若命题p 是命题q 的必要不充分条件,则实数a 的取值范围是( )A. (2,+∞)B. [2,+∞)C. (-∞,1)D. (-∞,1]5. “a =b =1”是“直线ax -y +1=0与直线x -by -1=0平行”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件6. (2019·烟台一模)已知a ,b ∈R,则“ab >0”是“b a +ab >2”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件7. (2019·济宁一模)将函数f (x )=sin (2x +φ)的图象向左平移π6 个单位长度后,得到函数g (x )的图象,则“φ=π6”是“g (x )为偶函数”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件 8. (2019·枣庄一模)设a ,b 都是不等于1的正数,则“0<b <a <1”是“log a 3<log b 3”的 ( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件二、 解答题9. 已知p :(x -m )2>3(x -m ),q :x 2+3x -4<0.若p 是q 的必要不充分条件,求实数m 的取值范围.⊂B巩固提升一、填空题1. (2019·合肥质检)若“x>2”是“x>m”的必要不充分条件,则m的取值范围是________.2. “|x|<3”是“x2-x-6<0”的________条件.3. 设a∈R ,则“a=1”是“直线l1:ax+2y=0与直线l2 :x+(a+1)y+4=0平行”的________条件.4. (2019·郴州三模)已知p:x2-3x-4≤0;q:x2-6x+9-m2≤0,若非q是非p的充分不必要条件,则实数m的取值范围是________.二、解答题5. (2020·江苏八校联考)已知集合A={x|y=log2(-4x2+15x-9),x∈R},B={x||x-m|≥1,x∈R}.(1) 求集合A;(2) 若p:x∈A,q:x∈B,且p是q的充分不必要条件,求实数m的取值范围.6. 已知数列{a n}的前n项和S n=3n+t(n∈N*).求证:数列{a n}是等比数列的充要条件是t=-1.第3讲全称量词和存在量词A应知应会一、选择题1. (多选)下列命题中是全称命题并且是假命题的是()A. π是无理数B. 若2x为偶数,则任意x∈NC. 对任意x∈R,x2+2x+1>0D. 所有菱形的四条边都相等2. (2019·南昌调研)下列命题中的假命题是( ) A. 存在x 0∈R,lg x 0=1 B. 存在x 0∈R,sin x 0=0 C. 任意x ∈R,x 3>0 D. 任意x ∈R,2x >03. 命题“任意n ∈N *,f (n )∈N *且f (n )≤n ”的否定形式是( ) A. 任意n ∈N *,f (n )∉N *且f (n )>n B. 任意n ∈N *,f (n )N *或f (n )>n C. 存在n 0∈N *,f (n 0)N *且f (n 0)>n 0 D. 存在n 0∈N *,f (n 0)N *或f (n 0)>n 04. (2019·中原名校联盟)已知命题“x ∈R,4x 2+(a -2)x +14 ≤0”是假命题,则实数a 的取值范围为( )A. (-∞,0)B. [0,4]C. [4,+∞)D. (0,4)5. 若命题p :x 0∈⎣⎡⎦⎤0,π4 ,sin 2x 0+cos 2x 0<a 是假命题,则实数a 的取值范围是( )A. (-∞,1]B. (-∞,2 ]C. [1,+∞)D. [2 ,+∞) 二、 解答题6. 判断下列命题的真假.(1) 已知a ,b ,c ,d ∈R,若a ≠c 或b ≠d ,则a +b ≠c +d ; (2) ∀x ∈N,x 3>x 2;(3) 若m >1,则方程x 2-2x +m =0无实数根; (4) 存在一个三角形没有外接圆.7. 已知命题“∀x ∈R,x 2-5x +152a >0”的否定为假命题,求实数a 的取值范围.∉∉∉∃∃B 巩固提升一、 填空题1. 若命题p :x ∈⎣⎡⎦⎤12,2 ,使得2x 2-λx +1<0成立,则非p 为_______________. 2. 若命题p 的否定是“对所有正数x ,x >x +1”,则命题p 可写为________________. 3. 若命题“t ∈R, t 2-2t -a <0”是假命题,则实数a 的取值范围是________.4. 已知函数f (x )=x +4x ,g (x )=2x +a ,若任意x 1∈⎣⎡⎦⎤12,1 ,存在x 2∈[2,3],使得f (x 1)≤g (x 2),则实数a 的取值范围是________. 二、 解答题5. 已知函数f (x )=x 2-2ax +5(a >1).若f (x )在区间(-∞,2]上是减函数,且对任意的x 1,x 2∈[1,a +1],总有|f (x 1)-f (x 2)|≤4,求实数a 的取值范围.6. 已知函数f (x )=x 2-2ax +1,g (x )=ax,其中a >0,x ≠0.(1) 对任意x ∈[1,2],都有f (x )>g (x )恒成立,求实数a 的取值范围;(2) 对任意x 1∈[1,2],x 2∈[2,4],都有f (x 1)>g (x 2)恒成立,求实数a 的取值范围.∃∃第4讲 不等式的性质、一元二次不等式一、 选择题1. (2019·南昌模拟)下列三个不等式:①x +1x ≥2(x ≠0);②c a <cb (a >b >c >0);③a +m b +m>ab(a ,b ,m >0且a <b ),恒成立的个数为( ) A. 3 B. 2 C. 1 D. 02. (多选)已知a ,b ,c ,d 均为实数,则下列命题中正确的是( ) A. 若ab >0,bc -ad >0,则c a -db >0B. 若ab >0,c a -db >0,则bc -ad >0C. 若bc -ad >0,c a -db>0,则ab >0D. 若a >b >0,c >d >0,则ac >bd3. (多选)已知关于x 的不等式kx 2-2x +6k <0(k ≠0),下列判断正确的是( ) A. 若不等式的解集为{x |x <-3或x >-2},则k =-25B. 若不等式的解集为⎩⎨⎧⎭⎬⎫x |x ∈R ,x ≠1k ,则k =66C. 若不等式的解集为R,则k <-66 D. 若不等式的解集为,则k ≥664. (2019·黄冈联考)若关于x 的不等式ax +b >0的解集是(1,+∞),则关于x 的不等式(ax +b )(x -2)<0的解集是( )A. (-∞,1)∪(2,+∞)B. (-1,2)C. (1,2)D. (-∞,-1)∪(2,+∞)5. (2019·合肥模拟)若不等式2kx 2+kx -38 <0对一切实数x 都成立,则k 的取值范围为( )A. (-3,0)B. [-3,0)C. [-3,0]D. (-3,0] 二、 解答题6. 已知不等式ax 2+bx +c >0的解集为{x |2<x <3},求不等式ax 2-bx +c >0的解集.7. 若对于满足0≤p ≤3的任意实数p ,不等式x 2+2px >4x +p -3恒成立,求x 的取值范围.∅B 巩固提升一、 填空题1. 不等式4x -2x +2>0的解集为________.2. 若关于x 的不等式kx 2-6kx +k +8<0的解集为空集,则实数k 的取值范围为________.3. 已知函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=x 2-4x ,则不等式f (x )>x 的解集为________.4. 已知集合A ={x |x 2+a ≤(a +1)x ,a ∈R},∃a ∈R,使得集合A 中所有整数的元素和为28,则a 的取值范围是________.二、 解答题5. 若不等式ax 2+5x -2>0的解集是⎩⎨⎧⎭⎬⎫x |12<x <2 .(1) 求实数a 的值;(2) 求不等式ax 2-5x +a 2-1>0的解集.6. 已知f (x )=x 2-2ax +2(a ∈R),当x ∈[-1,+∞)时,f (x )≥a 恒成立,求a 的取值范围.第5讲 基本不等式一、 选择题1. (多选)有下面四个不等式,其中恒成立的有( ) A.a +b2≥ab B. a (1-a )≤14C. a 2+b 2+c 2≥ab +bc +caD. b a +ab≥2 2. (多选)下列四个函数中,最小值为2的是( ) A. y =sin x +1sin x ⎝⎛⎭⎫0<x ≤π2 B. y =ln x +1ln x (x >0,x ≠1)C. y =x 2+6x 2+5D. y =4x +4-x3. 已知a >0,b >0,若不等式3a +1b ≥ma +3b 恒成立,则m 的最大值为( )A. 9B. 12C. 18D. 244. (2019·豫南九校一联)若a >0,b >0,且2a +b =4,则1ab 的最小值为( )A. 2B. 12C. 4D. 145. (2019·济宁期末)已知圆C 1:x 2+y 2-kx +2y =0与圆C 2:x 2+y 2+ky -4=0的公共弦所在直线恒过定点(a ,b ),且点P 在直线mx -ny -2=0上,则mn 的取值范围是( )A. ⎝⎛⎭⎫0,14B. ⎝⎛⎦⎤0,14C. ⎝⎛⎭⎫-∞,14D. ⎝⎛⎦⎤-∞,14 二、 解答题6. (2019·黄山质检)已知f (x )=x 2+3x +6x +1 (x >0),求f (x )的最小值.7. 已知lg 3x +lg y =lg (x +y +1). (1) 求xy 的最小值; (2) 求x +y 的最小值.B 巩固提升一、 填空题1. (2017·山东卷)若直线x a +yb =1(a >0,b >0)过点(1,2),则2a +b 的最小值为________.2. (2017·天津卷)若a ,b ∈R,ab >0,则a 4+4b 4+1ab 的最小值为________.3. 若a >0,b >0,且12a +b +1b +1=1,则a +2b 的最小值为________.4. 已知a ,b 均为正数,且ab -a -2b =0,则a 2 +b 的最小值为________,a 24 -2a +b 2-1b的最小值为________.二、 解答题5. (1) 设x 为正实数,且x 2+y 22=1,求x 1+y 2 的最大值. (2) 若a ,b 均为大于1的正数,且ab =10,求lg a ·lg b 的最大值.6. 某单位拟建一个扇环面形状的花坛(如图所示),该扇环面是由以点O 为圆心的两个同心圆弧和延长后通过点O 的两条直线段围成.按设计要求扇环面的周长为30 m,其中大圆弧所在圆的半径为10 m .设小圆弧所在圆的半径为x m,圆心角为θ(弧度).(1) 求y 关于x 的函数关系式;(2) 已知在花坛的边缘(实线部分)进行装饰时,直线部分的装饰费用为4元/米,弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为y ,求y 关于x 的函数关系式,并求出x 为何值时,y 取得最大值.(第6题)微难点1 “三个二次”关系一、 选择题1. 若函数f (x )=x 2+2x +a 没有零点,则实数a 的取值范围是( )A. (-∞,1)B. (1,+∞)C. (-∞,1]D. [1,+∞)2. 若函数f (x )=x 2+ax +b 的图象与x 轴的交点为(1,0)和(3,0),则函数f (x )( )A. 在(-∞,2]上单调递减,在(2,+∞)上单调递增B. 在(-∞,3)上单调递增C. 在[1,3]上单调递增D. 单调性不能确定二、 填空题3. (2019·南昌质检)若二次函数f (x )=ax 2-x +b (a ≠0)的最小值为0,则a +4b 的取值范围是________.4. 已知函数f (x )=x 2+abx +a +2b .若f (0)=4,则f (1)的最大值为________.5. 已知二次函数f (x )=ax 2-x +c (x ∈R)的值域为[0,+∞),则c +2a +a +2c的最小值为________.6. 已知函数f (x )=x 2-2|x |+4的定义域为[a ,b ],其中a <b ,值域为[3a ,3b ],则满足条件的数组(a ,b )为________.三、 解答题7. 对任意a ∈[-1,1],函数f (x )=x 2+(a -4)x +4-2a 的值总大于零,求x 的取值范围.8. 已知函数f (x )=ax 2+2x +c 的零点为-13 ,12. (1) 试求a +c 的值;(2) 解不等式-cx 2+2x -a >0.9. 设a ∈R,关于x 的一元二次方程7x 2-(a +13)x +a 2-a -2=0有两实数根x 1,x 2,且0<x 1<1<x 2<2,求a 的取值范围.10. 已知二次函数f (x )=ax 2+bx +1(a ,b ∈R 且a ≠0),x ∈R .(1) 若函数f (x )的最小值为f (-1)=0,求f (x )的解析式,并写出单调区间;(2) 在(1)的条件下,f (x )>x +k 在区间[-3,-1]上恒成立,试求k 的取值范围.。
高三数学南方凤凰台高2021届高2018级高三一轮数学提高版完整版第9章第51讲课时1一元线性回归模型及其应用
第13页
栏目导航
高考总复习 一轮复习导学案 ·数学提高版
第九章 统计
下表数据是退水温度 x(℃)对黄酮延长性 y(%)效应的试验结果,y 是以延
长度计算的,且对于给定的 x,y 为正态变量,其方差与 x 无关.
x(℃) 300 400 500 600 700 800
y(%) (1)画出散点图;
40 50 55 60 67 70
第17页
栏目导航
高考总复习 一轮复习导学案 ·数学提高版
(4)估计退水温度是1 000 ℃时,黄酮延长性的情况. 【解答】将x=1 000代入回归方程得 y=0.058 86×1 000+24.627=83.487, 即退水温度是1 000 ℃时,黄酮延长性大约是83.487%.
C.变量x与y负相关,u与v正相关
D.变量x与y负相关,u与v负相关
【解析】 由图(1)可知,各点整体呈递减趋势,x与y负相关;由图(2)可知,各点整体 呈递增趋势,u与v正相关.
第6页
栏目导航
高考总复习 一轮复习导学案 ·数学提高版
第九章 统计
目标 2 线性回归方程及其应用 (2019·重庆调研)从某居民区随机抽取 10 个家庭,获得第 i 个家庭的月收入
【解答】散点图如图所示.
第14页
栏目导航
高考总复习 一轮复习导学案 ·数学提高版
第九章 统计
(2)指出x,y是否线性相关; 【解答】由散点图可以看出样本点分布在一条直线的附近,可见y与x线性相关.
第15页
栏目导航
高考总复习 一轮复习导学案 ·数学提高版
第九章 统计
(3)若线性相关,求y关于x的回归方程; 【解答】列出下表并用科学计算器进行有关计算.
高2021届高2018级苏教版步步高大一轮高三数学复习课件学案第一章 1.5
§1.5一元二次不等式及其解法一元二次不等式的解集概念方法微思考1.一元二次不等式ax2+bx+c>0(a>0)的解集与其对应的函数y=ax2+bx+c的图象有什么关系?提示ax2+bx+c>0(a>0)的解集就是其对应函数y=ax2+bx+c的图象在x轴上方的部分所对应的x的取值范围.2.一元二次不等式ax2+bx+c>0(<0)恒成立的条件是什么?提示 显然a ≠0.ax 2+bx +c >0恒成立的条件是⎩⎪⎨⎪⎧a >0,Δ<0;ax 2+bx +c <0恒成立的条件是⎩⎪⎨⎪⎧a <0,Δ<0.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)若不等式ax 2+bx +c <0的解集为(x 1,x 2),则必有a >0.( √ )(2)若方程ax 2+bx +c =0(a ≠0)没有实数根,则不等式ax 2+bx +c >0的解集为R .( × ) (3)不等式ax 2+bx +c ≤0在R 上恒成立的条件是a <0且Δ=b 2-4ac ≤0.( × )(4)若二次函数y =ax 2+bx +c 的图象开口向下,则不等式ax 2+bx +c <0的解集一定不是空集.( √ ) 题组二 教材改编2.已知集合A ={x |x 2-x -6>0},则∁R A 等于( ) A.{x |-2<x <3} B.{x |-2≤x ≤3} C.{x |x <-2或x >3} D.{x |x ≤-2或x ≥3} 答案 B解析 ∵x 2-x -6>0,∴(x +2)(x -3)>0,∴x >3或x <-2,即A ={x |x >3或x <-2}.在数轴上表示出集合A ,如图所示.由图可得∁R A ={x |-2≤x ≤3}. 故选B.3.y =log 2(3x 2-2x -2)的定义域是________________. 答案 ⎝ ⎛⎭⎪⎫-∞,1-73∪⎝ ⎛⎭⎪⎫1+73,+∞ 解析 由题意,得3x 2-2x -2>0,令3x 2-2x -2=0,得x 1=1-73,x 2=1+73,∴3x 2-2x -2>0的解集为 ⎝ ⎛⎭⎪⎫-∞,1-73∪⎝ ⎛⎭⎪⎫1+73,+∞. 题组三 易错自纠4.(多选)关于x 的不等式(ax -1)(x +2a -1)>0的解集中恰有3个整数,则a 的值可以为( ) A.-12 B.1 C.-1 D.2答案 AC解析 由题意知a <0,则排除B,D ; 对于A 项,当a =-12时,⎝⎛⎭⎫-12x -1(x -2)>0, 即(x +2)(x -2)<0,解得-2<x <2,恰有3个整数,符合题意;对于C 项,当a =-1时,(-x -1)(x -3)>0,即(x +1)(x -3)<0,解得-1<x <3,恰有3个整数,符合题意,故选AC. 5.不等式-x 2-3x +4>0的解集为________.(用区间表示) 答案 (-4,1)解析 由-x 2-3x +4>0可知,(x +4)(x -1)<0,得-4<x <1.6.若关于x 的不等式ax 2+bx +2>0的解集是⎝⎛⎭⎫-12,13,则a +b =________. 答案 -14解析 ∵x 1=-12,x 2=13是方程ax 2+bx +2=0的两个根,∴⎩⎨⎧a 4-b2+2=0,a 9+b3+2=0,解得⎩⎪⎨⎪⎧a =-12,b =-2,∴a +b =-14.7.不等式(a -2)x 2+2(a -2)x -4<0,对一切x ∈R 恒成立,则实数a 的取值范围是________.答案 (-2,2]解析 当a -2≠0时,由⎩⎪⎨⎪⎧a -2<0,Δ<0,得-2<a <2;当a =2时,原式化为-4<0,不等式恒成立, ∴-2<a ≤2.即实数a 的取值范围是(-2,2].一元二次不等式的求解命题点1 不含参的不等式例1 (2019·济宁模拟)已知全集U =R ,集合A ={x |x 2-3x +2≥0},则∁R A 等于( ) A.(1,2)B.[1,2]C.(-∞,1]∪[2,+∞)D.(-∞,1)∪(2,+∞)答案 A解析 由题意可得,∁R A ={x |x 2-3x +2<0}={x |1<x <2},表示为区间形式即(1,2).故选A. 命题点2 含参不等式例2 解关于x 的不等式ax 2-(a +1)x +1<0(a >0). 解 原不等式变为(ax -1)(x -1)<0, 因为a >0,所以⎝⎛⎭⎫x -1a (x -1)<0. 所以当a >1时,解得1a <x <1;当a =1时,解集为∅; 当0<a <1时,解得1<x <1a.综上,当0<a <1时,不等式的解集为⎩⎨⎧⎭⎬⎫x |1<x <1a ;当a =1时,不等式的解集为∅;当a >1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1a<x <1. 思维升华 对含参的不等式,应对参数进行分类讨论 (1)根据二次项系数为正、负及零进行分类. (2)根据判别式Δ与0的关系判断根的个数. (3)有两个根时,有时还需根据两根的大小进行讨论.跟踪训练1 (1)(2020·北京市海淀区期末)不等式x 2+2x -3<0的解集为( ) A.{x |x <-3或x >1} B.{x |x <-1或x >3} C.{x |-1<x <3} D.{x |-3<x <1}答案 D解析 由x 2+2x -3<0得(x +3)(x -1)<0,解得-3<x <1.故选D.(2)已知不等式ax 2-bx -1>0的解集是⎩⎨⎧⎭⎬⎫x ⎪⎪-12<x <-13,则不等式x 2-bx -a ≥0的解集是________.答案 {x |x ≥3或x ≤2}解析 由题意,知-12,-13是方程ax 2-bx -1=0的两个根,且a <0,所以⎩⎨⎧a ×⎝⎛⎭⎫-122-b ×⎝⎛⎭⎫-12-1=0,a ×⎝⎛⎭⎫-132-b ×⎝⎛⎭⎫-13-1=0,解得⎩⎪⎨⎪⎧a =-6,b =5.故不等式x 2-bx -a ≥0为x 2-5x +6≥0, 解得x ≥3或x ≤2.(3)解不等式12x 2-ax >a 2(a ∈R ). 解 原不等式可化为12x 2-ax -a 2>0, 即(4x +a )(3x -a )>0,令(4x +a )(3x -a )=0, 解得x 1=-a 4,x 2=a3.当a >0时,不等式的解集为⎝⎛⎭⎫-∞,-a 4∪⎝⎛⎭⎫a3,+∞; 当a =0时,不等式的解集为(-∞,0)∪(0,+∞); 当a <0时,不等式的解集为⎝⎛⎭⎫-∞,a 3∪⎝⎛⎭⎫-a4,+∞.一元二次不等式恒成立问题命题点1 在R 上的恒成立问题例3 已知函数f (x )=mx 2-mx -1.若对于x ∈R ,f (x )<0恒成立,求实数m 的取值范围. 解 当m =0时,f (x )=-1<0恒成立.当m ≠0时,则⎩⎪⎨⎪⎧m <0,Δ=m 2+4m <0,即-4<m <0. 综上,-4<m ≤0,故m 的取值范围是(-4,0]. 命题点2 在给定区间上的恒成立问题例4 已知函数f (x )=mx 2-mx -1.若对于x ∈[1,3],f (x )<5-m 恒成立,求实数m 的取值范围. 解 要使f (x )<-m +5在x ∈[1,3]上恒成立, 即m ⎝⎛⎭⎫x -122+34m -6<0在x ∈[1,3]上恒成立. 有以下两种方法:方法一 令g (x )=m ⎝⎛⎭⎫x -122+34m -6,x ∈[1,3]. 当m >0时,g (x )在[1,3]上是增函数, 所以g (x )max =g (3),即7m -6<0, 所以m <67,所以0<m <67;当m =0时,-6<0恒成立; 当m <0时,g (x )在[1,3]上是减函数, 所以g (x )max =g (1),即m -6<0, 所以m <6,所以m <0.综上所述,m 的取值范围是⎩⎨⎧⎭⎬⎫m ⎪⎪m <67.方法二 因为x 2-x +1=⎝⎛⎭⎫x -122+34>0, 又因为m (x 2-x +1)-6<0,所以m <6x 2-x +1.因为函数y =6x 2-x +1=6⎝⎛⎭⎫x -122+34在[1,3]上的最小值为67,所以只需m <67即可. 所以m 的取值范围是⎩⎨⎧⎭⎬⎫m ⎪⎪m <67. 若将“f (x )<5-m 恒成立”改为“f (x )<5-m 无解”,如何求m 的取值范围?解 若f (x )<5-m 无解,即f (x )≥5-m 恒成立, 即m ≥6x 2-x +1恒成立,又x ∈[1,3]时,⎝⎛⎭⎫6x 2-x +1max =6,得m ≥6, 即m 的取值范围为[6,+∞).若将“f (x )<5-m 恒成立”改为“存在x ,使f(x )<5-m 成立”,如何求m 的取值范围? 解 由题意知f (x )<5-m 有解,即m <6x 2-x +1有解,则m <⎝⎛⎭⎫6x 2-x +1max ,又x ∈[1,3],得m <6,即m 的取值范围为(-∞,6). 命题点3 给定参数范围的恒成立问题例5 若mx 2-mx -1<0对于m ∈[1,2]恒成立,求实数x 的取值范围.解 设g (m )=mx 2-mx -1=(x 2-x )m -1,其图象是直线,当m ∈[1,2]时,图象为一条线段,则⎩⎪⎨⎪⎧ g (1)<0,g (2)<0,即⎩⎪⎨⎪⎧x 2-x -1<0,2x 2-2x -1<0, 解得1-32<x <1+32,故x 的取值范围为⎝⎛⎭⎪⎫1-32,1+32. 思维升华 解决恒成立问题一定要搞清谁是主元,谁是参数,一般地,知道谁的范围,谁就是主元,求谁的范围,谁就是参数.跟踪训练2 函数f (x )=x 2+ax +3.(1)若当x ∈R 时,f (x )≥a 恒成立,求实数a 的取值范围; (2)若当x ∈[-2,2]时,f (x )≥a 恒成立,求实数a 的取值范围; (3)若当a ∈[4,6]时,f (x )≥0恒成立,求实数x 的取值范围. 解 (1)∵当x ∈R 时,x 2+ax +3-a ≥0恒成立, 需Δ=a 2-4(3-a )≤0,即a 2+4a -12≤0, 解得-6≤a ≤2,∴实数a 的取值范围是[-6,2].(2)由题意可转化为x 2+ax +3-a ≥0在x ∈[-2,2]上恒成立,则(x 2+ax +3-a )min ≥0(x ∈[-2,2]). 令g (x )=x 2+ax +3-a ,x ∈[-2,2], 函数图象的对称轴方程为x =-a2.当-a 2<-2,即a >4时,g (x )min =g (-2)=7-3a ≥0,解得a ≤73,舍去;当-2≤-a 2≤2,即-4≤a ≤4时,g (x )min =g ⎝⎛⎭⎫-a 2=-a 24-a +3≥0,解得-6≤a ≤2,∴-4≤a ≤2;当-a2>2,即a <-4时,g (x )min =g (2)=7+a ≥0,解得a ≥-7,∴-7≤a <-4.综上可得,满足条件的实数a 的取值范围是[-7,2]. (3)令h (a )=xa +x 2+3. 当a ∈[4,6]时,h (a )≥0恒成立.只需⎩⎪⎨⎪⎧ h (4)≥0,h (6)≥0,即⎩⎪⎨⎪⎧x 2+4x +3≥0,x 2+6x +3≥0,解得x ≤-3-6或x ≥-3+ 6. ∴实数x 的取值范围是(-∞,-3-6]∪[-3+6,+∞).设方程ax 2+bx +c =0(a ≠0,Δ>0)有不相等的两根为x 1,x 2,且x 1<x 2,相应的二次函数为f (x )=ax 2+bx +c ,方程的根即为二次函数的图象与x 轴交点的横坐标,它们的分布情况见下面各表(每种情况对应的均是充要条件).表一:(两根与0的大小比较即根的正负情况)表二:(两根与k的大小比较)表三:(根在区间上的分布)根在区间上的分布还有一种情况:两根分别在区间(m,n)外,即在区间两侧x1<m,x2>n,(图形分别如下)需满足的条件是(1)a >0时,⎩⎪⎨⎪⎧ f (m )<0,f (n )<0;(2)a <0时,⎩⎪⎨⎪⎧f (m )>0,f (n )>0.对以上的根的分布表中,两根有且仅有一根在(m ,n )内有以下特殊情况:(ⅰ)若f (m )=0或f (n )=0,则此时f (m )·f (n )<0不成立,但对于这种情况是知道了方程有一根为m 或n ,可以求出另外一根,然后可以根据另一根在区间(m ,n )内,从而可以求出参数的值.如方程mx 2-(m +2)x +2=0在区间(1,3)上有一根,因为f (1)=0,所以mx 2-(m +2)x +2=(x -1)(mx -2),另一根为2m ,由1<2m <3得23<m <2即为所求;(ⅱ)方程有两个相等的根,且这个根在区间(m ,n )内,即Δ=0,此时由Δ=0可以求出参数的值,然后再将参数的值带入方程,求出相应的根,检验根是否在给定的区间内,如若不在,舍去相应的参数.如方程x 2-4mx +2m +6=0有且只有一根在区间(-3,0)内,求m 的取值范围.分析:①由f (-3)·f (0)<0即(14m +15)(m +3)<0得出-3<m <-1514;②由Δ=0即16m 2-4(2m +6)=0得出m =-1或m =32,当m =-1时,根x =-2∈(-3,0),即m =-1满足题意;当m =32时,根x =3∉(-3,0),故m =32不满足题意.综上分析,得出-3<m <-1514或m =-1.例1 已知二次方程(2m +1)x 2-2mx +(m -1)=0有一正根和一负根,求实数m 的取值范围. 解 设f (x )=(2m +1)x 2-2mx +(m -1), 由(2m +1)·f (0)<0 ,即(2m +1)(m -1)<0, 解得-12<m <1,即m 的取值范围为⎝⎛⎭⎫-12,1. 例2 已知方程2x 2-(m +1)x +m =0有两个不等正实根,求实数m 的取值范围.解 设f (x )=2x 2-(m +1)x +m ,由⎩⎪⎨⎪⎧Δ>0,--(m +1)2×2>0,f (0)>0⇒ ⎩⎪⎨⎪⎧(m +1)2-8m >0,m >-1,m >0⇒⎩⎪⎨⎪⎧m <3-22或m >3+22,m >0⇒0<m <3-22或m >3+22,即m 的取值范围为(0,3-22)∪(3+22,+∞).例3 已知二次函数f (x )=(m +2)x 2-(2m +4)x +3m +3与x 轴有两个交点,一个大于1,一个小于1,求实数m 的取值范围. 解 由(m +2)·f (1)<0 ,即(m +2)·(2m +1)<0 ⇒-2<m <-12,即m 的取值范围为⎝⎛⎭⎫-2,-12.1.(2019·武汉调研)已知集合A ={x |x 2-x -2<0},B ={x |x 2+3x <0},则A ∩B 等于( ) A.(0,2) B.(-1,0) C.(-3,2) D.(-1,3)答案 B解析 A ={x |-1<x <2},B ={x |-3<x <0},∴A ∩B =(-1,0).故选B.2.(2020·黄冈调研)关于x 的不等式ax +b >0的解集是(1,+∞),则关于x 的不等式(ax +b )(x -2)<0的解集是( ) A.(-∞,1)∪(2,+∞) B.(-1,2)C.(1,2)D.(-∞,-1)∪(2,+∞) 答案 C解析 关于x 的不等式ax +b >0的解集是(1,+∞), ∴a >0,且-ba=1,∴关于x 的不等式(ax +b )(x -2)<0可化为⎝⎛⎭⎫x +ba (x -2)<0,即(x -1)(x -2)<0, ∴不等式的解集为{x |1<x <2}.故选C.3.“不等式x 2-x +m >0在R 上恒成立”的充要条件是( ) A.m >14B.m <14C.m <1D.m >1 答案 A解析 ∵不等式x 2-x +m >0在R 上恒成立, ∴Δ=(-1)2-4m <0,解得m >14,又∵m >14,∴Δ=1-4m <0,∴“m >14”是“不等式x 2-x +m >0在R 上恒成立”的充要条件.故选A.4.若不等式x 2-(a +1)x +a ≤0的解集是[-4,3]的子集,则a 的取值范围是( ) A.[-4,1] B.[-4,3] C.[1,3] D.[-1,3]答案 B解析 原不等式为(x -a )(x -1)≤0,当a <1时,不等式的解集为[a,1],此时只要a ≥-4即可,即-4≤a <1;当a =1时,不等式的解为x =1,此时符合要求;当a >1时,不等式的解集为[1,a ],此时只要a ≤3即可,即1<a ≤3,综上可得-4≤a ≤3.5.若存在实数x ∈[2,4],使x 2-2x +5-m <0成立,则m 的取值范围为( ) A.(13,+∞) B.(5,+∞) C.(4,+∞) D.(-∞,13)答案 B解析 m >x 2-2x +5,设f (x )=x 2-2x +5=(x -1)2+4,x ∈[2,4], 当x =2时f (x )min =5,∃x ∈[2,4]使x 2-2x +5-m <0成立, 即m >f (x )min ,∴m >5.故选B.6.在关于x 的不等式x 2-(a +1)x +a <0的解集中至多包含1个整数,则a 的取值范围是( ) A.(-3,5) B.(-2,4) C.[-1,3] D.[-2,4]答案 C解析 因为关于x 的不等式x 2-(a +1)x +a <0可化为(x -1)(x -a )<0, 当a >1时,不等式的解集为{x |1<x <a }, 当a <1时,不等式的解集为{x |a <x <1}, 当a =1时,不等式的解集为∅,要使得解集中至多包含1个整数,则a =1或1<a ≤3或-1≤a <1, 所以实数a 的取值范围是a ∈[-1,3],故选C. 7.(多选)下列四个解不等式,正确的有( ) A.不等式2x 2-x -1>0的解集是{x |x >2或x <1}B.不等式-6x 2-x +2≤0的解集是⎩⎨⎧⎭⎬⎫x ⎪⎪x ≤-23或x ≥12C.若不等式ax 2+8ax +21<0的解集是{x |-7<x <-1},那么a 的值是3D.关于x 的不等式x 2+px -2<0的解集是(q,1),则p +q 的值为-1 答案 BCD解析 对于A,∵2x 2-x -1=(2x +1)(x -1), ∴由2x 2-x -1>0得(2x +1)(x -1)>0, 解得x >1或x <-12,∴不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x >1或x <-12.故A 错误; 对于B,∵-6x 2-x +2≤0,∴6x 2+x -2≥0, ∴(2x -1)(3x +2)≥0,∴x ≥12或x ≤-23.故B 正确;对于C,由题意可知-7和-1为方程ax 2+8ax +21=0的两个根.∴a -8a +21=0,∴a =3.故C 正确;对于D,依题意q,1是方程x 2+px -2=0的两根, q +1=-p ,即p +q =-1,故D 正确.8.(多选)已知关于x 的不等式kx 2-2x +6k <0(k ≠0),则下列说法正确的是( ) A.若不等式的解集为{x |x <-3或x >-2},则k =-25B.若不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x ∈R ,x ≠1k ,则k =66 C.若不等式的解集为R ,则k <-66D.若不等式的解集为∅,则k ≥66答案 ACD解析 对于A,∵不等式的解集为{x |x <-3或x >-2},∴k <0,且-3与-2是方程kx 2-2x +6k =0的两根,∴4k +4+6k =0,解得k =-25.故A 正确;对于B,∵不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x ∈R ,x ≠1k , ∴⎩⎪⎨⎪⎧k <0,Δ=4-24k 2=0,解得k =-66.故B 错误; 对于C,由题意,得⎩⎪⎨⎪⎧k <0,Δ=4-24k 2<0,解得k <-66.故C 正确;对于D,由题意,得⎩⎪⎨⎪⎧k >0,Δ=4-24k 2≤0,解得k ≥66.故D 正确.9.(2019·北京市顺义区模拟)满足关于x 的不等式(ax -b )(x -2)>0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪12<x <2,则满足条件的一组有序实数对(a ,b )的值可以是________. 答案 (-2,-1)(答案不唯一)解析 不等式(ax -b )(x -2)>0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪12<x <2, ∴方程(ax -b )(x -2)=0的实数根为12和2,且⎩⎪⎨⎪⎧a <0,b a =12,即a =2b <0,则满足条件的一组有序实数对(a ,b )的值可以是(-2,-1).10.在R 上定义运算⊗:x ⊗y =x (1-y ),若不等式(x -a )⊗(x +a )<1对任意实数x 恒成立,则实数a 的取值范围为________. 答案 ⎝⎛⎭⎫-12,32 解析 由题意,可知不等式(x -a )⊗(x +a )<1对任意实数x 都成立, 又由(x -a )⊗(x +a )=(x -a )(1-x -a ), 即x 2-x -a 2+a +1>0对任意实数x 都成立, 所以Δ=1-4(-a 2+a +1)<0,即4a 2-4a -3<0, 解得-12<a <32.11.已知关于x 的不等式-x 2+ax +b >0. (1)若该不等式的解集为(-4,2),求a ,b 的值; (2)若b =a +1,求此不等式的解集.解 (1)根据题意得⎩⎪⎨⎪⎧-16-4a +b =0,-4+2a +b =0,解得a =-2,b =8.(2)当b =a +1时,-x 2+ax +b >0⇔x 2-ax -(a +1)<0, 即[x -(a +1)](x +1)<0.当a +1=-1,即a =-2时,原不等式的解集为∅; 当a +1<-1,即a <-2时,原不等式的解集为(a +1,-1); 当a +1>-1,即a >-2时,原不等式的解集为(-1,a +1).综上,当a <-2时,不等式的解集为(a +1,-1);当a =-2时,不等式的解集为∅;当a >-2时, 不等式的解集为(-1,a +1).12.甲厂以x 千克/小时的速度匀速生产某种产品(生产条件要求1≤x ≤10),每小时可获得的利润是100⎝⎛⎭⎫5x +1-3x 元. (1)要使生产该产品2小时获得的利润不低于3 000元,求x 的取值范围;(2)要使生产900千克该产品获得的利润最大,则甲厂应该选取何种生产速度?并求最大利润.解 (1)根据题意,得200⎝⎛⎭⎫5x +1-3x ≥3 000, 整理得5x -14-3x≥0,即5x 2-14x -3≥0, 又1≤x ≤10,可解得3≤x ≤10.故要使生产该产品2小时获得的利润不低于3 000元,x 的取值范围是[3,10].(2)设利润为y 元,则y =900x·100⎝⎛⎭⎫5x +1-3x =9×104⎝⎛⎭⎫5+1x -3x 2 =9×104⎣⎡⎦⎤-3⎝⎛⎭⎫1x -162+6112, 故当x =6时,y max =457 500.故甲厂以6千克/小时的生产速度生产900千克该产品时获得的利润最大,最大利润为457 500元.13.设a <0,(4x 2+a )(2x +b )≥0在(a ,b )上恒成立,则b -a 的最大值为( )A.12B.13C.14D.22答案 C解析 由题意知a <0,a <b ,则①当b <0时,∀x ∈(a ,b ),2x +b <0,所以(4x 2+a )(2x +b )≥0在(a ,b )上恒成立可转化为∀x ∈(a ,b ),a ≤-4x 2,所以a ≤-4a 2,所以-14≤a <0,所以0<b -a <14; ②当b >0时,(4x 2+a )(2x +b )≥0在(a ,b )上恒成立,当x =0时,(4x 2+a )(2x +b )=ab <0,不符合题意;③当b =0时,由题意知x ∈(a,0),(4x 2+a )2x ≥0恒成立,所以4x 2+a ≤0,所以-14≤a <0,所以0<b -a ≤14. 综上所述,b -a 的最大值为14. 14.已知对于任意的x ∈(-∞,1)∪(5,+∞),都有x 2-2(a -2)x +a >0,则实数a 的取值范围是________.答案 (1,5]解析 设f (x )=x 2-2(a -2)x +a ,当Δ=4(a -2)2-4a <0,即1<a <4 时,f (x )>0 对x ∈R 恒成立,符合题意;当a =1时,f (-1)=0,不符合题意;当a =4时,f (x )=x 2-4x +4=(x -2)2>0对x ∈(-∞,1)∪(5,+∞)恒成立,符合题意;当Δ>0 时,由⎩⎪⎨⎪⎧ Δ>0,1<a -2<5,f (1)≥0,f (5)≥0,得⎩⎪⎨⎪⎧ a <1或a >4,3<a <7,a ≤5,a ≤5,即4<a ≤5.综上所述,实数a 的取值范围是(1,5].15.若集合A ={x ∈Z |x 2-(a +2)x +2-a <0}中有且只有一个元素,则正实数a 的取值范围是________.答案 ⎝⎛⎦⎤12,23解析 f (x )=x 2-(a +2)x +2-a <0,即x 2-2x +1<a (x +1)-1,分别令y 1=x 2-2x +1,y 2=a (x +1)-1,易知y 2过定点(-1,-1),在同一坐标系中画出两个函数的图象,如图所示,若集合A ={x ∈Z |f (x )<0}中有且只有一个元素,结合图象可得,即点(0,1)和点(2,1)在直线上或者在直线上方,点(1,0)在直线下方,∴⎩⎪⎨⎪⎧ a -1≤1,2a -1>0,3a -1≤1,解得12<a ≤23. 16.(2020·南京六校联考)已知函数f (x )=x 2-2ax +2a -1.若对任意的a ∈(0,3),存在x 0∈[0,4],使得t ≤|f (x 0)|成立,求实数t 的取值范围.解 ∵f (x )=x 2-2ax +2a -1的对称轴为x =a ,且a ∈(0,3),∴函数f (x )=x 2-2ax +2a -1在[0,a ]上是减函数,在[a,4]上是增函数;∴函数f (x )=x 2-2ax +2a -1在[0,4]上的最小值为f (a )=-(a -1)2∈(-4,0],|f (a )|=(a -1)2, ①当2≤a <3时,函数f (x )=x 2-2ax +2a -1(x ∈[0,4])在x =0时取得最大值,且最大值为2a -1,由于此时2≤a <3,则3≤2a -1<5,易知当2≤a <3时,(a -1)2<2a -1,所以|f (x )|max =max{|f (a )|,|f (0)|}=|f (0)|=2a -1∈[3,5).∴t ≤3.②当0<a <2时,函数f (x )=x 2-2ax +2a -1(x ∈[0,4])在x =4时取得最大值,且最大值为42-8a +2a -1=15-6a ,由于此时0<a <2,所以3<15-6a <15,且15-6a >(a -1)2,|f (x )|max =max{|f (a )|,|f (4)|}=|f (4)|=15-6a ∈(3,15),∴t ≤3.综上, t 的取值范围是(-∞,3].。
高2021届高2018级苏教版步步高大一轮高三数学复习课件学案第十章 10.3
§10.3二项式定理1.二项式定理2.二项式系数的性质+C m n.(1)C0n=1,C n n=1,C m n+1=C m-1n(0≤m≤n).C m n=C n-mn(2)二项式系数先增后减中间项最大.当n 为偶数时,第n 2+1项的二项式系数最大,最大值为2C nn ,当n 为奇数时,第n +12项和第n +32项的二项式系数最大,最大值为12Cn n -或12Cn n+.(3)各二项式系数和:C 0n +C 1n +C 2n +…+C n n =2n ,C 0n +C 2n +C 4n +…=C 1n +C 3n +C 5n +…=2n -1. 概念方法微思考1.(a +b )n 与(b +a )n 的展开式有何区别与联系?提示 (a +b )n 的展开式与(b +a )n 的展开式的项完全相同,但对应的项不相同而且两个展开式的通项不同.2.二项展开式中二项式系数最大时该项的系数就最大吗?提示 不一定最大,当二项式中a ,b 的系数为1时,此时二项式系数等于项的系数,否则不一定.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)C r n an -r b r是(a +b )n 的展开式的第r 项.( × ) (2)(a +b )n 的展开式中某一项的二项式系数与a ,b 无关.( √ ) (3)二项展开式中,系数最大的项为中间一项或中间两项.( × )(4)(a +b )n 某项的系数是该项中非字母因数部分,包括符号等,与该项的二项式系数不同.( √ ) 题组二 教材改编2.(1+2x )5的展开式中,x 2的系数等于( ) A.80 B.40 C.20 D.10 答案 B解析 T r +1=C r 5(2x )r =C r 52r x r ,当r =2时,x 2的系数为C 25·22=40. 3.若⎝⎛⎭⎫x +1x n 展开式的二项式系数之和为64,则展开式的常数项为( ) A.10 B.20 C.30 D.120 答案 B解析 二项式系数之和2n =64,所以n =6,T r +1=C r 6·x 6-r ·⎝⎛⎭⎫1x r =C r 6x 6-2r,当6-2r =0,即当r =3时为常数项,T 4=C 36=20.4.若(x -1)4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4,则a 0+a 2+a 4的值为( ) A.9 B.8 C.7 D.6 答案 B解析 令x =1,则a 0+a 1+a 2+a 3+a 4=0,令x =-1,则a 0-a 1+a 2-a 3+a 4=16,两式相加得a 0+a 2+a 4=8.题组三 易错自纠5.(x -y )n 的二项展开式中,第m 项的系数是( )A.C m nB.C m +1nC.C m -1nD.(-1)m -1C m -1n答案 D解析 (x -y )n 二项展开式第m 项的通项为T m =C m -1n(-y )m -1x n-m +1,所以系数为C m -1n(-1)m -1. 6.已知⎝⎛⎭⎪⎫x +a 3x n (a 为常数)的展开式的二项式系数之和为32,常数项为80,则a 的值为( ) A.1 B.±1 C.2 D.±2 答案 C解析 根据题意,该二项式的展开式的二项式系数之和为32,则有2n =32,可得n =5,则二项式的展开式通项为T r +1=C r 5(x )5-r·⎝ ⎛⎭⎪⎫a 3x r =a r C r 51556r x -,令15-5r 6=0,得r =3,则其常数项为C 35a 3,根据题意,有C 35a 3=80,可得a =2.7.在⎝⎛⎭⎫2x 2-1x n 的展开式中,所有二项式系数的和是32,则展开式中各项系数的和为________. 答案 1解析 因为所有二项式系数的和是32,所以2n =32,解得n =5. 在⎝⎛⎭⎫2x 2-1x 5中,令x =1可得展开式中各项系数的和为(2-1)5=1.多项展开式的特定项命题点1 二项展开式问题例1 (1)(2020·山东模拟)⎝⎛⎭⎫1x -x 10的展开式中x 4的系数是( ) A.-210 B.-120 C.120 D.210答案 B解析 由二项展开式,知其通项为T r +1=C r 10⎝⎛⎭⎫1x 10-r (-x )r =(-1)r C r 10x 2r -10, 令2r -10=4,解得r =7.所以x 4的系数为(-1)7C 710=-120.(2)(2019·浙江)在二项式(2+x )9的展开式中,常数项是________,系数为有理数的项的个数是________. 答案 162 5解析 该二项展开式的第r +1项为T r +1=C r 9(2)9-r x r ,当r =0时,第1项为常数项,所以常数项为(2)9=162;当r =1,3,5,7,9时,展开式的项的系数为有理数,所以系数为有理数的项的个数为5.命题点2 两个多项式积的展开式问题例2 (1)(1+2x 2)(1+x )4的展开式中x 3的系数为( ) A.12 B.16 C.20 D.24 答案 A解析 展开式中含x 3的项可以由“1与x 3”和“2x 2与x ”的乘积组成,则x 3的系数为C 34+2C 14=4+8=12.(2)⎝⎛⎭⎫1+1x 2(1+x )6的展开式中x 2的系数为( )A.15B.20C.30D.35 答案 C解析 因为(1+x )6的通项为C r 6x r ,所以⎝⎛⎭⎫1+1x 2(1+x )6的展开式中含x 2的项为1·C 26x 2和1x 2·C 46x 4. 因为C 26+C 46=2C 26=2×6×52×1=30, 所以⎝⎛⎭⎫1+1x 2(1+x )6的展开式中x 2的系数为30. 故选C.命题点3 三项展开式问题例3 (1)(x 2+x +y )5的展开式中,x 5y 2的系数为( ) A.10 B.20 C.30 D.60答案 C解析 方法一 利用二项展开式的通项求解. (x 2+x +y )5=[(x 2+x )+y ]5,含y 2的项为T 3=C 25(x 2+x )3·y 2. 其中(x 2+x )3中含x 5的项为C 13x 4·x =C 13x 5. 所以x 5y 2的系数为C 25C 13=30.故选C.方法二 利用排列组合知识求解.(x 2+x +y )5为5个x 2+x +y 之积,其中有两个因式取y ,剩余的三个因式中两个取x 2,一个取x即可,所以x 5y 2的系数为C 25C 23C 11=30.故选C.(2)(2020·合肥检测)⎝⎛⎭⎫x -1x +15展开式中的常数项为( ) A.1 B.11 C.-19 D.51 答案 B解析 ⎝⎛⎭⎫x -1x +15=⎣⎡⎦⎤⎝⎛⎭⎫x -1x +15 展开式的通项为T r +1=C r 5⎝⎛⎭⎫x -1x 5-r 当r =5时,常数项为C 55=1,当r =3时,常数项为-C 12C 35=-20, 当r =1时,常数项为C 45C 24=30.综上所述,常数项为1-20+30=11.思维升华 (1)求二项展开式中的特定项,一般是化简通项公式后,令字母的指数符合要求(求常数项时,指数为零;求有理项时,指数为整数等),解出项数r +1,代回通项公式即可.(2)对于几个多项式积的展开式中的特定项问题,一般都可以根据因式连乘的规律,结合组合思想求解,但要注意适当地运用分类方法,以免重复或遗漏. (3)对于三项式问题一般先变形化为二项式再解决.跟踪训练1 (1)(x 2+x +1)(x -1)4的展开式中,x 3的系数为( ) A.-3 B.-2 C.1 D.4 答案 B解析 (x -1)4的通项为T r +1=C r 4x 4-r (-1)r ,(x 2+x +1)(x -1)4的展开式中,x 3的系数为C 34(-1)3+C 24(-1)2+C 14(-1)=-2,故选B.(2)(x +a )10的展开式中,x 7项的系数为15,则a =______.(用数字填写答案) 答案 12解析 通项为T r +1=C r 10x 10-r a r ,令10-r =7, ∴r =3,∴x 7项的系数为C 310a 3=15,∴a 3=18,∴a =12.(3)(1+2x -3x 2)5展开式中x 5的系数为________. 答案 92解析 方法一 (1+2x -3x 2)5=[(1+2x )-3x 2]5=C 05(1+2x )5+C 15(1+2x )4(-3x 2)+C 25(1+2x )3(-3x 2)2+…+C 55(-3x 2)5, 所以x 5的系数为C 05C 5525+C 15C 34×23×(-3)+C 25C 13×2×(-3)2=92.方法二 (1+2x -3x 2)5=(1-x )5(1+3x )5,所以x 5的系数为C 05C 5535+C 15(-1)C 4534+C 25(-1)2C 3533+C 35(-1)3C 2532+C 45(-1)4C 1531+C 55(-1)5C 0530=92.二项式系数的和与各项系数的和问题命题点1 二项式系数和与系数和例4 (1)(2019·郑州一中测试)若二项式⎝⎛⎭⎫x 2-2x n 的展开式的二项式系数之和为8,则该展开式每一项的系数之和为( ) A.-1 B.1 C.27 D.-27 答案 A解析 依题意得2n =8,解得n =3.取x =1得,该二项展开式每一项的系数之和为(1-2)3=-1. (2)(2019·宣城调研)若(2-x )7=a 0+a 1(1+x )+a 2(1+x )2+…+a 7(1+x )7,则a 0+a 1+a 2+…+a 6的值为( ) A.1 B.2 C.129 D.2 188答案 C解析 令x =0得a 0+a 1+a 2+…+a 7=27=128, 又(2-x )7=[3-(x +1)]7,则a 7(1+x )7=C 77·30·[-(x +1)]7,解得a 7=-1. 故a 0+a 1+a 2+…+a 6=128-a 7=128+1=129. 命题点2 二项式系数的最值问题例5 (2019·马鞍山模拟)二项式⎝⎛⎭⎪⎫3x +13x n 的展开式中只有第11项的二项式系数最大,则展开式中x 的指数为整数的项的个数为( ) A.3 B.5 C.6 D.7 答案 D解析 根据⎝⎛⎭⎪⎫3x +13x n的展开式中只有第11项的二项式系数最大,得n =20,∴⎝ ⎛⎭⎪⎫3x +13x n 的展开式的通项为T r +1=C r20·(3x )20-r ·⎝ ⎛⎭⎪⎫13x r =(3)20-r ·C r 20·420-3r x ,要使x 的指数是整数,需r 是3的倍数,∴r =0,3,6,9,12,15,18,∴x 的指数是整数的项共有7项.思维升华 (1)形如(ax +b )n ,(ax 3+bx +c )m (a ,b ,c ∈R )的式子求其展开式的各项系数之和,常采用赋值法,只需令x =1即可.(2)当n 为偶数时,展开式中第n 2+1项的二项式系数最大,最大值为2C nn ;当n 为奇数时,展开式中第n +12项和第n +32项的二项式系数最大,最大值为12C n n -或12C n n +.跟踪训练2 (1)(2019·山西八校联考)已知(1+x )n 的展开式中第5项和第7项的二项式系数相等,则奇数项的二项式系数和为( ) A.29 B.210 C.211 D.212 答案 A解析 由题意知C 4n =C 6n ,由组合数性质得n =10,则奇数项的二项式系数和为2n -1=29.(2)已知m 为正整数,(x +y )2m 展开式的二项式系数的最大值为a ,(x +y )2m +1展开式的二项式系数的最大值为b .若13a =7b ,则m 等于( ) A.5 B.6 C.7 D.8 答案 B解析 由题意可知,a =C m 2m ,b =C m2m +1,∵13a =7b ,∴13·(2m )!m !m !=7·(2m +1)!m !(m +1)!,即137=2m +1m +1,解得m =6. (3)(2019·合肥质检)已知m 是常数,若(mx -1)5=a 5x 5+a 4x 4+a 3x 3+a 2x 2+a 1x +a 0且a 1+a 2+a 3+a 4+a 5=33,则m =________. 答案 3解析 当x =0时,(-1)5=-1=a 0.当x =1时,(m -1)5=a 0+a 1+a 2+a 3+a 4+a 5=33-1=32,则m -1=2,m =3.1.(2020·湖北龙泉中学、钟祥一中、京山一中,沙洋中学联考)在⎝⎛⎭⎫x 2-2x 6的展开式中,常数项为( )A.-240B.-60C.60D.240 答案 D解析 ⎝⎛⎭⎫x 2-2x 6的二项展开式的通项为T r +1=C r 6·(x 2)6-r ⎝⎛⎭⎫-2x r =C r 6(-2)r x 12-3r , 令12-3r =0得r =4,即常数项为T 5=C 46(-2)4=240.2.⎝⎛⎭⎫2x -1x 5的展开式中x 3项的系数为( ) A.80 B.-80 C.-40 D.48 答案 B解析 ⎝⎛⎭⎫2x -1x 5的展开式的通项为T r +1=C r 5(2x )5-r ·⎝⎛⎭⎫-1x r =(-1)r ·25-r ·C r 5·x 5-2r ,令5-2r =3,得r =1.于是展开式中x 3项的系数为(-1)·25-1·C 15=-80,故选B.3.(2019·十堰调研)若⎝⎛⎭⎫x 6+1x x n 的展开式中含有常数项,则n 的最小值等于( )A.3B.4C.5D.6 答案 C解析 ⎝⎛⎭⎫x 6+1x x n展开式的通项为C r n (x 6)n -r 32rx -⎛⎫ ⎪⎝⎭=C r n 1562n r x - ,r =0,1,2,…n , 则依题设,由6n -152r =0,得n =54r ,∴n 的最小值等于5. 4.(2020·广州海珠区模拟)(x +y )(2x -y )6的展开式中x 4y 3的系数为( )A.-80B.-40C.40D.80答案 D解析 (2x -y )6的展开式的通项为T r +1=C r 6(2x )6-r (-y )r ,当r =2时,T 3=240x 4y 2,当r =3时,T 4=-160x 3y 3,故x 4y 3的系数为240-160=80,故选D.5.(2019·江淮十校考前最后一卷)已知(x +1)(2x +a )5的展开式中各项系数和为2,则其展开式中含x 3项的系数是( )A.-40B.-20C.20D.40答案 D解析 令x =1,可得(x +1)(2x +a )5的展开式中各项系数和为2(2+a )5=2.∴a =-1.二项式(2x -1)5的展开式的通项为T r +1=C r 5(2x )5-r ·(-1)r =25-r ·(-1)r ·C r 5·x 5-r , 所以(x +1)(2x -1)5的展开式中含x 3项的系数为22(-1)3C 35+23(-1)2C 25=40. 6.在⎝⎛⎭⎫x +3x n 的展开式中,各项系数和与二项式系数和之比为32∶1,则x 2的系数为( ) A.50 B.70 C.90 D.120答案 C解析 令x =1,则⎝⎛⎭⎫x +3x n =4n ,所以⎝⎛⎭⎫x +3x n 的展开式中,各项系数和为4n ,又二项式系数和为2n,所以4n2n =2n =32,解得n =5. 二项展开式的通项T r +1=C r 5x 5-r ⎝⎛⎭⎫3x r =C r 53r 352r x -,令5-32r =2,得r =2,所以x 2的系数为C 2532=90.7.(多选)二项式(2x -1)7的展开式的各项中,二项式系数最大的项是( )A.第2项B.第3项C.第4项D.第5项答案 CD解析 本题考查二项式系数的性质.因为二项式(2x -1)7展开式的各项的二项式系数为C r 7(r =0,1,2,3,4,5,6,7),易知当r =3或r =4时,C r 7最大,即二项展开式中,二项式系数最大的为第4项和第5项.8.(多选)对于二项式⎝⎛⎭⎫1x +x 3n (n ∈N *),以下判断正确的有( ) A.存在n ∈N *,展开式中有常数项B.对任意n ∈N *,展开式中没有常数项C.对任意n ∈N *,展开式中没有x 的一次项D.存在n ∈N *,展开式中有x 的一次项答案 AD解析 该二项展开式的通项为T r +1=C r n ⎝⎛⎭⎫1x n -r (x 3)r =C r n x 4r -n , ∴当n =4r 时,展开式中存在常数项,A 选项正确,B 选项错误;当n =4r -1时,展开式中存在x 的一次项,D 选项正确,C 选项错误.故选AD.9.(2020·镇江质检)(x -x )6的展开式中,含x 5项的系数为________.答案 15解析 展开式的通项为T r +1=C r 6·(-1)r ·62r x -,令6-r 2=5,得r =2, 故含x 5的系数为C 26=15. 10.(2019·晋城模拟)(2-3x )2(1-x )7的展开式中,x 3的系数为________.答案 -455解析 依题意,x 3的系数为4C 37×(-1)3-12C 27(-1)2+9C 17(-1)=-455. 11.已知⎝⎛⎭⎫ax +1x (2x +1)5(a ≠0),若其展开式中各项的系数和为81,则a =________,展开式中常数项为________.答案 -2310 解析 在⎝⎛⎭⎫ax +1x (2x +1)5中, 令x =1,得(a +1)·35=81,解得a =-23, 所以⎝⎛⎭⎫-23x +1x (2x +1)5的展开式中的常数项为 1x ·C 45·2x =10. 12.(2019·怀化模拟)若在⎝⎛⎭⎫2x +1x n 的二项展开式中,第3项和第4项的二项式系数相等且最大,则⎝⎛⎭⎫x -2x ·⎝⎛⎭⎫2x +1x n 的展开式中的常数项为________. 答案 -120解析 由⎝⎛⎭⎫2x +1x n 的二项展开式中二项式系数的最大项是第3项和第4项, 则展开式共6项,即n =6-1=5,又⎝⎛⎭⎫2x +1x n 展开式的通项为T r +1=C r 5(2x )5-r ⎝⎛⎭⎫1x r =25-r C r 5x 5-2r ,则⎝⎛⎭⎫x -2x ·⎝⎛⎭⎫2x +1x n 的展开式中的常数项为22C 35-2·23C 25=-120.13.已知(x cos θ+1)5的展开式中x 2的系数与⎝⎛⎭⎫x +544的展开式中x 3的系数相等,且θ∈(0,π),则θ等于( )A.π4B.π4或3π4C.π3D.π3或2π3答案 B解析 由二项式定理知(x cos θ+1)5的展开式中x 2的系数为C 35cos 2θ,⎝⎛⎭⎫x +544的展开式中x 3的系数为C 14×54,所以C 35cos 2θ=C 14×54,解得cos 2θ=12,解得cos θ=±22,又θ∈(0,π),所以θ=π4或3π4,故选B.14.⎝⎛⎭⎫2x +1x -35的展开式中常数项是________. 答案 -1 683解析 ⎝⎛⎭⎫2x +1x -35表示五个⎝⎛⎭⎫2x +1x -3相乘,则展开式中的常数项由三种情况产生,第一种是从五个⎝⎛⎭⎫2x +1x -3中分别抽取2x ,2x ,1x ,1x,-3,则此时的常数项为C 25·C 23·22·(-3)=-360,第二种情况是从五个⎝⎛⎭⎫2x +1x -3中都抽取-3,则此时的常数项为(-3)5=-243,第三种情况是从五个⎝⎛⎭⎫2x +1x -3中分别抽取2x ,1x,-3,-3,-3,则此时的常数项为C 15·C 14·21·(-3)3=-1 080,则展开式中常数项为-360-243-1 080=-1 683.15.(2019·衡水中学调研卷)设a ,b ,m 为整数(m >0),若a 和b 被m 除得的余数相同,则称a 和b对模m 同余,记为a ≡b (mod m ).若a =C 020+C 120·2+C 220·22+…+C 2020·220,a ≡b (mod10),则b 的值可以是( )A.2 018B.2 019C.2 020D.2 021答案 D解析 a =C 020+C 120·2+C 220·22+…+C 2020·220=(1+2)20=320=(80+1)5,它被10除所得余数为1,又a ≡b (mod10),所以b 的值可以是2 021.16.若⎝ ⎛⎭⎪⎫x +24x n 展开式中前三项的系数和为163,求: (1)展开式中所有x 的有理项;(2)展开式中系数最大的项.解 易求得展开式前三项的系数为1,2C 1n ,4C 2n .由题意得1+2C 1n +4C 2n =163,可得n =9.(1)设展开式中的有理项为T r +1,由T r +1=C r 9(x )9-r⎝ ⎛⎭⎪⎫24x r =2r C r 91834r x -, 又∵0≤r ≤9,∴r =2,6.故有理项为T 3=22C 29·18324x -⨯=144x 3, T 7=26·C 69·18364x -⨯=5 376.(2)设展开式中T r +1项的系数最大,则⎩⎪⎨⎪⎧2r C r 9≥2r +1C r +19,2r C r 9≥2r -1C r -19, ∴173≤r ≤203, 又∵r ∈N ,∴r =6,故展开式中系数最大的项为T 7=5 376.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
研题型 ·技法通关
第12页
栏目导航
高考总复习 一轮复习导学案 ·数学提高版
第十章 计数原理、概率及其分布
分类解析
目标1 加法原理与乘法原理 (1)(2019·台州调研)若从1,2,3,…,9这9个整数中同时取4个不同的数,其和
为偶数,则不同的取法共有________种66.
【解析】由题意知,满足题设的取法可分为三类:一是四个奇数相加,其和为偶 数,在 5 个奇数 1,3,5,7,9 中任意取 4 个,有 C45=5(种);二是两个奇数加两个偶数其 和为偶数,在 5 个奇数中任取 2 个,再在 4 个偶数 2,4,6,8 中任取 2 个,有 C25·C24=60(种); 三是四个偶数相加,其和为偶数,4 个偶数的取法有 1 种.所以满足条件的取法共有 5+60+1=66(种).
第6页
栏目导航
高考总复习 一轮复习导学案 ·数学提高版
第十章 计数原理、概率及其分布
4.某高三毕业班有40人,同学之间两两彼此给对方写一条毕业留言,那么全班共写 了________1条56毕0 业留言.(用数字作答)
【解析】 由题意知两两彼此给对方写一条毕业留言相当于从 40 人中任选两人的 排列数,所以全班共写了 A240=40×39=1 560(条)毕业留言.
第十章 计数原理、概率及其分布
链教材 ·夯基固本
第3页
栏目导航
高考总复习 一轮复习导学案 ·数学提高版
第十章 计数原理、概率及其分布
激活思维
1.已知某公园有4个门,从一个门进,另一个门出,则不同的走法共有
A.16种
B.13种
C.12种
D.10种
(C)
第4页
栏目导航
高考总复习 一轮复习导学案 ·数学提高版
公式
A
m n
=
n(n
-
1)(n
-
2)·…·(n
-
m
+
1)
=
n!
n-m!
Cnm=AAmnmm=nn-1n-m2!…n-m+1
性质 Ann=__n_!___,0!=__1_
Cnm=Cnn-m, Cnm+Cmn -1=Cnm+1
第11页
栏目导航
高考总复习 一轮复习导学案 ·数学提高版
第十章 计数原理、概率及其分布
第5页
栏目导航
高考总复习 一轮复习导学案 ·数学提高版
第十章 计数原理、概率及其分布
3.从3,5,7,11这四个质数中,每次取出两个不同的数分别为a,b,共可得到lg a-lg b
的不同值的个数是
(C)
A.6
B.8
C.12
D.16
【解析】 由于 lg a-lg b=lg ab,从 3,5,7,11 中取出两个不同的数分别赋值给 a 和 b 共有 A24=12 种,所以得到不同的值有 12 个.
1.使用分类加法计数原理时,应注意以下三方面: ①各类方法之间相互独立,每种都能完成这件事,且方法总数是各类方法相加. ②分类时,首先要在问题的条件之下确定一个分类标准,然后在确定的分类标准 下进行分类. ③完成这件事的任何一种方法必属于某一类,且分别属于不同两类的两种方法都 是不同的——不重不漏.
第13页
栏目导航
高考总复习 一轮复习导学案 ·数学提高版
第十章 计数原理、概率及其分布
(2) (2019·北京东城区调研)用数字2,3组成四位数,且数字2,3至少都出现一次,这 样的四位数共有______1_4_个.(用数字作答)
【解析】方法一:用2,3组成四位数共有2×2×2×2=16(个),其中不出现2或不出 现3的共2个,因此满足条件的四位数共有16-2=14(个).
第8页
栏目导航
高考总复习 一轮复习导学案 ·数学提高版
1.两个计数原理
知识聚焦
第十章 计数原理、概率及其分布
分类加法计数原理
分步乘法计数原理
条件
完成一件事有_两__类__不__同__方__案___,在第1 完成一件事需要__两__个__步__骤__,做第1步
类方案中有m种不同的方法,在第2类 有m种不同的方法,做第2步有n种不同
第7页
栏目导航
高考总复习 一轮复习导学案 ·数学提高版
第十章 计数原理、概率及其分布
5.已知C1m5 -C1m6 =107Cm7 ,则 m=___2_____.
【解析】 由已知得,m 的取值范围为{m|0≤m≤5,m∈Z},原等式可化为 m!55- !m!-m!66- !m!=7×170-×m7!!m!,整理可得 m2-23m+42=0,解得 m =21(舍去)或 m=2.
方案中有n种不同的方法
的方法
结论 完成这件事共有N=_m_+__n___种不同的 完成这件事共有N=_m__n_种不同的方
方法
法
第9页
栏目导航
高考总复习 一轮复习导学案 ·数学提高版
第十章 计数原理、概率及其分布
2.排列、组合的定义
排列的定义 组合的定义
从n个不同元素中取出 m(m≤n)个元素
按照一定的顺序排成一列 合成一组
高考总复习 一轮复习导学案 ·数学提高版
第十章 计数原理、概率及其分布
第十章 计数原理、概率及其分布 第52讲 排列与组合
第1页
栏目导航
高考总复习 一轮复习导学案 ·数学提高版
第十章 计数原理、概率及其分布
栏 目 导 航
第2页
栏目导航
链教材 ·夯基固本 研题型 ·技法通关
高考总复习 一轮复习导学案 ·数学提高版
第十章 计数原理、概率及其分布
2.小王有70元钱,现有面值分别为20元和30元的两种IC电话卡.若他至少买一张,
则不同的买法共有
(A)
A.7种
B.8种
C.6种
D.9种
【解析】 要完成的“一件事”是“至少买一张IC电话卡”,分3类完成:买1张IC 电话卡、买2张IC电话卡、买3张IC电话卡,而每一类都能独立完成“至少买一张IC电 话卡”这件事.买1张IC电话卡有2种方法,买2张IC电话卡有3种方法,买3张IC电话卡有 2种方法.不同的买法共有2+3+2=7(种).
第10页
栏目导航
高考总复习 一轮复习导学案 ·数学提高版
第十章 计数原理、概率及其分布
3.排列数、组合数的定义、公式、性质
排列数
组合数
定义
从 n 个不同元素中取出 m(m≤n)个元素 从 n 个不同元素中取出 m(m≤n)个元
的所有__不__同__排__列__的个数
素的所有__不__同__组__合__的个数
方法二:满足条件的四位数可分为三类:第一类含有一个 2,三个 3,共有 4 个; 第二类含有三个 2,一个 3,共有 4 个;第三类含有二个 2,二个 3,共有 C24=6(个).因 此满足条件的四位数共有 2×4+C24=14(个).
第14页
栏目导航
高考总复习 一轮复习导学案 ·数学提高版
第十章 计数原理、概率及其分布