小学奥数几何问题选择题及答案

合集下载

六年级下册奥数试题-几何专题 全国通用(含答案) (1)

六年级下册奥数试题-几何专题 全国通用(含答案) (1)

小学奥数几何专题1、(★★)如图,已知四边形ABCD 中,AB=13,BC=3,CD=4,DA=12,并且BD 与AD 垂直,则四边形的面积等于多少?[思 路]:显然四边形ABCD 的面积将由三角形ABD 与三角形BCD 的面积求和得到.三角形ABD 是直角三角形,底AD 已知,高BD 是未知的,但可以通过勾股定理求出,进而可以判定三角形BCD 的形状,然后求其面积.这样看来,BD 的长度是求解本题的关键.解:由于BD 垂直于AD ,所以三角形ABD 是直角三角形.而AB=13,DA=12,由勾股定理,BD 2=AB 2-AD 2=132—122=25=52,所以BD=5.三角形BCD 中BD=5,BC=3,CD=4,又32十42=52,故三角形BCD 是以BD 为斜边的直角三角形,BC 与CD 垂直.那么:ABCD S 四边形=ABD S ∆+BCD S∆=12×5÷2+4×3÷2=36.. 即四边形ABCD 的面积是36. 2、(★★)如图四边形土地的总面积是48平方米,三条线把它分成了4个小三角形,其中2个小三角形的面积分别是7平方米和9平方米.那么最大的一个三角形的面积是________平方米;[分析]:剩下两个三角形的面积和是 48-7-9=32 ,是右侧两个三角形面积和的2 倍,故左侧三角形面积是右侧对应三角形面积的2倍,最大三角形面积是 9×2=18。

3.(★★)将下图中的三角形纸片沿虚线折叠得到右图,其中的粗实线图形面积与原三角形面积之比为2:3。

已知右图中3个阴影的三角形面积之和为1,那么重叠部分的面积为多少?[思 路]:小升初中常把分数,百分数,比例问题处理成份数问题,这个思想一定要养成。

解:粗线面积:黄面积=2:3绿色面积是折叠后的重叠部分,减少的部分就是因为重叠才变少的,这样可以设总共3份,后来粗线变2份,减少的绿色部分为1份,所以阴影部分为2-1=1份,7 94、(★★)求下图中阴影部分的面积:【解】如左下图所示,将左下角的阴影部分分为两部分,然后按照右下图所示,将这两部分分别拼补在阴影位置。

五年级奥数典型练习100例(详细解析)

五年级奥数典型练习100例(详细解析)

五年级奥数典型练习100例(详细解析)1 五年级奥数(几何问题)及答案:直角三角形【答案解析】2 五年级奥数(几何问题)及答案:三角形面积右图是由大、小两个正方形组成的,小正方形的边长是4厘米,求三角形ABC的面积.三角形面积答案:这道题似乎缺少大正方形的边长这个条件,实际上本题的结果与大正方形的边长没关系.连接AD(见右上图),可以看出,三角形ABD 与三角形ACD 的底都等于小正方形的边长,高都等于大正方形的边长,所以面积相等.因为三角形AGD是三角形ABD与三角形ACD 的公共部分,所以去掉这个公共部分,根据差不变性质,剩下的两个部分,即三角形ABG与三角形GCD面积仍然相等.根据等量代换,求三角形ABC的面积等于求三角形BCD 的面积,等于4×4÷2=83 五年级奥数(几何问题)及答案:阴影面积计算如图,长方形ABCD的面积是2平方厘米,EC=2DE,F是DG的中点.阴影部分的面积是多少平方厘米?【答案解析】如下图,连接FC,△DBF、△BFG的面积相等,设为x平方厘米;△FGC、△DFC的面积相等,设为y平方厘米,那么△DEF的面积为y平方厘米比较②、①式,②式左边比①式左边多2x,②式右边比①式右边大0.5,有2x=0.5,即x=0.25,y=0.25.而阴影部分面积为y+ y= ×0.25= 平方厘米.4 五年级奥数(几何面积)及答案:梯形阴影面积图中ABCD是梯形,三角形ADE面积是1.8,三角形ABF的面积是9,三角形BCF的面积是27.那么阴影部分面积是多少?【答案解析】设△ADF的面积为上,△BCF的面积为下,△ABF的面积为左,△DCF的面积为右.左=右=9;上×下=左×右=9×9=81,而下=27,所以上=81÷27=3.△ADE的面积为1.8,那么△AEF的面积为1.2,则EF:DF= :=1.2:3=0.4.△CEF与△CDF的面积比也为EF与DF的比,所以有=0.4× =0.4×(3+9)=4.8.即阴影部分面积为4.8.5 五年级奥数(行程问题)及答案:外出时间某人下午六时多外出买东西,出门时看手表,发现表的时针和分针的夹角为1100,七时前回家时又看手表,发现时针和分针的夹角仍是1100.那么此人外出多少分钟?【答案解析】如下示意图,开始分针在时针左边1100位置,后来追至时针右边1100位置.6 五年级奥数(行程问题)及答案:发车间隔某人沿电车线路行走,每12分钟有一辆电车从后面追上,每4分钟有一辆电车迎面开来.假设两个起点站的发车间隔是相同的,求这个发车间隔.【答案解析】设电车的速度为a,行人的速度为b,因为每辆电车之间的距离为定值,设为l.7 五年级奥数(约数与倍数)及答案:最大公约数A,B两数都仅含有质因数3和5,它们的最大公约数是75.已知数A有12个约数,数B有10个约数,那么A,B两数的和等于多少?【答案解析】由题意知A可以写成3×52×a,B可以写成3×52×6,其中a、b为整数且只含质因子3、5.即A:31+x×52+y,B=31+m×52+n,其中x、Y、m、n均为自然数(可以为0)由A有12个约数,所以[(1+x)+1]×[ (2+y)+1]=(2+x)×(3+y)=12,所以 .对应A为31+2×52=675,31+1×52+1=1125,或31+0×52+4=46875;由B有10个约数,所以[(1+m)+1]×[(2+n)+l]=(2+m)×(3+n):10,所以 .对应B为31+0×52+2=1875.只有(675,1875)=75,所以A=675,B=1875.那么A,B两数的和为675+1875=25508 五年级奥数(包含与排除)及答案:读故事书甲、乙、丙都在读同-一本故事书,书中有100个故事.每个人都从某一个故事开始,按顺序往后读.已知甲读了7.5个故事,乙读了60个故事,丙读了52个故事.那么甲、乙、丙3人共同读过的故事最少有多少个?【答案解析】只考虑甲乙两人情况,有甲、乙都读过的最少为:75+60-100=35个,此时甲单独读过的为75-35=40个,乙单独读过的为60-35=25个;欲使甲、乙、丙三人都读过的书最少时,应将丙读过的书尽量分散在某端,于是三者都读过书最少为52-40=12个.9 五年级奥数(包含与排除)及答案:剪绳子有一根长为180厘米的绳子,从一端开始每隔3厘米作一记号,每隔4厘米也作一记号,然后将标有记号的地方剪断.问绳子共被剪成了多少段?【答案解析】只需先计算剪了多少刀,再加上1即为剪成的段数.从一端开始,将绳上距离这个端点整数厘米数的点编号,并将距离长度作为编号.10 五年级奥数(整除问题)及答案:除数各数位数字是0、1或2,且能被除数25整除的最小自然数是多少?【答案解析】225=25×9,所以要求分别能被25和9整除,要能被25整除,所以最后两位就是00。

小学数学竞赛《几何图形》专题训练30题含答

小学数学竞赛《几何图形》专题训练30题含答

小学数学竞赛《几何图形》专题训练30题含答一、单选题1.同同按照一定的规律摆出了下面的四幅图。

如果按照这个规律继续摆,第5幅图用()根小棒。

A.23B.31C.352.一种长方形屏幕长与宽的比是16:9,下面几种规格屏幕合格的()A.长1.6米,宽1米B.长45米,宽920米C.长1.2米,宽80厘米D.以上都不对3.下图中,平行线间梯形A,B的面积相等,梯形B的下底是()cm。

A.5B.3C.3.3D.无法确定4.一条()长8cm。

A.直线B.线段C.射线5.下面哪一组的4根小棒能刚好拼成一个长方形?()A.B.C.D.二、填空题6.最大的—位数是,最小的两位数是,它们的和是.7.一块圆柱形橡皮泥,底面积是9平方厘米,高是6厘米。

把它捏成底面积是9平方厘米的圆锥形,高是厘米、如果捏成高是6厘米的圆锥形,底面积是平方厘米。

8.看图填空有个长方形.有个梯形.9.一个大三角形剪成两个小三角形,每个小三角形的内角和是度。

10.根据百位数表填数。

11.如图,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=3,将腰CD以D为中心逆时针旋转90°至ED,连接AE、CE,则ΔADE的面积是。

12.数图形。

上图中有个正方体,个圆柱体,个球体。

13.把这个物体放到地面上,观察并填空。

是由个小正方体拼成的。

如果把这个图形的表面涂上绿色,不涂色的有个小正方体、一个面涂绿色的有个小正方体、有2个面涂绿色的有个小正方体、有3个面涂绿色的有个小正方体、有4个面涂绿色的有个小正方体、有5个面涂红色的有个小正方体。

14.观察用完全相同的正方体木块摆出的模型,把观察角度和图结合起来.①从前向后看是②从上向下看是③从左向右看是A.B.C.三、作图题15.按要求用一条线段把下面的图形分成两个图形。

①②③16.下面的长方形中,共有28个小方格,其中有4个小方格中分别写了“我”“爱”“数”“学”四个字,请你把这个长方形沿着格线剪成大小相等的四块,而且每块中要有1个字。

小学奥数几何专题--巧求周长(六年级)竞赛测试.doc

小学奥数几何专题--巧求周长(六年级)竞赛测试.doc

小学奥数几何专题--巧求周长(六年级)竞赛测试姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx 题xx题xx题总分得分一、xx题(每空xx 分,共xx分)【题文】求图中所有线段的总长(单位:厘米)【答案】48【解析】要注意到,题目所求的是图中所有线段的总长,而图中的线段,并不仅仅是、、、四段,还包括、等等,因此不能简单地将图中标示的线段长度进行求和.同时应该注意到,;,等等.因此,为了计算图中所有线段的总长,需要先计算AB、BC、CD 、DE这四条线段分别被累加了几次.这里,可以按照每条线段分别是由几部分组成的加以讨论:由1段组成的线段共有4条,即AB、BC、CD、DE,而求和过程中AB、BC、CD、DE这四条线段各被累加了1次.类似地考虑到,由2段组成的线段共有3条,求和过程中AB、DE各被累加了1次,BC、CD各被累加了2次.由3段组成的线段共有2条,求和过程中AB、DE各被累加了1次,BC、CD各被累加了2次.由4段组成的线段只有AE,其中AB、BC、CD、DE各被计算了1次.综上所述,AB、DE各被计算了4次,BC、CD各被计算了6次.因而图中所有线段的总长度为:{{9}l先考虑大长方形的长上各边:应用上一道题目的结论,每条边上长为4、3、1、2的线段分别被计算了4、6、6、4次.然后再考虑大长方形的宽:因为共有个长方形,所以长度为2的宽被计算了次.故总周长可以用下式计算得到:.【题文】如图,正方形的边长为,被分割成如下个小长方形,求这个小长方形的所有周长之和.评卷人得分【答案】56【解析】.【题文】如右图,正方形的边长是厘米,过正方形内的任意两点画直线,可把正方形分成个小长方形。

这个小长方形的周长之和是多少厘米?【答案】72【解析】从总体考虑,在求这个小长方形的周长之和时,、、、这四条边被用了次,其余四条虚线被用了次,所以个小长方形的周长之和是:(厘米)。

小学奥数几何题100道及答案(完整版)

小学奥数几何题100道及答案(完整版)

小学奥数几何题100道及答案(完整版)题目1:一个正方形的边长是5 厘米,它的面积是多少平方厘米?解题方法:正方形面积= 边长×边长,即5×5 = 25(平方厘米)答案:25 平方厘米题目2:一个长方形的长是8 分米,宽是6 分米,它的周长是多少分米?解题方法:长方形周长= (长+ 宽)×2,即(8 + 6)×2 = 28(分米)答案:28 分米题目3:一个三角形的底是10 厘米,高是6 厘米,它的面积是多少平方厘米?解题方法:三角形面积= 底×高÷2,即10×6÷2 = 30(平方厘米)答案:30 平方厘米题目4:一个平行四边形的底是12 米,高是8 米,它的面积是多少平方米?解题方法:平行四边形面积= 底×高,即12×8 = 96(平方米)答案:96 平方米题目5:一个梯形的上底是 4 厘米,下底是6 厘米,高是5 厘米,它的面积是多少平方厘米?解题方法:梯形面积= (上底+ 下底)×高÷2,即(4 + 6)×5÷2 = 25(平方厘米)答案:25 平方厘米题目6:一个圆的半径是3 厘米,它的面积是多少平方厘米?解题方法:圆的面积= π×半径²,即3.14×3²= 28.26(平方厘米)答案:28.26 平方厘米题目7:一个半圆的半径是 4 分米,它的周长是多少分米?解题方法:半圆的周长= 圆周长的一半+ 直径,即3.14×4×2÷2 + 4×2 = 20.56(分米)答案:20.56 分米题目8:一个长方体的长、宽、高分别是5 厘米、4 厘米、3 厘米,它的表面积是多少平方厘米?解题方法:长方体表面积= (长×宽+ 长×高+ 宽×高)×2,即(5×4 + 5×3 + 4×3)×2 = 94(平方厘米)答案:94 平方厘米题目9:一个正方体的棱长是6 分米,它的体积是多少立方分米?解题方法:正方体体积= 棱长³,即6³= 216(立方分米)答案:216 立方分米题目10:一个圆柱的底面半径是2 厘米,高是5 厘米,它的侧面积是多少平方厘米?解题方法:圆柱侧面积= 底面周长×高,底面周长= 2×3.14×2,即2×3.14×2×5 = 62.8(平方厘米)答案:62.8 平方厘米题目11:一个圆锥的底面半径是3 厘米,高是4 厘米,它的体积是多少立方厘米?解题方法:圆锥体积= 1/3×底面积×高,底面积= 3.14×3²,即1/3×3.14×3²×4 = 37.68(立方厘米)答案:37.68 立方厘米题目12:两个边长为4 厘米的正方形拼成一个长方形,长方形的长和宽分别是多少?面积是多少?解题方法:长方形的长为8 厘米,宽为4 厘米,面积= 8×4 = 32(平方厘米)答案:长8 厘米,宽4 厘米,面积32 平方厘米题目13:一个三角形的面积是18 平方厘米,底是6 厘米,高是多少厘米?解题方法:高= 面积×2÷底,即18×2÷6 = 6(厘米)答案:6 厘米题目14:一个平行四边形的面积是24 平方米,底是 4 米,高是多少米?解题方法:高= 面积÷底,即24÷4 = 6(米)答案:6 米题目15:一个梯形的面积是30 平方分米,上底是5 分米,下底是7 分米,高是多少分米?解题方法:高= 面积×2÷(上底+ 下底),即30×2÷(5 + 7)= 5(分米)答案:5 分米题目16:一个圆环,外圆半径是5 厘米,内圆半径是 3 厘米,圆环的面积是多少平方厘米?解题方法:圆环面积= 外圆面积-内圆面积,即 3.14×(5²- 3²)= 50.24(平方厘米)答案:50.24 平方厘米题目17:一个长方体的棱长总和是48 厘米,长、宽、高的比是3:2:1,长方体的体积是多少立方厘米?解题方法:一条长、宽、高的和为48÷4 = 12 厘米,长为6 厘米,宽为4 厘米,高为2 厘米,体积= 6×4×2 = 48(立方厘米)答案:48 立方厘米题目18:一个正方体的表面积是54 平方分米,它的一个面的面积是多少平方分米?解题方法:一个面的面积= 表面积÷6,即54÷6 = 9(平方分米)答案:9 平方分米题目19:一个圆柱的底面直径是4 分米,高是3 分米,它的表面积是多少平方分米?解题方法:底面积= 3.14×(4÷2)²= 12.56 平方分米,侧面积= 3.14×4×3 = 37.68 平方分米,表面积= 2×12.56 + 37.68 = 62.8(平方分米)答案:62.8 平方分米题目20:一个圆锥的底面周长是18.84 分米,高是5 分米,它的体积是多少立方分米?解题方法:底面半径= 18.84÷3.14÷2 = 3 分米,体积= 1/3×3.14×3²×5 = 47.1(立方分米)答案:47.1 立方分米题目21:一个长方体的水箱,长 5 分米,宽4 分米,高 3 分米,里面装满水,把水倒入一个棱长为5 分米的正方体水箱,水深多少分米?解题方法:水的体积= 5×4×3 = 60 立方分米,正方体水箱底面积= 5×5 = 25 平方分米,水深= 60÷25 = 2.4 分米答案:2.4 分米题目22:一块长方形的铁皮,长8 分米,宽6 分米,从四个角各切掉一个边长为1 分米的正方形,然后做成一个无盖的盒子,这个盒子的容积是多少立方分米?解题方法:盒子长6 分米,宽4 分米,高1 分米,容积= 6×4×1 = 24(立方分米)答案:24 立方分米题目23:一个圆柱的体积是60 立方厘米,底面积是12 平方厘米,高是多少厘米?解题方法:高= 体积÷底面积,即60÷12 = 5(厘米)答案:5 厘米题目24:一个圆锥和一个圆柱等底等高,圆柱的体积是27 立方分米,圆锥的体积是多少立方分米?解题方法:等底等高的圆锥体积是圆柱体积的1/3,即27×1/3 = 9(立方分米)答案:9 立方分米题目25:把一个棱长为 6 厘米的正方体铁块熔铸成一个底面积为36 平方厘米的圆柱体,这个圆柱体的高是多少厘米?解题方法:正方体体积= 6³= 216 立方厘米,圆柱体的高= 体积÷底面积,即216÷36 = 6(厘米)答案:6 厘米题目26:一个直角三角形的两条直角边分别是3 厘米和4 厘米,斜边是5 厘米,这个三角形的面积是多少平方厘米?解题方法:直角三角形面积= 两条直角边乘积的一半,即3×4÷2 = 6(平方厘米)答案:6 平方厘米题目27:一个等腰三角形的周长是20 厘米,其中一条腰长8 厘米,底边长多少厘米?解题方法:等腰三角形两腰相等,所以底边长= 周长-腰长×2,即20 - 8×2 = 4(厘米)答案:4 厘米题目28:一个扇形的圆心角是90°,半径是6 厘米,这个扇形的面积是多少平方厘米?解题方法:扇形面积= 圆心角÷360°×圆的面积,即90÷360×3.14×6²= 28.26(平方厘米)答案:28.26 平方厘米题目29:一个长方体的底面是边长为5 厘米的正方形,高是8 厘米,这个长方体的体积是多少立方厘米?解题方法:长方体体积= 底面积×高,底面积= 5×5 = 25 平方厘米,体积= 25×8 = 200(立方厘米)答案:200 立方厘米题目30:一个圆柱的底面周长是18.84 厘米,高是10 厘米,它的体积是多少立方厘米?解题方法:底面半径= 18.84÷3.14÷2 = 3 厘米,体积= 3.14×3²×10 = 282.6(立方厘米)答案:282.6 立方厘米题目31:一个圆锥的底面直径是8 厘米,高是6 厘米,它的体积是多少立方厘米?解题方法:底面半径= 8÷2 = 4 厘米,体积= 1/3×3.14×4²×6 = 100.48(立方厘米)答案:100.48 立方厘米题目32:把一个棱长为8 厘米的正方体木块削成一个最大的圆柱,这个圆柱的体积是多少立方厘米?解题方法:圆柱的底面直径和高都是8 厘米,体积= 3.14×(8÷2)²×8 = 401.92(立方厘米)答案:401.92 立方厘米题目33:一个长方体玻璃缸,从里面量长4 分米,宽 3 分米,高5 分米,缸内水深2.5 分米。

小学奥数几何图练习及答案【三篇】

小学奥数几何图练习及答案【三篇】

小学奥数几何图练习及答案【三篇】【第一篇】习题:一个长方形,如果宽不变,长增加8米,面积增加72平方米,如果长不变,宽减少4米,面积减少48平方米,原长方形的面积是( )。

考点:长方形、正方形的面积分析:用增加的面积除以增加的长,就是原来的宽,即72÷8=9米;用减少的面积除以减少的宽,就是原来的长,即48÷4=12米,从而利用长方形的面积公式即可求解。

解答:解:72÷8=9(米)48÷4=12(米)12×9=108(平方米);答:长方形的面积是108平方米。

故答案为:108平方米【第二篇】鸟头定理即共角定理。

燕尾定理即共边定理的一种。

共角定理:若两三角形有一组对应角相等或互补,则它们的面积比等于对应角两边乘积的比。

共边定理:有一条公共边的三角形叫做共边三角形。

共边定理:设直线AB与PQ交与M则S△PAB/S△QAB=PM/QM 这几个定理大都利用了相似图形的方法,但小学阶段没有学过相似图形,而小学奥数中,常常要引入这些,实在有点难为孩子。

为了避开相似,我们用相应的底,高的比来推出三角形面积的比。

例如燕尾定理,一个三角形ABC中,D是BC上三等分点,靠近B点。

连接AD,E是AD上一点,连接EB和EC,就能得到四个三角形。

很显然,三角形ABD和ACD面积之比是1:2因为共边,所以两个对应高之比是1:2而四个小三角形也会存在类似关系三角形ABE和三角形ACE的面积比是1:2三角形BED和三角形CED的面积比也是1:2所以三角形ABE和三角形ACE的面积比等于三角形BED和三角形CED的面积比,这就是传说中的燕尾定理。

以上是根据共边后,高之比等于三角形面积之比证明所得。

必须要强记,只要理解,到时候如何变形,你都能会做。

至于鸟头定理,也不要死记硬背,掌握原理,用起来就会得心应手。

【第三篇】习题:两条直线相交,四个交角中的一个锐角或一个直角称为这两条直线的“夹角”。

优质小学奥数几何图形专题(带答案解析)

优质小学奥数几何图形专题(带答案解析)

2020-01-06小学数学试卷姓名:__________ 班级:__________考号:__________*注意事项:1、填写答题卡的内容用2B铅笔填写2、提前xx分钟收取答题卡一、单选题(共6题;共0分)1.小亮有五块积木(如图)请问他再加上下列哪块积木就能拼成一个4×4×4的正方体?(注:这些积木都不能再分拆)正确答案是()A.B.C.D.2.仔细观察如图,如果四只小蚂蚁分别沿着右图中的四个图形走一圈,图()的小蚂蚁走的路程最短.B.C.D.3.下面由4个边长为1厘米的正方形摆成的图形中,()的周长最短.A.B.C.D.4.如图所示3个图形中,每个小正方形都一样大,那么()图形的周长最长.A.B.C.5.将如图折叠成正方体后,应是()B.C.D.6.图中,有()个三角形。

A.3B.5C.6二、填空题(共4题;共0分)7.中共有________个三角形,中共有________个长方形。

8.我会数。

(8分)________________9.有________个正方形。

10.数数下面图形各有多少个小方块?________个 ________个________个三、解答题(共50题;共0分)11.图所示,摆放小正方体。

(1)当摆到第七层时一共有________个小正方体。

(2)当摆到第层时一共有________个小正方体。

12.先找出这组图形的规律,再按规律在括号里填上合适的数。

13.计算下面各图形的面积。

14.在下面的正方形中画一个最大的圆。

15.找规律填数。

16.李奶奶病了,她到那个医院更近一些?17.看图回答(1)请你画一条从蘑菇房到小木屋最近的路。

(2)请你画一条从蘑菇房通向小河最近的路。

18.先把下面的图形分成几个三角形?再求出它们的内角和。

19.你知道他们为什么要这样测量吗?20.求阴影部分面积(单位:厘米)21.数一数图中共有三角形多少个?22.下面两个图形阴影部分的面积相等吗?为什么?23.你能想办法求出这个多边形的内角和吗?24.行1千米需要多长时间?把出行方式和相应的时间连接起来。

六年级下册奥数试题-几何专题 全国通用(含答案)

六年级下册奥数试题-几何专题 全国通用(含答案)

小学奥数几何专题1、(★★)如图,已知四边形ABCD 中,AB=13,BC=3,CD=4,DA=12,并且BD 与AD 垂直,则四边形的面积等于多少?[思 路]:显然四边形ABCD 的面积将由三角形ABD 与三角形BCD 的面积求和得到.三角形ABD 是直角三角形,底AD 已知,高BD 是未知的,但可以通过勾股定理求出,进而可以判定三角形BCD 的形状,然后求其面积.这样看来,BD 的长度是求解本题的关键.解:由于BD 垂直于AD ,所以三角形ABD 是直角三角形.而AB=13,DA=12,由勾股定理,BD 2=AB 2-AD 2=132—122=25=52,所以BD=5.三角形BCD 中BD=5,BC=3,CD=4,又32十42=52,故三角形BCD 是以BD 为斜边的直角三角形,BC 与CD 垂直.那么:ABCD S 四边形=ABD S ∆+BCD S∆=12×5÷2+4×3÷2=36.. 即四边形ABCD 的面积是36. 2、(★★)如图四边形土地的总面积是48平方米,三条线把它分成了4个小三角形,其中2个小三角形的面积分别是7平方米和9平方米.那么最大的一个三角形的面积是________平方米;[分析]:剩下两个三角形的面积和是 48-7-9=32 ,是右侧两个三角形面积和的2 倍,故左侧三角形面积是右侧对应三角形面积的2倍,最大三角形面积是 9×2=18。

3.(★★)将下图中的三角形纸片沿虚线折叠得到右图,其中的粗实线图形面积与原三角形面积之比为2:3。

已知右图中3个阴影的三角形面积之和为1,那么重叠部分的面积为多少?[思 路]:小升初中常把分数,百分数,比例问题处理成份数问题,这个思想一定要养成。

解:粗线面积:黄面积=2:3绿色面积是折叠后的重叠部分,减少的部分就是因为重叠才变少的,这样可以设总共3份,后来粗线变2份,减少的绿色部分为1份,所以阴影部分为2-1=1份,7 94、(★★)求下图中阴影部分的面积:【解】如左下图所示,将左下角的阴影部分分为两部分,然后按照右下图所示,将这两部分分别拼补在阴影位置。

小学奥数几何专题--复杂直线型面积-3(六年级)竞赛测试.doc

小学奥数几何专题--复杂直线型面积-3(六年级)竞赛测试.doc

小学奥数几何专题--复杂直线型面积-3(六年级)竞赛测试姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)【题文】图中两个正方形的边长分别是6厘米和4厘米,则图中阴影部分三角形的面积是多少平方厘米.【答案】8【解析】.【题文】如图,有三个正方形的顶点、、恰好在同一条直线上,其中正方形的边长为10厘米,求阴影部分的面积.【答案】100【解析】评卷人得分对于这种几个正方形并排放在一起的图形,一般可以连接正方形同方向的对角线,连得的这些对角线互相都是平行的,从而可以利用面积比例模型进行面积的转化.如右图所示,连接、、,则,根据几何五大模型中的面积比例模型,可得,,所以阴影部分的面积就等于正方形的面积,即为平方厘米.【题文】图是由大、小两个正方形组成的,小正方形的边长是厘米,求三角形的面积.【答案】8【解析】这道题似乎缺少大正方形的边长这个条件,实际上本题的结果与大正方形的边长没关系.连接(见右上图),可以看出,三角形与三角形的底都等于小正方形的边长,高都等于大正方形的边长,所以面积相等.因为三角形是三角形与三角形的公共部分,所以去掉这个公共部分,根据差不变性质,剩下的两个部分,即三角形与三角形面积仍然相等.根据等量代换,求三角形的面积等于求三角形的面积,等于.【题文】如图,与均为正方形,三角形的面积为6平方厘米,图中阴影部分的面积为多少.【答案】6【解析】如图,连接,比较与,由于,,即与的底与高分别相等,所以与的面积相等,那么阴影部分面积与的面积相等,为6平方厘米.【题文】正方形ABCD和正方形CEFG,且正方形ABCD边长为10厘米,则图中阴影面积为多少平方厘米?【答案】50【解析】方法一:三角形BEF的面积,梯形EFDC的面积三角形BEF的面积,而四边形CEFH是它们的公共部分,所以,三角形DHF的面积三角形BCH的面积,进而可得,阴影面积三角形BDF的面积三角形BCD的面积(平方厘米).方法二:连接CF,那么CF平行BD ,所以,阴影面积三角形BDF的面积三角形BCD的面积(平方厘米).【题文】已知正方形边长为10,正方形边长为6,求阴影部分的面积.【答案】20【解析】如果注意到为一个正方形的对角线(或者说一个等腰直角三角形的斜边),那么容易想到与是平行的.所以可以连接、,如上图.由于与平行,所以的面积与的面积相等.而的面积为,所以的面积也为20.【题文】图中,和是两个正方形,和相交于,已知等于的三分之一,三角形的面积等于6平方厘米,求五边形的面积.【答案】49.5【解析】连接、,由于与平行,可知四边形构成一个梯形.由于面积为6平方厘米,且等于的三分之一,所以等于的,根据梯形蝴蝶定理或相似三角形性质,可知的面积为12平方厘米,的面积为6平方厘米,的面积为3平方厘米.那么正方形的面积为平方厘米,所以其边长为6厘米.又的面积为平方厘米,所以(厘米),即正方形的边长为3厘米.那么,五边形的面积为:(平方厘米).【题文】如下图,、分别是梯形的下底和腰上的点,,并且甲、乙、丙个三角形面积相等.已知梯形的面积是平方厘米.求图中阴影部分的面积.【答案】12.8【解析】因为乙、丙两个三角形面积相等,底.所以到的距离与到的距离相等,即与平行,四边形是平行四边形,阴影部分的面积平行四边形的面积的,所以阴影部分的面积乙的面积.设甲、乙、丙的面积分别为份,则阴影面积为份,梯形的面积为份,从而阴影部分的面积(平方厘米).【题文】如图,已知长方形的面积,三角形的面积是,三角形的面积是,那么三角形的面积是多少?【答案】6.5【解析】方法一:连接对角线.∵是长方形∴∴,∴,∴∴.方法二:连接,由图知,所以,又由,恰好是面积的一半,所以是的中点,因此,所以【题文】如图,在平行四边形中,,.求阴影面积与空白面积的比.【答案】1:2【解析】方法一:因为,,所以,.因为,所以,所以,.同理可得,,.因为,所以空白部分的面积,所以阴影部分的面积是.,所以阴影面积与空白面积的比是.【题文】如图所示,三角形中,是边的中点,是边上的一点,且,为与的交点.若的面积为平方厘米,的面积为平方厘米.且是平方厘米,那么三角形的面积是多少平方厘米.【答案】10【解析】,,所以(平方厘米).所以(平方厘米).【题文】如图,在梯形中,,,且的面积比的面积小10平方厘米.梯形的面积是多少平方厘米?【答案】115【解析】根据题意可知,则,,而平方厘米,所以,则平方厘米.又,所以平方厘米.所以(平方厘米).【题文】如图,是梯形的一条对角线,线段与平行,与相交于点.已知三角形的面积比三角形的面积大平方米,并且.求梯形的面积.【答案】28【解析】连接.根据差不变原理可知三角形的面积比三角形大4平方米,而三角形与三角形面积相等,因此也与三角形面积相等,从而三角形的面积比三角形的大4平方米.但,所以三角形的面积是三角形的,从而三角形的面积是(平方米),梯形的面积为:(平方米).【题文】如右图所示,在长方形内画出一些直线,已知边上有三块面积分别是,,.那么图中阴影部分的面积是多少?【答案】97【解析】三角形的面积三角形的面积长方形面积阴影部分面积;又因为三角形的面积三角形的面积长方形面积,所以可得:阴影部分面积.【题文】图中是一个各条边分别为5厘米、12厘米、13厘米的直角三角形.将它的短直角边对折到斜边上去与斜边相重合,那么图中的阴影部分(即未被盖住的部分)的面积是多少平方厘米?【答案】【解析】如下图,为了方便说明,将某些点标上字母.有为直角,而,所以也为直角.而.与同高,所以面积比为底的比,及===,设的面积为“8”,则的面积为“5”.是由折叠而成,所以有、面积相等,是由、、组成,所以=“8”+“5”+“5”=“18”对应为,所以“1”份对应为,那么△ADE的面积为=平方厘米.即阴影部分的面积为平方厘米.【题文】如图,长方形的面积是2平方厘米,,是的中点.阴影部分的面积是多少平方厘米?【答案】平方厘米【解析】如下图,连接,、的面积相等,设为平方厘米;、的面积相等,设为平方厘米,那么的面积为平方厘米.,.所以有.比较②、①式,②式左边比①式左边多,②式右边比①式右边大0.5,有,即,.而阴影部分面积为平方厘米.【题文】如图,三角形田地中有两条小路和,交叉处为,张大伯常走这两条小路,他知道,且.则两块地和的面积比是多少【答案】1:2【解析】方法一:连接.设的面积为1,的面积,则根据题上说给出的条件,由得,即的面积为、;又有,、,而;得,所以.方法二:连接,设(份),则,设则有,解得,所以方法三:过点作∥交于点,由相似得,又因为,所以,所以两块田地ACF和CFB的面积比【题文】如图,,,被分成个面积相等的小三角形,那么|【答案】24【解析】由题意可知,,所以,;又,所以,同样分析可得,所以.【题文】如图,在角的两边上分别有、、及、、六个点,并且、、、、的面积都等于1,则的面积等于.【答案】【解析】根据题意可知,,所以,.【题文】、分别为直角梯形两边上的点,且、、彼此平行,若,,,.求阴影部分的面积.【答案】25【解析】连接、.由于、、彼此平行,所以四边形是梯形,且与该梯形的两个底平行,那么三角形与、三角形与的面积分别相等,所以三角形的面积与三角形的面积相等.而三角形的面积根据已知条件很容易求出来.由于为直角梯形,且,,,,所以三角形的面积的面积为:.所以三角形的面积为25.【题文】已知为等边三角形,面积为400,、、分别为三边的中点,已知甲、乙、丙面积和为143,求阴影五边形的面积.(丙是三角形)【答案】43【解析】因为、、分别为三边的中点,所以、、是三角形的中位线,也就与对应的边平行,根据面积比例模型,三角形和三角形的面积都等于三角形的一半,即为200.根据图形的容斥关系,有,即,所以.又,所以.【题文】如图,已知,,,,线段将图形分成两部分,左边部分面积是38,右边部分面积是65,求三角形的面积.【答案】40【解析】连接,.根据题意可知,;;所以,,,,,于是:;;可得.故三角形的面积是40.【题文】如图,点、、在线段上,已知厘米,厘米,厘米,厘米,将整个图形分成上下两部分,下边部分面积是平方厘米,上边部分面积是平方厘米,则三角形的面积是多少平方厘米?【答案】128【解析】连接设的面积是,由于所以的面积是、的面积是由于上半部分的面积是平方厘米所以的面积是()平方厘米,因为下半部分的面积是平方厘米所以的面积是()平方厘米,因为是的2倍所以可以列方程为:()解得,的面积为平方厘米.【题文】如图,正方形的边长为10,四边形的面积为5,那么阴影部分的面积是多少【答案】40【解析】如图所示,设上的两个点分别为、.连接.根据面积比例模型,与的面积是相等的,那么与的面积之和,等于与的面积之和,即等于的面积.而的面积为正方形面积的一半,为.又与的面积之和与阴影部分的面积相比较,多了2个四边形的面积,所以阴影部分的面积为:.【题文】如图,正方形的边长为12,阴影部分的面积为60,那么四边形的面积是多少【答案】6【解析】如图所示,设上的两个点分别为、.连接.根据面积比例模型,与的面积是相等的,那么与的面积之和,等于与的面积之和,即等于的面积.而的面积为正方形面积的一半,为.又与的面积之和与阴影部分的面积相比较,多了2个四边形的面积,所以四边形的面积为:.【题文】如图所示,长方形内的阴影部分的面积之和为70,,,四边形的面积为多少?【答案】10【解析】利用图形中的包含关系可以先求出三角形、和四边形的面积之和,以及三角形和的面积之和,进而求出四边形的面积.由于长方形的面积为,所以三角形的面积为,所以三角形和的面积之和为;又三角形、和四边形的面积之和为,所以四边形的面积为.另解:从整体上来看,四边形的面积三角形面积三角形面积白色部分的面积,而三角形面积三角形面积为长方形面积的一半,即60,白色部分的面积等于长方形面积减去阴影部分的面积,即,所以四边形的面积为.【题文】如图所示,矩形的面积为24平方厘米.三角形与三角形的面积之和为平方厘米,则四边形的面积是多少平方厘米?【答案】1.8【解析】因为三角形与三角形的面积之和是矩形的面积的一半,即12平方厘米,又三角形与三角形的面积之和为平方厘米,则三角形与三角形的面积之和是平方厘米,则四边形的面积三角形面积三角形与三角形的面积之和三角形面积(平方厘米).【题文】如图所示,矩形的面积为36平方厘米,四边形的面积是3平方厘米,则阴影部分的面积是多少平方厘米?【答案】12【解析】因为三角形面积为矩形的面积的一半,即18平方厘米,三角形面积为矩形的面积的,即9平方厘米,又四边形的面积为3平方厘米,所以三角形与三角形的面积之和是平方厘米.又三角形与三角形的面积之和是矩形的面积的一半,即18平方厘米,所以阴影部分面积为(平方厘米).【题文】如图,长方形的面积是36,是的三等分点,,则阴影部分的面积为多少?【答案】2.7【解析】如图,连接.根据蝴蝶定理,,所以;,所以.又,,所以阴影部分面积为:.【题文】如图,如果长方形的面积是平方厘米,那么四边形的面积是多少平方厘米?【答案】32.5【解析】如图,过、、、分别作长方形的各边的平行线.易知交成中间的阴影正方形的边长为厘米,面积等于平方厘米.设、、、的面积之和为,四边形的面积等于,则,解得(平方厘米).【题文】如图,阴影部分四边形的外接图形是边长为的正方形,则阴影部分四边形的面积是().【答案】48【解析】如图所示,分别过阴影四边形的四个顶点作正方形各边的平行线,相交得长方形,易知长方形的面积为平方厘米.从图中可以看出,原图中四个空白三角形的面积之和的2倍,等于、、、四个长方形的面积之和,等于正方形的面积加上长方形的面积,为平方厘米,所以四个空白三角形的面积之和为平方厘米,那么阴影四边形的面积为平方厘米.【题文】如图,阴影部分四边形的外接图形是边长为厘米的正方形,则阴影部分四边形的面积是多少平方厘米?【答案】68【解析】如图所示,分别过阴影四边形的四个顶点作正方形各边的平行线,相交得长方形,易知长方形的面积为平方厘米.从图中可以看出,原图中四个空白三角形的面积之和的2倍,等于、、、四个长方形的面积之和,等于正方形的面积加上长方形的面积,为平方厘米,所以四个空白三角形的面积之和为平方厘米,那么阴影四边形的面积为平方厘米.【题文】已知正方形的边长为10,,,则?【答案】53【解析】如图,作于,于.则四边形分为4个直角三角形和中间的一个长方形,其中的4个直角三角形分别与四边形周围的4个三角形相等,所以它们的面积和相等,而中间的小长方形的面积为,所以.【题文】如图,三角形的面积是,、的长度分别为11、3.求长方形的面积.【答案】67【解析】如图,过作∥,过作∥,、交于,连接.则另解:设三角形、、的面积之和为,则正方形的面积为.从图中可以看出,三角形、、的面积之和的2倍,等于正方形的面积与长方形的面积之和,即,得,所以正方形的面积为.【题文】如图,长方形中,,.、分别是边上的两点,.那么,三角形面积的最小值是多少?【答案】717【解析】由于长方形的面积是一定的,要使三角形面积最小,就必须使、、的面积之和最大.由于、、都是直角三角形,可以分别过、作、的平行线,可构成三个矩形、和,如图所示.容易知道这三个矩形的面积之和等于、、的面积之和的2倍,而这三个矩形的面积之和又等于长方形的面积加上长方形的面积.所以为使、、的面积之和最大,只需使长方形的面积最大.长方形的面积等于其长与宽的积,而其长,宽,由题知,根据”两个数的和一定,差越小,积越大”,所以当与的差为0,即与相等时它们的积最大,此时长方形的面积也最大,所以此时三角形面积最小.当与相等时,,此时三角形的面积为:.(也可根据得到三角形的面积)【题文】是边长为12的正方形,如图所示,是内部任意一点,、,那么阴影部分的面积是().【答案】34【解析】(法1)特殊点法.由于是内部任意一点,不妨设点与点重合(如上中图),那么阴影部分就是和.而的面积为,的面积为,所以阴影部分的面积为.(法2)寻找可以利用的条件,连接、、、可得右图所示:则有:同理可得:;而,即;同理:,,;所以:而;;所以阴影部分的面积是:即为:.【题文】如图所示,在四边形中,,,,分别是各边的中点,求阴影部分与四边形的面积之比.【答案】1【解析】(法1)设,,,.连接知,,,;所以;同理.于是;注意到这四个三角形重合的部分是四块阴影小三角形,没算的部分是四边形;因此四块阴影的面积和就等于四边形的面积.(法2)特殊值法(只用于填空题、选择题),将四边形画成正方形,很容易得到结果.【题文】如图,、、、分别是四边形各边的中点,与交于点,、、及分别表示四个小四边形的面积.试比较与的大小.【答案】【解析】如图,连接、、、,则可判断出,每条边与点所构成的三角形都被分为面积相等的两部分,且每个三角形中的两部分都分属于、这两个不同的组合,所以可知.【题文】如图,四边形中,,,,已知四边形的面积等于4,则四边形的面积是多少?【答案】【解析】运用三角形面积与底和高的关系解题.连接、、、,因为,,所以,在中,,在中,,在中,,在中,.因为,所以.又因为,所以.【题文】如图,对于任意四边形,通过各边三等分点的相应连线,得到中间四边形,求四边形的面积是四边形的几分之几?【答案】【解析】分层次来考虑:⑴如下左图,,,所以.又因为,,所以;.⑵如右上图,已知,;所以;所以,即是三等分点;同理,可知、、都是三等分点;所以再次应用⑴的结论,可知,.【题文】有正三角形,在边、、的正中间分别取点、、,在边、、上分别取点、、,使,当和、和、和的相交点分别是、、时,使.这时,三角形的面积是三角形的面积的几分之几?请写出思考过程.【答案】【解析】连接、、,显然,是正三角形将放大至如图⑵.连,由对称性知,.因此,.同理,.所以,.【题文】如图:已知在梯形中,上底是下底的,其中是边上任意一点,三角形、三角形、三角形的面积分别为、、.求三角形的面积.【答案】21【解析】如图,设上底为,下底为,三角形与三角形的高相差为.由于,所以.即.又,所以.【题文】如图,已知是梯形,∥,,,,求的面积.【答案】6【解析】本题是09年六年级试题,初看之下,是梯形这个条件似乎可以用到梯形蝴蝶定理,四边形内似乎也可以用到蝴蝶定理,然而经过试验可以发现这几个模型在这里都用不上,因为、这两个点的位置不明确.再看题目中的条件,,,这两个条件中的前一个可以根据差不变原理转化成与的面积差,则是与的面积差,两者都涉及到、以及有同一条底边的两个三角形,于是想到过、分别作梯形底边的平行线.如右图,分别过、作梯形底边的平行线,假设这两条直线之间的距离为.再过作的垂线.由于,所以,故.根据差不变原理,这个差等于与的面积之差.而与有一条公共的底边,两个三角形边上的高相差为,所以它们的面积差为,故.再看,它的面积等于是与的面积之差,这两个三角形也有一条公共的底边,边上的高也相差,所以这两个三角形的面积之差为,故.由于,所以,则,所以.【题文】如图,是一个四边形,、分别是、的中点.如果、与的面积分别是6、7和8,且图中所有三角形的面积均为整数,则四边形的面积为多少.【解析】连接、、.由于是的中点,所以与的面积相等,而比的面积大1,所以比的面积大1;又由于是的中点,所以的面积与的面积相等,那么的面积比的面积大1,所以的面积为9.假设的面积为,则的面积为.根据几何五大模型中的蝴蝶定理,可知的面积为,的面积为.要使这两个三角形的面积为整数,可以为1,3或7.由于的面积为面积的一半,的面积为面积的一半,所以与的面积之和为四边形面积的一半,所以与的面积之和等于四边形的面积,即:,得.将、3、7分别代入检验,只有时等式成立,所以{{10l连接,,,所以,设份,则份,平方厘米,所以份是平方厘米,份就是平方厘米,的面积是平方厘米.由此我们得到一个重要的定理,共角定理:共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比.【题文】如图,三角形中,是的5倍,是的3倍,如果三角形的面积等于1,那么三角形的面积是多少?【答案】15连接.∵∴又∵∴,∴.。

小学奥数思维训练-几何(三)立体图形(拓展训练)(通用,含答案)

小学奥数思维训练-几何(三)立体图形(拓展训练)(通用,含答案)

保密★启用前小学奥数思维训练几何(三)立体图形一、选择题1.如图给出了一个立体图形的正视图、左视图和俯视图,图中单位为厘米.立体图形的体积()立方厘米.A.2πB.2.5πC.3πD.3.5π二、解答题2.将NNN(N是正整数)正方体的一些面涂上颜色以后,再将它切割成111的小正方体.已知至少有一面涂色的小正方体恰好占总数的52%,N是多少?3.小红的生日舞会,做了一顶圆锥形帽子,要将帽子涂成红色和蓝色,O点为顶点,BC为底面圆直径30cm,A点是OB的下三分之一处,OB=30cm,从A点出发,CA 之间最短的距离之上涂成红色,下边涂成蓝色.那么小红的帽子有多大地方涂的是蓝色?(π=3)4.一个正方体纸盒中恰好能放入一个体积为628立方厘米的圆柱,纸盒的容积有多大?(π=3.14)5.图中的立体图形是由14个棱长为5cm的立方体组成的,求这个立体图形的表面积?6.圆柱形的售报亭的高和底面直径相等(如图),开一个边长等于底面半径的正方形售报窗口.问窗口处挖去的圆柱部分的面积占圆柱形侧面积的几分之几?7.一个正方体木块,棱长是15.从它的八个顶点处各截去棱长分别是1、2、3、4、5、6、7、8的小正方体.这个木块剩下部分的表面积最少是多少?8.如图,一个正方体形状的木块,棱长1米,沿水平方向将它锯成3片,每片又锯成4长条,每条又锯成5小块,共得到大大小小的长方体60块.那么这60块长方体表面积的和是多少平方米?9.如图是一个棱长为2厘米的正方体,在正方体上表面的正中,向下挖一个棱长为1厘米的正方体小洞,接着在小洞的底面正中向下挖一个棱长为1/2厘米的正方形小洞,第三个正方形小洞的挖法和前两个相同,棱长为1/4厘米,那么最后得到的立体图形的表面积是多少平方厘米?10.把一个棱长为2cm正方体在同一平面的边的中点用线段连接起来,如图.然后把正方体顶点上的三角锥锯掉,请问最后所得的立体图形的表面积的多少平方厘米?(1.732×1.732=3)参考答案:1.A【解析】【详解】首先确定此图形为“不完整的圆柱”,先求出圆柱体积,再求出缺失的半个小圆柱,最后作差.如图,从给定的正视图、左视图和俯视图可以看出,该立体图形由一个半径为1厘米、高为1厘米的圆柱和一个半径为1厘米、高为2厘米的半圆柱组成..π×1×1×(1+2)-12π×1×1×2=2π,选A【点睛】这里的要点在于还原,还原的技巧在于先补全,再细雕刻2.5【解析】【详解】一个正整数×52%=另一个正整数,那么这个正整数必须能被25整除1352%25⎛⎫=⎪⎝⎭因为.那么N必须能被5整除.当N取最小N=5 正方体有5×5×5=125个小正方体涂色的小正方体5×5×5×52%=65(个)不可能被涂色的小正方体3×3×3=27(个)27+65小于125成立当N=2×5=10时,正方体有10×10×10=1000个小正方体涂色的小正方体10×10×10×52%=520(个)不可能被涂色的小正方体 8×8×8=512(个) 512+520大于1000 不成立同理N 大于10都不成立所以 N=53.750平方厘米【解析】【详解】底面周长为圆锥展开后 扇形的弧长蓝色面积=圆锥侧面积-红色面积底面周长=30×π=30×3=90侧面展开后扇形所在圆的周长=2×π×30=1809011802= 所以侧面展开图为半圆 蓝色面积=π×30×30×12-12×(20+20) ×30 =1350-600=750(平方厘米)4.800cm 3【解析】【详解】设纸盒棱长为x圆柱体积=22x x x π⨯⨯⨯=628 整理上边式子得x 3=800(cm 3) 即为纸盒容积.5.1050平方厘米【解析】【详解】用透视法观察 上、下两个面的面积相等4个侧面的每个侧面面积为6个小正方形面积底面棱长5×3=15 上、下两个面的面积=15×15×2=4504个侧面面积=4×6×5×5=600总面积=450+600=1050(平方厘米)6.1 12【解析】【详解】窗口上下的弧长为底面圆周长的六分之一窗口的高为圆柱的高的二分之一挖去的圆柱部分的面积占圆柱形侧面积的16×12=1127.1252【解析】【详解】截去一个小正方体,表面积不变.只有在截去的小正方体的面相重合时,表面积才会减少.所以要使木块剩下部分的表面积尽可能小,应该在同一条棱的两端各截去棱长7与8的小正方体(如图所示),这时剩下部分的表面积比原正方体的表面积减少最多.剩下部分的表面积最小是:15×15×6-7×7×2=1252.想想为什么不是15×15×6-7×7-8×8.8.24平方米【解析】【详解】我们知道每切一刀,多出的表面积恰好是原正方体的2个面的面积.现在一共切了(3-1)+(4-1)+(5-1)=9刀,而原正方体一个面的面积1×1=1(平方米),所以表面积增加了9×2×1=18(平方米).原来正方体的表面积为6×1=6(平方米).所以现在的这些小长方体的表积之和为6+18=24(平方米).9.29.25平方厘米【解析】【详解】俯视图发现上表面积就是大正方体的一个面的面积表面积为大正方体表面积加上3个小正方体的侧面积2×2×6+1×1×4+12×12×4+14×14×4=24+4+1+1 4=29.25(平方厘米)10.18.928cm2【解析】【详解】所得立体图形表面为6个正方形和8个等边三角形勾股定理等边三角形的高的平方=底边的平方-半个底边的平方=34底边的平方6个正方形面积=6×(1×1+1×1)=6×2=12等边三角形的高的平方=34×2=32等边三角形的高的平方×底边的平方=32×2=3所以等边三角形的高×底边=1.732,等边三角形的面积=1/2×1.732=0.866立体图形的表面积=12+8×0.866=18.928(cm2)。

小升初奥数几何试题及答案

小升初奥数几何试题及答案

小升初奥数几何试题及答案一、选择题1. 下列哪个图形的周长最长?A. 边长为5厘米的正方形B. 边长为5厘米的正三角形C. 长为6厘米,宽为4厘米的长方形答案:C2. 一个圆的半径是10厘米,那么它的直径是多少厘米?A. 20厘米B. 30厘米C. 40厘米答案:A3. 如果一个长方体的长、宽、高分别是12厘米、8厘米和6厘米,那么它的表面积是多少平方厘米?A. 432平方厘米B. 504平方厘米C. 576平方厘米答案:B二、填空题4. 一个等边三角形的边长为8厘米,那么它的高是_________厘米。

(答案:8√3)5. 一个圆柱的底面半径是3厘米,高是10厘米,它的体积是_________立方厘米。

(答案:282.6)6. 一个长方体的体积是120立方厘米,长是10厘米,宽是6厘米,那么它的高是_________厘米。

(答案:2)三、解答题7. 一个长方形的长是15厘米,宽是长的一半,求这个长方形的周长和面积。

解答:长方形的宽是15厘米的一半,即7.5厘米。

周长= 2 × (长 + 宽) = 2 × (15 + 7.5) = 2 × 22.5 = 45厘米。

面积 = 长× 宽= 15 × 7.5 = 112.5平方厘米。

8. 一个梯形的上底是6厘米,下底是10厘米,高是5厘米,求梯形的面积。

解答:梯形的面积 = (上底 + 下底)× 高÷ 2= (6 + 10) × 5 ÷ 2= 16 × 5 ÷ 2= 80 ÷ 2= 40平方厘米。

9. 一个圆锥的体积是120立方厘米,底面积是30平方厘米,求圆锥的高。

解答:圆锥的体积公式是V = (1/3) × 底面积× 高由此可得高= V ÷ (1/3) ÷ 底面积= 120 ÷ (1/3) ÷ 30= 120 × 3 ÷ 30= 360 ÷ 30= 12厘米。

几何六年级奥数题

几何六年级奥数题

几何六年级奥数题
下面是一道六年级奥数几何题:
题目:在正方形ABCD 中,点 E 是AD 的中点,连接BE 交AC 的延长线于点F,如果AF = 6 cm,BD = 12 cm,则求DF 的长度。

解题思路:
1. 由题意可知,AF = 6 cm,BD = 12 cm,我们需要求得DF 的长度。

2. 由于E 是AD 的中点,所以AE = ED = 1/2 * AD。

根据正方形的特性,可得AE = ED = 1/2 * BC。

3. 由于AF 是BE 的延长线,所以AF = BE。

4. 由正方形的性质可知,BE = BC + CE。

代入前面得到的关系式,可得AF = BC + CE。

5. 根据正方形的对角线相互垂直且相等的特性,可知AFC 和DEB 是直角三角形。

6. 利用勾股定理,可得AFC 的斜边AC 的平方等于AF 的平方加上FC 的平方。

7. 利用勾股定理,可得DEB 的斜边DB 的平方等于DE 的平方加上EB 的平方。

8. 由于AFC 和DEB 相似,可得到相似比:AC:DB = AF:DE = 6:BC。

9. 将AC 和DB 的长度代入相似比,即可得到BC 的长度。

10. 利用BC 的长度和BE 的关系,可得到CE 的长度。

11. 利用BE 和CE 的长度,可得到DF 的长度。

答案和解析:
根据上述步骤计算,DF 的长度为:DF = 3 cm。

小升初几何专题测试题 数奥 (含标准标准答案)

小升初几何专题测试题 数奥 (含标准标准答案)

小升初几何专题测试题数奥(含答案)1、如图,已知每个小正方形格地面积是1平方厘米,则不规则图形地面积是______.2、(西城实验考题)四个完全一样地直角三角形和一个小正方形拼成一个大正方形(如图),如果小正方形面积是1平方米,大正方形面积是5平方米,那么直角三角形中,最短直角边地长度是______米.b5E2R。

3、求出图中梯形ABCD地面积,其中BC=56厘米.(单位:厘米)4、(第十三届“华罗庚金杯”少年组数学邀请赛决赛试卷(小学组))图中,ABCD和CGEF是两个正方形,AG和CF相交与H,已知CH等于CF地三分之一,三角形CHG地面积等于6平方厘米,求五边形ABGEF地面积.p1Ean。

5、(清华附中考题)如图,在三角形ABC中,D为BC地中点,EGHFEDCBA为AB 上地一点,且BE=13AB ,已知四边形EDCA 地面积是35,求三角形ABC 地面积DXDiT 。

6、(101中学考题)一块三角形草坪前,工人王师傅正在用剪草机剪草坪,一看到小灵通,王师傅热情地打招呼:“小灵通,听说你很会动脑筋,我也想问问你,这块草坪我把它分成东、西、南、北四部分(如图).修剪西部、东部、南部个需要10分钟、16分钟、20分钟,请你想一想修剪北部需要多少分钟?”RTCrp 。

7、(101中学考题)求图中阴影部分面积:8、(第十三届“华罗庚金杯”少年组数学邀请赛决赛试卷(小学组))图1是小明用一些半径为1厘米,2厘米,4厘米,和8厘米地圆,半圆,圆弧和一个正方形组成地一个鼠头图案,图中阴影部分地总面积为_______平方厘米.5PCzV。

9、(三帆中学考试题)有一个棱长为1米地立方体,沿长、宽、高分别切二刀、三刀、四刀后,成为60个小长方体,这60个小长方体地表面积总和为_____平方米.jLBHr。

10、(清华附中考题)从一个长为8厘米,宽为7厘米,高为6厘米地长方体中截下一个最大地正方体,剩下地几何体地表面积是______平方厘米.xHAQX。

3 小学奥数——几何图形 试题及解析

3 小学奥数——几何图形 试题及解析

3 小学奥数——几何图形试题及解析小学奥数——几何图形试题及解析一、选择题1. 下列各图形中,几何图形的个数最多的是:A. 正方形B. 矩形C. 三角形D. 长方形解析:该题考察学生对几何图形的辨识和计数能力。

正方形有4条边,矩形也有4条边,三角形有3条边,而长方形同样也有4条边。

因此,答案为D,长方形。

2. 以下哪个几何图形不是多边形?A. 正方形B. 圆形C. 五边形D. 六边形解析:多边形是一个有多个直线边的封闭图形。

正方形有4个边,五边形有5个边,六边形有6个边。

但圆形是一个由无限多个点组成的,边是由连续曲线组成的,因此圆形不是多边形。

答案为B,圆形。

二、填空题1. 三角形的内角和是____度。

解析:三角形的内角和是180度。

2. 矩形的对角线互相垂直且长度相等。

解析:矩形的对角线互相垂直且长度相等。

三、解答题1. 已知一个四边形的两个相邻内角分别是50度和100度,另外两个内角分别是多少度?解析:由四边形的内角和为360度可知两个未知角分别为360度 -50度 - 100度 = 210度。

因此,另外两个内角分别是210度。

2. 一个凸多边形的内角和是1620度,它有几个内角?解析:设凸多边形有n个内角。

由凸多边形的内角和为 (n-2) × 180度,可以得到 n × 180度 = 1620度。

解得 n = 9。

因此,该凸多边形有9个内角。

3. 如图所示,在正方形ABCD中,连接AC和BD两条对角线,交于点O。

若AD的长度为12cm,求AC的长度。

解析:由于正方形的对角线相等且互相垂直,可知AO和OC互相垂直,且AO = OC。

根据勾股定理,可以得到 AD^2 = AO^2 + OD^2,解得AO = OD = (12/√2)cm,而AC = AO + OC = 2AO = 2 × (12/√2)cm = 12√2 cm。

因此,AC的长度为12√2cm。

总结:通过以上的几何图形试题和解析,我们可以看到几何图形的基本概念和性质在小学奥数中起着重要的作用。

小学奥数---何图形中的规律专项练习30题(有答案)

小学奥数---何图形中的规律专项练习30题(有答案)

第5讲几何图形中的规律专项练习30题(有答案)1.一组图形有规律的排列着.○△□☆○△□☆○△□☆○△□☆…第78个是( )A . ○B . △C . □D . ☆2.请你根据如图猜一猜,40颗珠子里面有( )颗白珠子.A . 16B . 20C . 24D . 无法计算3.如图,○、△、□各表示一个两位数中的其中一个数字,观察下面图与数的关系,第4图形表示的两位数是( )A . 54B . 43C . 344.根据甲图的变化规律给乙图的“?”选择一个恰当的图形是( )A .B .C .D .5.根据如图三个图形的排列规律,第四个图形应该是下面选项的图( )A .B .C .D .6.从所给的4个图形中,选择一个恰当的图形放在“?”处.( )A .B .C .D .7.用M ,N ,P ,Q 各代表四种简单几何图形(线段、等边三角形、正方形、圆)中的一种.图1﹣图4是由M , N ,P ,Q 中的两种图形组合而成的(组合用“”表示).那么,表示PQ 的有①﹣④4个组合图形可供选择其中, 正确的是( )A . ①B . ②C . ③D . ④8.观察下列各图,找出图中数与数之间的变化规律,那么?处的数是( )A . 4B . 5C . 6D . 7E . 89.○、□、△各表示一个数字,下面的每一个图形都是由○、□、△中的两个构成的.观察各个图形,根据图下表示 的数找出规律,画出表示32的图形.10.找出下面三幅图的递变规律,那么,按照这个规律问号处的方形拼图应该是A 、B 、C 、D 、E 、F 中的 _________ .11.三(1)班举行“迎六一”晚会,在教室的四周都挂上3种颜色的气球,刚好按照图的顺序排列了49个气球.(1)最后一个气球是_________颜色;(2)这些气球中红色的共有_________个.12.根据下列的图和字母的关系,将ac的图补上.13.找规律,画一画,填一填.○■▲△、■▲△○、▲△○■、_________.14.找规律填文字.15.如图是按一定规律排列的,找出它的变化规律,并填出所缺少的图形._________.16.按规律画图:17.根据如图的变化规律,画出如图变化后的形状.18.按图形变化规律,画一画第四个图.19.按规律接着画.20.画一画(1)(2)你能画出(4)中的图形吗?(3)如图→_________(4)如图:在表格的空格里画上○、□、△、●,使横行、竖行、对角线里的4个图形都不重复.21.仔细观察,“?”处填什么图形?22.观察前几幅图,想一想第四幅图该是怎样的图?23.按照图形的变化规律,接着画下去.24.25.仔细观察,“?”处填什么图形?26.仔细观察,如图方框中应画什么图形?27.找出规律,请你接着画28.找出规律,请你接着画29.观察下列图形的变化,按照规律补充完整.30.找规律画图.参考答案:1.图形的排列规律是:4个图形一个循环周期,即按照○→△→□→☆的顺序依次循环排列;78÷4=19…2,即第78个图形是第20周期的第2个图形,与第一个周期的第2个图形相同,是△,故选:B2.40÷5=8,8×3=24(颗),答:40颗珠子里面有24颗白珠子.故选:C.3.图形中有一个正方形和一个三角形,正方形在外,三角形在内,所以用数字:43表示.故选:B4.由题意得:两个圆逆时针旋转,圆转到最下行变成正方形,继续逆时针旋转,两个圆都转到最下行,变成.故选:D.5.由三个图形的排列得出规律:图形每增加一条边,里面的点就增加一个,点的数量比边的数量少2,所以第四个图形应该是六边形,里面有4个点.故选:D6.所求的前一个图形最里面的是圆,变化后就是:最外面的图形为圆,然后是正方形,最里面是三角形.故答案选:A7.结合图1和图2我们不难看出:P代表圆、M代表正方形、N代表三角形,从而可知Q代表线段,也就得到P、Q组合的图形是圆加线段.故选:②8.由分析得出:?处的数=28÷2﹣(5+3+2)=14﹣10=4;故选:A.9.32表示一个正方形,一个圆形,其中圆形在正方形的里面;如图:10.本题的图都是按照顺时针方向旋转的;第四幅图应是:故选:A11.(1)气球的排列规律是5个气球为一周期,即2红、1黄、2蓝依次排列的.49÷5=9…4,所以第49个气球是第10个周期的第4个气球,应该与第一个周期的第四个气球颜色相同,为:蓝色.(2)2×9+2=18+2=20(个),答:最后一个气球是蓝色,这些气球中红色的一共有20个.故答案为:蓝;2012.由题意得出:ac为:13.○■▲△、■▲△○、▲△○■、△○■▲.14.由题意得:.15.如图所示:由分析可知,所缺处应该是:16.应在里面画一个较小的五边形,如图17.根据分析画图如下:故答案为:.18.根据题意可画出图形,如图所示:19.第三列中的第一个图形正方形是下一列的最后一个图形;第三列中的第二个图形三角形变成下一列的第一个图形;第三列的第三个图形圆变成下一列的第二个图形;如下:整个图形如下:20.(1)第四个图形是:(2)第四个图形是:(3)要求的图形是:;(4)排列后的图形是:21.作图如下:22.按逆时针方向旋转如下图:23.根据题意与分析可得图形变化规律是:整个图形按顺时针方向旋转90°得到下一个图形.根据这一规律可得第四个图形是:24.第三图形排列如下图:25.正确的图为:26.由分析得出:27.答案如图所示:.28.答案如图所示:29.第四个图为:第五个图为:30.第四个图形是第三个图形顺时针旋转90°后得到的图形.如下图所示:。

小学奥数:几何计数一.专项练习及答案解析

小学奥数:几何计数一.专项练习及答案解析

7-8-1几何计数(一)教课目的掌握数常用方法;熟一些数公式及其推方法;依据不一样目灵巧运用数方法行数.本主要介了数的常用方法枚法、数法、形法、插板法、法等,并渗透分数和用容斥原理的数思想.知识重点一、几何计数在几何形中,有多风趣的数,如算段的条数,足某种条件的三角形的个数,若干个分平面所成的地区数等等.看起来仿佛没有什么律可循,可是通真分析,是能够找到一些理方法的.常用的方法有枚法、加法原理和乘法原理法以及推法等.n条直最多将平面分红223⋯⋯n(n2n2)个部分;n个2最多分平面的部分数n(n-1)+2;n个三角形将平面最多分红3n(n-1)+2部分;n个四形将平面最多分红4n(n-1)+2部分⋯⋯在其余数中,也常用到枚法、加法原理和乘法原理法以及推法等.解需要仔、合所学知点逐渐求解.摆列不与参加摆列的事物相关,并且与各事物所在的先后序相关;合与各事物所在的先后序没关,只与两个合中的元素相关.二、几何计数分类数段:假如一条段上有n+1个点(包含两个端点)(或含有n个“基本段”),那么n+1个点把条段一共分红的段数n+(n-1)+⋯+2+1条数角:数角与数段相像,段形中的点似于角形中的.数三角形:可用数段的方法数如右所示的三角形(法),因DE上有15条段,每条段的两头点与点A相,可构成一个三角形,共有15个三角形,同一在BC上的三角形也有15个,所以中共有30个三角形.数方形、平行四形和正方形:一般的,于随意方形(平行四形),若其横上共有n 条段,上共有条段,中共有方形(平行四形)个.m mn例题精讲模块一、简单的几何计数【例1】七个同的如右搁置,它有_______条称.7-8-1.几何计数(一).题库题库版page1of10【考点】简单的几何计数【难度】1星【题型】填空【重点词】迎春杯,六年级,初赛,试题【分析】如图:6条.【答案】6条【例2】下边的表情图片中:,没有对称轴的个数为()(A)3(B)4(C)5(D)6【考点】简单的几何计数【难度】2星【题型】选择【重点词】华杯赛,初赛,第1题【分析】经过观察可知,第1,2,5这三张图片是有对称轴的,其余的5张图片都没有对称轴,所以没有对称轴的个数为5,正确答案是C。

3 小学奥数——几何图形 试题及解析

3 小学奥数——几何图形 试题及解析

小学奥数——几何图形一.选择题(共50小题)1.图中的八边形是将大长方形纸片剪去一个小长方形得到.则至少需要知道()条线段的长度,才可以计算出这个八边形的周长.A.4B.3C.5D.102.如图中阴影部分是正方形,最大长方形的周长是()厘米.A.22B.26C.36D.无法确定3.如图,由6个边长为3厘米的小正方形拼成的图形,它的周长是()厘米.A.36B.39C.42D.454.把一个直径是4厘米的圆分成两个完全相等的半圆,这两个半圆的周长之和是()A.12.56厘米B.16.56厘米C.20.56厘米D.24.56厘米5.如图,有8条线段,至少要分别测量编号为()的三条线段的长度,才能求出这个图形的周长.A.①②⑤B.①②③C.①②⑦D.②③⑦6.如图,是一个台阶的侧面(线段AC,BC,AB的长依次为5米、12米、13米)要在台阶上面铺上红地毯,且上下各多铺出两米,需要地毯的长度是()米.A.17B.18C.20D.217.如图,正方形被一条曲线分成了A、B两部分,下面第()种说法不正确?A.如果a b>,那么A的周长大于B的周长B.如果a b<,那么A的周长小于B的周长C.如果a b=,那么A的周长等于B的周长D.不管a、b哪个大,A、B的周长总是相等8.如图是用3个长8厘米、宽3厘米的长方形拼成的,这个图形的周长是()A.66厘米B.48厘米C.45厘米9.图中多边形每相邻两条边都互相垂直,若要计算起其周长,那么至少要知道()边长.A.6B.5C.4D.310.一个长方形花园长是30米,宽是10米,沿着花园走两圈,共走了()A.45米B.90米C.160米D.200米11.把如图的长方形用一条曲线分成甲、乙两个图形,甲图与乙图的周长相比,()A.甲图的长B.乙图的长C.甲图与乙图同样长12.如图,在由11⨯的正方形组成的网格中写有2015四个数字(阴影部分),其边线要么是水平或竖直的直线段,要么是连接11⨯的正方形相邻两边中点的线段,或者是11⨯的正方形的对角线,则图中2015四个数字(阴影部分)的面积是()A.47B.1472C.48D.148213.如图中,正八边形ABCDEFGH的面积为1,其中有两个正方形ACEG和PQRS.那么正八边形中阴影部分的面积()A.12B.23C.35D.5814.如图,大正方形的边长为14,小正方形的边长为10,阴影部分的面积之和是( )A.25B.40C.49D.5015.大、中、小三个正方形,边长都是整数厘米,小正方形的周长比中正方形的边长小,把这两个正方形放在大正方形上(如图),大正方形露出的部分的面积是10平方厘米(图中阴影部分).那么,大正方形的面积是( )平方厘米.A.25B.36C.49D.6416.如图,大正六边形内部有7个完全一样的小正六边形,已知阴影部分的面积是180平方厘米.那么大正六边形的面积是( )平方厘米.A.240B.270C.300D.36017.如图所示,在58 的方格中,阴影部分的面积为237cm .则非阴影部分的面积为( 2)cm .A.43B.74C.80D.11118.图中,将两个正方形放在一起,大、小正方形的边长分别为0l,6,则图中阴影部分面积为()A.42B.40C.38D.3619.下图中,四边形ABCD都是边长为1的正方形,E、F、G、H分别是AB、BC、CD、DA的中点,如果左图中阴影部分与右图中阴影部分的面积之比是最简分数mn,那么,m n的值等于()A.5B.7C.8D.1220.有5个长方形,它们的长和宽都是整数,且5个长和5个宽恰好是1~10这10个整数;现在用这5个长方形拼成1个大正方形,那么,大正方形面积的最小值为()A.169B.144C.121D.10021.一个梯形的上底增加2厘米,下底减少2厘米,高不变,它的面积与原面积相比()A.变大了B.变小了C.不变D.高不知道,所以无法比较22.已知图中正方形的两个顶点正好是两个等腰直角三角形斜边上的中点,小等腰直角三角形与正方形中的圆面积相等,请问正方形中的阴影面积与大等腰直角三角形面积的比值A.13B.12C.1D.3223.如图,梯形ABCD 中,//AB DC ,90ADC BCD ∠+∠=︒,且2DC AB =,分别以DA 、AB 、BC 为边向梯形外作正方形,其面积分别为1S ,2S ,3S ,则1S ,2S ,3S 之间的关系是下列选项中的( )A.123S S S +>;B.132S S S +=;C.132S S S +<;D.无法确定.24.小王将一些同样大小的正三角形纸片摆放在桌上.第一次放1张纸片;第二次在这个小正三角形纸片四周再放三张纸片;第三次在第二次摆好的图形四周再摆放纸片;⋯摆放要求是:每次摆放的每张纸片必须和上一次摆放的纸片至少有一条边重合,且纸片之间除边之外,无重合(见图).第20次摆放后,该图形共用了正三角形纸片( )张.A.571B.572C.573D.57425.在88⨯网格的所有方格中放入黑白两种围棋子,每个方格放一枚棋子,要求每行中的白色棋子的数目互不相同,每列中的白色棋子的数目相等,那么这个88⨯网格中共有( )枚黑色棋子.A.42B.32C.22D.1226.在66⨯网格的所有方格中放入围棋子,每个方格放1枚棋子,要求每行中的白色棋子的数目互不相等,每列中的白色棋子的数目都相等,那么这个66⨯网格中共有( )枚黑A.18B.14C.12D.1027.一块木板上有13枚钉子(如图1所示).用橡皮筋套住其中的几枚钉子,可以构成三角形,正方形,梯形等等(如图2).请回答:可以构成()个正方形.A.9B.10C.11D.1228.在如图中,一共能数出()个含有“☆”的长方形.A.8B.10C.12D.1429.如图,木板上有10根钉子,任意相邻的两根钉子距离都相等,以这些钉子为顶点,用橡皮筋可套出()个正三角形.A.6B.10C.13D.1530.以平面上任意4个点为顶点的三角形中,钝角三角形最多有()个.A.5B.2C.4D.331.图中,有()个三角形.A.13B.15C.14D.1632.图中共有()个三角形.A.10B.9C.19D.1833.两个小三角形不重叠放置可以拼成一个大三角形,那么这个大三角形不可能由()拼成.A.两个锐角三角形B.两个直角三角形C.两个钝角三角形D.一个锐角三角形和一个钝角三角形34.将长方形ABCD对角线平均分成12段,连接成如图,长方形ABCD内部空白部分面积总和是10平方厘米,那么阴影部分面积总和是()平方厘米.A.14B.16C.18D.2035.在桌面上,将一个边长为1 的正六边形纸片与一个边长为1的正三角形纸片拼接,要求无重叠,且拼接的边完全重合,则得到的新图形的边数为()A.8B.7C.6D.536.用210个大小相同的正方形拼成一个长方形,不同的拼法有()种.A.2B.4C.6D.837.一个长方形由15个小正方形拼成,如图所示,若这个长方形的周长是64cm,则它的面)cm.积为(2A.960B.256C.240D.12838.如图,每条边都相等,每个角都是直角,则根据信息,求下图的面积为()平方厘米.A.16B.20C.24D.3239.如图,四边形ABCD为长方形,四边形CDEF为平行四边形.下面四种说法中正确的是()A.甲的面积比乙的面积大B.甲的面积比乙的面积小C.只有当丙、丁两部分面积相等时,甲、乙两部分面积才相等D.甲、乙两部分面积总是相等的,与丙、丁两部分面积的大小无关40.如图,正方形ABCD的边长是10厘米,长方形EFGH的长为8厘米,宽为5厘米.则阴影部分的甲与阴影部分乙面积的差是()平方厘米.A.40B.50C.60D.8041.如图,线段BE将长方形ABCD分成M、N两个部分,如果M部分比N部分的面积小80l 平方厘米,那么AE的长是()A.24厘米B.21厘米C.20厘米D.14厘米42.如图,一个33的正方形网格,如果小正方形边长是1,那么阴影部分的面积是()A.5B.4C.3D.243.如图所示,四边形BCDE 为平行四边形,AOE ∆的面积为6,求BOC ∆的面积.( )A.3B.4C.5D.644.如图,M 为平行四边形ABCD 的边BC 上的一点,且:2:3BM MC =,已知三角形CMN的面积为245cm ,则平行四边形ABCD 的面积为( 2)cm .A.30B.45C.90D.10045.如图,长方形ABCD 中的AE 、AF 、AG 、AH 四条线段把此长方形面积五等分,又长方形长20厘米、宽12厘米,那么三角形AFG 的面积AFG S ∆等于( )平方厘米.A.41.2B.43.2C.43.1D.42.346.在等腰梯形ABCD 中,AB 平行于CD ,6AB =,14CD =,AEC ∠是直角,CE CB =,则2AE 等于( )A.84B.80C.75D.6447.下面的四个图形中,第()幅图只有2条对称轴.A. B.C. D.48.下面图形中,恰有2条对称轴()A. B. C. D.49.在如图的阴影三角形中,不能由右图中的阴影三角形经过旋转、平移得到的是图()中的三角形.A. B.C. D.50.在下面的阴影三角形中,不能由图中的阴影三角形经过旋转、平移得到的是图()中的三角形.A. B. C. D.参考答案与试题解析一.选择题(共50小题)1.图中的八边形是将大长方形纸片剪去一个小长方形得到.则至少需要知道()条线段的长度,才可以计算出这个八边形的周长.A.4B.3C.5D.10【解析】如上图,把线段①平移到②的位置可以组成一个大长方形,大长方形的4条边,对边相等,所以只需知道相邻两条边的长度,③=④,所以只需知道1条线段的长度,所以求八边形的周长需要知道:213+=条线段的长度.故选:B.2.如图中阴影部分是正方形,最大长方形的周长是()厘米.A.22B.26C.36D.无法确定【解析】+⨯=(94)226答:最大长方形的周长是26厘米.3.如图,由6个边长为3厘米的小正方形拼成的图形,它的周长是()厘米.A.36B.39C.42D.45【解析】3412⨯=(厘米)326⨯=(厘米)+⨯+(126)26366=+=(厘米)42答:它的周长是42厘米.故选:C.4.把一个直径是4厘米的圆分成两个完全相等的半圆,这两个半圆的周长之和是()A.12.56厘米B.16.56厘米C.20.56厘米D.24.56厘米【解析】(3.14424)2⨯÷+⨯=+⨯(6.284)210.282=⨯=(厘米)20.56答:这两个半圆周长之和是20.56厘米.故选:C.5.如图,有8条线段,至少要分别测量编号为()的三条线段的长度,才能求出这个图形的周长.A.①②⑤B.①②③C.①②⑦D.②③⑦【解析】由图形可知,④+⑥的线段补给⑧所在的长方形边的虚线部分,⑦-⑤等长线段的补给③所在边的虚线部分,这样就构成了一个完整的长方形,原图形的周长就是答长方形的周长2+个⑤的线段总长,所以图形的周长只要知道①②⑤即可求得.故选:A.6.如图,是一个台阶的侧面(线段AC,BC,AB的长依次为5米、12米、13米)要在台阶上面铺上红地毯,且上下各多铺出两米,需要地毯的长度是()米.A.17B.18C.20D.21【解析】12522++⨯=++1254=(米)21答:需要地毯的长度是21米.故选:D.7.如图,正方形被一条曲线分成了A、B两部分,下面第()种说法不正确?A.如果a b>,那么A的周长大于B的周长B.如果a b<,那么A的周长小于B的周长C.如果a b=,那么A的周长等于B的周长D.不管a、b哪个大,A、B的周长总是相等【解析】A的周长=曲线长+正方形边长2b a⨯+-B的周长=曲线长+正方形边长2a b⨯+-所以A、B、C选项都是正确的,错误的是D.8.如图是用3个长8厘米、宽3厘米的长方形拼成的,这个图形的周长是()A.66厘米B.48厘米C.45厘米【解析】8631⨯-⨯483=-=(厘米)45答:这个图形的周长是45厘米.故选:C.9.图中多边形每相邻两条边都互相垂直,若要计算起其周长,那么至少要知道()边长.A.6B.5C.4D.3【解析】根据题干分析可得:这个图形的横着的边长之和是:2b;竖着的边长之和是:22+;a c所以这个图形的周长是:2222()++=++,故计算这个图形的周长至少需要知道3a b c a b c条边,故选:D.10.一个长方形花园长是30米,宽是10米,沿着花园走两圈,共走了()A.45米B.90米C.160米D.200米【解析】(3010)22160+⨯⨯=(米)故选:C.11.把如图的长方形用一条曲线分成甲、乙两个图形,甲图与乙图的周长相比,()A.甲图的长B.乙图的长C.甲图与乙图同样长【解析】因为,甲图形的周长是:AB BC AC++,乙图形的周长是:DC AD AC++,而AB CD=,AD BC=,所以,甲、乙两个图形的周长相等;故选:C.12.如图,在由11⨯的正方形组成的网格中写有2015四个数字(阴影部分),其边线要么是水平或竖直的直线段,要么是连接11⨯的正方形相邻两边中点的线段,或者是11⨯的正方形的对角线,则图中2015四个数字(阴影部分)的面积是()A.47B.1472C.48D.1482【解析】据分析可知:将小三角形移到空白处补全完整正方形,共47.5个,所以阴影部分的面积是1 472;故选:B.13.如图中,正八边形ABCDEFGH的面积为1,其中有两个正方形ACEG和PQRS.那么正八边形中阴影部分的面积()A.12B.23C.35D.58【解析】根据分析,将图中阴影部分进行等积变形,由图不难发现,阴影部分和空白部分的面积刚好相等,正八边形中阴影部分的面积占:1 2故选:A.14.如图,大正方形的边长为14,小正方形的边长为10,阴影部分的面积之和是()A.25B.40C.49D.50【解析】根据分析,如下图所示,图①逆时针旋转90︒,阴影部分可拼成一等腰直角三角形,214449S=÷=故选:C.15.大、中、小三个正方形,边长都是整数厘米,小正方形的周长比中正方形的边长小,把这两个正方形放在大正方形上(如图),大正方形露出的部分的面积是10平方厘米(图中阴影部分).那么,大正方形的面积是()平方厘米.A.25B.36C.49D.64【解析】根据分析,一条阴影部分的面积为1025÷=平方厘米.因为都是整数,所以只能为15⨯.故,大正方形面积(15)(15)6636=+⨯+=⨯=平方厘米.故选:B.16.如图,大正六边形内部有7个完全一样的小正六边形,已知阴影部分的面积是180平方厘米.那么大正六边形的面积是()平方厘米.A.240B.270C.300D.360【解析】如图所示,将图分割成面积相等的小正三角形,显然,图中的空白部分的面积和等于3个小正六边形.而阴影部分由6个小正六边形组成,所以,大正六边形是由9个小正六边形组成的.一个小正六边形的面积为:180630÷=(平方厘米),大正六边形的面积为:309270⨯=(平方厘米),故选:B.17.如图所示,在58⨯的方格中,阴影部分的面积为237cm .则非阴影部分的面积为( 2)cm .A.43B.74C.80D.111【解析】如图,阴影部分占了18.5个格,面积为237cm , 每格的面积是:23718.52()cm ÷=;非阴影就分占21.5格,其面积是:221.5243()cm ⨯=; 答:则非阴影部分的面积为243cm ; 故选:A .18.图中,将两个正方形放在一起,大、小正方形的边长分别为0l ,6,则图中阴影部分面积为( )A.42B.40C.38D.36【解析】1010666(106)210102⨯+⨯-⨯+÷-⨯÷ 100364850=+--38=答:阴影部分的面积是38.故选:C.19.下图中,四边形ABCD都是边长为1的正方形,E、F、G、H分别是AB、BC、CD、DA的中点,如果左图中阴影部分与右图中阴影部分的面积之比是最简分数mn,那么,m n+的值等于()A.5B.7C.8D.12【解析】由以上可知,两个阴影面积比为11:3:2 23=,325+=.故选:A.20.有5个长方形,它们的长和宽都是整数,且5个长和5个宽恰好是1~10这10个整数;现在用这5个长方形拼成1个大正方形,那么,大正方形面积的最小值为()A.169B.144C.121D.100【解析】如图所示,,于是可得:正方形的边长为11,则其面积为1111121⨯=.答:大正方形面积的最小值为121.故选:C.21.一个梯形的上底增加2厘米,下底减少2厘米,高不变,它的面积与原面积相比( ) A.变大了 B.变小了C.不变D.高不知道,所以无法比较【解析】因为梯形的面积=(上底+下底)⨯高2÷,若“上底增加2厘米,下底减少2厘米,高不变”则(上底+下底)的和不变,且高不变, 所以梯形的面积不变. 故选:C .22.已知图中正方形的两个顶点正好是两个等腰直角三角形斜边上的中点,小等腰直角三角形与正方形中的圆面积相等,请问正方形中的阴影面积与大等腰直角三角形面积的比值是( )A.13B.12C.1D.32【解析】设小等腰三角形的边长是a ,大等腰三角形的边长为b , 2a 2b 则正方形的面积是22222222()(222a b a b a b ++=+=小等腰三角形与大等腰三角形的面积和:2222222a b a b ++=又因小等腰直角三角形与正方形中的圆面积相等,所以正方形中的阴影面积与大等腰直角三角形面积相等. 所以它们的比值是1. 故选:C .23.如图,梯形ABCD 中,//AB DC ,90ADC BCD ∠+∠=︒,且2DC AB =,分别以DA 、AB 、BC 为边向梯形外作正方形,其面积分别为1S ,2S ,3S ,则1S ,2S ,3S 之间的关系是下列选项中的( )A.123S S S +>;B.132S S S +=;C.132S S S +<;D.无法确定.【解析】过点A 作//AE BC 交CD 于点E ,因为//AB DC ,所以四边形AECB 是平行四边形,所以AB CE =,BC AE =,BCD AED ∠=∠, 因为90ADC BCD ∠+∠=︒,2DC AB =, 所以AB DE =,90ADC AED ∠+∠=︒, 所以90DAE ∠=︒那么222AD AE DE +=,因为21S AD =,222S AB DE ==,223S BC AE ==, 所以213S S S =+. 故选:B .24.小王将一些同样大小的正三角形纸片摆放在桌上.第一次放1张纸片;第二次在这个小正三角形纸片四周再放三张纸片;第三次在第二次摆好的图形四周再摆放纸片;⋯摆放要求是:每次摆放的每张纸片必须和上一次摆放的纸片至少有一条边重合,且纸片之间除边之外,无重合(见图).第20次摆放后,该图形共用了正三角形纸片( )张.A.571B.572C.573D.574【解析】根据分析可得,第20次摆放后,该图形共用:++++⋯+⨯-13693(201)=++++⋯+136957=+⨯-÷+(357)(201)21=+5701=(个)571答:第20次摆放后,该图形共用了正三角形纸片571张.故选:A.25.在88⨯网格的所有方格中放入黑白两种围棋子,每个方格放一枚棋子,要求每行中的白色棋子的数目互不相同,每列中的白色棋子的数目相等,那么这个88⨯网格中共有( )枚黑色棋子.A.42B.32C.22D.12【解析】由分析得+++++++=(枚)0123567832⨯-=(枚)883232故选:B.26.在66⨯网格的所有方格中放入围棋子,每个方格放1枚棋子,要求每行中的白色棋子的数目互不相等,每列中的白色棋子的数目都相等,那么这个66⨯网格中共有()枚黑色围棋子.A.18B.14C.12D.10【解析】每行的数目可以为0~6个,每列都相等,所以一定是6的倍数,++++++=,012345621如果去掉3,那么剩下的数:21318-=正好是6的倍数,所以,白棋子有18个,则,黑色围棋子有:661818⨯-=(个)故选:A.27.一块木板上有13枚钉子(如图1所示).用橡皮筋套住其中的几枚钉子,可以构成三角形,正方形,梯形等等(如图2).请回答:可以构成()个正方形.A.9B.10C.11D.12【解析】第一种正方形有5个,第二种正方形有4个,第三个正方形有1个,第四种正方形有1个,共11个.故选:C.28.在如图中,一共能数出()个含有“☆”的长方形.A.8B.10C.12D.14【解析】根据分析可得,共有:6612+=(个);答:图中,一共能数出12个含有“☆”的长方形.故选:C.29.如图,木板上有10根钉子,任意相邻的两根钉子距离都相等,以这些钉子为顶点,用橡皮筋可套出()个正三角形.A.6B.10C.13D.15【解析】单个的三角形有9个,4个三角形组成的大三角形3个,最外面的最大的三角形1个,共有:93113++=(个)答:用橡皮筋可套出13个正三角形. 故选:C .30.以平面上任意4个点为顶点的三角形中,钝角三角形最多有( )个. A.5B.2C.4D.3【解析】如图,平面上任意4点构成了4个钝角三角形: ABC ∆、ABD ∆、ACD ∆、BCD ∆,所以以平面上任意4个点为顶点的三角形中,钝角三角形最多有4个. 故选:C .31.图中,有( )个三角形.A.13B.15C.14D.16【解析】由题意,由一个小三角形构成的,有6个; 由两个小三角形构成的,有3个; 由三个小三角形构成的,有6个; 大三角形1个,所以三角形的个数为636116+++=个, 故选:D .32.图中共有( )个三角形.A.10B.9C.19D.18【解析】根据题干分析可得:88218++=(个),答:图中一共有18个三角形.故选:D.33.两个小三角形不重叠放置可以拼成一个大三角形,那么这个大三角形不可能由()拼成.A.两个锐角三角形B.两个直角三角形C.两个钝角三角形D.一个锐角三角形和一个钝角三角形【解析】因为拼在一起的两个小三角形一定有两条边共线,这时能组成一个平角,A、因为两个锐角的和小于180度,所以,两个锐角三角形不可能拼成一个大三角形;B、因为9090180︒+︒=︒,所以两个直角三角形能拼成一个大三角形;C、因为钝角+锐角有可能等于180︒,所以两个钝角三角形可能拼成一个大三角形;D、因为钝角+锐角有可能等于180︒,所以两个钝角三角形可能拼成一个大三角形;故选:A.34.将长方形ABCD对角线平均分成12段,连接成如图,长方形ABCD内部空白部分面积总和是10平方厘米,那么阴影部分面积总和是()平方厘米.A.14B.16C.18D.20【解析】设把中间最小的空白长方形的面积看作单位1ab=,那么与它相邻的阴影部分的面积就是2233a b ab ab⨯-==,同理,相邻的空白部分的面积就是55ab=,依此规律,面积依次下去为7,9,11,则空白部分的面积总和是15915++=,而实际空白部分面积总和是10平方厘米,可得单位1的实际面积是210153÷=(平方厘米);那么阴影部分面积总和是:371121++=,则实际面积是:221143⨯=(平方厘米);答:阴影部分面积总和是14平方厘米.故选:A.35.在桌面上,将一个边长为1 的正六边形纸片与一个边长为1的正三角形纸片拼接,要求无重叠,且拼接的边完全重合,则得到的新图形的边数为()A.8B.7C.6D.5【解析】180(62)6︒⨯-÷18046=︒⨯÷120=︒180660︒÷=︒12060180︒+︒=︒所以,拼接后的图形是:6345+-=(条)答:得到的新图形的边数为5.故选:D.36.用210个大小相同的正方形拼成一个长方形,不同的拼法有()种.A.2B.4C.6D.8【解析】2102357=⨯⨯⨯因数的总个数:(11)(11)(11)(11)16+⨯+⨯+⨯+=(个)不同的拼法有:1628÷=(种)答:不同的拼法有8种.故选:D.37.一个长方形由15个小正方形拼成,如图所示,若这个长方形的周长是64cm,则它的面积为(2)cm.A.960B.256C.240D.128【解析】64[(53)2]÷+⨯=÷6416=(厘米)4⨯⨯=(平方厘米)4415240答:它的面积为2240cm.故选:C.38.如图,每条边都相等,每个角都是直角,则根据信息,求下图的面积为()平方厘米.A.16B.20C.24D.32【解析】如右图进行分割,把图形分成了8个边长是2厘米的小正方形⨯⨯=(平方厘米)22832答:这个图形的面积是32平方厘米.故选:D.39.如图,四边形ABCD为长方形,四边形CDEF为平行四边形.下面四种说法中正确的是()A.甲的面积比乙的面积大B.甲的面积比乙的面积小C.只有当丙、丁两部分面积相等时,甲、乙两部分面积才相等D.甲、乙两部分面积总是相等的,与丙、丁两部分面积的大小无关【解析】四边形ABCD为长方形,所以BC AD=,AB CD=,因为四边形CDEF为平行四边形,所以CD EF=,=,所以AB EF两边同时加上BE,所以BF AE=;根据等底等高的三角形的面积相等,所以得出三角形CBF的面积=三角形DAE的面积,则:三角形CBF的面积-丁的面积=三角形DAE的面积-丁的面积,所以甲、乙两部分面积总是相等,与与丙、丁两部分面积的大小无关;故选:D.40.如图,正方形ABCD的边长是10厘米,长方形EFGH的长为8厘米,宽为5厘米.则阴影部分的甲与阴影部分乙面积的差是()平方厘米.A.40B.50C.60D.80【解析】⨯-⨯=(平方厘米)10108560故选:C.41.如图,线段BE将长方形ABCD分成M、N两个部分,如果M部分比N部分的面积小80l 平方厘米,那么AE的长是()A.24厘米B.21厘米C.20厘米D.14厘米【解析】设N部分的面积为x,那么M部分的面积为180x-,+-=⨯(180)3020x xx-=2180600x=+2600180x=2780x=;390N部分的面积是390平方厘米.设梯形的上底为y,1y+⨯⨯=(30)203902y+=10300390y=1090y=;9AE=-=(厘米);30921故选:B.42.如图,一个33⨯的正方形网格,如果小正方形边长是1,那么阴影部分的面积是()A.5B.4C.3D.2【解析】通过观察可知,阴影部分的面积=长是3宽是1的长方形的面积-中间边长是1的正方形的面积.⨯-⨯=31112故选:D.43.如图所示,四边形BCDE为平行四边形,AOE∆的面积.()∆的面积为6,求BOCA.3B.4C.5D.6【解析】连接BD,因为,//BE CD ,OB OB =,所以,BOC ∆的面积等于BOD ∆的面积,又因为,//DE AC ,AB AB =,所以,ABE ∆的面积等于ABD ∆的面积,又因为,ABO ∆是ABE ∆和ABD ∆的公共部分,所以,BOD ∆的面积等于AOE ∆的面积,即,BOD ∆的面积AOE =∆的面积6=.答:BOC ∆的面积是6.故选:D .44.如图,M 为平行四边形ABCD 的边BC 上的一点,且:2:3BM MC =,已知三角形CMN的面积为245cm ,则平行四边形ABCD 的面积为( 2)cm .A.30B.45C.90D.100【解析】如图,连接AC .Q 四边形ABCD 是平行四边形,//AD BN ∴,ADM NCM ∴∆∆∽,∴24()9ADM MNC S DM S CM ∆∆==, 45MNC S ∆=Q ,20ADM S ∆∴=,:3:2CM DM =Q ,30ACM S ∆∴=,50ADC S ∆∴=,2100ADC ABCD S S ∆∴==平行四边形,故选:D .45.如图,长方形ABCD 中的AE 、AF 、AG 、AH 四条线段把此长方形面积五等分,又长方形长20厘米、宽12厘米,那么三角形AFG 的面积AFG S ∆等于( )平方厘米.A.41.2B.43.2C.43.1D.42.3【解析】由题意可知2012485ABE AEF AGH ADH AFCG S S S S S ∆∆∆∆⨯======四边形, BE EF ∴=,DH HG =,Q 1482BE AB =g g , 8BE EF ∴==,20164CF =-=,Q 1482DH AD =g g , 4.8DH HG ∴==, 2.4CG =,14 2.4 4.82FGC S ∆∴=⨯⨯=, 48 4.843.2AFG S ∆∴=-=,故选:B .46.在等腰梯形ABCD 中,AB 平行于CD ,6AB =,14CD =,AEC ∠是直角,CE CB =,则2AE 等于( )A.84B.80C.75D.64【解析】如图,连接AC ,过点A 作AF CD ⊥于点F ,过点B 作BG CD ⊥于点G ,则AF BG =,6AB FG ==,4DF CG ==.在直角AFC ∆中,22222210100AC AF FC AF AF =+=+=+,在直角BGC ∆中,222222416BC BG GC AF AF =+=+=+,又CE CB =Q ,90AEC ∠=︒,22222100(16)84AE AC EC AF AF ∴=-=+-+=,即284AE =.故选:A .47.下面的四个图形中,第( )幅图只有2条对称轴. A. B. C. D.【解析】如果沿某条直线对折,对折的两部分是完全重合的,那么就称这样的图形为轴对称图形,这条直线叫做这个图形的对称轴.观察易知,符合题意的是C.故选:C.48.下面图形中,恰有2条对称轴()A. B. C. D.【解析】根据轴对称图形的定义,可得:A有4条对称轴,B没有对称轴,C有2条对称轴,D有1条对称轴.故选:C.49.在如图的阴影三角形中,不能由右图中的阴影三角形经过旋转、平移得到的是图()中的三角形.A. B.C. D.【解析】根据分析,可以逆向思维,可以将题中的阴影三角形经过旋转、平移,长直角边旋转和短直角边旋转后得到的图形,不难看出,只有A选项是不可能出现的.图中图中①、②、③三边应为顺时针关系,A不合要求.故选:A.50.在下面的阴影三角形中,不能由图中的阴影三角形经过旋转、平移得到的是图()中的三角形.A. B. C. D.【解析】解析:由图可知:A、C、D都可由原三角形经过旋转和平移得到,而B选项必须经过对称才能与原三角形重合,故选:B.。

小学奥数题库《几何》-曲线型-圆环-1星题(含解析)

小学奥数题库《几何》-曲线型-圆环-1星题(含解析)

几何-曲线型几何-圆环-1星题课程目标知识提要圆环•概述圆环是由两个半径不相等的同心圆构成的,大圆面积比小圆面积多的部分就是圆环。

•面积公式S=πR2−πr2=π(R2−r2)精选例题圆环1. 如下图所示,已知圆环的面积是141.3平方厘米,那么阴影部分的面积是平方厘米.(π取3.14)【答案】45【分析】设大圆半径为R,小圆半径为r,则圆环面积为π(R2−r2)=141.3(平方厘米),所以阴影部分面积为R2−r2=141.3÷3.14=45(平方厘米).2. 如下图所示,大正方形的面积是400平方厘米,则圆环的面积是平方厘米.(π取3.14)【答案】157平方厘米【分析】将小正方形转45∘,如下图所示,可以看出大正方形的面积是小正方形面积的两倍,所以大圆面积是小圆面积的两倍.因为大正方形面积是400平方厘米,所以大圆面积为314平方厘米,小圆面积为157平方厘米,圆环面积为314−157=157(平方厘米).3. 如下图所示,有10个同心圆,任意两个相邻的同心圆半径之差等于里面最小圆的半径.如果射击时命中最里面的小圆得10环,命中最外面的圆环得1环.得1环圆环的面积是10环圆面积的倍.【答案】19【分析】1环、2环、10环的外圈的圆的半径值比为10:9:1,面积比为100:81:1,1环面积是10面积的(100−81)÷1=19倍.4. 两个半径不等的同心圆,内圆半径3cm,外圆直径8cm,圆环面积是多少?【答案】21.98平方厘米.【分析】注意外圆的直径是8cm,半径应是4cm,那么圆环的面积是π×4×4—π×3×3=21.98(平方厘米).5. 图中阴影部分的面积为50平方厘米,求环形面积.(π取3.14)【答案】157平方厘米【分析】环形的面积应该用大圆的面积减去小圆的面积,但分别求出两个圆的面积显然不可能.题中已知阴影部分的面积,也就是R2−r2=50平方厘米,那么环形的面积为:πR2−πr2=π(R2−r2)=π×50=157(平方厘米).6. 图中阴影部分的面积是25cm2,求圆环的面积.【答案】157cm2.【分析】设大圆半径为R,小圆半径为r,依题有R 22−r22=25,即R2−r2=50.则圆环面积为:πR2−πr2=π(R2−r2)=50π=157(cm2).7. 在直径为6米的圆形花坛的外面,围绕着一条宽1米的环形小路,这条小路的面积是多少?【答案】21.98平方米.【分析】此题相当于知道小圆直径和环宽,求圆环的面积.小圆半径3米,大圆半径4米,圆环的面积是21.98平方米.8. 已知与小圆相切的线段长度是10厘米,那么图中圆环的面积是多少?【答案】25π平方厘米【分析】连接OC、OB,则OC⊥AB,在直角三角形OBC中,OB 2−OC 2=BC 2=(12AB)2=25, 图中圆环的面积为πR 2−πr 2=π(R 2−r 2)=π×(OB 2−OC 2)=25π(平方厘米).9. 如图,有一卷紧紧缠绕在一起的塑料薄膜,薄膜的直径是 20 厘米,中间有一直径为 8 厘米的卷轴,已知薄膜的厚度为 0.04 厘米,则薄膜展开后的面积是多少平方米?(π 取 3.14)【答案】 65.94【分析】 卷纸问题:依据体积不变原则求解,缠绕在一起时塑料薄膜的体积为:[π×(202)2−π×(82)2]×100=8400π(立方厘米)薄膜展开后为一个长方形,体积保持不变,而厚度为 0.04 厘米,所以薄膜展开后的面积为8400π÷0.04=659400(平方厘米)=65.94(平方米).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学奥数几何问题选择题及答案
小学奥数几何问题选择题及答案
1.从一点引出两条()就组成一个角.
A.直线
B.线段
C.射线
2.一个四边形只有一组对边平行,这个四边形是().
A.平行四边形
B.任意四边形
C.梯形
3.把长方形拉成一个四条边长度保持不变的平行四边形后,它的面积().
A.比原来大
B.比原来小
C.与原来相等
4.下列图形中,()的对称轴有无数条.
A.正方形
B.等边三角形
C.圆
5.用两根同样长的'铁丝,分别围成一个正方形和一个圆.正方形的面积和圆的面积相比较,().
A.正方形的面积大
B.同样大
C.圆的面积大。

相关文档
最新文档