【实用】(完整版)平行线经典练习题(整理版)

合集下载

(完整版)平行线及其判定与性质练习题

(完整版)平行线及其判定与性质练习题

平行线及其判定1、基础知识(1)在同一平面内,______的两条直线叫做平行线.若直线a与直线b 平行,则记作______.(2)在同一平面内,两条直线的位置关系只有______、______.(3)平行公理是:.(4)平行公理的推论是如果两条直线都与______,那么这两条直线也______.即三条直线a、b、c,若a∥b,b∥c,则______.(5)两条直线平行的条件(除平行线定义和平行公理推论外):①两条直线被第三条直线所截,如果______,那么这两条直线平行,这个判定方法1可简述为:______,两直线平行.②两条直线被第三条直线所截,如果__ _,那么,这个判定方法2可简述为: ______,______.③两条直线被第三条直线所截,如果_ _____那么______,这个判定方法3可简述为:2、已知:如图,请分别依据所给出的条件,判定相应的哪两条直线平行?并写出推理的根据.(1)如果∠2=∠3,那么_____.(_______,_______)(2)如果∠2=∠5,那么________。

(______,________)(3)如果∠2+∠1=180°,那么_____。

(________,______)(4)如果∠5=∠3,那么_______。

(_______,________)(5)如果∠4+∠6=180°,那么______.(_______,_____)(6)如果∠6=∠3,那么________。

(________,_________)3、已知:如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)∵∠B=∠3(已知),∴______∥______。

(______,______)(2)∵∠1=∠D(已知),∴______∥______.(______,______)(3)∵∠2=∠A(已知),∴______∥______.(______,______)(4)∵∠B+∠BCE=180°(已知),∴______∥______。

(完整版)平行线习题(含答案)

(完整版)平行线习题(含答案)

2019年4月16日初中数学作业学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,经过直线a外一点O的4条直线中,与直线a相交的直线至少有()A.4条 B.3条 C.2条 D.1条【答案】B【解析】【分析】根据经过直线外一点有且只有一条直线和已知直线平行得出即可.【详解】解:根据经过直线外一点有且只有一条直线和已知直线平行,得出如果有和直线a平行的,只能是一条,即与直线a相交的直线至少有3条,故选:B.【点睛】本题考查了平行线和相交线的应用,注意:经过直线外一点有且只有一条直线和已知直线平行.2.下列说法中,正确的个数有()①在同一平面内不相交的两条线段必平行;②在同一平面内不相交的两条直线必平行;③在同一平面内不平行的两条线段必相交;④在同一平面内不平行的两条直线必相交.A.1个 B.2个 C.3个 D.4个【答案】B【解析】【分析】根据平面内直线和线段的位置关系判断.【详解】解:(1)线段不相交,延长后不一定不相交,错误;(2)同一平面内,直线只有平行或相交两种位置关系,正确;(3)线段是有长度的,不平行也可以不相交,错误;(4)同(2),正确;所以(2)(4)正确.故选:B.【点睛】本题主要考查在同一平面内两直线的位置关系,需要注意(1)和(3)说的是线段.3.下列表示平行线的方法正确的是( )A.ab∥cd B.A∥B C.a∥B D.a∥b【答案】D【解析】【分析】根据平行线的表达方法来判断即可得出结论.【详解】解:直线可以用两个大写字母表示,也可以用一个小写字母表示,故正确的表示方法是D.故答案为:D【点睛】本题主要考查了学生对平行线的表达方法的掌握情况,掌握平行线的表达方法是解题的关键。

4.在同一平面内,下列说法正确的是( )A.没有公共点的两条线段平行B.没有公共点的两条射线平行C.不垂直的两条直线一定互相平行D.不相交的两条直线一定互相平行【答案】D【解析】【分析】根据平行线的定义,即可求得此题的答案,注意举反例的方法.【详解】A.在同一平面内,没有公共点的两条线段不一定平行,故本选项错误;B。

平行线的证明100道经典习题练习(含答案)

平行线的证明100道经典习题练习(含答案)

平行线的证明100道经典习题练习(含答案在卷尾)一、选择题(本大题共64小题,共192.0分)1.一个三角形三个内角的度数之比是1:2:3,则这个三角形一定是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰直角三角形2.如图,能判断直线AB//CD的条件是()A. ∠1=∠2B. ∠3=∠4C. ∠1+∠3=180∘D. ∠3+∠4=180∘3.如图,点F,E分别在线段AB和CD上,下列条件能判定AB//CD的是()A. ∠1=∠2B. ∠1=∠4C. ∠4=∠2D. ∠3=∠44.如图,直线a//b,直线c与直线a,b分别交于点D,E,射线DF⊥直线c,则图中与∠1互余的角有()A. 4个B. 3个C. 2个D. 1个5.如图,∠BDC=98°,∠C=38°,∠A=37°,∠B的度数是()A. 33°B. 23°C. 27°D. 37°6.命题“垂直于同一条直线的两条直线互相平行”的条件是().A. 垂直B. 两条直线C. 同一条直线D. 两条直线垂直于同一条直线7.如图,BC//DE,若∠A=35°,∠C=24°,则∠E等于()A. 24°B. 59°C. 60°D. 69°8.在如图所示的四种沿AB进行折叠的方法中,不一定能判断纸带两条边a,b互相平行的是()A. 如图1,展开后测得∠1=∠2B. 如图2,展开后测得∠1=∠2且∠3=∠4C. 如图3,测得∠1=∠2D. 在图④中,展开后测得∠1+∠2=180°9.一次数学活动中,检验两条纸带 ①、 ②的边线是否平行,小明和小丽采用两种不同的方法:如图,小明对纸带 ①沿AB折叠,量得∠1=∠2=50∘;小丽对纸带 ②沿GH折叠,发现GD与GC重合,HF与HE重合.则下列判断正确的是()A. 纸带 ①的边线平行,纸带 ②的边线不平行B. 纸带 ①的边线不平行,纸带 ②的边线平行C. 纸带 ① ②的边线都平行D. 纸带 ① ②的边线都不平行10.对于命题“若a2>b2,则a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是()A. a=3,b=2B. a=−3,b=2C. a=3,b=−1D. a=−1,b=311.将一个长方形纸片按如图所示折叠,若∠1=40°,则∠2的度数是()A. 40°B. 50°C. 60°D. 70°12.通过观察你能肯定的是()A. 图形中线段是否相等B. 图形中线段是否平行C. 图形中线段是否相交D. 图形中线段是否垂直13.学习了平行线后,小敏想出了过已知直线外一点画这条直线的平行线的新方法,她是通过折一张半透明的纸得到的,如图:从图中可知,小敏画平行线的依据有①两直线平行,同位角相等;②两直线平行,内错角相等;③同位角相等,两直线平行;④内错角相等,两直线平行。

(完整版)七年级数学平行线的性质练习题

(完整版)七年级数学平行线的性质练习题

(6)
(7)
( 2)已知:如图 7, AB∥ DE,∠ E=65°,则∠ B+∠ C?的度数是( )
A . 135° B . 115° C . 65° D . 35°
-3-
难点 : 能区分平行线的性质和判定 , 平行线的性质与判定的混合应用 .
一、选择题
1. 下列说法 : ①两条直线平行 , 同旁内角互补 ; ②同位角相等 , 两直线平行 ;? ③内错角相等 ,
两直线平行 ; ④垂直于同一直线的两直线平行 , 其中是平行线的性质的是 ( )
A. ① B. ②和③ C. ④ D. ①和④
七年级数学《平行线的性质》练习题
教学目标
1. 经历观察、操作、想像、推理、交流等活动 , 进一步发展空间观念 , 推理能力和有条
理表达能力。
2. 经历探索直线平行的性质的过程 , 掌握平行线的三条性质 , 并能用它们进行简单的推
理和计算 .
重点、难点
重点 : 探索并掌握平行线的性质 , 能用平行线性质进行简单的推理和计算 .
1
A C
A B
D D
B
E C
(1)
(2)
(3)
4. 如图 2 所示 ,AB∥ CD,则与∠ 1 相等的角 ( ∠ 1 除外 ) 共有 ( )
A.5 个 B.4 个 C.3 个 D.2 个
5. 如图 3 所示 , 已知 DE∥ BC,CD是∠ ACB的平分线 , ∠ B=72° , ∠ ACB=40° ,? 那么∠ BDC等
2. 若两条平行线被第三条直线所截 , 垂直 B. 平行 C. 重合 D. 相交
3、如图( 1), a∥ b, a、 b 被 c 所截,得到∠ 1=∠ 2 的依据是( )

平行线练习题及答案

平行线练习题及答案

平行线练习题及答案平行线练习题及答案在数学中,平行线是指在同一个平面上永远不会相交的两条直线。

平行线在几何学和代数学中有着重要的应用,因此对于学生来说,掌握平行线的性质和判断方法是至关重要的。

本文将为大家提供一些平行线的练习题及答案,帮助大家加深对平行线的理解和运用。

练习题一:判断下列直线是否平行。

1. 直线AB:y = 2x + 3直线CD:y = 2x - 12. 直线EF:2x - 3y = 6直线GH:4x - 6y = 123. 直线IJ:3x + 4y = 8直线KL:6x + 8y = 16答案一:1. 直线AB和直线CD的斜率都为2,且截距不相等,因此直线AB和直线CD不平行。

2. 直线EF和直线GH的斜率都为2,且截距相等,因此直线EF和直线GH平行。

3. 直线IJ和直线KL的斜率都为2,且截距相等,因此直线IJ和直线KL平行。

练习题二:已知直线AB和直线CD平行,点E、F、G分别位于直线AB上,且AE = EF = FG。

若AE = 4,求FG的值。

答案二:由于直线AB和直线CD平行,因此直线AB和直线CD的斜率相等。

设直线AB的斜率为k,点E的坐标为(x1, y1),点F的坐标为(x2, y2),点G的坐标为(x3, y3)。

根据题意可得:y1 = kx1y2 = kx2y3 = kx3又因为AE = EF = FG,所以有:EF = FGy2 - y1 = y3 - y2kx2 - kx1 = kx3 - kx22kx2 = k(x1 + x3)x2 = (x1 + x3) / 2由于AE = 4,可得:y1 = kx1 = 4将x2 = (x1 + x3) / 2和y1 = 4代入直线AB的方程中,可得:4 = k(x1 + x3) / 28 = k(x1 + x3)8 = 4kx2x2 = 2将x2 = 2代入直线AB的方程中,可得:y2 = kx2 = 2k由于EF = FG,可得:y2 - y1 = y3 - y22k - 4 = y3 - 2k4k = y3 + 4y3 = 4k - 4将y3 = 4k - 4代入直线AB的方程中,可得:y3 = kx3 = 4k - 4综上所述,当AE = 4时,FG的值为4k - 4。

(完整版)平行线习题(含答案)

(完整版)平行线习题(含答案)
C、同一平面内两条直线不相交就一定平行,故本选项错误;
D、经过直线外一点有且只有一条直线与已知直线平行,故本选项错误.
故选:A.
【点睛】
本题属于综合题,考查了直线的性质:两点确定一条直线;角的定义:有公共端点是两条射线组成的图形叫做角,其中这个公共端点是角的顶点,这两条射线是角的两条边;同一平面内,两条直线的位置关系:平行或相交;平行公理:经过直线外一点,有且只有一条直线与这条直线平行.
C.没有公共点的两条直线互相平行
D.互相平行的两条直线没有公共点
【答案】D
【解析】
【分析】
回忆线段之间、射线之间与直线之间的位置关系;对于A,可在纸上画出两条没有公共点的线段,观察两条线段的位置关系;对于B,可在纸上画出两条没有公共点的射线,观察两条线段的位置关系;对于C,思考若两条直线不在一个平面内,是否能够得到两条直线不平行也不相交,对于D,根据平行线的定义可作出判断.
A.平行B.垂直C.共线D.平行或共线
【答案】A
【解析】
【分析】
结合图形,由平行线的判断定理进行分析.
【详解】
如图所示:
无公共顶点的两个直角,如果它们有一条边共线,内错角相等,或同旁内角互补,那么另一边互相平行.
故选A.
【点睛】
本题考查了平行线的判定,熟练掌握判定定理是解题的关键.
7.下列结论正确的是()
(2)过一点有且只有一条直线与已知直线平行,应强调在经过直线外一点,故是错误的.
(3)在同一平面内,不相交的两条直线是平行线,射线不一定,故本项错误;
(4)如果两条直线都与第三条直线平行,那么这两条直线也互相平行是正确的.
故线的性质和平行公理.熟练掌握公理和概念是解决本题的关键.

平行线练习题及答案

平行线练习题及答案

平行线练习题及答案一、选择题1. 在平面内,如果两条直线不相交,那么这两条直线被称为:A. 相交线B. 垂直线C. 平行线D. 异面直线答案:C2. 根据平行线的性质,下列哪项是错误的?A. 平行线之间的距离处处相等B. 平行线永远不会相交C. 如果一条直线与两条平行线中的一条相交,则与另一条也相交D. 平行线可以确定一个平面答案:C3. 如果直线AB与直线CD平行,且点E在直线AB上,点F在直线CD 上,那么直线EF与AB的关系是:A. 平行B. 垂直C. 相交D. 无法确定答案:D二、填空题4. 如果直线l1与直线l2平行,且直线l1上的点P到直线l2的距离为d,那么直线l1上任意一点到直线l2的距离都是________。

答案:d5. 平行线的性质之一是,如果一条直线与两条平行线中的一条相交,则与另一条________。

答案:不相交三、判断题6. 平行线在任何情况下都不会相交。

()答案:正确7. 如果两条直线相交,它们就不可能平行。

()答案:正确8. 平行线之间的夹角总是90度。

()答案:错误四、简答题9. 解释什么是平行线,并给出平行线的基本性质。

答案:平行线是两条直线在同一个平面内,且不论延伸多远都不相交的直线。

基本性质包括:平行线之间的距离处处相等,平行线永远不会相交,如果一条直线与两条平行线中的一条平行,则与另一条也平行。

10. 描述如何使用直尺和三角板来检验两条直线是否平行。

答案:首先,使用直尺画出两条直线。

然后,用三角板的一边与直线之一对齐,确保没有间隙。

接着,将三角板沿着直线滑动,检查三角板的另一边是否始终与另一条直线平行。

如果始终平行,则两条直线平行。

五、计算题11. 在平面直角坐标系中,已知直线l1的方程为y=2x+3,直线l2的方程为y=2x+5。

请判断这两条直线是否平行,并给出理由。

答案:这两条直线是平行的。

因为它们的斜率相同,都是2,而截距不同,分别是3和5。

根据平行线的性质,当两条直线的斜率相同时,它们是平行的。

(完整word版)平行线经典练习题(整理版)

(完整word版)平行线经典练习题(整理版)

B . AB ∥CD
C. EF∥ BC
D. AD ∥ EF
2.如图⑧,判定 AB ∥ CE 的理由是(

A .∠ B= ∠ ACE
B .∠ A= ∠ ECD C.∠ B= ∠ ACB
D .∠ A= ∠ ACE
3.如图⑨,下列推理错误的是(

A .∵∠ 1=∠3,∴ a ∥ b B .∵∠ 1= ∠2,∴ a ∥ b

( 3)∵∠ 1= ∠ D(已知)
∴ __________ (

( 4)∵ _______ =∠ F(已知)
∴ AC ∥ DF (

3.填空。如图,∵ AC ⊥ , BD ⊥AB (已知)
∴∠ CAB =90°,∠ ______=90°(

∴∠ CAB =∠ ______( ∵∠ CAE =∠ DBF (已知) ∴∠ BAE =∠ ______ ∴ _____∥ _____(
4.如图⑥ ∵ AB ⊥ BD, CD⊥ BD (已知)
∴ AB ∥ CD (
)
又∵ ∠ 1+∠ 2 = 180 (已知)
∴ AB ∥ EF (
)
∴ CD ∥ EF (
)
________________________________ 。
三.选择题:
1.如图⑦,∠ D= ∠ EFC,那么(

A . AD ∥BC
3
8.如图,已知:∠ AOE +∠ BEF = 180°,∠ AOE +∠ CDE= 180°, 求证: CD ∥ BE 。
9.如图,已知:∠ A =∠ 1,∠ C=∠ 2。求证:求证: AB ∥CD。
4
) )
1
4.已知,如图∠ 1+∠ 2= 180°,填空。

(完整版)平行线习题(含答案)

(完整版)平行线习题(含答案)

2019年4月16日初中数学作业学校: ______________ 姓名: _____________ 班级:_______________ 考号:______________一、单选题1. 如图,经过直线a外一点O的4条直线中,与直线a相交的直线至少有()A. 4条B. 3条C. 2条D. 1条【答案】B【解析】【分析】根据经过直线外一点有且只有一条直线和已知直线平行得出即可.【详解】解:根据经过直线外一点有且只有一条直线和已知直线平行,得出如果有和直线a平行的,只能是一条,即与直线a相交的直线至少有3条,故选:B.【点睛】本题考查了平行线和相交线的应用,注意:经过直线外一点有且只有一条直线和已知直线平行.2. 下列说法中,正确的个数有()①在同一平面内不相交的两条线段必平行;②在同一平面内不相交的两条直线必平行;③在同一平面内不平行的两条线段必相交;④在同一平面内不平行的两条直线必相交.A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【分析】根据平面内直线和线段的位置关系判断.详解】解:(1)线段不相交,延长后不一定不相交,错误;(2)同一平面内,直线只有平行或相交两种位置关系,正确;(3)线段是有长度的,不平行也可以不相交,错误;(4)同(2),正确;所以(2)(4)正确.故选:B.【点睛】本题主要考查在同一平面内两直线的位置关系,需要注意(1)和(3)说的是线段.3.下列表示平行线的方法正确的是()A. ab// cdB. A // BC. a// BD. a// b【答案】D【解析】【分析】根据平行线的表达方法来判断即可得出结论.【详解】解:直线可以用两个大写字母表示,也可以用一个小写字母表示,故正确的表示方法是D.故答案为:D【点睛】本题主要考查了学生对平行线的表达方法的掌握情况,掌握平行线的表达方法是解题的关键.4 .在同一平面内,下列说法正确的是()A .没有公共点的两条线段平行B .没有公共点的两条射线平行C.不垂直的两条直线一定互相平行D .不相交的两条直线一定互相平行【答案】D【解析】【分析】根据平行线的定义,即可求得此题的答案,注意举反例的方法.详解】A. 在同一平面内,没有公共点的两条线段不一定平行,故本选项错误;B. 在同一平面内,没有公共点的两条射线不一定平行,故本选项错误;C. 在同一平面内,不垂直的两条直线不一定互相平行,故本选项错误;D. 在同一个平面内,不相交的两条直线一定互相平行,故本选项正确;【点睛】此题考查了平行线的判定.解题的关键是熟记平行线的定义.5.下列说法不正确的是( )A .过任意一点可作已知直线的一条平行线B. 同一平面内两条不相交的直线是平行线C. 在同一平面内,过一点只能画一条直线与已知直线垂直D. 在同一平面内,经过直线外一点有且只有一条直线与已知直线平行【答案】A【解析】【分析】根据平行线的定义及平行公理进行判断.【详解】A 中,若点在直线上,则不可以作出已知直线的平行线,而是与已知直线重合,错误B. C. D 是公理,正确.故选A.【点睛】本题考查了平行线的定义和公理,熟练掌握定义和公理是解题的关键.6.在同一平面内,无公共顶点的两个直角,如果它们有一条边共线,那么另一边互相( )A •平行B.垂直C.共线 D.平行或共线【答案】A【解析】【分析】结合图形,由平行线的判断定理进行分析.【详解】如图所示:n n无公共顶点的两个直角,如果它们有一条边共线,内错角相等,或同旁内角互补,那么另一边互相平行•故选A.【点睛】本题考查了平行线的判定,熟练掌握判定定理是解题的关键7 .下列结论正确的是()A .过一点有且只有一条直线与已知直线垂直B. 过一点有且只有一条直线与已知直线平行C. 在同一平面内,不相交的两条射线是平行线D. 如果两条直线都与第三条直线平行,那么这两条直线互相平行【答案】D【解析】【分析】本题可结合平行线的定义,垂线的性质和平行公理进行判定即可.【详解】(1)过一点有且只有一条直线与已知直线垂直,应强调在同一平面内,故本项错误;(2)过一点有且只有一条直线与已知直线平行,应强调在经过直线外一点,故是错误的.(3)在同一平面内,不相交的两条直线是平行线,射线不一定,故本项错误;(4)如果两条直线都与第三条直线平行,那么这两条直线也互相平行是正确的.故选D.【点睛】本题主要考查了平行线的定义,垂线的性质和平行公理.熟练掌握公理和概念是解决本题的关键.8 .在同一平面内,直线AB与CD相交,AB与EF平行,则CD与EF()A •平行B.相交C. 重合D.三种情况都有可能【答案】B【解析】【分析】先根据题意画出图形,即可得出答案.【详解】如图,•••在同一平面内,直线AB与CD相交于点O, AB // EF,••• CD与EF的位置关系是相交,故选B.【点睛】本题考查了平行线的性质的应用,能根据题意画出图形是解此题的关键,注意:数形结合思想的应用.9 .下列语句不正确的是()A .在同一平面内,过直线外一点有且只有一条直线与已知直线平行B. 两直线被第三条直线所截,如果同位角相等,那么两直线平行C. 两点确定一条直线D. 内错角相等【答案】D【解析】【分析】根据平行线的公理、推论及平行线的判定,可得答案.【详解】A、在同一平面内,过直线外一点有且只有一条直线与已知直线平行,故A正确;B、两直线被第三直线所截,如果同位角相等,那么两直线平行,故B正确;C、两点确定一条直线,故C正确;D、两直线平行,内错角相等,故D错误;故选D.【点睛】本题考查了平行公理及推论,熟记公理、推论是解题关键.10 .下列说法正确的有()①两点之间的所有连线中,线段最短;②相等的角是对顶角;③过直线外一点有且仅有一条直线与已知直线平行;④两点之间的距离是两点间的线段;⑤如果一个角的两边与另一个角的两边垂直,那么这两个角相等.A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【分析】依据线段的性质、平行公理、两点间的距离以及垂线的定义,即可得到正确结论.【详解】解:①两点之间的所有连线中,线段最短,正确;②相等的角不一定是对顶角,错误;③过直线外一点有且仅有一条直线与已知直线平行,正确;④两点之间的距离是两点间的线段的长度,错误;⑤如果一个角的两边与另一个角的两边垂直,那么这两个角相等或互补,错误. 故选:B.【点睛】本题考查线段的性质、平行公理、两点间的距离以及垂线的定义,解题时注意:平面上任意两点间都有一定距离,它指的是连接这两点的线段的长度.11 .下列说法中正确的是()A .两条相交的直线叫做平行线B. 在直线外一点,只能画出一条直线与已知直线平行C. 如果a // b, b // c,贝U a不与b平行D. 两条不平行的射线,在同一平面内一定相交【答案】B【解析】【分析】根据平行线的性质进行解题即可,见详解.详解】解:两条不相交的直线叫做平行线,故A 错误,在直线外一点,只能画出一条直线与已知直线平行如果a// b , b // c ,则a // b,平行线的传递性,故C 错误, 射线一端固定,另一端无限延伸,故D 错误, 综上选B. 【点睛】,属于简单题,熟悉平行线的性质是解题关键【解析】【分析】 根据平行线的传递性即可解题 【详解】解:••• AB // CD ,CD // EF ,••• AB // EF ,(平行线的传递性)故选A. 【点睛】本题考查了平行线的传递性 ,属于简单题,熟悉平行线的性质是解题关键13 •一条直线与另两条平行直线的关系是 ( )A .一定与两条平行线平行B .可能与两条平行线的一条平行,一条相交C . 一定与两条平行线相交D .与两条平行线都平行或都相交【答案】D 【解析】 【分析】根据在同一平面内,两条直线的位置关系有两种:平行和相交,可知如果一条直线与另 两条平行线中的一条相交,则它与另一条平行线也相交;如果一条直线与另两条平行线中的一条平行,则它与另一条平行线也平行即可求出本题答案【详解】,正确,// EF ,那么AB 和EF 的位置关系是本题考查了平行线的性质C.垂直D.不能确定【答案】A•••在同一平面内,两条直线的位置关系有两种:平行和相交,•••如果一条直线与另两条平行线中的一条相交,则它与另一条平行线也相交,否则与平行公理相矛盾;如果一条直线与另两条平行线中的一条平行,根据平行于同一直线的两条直线平行,则它与另一条平行线也平行.故答案为:D.【点睛】本题考查了平行线的相关知识,熟练掌握平行线的有关性质是本题解题的关键. 14.下列说法中,正确的个数为( )①过一点有无数条直线与已知直线平行;②如果a// b, a // c,那么b // c;③如果两线段不相交,那么它们就平行;④如果两直线不相交,那么它们就平行.A.1 个B.2 个C.3 个D.4 个【答案】A【解析】【分析】根据平行线的定义、公理及推论判断即可求出本题答案.【详解】(1) 过直线外一点有且只有一条直线与已知直线平行,故错误;(2) 根据平行公理的推论,正确;(3) 线段的长度是有限的,不相交也不一定平行,故错误;(4) 应该是“在同一平面内”,故错误.正确的只有一个,故选A.故答案为:A.【点睛】本题考查了平行公理及推论,平行线,熟练掌握该知识点是本题解题的关键.15 •已知在同一平面内有一直线AB和一点P,过点P画AB的平行线,可画()A • 1条B. 0条 C. 1条或0条D.无数条【答案】C【解析】【分析】根据平行公理:经过直线外一点,有且只有一条直线与这条直线平行可得答案.【详解】如果点P在直线上,过点P画直线与AB的平行线可画0条,如果点P在直线外,过点P画直线与AB的平行线可画1条•故答案为:C.【点睛】本题考查了平行公理及推论,熟练掌握该知识点是本题解题的关键16 .下列说法中,正确的是()A •平面内,没有公共点的两条线段平行B. 平面内,没有公共点的两条射线平行C. 没有公共点的两条直线互相平行D. 互相平行的两条直线没有公共点【答案】D【解析】【分析】回忆线段之间、射线之间与直线之间的位置关系;对于A,可在纸上画出两条没有公共点的线段,观察两条线段的位置关系;对于B,可在纸上画出两条没有公共点的射线,观察两条线段的位置关系;对于C,思考若两条直线不在一个平面内,是否能够得到两条直线不平行也不相交,对于D,根据平行线的定义可作出判断•【详解】对于A,如图所示,A错误;对于C,如果两条直线不在同一个平面内,不相交也可能不平行,则C错误;对于D,根据平行线的定义可知D正确•故答案为:D.【点睛】本题考查了两条直线的位置关系,直线、射线、线段的定义,熟练掌握直线的位置关系及相关定义是本题解题的关键•17 .下面说法正确的是( )A .过两点有且只有一条直线B.平角是一条直线C.两条直线不相交就一定平行D.过一点有且只有一条直线与已知直线平行【答案】A【解析】【分析】根据直线公理:经过两点有且只有一条直线;角的概念;平行线的定义和平行公理及推论进行判断.【详解】A、由直线公理可知,过两点有且只有一条直线,故本选项正确;B、平角是有公共端点是两条射线组成的图形,故本选项错误;C、同一平面内两条直线不相交就一定平行,故本选项错误;D、经过直线外一点有且只有一条直线与已知直线平行,故本选项错误.故选:A .【点睛】本题属于综合题,考查了直线的性质:两点确定一条直线;角的定义:有公共端点是两条射线组成的图形叫做角,其中这个公共端点是角的顶点,这两条射线是角的两条边;同一平面内,两条直线的位置关系:平行或相交;平行公理:经过直线外一点,有且只有一条直线与这条直线平行.18 .下列说法错误的是( )A .对顶角相等B.两点之间所有连线中,线段最短C.等角的补角相等D.过任意一点P,都能画一条直线与已知直线平行【答案】D【解析】【分析】A .根据对顶角的性质判定即可;B. 根据线段的性质判定即可;C. 根据补角的性质判定即可;D .根据平行公理判定即可 .【详解】A .对顶角相等,故选项正确;B. 两点之间连线中,线段最短,故选项正确;C•等角的补角相等,故选项正确;D .过直线外一点P,能画一条直线与已知直线平行,故选项错误•故选D.【点睛】本题分别考查了对顶角、邻补角的性质、线段的性质、余角、补角的关系及平行公理,都是基础知识,熟练掌握这些知识即可解决问题 .二、填空题19 . L i, 12, 13为同一平面内的三条直线,如果11与12不平行,12与13不平行,则11与13的位置关系是_______________ .【答案】相交或平行【解析】【分析】根据关键语句“若?有?不平行,??与?不平行,”画出图形,图形有两种情况,根据图形可得答案.【详解】根据题意可得图形:根据图形可知:若?不平行,??与?3不平行,则?3可能相交或平行,故答案为:相交或平行•【点睛】本题主要考查了直线的位置关系,在同一平面内,两条直线的位置关系:平行或相交20 •小明列举生活中几个例子,你认为是平行线的是________________ (填序号).①马路上斑马线;②火车铁轨;③直跑道线;④长方形门框上下边.【答案】①②③④【解析】【分析】根据平行线的判定进行判断即可•【详解】解:是平行线的是①②③④.故答案为:①②③④【点睛】本题考查了平行线的含义,应结合生活实际进行解答21.如图,用符号表示下列两棱的位置关系.AB ___ A ' B AA ' __________ AB ; AD _____ B ' C【答案】// 丄 //【解析】【分析】根据题意,可由立体图形中的平行线的判定条件,以及垂直的判定条件进行分析,然后填空即可.【详解】解:由图可知,AB// A B', AA丄AB AD// B' C'【点睛】本题主要考查的是直线的位置关系•22 .如图,在正方体中,与线段AB平行的线段有________ 条.【答案】3【解析】【分析】与线段AB平行的线段的种类为:①直接与AB平行,②与平行于AB的线段平行. 【详解】解:与AB平行的线段是:DC EF;与CD平行的线段是:HG所以与AB线段平行的线段有:EF、HG DC.故答案是:EF、HG DC【点睛】本题考查了平行线•平行线的定义:在同一平面内,不相交的两条直线叫平行线.23 .如图所示,用直尺和三角尺作直线AB , CD,从图中可知,直线AB与直线CD的位置关系为 ________ .【答案】平行【解析】【分析】根据同位角相等,两直线平行判断.【详解】如图,C 亠丘D根据题意,/ 1与/ 2是三角尺的同一个角,所以/仁/2,所以,AB // CD (同位角相等,两直线平行)故答案为:平行.【点睛】本题考查了平行线的判定熟练掌握同位角相等,两直线平行,并准确识图是解题的关键.24 .在如图的长方体中,与棱AB平行的棱有 ________________________________________;与棱AA'平行的棱有DD , BB , CC解析】【分析】根据平行的定义,结合图形直接找出和棱AB平行的棱,与棱AA平行的棱即可.【详解】由图可知,和棱AB平行的棱有CD , AB', CD;与棱AA 平行的棱有DD ,BB ,CC .故答案为:CD , A B , C D ;DD , BB , CC .【点睛】本题考查了认识立体图形的知识点,熟练掌握平行的定义是本题解题的关键.25.在同一平面内,直线AB 与直线CD 满足下列条件,则其对应的位置关系是(1)____________________________________________________________________ 若直线AB 与直线CD 没有公共点,则直线AB 与直线CD 的位置关系为 __________________________ ;(2)直线AB 与直线CD 有且只有一个公共点,则直线AB 与直线CD 的位置关系为_______________ 【答案】平行;相交.【解析】【分析】根据“在同一平面内,两条直线的位置关系是:平行或相交.平行没有公共点,相交只有一个公共点”即可推出本题答案.【详解】在同一平面内,直线AB 与CD 满足下列条件,则其对应的位置关系是:(1)若AB 与CD没有公共点,则AB与CD的位置关系是平行;(2 )若AB与CD有且只有一个公共点,则AB 与CD 的位置关系为相交.故答案为:(1)平行;(2)相交.【点睛】本题考查了直线的位置关系,熟练掌握判定方法是本题解题的关键.三、解答题26 .把图中的互相平行的线段用符号“//”写出来,互相垂直的线段用符号“丄”写出来:【解析】根据平行线和垂直的定义即可解答.【详解】 解:如图所示,在长方体中 :互相平行的线段:AB// CD EF// GH MN PQ 互相垂直的线段:AB 丄 EF, AB 丄 GH CDL EF, CDL GH【点睛】本题考查了平行线和垂直的定义 ,理解定义是解题的关键•27 .如图,过点 0 '分别画 AB , CD 的平行线.【答案】详见解析•【解析】【分析】把三角板的一条直角边与已知直线重合, 用直尺靠紧三角板的另一条直角边, 沿直尺移 动三角板,使三角板的原来和已知直线重合的直角边和 O 点重合,过O 点沿三角板的直角边画直线即可.【详解】解:如图,本题考查了学生利用直尺和三角板作平行线的能力28 •如图,按要求完成作图⑴过点P 作AB 的平行线EF ;(2) 过点P 作CD 的平行线 MN ;(3) 过点P 作AB 的垂线段,垂足为 G.【答案】作图见解析【点睛】【分析】利用题中几何语言画出对应的几何图形.【详解】如图,本题考查了平行线的作法和作垂线的步骤.29 •我们知道相交的两条直线的交点个数是 1 ;两条平行线的交点个数是0;平面内三条平行线的交点个数是0,经过同一点的三条直线的交点个数是 1 ;依此类推(1) 请你画图说明平面内五条直线最多有几个交点.(2) 平面内五条直线可以有4个交点吗?如果可以,请你画出符合条件的所有图形;如果不可以,请说明理由.(3) 在平面内画出10条直线,使交点个数恰好是31.【答案】(1)平面内五条直线的交点最多有10个,⑵五条直线可以有4个交点,⑶答案不唯一•【解析】【分析】(1)直接让五条直线中的任意两条互相相交即可;(2)不妨先让其中的四条直线相交得到3个交点,然后再使最后一条直线,与其中任意一条相交且与之前的交点不重合即可,接下来自己试着想想还有哪些画法;(3)结合已知,禾U用平行线的性质画出图形即可【详解】解:(1)平面内五条直线的交点最多有 10个,如图①.(2)五条直线可以有4个交点,如图②(a // b// c // d),图③(AD // BC , AB // DC),图④(a // b).團② 関③(3) 答案不唯一,如图, a / b / c / d / e , f // g // h , l // m.【点睛】此题考查平面内不重合直线的位置关系, 解答时要分各种情况解答, 的所有情形,不要遗漏,否则讨论的结果就不全面.30 •如图,在方格纸上:(1)已有的四条线段中,哪些是互相平行的?⑵过点M 画AB 的平行线.⑶过点N 画GH 的平行线.37T~/ 、A7 D 、M / 7~■【答案】(1)AB // CD ; (2)画图见解析;⑶画图见解析【解析】【分析】(1) 根据图形可观察出互相平行的线段.(2) 过点M 画AB 的平行线.(3)过点N 画GH 的平行线.要考虑到可能出现【详解】(1)由图形可得:AB // CD .⑵(3)所画图形如下:【点睛】 本题考查了平行线的判定方法及过一点作平行线的知识, 的判定方法及作图的基本步骤.属于基础题, 主要掌握平行线。

(完整版)七年级历史平行线的性质练习题

(完整版)七年级历史平行线的性质练习题

(完整版)七年级历史平行线的性质练习题
1. 如果两条直线是平行线,那么它们的夹角是多少?
2. 如果两条直线是平行线,那么它们的斜率有什么关系?
3. 给定一条直线L和一点P,是否存在且只存在一条经过点P 且与直线L平行的直线?
4. 如果两条直线是平行线,它们的方程是什么样的?
5. 如何证明两条直线是平行线?
6. 如果两条直线是垂直的,那么它们的斜率有什么关系?
7. 给定一条直线L和一点P,是否存在且只存在一条经过点P 且与直线L垂直的直线?
8. 如果两条直线互相垂直,它们的方程是什么样的?
9. 如何证明两条直线是垂直的?
10. 如何利用平行线性质解决实际问题?
11. 如何利用垂直线性质解决实际问题?
12. 在平行线和垂直线性质的应用中,如何解决找出未知角度、长度或坐标的问题?
13. 用平行线和垂直线性质解释为什么一些建筑物(如大坝、
高楼等)需要精确测量和设计?
14. 举例说明平行线和垂直线性质在日常生活中的应用。

15. 对于平行线和垂直线性质的理解,你觉得还有什么需要注
意的地方?
注意:在回答问题时,请提供简明的解释和相关实例,以更好
地理解七年级历史平行线的性质。

(完整版)平行线常考经典较难题、压轴题例题和巩固练习

(完整版)平行线常考经典较难题、压轴题例题和巩固练习

平行线 例1 翻折 1、如图,把一张长方形纸带沿着直线GF 折叠,∠CGF=30°,则∠1的度数是的度数是.2、如图,生活中将一个宽度相等的纸条按图所示折叠一下,如果∠2=100°,那么∠1的度数为 .例2 旋转 1、将一副直角三角尺ABC 和CDE 按如图方式放置,其中直角顶点C 重合,∠D=45°,∠A=30°.将三角形CDE 绕点C 旋转,若DE ∥BC ,则直线AB 与直线CE 的较大的夹角∠1的大小为的大小为 度.度.例3 平行线的性质1、已知,直线AB ∥DC ,点P 为平面上一点,连接AP 与CP .(1)如图1,点P 在直线AB 、CD 之间,当∠BAP=60°,∠DCP=20°时,求∠APC .(2)如图2,点P 在直线AB 、CD 之间,∠BAP 与∠DCP 的角平分线相交于点K ,写出∠AKC 与∠APC 之间的数量关系,并说明理由.之间的数量关系,并说明理由.(3)如图3,点P 落在CD 外,∠BAP 与∠DCP 的角平分线相交于点K ,∠AKC 与∠APC 有何数量关系?并说明理由.量关系?并说明理由. 1AED B C2、如图,两直线AB 、CD 平行,则∠1+∠2+∠3+∠4+∠5= .3、已知直线AB ∥CD . (1)如图1,直接写出∠BME 、∠E 、∠END 的数量关系为的数量关系为 ; (2)如图2,∠BME 与∠CNE 的角平分线所在的直线相交于点P ,试探究∠P 与∠E 之间的数量关系,并证明你的结论;系,并证明你的结论;(3)如图3,∠ABM=∠MBE ,∠CDN=∠NDE ,直线MB 、ND 交于点F ,则= .例4 平移1、如图1所示,已知BC ∥OA ,∠B=∠A=120°(1)说明OB ∥AC 成立的理由.成立的理由. (2)如图2所示,若点E ,F 在BC 上,且∠FOC=∠AOC ,OE 平分∠BOF ,求∠EOC 的度数.的度数. (3)在(2)的条件下,若左右平移AC ,如图3所示,那么∠OCB :∠OFB 的比值是否随之发生变化?若变化,请说明理由;若不变,请求出这个比值.变化?若变化,请说明理由;若不变,请求出这个比值.(4)在(3)的条件下,当∠OEB=∠OCA 时,求∠OCA 的度数.的度数.2、如图,已知AM ∥BN ,∠A=60°.点P 是射线AM 上一动点(与点A 不重合),BC 、BD 分别平分∠ABP 和∠PBN ,分别交射线AM 于点C ,D .(1)求∠CBD 的度数;的度数; (2)当点P 运动时,∠APB 与∠ADB 之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律.之间的关系,并说明理由;若变化,请写出变化规律.(3)当点P 运动到使∠ACB=∠ABD 时,∠ABC 的度数是的度数是.例5 作图—应用1、(1)如图1,一个牧童从P 点出发,赶着羊群去河边喝水,则应当怎样选择饮水路线,才能使羊群走的路程最短?请在图中画出最短路线.羊群走的路程最短?请在图中画出最短路线.(2)如图2,在一条河的两岸有A ,B 两个村庄,现在要在河上建一座小桥,桥的方向与河岸方向垂直,桥在图中用一条线段CD 表示.试问:桥CD 建在何处,才能使A 到B 的路程最短呢?请在图中画出桥CD 的位置.的位置.2、如图,平面上有直线a 及直线a 外的三点A 、B 、P .(1)过点P 画一条直线m ,使得m ∥a ;(2)过B 作BH ⊥直线m ,并延长BH 至B ′,使得BB ′为直线a 、m 之间的距离;之间的距离;(3)若直线a 、m 表示一条河的两岸,现要在这条河上建一座桥(桥与河岸垂直),使得从村庄A 经桥过河到村庄B 的路程最短,试问桥应建在何处?画出示意图.的路程最短,试问桥应建在何处?画出示意图.【巩固练习】【巩固练习】1、如图,AB ∥DE ,∠ABC 的角平分线BP 和∠CDE 的角平分线DK 的反向延长线交于点P 且∠P ﹣2∠C=57°,则∠C 等于(等于( )A .24°B .34°C .26°D .22° 图2图1P BA题图第2题图题图第1题图2、如图,AB∥CD,∠ABK的角平分线BE的反向延长线和∠DCK的角平分线CF的反向延长线交于点H,∠K﹣∠H=27°,则∠K=( )A.76° B.78° C.80° D.82°3、在同一平面内,有8条互不重合的直线,l1,l2,l3…l8,若l1⊥l2,l2∥l3,l3⊥l4,l4∥l5…以此类的位置关系是( )推,则l1和l8的位置关系是(A.平行.平行或垂直 D.无法确定.无法确定 .平行 B.垂直.垂直 C.平行或垂直4、如图,AB⊥BC,AE平分∠BAD交BC于点E,AE⊥DE,∠1+∠2=90°,M,N分别是BA,CD延长线上的点,∠EAM和∠EDN的平分线交于点F.下列结论:①AB∥CD;②∠AEB+∠ADC=180°;③DE平分∠ADC;④∠F为定值,其中结论正确的有(为定值,其中结论正确的有( )A.1个 B.2个 C.3个 D.4个第5题图题图第4题图题图5、如图所示,AB∥CD,则∠A+∠E+∠F+∠C等于(等于( )A.180° B.360° C.540° D.720°6、如图所示,AB∥EF,∠B=35°,∠E=25°,则∠C+∠D的值为的值为 .第9题图题图题图第8题图第7题图题图7、如图所示,AB∥CD,∠E=35°,∠C=20°,则∠EAB的度数为的度数为 .8、如图,AB∥EF∥CD,EG平分∠BEF,∠B+∠BED+∠D=192°,∠B﹣∠D=24°,则∠GEF= .9、已知D是△ABC的边BC所在直线上的一点,与B,C不重合,过D分别作DF∥AC交AB所的度数是.在直接于F,DE∥AB交AC所在直线于E.若∠A=80°,则∠FDE的度数是10、如图1,MN∥PQ,直线AD与MN、PQ分别交于点A、D,点B在直线PQ上,过点B作BG ⊥AD,垂足为点G.(1)求证:∠MAG+∠PBG=90°;(2)若点C在线段AD上(不与A、D、G重合),连接BC,∠MAG和∠PBC的平分线交于点H,请在图2中补全图形,猜想并证明∠CBG与∠AHB的数量关系;的数量关系;(3)若直线AD的位置如图3所示,(2)中的结论是否成立?若成立,请证明;若不成立,请直接写出∠CBG与∠AHB的数量关系.的数量关系.11、已知AM∥CN,点B为平面内一点,AB⊥BC于B.;(1)如图1,直接写出∠A和∠C之间的数量关系之间的数量关系(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.的度数.12、如图1,AB∥CD,E是AB、CD之间的一点.之间的一点.之间的数量关系,并证明你的结论;(1)判定∠BAE,∠CDE与∠AED之间的数量关系,并证明你的结论;(2)如图2,若∠BAE、∠CDE的两条平分线交于点F.写出∠AFD与∠AED之间的数量关系;之间的数量关系;(3)将图2中的射线DC 沿DE 翻折交AF 于点G 得图3,若∠AGD 的余角等于2∠E 的补角,求∠BAE 的大小.的大小.13、已知:如图,BC ∥OA ,∠B=∠A=100°,试回答下列问题:,试回答下列问题:(1)如图①所示,求证:OB ∥AC .(注意证明过程要写依据).(注意证明过程要写依据)(2)如图②,若点E 、F 在BC 上,且满足∠FOC=∠AOC ,并且OE 平分∠BOF .(ⅰ)求∠EOC 的度数;的度数; (ⅱ)求∠OCB :∠OFB 的比值;的比值;(ⅲ)如图③,若∠OEB=∠OCA .此时∠OCA 度数等于度数等于 .(在横线上填上答案即可).(在横线上填上答案即可)14、已知直线AB ∥CD .(1)如图1,直接写出∠ABE ,∠CDE 和∠BED 之间的数量关系是之间的数量关系是 . (2)如图2,BF ,DF 分别平分∠ABE ,∠CDE ,那么∠BFD 和∠BED 有怎样的数量关系?请说明理由.理由.(3)如图3,点E 在直线BD 的右侧,BF ,DF 仍平分∠ABE ,∠CDE ,请直接写出∠BFD 和∠BED 的数量关系的数量关系.。

平行线判定大题30道

平行线判定大题30道

平行线判定大题30道
【实用版】
目录
1.平行线的基本概念和性质
2.平行线判定的方法
3.30 道平行线判定大题的解析
正文
一、平行线的基本概念和性质
平行线是指在同一个平面内,永不相交的两条直线。

平行线具有以下性质:
1.平行线上的任意一对内角互补。

2.平行线上的任意一对同位角相等。

3.平行线上的任意一对内错角相等。

4.平行线上的任意一对同旁内角互补。

二、平行线判定的方法
在几何中,判定两条直线是否平行有多种方法,主要包括:
1.同位角相等,两直线平行。

2.内错角相等,两直线平行。

3.同旁内角互补,两直线平行。

4.直线与平面平行的判定定理。

5.两条直线的斜率相等,且截距不等,则两条直线平行。

三、30 道平行线判定大题的解析
(此处将详细解答 30 道平行线判定大题,因篇幅限制,仅提供部分题目解析)
例题 1:已知直线 l1:2x+3y+1=0,直线 l2:4x-6y+3=0,判断 l1 与l2 是否平行。

解:首先求出直线 l1 和 l2 的斜率,分别为 -3/2 和 1。

由于斜率不相等,可知 l1 与 l2 不平行。

例题 2:已知直线 l1:x+2y+3=0,直线 l2:2x+4y+6=0,判断 l1 与l2 是否平行。

解:将直线 l1 和 l2 的方程化简为标准形式,得到它们的斜率都为-1/2。

由于斜率相等,且截距不等,可知 l1 与 l2 平行。

在解决这 30 道题目时,需要熟练掌握平行线的基本概念、性质以及判定方法,灵活运用各种方法进行分析和判断。

平行线性质练习题30题

平行线性质练习题30题

平行线性质练习题1. 已知直线AB和CD平行,若BE平分∠ABC,求证:BE也平分∠ECD。

2. 在平行线l1和l2之间,有一条横穿它们的直线l3,形成了八个角。

求证:同旁内角互补。

3. 若直线a ∥ b,直线b ∥ c,求证:直线a ∥ c。

4. 已知直线AB ∥ CD,点E在AB上,点F在CD上,且∠BEF = 120°,求∠EFD的度数。

5. 在平行线l1和l2上分别取点A、B、C、D,若AB = CD,BC = DA,求证:四边形ABCD是平行四边形。

6. 已知直线l1 ∥ l2,点P在l1上,点Q在l2上,若PQ垂直于l1,求证:PQ也垂直于l2。

7. 在平行线l1和l2之间,有一条横穿它们的直线l3,形成了八个角。

求证:内错角相等。

8. 若直线a ∥ b,直线c与a、b都相交,且∠1 = ∠2,求证:直线c ∥ b。

9. 已知直线AB ∥ CD,点E在AB上,点F在CD上,且∠AEF = 30°,求∠CFD的度数。

10. 在平行线l1和l2上分别取点A、B、C、D,若AB = CD,AD = BC,求证:四边形ABCD是矩形。

11. 已知直线l1 ∥ l2,点P在l1上,点Q在l2上,若PQ = QR,PR = QR,求证:∠PQR = 90°。

12. 在平行线l1和l2之间,有一条横穿它们的直线l3,形成了八个角。

求证:同位角相等。

13. 若直线a ∥ b,直线c与a、b都相交,且∠1 + ∠2 = 180°,求证:直线c ∥ a。

14. 已知直线AB ∥ CD,点E在AB上,点F在CD上,且∠BEF = 135°,求∠EFD的度数。

15. 在平行线l1和l2上分别取点A、B、C、D,若AB = CD,AC= BD,求证:四边形ABCD是菱形。

16. 已知直线l1 ∥ l2,点P在l1上,点Q在l2上,若PQ垂直于l1,且PQ = QR,求证:PR垂直于l2。

平行线的性质专项练习60题(有答案)ok

平行线的性质专项练习60题(有答案)ok

平行线的性质专项练习60题(有答案)题(有答案)1.如图,AB∥CD,证明:∠A=∠C+∠P.2.如图,已知AB∥ED,∠1=35°,∠2=80°,求∠ACD的度数.的度数.3.已知:如图所示,直线AD∥BC,AD平分∠CAE,求证:∠B=∠C.4.已知∠E=∠F,AD∥EF,问:AD是∠BAC平分线吗?为什么?平分线吗?为什么?5.如图所示,AB∥CD,∠3:∠2=3:2,求∠1的度数.的度数.6.如图,直线AB∥CD,直线AB、CD被直线EF所截,EG平分∠BEF,FG平分∠DFE,求证:EG⊥FG.7.如图所示,AB∥DF,DE∥BC,∠1=65°,求∠2,∠3的度数,并说明理由.的度数,并说明理由.8.已知AB∥CD,FE⊥AB交AB于G点,∠GEH=138°,求∠EHD的度数.的度数.9.如图,AD∥BC,∠B=25°,∠C=30°,求∠EAC的度数.的度数.10.如图,AB∥CD,AC⊥BC,∠BAC=65°,求∠BCD度数.度数.11.如图,AB∥CD,∠BAE=∠DCE=45°,说明AE⊥CE.13.如图,DE∥BC,∠D:∠DBC=2:1,∠1=∠2,求∠DEB的度数.的度数.14.已知:如图AB∥CD,EF⊥AB于E,FH交CD于H,∠CHG=130度.求∠EFH度数.度数.15.已知:如图,AC∥BD,∠A=∠D,求证:∠E=∠F.16.已知,如图,AB∥CD∥GH,EG平分∠BEF,FG平分∠EFD.求证:∠EGF=90°.17.如图,已知AB⊥AC,垂足为A,AD∥BC,且∠1=30°,试求∠2与∠B的度数.的度数.18.如图所示,AB∥CD,若∠B=45°,∠D=20°,求∠1的度数.的度数.19.如图,△ABC中,角平分线BO与CO的相交点O,OE∥AB,OF∥AC,△OEF的周长=10,求BC的长.的长.20.如图,若AB∥CD,∠C=60°,求∠A+∠E的度数.的度数.21.如图所示,已知AB∥CD,BC∥DE,若∠B=55°,求∠D的度数.的度数.22.如图所示,已知∠ACB=60°,∠ABC=50°,BO,CO分别平分∠ABC,∠ACB,EF经过点O且平行于BC,求∠BOC的度数.的度数.23.已知:如图所示,AB∥CD,∠B=120°,CA平分∠BCD.求证:∠1=30°.24.如图,AB∥CD,∠A=40°,∠C=65°,求∠E的度数.的度数.25.如图所示.CD是∠ACB的平分线,∠ACB=40°,∠B=70°,DE∥BC.求∠EDC和∠BDC的度数.的度数.26.如图,点A在直线MN上,且MN∥BC,求证:∠BAC+∠B+∠C=180°.27.已知:如图,OP平分∠AOB,MN∥OB.求证:∠1=∠3.28.如图所示,AB∥CD,∠1=55°,∠D=∠C,求出∠D,∠C,∠B的度数.的度数.29.已知,如图,AD∥BC,∠1=∠2,∠A=120°,且BD⊥CD,求∠C的度数.的度数.30.如图,已知直线AB ∥CD ,直线m 与AB 、CD 相交于点E 、F ,EG 平分∠FEB ,∠EFG=50°,求∠FEG 的度数.数.31.如图,已知CD ∥AB ,OE 平分∠BOD ,∠D=52°,求∠BOE 的度数.的度数.32.如图所示,直线l 1∥l 2,∠A=90°,∠ABF=25°,求∠ACE 的度数.的度数.33.如图,AB ∥CD ,∠1=45°,∠D=∠C ,求∠D 、∠C 、∠B 的度数.的度数.34.如图,CD ∥AB ,CD ∥EF ,∠A=105°,∠ACE=51°,求∠E 的度数.的度数.35.如图:a ∥b ,∠1=122°,∠3=50°,求∠2和∠4的度数.的度数.36.如图,已知AB ∥CD ,∠1=50°,BD 平分∠ADC ,求∠A 的度数.的度数.37.已知,如图所示,DE∥BC,BE平分∠ABC,且∠ABC=∠ACB,∠AED=72°,求∠CEB的度数.的度数.38.如图,若AB∥EF,∠C=90°,求x+y﹣z度数.度数.39.如图,已知AB∥DE,∠B=70°,CM平分∠DCB,CM⊥CN,垂足为C,求∠NCE的度数.的度数.40.如图,DE∥AB,∠1=∠2,那么∠A=∠3吗?说明理由.吗?说明理由.41.如图,已知DB∥FG∥EC,∠ABD=84°,∠ACE=60°,AP是∠BAC的平分线.求∠P AG的度数.的度数.43.已知:如图,直线l1∥l2,AB⊥l1垂足为O,BC与l2相交于点D,∠1=43°,求∠2的度数.的度数.44.如图,直线AB∥MN,分别交直线EF于点C、D,∠BCD、∠CDN的角平分线交于点G,求∠CGD的度数.45.如图所示.已知AB∥CD,∠B=100°,EF平分∠BEC,EG⊥EF.求∠BEG和∠DEG.46.如图AE∥BD,∠CBD=57°,∠AEF=125°,求∠C的度数,并说明理由.的度数,并说明理由.47.已知:如图,△ABC中,点D在AC的延长线上,CE是∠DCB的角平分线,且CE∥AB.求证:∠A=∠B.48.如图,∠ABD和∠BDC的平分线相交于点E,BE交CD于F,∠1+∠2=90°,试问:直线AB、CD在位置上在数量上有什么关系?有什么关系?∠2与∠3在数量上有什么关系?49.如图,已知直线AB∥CD,直线GH分别与直线AB、CD交于点E、G,直线CF交直线GH于点F,已知∠CFG=30°,的度数.∠HEB=50°,求∠FCG的度数.50.如图,AB∥CD,BC∥ED,求:∠B+∠D的度数.的度数.51.如图,已知AB∥CD,∠B=∠DCE,求证:CD平分∠BCE.52.如图,已知AB∥CD,∠B=40°,CN是∠BCE的平分线,CM⊥CN,求∠BCM的度数.的度数.53.如图,在△ABC中,D是∠BAC的平分线上一点,BD⊥AD于D,DE∥AC交AB于E,请说明,请说明AE=BE.54.如图所示,AB∥CD,BF平分∠ABE,DF平分∠CDE,∠BFD=55°,求∠BED的度数.的度数.55.如图,CD⊥AB,DE∥AC,EF⊥AB,EF平分∠BED,求证:CD平分∠ACB.56.如图,△ABC中,EB平分∠ABC,EC平分△ABC的外角∠ACG,过点E作DF∥BC交AB于D,交AC于F,求证:DB﹣CF=DF.57.已知:如图所示,AB∥CD,EF平分∠GFD,GF交AB于M,∠GMA=52°,求∠BEF的度数.的度数.59.如图,已知DE ∥AB ,DF ∥AC ,∠EDF=85°,∠BDF=63°. (1)∠A 的度数;的度数;(2)∠A+∠B+∠C 的度数.的度数.60.如图,已知AB ∥CD ,∠1=∠2,∠EFD=56°,求∠EGD 的度数.的度数.参考答案:1.∵AB ∥CD , ∴∠A=∠PED ,(两直线平行,同位角相等)(两直线平行,同位角相等) 又∠PED 为△PCE 的外角,的外角, ∴∠P+∠C=∠PED , ∴∠P+∠C=∠A .2.解法一:过C 点作CF ∥AB ,则∠1=∠ACF=35°(两直线平行,内错角相等), ∵AB ∥ED ,CF ∥AB (已知),∴CF ∥ED (平行于同一直线的两直线平行)(平行于同一直线的两直线平行)∴∠FCD=180°﹣∠2=180°﹣80°=100°(两直线平行,同旁内角内角互补)旁内角内角互补)∴∠ACD=∠ACF+∠FCD=35°+100°=135°; 解法二:延长DC 交AB 于F ∵AB ∥ED (已知),∴∠BFC=∠2=80°(两直线平行,内错角相等), ∵∠ACF=∠BFC ﹣∠1=80°﹣35°=45°(三角形一个外角等于它不相邻的两个内角的和)(三角形一个外角等于它不相邻的两个内角的和) ∴∠ACD=180°﹣∠ACF=180°﹣45°=135°(1平角=180°).解法三:延长AC 、ED 交于F ∵AB ∥ED ,∴∠DFC=∠1=35°∵∠CDF=180°﹣∠2=180°﹣80°=100° ∴∠ACD=∠CDF+∠DFC=100°+35°=135°.3.∵AD ∥BC ,∴∠C=∠CAD ,∠B=∠DAE , 又∵AD 平分∠CAE , ∴∠CAD=∠DAE , 即∠C=∠B .4.∵AD ∥EF (已知)(已知)∴∠BAD=∠E (两直线平行,同位角相等)(两直线平行,同位角相等) ∠DAC=∠F (两直线平行,内错角相等)(两直线平行,内错角相等) ∵∠E=∠F (已知)(已知)∴∠BAD=∠DAC (等量代换)(等量代换) ∴AD 是∠BAC 的平分线.的平分线. 5.设∠3=3x ,∠2=2x ,由∠3+∠2=180°,可得3x+2x=180°, ∴x=36°,∴∠2=2x=72°; ∵AB ∥CD , ∴∠1=∠2=72°6.∵AB ∥CD ,∴∠BEF+∠EFD=180°,∵EG 平分∠BEF ,FG 平分∠DFE , ∴∠1=∠BEF ,∠2=∠EFD ,∴∠1+∠2=(∠BEF+∠EFD )=×180°=90°, 在△EFG 中,中,∠G=180°﹣∠1﹣∠2=90°, ∴EG ⊥FG .7.∵DE ∥BC , ∴∠1+∠2=180°, 又∵∠1=65°, ∴∠2=115°; ∵AB ∥DF ,∴∠3=∠2=115°.8.如图,过点E 作EP ∥AB , 而AB ∥CD ,则EP ∥CD , ∴∠FEP=∠FGB ,∵EF ⊥AB , ∴∠FGB=90°, ∵∠GEH=138°,∴∠PEH=138°﹣90°=48° ∵EP ∥CD ,∴∠EHD=180°﹣∠PEH=132°9.∵AD ∥BC ,∴∠EAD=∠B=25°, ∠DAC=∠C=30°,∴∠EAC=∠EAD+∠DAC=25°+30°=55°. 10.∵AB ∥CD ,∴∠ACD=180°﹣65°=115°, ∵AC ⊥BC ,∴∠BCD=115°﹣90°=25°. 11.过点E 作EF ∥AB , ∴∠AEF=∠BAE=45°, ∵AB ∥CD ,∴EF ∥CD ,∴∠FEC=∠DCE=45°,∴∠AEC=∠AEF+∠FEC=90°, ∴AE ⊥CE.12.∵AB ∥CD ,∠ABC=55°, ∴∠BCD=∠ABC=55°, ∵EF ∥CD ,∴∠ECD+∠CEF=180°, ∵∠CEF=150°,∴∠ECD=180°﹣∠CEF=180°﹣150°=30°, ∴∠BCE=∠BCD ﹣∠ECD =55°﹣30°=25°, ∴∠BCE 的度数为25°. 13.设∠1为x , ∵∠1=∠2, ∴∠2=x ,∴∠DBC=∠1+∠2=2x , ∵∠D :∠DBC=2:1, ∴∠D=2×2x=4x , ∵DE ∥BC ,∴∠D+∠DBC=180°, 即2x+4x=180°, 解得x=30°, ∵DE ∥BC ,∴∠DEB=∠1=30°. 14.∵EF ⊥AB 于E ,MN ∥AB ∴EF ⊥MN即∠EFM=90°. ∵MN ∥CD∴∠NFH=∠GHD=180°﹣130°=50°∴∠EFH=∠EFM+∠NFH=90°+50°=140°.15.∵AC ∥BD , ∴∠1=∠2. 又∵∠A=∠D ,∠A+∠1+∠E=180°,∠D+∠2+∠F=180°, ∴∠E=∠F .16.∵HG ∥AB (已知),∴∠1=∠3(两直线平行,内错角相等), 又∵HG ∥CD (已知),∴∠2=∠4(两直线平行,内错角相等), ∵AB ∥CD (已知),∴∠BEF+∠EFD=180°(两直线平行,同旁内角互补), 又∵EG 平分∠BEF (已知), ∴∠1=∠BEF (角平分线的定义), 又∵FG 平分∠EFD (已知), ∴∠2=∠EFD (角平分线的定义), ∴∠1+∠2=(∠BEF+∠EFD ), ∴∠1+∠2=90°,∴∠3+∠4=90°(等量代换)(等量代换) 即∠EGF=90° 17.∵AD ∥BC , ∴∠2=∠1=30°, ∵AB ⊥AC ,∴∠B=90°﹣∠2=60°.18.过E 作EF ∥AB , ∵AB ∥CD ,∴AB ∥EF ∥CD , ∴∠B=∠BEF=45°, ∠DEF=∠D=20°,∴∠1=∠BEF+∠DEF=45°+20°=65°.19.∵OB ,OC 分别是∠ABC ,∠ACB 的平分线,的平分线, ∴∠1=∠2,∠4=∠5, ∵OE ∥AB ,OF ∥AC ,∴∠1=∠3,∠4=∠6, ∴BE=OE ,OF=FC ,∴BC=BE+EF+FC=OF+OE+EF , ∵△OEF 的周长=10, ∴BC=10.20.∵AB ∥CD ,∠C=60°, ∴∠EFB=∠C=60°; ∵∠EFB=∠A+∠E , ∴∠A+∠E=60°.21.∵AB ∥CD , ∴∠C=∠B . ∵∠B=55°, ∴∠C=55°. ∵BC ∥DE ,∴∠C+∠D=180°,即∠D=180°﹣∠C=180°﹣55°=125°. 22.∵EF ∥BC ,∴∠EOB=∠OBC ,∠FOC=∠OCB , ∵BO ,CO 分别平分∠ABC ,∠ACB , ∴∠OBC=∠ABC=×50°=25°,∠OCB=∠ACB=×60°=30°.∴∠EOB=25°,∠FOC=30°.又∵∠EOB+∠BOC+∠FOC=180°,∴∠BOC=180°﹣∠EOB ﹣∠FOC=180°﹣25°﹣30°=125° 23.∵AB ∥CD , ∴∠B+∠BCD=180°, ∵∠B=120°, ∴∠BCD=60°;又∵CA 平分∠BCD , ∴∠2=30°, ∵AB ∥CD , ∴∠1=∠2=30°24.∵AB ∥CD , ∴∠EFB=∠C=65°, ∵∠EFB=∠A+∠E ,∴∠E=∠EFB ﹣∠A=65°﹣40°=25°.25.∵CD 是∠ACB 的平分线,∠ACB=40°, ∴∠DCB=∠ACD=20°, 又DE ∥BC ,∴∠EDC=∠DCB=20°,在△BCD 中,∵∠B=70°, ∴∠BDC=90°.∴∠EDC 和∠BDC 的度数分别为20°、90° 26.∵MN ∥BC ,∴∠B=∠MAB ,∠C=∠NAC , ∵∠MAB+∠BAC+∠NAC=180°, ∴∠BAC+∠B+∠C=180°27.∵OP 平分∠AOB ,(已知)(已知) ∴∠1=∠2(角平分线定义)(角平分线定义) ∵MN ∥OB (已知)(已知)∴∠2=∠3(两直线平行,内错角相等)(两直线平行,内错角相等) ∴∠1=∠3(等量代换). 28.∵AB ∥CD , ∴∠D=∠1=55°, ∵∠C=∠D , ∴∠C=55°;∵AB ∥CD ,∴∠B+∠C=180°,∴∠B=180°﹣∠C=180°﹣55°=125°. 29.∵AD ∥BC ,∴∠ABC=180°﹣∠A=60°,∠ADB=∠2, ∵∠1=∠2,∴∠1=∠ADB=∠2=30°, ∵BD ⊥CD , ∴∠BDC=90°,∠C=180°﹣(30°+90°)=60°, 故∠C 的度数为60°.30.∵AB ∥CD (已知)(已知)∴∠EFG+∠FEB=180°(两直线平行,同旁内角互补)(两直线平行,同旁内角互补) ∵∠EFG=50°(已知)(已知)∴∠FEB=130°(等式的性质)(等式的性质) ∵EG 平分∠FEB (已知)(已知) ∴∠FEG=∠FEB=65°(角平分线的定义). 31.∵CD ∥AB , ∴∠BOD=∠D=52°; ∵OE 平分∠BOD , ∴∠BOE=26° 32.如答图所示,.如答图所示, ∵L 1∥L 2,∴∠ECB+∠CBF=180°.∴∠ECA+∠ACB+∠CBA+∠ABF=180°.∵∠A=90°,∴∠ACB+∠CBA=90°.又∠ABF=25°,∴∠ECA=180°﹣90°﹣25°=65°33.∠D=∠C=45°,∠B=135°.理由:∵AB∥CD,∴∠D=∠1=45°(两直线平行,同位角相等)(两直线平行,同位角相等)∴∠B+∠C=180°(两直线平行,同旁内角互补)(两直线平行,同旁内角互补)∵∠D=∠C=45°,∴∠B=180°﹣∠C=180°﹣45°=135°.34.∵CD∥AB,∴∠A+∠ACD=180°,又∵CD∥EF,∴∠E=∠ECD=∠ACD﹣∠ACE=75°﹣51°=24°. 35.∵a∥b,∠1=122°,∴∠2=∠5=180°﹣∠1=180°﹣122°=58°;∵a∥b,∠3=50°,∴∠3=∠6=50°;又∵∠6=∠4,∴∠4=50°.36.∵BD平分∠ADC,∴∠CDB=∠1=50°,∠ADC=100°,又AB∥CD,∴∠ADC+∠A=180°,∴∠A=80°.37.∵DE∥BC,∴∠C=∠AED=72°,∵BE平分∠ABC,且∠ABC=∠ACB,∴∠EBC=∠ABC=×72°=36°,在△BEC中,∠CEB=180°﹣72°﹣36°=72°38.如图,过点C、D分别作CM、DN平行于AB、EF, 则x=∠5,4=∠3,1=∠z,又∠1+∠3=y,∠4+5=90°,即x+∠4=90°,又∠4=∠3=y﹣∠1=y﹣z,∴x+y﹣z=90°39.∵AB∥DE,∠B=70°, ∴∠DCB=180°﹣∠B=180°﹣70°=110°,∠BCE=∠B=70°,∵CM平分∠DCB,∴∠BCM=∠DCB=×110°=55°,∵CM⊥CN,垂足为C,∴∠BCN=90°﹣∠BCM=90°﹣55°=35°,∴∠NCE=∠BCE﹣∠BCN=70°﹣35°=35°.40.∠A=∠3.理由如下:.理由如下:∵DE∥AB,∴∠1=∠A,∠2=∠3,又∵∠1=∠2,∴∠A=∠341.∵DB∥FG∥EC,∴∠BAG=∠ABD=84°,∠GAC=∠ACE=60°;∴∠BAC=∠BAG+∠GAC=144°,∵AP是∠BAC的平分线,的平分线,∴∠P AC=∠BAC=72°,∴∠P AG=∠P AC﹣∠GAC=72°﹣60°=12°42.过E作EF平行于AB,则EF∥CD,∵AB∥EF,∴∠A=∠AEF=∠1,∵CD∥EF,∴∠C=∠FEC=∠2,∵∠BED=180°,∴∠1+∠AEF+∠FEC+∠2=180°,即∠AEF+∠CEF=°=90°.43.解法一:延长AB交l2于点E.∵AB⊥l1,l1∥l2,∴AB⊥l2.∵∠2是△BED的外角,∴∠2=90°+∠1=90°+43°=133°.解法二:过点B作BF∥l1,利用平行线的性质求出∠2的度数.的度数.∵l1∥l2,∴BF∥l2,∴∠ABF=180°﹣90°=90°,∠FBC=∠1=43°,∴∠2=∠ABF+∠FBC=90°+43°=133°.44.∵AB ∥MN (已知)(已知)∴∠BCD+∠CDN=180°(两直线平行,同旁内角互补) ∵CG 、DG 是角平分线是角平分线 ∴∠1=∠BCD ,∠2=∠CDN (角平分线定义)(角平分线定义) ∴∠1+∠2=90°∵∠1+∠2+∠CGD=180°(三角形内角和等于180°) ∴∠CGD=90°45.由题意得:∠BEC=80°,∠BED=100°, ∠BEF=∠BEC=40°,∴∠BEG=90°﹣∠BEF=50°, ∠DEG=∠BED ﹣50°=50°. ∴∠BEG 和∠DEG 都为50° 46.∵∠AEF=125, ∴∠CEA=55°∵AE ∥BD ,∠CDB=∠CEA=55°, 在△BCD 中,∵∠CBD=57°, ∴∠C=68°.47.∵CE 是∠DCB 的角平分线,的角平分线, ∴∠1=∠2. ∵CE ∥AB ,∴∠1=∠A ,∠2=∠B , ∴∠A=∠B .48.AB ∥CD ,∠2+∠3=90°. 理由如下:理由如下:∵BE 、DE 分别平分∠ABD 、∠CDB , ∴∠ABD=2∠1,∠BDC=2∠2. ∵∠2+∠1=90°,∴∠ABD+∠CDB=180°, ∴AB ∥CD .∴∠3=∠ABF .∵∠1=∠ABF ,∠2+∠1=90°. ∴∠2+∠3=90°.49.由题意可知,AB ∥CD ,∠HEB=50°, ∴∠FGD=50°, 又∵∠CFG=30°, ∴∠FCG=20°50.∵AB ∥CD ,BC ∥ED , ∴∠B=∠C ,∠C+∠D=180°, ∴∠B+∠D=180°. 51.∵AB ∥CD (已知),∴∠B=∠BCD (两直线平行,内错角相等)(两直线平行,内错角相等) 又∵∠B=∠DCE (已知), ∴∠BCD=∠DCE (等量代换)(等量代换) 即CD 平分∠BCE .52.∵AB ∥CD ,∠B=40°,∴∠BCE=180°﹣∠B=180°﹣40°=140°, ∵CN 是∠BCE 的平分线,的平分线, ∴∠BCN=∠BCE=×140°=70°, ∵CM ⊥CN , ∴∠BCM=20°53.∵DE ∥AC , ∴∠ADE=∠CAD ,∵AD 是∠BAC 的平分线,的平分线, ∴∠EAD=∠CAD , ∴∠ADE=∠EAD ,∴AE=DE , ∵BD ⊥AD ,∴∠ADE+∠BDE=90°,∠EAD+∠ABD=90°, ∴∠ABD=∠BDE , ∴BE=DE , ∴AE=BE .54.如图所示,过点E ,F 分别作EG ∥AB ,FH ∥AB . ∵EG ∥AB ,FH ∥AB , ∴∠5=∠ABE ,∠3=∠1; 又∵AB ∥CD ,∴EG ∥CD ,FH ∥CD ,∴∠6=∠CDE ,∠4=∠2,∴∠1+∠2=∠3+∠4=∠BFD=55°. ∵BF 平分∠ABE ,DF 平分∠CDE , ∴∠ABE=2∠1,∠CDE=2∠2,∴∠BED=∠5+∠6=2∠1+2∠2=2(∠1+∠2)=2×55°=110°.55.∵CD ⊥AB ,EF ⊥AB , ∴CD ∥EF ,∴∠BCD=∠BEF,∠DEF=∠CDE;∵DE∥AC,∴∠ACD=∠CDE,∴∠ACD=∠DEF;∵EF平分∠BED,∴∠DEF=∠BEF,∴∠ACD=∠BCD,即CD平分∠ACB56.∵EB平分∠ABC,EC平分∠ACG,∴∠DBE=∠CBE,∠FCE=∠GCE,∵DF∥BC,∴∠DEB=∠CBE,∠FEC=∠GCE,∴∠DEB=∠DBE,∠FEC=∠FCE,∴DB=DE,FE=FC,∵DE﹣EF=DF,∴DB﹣CF=DF57.∵AB∥CD,(已知)(已知)∴∠GFC=∠GMA.(两直线平行,同位角相等)(两直线平行,同位角相等)∵∠GMA=52°,(已知)(已知)∴∠GFC=52°.(等量代换)(等量代换)∵CD是直线,(已知)(已知)∴∠GFC+∠GFD=180°.(邻补角定义)(邻补角定义)∴∠GFD=180°﹣52°=128°.(等式性质)(等式性质)∵EF平分∠GFD,(已知)(已知)∴∠EFD=∠GFD=64°.(角平分线定义)(角平分线定义)∵AB∥CD,(已知)(已知)∴∠BEF+∠EFD=180°.(两直线平行,同旁内角互补) ∴∠BEF=180°﹣64°=116°.(等式性质)(等式性质)答:∠BEF=116°58.∵∠BAP+∠APD=180°(已知),∴AB∥CD(同旁内角互补,两直线平行).∴∠BAP=∠APC(两直线平行,内错角相等).又∵∠1=∠2(已知),∴∠FP A=∠EAP,∴AE∥PF(内错角相等,两直线平行).∴∠E=∠F(两直线平行,内错角相等).59.(1)∵DF∥AC,∴∠EDF=∠DEC=85°.∵DE∥AB,∴∠A=∠DEC=85°.(2)∵DF∥AC,DE∥AB,∴∠EDC=∠B,∠BDF=∠C,又∠A=∠EDF,∴∠A+∠B+∠C=∠EDF+∠EDC+∠BDF=180°. 60.∵AB∥CD,∠EFD=56°,∴∠BEF=180°﹣∠EFD=124°;∵∠1=∠2, ∴∠1=∠BEF=62°;∵∠EGD=∠1+∠EFD, ∴∠EGD=118°。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平行线经典练习题(整理版)
一.判断题:
1.两条直线被第三条直线所截,只要同旁内角相等,则两条直线一定平行。

()2.如图①,如果直线l1⊥OB,直线 l 2⊥ OA ,那么 l 1与l 2一定相交。

()
3.如图②,∵∠GMB= ∠HND (已知)∴ AB ∥ CD(同位角相等,两直线平行)()
二.填空题:
1.如图③∵∠ 1=∠2,∴ _______∥ ________()。

∵∠ 2=∠3,∴ _______∥ ________()。

2.如图④∵∠ 1=∠2,∴ _______∥ ________()。

∵∠ 3=∠4,∴ _______∥ ________()。

3.如图⑤∠ B=∠ D=∠ E,那么图形中的平行线有________________________________ 。

4.如图⑥∵ AB⊥ BD,CD⊥ BD(已知)
∴ AB∥CD ()
又∵∠ 1+∠ 2 = 180 (已知)
∴ AB∥EF()
∴ CD∥EF ()
三.选择题:
1.如图⑦,∠D= ∠ EFC,那么()
A. AD ∥BC B.AB ∥CD
C. EF∥ BC D. AD ∥ EF
2.如图⑧,判定AB ∥ CE 的理由是()
A .∠ B=∠ACE B.∠ A= ∠ ECD C.∠ B=∠AC
B D.∠ A= ∠ACE
3.如图⑨,下列推理错误的是()
A .∵∠ 1=∠3,∴a∥ b
B .∵∠ 1= ∠2,∴a∥ b
C.∵∠ 1= ∠ 2,∴c∥ d D .∵∠ 1= ∠2,∴c∥ d
4.如图,直线a、 b 被直线 c 所截,给出下列条件,①∠1=∠ 2,②∠ 3=∠ 6,
③∠ 4+∠ 7= 180°,④∠ 5+∠ 8=180°其中能判断a∥ b 的是()
A.①③ B .②④C.①③④D.①②③④
四.完成推理,填写推理依据:
1.如图⑩∵∠ B=∠ _______,∴AB ∥ CD ()
∵∠ BGC= ∠ _______,∴CD ∥ EF()
∵AB ∥CD , CD ∥ EF,
∴ AB ∥_______()
2.如图⑾填空:
( 1)∵∠ 2= ∠ B(已知)
∴ AB__________ ()
( 2)∵∠ 1= ∠ A (已知)
∴__________ ()
( 3)∵∠ 1= ∠ D(已知)
∴__________ ()
( 4)∵ _______ =∠ F(已知)
∴AC ∥DF()
3.填空。

如图,∵AC ⊥ AB , BD ⊥AB (已知)
∴∠ CAB =90°,∠ ______=90°()
∴∠ CAB =∠ ______()
∵∠ CAE =∠ DBF (已知)
∴∠ BAE =∠ ______
∴ _____∥ _____()
1
4.已知,如图∠1+∠ 2= 180°,填空。

∵∠ 1+∠ 2= 180°()又∠ 2=∠ 3()
∴∠ 1+∠ 3= 180°
∴ _________()
五.证明题
1.已知:如图⑿,CE 平分∠ ACD ,∠ 1=∠ B,
求证: AB ∥ CE
2.如图:∠ 1= 53 ,∠ 2= 127 ,∠ 3= 53 ,试说明直线AB 与 CD, BC 与 DE 的位置关系。

3.如图:已知∠A= ∠ D,∠ B=∠ FCB ,能否确定ED 与 CF 的位置关系,请说明理由。

6.如图 11,直线 AB、 CD被 EF 所截,∠ 1 = ∠2,∠ CNF =∠BME。

求证: AB∥CD,MP∥NQ.
E
A
M
B
1
P
N
C D
2
F Q
图 11
7.已知:如图:∠AHF +∠ FMD = 180°, GH 平分∠ AHM , MN 平分∠ DMH 。

求证: GH∥MN 。

8.如图,已知:∠AOE +∠ BEF =180°,∠ AOE +∠ CDE = 180°,
求证: CD ∥ BE。

4.已知:如图,,,且.
求证: EC ∥DF. 9.如图,已知:∠ A =∠ 1,∠ C=∠ 2。

求证:求证: AB ∥ CD 。

A
5.如图 10,∠ 1∶∠ 2∶∠ 3 = 2 ∶3∶4,∠AFE = 60 °,
F 1
E
∠BDE =120°,写出图中平行的直线,并说明理由. 2
3
B D C
图10
2。

相关文档
最新文档