分式加减法练习题
分式加减法专项练习60题含答案
分式加减法专项练习60题(有答案)1.2.a(a﹣1)+3.4..5. +.6..7.=_________.8..6yue289..10..11..12.13.14..15.16.(1);(2)17.18.1+ 19.﹣+20.21.+.22.23..24.,25.26.++.27.+﹣.28.29.(式中a,b,c两两不相等):30.31.(1);(2)….32.+﹣33.化简分式:.34..35.计算:﹣.36.计算:.37.计算:.38..39.计算化简:.40.计算:+++.41.计算.42.计算:.43.化简:.44..45.计算:.zuoguo46..55.化简:.47.化简:.48..49..50.计算:﹣.51.计算:.52.计算:1﹣•.53.计算:.54.化简56.先观察下列等式,然后用你发现的规律解答下列问题:由,,…(1)计算++++++=_________(n为正整数);(2)化简:+…+.57.化简:﹣.60.求和.58.请你阅读下列计算过程,再回答所提出的问题:题目计算:解:原式=(A)=(B)=a﹣3﹣6(C)=a﹣9(D)(1)上述计算过程中,从哪一步开始出现错误:_________.(2)从B到C是否正确,若不正确,错误的原因是_________.(3)请你把正确解答过程写下来.59.观察下面的变形规律:=1﹣;=﹣;=﹣;…解答下面的问题:(1)若n为正整数,请你猜想=_________;(2)证明你猜想的结论;(3)求和:+++…+.参考答案:1.原式===1+1=2.2.原式=a2﹣a+=a2﹣a+a=a2.3.==.4.原式===.5.原式=+==.6.原式===.7.==.8.原式===a﹣1.9.原式==.10.+=+=+==1.11.原式=﹣==.12.原式=﹣=﹣=.13.原式=+===14.原式=+==.15.=﹣=﹣==﹣1.16.(1)原式=;(2)原式=17.====.18.原式=1﹣====.19.原式=﹣•==.20.===0.21.原式=+==.22.原式=﹣==.23.原式=====1.24.原式====;x的取值范围是x≠﹣2且x≠1的实数.25.原式==.26.====027.原式=﹣﹣==28.=.29.原式=++=+++++=0.30.原式=+﹣==.31.(1),=,=;(2)+…+=﹣+﹣+…+﹣=﹣=.32.==﹣2 33.=(2a+1)+﹣(a﹣3)﹣﹣(3a+2)++(2a﹣2)﹣=[(2a+1)﹣(a﹣3)﹣(3a+2)+(2a﹣2)]+(﹣+﹣)=﹣+﹣=﹣=.34.原式=﹣=﹣===35.原式====﹣36.原式====37.原式==38.原式=+﹣==39.原式=++=+﹣==== 40.原式=+++=++ =++=+=+=.41.设2x2+3x=y,则原式=﹣+===.42.原式=﹣a+2=a+1﹣a+2=3.43. 原式====.44.原式===,===45.=﹣===46.=== ==47.原式=,=﹣+,=+﹣﹣++,=048.原式=2a﹣a﹣1+a+1=2a.49.原式====.50.原式====.51.原式===.52.原式=1﹣×=1﹣==﹣.53.原式=+﹣====54.原式=++=+++++=﹣+﹣+﹣=0+0+0=055.原式===156.(1)原式=1﹣+﹣+…+﹣=1﹣=;(2)原式=﹣+…+﹣=﹣=57.原式=﹣=﹣=158.(1)A(2)不正确,不能去分母(3)原式===59.(1)=﹣;(2)﹣=﹣==;(3)+++…+=1﹣+﹣+﹣+…+﹣=1﹣=60.原式=++++…+﹣=+++…+﹣=+﹣=﹣=.。
大班加减法练习题分式
大班加减法练习题分式加减法是数学中的基础运算,对于大班的孩子来说,掌握基本的加减法是进入小学学习的重要一步。
以下是一些适合大班孩子的加减法练习题,以分式的形式呈现,旨在帮助孩子通过练习提高计算能力。
题目一:小明有5个苹果,他又从妈妈那里得到了3个苹果。
请问小明现在一共有多少个苹果?解答:5 + 3 = 8小明现在一共有8个苹果。
题目二:小华有7块巧克力,他给了妹妹4块。
请问小华现在还剩下多少块巧克力?解答:7 - 4 = 3小华现在还剩下3块巧克力。
题目三:班级里有10个小朋友,其中5个小朋友是男生,5个小朋友是女生。
如果走了2个男生,现在班级里有多少个小朋友?解答:10 - 2 = 8现在班级里有8个小朋友。
题目四:小丽有8朵花,她决定送给朋友4朵。
请问小丽送出花后还剩多少朵?解答:8 - 4 = 4小丽送出花后还剩4朵。
题目五:小刚有6支铅笔,他用掉了2支。
请问小刚现在还剩下多少支铅笔?解答:6 - 2 = 4小刚现在还剩下4支铅笔。
题目六:小芳有12个气球,她放飞了6个。
请问小芳放飞气球后还剩多少个?解答:12 - 6 = 6小芳放飞气球后还剩6个。
题目七:小强有9个玩具,他决定送给朋友5个。
请问小强送出玩具后还剩多少个?解答:9 - 5 = 4小强送出玩具后还剩4个。
题目八:小美有15个果冻,她吃了7个。
请问小美吃了果冻后还剩多少个?解答:15 - 7 = 8小美吃了果冻后还剩8个。
通过这些练习,孩子们可以逐渐熟悉加减法的运算规则,并在实际情境中应用这些技能。
家长和老师可以鼓励孩子们在日常生活中寻找机会进行类似的练习,以增强他们的数学能力。
分式加减法练习题
分式的加减法分式的加减法:(1)23+34=34⨯+ 34⨯= (2)abab 610-= (3)1a +1b =ab +ab= (4)b a 21+21ab= 因为最简公分母是___________,所以b a 21+21ab = =_____________________=_____________________=_____________________-.提示:通分的关键是确定几个分式的公分母,通常取各分母所有因式的最高次幂的积作为公分母(叫做最简公分母).例如第(1)小题中的两个分式b a 21和21ab,它们的最简公分母是(5)y x -1+yx +1 因为最简公分母是___________,所以y x -1+y x +1 =(6)1()x x y -+yx +1 因为最简公分母是___________,所以1()x x y -+yx +1 =练习A : (1)a a 21+= (2)bc a c -= (3)a c b a c b ++- (4)ba b b a a +++=(5)ab b b a a -+-= (6)x x -++1111 =(7)231x +x43; 因为最简公分母是_____,所以231x +x43 =2134x ⨯+34x=+=(8)221y x -+xy x +21 因为 x 2-y 2=(x+y )( ), x 2+xy =x( ), 所以221y x -与xy x +21的最简公分母为_____,因此221y x -+xy x +21 =1()x y++1x =+(9)231x +xy125; 因为最简公分母是___________ =(10)24ab a b -;B 组(1)xy y x xy y x 2)(2-++)(; (2)xyy x xy y x 22)()(--+(3)x x +21+x x -21. 最简公分母是__________ =(4)1624432---x x (5)aa a +--22214;(6)224-++a a (7)112---x x x .(8)323111x x x x⋅⎪⎭⎫ ⎝⎛+-;(9)⎪⎭⎫ ⎝⎛--+⋅+-y x x y x y x x 2121.(10)林林家距离学校a 千米,骑自行车需要b 分钟,若某一天林林从家出发迟了c 分钟,则她每分钟应多骑多少千米,才能像往常一样到达学校(11)周末,小颖跟妈妈到水果批发市场去买苹果.那儿有两种苹果,甲种苹果每箱重m 千克,售a 元;乙种苹果每箱重n 千克,售b 元.请问,甲种苹果的单价是乙种苹果的多少倍。
分式运算加减法练习题
分式运算加减法练习题分式运算是代数中的一个重要部分,掌握分式加减法对于解决更复杂的代数问题至关重要。
以下是一些分式加减法的练习题,帮助学生巩固和提高他们的计算能力。
1. 计算下列分式的和:\(\frac{3}{4} + \frac{1}{6}\)2. 求出以下分式的差:\(\frac{5}{8} - \frac{3}{10}\)3. 计算并简化以下表达式:\(\frac{2}{5} + \frac{1}{3} - \frac{3}{10}\)4. 解决以下问题:如果 \(\frac{a}{b} + \frac{c}{d} = \frac{e}{f}\),且 \(a = 6\),\(b = 9\),\(c = 4\),\(d = 7\),求 \(e\) 和 \(f\) 的值。
5. 计算以下分式的和,并简化结果:\(\frac{2x}{3y} + \frac{3x}{4y}\)6. 求出以下分式的差,并简化:\(\frac{5}{x+1} - \frac{3}{x-1}\)7. 计算以下表达式的值:\(\frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5}\)8. 解决以下问题:如果 \(\frac{m}{n} - \frac{p}{q} = \frac{r}{s}\),且 \(m = 12\),\(n = 15\),\(p = 8\),\(q = 10\),求 \(r\) 和 \(s\) 的值。
9. 计算以下分式的和,并简化结果:\(\frac{3}{x} + \frac{2}{x-1}\)10. 求出以下分式的差,并简化:\(\frac{4}{y+2} - \frac{1}{y-2}\)解决这些练习题的关键是找到分母的最小公倍数,然后将分子相加减,最后简化结果。
通过这些练习,学生可以提高他们对分式运算的理解和应用能力。
请注意,这些练习题的答案需要根据具体的数学规则来计算,例如找到公共分母,进行分数的加减运算,以及简化结果。
分式加减法练习题及答案
分式加减法练习题及答案分式加减法练习题及答案分式加减法是数学中的基础概念之一,也是我们在日常生活中经常会遇到的计算问题。
掌握了分式加减法的方法和技巧,不仅可以帮助我们更好地理解数学知识,还能在实际生活中提高计算能力。
下面,我将为大家提供一些分式加减法的练习题及答案,希望能够帮助大家更好地掌握这一知识点。
练习题一:1. 2/3 + 1/4 = ?2. 3/5 - 1/10 = ?3. 4/7 + 5/7 = ?4. 2/3 - 1/6 = ?5. 1/2 + 3/4 = ?练习题二:1. 3/8 + 2/5 = ?2. 5/6 - 1/3 = ?3. 7/9 + 2/9 = ?4. 4/5 - 1/10 = ?5. 2/3 + 1/6 = ?练习题三:1. 1/4 + 2/3 = ?2. 3/5 - 1/5 = ?3. 2/7 + 5/7 = ?4. 1/2 - 1/4 = ?5. 3/4 + 1/8 = ?答案:练习题一:1. 2/3 + 1/4 = 11/122. 3/5 - 1/10 = 7/103. 4/7 + 5/7 = 9/74. 2/3 - 1/6 = 3/65. 1/2 + 3/4 = 5/4练习题二:1. 3/8 + 2/5 = 31/402. 5/6 - 1/3 = 1/23. 7/9 + 2/9 = 9/94. 4/5 - 1/10 = 39/505. 2/3 + 1/6 = 5/6练习题三:1. 1/4 + 2/3 = 11/122. 3/5 - 1/5 = 2/53. 2/7 + 5/7 = 7/74. 1/2 - 1/4 = 1/45. 3/4 + 1/8 = 7/8通过以上练习题,我们可以看到分式加减法的运算过程其实并不复杂。
首先,我们需要找到两个分式的公共分母,然后将分子进行相应的运算,最后将结果化简为最简形式。
在解答这些练习题的过程中,我们可以学到一些技巧。
比如,在计算分式的加法时,我们可以先找到两个分式的公共分母,然后将分子相加,分母保持不变。
分式的加减法速算练习题(打印版)
分式的加减法速算练习题(打印版)### 分式的加减法速算练习题#### 一、基础练习题1. 计算以下分式的和:\[\frac{1}{2} + \frac{3}{4}\]2. 计算以下分式的差:\[\frac{5}{6} - \frac{1}{3}\]3. 计算以下分式的和:\[\frac{3}{8} + \frac{5}{12}\]4. 计算以下分式的差:\[\frac{7}{9} - \frac{2}{9}\]#### 二、进阶练习题1. 计算以下分式的和:\[\frac{2}{5} + \frac{1}{10} + \frac{3}{20}\]2. 计算以下分式的差:\[\frac{4}{7} - \frac{2}{21} - \frac{1}{3}\]3. 计算以下分式的和:\[\frac{3}{7} + \frac{5}{14} + \frac{1}{2}\]4. 计算以下分式的差:\[\frac{8}{15} - \frac{1}{5} + \frac{3}{10}\]#### 三、挑战练习题1. 计算以下分式的和:\[\frac{1}{3} + \frac{2}{9} + \frac{4}{27} + \frac{8}{81} \]2. 计算以下分式的差:\[\frac{5}{11} - \frac{3}{22} + \frac{1}{66}\]3. 计算以下分式的和:\[\frac{2}{3} + \frac{1}{6} - \frac{1}{9} + \frac{1}{18}\]4. 计算以下分式的差:\[\frac{7}{12} - \frac{1}{4} + \frac{1}{6} - \frac{1}{3}\]#### 答案解析1. \(\frac{1}{2} + \frac{3}{4} = \frac{2}{4} + \frac{3}{4} =\frac{5}{4}\)2. \(\frac{5}{6} - \frac{1}{3} = \frac{5}{6} - \frac{2}{6} =\frac{3}{6} = \frac{1}{2}\)3. \(\frac{3}{8} + \frac{5}{12} = \frac{9}{24} + \frac{10}{24} = \frac{19}{24}\)4. \(\frac{7}{9} - \frac{2}{9} = \frac{5}{9}\)5. \(\frac{2}{5} + \frac{1}{10} + \frac{3}{20} = \frac{8}{20} + \frac{2}{20} + \frac{3}{20} = \frac{13}{20}\)6. \(\frac{4}{7} - \frac{2}{21} - \frac{1}{3} = \frac{12}{21} - \frac{2}{21} - \frac{7}{21} = \frac{3}{21} = \frac{1}{7}\)7. \(\frac{3}{7} + \frac{5}{14} + \frac{1}{2} = \frac{6}{14}+ \frac{5}{14} + \frac{7}{14} = \frac{18}{14} = \frac{9}{7}\)8. \(\frac{8}{15} - \frac{1}{5} + \frac{3}{10} = \frac{16}{30} - \frac{6}{30} + \frac{9}{30} = \frac{19}{30}\)9. \(\frac{1}{3} + \frac{2}{9} + \frac{4}{27} + \frac{8}{81}= \frac{27}{81} + \frac{18}{81} + \frac{12}{81} + \frac{8}{81} = \frac{65}{81}\)10. \(\frac{5}{11} - \frac{3}{22。
(05)分式加减法专项练习60题(有答案)ok
分式加减法专项练习60题(有答案)6yue281 12a41|a 2-l[13 nx-:3 x ( X-3)5.6.2 a ..] a+1.i '.8.1 ID - 5 in2 _ in 2ID 2 _ 214.9.10. ab b:I.7'-'-.11.2m _ 1 m 2 -4 时2x 2 2x .K 2+X -2 /-4X £+4X +412.a - 1a 2+a- 2a+l¥-115.13.16 .(1)x+x | - 9X2+6I+917 .n m ^2_2L珂0jm_ 2n n, - 4im+4n*18.1+a2+ab+ b 2?-b319 .b2ab+ b2 - 2ab+ b2'a2 - b22a * b ~ e , 2b ~ c - a _ 2e - a - b~2I 5' oa - ab - ac+bc b - ab - bc+ac c - ac - bc+ab23.ir^+2ni+l V 7?(i-l)(K +2)-1 ,r 12.L2IE 2 - 9 TS;_ IT 26.25.27.2y+z —■+28 卅9b _ a+3b.:.- --29.(式中a , b , c 两两不相等)231. (1) ^― ■出;x+y2曰'+3*2 _ 己2 _ 廿 _ 5 _ 3 a? _ 4邑- § 2护 - 3时5 a+1af2 a - 2 + a - 3:, 1 … K (xfl) T (计1)(計刃 (x+2005) (x+2006)(2) b 2a+c b-ca 一 b+c|b ' a _ c b -耳-百 32.33.化简分式:34. 72x y+xy35 .计算:2x+2y36. 计算: 37•计算:3K - 4y40. 38. 39.计算化简:一X2+3X +2 X 2+K -2 1- T 21124 1-X|i+d1+/计算:41 . 1 2 12X 2+31-1 2 K 2+3X +1 2X 2+3I ^3计算45•计算:f「二47.化简:2a_ b-c _ 2b _c _a , 2c _a ~ b (a-b) ta_c) * (b_c) Cb - a)亠(G_(G_b)42•计算: 7s +2a+l a+148. ::-■-a- 1 49.a2-l51 •计算:2JS' y _z 2y _ _2 2z _K_y~~5 "I o "I- Ky- xz+yz y^- xy - yz+xz z^-KZ- yz+sy54.化简(2)化简:1 + + + +■ ++=1X^ 2X3 3X4 4X5 5X6|6X7 7X8 _—□__________ 1______ .L[(n为正整数);+・・+1(x+2QQ8) C K+2009)50.计算:56.先观察下列等式,然后用你发现的规律解答下列问题:由 __ _!—丄_J_一_!_! _J__1X2 2 1 2 2X3 6 2 3 3Xq 12 3 4 (1)计算(K+2) (X+3)(x+1)(x+1) (x+2)解答下面的问题:(1 )若n 为正整数,请你猜想一.1.= _|n Cn+1)(2) 证明你猜想的结论;(3) ------------------------------------------------------------- 求和: 一=—+—=—+—=—+ •- +=1X2 2X3 3X4 2011X2012解:原式= ----- ------------ ' (A )a+3(a+3)(a - 3)= a-3_6(a+3)_3)((a - 3)58•请你阅读下列计算过程,再回答所提岀的问题:题目计算:(B)=a — 3- 6 (C ) =a - 9 ( D )(1 )上述计算过程中,从哪一步开始岀现错误: _ _ •(2)从B 到C 是否正确,若不正确,错误的原因是 __________________ (3 )请你把正确解答过程写下来.59 •观察下面的变形规律:=11X21::;L1 1 1 |1 12|3|;3X4 3 4;参考答案:1 原式=• .' . -1 - I =1 + 1=2 .a _ ba _b a _ ba 2 - abb a (a b) n = • a + b a+b|Pt/a+b(a+b) (a _b)a+b a +h| a+ba+b|m _ 2 2m (mH)4. 5. 6. 2x1x 11(xH) (K--1) x-1 (計 1) (x-1) x+1-+a+1 (aH )2冷-1)a- 1+2 _ (aH)〔耳 T) 1 1 1-1 X3x _ 3 1 1x (x _3) x (x-3)"x Cs _ 3) x1 . 2_l+2_3 a da a T a14.十「、2自(已+1)222 .原式=a — a+ =a - a+a=a .nfl3.原式=原式= 原式=7. 10.(ID - 1 ) (ID - 2)2m (ID - 1) (nrl-1)a _ 1_ 3.^+0| a-1 |a (a+1) | 1 |a 1 _ a □ -l =a-la 2 - 2a+l a 2 - T'(a -D 旷(a -1) (a+1)〜1 一-11 _ 4 _ - a+2 _41□ _ 2 (at2) Ca _ 2) (af2)冷-2)(a+2) (a _ 2)(寸2〕_ 2)16.17.18. 19. 20.21 .22.23.24.25. 26.27.28. 29.D 2,1血G+l ) 2(x+1)(x-1)(xH) (K-1)(xH) C K -1)K-l 原式 2xy y (旳)= ¥ a - y) y (K _ y) (K +Y ) (K _ y) Cx+y)(富一 y ) 〔盂+y )(nrFl ) 22 itd-1 2 | irr^L - 2 ra _1 A (1□- 1) (nrbl) m - 1 m _ 1 m _ 1 m _ 1 m _ 1x (x+2)5 _(X- n (X42) _x 2+2x-3 - X 2-X +2 (K- 1) (x+2)(K-1;(x+2)〔耳「1)(計2)_ (i-l )(计2)原式原式原式 ;x 的取值范围是x a 2且x 的实数.K - 12m -n nr^n m n _ ID n ~ IT ] 原式-- ・ 1 _ 12 -2 (m+3)皿2 _ 9 _ in 「nr+3 (ml-3) (ID - 3i 丁 (nrl-3) Cm - 3)12-2 (昭引 +2 57)L2-2u- -&+2m - 61 J -■ i :(nrf 3) ■i 02 Cm - 3) +(nH-3)~_ 3)2y+xy2x2y+z - y - 2iy x",(xfy) (K _y)1 x+ya 2= 1(ad-2) Ca _2)nt - n (m - 2n ) in - 2n (mi-n) (m 一 n)a 2+ab+ b 2m _ 2n _rrH ■口 - ( m _ 2n) jirl-n _ irrl^2n _irr^nrn^n m+n— b 24_ 1 _ b_1 -b(a -b) 2| b ( a+b)'□-b(旦-b) ~a+l+a 1 2a 0 且一 1 8+1 /-I(a - 1) (a+1) (a+1) fa _ 1)a+9b a +3t 廿9b =~ (a-K3b) ■仙 23ab3ab - 3ab 3ab a原式=1 -=0.(a~b) ( a^+ab+ b 2)原式=原式34.…氏+F )'原式x - y x+y-莖+y 2y 2xy xy xy x36. / - 2xy+ y 2 - 2Z 3 - 2y 2z+y2 (x+y) (K -y) =b 【葢-y)J s+2y y -1yi+2y - y+1 - yx+1 | 1 |_l-x 2 1-S 2l-,21 1*1 - :, 1 -.37. 原式2-y 238. 原式三買丄玄-丄?x 2 (x _ 1)(2)「| J +••+^亠亠 + 亠——+ ••+ -s (xfl) (K +1) (X +2) (X +2005) (r+2006)同莎直+1 越 x+200EL =. 200& 丈我006=x (x+200G)” b2a^c b - c b 2a+c - b-+c - b 2a - M2c 2a - 2b+2<na " t+cb _ a _ cb _ a _ ca" b+cb _ a _ Gb _ a _G b _ a - G b 一且一 E2a 2+3a+2 __ 3a 2_4a~^ 2 a 2 _ Sa+Sarbla+2 a _ 2 + a - 3=(2a+1)-( a - 3)--( 3a+2) +—'a+1a+2a-=[(2a+1)-( a - 3)-( 3a+2) + ( 2a - 2) ]+ (-—r ■丁arl a+Z a _ J 耳一/ 丄-一 :-• = . •. -a+1 a+2 □ _ 2 a _ 3 (aH 〕(a+2)(a _ 2) (a _ 3)-盼4(a-bl)( a+2) (a - 2)(a _ 3)x+2006-40x+40 (x-2) (K -4)31. (1)x+ysy (x - y)35.原式22 - K - 3yJy+ x 2C K - 1)(y+1)(y+3) -2 (y 1? (y+3) + (y■-1D (y+1) rs(y-1) Cy+1)Cy+3) =(厂⑴(y+D (y+3)8(2x ?+3i- 1)(2 x 2+3X +1 )(2 x 2+3x+3)'2c - a - k>4 (1+/) 4 (1+ J)—丄8 (1-』)(Hx 4) (1-/) (1+/)1-x 8 2 41 .设2x +3x=y ,则原式=X J y 2 2 _ * y _xK ( K ~ y) y(y _z) K ( K ~ y) y (K_ y) xy (K _ y) xy (K _y)_ 2 . y K -(旳)Cx -y)s+y xy -y)xy (h -y)XV44.原式 2y 严2 y2X1 y 2-x 2(y+莖)Cy x) /-/y-xx (K - y)K (x - y) x U - y) x (s - y) 45.2KVx _ xE M 什貨(x - y) +x (x+y) 992zy+ z - XV+ 92sy+2 x 凤2 -x+y ^-y _ ]宀/ I'_2 _ 2K y(x _y) (x+y)46. 2工(旳)n (旳)「2工m 一y39.原式=JS ( 1 - 1 )X (x+1) 2 (x+2)(K +2) (X +1 } (x _ 1)( K +2) C X H) (s-1) | | (K +2) C K H)(; cl)K ?K + K2+X 2x - 4=2x 2 2x 4J 2 ( 英-2〕(x+1)2K - 4 (計刃(?-n 丨丘+对a+D G — i ) (xf2) (x+1) (x-1)X2+K - 240.原式=14■覽(1 - x)~(1 十辺2 (1+ x 2) 2 (1- J)丄+ 4 =44 I(1 -4 (H x £)(1-?) (1+?)1十 J 1- J 1+J+ -+ ■-1+x 2 1+J42 .原式=■-+ 乩一x - x+y 1K +X (s+y)(盖—y)(s+y) (x-y) (x+y) (K - y)K _ y47 .原式=.一: - 1〔 一 ,,++(x+2) &十 1)(1 十小(1 -X ) (2 (x-1)2+4(1-X )(1+G(1-X )(1卄)43.原式-a+2=a+1 - a+2=3.48.49.50.(a-k>) + (且-c)—(h* - c? + (b - s) +(c-a) +〔匚-b)(a- b) (a~ c)(b-c) (a-b) 〔£-辺)(c - b)+++]—,=0a+ (3a+l) ・(2a+3) a+3a4-l -•岛・3 2 (a- 1? .2 I宀1a-1a+1'=1 3x+5=h 1 ③+5)-2:計孑(X-HS) ( K _ 1 )(K+3)(K-D(K+3)G-1)原式原式原式=2a - a _1+a+仁2a.4 x- 81 3 x+612= 7 x- 14(x+2 ) ( x-2 )(x+2 ) ( x-2 )(x+2 ) ( x -2 )](也)(K-2 )51.原式乂且(# 3)52.原式=1 -2a+12a+b 2b^2a- (2a+b) 2b+2a 2a b=1..--2ab2ab Znb 2ab=1 -(曲)Ca_ 1)a+3a+153. 原式-I- , 1-L2ab 2ab1 1r 1 亠1-L 1 4.1 1x _ z z _ y y _s 1y _ m 12 _y i Z _I X _z55.原式X2-1+2(好1) (x+L ) 2= 4+1 )戈=_(田)2=1M -—+ •-+3118 =1 -+ - - + 1L56. (1)原式=1 -12=』;11= 2009灶2009K (計20Q9)=157 .原式=■K (x+2) 2 XK-2'_X- 2K+2008 K+200^y- 一a-3 ’£寸畀(arf3) G - 3)(a+3)(且- 3)丁(af3) Ca_ 3)a - 3+6 十1(时3) (a-3) (a+3) ( □ _3) a.-3(x+2) (x _2)58. (1) A (2)不正确,不能去分母(3)原式=1 ]11n (汩1)=n n+1;59. (1)-=.n+1 n .n+1 - n 1n+1 n (n+1)n (n+1) n (nil) b 5+i)(2) 2岛说九X4=14墙4 i弓-—+ ••+2011X20121feOll2012 =20122011 2012—=1.=2 +」+4+ ••+ 「1 ] 1 - X 1-x 2l+i 21出1+4|1-』60•原式叮・+.「.。
分式加减法练习题 答案
分式加减法练习题答案分式加减法练习题答案分式加减法是数学中的一个重要概念,它在我们的日常生活中有着广泛的应用。
掌握分式加减法的方法和技巧,不仅可以帮助我们解决实际问题,还可以提高我们的逻辑思维和数学能力。
下面我将给大家提供一些分式加减法的练习题及其答案,希望能对大家的学习有所帮助。
1. 计算下列分式的和:1/2 + 3/4答案:我们可以先找到两个分式的公共分母,这里是4。
然后将分子相加,得到5/4。
2. 计算下列分式的差:5/6 - 1/3答案:同样,我们需要找到两个分式的公共分母,这里是6。
然后将分子相减,得到2/6。
最后,我们可以将2/6化简为1/3。
3. 计算下列分式的和:2/5 + 3/10答案:这里的两个分式的分母已经相同了,所以我们只需要将分子相加,得到5/10。
然后,我们可以将5/10化简为1/2。
4. 计算下列分式的差:3/4 - 1/8答案:同样,这里的两个分式的分母已经相同了。
我们将分子相减,得到5/8。
5. 计算下列分式的和:2/3 + 1/6答案:这里的两个分式的分母不同,我们需要找到它们的最小公倍数。
这里的最小公倍数是6。
然后,我们将分子相加,得到4/6。
最后,我们可以将4/6化简为2/3。
6. 计算下列分式的差:7/8 - 1/4答案:同样,这里的两个分式的分母不同,我们需要找到它们的最小公倍数。
这里的最小公倍数是8。
然后,我们将分子相减,得到6/8。
最后,我们可以将6/8化简为3/4。
通过以上的练习题,我们可以看到分式加减法的基本原则就是找到公共分母,然后将分子进行相加或相减。
如果分母已经相同,我们只需要对分子进行运算即可。
如果分母不同,我们需要找到它们的最小公倍数,然后进行运算。
最后,我们可以将分式化简为最简形式,即分子和分母没有公约数。
分式加减法是数学中的一个重要概念,它在我们的日常生活中有着广泛的应用。
无论是在购物时计算折扣,还是在烹饪时调整食材的比例,我们都需要用到分式加减法。
分式的加减练习题
分式的加减习题精选(一)一、判断题··二、选择题三、填空题9.10.11.12.四、计算题13.14.15.16.分式的加减 习题精选(二)1.1+--b b a等于 ( )A.b b b a -+-2 B.b b b a ++-2 C.b b b a +--2 D.b b b a ---2 2.⎪⎪⎭⎫⎝⎛-÷y x x 11等于 ( )A.y x y x -2 B.x y y x -2C.xy x -2 D.2x xy -3.m n m n m n -+-22等于 ( ) A.m+n B.m-n C.-m+n D.-m-n4.计算)6(246612--+--a a a a a ,其结果等于 ( ) A.)6(210--a a B.)6(210--a a C.a a 24- D.a a 24+5.如果x y <<-1,那么2211++-++x y x y 的值 ()A.大于零 B.等于零C.小于零 D.以上都有可能6.计算:1213223-+----x x x x x 7.计算:22229631y xy x y x y x y x +--÷---8.计算: 1596234122--÷⎪⎪⎭⎫ ⎝⎛+---+-+y y y y y y y y9.计算: ⎪⎭⎫⎝⎛-++÷⎥⎦⎤⎢⎣⎡--+1111)1(1)1(122x x x x 10.计算:2343223811113a a a a a a a a +++÷⎪⎭⎫ ⎝⎛+-+--+11.已知⎩⎨⎧=-=+42112y x y x ,求分式⎪⎪⎭⎫ ⎝⎛--++-++÷+-2222332222y x yx y x y xy x y xy x x 的值.12.计算:x x x x -----52335175 13.计算:y x z zy z x y z x z y x y x -++---+++-+14.计算: 1123-+-+x x x x15.已知0132=++x x ,求441x x +的值.16.已知x x xx x -=+--2222313,求x x x x x x x x -÷⎪⎭⎫ ⎝⎛+----+44412222的值. 分式的加减 习题精选(三)一、选择题:1.分式的值为( )A .B .C .D .2.分式、、的最简公分母是( ) A .B .C .D .3.分式的值为( )A .B .C .D .以上都不对4.把分式、、通分后,各分式的分子之和为( )A .B .C .D .5.若的值为,则的值为()A.B.C.D.6.已知为整数,且为整数,则符合条件的有()A.2个B.3个C.4个D.5个二、填空题:1.式子的最简公分母是___________。
分式加减法练习题
分式加减法练习题分式的加减法:(1)23+34=34⨯+ 34⨯= (2)abab 610-= (3)1a +1b =ab +ab= (4)b a 21+21ab= 因为最简公分母是___________,因此b a 21+21ab = =_____________________=_____________________=_____________________-.提示:通分的关键是确信几个分式的公分母,平日取各分母所有因式的最高次幂的积作为公分母(叫做最简公分母).例如第(1)小题中的两个分式b a 21和21ab,它们的最简公分母是 (5)y x -1+yx +1 因为最简公分母是___________,因此y x -1+y x +1 =(6)1()x x y -+yx +1 因为最简公分母是___________,因此1()x x y -+yx +1 =演习A :(1)a a 21+= (2)bc a c -= (3)a c b a c b ++- (4)ba b b a a +++=(5)ab b b a a -+-= (6)x x -++1111 = (7)231x +x 43; 因为最简公分母是_____,因此231x +x 43 =2134x ⨯+34x=+=(8)221y x -+xy x +21 因为 x 2-y 2=(x+y )( ), x 2+xy =x( ), 因此221y x -与xy x +21的最简公分母为_____,是以221y x -+xy x +21 =1()x y++1x =+(9)231x +xy125; 因为最简公分母是___________ =(10)24ab a b -;B 组(1)xy y x xy y x 2)(2-++)(; (2)xy y x xy y x 22)()(--+(3)x x +21+x x -21. 最简公分母是__________ =(4)1624432---x x (5)aa a +--22214;(6)224-++a a (7)112---x x x .(8)323111x x x x⋅⎪⎭⎫ ⎝⎛+-;(9)⎪⎭⎫ ⎝⎛--+⋅+-y x x y x y x x 2121.(10)林林家距离黉舍a 千米,骑自行车须要b 分钟,若某一天林林从家动身迟了c 分钟,则她每分钟应多骑若干千米,才能像往常一样达到黉舍?(11)周末,小颖跟妈妈到生果批发市场去买苹果.那儿有两种苹果,甲种苹果每箱重m 千克,售a 元;乙种苹果每箱重n 千克,售b 元.请问,甲种苹果的单价是乙种苹果的若干倍?。
分式加减法辅导训练
初二分式的加减法辅导训练( A 卷)典型例题:1.已知y x 11-=3,则分式y xy x y xy x ---+2232= 。
2.已知两个分式:244A x =-,1122B x x=++-,其中2x ≠±,则A 与B 的关系是( )A.相等B.互为倒数C.互为相反数D.A 大于B练习题:一、选择题1.下列各式计算正确的是( ) A.b a b a +=+111 B.ab m b m a m 2=+ C. a a b a b 11=+- D.011=-+-ab b a 2.化简111322-+--+a a a a +1等于( ) A.11+-a B.1+a a C.11+-a a D.11-+a a 3.若a -b =2ab ,则ba 11-的值为( ) A. 21 B.-21 C.2 D.-2 4.若x 2+x -2=0,则x 2+x -xx +21的值为( ) A.23 B.21 C.2 D.-23 二、填空题5.计算:3236+++x x x =________. 6.已知x ≠0,x x x 31211++=________. 7.化简:x +xx -12=________. 8.如果m +n =2,mn =-4,那么nm m n +的值为________. 9.分式91,62,12--++x x x x x x 的最简公分母是______ 三、解答题10.计算:(1)a +b +b a b -22 (2)xy y x y x y x y y x ----+-+2(3)232323194322---+--+x x x x x (4)(x +1-13-x )÷222-+x x11.化简求值:1、(2+1111+--a a )÷(a -21a a -)其中a =2. 2、232323194322---+--+x x x x x ,其中x=—1(B 卷)一、填空。
分式分数加减法练习题(打印版)
分式分数加减法练习题(打印版)# 分式分数加减法练习题## 一、基础练习题1. 计算下列分式的和:\[\frac{1}{2} + \frac{3}{4}\]2. 计算下列分式的差:\[\frac{5}{6} - \frac{2}{3}\]3. 计算下列分式的和:\[\frac{2}{3} + \frac{1}{6}\]4. 计算下列分式的差:\[\frac{7}{8} - \frac{5}{12}\]5. 计算下列分式的和:\[\frac{3}{5} + \frac{4}{15}\]6. 计算下列分式的差:\[\frac{11}{12} - \frac{1}{4} \]## 二、进阶练习题7. 计算下列分式的和,并约分: \[\frac{4}{9} + \frac{5}{12} \]8. 计算下列分式的差,并约分: \[\frac{8}{15} - \frac{3}{10} \]9. 计算下列分式的和,并约分: \[\frac{7}{12} + \frac{5}{18} \]10. 计算下列分式的差,并约分: \[\frac{9}{14} - \frac{2}{7} \]11. 计算下列分式的和,并约分: \[\frac{2}{5} + \frac{3}{10}\]12. 计算下列分式的差,并约分:\[\frac{13}{18} - \frac{5}{9}\]## 三、综合应用题13. 某工厂生产一批零件,第一天生产了总数的 \(\frac{3}{8}\),第二天生产了总数的 \(\frac{1}{4}\),求两天共生产了总数的几分之几。
14. 一个班级有40名学生,其中 \(\frac{1}{5}\) 参加了数学竞赛,\(\frac{1}{8}\) 参加了科学竞赛。
求参加竞赛的学生总数。
15. 一个水池的容量为 \(\frac{3}{4}\) 立方米,第一天用去了\(\frac{1}{6}\) 的容量,第二天用去了 \(\frac{1}{12}\) 的容量。
分式加减练习题及答案
分式加减练习题及答案分式加减练习题及答案分式是数学中的一个重要概念,它可以帮助我们更好地理解和处理数值之间的关系。
在日常生活和学习中,我们经常会遇到需要进行分式的加减运算的情况。
下面,我将给大家提供一些分式加减的练习题及答案,希望能够帮助大家加深对这一概念的理解。
练习题一:1. 计算:3/4 + 2/5 = ?2. 计算:7/8 - 3/10 = ?3. 计算:5/6 + 1/3 = ?4. 计算:2/3 - 1/4 = ?5. 计算:4/5 + 3/10 = ?答案一:1. 3/4 + 2/5 = (3×5 + 2×4) / (4×5) = 23/202. 7/8 - 3/10 = (7×10 - 3×8) / (8×10) = 49/803. 5/6 + 1/3 = (5×3 + 1×6) / (6×3) = 23/184. 2/3 - 1/4 = (2×4 - 1×3) / (3×4) = 5/125. 4/5 + 3/10 = (4×10 + 3×5) / (5×10) = 47/50练习题二:1. 计算:2/3 + 1/2 = ?2. 计算:5/8 - 1/4 = ?3. 计算:3/5 + 2/7 = ?4. 计算:4/9 - 1/6 = ?5. 计算:1/2 + 1/3 = ?答案二:1. 2/3 + 1/2 = (2×2 + 1×3) / (3×2) = 7/62. 5/8 - 1/4 = (5×4 - 1×8) / (8×4) = 3/83. 3/5 + 2/7 = (3×7 + 2×5) / (5×7) = 29/354. 4/9 - 1/6 = (4×6 - 1×9) / (9×6) = 15/54 = 5/185. 1/2 + 1/3 = (1×3 + 1×2) / (2×3) = 5/6通过以上的练习题,我们可以看到,分式的加减运算实际上就是对分子和分母进行相应的运算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式的加减法
分式的加减法:
(1)23+34=34⨯+ 34
⨯= (2)ab
ab 610-= (3)1a +1b =ab +ab
= (4)b a 21+21ab
= 因为最简公分母是___________,所以
b a 21+2
1ab = =_____________________
=_____________________
=_____________________-.
提示:通分的关键是确定几个分式的公分母,通常取各分母所有因式的最高次幂的积作为公分母(叫做最简公分母).例如第(1)小题中的两个分式b a 21和21ab
,它们的最简公分母是 (5)y x -1+y
x +1 因为最简公分母是___________,所以
y x -1+y x +1 =
(6)1()x x y -+y
x +1 因为最简公分母是___________,所以
1()x x y -+y
x +1 =
练习A :
(1)
a a 21+= (2)b
c a c -= (3)a c b a c b ++- (4)b
a b b a a +++=
(5)a
b b b a a -+-= (6)x x -++1111 = (7)231x +x 43; 因为最简公分母是_____,所以
231x +x 43 =2134x ⨯g +34x g g
=+
=
(8)221y x -+xy x +21 因为 x 2-y 2=(x+y )( ), x 2+xy =x( ), 所以221y x -与xy x +21的最简公分母为_____,因此
221y x -+xy x +21 =1()x y +g g +1x g g =+
(9)231x +xy
125; 因为最简公分母是___________ =
(10)
24a
b a b -;
B 组
(1)xy y x xy y x 2)(2-++)(; (2)xy y x xy y x 22)()(--+
(3)
x x +21+x x -21. 最简公分母是__________ =
(4)
1624432---x x (5)a
a a +--22214;
(6)22
4-++a a (7)112---x x x .
(8)323111x x x x
⋅⎪⎭⎫ ⎝⎛+-;
(9)⎪⎭
⎫ ⎝⎛--+⋅+-y x x y x y x x 2121.
(10)林林家距离学校a 千米,骑自行车需要b 分钟,若某一天林林从家出发迟了c 分钟,则她每分钟应多骑多少千米,才能像往常一样到达学校?
(11)周末,小颖跟妈妈到水果批发市场去买苹果.那儿有两种苹果,甲种苹果每箱重m 千克,售a 元;乙种苹果每箱重n 千克,售b 元.请问,甲种苹果的单价是乙种苹果的多少倍?。