第九章 细胞骨架
细胞生物学教程第九章细胞骨架
+
Treadmilling
细胞中大多数微丝结构处于动态的组装和去组装过程中,并通过这种方式实现其功能。 细胞松弛素(cytochalasin)可切断微丝纤维,并结合在微丝末端抑制肌动蛋白加合到微丝纤维上,特异性的抑制微丝功能。 鬼笔环肽(phalloidin)与微丝能够特异性的结合,使微丝纤维稳定而抑制其功能。荧光标记的鬼笔环肽可特异性的显示微丝。
原肌球蛋白(tropomyosin.Tm) 每个Tm的长度相当于7个肌动蛋白,呈长杆状。组成两条平行纤维,位于肌动蛋白双螺旋的沟中,主要作用是加强和稳定肌动蛋白丝,抑制肌动蛋白与肌球蛋白结合。 肌钙蛋白(troponin,Tn), 含三个亚基,肌钙蛋白C特异地与钙结合,肌钙蛋白T与原肌球蛋白有高度亲和力,肌钙蛋白I抑制肌球蛋白的ATP酶活性,主要作用是调节肌肉收缩。
第二节 微管 Microtubule, MT
微管在胞质中形成网络结构,作为运输路轨并起支撑作用。微管是由微管蛋白组成的管状结构,对低温、高压和秋水仙素敏感。
A fluorescently stained image of cultured epithelial cells showing the nucleus (yellow) and microtubules (red)
The Orientation of Microtubules in a Cell
PART ONE
五、微管的功能
支架作用
细胞内运输 是胞内物质运输的路轨。 涉及两大类马达蛋白:驱动蛋白kinesin,动力蛋白dyenin,均需ATP供能。 Kinesin发现于1985年,是由两条轻链和两条重链构成的四聚体 ,能向着微管(+)极运输小泡 。
胶质原纤维酸性蛋白glial fibrillary acidic protein 存在于星形神经胶质细胞和许旺细胞。起支撑作用。 波形纤维蛋白vimentin 存在于间充质细胞及中胚层来源的细胞中。 神经纤丝蛋白neurofilament protein 是由三种分子量不同的多肽组成的异聚体,功能是提供弹性使神经纤维易于伸展和防止断裂。
第九章 细胞骨架
(1)装配过程
αβ二聚体先形成原纤维,经过侧面增加而扩展为片层,至13根 原维时,即合拢形成一段微管。新的二聚体再不断加到微管的端 点使之延长。 原纤维中αβ→αβ的重复排列即导致微管两个末端在结构上的 差异,使微管具有极性,(+)αβ→αβ(-)即为头→尾#43;)端,微管的延长主要依 靠在(+)端装配GTP微管蛋白,然后GTP水解为GDP或GTP与微 管蛋白分离。目前认为,微管两端具GTP帽时,微管将继续装 配,反之,具GDP帽则解聚。微管的装配具有踏车现象,即(+) 端结合上去的与(-)端释放出来的微管蛋白速度相同的现象。
马达蛋白的运输是单方向的,即一种马达蛋白只能 引导一种方向的运输。
驱动蛋白只能引导沿微管的(-)端向(+)端的运输; 动力蛋白则是引导沿微管的(+)端向(-)端的运输; 肌球蛋白则引导沿微丝由其(-)端向(+)端的运动。
驱动蛋白是1985年从鱿鱼的轴质中分离的一种马达 蛋白。是一个四聚体,包括两条重链和两条轻链。
深绿:微管 浅兰:内质网 黄色:高尔基体
上图:内质网抗体染色 下图:微管抗体染色
上图:高尔基抗体染色 下图:微管抗体染色
鞭毛和纤毛的运动形式
鞭毛和纤毛的结构
纤毛的运动机制
微管的类型
微管的装配
(二)微丝
微丝(microfilament,MF)是由肌动蛋白(actin)组成的直径约 7nm的骨架纤维,又称肌动蛋白纤维actin filament。微丝和它的结 合蛋白(association protion)一起可以形成多种不同的亚细胞结 构。如应力纤维、肌肉细丝、小肠绒毛的轴心以及精子顶体中的
刺突等。
1 结构成分 2 微丝的装配 3 微丝特异性药物 4 微丝结合蛋白 5 微丝性细胞骨架的功能
第9章 细胞骨架
分子马达的定义
◆肌球蛋白的结构
由重链和轻链组成,并组成三个结构域∶
●头部 含有与肌动蛋白、ATP结合的位点,负责产生力。 ●颈部 颈部通过同钙调素或类似钙调素的调节轻链亚基的结合 来调节头部的活性。 ●尾部 含有决定尾部是否同膜结合还是同其它的尾部结合的位
肌球蛋白的结构(Ⅱ型)
中心体与基体
中心体结构(电镜照片)
中 心 粒
四、微管的功能
1、支架作用:细胞中的微管就像混凝土中的 钢筋一样,起支撑作用,在培养的细胞中, 微管呈放射状排列在核外,(+)端指向质 膜。
2、影响细胞器的分布与走向
3、细胞内物质运输:微管起细胞内物质运输的路
轨作用,破坏微管会抑制细胞内的物质运输。图1 分子马达:能利用水解ATP将化学能转变为机 械能,有规则地沿微管运输货物的分子。主要有 驱动蛋白和胞质动力蛋白
微丝组装的踏车现象
体外组装过程中,当溶液中ATP-肌动蛋白 处于临界浓度时,微丝(+)端由于ATPactin添加而延长、(-)端由于ADP-actin 解离而缩短,表现出一种“踏车”现象。
图
微丝的蹋车现象和动态平衡
(三)作用于微丝的药物
◆细胞松弛素B(cytochalasins B) ◆鬼笔环肽(phalloidin)
第三节、中间纤维(intermediate filament,IF)(中间丝)
10nm纤维,因其直径介于肌粗丝和细丝之间, 故被命名 为中间纤维。IF几乎分布于所有动物细胞,往往形成一个网 络结构,特别是在需要承受机械压力的细胞中含量相当丰富。 如上皮细胞中。除了胞质中,在内核膜下的核纤层也属于IF。
图
微管的结构
微管蛋白(tubulin)
9第九章 细胞骨架
本章内容提要
第一节 微丝与细胞运动
一、微丝的组成及其组装
二、微丝网络动态结构的调节与细胞运动 三、肌球蛋白:依赖于微丝的分子马达
四、肌细胞的收缩运动
一、微管的结构组成与极性 二、微管的组装和去组装 三、微管组织中心 四、微管的动力学性质
第二节 微管及其功能
胞外信号 刺激
非肌细胞迁移过程中细胞前缘肌动蛋白的 聚合和伪足的形成
成核,启动微丝组装 肌动蛋白网络推动细 胞质膜向信号源方向 伸出,形成伪足。
WASP蛋白激活 Arp2/3复合物
新的分 支延伸
启动分支微 丝的组装 Arp2/3复合物 结合到微丝侧面
抑制蛋白结合游离 的肌动蛋白亚基, 促进微丝延伸
细胞内大部分微丝都集中在紧贴细胞质膜的细胞质 区域,并由微丝结合蛋白交联成凝胶状三维网络结 构。该区域通常称为细胞皮层。
功能:为细胞质膜提供强度和 韧性,有助于维持细胞形状。
F-actin (red) microtubules (green)
Histone 3 (blue)
The importance of keeping a stiff actin cell cortex at mitosis
多聚体:由单体组装而成的纤维状肌动蛋白(F-actin,微
丝),是直径为7 nm的扭链,呈双股螺旋状。每条丝是由
肌动蛋白单体头尾相连呈螺旋状排列而成。具有不对称性
和极性。
肌动蛋白在生物进化过程中高度保守。
肌动蛋白类型:
a-肌动蛋白:4种,为横纹肌、心肌、血管平滑肌和肠道 平滑肌所特有,构成细胞的收缩性结构;
第九章 细胞骨架
② 重链上含有两个结合位点:一是ATP结合位
点;二是微管结合位点。
③ 胞质动力蛋白轻链端还结合着动力蛋白激
活蛋白复合体,介导胞质动力蛋白与需转运物质 之间的结合。
胞质动力蛋白的结构示意图
胞质动力蛋白的功能:
• 膜结合蛋白:使微丝与细胞质膜结合。
单体隔离蛋白
封端蛋白
交联蛋白
成核蛋白
成束蛋白
单体聚合蛋白
膜结合蛋白 纤维-解聚蛋白
纤维切割蛋白
各种微丝结合蛋白功能示意图
三、微丝的功能
1、维持细胞形态,赋予质膜机械强度
微丝遍及胞质各处,其中集中分布于质膜下的微丝与微 丝结合蛋白形成网络结构,维持细胞形态,赋予质膜机械强 度,如血红细胞膜内表面的膜骨架。
尾部结构域:决定肌球蛋
白的功能。
8、参与肌肉收缩
◆肌肉的细微结构(以骨骼肌为例)
◆肌小节的组成 ◆粗丝和细丝的组成 ◆肌肉收缩的滑动丝模型
第二节 微管及其功能
微管:是由微管蛋白组成的外径为24nm,内径为 15nm的中空管状结构。
一、微管的结构组成
α亚基上有GTP结合位点:该位点能结合GTP,但不能水解
2、基体的功能
形成细菌的鞭毛和纤毛,参与细菌的运动。
六、微管结合蛋白(P288) (Microtubule Associated Protein, MAP)
微管结合蛋白是一类与微管相结合的蛋白,对微 管网络的形成和功能进行调节。一般来说,MAP至 少含有两个结构域:一个是结合微管的结构域,具 有稳定微管的作用;另一个是向外突出的结构域, 负责与微管外其他细胞组分(如中间纤维、质膜等)
第九章__细胞骨架
相同细胞中微管、微丝和中间纤维的荧光定位 三种不同荧光染料探针同相应的蛋白纤维结合从而使细胞内的纤维被染色。(a)含有
肌动蛋白的纤维被蘑菇毒素鬼笔环肽标记; (b)含微管蛋白的微管被微管蛋白的抗体标记; (c)中间纤维被抗波形蛋白的抗体标记。三种混合的荧光标记物, 各自的光都不强, 并且各 自的荧光波长不同。检查时, 用不同的滤光片 , 每次滤去两种光
2+ + + Ca 、低浓度Na 、K (微丝趋于解聚成actin)
纤维状肌动蛋 白(MF)
单体G-肌动蛋白和 F-肌动蛋白的结构 (a)非肌细胞中β-Actin单体的结构模型, 像是扁平的分子,由体积相等的 两个部分组成, 中间有一个裂口, 并且有四个亚结构域, 用Ⅰ-Ⅳ表示。 ATP在裂口的地方与肌动蛋白结合。N端和C末端位于亚结构域Ⅰ。(b) 电子显微镜观察的经负染的丝状肌动蛋白的形态。(c)肌动蛋白纤维亚 基的装配模型。
二、微丝网络动态结构的调节与细胞运动
(一)非肌肉细胞内微丝的结合蛋白
纯化的肌动蛋白在体外能够聚合形成肌动蛋白纤
维,但是这种纤维不具有相互作用的能力,也不 能行使某种功能, 原因是缺少微丝结合蛋白。
■ 微丝结合蛋白的种类 肌细胞和非肌细胞中都有微丝结合蛋白,至少已 分离出100多种。
1. 几类主要的微丝结合蛋白
在适宜的温度,存在ATP、K 、Mg 离子的条件下,肌动蛋白单体可自组装为纤维。
ATP-actin(结合 ATP 的肌动蛋白)对微丝纤维末端的亲和力高,ADP-actin 对纤维末端的 亲和力低,容易脱落。当溶液中 ATP-actin 浓度高时,微丝快速生长,在微丝纤维的两端 形成 ATP-actin“帽子”,这样的微丝有较高的稳定性。伴随着 ATP水解,微丝结合的 ATP 就变成了 ADP,当 ADP-actin 暴露出来后,微丝就开始去组装而变短。
第九章 细胞骨架
维以十分有序的方式组装在一起。
粗肌丝的成分是肌球蛋白,细肌丝的成分主要是肌动 蛋白,辅以原肌球蛋白和肌钙蛋白。
• 肌肉收缩是由肌动蛋白丝与肌球蛋白丝的相对滑 动所致。
原肌球蛋白(tropomyosin, Tm)由两条平行的多肽链形
成α-螺旋构型,位于肌动蛋白螺旋沟内,一个Tm分子 的长度相当于7个肌动蛋白。Tm结合于细肌丝,调节肌 动蛋白与肌球蛋白头部的结合 肌钙蛋白 (Troponin, Tn)为复合物,包括三个亚基: Tn-C (Ca2+ 敏感性蛋白)能特异与Ca2+结合,Tn-T与原肌 球蛋白结合;Tn-I抑制肌球蛋白ATPase活性。细肌丝中
组分的相互作用来实现。
迁移过程:前端伸出突起 →
突起与基质之间形成锚定
位点使突起附着在基质表面 → 以附着点为支点向前移动 → 后部的附着点与基质脱离,细胞的尾部前移。 在此过程中,都涉及肌动蛋白以多种方式发挥作用。 在迁移细胞的前缘,肌动蛋白的聚合使细胞伸出宽而扁
平的片状伪足,内部充满正向排列的微丝束,正极通常位于
和依赖于微丝的肌球蛋白(myosin)这三类蛋白质
超家族成员。 它们既能与微管/微丝结合,又能与一些细胞器 或膜状小泡特异性结合,利用水解ATP所产生的能量 有规则地沿微管或微丝等细胞骨架纤维运输所携带
的货物。
1. II型肌球蛋白
II型肌球蛋白存在于多种细胞,由2条重链和4 条轻链组成高度不对称分子。 • 在肌细胞中,II型肌 球蛋白组装成肌原纤维 的粗丝,其含量约占肌 细胞总蛋白的一半。 • 在非肌细胞中,II型 肌球蛋白参与胞质分裂 环和张力纤维的活动及 介导物质的运输。
(五)微绒毛(microvillus)
小肠上皮细胞微绒毛的轴心微丝是非肌肉细胞中
第9章细胞骨架-精品文档54页
◆维持细胞核的形态
第2部分 核骨架(nuclear skeleton)
• (一) 核基质
• 1、核骨架又称核基质(nuclear matrix) : 狭义的核基质是指细胞核内除 去核膜、核纤层、染色质、核仁和核孔 复合体以外的部分,由多种蛋白质构成 的核内网架结构.
• 广义的核骨架包括核基质、核纤层和核 孔复合体.
• 动态微管、稳定微管 • 中心粒、中心体、纤毛、鞭毛
5.微管的功能
• 5·1 构成真核细胞胞质的网状支架,维 持细胞的形态.
5·2 纤毛和鞭毛的基本结构。
纤毛运动中微管的滑动机制
• 5·3 参与细胞分裂
微管组织中心与中心体
5·4 参与细胞内的物质运输
一、微丝(microfilament)
• 4.3 细胞内物质转运及与膜的活动相关的 功能
a-细胞的运动.mov b-细胞运动.mov • 4.4 受精作用
授精.gif
三、中间纤维(intermediate filament)
•
2.中间纤维的化学组成
• 按组织来源和免疫原性分: • 2·1 角蛋白Keratin,上皮细胞 • 2·2 神经丝蛋白(neurofilament
13根原丝 一段小管 延长 • 微管的GTP帽与GDP帽:
微管的GTP帽有利于微管的延长
微管 GDP帽暴露后微管解聚
• 微管的极性: 正极与负极
• 踏车行为: 在一定条件下, 微管的正极发生聚合
而延长,负极发生解聚而缩短的现象.
4. 微管的类型:
• 单管、二联管(A、B)三联管(A、B、C)
换, b球蛋白结合的GTP可发生水解或交 换.
• 2.2 微管结合蛋白:微管相关蛋白MAPs 微管聚合蛋白Tau • 2.3 动力蛋白(kinesin, dynein)
第九章 细胞骨架
(4) 组成鞭毛、纤毛 ) 组成鞭毛、
9.1.2 微丝 微丝(microfilament)
1 .微丝的形态及化学组成 微丝的形态及化学组成 (1)形态 )
为实心的纤维状结构,直径约 为实心的纤维状结构 直径约5 - 8nm。 直径约 。
电镜下显示微丝
(2)微丝的化学组成 )
肌动蛋白( 根据等电点分3类 分布于肌细胞; 和 分布 肌动蛋白(actin )根据等电点分 类:α-actin分布于肌细胞;β-和γ-分布 根据等电点分 分布于肌细胞 于所有细胞。单体呈哑铃形, 于所有细胞。单体呈哑铃形,称G-actin;多聚体称 ;多聚体称F-actin。 。 肌动蛋白结合蛋白: 多种, 肌动蛋白结合蛋白:有100多种,微丝解聚蛋白,交联蛋白等。 多种 微丝解聚蛋白,交联蛋白等。 肌球蛋白(myosin) 、原肌球蛋白等 (tropmyosin,Tm) 肌球蛋白
微管组织中心(MTOC):是微管装配的发生处,能调节微管 :是微管装配的发生处, 微管组织中心 蛋白的聚合和解聚,使微管加长或缩短。包括中心粒、 蛋白的聚合和解聚,使微管加长或缩短。包括中心粒、动粒和 鞭毛基体等。 鞭毛基体等。 微管敏感的药物:秋水仙素、长春花碱等抑制微管的聚合, 微管敏感的药物:秋水仙素、长春花碱等抑制微管的聚合 紫杉酚能促进微管的装配, 并使已形成的微管稳定。 紫杉酚能促进微管的装配 并使已形成的微管稳定。
9.1 细胞质骨架的结构与化学组成 . 9.1.1 微管(microtubule) . . 微管(
电镜下的微管
• 光镜下显示细胞骨架 微管 光镜下显示细胞骨架—微管
1.微管的超微结构和化学组成 . 形态: 根微管蛋白原纤维微管为中空的管状纤维 根微管蛋白原纤维微管为中空的管状纤维。 形态:13根微管蛋白原纤维微管为中空的管状纤维。 化学组成:微管蛋白(α、 ) 微管关联蛋白、达因蛋白。 化学组成:微管蛋白 、β)、微管关联蛋白、达因蛋白。 2. 微管的组装 微管蛋白 异二聚体 微管蛋白原纤维 微管
9第九章细胞骨架
第九章细胞骨架(Cytoskeleton)细胞骨架的概念细胞骨架是指存在于真核细胞中的蛋白纤维网架体系•有狭义和广义两种概念(1)在细胞质基质中包括微丝、微管和中间纤维。
(2 )在细胞核中存在核骨架-核纤层体系。
核骨架、核纤层与中间纤维在结构上相互连接,形成贯穿于细胞核和细胞质的网架体系。
第一节微丝(microfilament, MF)又称肌动蛋白纤维(actin filament),是指真核细胞中由肌动蛋白(actin)组成、直径为6-7nm的骨架纤维。
是由两条线性排列的肌动蛋白链形成的螺旋,形状如双线捻成的绳子。
一、微丝的组成与装配肌动蛋白(actin)是微丝的结构成分,大小为43KDa,外观呈哑铃状,这种actin又叫G-actin,由G-actin形成的微丝又称为F-actin。
(一)肌动蛋白的种类在哺乳动物和鸟类中,已至少发现6种肌动蛋白,其中4种称为-肌动蛋白,分布于横纹肌、心肌、血管平滑肌和肠道平滑肌。
另两种为-actin和-actin ,普遍存在于所有真核细胞中。
(二)肌动蛋白的存在形式与装配1、在缺乏离子时(Na+、K+),肌动蛋白成球形单体存在,球形肌动蛋白单体称为G-肌动蛋白。
2、在含有Mg2+和高浓度的Na+、K+的中性盐溶液中,G-actin装配成纤维状肌动蛋白,纤维状肌动蛋白也称为F-actin。
3、微丝的装配(1 )肌动蛋白单体具有极性,装配时单体呈头尾相接,成为具极性的微丝,既正极与负极之别。
(2)体外实验表明,具有极性的微丝在装配时,新的肌动蛋白单体加到微丝两端的速度不同,速度快的一端为正极,慢的一端为负极;去装配时,负极比正极快。
由于G-actin 在正极端装配,负极去装配,从而表现为踏车行为。
(3)体内装配时,MF呈现出动态不稳定性,主要取决于F-actin结合的ATP水解速度与游离的G-actin单体浓度之间的关系。
在一定条件下,微丝表现为一端因加上肌动蛋白单体而延长,另一端因肌动蛋白单体脱落而缩短,形成一种踏车现象。
细胞生物学第九章细胞骨架
四、肌细胞的收缩运动
3、肌肉收缩的过程
动作电位产生 原肌球蛋白位移
肌动蛋白丝与肌球 蛋白丝的相对滑动
Ca2+的释放
Ca2+的回收
肌肉收缩
①肌球蛋白结合ATP,引起头部与肌动蛋白纤 维分离; ②ATP水解,引起头部与肌动蛋白弱结合; ③Pi释放,头部与肌动蛋白强结合,头部向M 线方向弯曲,引起细肌丝向M线移动; ④ADP释放ATP结合上去,头部与肌动蛋白纤 维分离。 如此循环。
条轻链和中间链。马达结构域位于重链C端。 (2)功能: 细胞内介导沿微管从正极向负极的膜泡运 输。 与有丝分裂纺锤体的定位及后期染色体的 分离有关。
神 经 元 内 部 的 物 质 运 输
神经元内部的物质运输
鱼色素细胞颗粒的运输
(三)纤毛和鞭毛的结构与功能
1、纤毛和鞭毛的结构
第九章 细胞骨架(Cytoskeleton)
第一节 微丝与细胞运动
第二节 微管及其功能
第三节 中间丝
Microbubules
Microfilamemts
Intermediate filaments
第九章 细胞骨架
细胞骨架的发现 细胞骨架的概念:真核细胞内由蛋白质组成
的纤维状网架结构体系。 细胞骨架的基本类型: 1、微丝(microfilament MF) 2、微管(microtubule MT) 3、中间丝(intermediate filament IF)
(二)微管特异性药物
秋水仙素阻断微管的装配,使细胞分裂停 止在中期。 紫杉酚、D2O促进微管的装配,稳定微管, 但破坏了微管的平衡,使细胞停止在有丝 分裂期。
三、微管组织中心(MTOC) 在活细胞内,能够起始微管的成核作用,
第九章-细胞骨架(cytoskeleton)
第九章-细胞骨架(cytoskeleton)细胞骨架(cytoskeleton)是一种支持细胞形态并参与细胞运动、细胞分裂等生命活动的网络结构。
细胞骨架由细胞内的微丝(filament)、中间纤维(intermediate filament)和微管(microtubule)三种不同类型的蛋白纤维组成。
本文将分别介绍这三种蛋白纤维及其生物学功能。
微丝(filament)微丝是由直径约为0.7纳米的轻链和重链蛋白依序排列而成的,其长度可达几微米到数十微米。
微丝参与了许多细胞的活动,如细胞的贴附和收缩、细胞的定向运动、细胞分裂时的细胞质分裂等。
微丝在细胞内分布广泛,在细胞膜下、学问边缘、细胞质中均可看到它们的存在。
微丝的结构在细胞内具有动态性,微丝的动态平衡是在微丝生长和微丝解聚之间达到的。
微丝的生长是指微丝单元向氨基末端添加新的单元,微丝解聚剂解聚是指微丝单元从氨基末端依次解离。
微丝结构的多样性,使其在不同的细胞和组织中具有不同的生理和生理功能,其功能包括:1.细胞形态维持2.细胞内运动3.细胞分裂4.细胞外运动中间纤维(intermediate filament)中间纤维是由多种蛋白质复合物组成的、直径约为10纳米的蛋白质纤维,是细胞骨架中最稳定的一种类型。
与微丝相比,在细胞内时间较长,主要定位于细胞内稳定形态和细胞间连接等功能。
中间纤维具有多样性的物种、组织和细胞类型,它们的功能也很多,常见的包括:1.细胞特异性标记物2.相关细胞黏着3.细胞内物质运输4.参与细胞质形态维持5.参与细胞分裂过程微管(microtubule)微管是细胞骨架中直径最大的一类蛋白纤维,直径约为25纳米。
由两种蛋白质复合物丝状蛋白(tubulin)组成,是由 alpha 和 beta 两种 tubulin 蛋白以β特定的方向相互堆叠形成。
微管是一个高度动态的结构,依据其在细胞间操纵某些重要的细胞内形态变化,对于微管动态的研究成为细胞骨架领域的一个重要方向。
第九章 细胞骨架
第九章细胞骨架细胞骨架:真核细胞中的蛋白质纤维网架体系。
具有弥散性、整体性、变动性。
广义:细胞核骨架、细胞质骨架、细胞膜骨架和细胞外基质。
狭义:细胞质骨架由微丝、微管、中间丝组成,它们由相应的蛋白亚基组装而成。
功能:结构与支持、胞内运输、收缩与运动、空间组织。
第一节微丝与细胞运动微丝:肌动蛋白丝或纤维状肌动蛋白,直径7nm存在所有真核细胞中。
一、微丝的组成及其组装(一)结构与成分1.微丝的主要结构成分是肌动蛋白。
2.肌动蛋白的2种存在形式:①肌动蛋白单体(球状肌动蛋白,G-actin):单个肽链折叠而成,蝶状,中央一个裂口,裂口内部有ATP结合位点和镁离子结合位点;②纤维状肌动蛋白。
3.肌动蛋白高度保守。
6种:4种为α-肌动蛋白,分别为横纹肌、心肌、血管平滑肌、肠道平滑肌,均组成细胞的收缩性结构;2种为ß-肌动蛋白(位于细胞边缘)和γ-肌动蛋白(与张力纤维有关)。
4.微丝直径7nm的扭链,双股螺旋。
每条丝由肌动蛋白单体头尾相连呈螺旋状排列,螺距36nm。
纤维内部,每个肌动蛋白单体都有4个单体,上下各一个,另外2个位于一侧。
肌动蛋白分子上的裂口使得该蛋白本身在结构上不对称,在整根微丝上每一个单体上的裂口都朝向同一端,使微丝具有极性。
裂口一端为负极,另一端是正极。
(二)组装及动力学特性1.只有结合ATP的肌动蛋白单体才能参与微丝的组装。
解聚:溶液中含有适当浓度的钙离子,钠离子、钾离子浓度很低时,微丝趋向于解聚成G-actin;组装:溶液中含有ATP、镁离子以及较高浓度的钠钾离子时,溶液中的G-actin组装成F-actin,即新的G-actin加到微丝末端,微丝延伸,通常是正极的组装速度较负极快。
溶液中携带ATP的G-actin处于临界浓度时,组装与去组装达到平衡。
2.过程:①成核反应:Arp2和Arp3等蛋白质相互作用,形成起始复合物,至少有2-3个肌动蛋白单体与起始复合物结合,形成一段可供肌动蛋白单体继续组装的寡聚体。
第九章细胞骨架
第九章细胞骨架第九章细胞骨架用电子显微镜观察经非离子去垢网架结构通常称为细胞骨架(cytoskeleton)。
细胞骨架包括微丝(microfilament,MF)、微管(microtube,MT)和中间丝(intermediate filament,IF)3种结构组分,他们都是由相应的蛋白亚基组装而成。
第一节微丝与细胞运动微丝又称肌动蛋白丝(actin filament)或纤维状肌动蛋白(fibrous actin,F-actin),这种直径为7nm的细胞骨架存在于所有真核细胞中。
微丝网格的空间结构与功能取决于所结合的微丝结合蛋白(miceofilament-associated proteins)的种类。
细胞内微丝的组装和去组装的动力学过程与细胞突起(微绒毛、伪足)的形成、细胞质分裂、细胞内物质运输、肌肉收缩、吞噬作用、细胞迁移等多种细胞运动过程相关。
一、微丝的组成及其组装(一)结构与成分微丝的主要结构成分是肌动蛋白(actin)。
肌动蛋白在细胞内有两种存在形式,即肌动蛋白单体(又称球状肌动蛋白,G-actin)和由单体组装而成的纤维状肌动蛋白。
肌动蛋白在生物进化过程中是高度保守的。
(二)微丝的组装及动力学特征肌动蛋白单体组装称微丝的过程大体上可以分为几个阶段:第一个阶段是成核反应,即形成至少有2~3个肌动蛋白单体组成的寡聚体,然后开始多聚体的组装。
第二个阶段是纤维的延长。
在体外组装过程中有时可见到微丝的正极由于肌动蛋白亚基的不断添加二延长,而负极则由于肌动蛋白亚基去组装而缩短,这一现象称为踏车行为(treadmilling)。
(三)影响微丝组装的特异性药物一些药物可以影响肌动蛋白的组装和去组装,从而影响细胞内微丝网格的结构。
细胞松弛素(cytochalasin),与微丝结合后可以将微丝切断,并结合在微丝末端阻抑肌动蛋白在该部位的聚合,但对微丝的解聚没有明显的影响。
鬼笔环肽(philloidin),与微丝表面有强亲和力,但不与肌动蛋白单体结合,对微丝的解聚有抑制作用。
第9章 细胞骨架
§9.1 细胞骨架概述一、细胞骨架的概念细胞骨架是指细胞中由纤维蛋白构成的空间网络结构。
广义的细胞骨架包括:细胞核骨架、细胞质骨架、质膜骨架以及胞外基质。
狭义的细胞骨架包括:细胞质骨架(微管、微丝、中间丝)细胞中同时存在多种类型的细胞骨架并非物质能量的浪费,每种细胞骨架及其组成成分均行使不同的功能,多种组分间分工协作,功能互补,对细胞完成正常的生理功能至关重要。
二、细胞骨架的特点1.细胞骨架由相应的蛋白亚基构成,在组装与解聚间二者达到平衡。
2.细胞骨架具有动态不稳定性,即一定条件下存在组装与去组装现象,在细胞生命活动中起到重要作用。
(1)细胞周期中,细胞骨架经历动态的组装与去组装,周期性的重塑,在分裂期与分裂间期,其分布与组织形式不同。
(2)踏车行为能够改变微管或微丝在细胞中的分布,可能与细胞运动有关。
(3)细胞分裂伴随着纺锤体的形成于分解。
(4)细胞胞质环流伴随着细胞骨架的形成于解聚。
3.细胞骨架是三维的空间网状结构。
三、细胞骨架的功能特点1.细胞骨架构成多种细胞结构。
(1)微管:鞭毛、纤毛、中心体、纺锤体(2)微丝:微绒毛、收缩环、应力纤维、黏合斑、黏合带(3)中间丝:桥粒、半桥粒2.细胞骨架为细胞提供结构支撑,维持细胞形态。
3.细胞骨架介导细胞内物质运输、细胞器运输。
4.细胞骨架介导细胞运动。
5.细胞骨架对细胞分裂起到重要作用。
6.细胞骨架是细胞内结构与功能的空间组织者。
细胞内生物大分子或细胞器的分布具有不对称性,这与细胞骨架的不同组织方式有关,其结构与功能相适应。
四、细胞骨架的研究方法1.荧光显微镜细胞骨架的蛋白亚基可与相应的荧光染料或荧光抗体特异性结合,从而通过荧光显微镜观察其在活细胞中的组织、分布、功能与行为模式。
2.电子显微镜细胞经非离子型去污剂处理后,可溶性物质与膜被抽离,留下不溶的细胞骨架结构,经金属复型后可在电镜下观察细胞骨架的结构。
3.特异性药物处理微管:秋水仙素、长春花碱、紫杉醇微丝:细胞松弛素、鬼笔环肽微管微丝中间丝单体α/β-微管蛋白肌动蛋白杆状蛋白分子量50×10343×10340~200×103结合核苷酸GTP ATP无直径内径 15nm7nm10nm外径 24nm结构13 根原纤维构成的肌动蛋白单体首尾相8 个四聚体或 4 个八空间空心管状结构连构成的双股螺旋聚体构成的螺旋结构极性有有无组织特异性无无有单体库有有无踏车行为有有无结合蛋白动力蛋白肌球蛋白无驱动蛋白特异性药物秋水仙素细胞松弛素未发现长春花碱鬼笔环肽紫杉醇§9.2 微管一、微管的组成与结构1.微管蛋白微管是中空管状的细胞骨架,外径约 24nm,内径约 15nm,由α、β两种球状蛋白形成的异二聚体,即微管蛋白亚基构成,微管蛋白亚基是微管组装的结构单位。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
态
(2)参与肌肉收缩
(3)与细胞运动密切相关
(4)与细胞内运输,细胞分泌活动有关 (5)与细胞爬行有关 (6)参与细胞分裂
二 、微管( Microtubule, MT)
• 微管是细胞骨架系统中的主要成分之一,由微管蛋白装配成的 的长管状结构,存在与所有真核细胞中(除人体红细胞外), 原核生物没有微管。 • 在胞质中形成网络结构,作为运输路轨,并起支撑作用,对低
微丝,又叫肌动蛋白纤 维,是由肌动蛋白构成 的两股螺旋形成的细丝, 普遍存在于真核细胞中
微管,是由微管蛋白单体 构成的基本组件形成的中 空的管状结构。普遍存在 于真核细胞中
中间纤维,又叫中间丝,粗 细位于微丝和肌球蛋白粗丝 之间,普遍存在于真核细胞 中,是三种骨架系统中结构 最为复杂的一种
一、微丝(microfilament, MF)
• ②增加微管稳定性。 • ③促进微管聚集成束。
4、微管特异性药物
长春花碱—抑制微管装配。
紫杉酚(taxol)——能促进微管的装配, 并使
已形成的微管稳定。(这种稳定对细胞是有 害的,使细胞停止于有丝分裂期)
秋水仙素(colchicine)——阻断微管蛋白组
装成微管,可破坏纺锤体结构。
5、微管的生物学功能 (1)支持细胞的功能:构成细胞内网状支架, 维持细胞形态,固定与支持细胞器的位臵; (2)与细胞器位移和细胞运动有关,染色体 的移动、纤毛、鞭毛的运动都是由微管聚合和 解聚产生的;
增强细胞抗机械压力的能力
角蛋白纤维参 与桥粒的形成 和维持
胞质骨架三种组分的比较
微丝 单体 结合核苷酸 纤维直径 结构 球蛋白 ATP-G-actin ~7nm 双链螺旋 微管 αβ 球蛋白 2GTP/αβ 二聚体 ~22nm 13 根源纤丝组成空心管 状纤维 有 无 有 有 动力蛋白,驱动蛋白 秋水仙素,长春花碱,紫 杉酚 中间纤维 杆状蛋白 无 10nm 8 个 4 聚体或 4 个 8 聚体组成的空心 管状纤维 无 有 无 无 无 无
微管两端具 GTP帽(取决于微管蛋白浓度), · 微管将继续组装;反之,无GTP帽则解聚。
• The function of GTP-tubulin cap • GTP hydrolysis is not required for microtubule assembly,WHY? • Microtubule disassemble when GDP-tubulin are exposed
1、成分
• 主要结构成分 —— 肌动蛋白( actin ,外观呈哑 铃状) • 根据等电点分为 3 类: α肌动蛋白分布于肌肉细胞; β和γ肌动蛋白分布于肌细胞和非肌细胞 • actin 单体又称球形肌动蛋白 G-actin ;多聚 体称为纤维形肌动蛋白 F-actin。
微丝是由单体G-actin形成的多聚体,又称为F-actin
(二)IF的装配
1、过程:(课本339页图10-19) ①两个单体形成超螺旋二聚体(角蛋白为异 二聚体); ②两个二聚体反向平行组装成四聚体。 ③四聚体长向连成原纤维; ④8根原纤维组成中间纤维,横切面具有32 个单体 。
单体 超螺旋 (平行对齐)
原纤丝 (反向平行)
原纤维
中间纤维
2、IF 装配与 MF,MT 装配相比,有以下几个 特点: -----IF 装配的单体是纤维状蛋白(MF, MT 的单体呈球形); ----- 反向平行的四聚体导致 IF 不具有 极性; ----- IF 在体外装配时不需要核苷酸或 结合蛋白的辅助,在体内装配后,细胞中几 乎不存在 IF 单体(但 IF 的存在形式也可 以受到细胞调节,如核纤层的装配与解聚)。
3、体内装配时,MF呈现出动态不稳定性,
主要取决于 F-actin结合的ATP水解速度与 游离的G-actin单体浓度之间的关系。
4、MF动态变化与细胞生理功能变化相适应。
在体内 , 有些微丝是永久性的结构 , 有些
微丝是暂时性的结构。
3、微丝特异性药物
1、细胞松弛素(cytochalasin):是真菌的一种产物, 可切断微丝纤维,并结合在微丝正极阻抑肌动蛋白聚合, 从而导致微丝解聚。 2、鬼笔环肽(phalloidin):与微丝有强亲和作用,使 肌动蛋白纤维稳定,防止微丝解聚,且只与F肌动蛋白 结合。
组成及功能:(三个亚基)
– Tn C(Ca2+敏感性蛋白),能特异 与Ca2+结和。 – Tn T,于原肌球蛋白结合; – Tn I,抑制肌球蛋白ATPase活性, 调节肌肉收缩。
Tropomyosin, actin and troponin
5、微丝功能
(1)参与构成细胞支架,保持细胞的一定形
细胞骨架功能
① 作为支架,为维持细胞的形态提供支持结构, 并给细胞定位; ② 为细胞内的物质和细胞的运输运动提供机械 支持; ③ 为细胞从一个位臵向另一个位臵移动提供动 力; ⑤ 参与细胞连接。
④ 为mRNA提供锚定位点,促进mRNA翻译成多肽;
第一节 细胞质骨架
一、微丝
二、微管
三、中间纤维
光镜下显示细胞骨的功能
◆ 增强细胞抗机械压力的能力。 ◆ 角蛋白纤维参与桥粒的形成和维持 。 ◆ 结蛋白纤维是肌肉 Z 盘的重要结构组分, 对于维持肌肉细胞的收缩装臵起重要作用。 ◆ 神经元纤维在神经细胞轴突运输中起作用。 ◆ 参与传递细胞内机械的或分子的信息。 ◆ 中间纤维与 mRNA 的运输有关。
(2)结蛋白(desmin)
• 又称骨骼蛋白skeletin,存在于肌肉细胞中,
主要功能是使肌纤维连在一起。
(3)胶质原纤维酸性蛋白
• 存在于星形神经胶质细胞。起支撑作用。
(4)波形纤维蛋白(vimentin)
• 存在于间充质细胞及中胚层来源的细胞中。
(5)神经纤丝蛋白 • 是由三种分子量不同的多肽组成的异聚体, 功能是提供弹性使神经纤维易于伸展和防止 断裂。
(2)体外微管装配条件
微管蛋白浓度:低于临界浓度时,不发 生微管聚合; 最适pH:pH6.9;
· 离子:去 Ca2+,存Mg2 +
;
温度:37℃装配,0℃解聚。 GTP供应。
(3)体内微管装配动态
微管装配的动力学不稳定性:指微管装配
生长与快速去装配的一个交替变换的现象。
动力学不稳定性产生的原因:
第九章
细胞骨架
Cytoskeleton
细胞骨架:是指存在于真核细胞中的蛋白纤 维网架体系。
有狭义和广义两种概念 ◆狭义:指微丝、微管和中间纤维构成的骨 架体系。 ◆广义:包括细胞质骨架、细胞核骨架、细 胞膜骨架和细胞外基质。
细胞骨架不仅在维持细胞形态,保持细胞内 部的有序性中起到重要作用,还与细胞运动、 物质运输、能量转换、信息传递、细胞分裂、 基因表达、细胞分化等生命活动密切相关。
3、 微管结合蛋白 (microtubule associated proteins, MAPs) MAP 分 子 至 少 包 含 一 个结合微管的结构域 和一个向外突出的结 构域。突出部位伸到 微管外与其它细胞组 分(如微管束、中间 纤维、质膜)结合。
微管结合蛋白主要功能 • ①促进微管组装。
③ 封端蛋白:使纤维稳定,Cap Z
④ 单体聚合蛋白:将结合的单体安装到纤维,profilin ⑤ 微丝解聚蛋白:使微丝去组装,cofilin
⑥ 交联蛋白:将2至多条纤维联系在一起形成纤维束或网络, fimbrin
⑦ 纤维切断蛋白:将微丝切断,gelsolin
⑧ 膜结合蛋白:将肌动蛋白纤维量接在膜上,参与构成粘合带, vinculin
装配的特点: 1、MF是由 G-actin 单体形成的多聚体,
肌动蛋白单体具有极性,装配时呈头尾相接,
故微丝具有极性,既正极与负极之别。 2、微丝正极与负极都能生长,生长快的一
端为正极,慢的一端为负极;去装配时,
负极比正极快。(由于G-actin在正极端装
配,负极去装配,从而变现为踏车现象)。
温、高压和秋水仙素敏感。
A fluorescently stained image of cultured epithelial cells showing the nucleus (yellow) and microtubules (red)
1、成分
微管是由13条原纤维构成的中空管状结构,直径2225nm。 每一条原纤维由微管蛋白二聚体线性排列而成 微管蛋白二聚体由结构相似的α和β微管蛋白构成 。 • α微管蛋白结合的GTP从不发生水解或交换。 • β微管蛋白也是一种 G 蛋白,结合的 GTP 可发生水解, 结合的GDP可交换为GTP。
影响微丝装配动态性的药物对细胞都有毒害,说明微 丝功能的发挥依赖于微丝与actin单体库间的动态平衡。 这种动态平衡受actin单体浓度和微丝结合蛋白的影响。
4、微丝结合蛋白
参与形成微丝纤维高级结构,对肌 动蛋白纤维的动态装配有调节作用,以 行使特定的功能。
根据分布与功能不同分类:
肌肉收缩系统中的微丝结合蛋白 非肌肉细胞中的微丝结合蛋白
原纤维
2、装配
(1)装配过程
α微管蛋白和β微管蛋白形成αβ二聚
体→αβ二聚体形成原纤维 →经过侧面增
加二聚体而扩展为片层→当加宽至13根原
纤维时,即合拢形成一段微管→新的二聚 体再不断加到微管的端点使之延长
装配特点
• 微管具有极性,(+)极生长速度快,(-)极生长速 度慢。 • (+)极的最外端是β球蛋白,(-)极的最外端是α 球蛋白。 • 微管和微丝一样具有踏车行为。 • 微管形成的有些结构是比较稳定,是由于微管结 合蛋白的作用和酶修饰的原因。如轴突、纤毛、 鞭毛。 • 大多数微管处于动态组装和去组装状态(如纺锤 体)。 • 为行使正常的微管功能,微管动力学不稳定性是 其功能正常发挥的基础。