平行线经典习题
(完整版)平行线及其判定与性质练习题
平行线及其判定1、基础知识(1)在同一平面内,______的两条直线叫做平行线.若直线a与直线b 平行,则记作______.(2)在同一平面内,两条直线的位置关系只有______、______.(3)平行公理是:.(4)平行公理的推论是如果两条直线都与______,那么这两条直线也______.即三条直线a、b、c,若a∥b,b∥c,则______.(5)两条直线平行的条件(除平行线定义和平行公理推论外):①两条直线被第三条直线所截,如果______,那么这两条直线平行,这个判定方法1可简述为:______,两直线平行.②两条直线被第三条直线所截,如果__ _,那么,这个判定方法2可简述为: ______,______.③两条直线被第三条直线所截,如果_ _____那么______,这个判定方法3可简述为:2、已知:如图,请分别依据所给出的条件,判定相应的哪两条直线平行?并写出推理的根据.(1)如果∠2=∠3,那么_____.(_______,_______)(2)如果∠2=∠5,那么________。
(______,________)(3)如果∠2+∠1=180°,那么_____。
(________,______)(4)如果∠5=∠3,那么_______。
(_______,________)(5)如果∠4+∠6=180°,那么______.(_______,_____)(6)如果∠6=∠3,那么________。
(________,_________)3、已知:如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)∵∠B=∠3(已知),∴______∥______。
(______,______)(2)∵∠1=∠D(已知),∴______∥______.(______,______)(3)∵∠2=∠A(已知),∴______∥______.(______,______)(4)∵∠B+∠BCE=180°(已知),∴______∥______。
平行线的判定练习题(有答案)
平行线的判定练习题(有答案)平行线的判定专项练习60题(有答案)1.已知:如图,BE平分∠ABC,∠1=∠2.求证:BC∥DE.2.如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE.3.如图所示,AB⊥BC,BC⊥CD,BF和CE是射线,并且∠1=∠2,试说明BF∥CE.4.如图,AB⊥BC,∠1+∠2=90°,∠2=∠3,求证:BE∥DF.5.如图,OP平分∠MON,A、B分别在OP、OM上,∠BOA=∠BAO,那么AB平行于ON吗?若平行,请写出证明过程;若不平行,请说明理由.6.已知:如图,∠1=∠2,∠A=∠C.求证:AE∥BC.平行线的判定--- 第 1 页共 1 页7.已知,如图B、D、A在一直线上,且∠D=∠E,∠ABE=∠D+∠E,BC是∠ABE的平分线,求证:DE∥BC.8.如图,已知∠AEC=∠A+∠C,试说明:AB∥CD.9.如图,已知AC∥ED,EB平分∠AED,∠1=∠2,求证:AE∥BD.10.如图,直线AB、CD与直线EF相交于E、F,已知:∠1=105°,∠2=75°,求证:AB∥CD.11.如图,∠D=∠A,∠B=∠FCB,求证:ED∥CF.12.如图,已知AB⊥BC,CD⊥BC,∠1=∠2,求证:EB∥FC.平行线的判定---第 2 页共 2 页13.如图所示所示,已知BE是∠B的平分线,交AC于E,其中∠1=∠2,那么DE∥BC吗?为什么?14.如图,已知∠C=∠D,DB∥EC.AC与DF平行吗?试说明你的理由.15.如图,AC⊥AE,BD⊥BF,∠1=35°,∠2=35°,求证:AE∥BF.16.如图,已知AB∥CD,∠1=∠2,求证:BE∥CF.17.已知∠BAD=∠DCB,∠1=∠3,求证:AD∥BC.18.如图,AD是三角形ABC的角平分线,DE∥CA,并且交AB与点E,∠1=∠2,DF与AB是否平行?为什么?平行线的判定---第 3 页共 3 页19.如图,已知:∠C=∠DAE,∠B=∠D,那么AB平行于DF吗?请说明理由.20.如图,已知点B在AC上,BD⊥BE,∠1+∠C=90°,问射线CF与BD平行吗?说明理由.21.已知∠1的度数是它补角的3倍,∠2等于45°,那么AB∥CD吗?为什么?22.已知:如图,BDE是一条直线,∠ABD=∠CDE,BF平分∠ABD,DG平分∠CDE,求证:BF∥DG.23.如图,四边形ABCD中,∠A=∠C=90°,BF、DE分别平分∠ABC、∠ADC.判断DE、BF是否平行,并说明理由.24.如图,若∠CAB=∠CED+∠CDE,求证:AB∥CD.25.如图,CD⊥AB,GF⊥AB,∠1=∠2.试说明DE∥BC.平行线的判定---第 4 页共 4 页26.如图所示,∠CAD=∠ACB,∠D=90°,EF⊥CD.试说明:∠AEF=∠B.27.已知:如图所示,C,P,D三点在同一条直线上,∠BAP+∠APD=180°,∠E=∠F,求证:∠1=∠2.28.如图,∠D=∠1,∠E=∠2,DC⊥EC.求证:AD∥BE.29.如图,在四边形ABCD中,∠A=∠C,BE平分∠ABC,DF平分∠ADC,试说明BE∥DF.30.已知:如图,∠1=∠2,∠A=∠F,则∠C与∠D相等吗?试说明理由.31.如图,在四边形ABCD中,∠A=∠C=90°,∠1=∠2,∠3=∠4,求证:BE∥DF.平行线的判定---第 5 页共 5 页平行线测姓名:一、选择题1.下列命题中,不正确的是____ [ ]A.两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行B.两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行C.两条直线被第三条直线所截,那么这两条直线平行D.如果两条直线都和第三条直线平行,那么这两条直线也互相平行2.如图,可以得到DE∥BC的条件是______ [ ](2题)(5题)(3题)(7题) (8题)A.∠ACB=∠BAC B.∠ABC+∠BAE=180° C.∠ACB+∠BAD=180°D.∠ACB=∠BAD3.如图,直线a、b被直线c所截,现给出下列四个条件: (1)∠1=∠2(2)∠3=∠6(3)∠4+∠7=180° (4)∠5+∠8=180°,其中能判定a∥b的条件是_________[ ]A.(1)(3) B.(2)(4)C.(1)(3)(4) D.(1)(2)(3)(4)4.一辆汽车在笔直的公路上行驶,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是________[ ]A.第一次向右拐40°,第二次向左拐40° B.第一次向右拐50°,第二次向左拐130°C.第一次向右拐50°,第二次向右拐130° D.第一次向左拐50°,第二次向左拐130°5.如图,如果∠1=∠2,那么下面结论正确的是_________.[ ]A.AD∥BC B.AB∥CD C.∠3=∠4 D.∠A=∠C6.同一平面内有四条直线a、b、c、d,若a∥b,a⊥c,b⊥d,则直线c、d的位置关系为()A.互相垂直 B.互相平行 C.相交 D.无法确定7.如图,在平行四边形ABCD中,下列各式不一定正确的是()A.∠1+∠2=180° B.∠2+∠3=180° C.∠3+∠4=180° D.∠2+∠4=180°8.如图,AD∥BC,∠B=30°,DB平分∠ADE,则∠DEC的度数为()A.30° B.60° C.90° D.120°二、填空题 9.如图,由下列条件可判定哪两条直线平行,并说明根据.(1)∠1=∠2,.(2)∠A=∠3,.(3)∠ABC+∠C=180°.10.如果两条直线被第三条直线所截,一组同旁内角的度数之比为3∶2,差为36°,那么这两条直线的位置关系是________.11.同垂直于一条直线的两条直线_______.同一平面内,不重合的两直线的位置关系是。
平行线的判定专项练习题有答案
平行线的判定专项练习题有答案Last revised by LE LE in 20211.已知:如图,BE平分∠ABC,∠1=∠2.求证:BC∥DE.2.如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE.3.如图所示,AB⊥BC,BC⊥CD,BF和CE是射线,并且∠1=∠2,试说明BF∥CE.4.如图,AB⊥BC,∠1+∠2=90°,∠2=∠3,求证:BE∥DF.5.如图,OP平分∠MON,A、B分别在OP、OM上,∠BOA=∠BAO,那么AB平行于ON吗若平行,请写出证明过程;若不平行,请说明理由.6.已知:如图,∠1=∠2,∠A=∠C.求证:AE∥BC.7.已知,如图B、D、A在一直线上,且∠D=∠E,∠ABE=∠D+∠E,BC是∠ABE的平分线,求证:DE∥BC.8.如图,已知∠AEC=∠A+∠C,试说明:AB∥CD.9.如图,已知AC∥ED,EB平分∠AED,∠1=∠2,求证:AE∥BD.10.如图,直线AB、CD与直线EF相交于E、F,已知:∠1=105°,∠2=75°,求证:AB∥CD.11.如图,∠D=∠A,∠B=∠FCB,求证:ED∥CF.12.如图,已知AB⊥BC,CD⊥BC,∠1=∠2,求证:EB∥FC.13.如图所示所示,已知BE是∠B的平分线,交AC于E,其中∠1=∠2,那么DE∥BC吗为什么14.如图,已知∠C=∠D,DB∥EC.AC与DF平行吗试说明你的理由.15.如图,AC⊥AE,BD⊥BF,∠1=35°,∠2=35°,求证:AE∥BF.16.如图,已知AB∥CD,∠1=∠2,求证:BE∥CF.17.已知∠BAD=∠DCB,∠1=∠3,求证:AD∥BC.18.如图,AD是三角形ABC的角平分线,DE∥CA,并且交AB与点E,∠1=∠2,DF与AB是否平行为什么19.如图,已知:∠C=∠DAE,∠B=∠D,那么AB平行于DF吗请说明理由.20.如图,已知点B在AC上,BD⊥BE,∠1+∠C=90°,问射线CF与BD平行吗说明理由.21.已知∠1的度数是它补角的3倍,∠2等于45°,那么AB∥CD吗为什么22.已知:如图,BDE是一条直线,∠ABD=∠CDE,BF 平分∠ABD,DG平分∠CDE,求证:BF∥DG.23.如图,四边形ABCD中,∠A=∠C=90°,BF、DE分别平分∠ABC、∠ADC.判断DE、BF是否平行,并说明理由.24.如图,若∠CAB=∠CED+∠CDE,求证:AB∥CD.25.如图,CD⊥AB,GF⊥AB,∠1=∠2.试说明DE∥BC.26.如图所示,∠CAD=∠ACB,∠D=90°,EF⊥CD.试说明:∠AEF=∠B.27.已知:如图所示,C,P,D三点在同一条直线上,∠BAP+∠APD=180°,∠E=∠F,求证:∠1=∠2.28.如图,∠D=∠1,∠E=∠2,DC⊥EC.求证:AD∥BE.29.如图,在四边形ABCD中,∠A=∠C,BE平分∠ABC,DF平分∠ADC,试说明BE∥DF.30.已知:如图,∠1=∠2,∠A=∠F,则∠C与∠D相等吗试说明理由.31.如图,在四边形ABCD中,∠A=∠C=90°,∠1=∠2,∠3=∠4,求证:BE∥DF.32.如图,已知∠1=∠2求证:a∥b.33.如图,D E⊥AO于E,BO⊥AO于O,FC⊥AB于C,∠1=∠2,找出图中互相平行的线,并加以说明.34.如图,已知∠1=∠2,∠C=∠CDO,求证:CD∥OP.35.如图,已知DE平分∠BDF,AF平分∠BAC,且∠1=∠2.求证(1)DF∥AC;(2)DE∥AF.36.如图,AD平分∠BAC,EF平分∠DEC,且∠1=∠2,试说明DE与AB的位置关系.37.如图,在△ABC中,点D在AB上,∠ACD=∠A,∠BDC的平分线交BC于点E.求证:DE∥AC.38.如图,AB与CD相交于点O,并且∠A=∠1,试问∠2与∠B满足什么关系时,AC∥BD说明理由.39.如图,已知∠1=∠A,∠2=∠B,那么MN与EF平行吗如果平行,请说明理由.40.如图,直线AB、CD被直线EF所截,∠1+∠4=180°,求证:AB∥CD.41.如图所示,已知:∠1=∠2,∠E=∠F.试说明AB∥CD.42.如图,已知EF⊥CD于F,∠GEF=25°,∠1=65°,则AB与CD平行吗请说明理由.43.如图,已知∠1=∠2=90°,∠3=30°,∠4=60°,图中有几对平行线说说你的理由.44.直线AB,CD被直线EF所截,∠1=∠2,直线AB 和CD平行吗为什么45.已知:如图,AD⊥BC,EF⊥BC,∠1=∠2.求证:AB∥GF.46.如图,已知B、C、D三点在同一条直线上,∠B=∠1,∠2=∠E,试说明AD∥CE.47.直线AB、CD与GH交于E、F,EM平分∠BEF,FN 平分∠DFH,∠BEF=∠DFH,求证:EM∥FN.48.如图所示,∠ABC=∠BCD,BE、CF分别平分∠ABC 和∠BCD,请你说出BE与CF的位置关系,并说出你的理由.49.如图,若∠1=∠2,请判断DB与EC的位置关系,并说明理由.50.如图,在△ABC中,CD⊥AB,垂足为D,点E在BC 上,EF⊥AB,垂足为F.(1)CD与EF平行吗为什么(2)如果∠1=∠2,DG∥BC吗为什么51.如图,已知:HG平分∠AHM,MN平分∠DMH,且∠AHM=∠DMH.问:GH与MN有怎样的位置关系,请说明理由.(请注明每一步的理由)52.已知:如图,∠C=∠1,∠2和∠D互余,BE⊥FD 于点G.求证:AB∥CD.53.如图,直线AB,CD被EF所截,∠3=∠4,∠1=∠2,EG⊥FG.求证:AB∥CD.54.已知:如图,CD是直线,E在直线CD上,∠1=130°,∠A=50°,求证:AB∥CD.55.如图,已知∠1=∠2,∠DAB=∠DCA,且DE⊥AC,BF⊥AC,问:(1)AD∥BC吗(2)AB∥CD吗为什么56.如图,四边形ABCD,∠1=30°,∠B=60°,AB⊥AC,则AD与BC一定平行吗AB与CD呢若平行请说明理由,反之则不用说明理由.57.已知:如图,∠A=∠F,∠C=∠D.求证:BD∥CE.58.如图,AD⊥BC于点D,∠1=2,∠CDG=∠B,请你判断EF与BC的位置关系,并加以证明,要求写出每步证明的理由.59.已知:如图,CE平分∠ACD,∠1=∠B,求证:AB∥CE.60.如图,已知∠1=∠2,∠3=∠4,可以判定哪两条直线平行。
四年级认识平行线练习题及答案
四年级认识平行线练习题及答案
一、我会填。
1、在同一个平面内不相交的两条直线的位置关系是( )。
2、长方形的每组对边互相( ),每组邻边互相( )。
3、教室中黑板的长边和短边互相( )。
4、数学书中的两条长边互相( )。
5、五线谱的五条横线互相( )。
二、判断。
1、 不相交的两条直线叫做平行线。
( )
2、长方形相对的两条边是一组平行线。
( )
3、
中两条线没有相交,就可以看作一组平行线。
(
)
4、互相平行的两条直线,无论怎样延长都不会相交。
( ) 三、是平行线的在( )里画“√”。
( ) ( ) ( ) ( ) ( ) ( )
四、
互相平行的有:( ) 互相垂直的有:( )
b c d e f g a
答案:
一、1、平行2、平行垂直3、垂直4、平行5、平行
二、 1.× 2. √ 3. √
三、
四、 d 和e c和f c和a f和a。
平行线培优练习题及中考真题
相交线与平行线一、选择题1. (2011山东德州4,3分)如图,直线l 1∥l 2, ∠1=40°,∠2=75°,则∠3等于 (A )55° (B ) 60° (C )65° (D ) 70°【答案】C2. (2011山东日照,3,3分)如图,已知直线AB CD ∥,125C ∠=°,45A ∠=°,那么E ∠的大小为( ) (A )70° (B )80° (C )90° (D )100°【答案】B3. (2011山东泰安,8 ,3分)如图,l ∥m ,等腰直角三角形ABC 的直角顶点C 在直线m 上,若∠β=200,则∠α的度数为( )A.250B.300C.200D.350 【答案】A4. (2011四川南充市,3,3分) 如图,直线DE 经过点A,DE ∥BC,,∠B=60°,下列结论成立的是( )(A )∠C=60° (B )∠DAB=60° (C )∠EAC=60° (D )∠BAC=60°EDCBAl 1l 2123【答案】B5. (2011山东枣庄,2,3分)如图,直线AB ∥CD ,∠A =70︒,∠C =40︒,则∠E 等于( )A .30° B.40° C .60° D.70° 【答案】A6. (2010湖北孝感,3,3分)如图,直线AB 、CD 相交于点O ,OT ⊥AB 于O ,CE ∥AB 交CD 于点C ,若∠ECO=30°,则∠DOT=( ) A.30° B.45° C. 60° D. 120°【答案】C7. (2011河北,2,2分)如图1∠1+∠2=( )1图1A .60°B .90°C .110°D .180° 【答案】B8. (2011宁波市,8,3分)如图所示,AB ∥CD ,∠E =37°, ∠C =20°, ∠EAB 的度数为 A . 57° B . 60° C . 63° D. 123°【答案】A9. (2011浙江衢州,12,4分)如图,直尺一边AB 与量角器的零刻度线CD 平行,若量角器的一条刻度线OF 的读书为70°,OF 与AB 交于点E ,那么AEF ∠= 度.A CB D E【答案】7010.(2011浙江绍兴,3,4分)如图,已知//,,34AB CD BC ABE C BED ∠∠=︒∠平分,则 的度数是( )A.17︒B. 34︒C. 56︒D. 68︒AD【答案】D11. (2011浙江义乌,8,3分)如图,已知AB ∥CD ,∠A =60°,∠C =25°,则∠E 等于A. 60°B. 25°C. 35°D. 45° 【答案】C12. (2011四川重庆,4,4分)如图,AB ∥CD ,∠C =80°,∠CAD =60°,则∠BAD 的度数等于( )A .60°B .50°C . 45°D . 40° 【答案】D13. (2011浙江丽水,5,3分)如图,有一块含有45°角的直角三角板的两个顶点放在直尺ABCDE60°的对边上.如果∠1=20°,那么∠2的度数是( )A .30°B .25°C .20°D .15° 【答案】B14. (2011台湾台北,8)图(二)中有四条互相不平行的直线L 1、L 2、L 3、L 4所截出的七个角。
初中数学 平行线-练习题
初中数学平行线-练习题1. 已知折线ABCD中,AB与CD是平行线,∠ABC = 70°,∠BDA = 110°,求∠BCD的度数。
解析:根据题意,AB与CD是平行线,因此∠ABC与∠BCD 是同旁内角。
根据同旁内角的性质,我们知道∠ABC与∠BCD的度数应该相等。
所以,∠BCD的度数为70°。
2. 如图,在平行四边形ABCD中,AB与AE的延长线交于点F,以点F为顶点作三角形AFE,求证:∠AFE = ∠CDA。
解析:我们需要证明∠AFE与∠CDA相等。
根据题意,AB与CD是平行线,所以∠DAF与∠CDA是同旁外角。
又因为AE与CD是平行线,所以∠DAF与∠AFE是同旁内角。
根据同旁内角与同旁外角的性质,我们知道∠DAF与∠CDA 相等,∠DAF与∠AFE相等。
所以,∠AFE = ∠CDA。
3. 如图,AB与CD是平行线,AD是射线,∠ADE = 40°,∠BAF = 90°,求证:∠BCA = 90° + ∠CDE。
解析:我们需要证明∠BCA与∠CDE的和等于90°。
根据题意,AB与CD是平行线,所以∠CDE与∠BCA是同旁内角。
又因为AD是射线,所以∠ADE与∠BAF是同旁外角。
根据同旁内角与同旁外角的性质,我们知道∠ADE与∠CDE 的和等于180°,∠ADE与∠BAF的和等于180°。
所以,∠BCA = 180° - ∠ADE = 180° - 40° = 140°。
又因为∠BAF是直角,所以∠BAF的度数为90°。
所以,∠BCA + ∠CDE = 140° + 90° = 230°。
所以,∠BCA = ∠CDE + 90°。
证毕。
4. 如图,平行四边形ABCD中,AB与CF相交于点E,互补角∠ECD、∠ABE的度数之和为180°,求证:CF与DE平行。
平行线练习题及答案
平行线练习题及答案平行线练习题及答案在数学中,平行线是指在同一个平面上永远不会相交的两条直线。
平行线在几何学和代数学中有着重要的应用,因此对于学生来说,掌握平行线的性质和判断方法是至关重要的。
本文将为大家提供一些平行线的练习题及答案,帮助大家加深对平行线的理解和运用。
练习题一:判断下列直线是否平行。
1. 直线AB:y = 2x + 3直线CD:y = 2x - 12. 直线EF:2x - 3y = 6直线GH:4x - 6y = 123. 直线IJ:3x + 4y = 8直线KL:6x + 8y = 16答案一:1. 直线AB和直线CD的斜率都为2,且截距不相等,因此直线AB和直线CD不平行。
2. 直线EF和直线GH的斜率都为2,且截距相等,因此直线EF和直线GH平行。
3. 直线IJ和直线KL的斜率都为2,且截距相等,因此直线IJ和直线KL平行。
练习题二:已知直线AB和直线CD平行,点E、F、G分别位于直线AB上,且AE = EF = FG。
若AE = 4,求FG的值。
答案二:由于直线AB和直线CD平行,因此直线AB和直线CD的斜率相等。
设直线AB的斜率为k,点E的坐标为(x1, y1),点F的坐标为(x2, y2),点G的坐标为(x3, y3)。
根据题意可得:y1 = kx1y2 = kx2y3 = kx3又因为AE = EF = FG,所以有:EF = FGy2 - y1 = y3 - y2kx2 - kx1 = kx3 - kx22kx2 = k(x1 + x3)x2 = (x1 + x3) / 2由于AE = 4,可得:y1 = kx1 = 4将x2 = (x1 + x3) / 2和y1 = 4代入直线AB的方程中,可得:4 = k(x1 + x3) / 28 = k(x1 + x3)8 = 4kx2x2 = 2将x2 = 2代入直线AB的方程中,可得:y2 = kx2 = 2k由于EF = FG,可得:y2 - y1 = y3 - y22k - 4 = y3 - 2k4k = y3 + 4y3 = 4k - 4将y3 = 4k - 4代入直线AB的方程中,可得:y3 = kx3 = 4k - 4综上所述,当AE = 4时,FG的值为4k - 4。
平行线的判定习题精选答案
平行线的判定习题精选答案平行线的判定一直是初中数学中比较重要的一个知识点,很多同学在学习初中数学时都遇到过此类问题。
那么,如何正确地判定平行线呢?本文将为大家精选几个典型习题并给出详细的答案解析。
一、题目:如图所示,已知直线AB和直线CD,若∠BAC = ∠CDA,证明AB || CD。
首先,我们需要根据题目所给条件判断角度关系。
根据题目可知,∠BAC = ∠CDA,两个角度互相等于,因此可以判断出它们是同位角,即它们是AB和CD两条直线的交点处的相邻内角。
接下来,我们需要利用同位角性质来判断直线的平行关系。
同位角平行线定理表明,若两条平行直线被一条横截线所截,那么它们与这条横截线呈同位角。
在题目中,直线AB和CD被交点A、D连接在一起,即它们之间存在着一条横截线AD。
根据同位角平行线定理,我们可以得出结论:∠BAC = ∠CDA 是AB和CD被AD所截的同位角,因此AB || CD。
由此,我们可以得出本题的证明过程如下:(1)设交点为E。
(2)根据题目可知∠BAC = ∠CDA,即AB和CD被同一条横截线AD所截的同位角。
(3)根据同位角平行线定理,AB || CD。
二、题目:如图,矩形ABCD中,E、F分别是BC、CD的中点,连接AE、BF,交于点G。
证明:AG || DF。
这道题的难点在于如何利用矩形的性质进行判定。
首先,我们需要明确几个结论:(1)在矩形中,对角线相等。
(2)在矩形中,相邻角互补,即一个角是90度,则它对面的角也是90度。
(3)在矩形中,对边平行。
根据这些基本结论,我们可以推出:在矩形ABCD中,AD和BC是对边,因此它们是平行的;同时,角BAD和角ABC互补,角ABD和角ACB互补,因此它们也是平行的。
接下来,我们需要利用这些结论来证明AG || DF。
首先,连接AG和DF,连接BE和AC。
因为E、F分别是BC、CD的中点,所以BE || AD。
又因为角BAD和角ABC是平行的,所以BE和AD也是平行的。
平行线的性质习题精选解答题专项训练
平行线的性质习题精选解答题专项训练解答题1.如图,已知直线EF与AB、CD都相交,且AB∥CD,说明∠1=∠2的理由.理由:∵EF与AB相交(已知)∴∠1=∠3( )∵AB∥CD(已知)∴∠2=∠3( )∴∠1=∠2( )2.已知,如图,AD∥BC,∠BAD=∠BCD,请说明AB∥CD的理由.理由:∵AD∥BC(已知)∴∠1=( )( )又∵∠BAD=∠BCD(已知)∴∠BAD-∠1=∠BCD-∠2( )即:∠3=∠4∴AB∥CD( )3.如图:已知∠A=∠F,∠C=∠D,求证:BD∥CE 。
请你认真完成下面的填空。
证明:∵∠A=∠F (已知)∴AC∥DF ()∴∠D=∠()又∵∠C=∠D (已知),∴∠1=∠C (等量代换)∴BD∥CE()。
4.如图:已知∠B=∠BGD,∠DGF=∠F,求证:∠B +∠F =180°。
请你认真完成下面的填空。
证明:∵∠B=∠BGD (已知)∴AB∥CD ()∵∠DGF=∠F;(已知)∴CD∥EF ()∵AB∥EF ()∴∠B +∠F =180°()。
5.已知:如图、BE//CF,BE、CF分别平分∠ABC和∠BCD求证:AB//CD证明:∵BE、平分∠ABC(已知)∴∠1=21∠∵CF平分∠BCD()∠2=21∠()∵BE//CF(已知)∴∠1=∠2()∴21∠ABC=21∠BCD()即∠ABC=∠BCD∴AB//CD()6.如图,已知:∠BCF=∠B+∠F。
求证:AB//EF证明:经过点C作CD//AB∴∠BCD=∠B。
()∵∠BCF=∠B+∠F,(已知)∴∠()=∠F。
()∴CD//EF。
()∴AB//EF()7.已知,如图,BCE、AFE是直线,AB∥CD,∠1=∠2,∠3=∠4。
求证:AD∥BE。
证明:∵AB∥CD(已知)∴∠4=∠()∵∠3=∠4(已知)∴∠3=∠()∵∠1=∠2(已知)∴∠1+∠CAF=∠2+∠CAF()即∠ =∠∴∠3=∠()∴AD∥BE()8.如图,已知、BE平分∠ABC,∠CBE=25°,∠BED=25°,∠C=30°,求∠ADE与∠BEC的度数。
(完整版)平行线的判定习题(含答案)(最新整理)
2019年4月16日初中数学作业学校:___________姓名:___________班级:___________考号:___________一、单选题1.如右图所示,在下列条件中,不能判断l1∥l2的是()A.∠1=∠3B.∠2=∠3C.∠4+∠5=180°D.∠2+∠4=180°【答案】B【解析】【分析】直接利用平行线的判定方法分别分析得出答案.【详解】解:A、∠1=∠3根据内错角相等,两直线平行能判定l1∥l2,故此选项不符合题意;B. ∠2=∠3无法判定l1∥l2,故此选项符合题意;C. ∠4+∠5=180°, ∠2=∠5,所以∠4+∠2=180°, 根据同旁内角互补,两直线平行能判定l1∥l2,故此选项不符合题意;D. ∠2+∠4=180°,能判定l1∥l2,故此选项不符合题意;故选:B.【点睛】本题考查平行线的判定,正确掌握判定方法是解题关键.2.如图,直线a,b被直线c所截,下列条件能判断a//b的是( ).A.∠1=∠2B.∠1=∠4C.∠3+∠4=180°D.∠2+∠4=180°【答案】B【解析】【分析】根据平行线的判定定理,同位角相等,两直线平行即可解题.【详解】解:A. ∠1=∠2是对顶角,无法判断,B. ∠1=∠4,根据同位角相等,两直线平行即可判定a//b,正确,C. ∠3+∠4=180°,邻补角互补无法判断平行,D. ∠2+∠4=180°,内错角不是互补的,错误,故选B.【点睛】本题考查了平行线的判定,属于简单题,熟悉平行线的判定定理是解题关键.3.如图,下列条件:①∠B+∠BFE=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5.能判定AB∥EF的有( )A.1个B.2个C.3个D.4个【答案】C【解析】【分析】根据平行线的判定定理对各小题进行逐一判断即可.【详解】解:①∵∠B+∠BFE=180°,∴AB∥EF,故本小题正确;②∵∠1=∠2,∴DE∥BC,故本小题错误;③∵∠3=∠4,∴AB∥EF,故本小题正确;④∵∠B=∠5,∴AB∥EF,故本小题正确.故选:C.【点睛】本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键.4.如图,下列条件中,不能判断直线的是()∠1=∠3∠2=∠3∠4=∠5A.B.C.D.∠2+∠4=180°【答案】B【解析】【分析】根据同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行对各选项进行判断.【详解】当∠1=∠3时,a∥b;当∠4=∠5时,a∥b;当∠2+∠4=180°时,a∥b.故选:B.【点睛】本题考查了平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.5.如图,点E在AD延长线上,下列条件中不能判定BC∥AD的是( )∠1=∠2∠C=∠CDEA.B.∠3=∠4∠C+∠ADC=180∘C.D.【答案】A【解析】【分析】分别利用同旁内角互补两直线平行,内错角相等两直线平行进行判断,即可得出答案.【详解】解:A、∵∠1=∠2,∴AB∥CD,本选项符合题意;B、∵∠C=∠CDE,∴BC∥AD,本选项不合题意;C、∵∠3=∠4,∴BC∥AD,本选项不合题意;D、∵∠C+∠ADC=180°,∴AD∥BC,本选项不符合题意.故选:A.【点睛】此题考查了平行线的判定,平行线的判定方法有:同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行,熟练掌握平行线的判定是解本题的关键.6.如图,下列条件中能得到AB∥CD的是( )∠1=∠2∠2=∠3∠1=∠4∠3=∠4 A.B.C.D.【答案】C【解析】【分析】根据平行线的判定定理对各选项进行逐一判断即可.【详解】A、因为∠1=∠2,不能得出AB∥CD,错误;B、∵∠2=∠3,∴AD∥BC,错误;C、∵∠1=∠4,∴AB∥CD,正确;D、因为∠3=∠4,不能得出AB∥CD,错误;故选C.【点睛】本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键.7.下列说法错误的是( )A.在同一平面内,不相交的两条线段必然平行B.在同一平面内,不相交的两条直线必然平行C.在同一平面内,不平行的两条线段延长后必然相交D.在同一平面内,两条直线没有公共点,那么两条直线平行【答案】A【解析】【分析】根据两条直线的位置关系直接可以找出错误的选项.【详解】在同一平面内,不相交的两条直线必然平行; 在同一平面内,不平行的两条线段延长后必然相交; 在同一平面内,两条直线没有公共点,那么两条直线平行;只有A选项中,在同一平面内,不相交的两条线段不一定平行,故A错误.故选A.【点睛】此题重点考察学生对两直线的位置关系的理解,掌握两直线的位置关系是解题的关键. 8.同一平面内的两条线段,下列说法正确的是( )A.一定平行B.一定相交C.可以既不平行又不相交D.不平行就相交【答案】C【解析】【分析】根据线段有固定长度这一特点来解题即可.【详解】同一平面内的两条线段,可以出现相交,平行,也可以出现既不平行也不相交的状态.故选C【点睛】此题重点考察学生对两条线段位置关系的理解,抓住线段有固定长度是解题的关键. 9.在同一平面内,两条不重合直线的位置关系可能是( )A.垂直或平行B.垂直或相交C.平行或相交D.平行、垂直或相交【答案】C【解析】【分析】根据前提条件结合直线的位置关系直接可以得到答案.【详解】在同一平面内,两条不重合的直线的位置关系只有两种:平行或相交.故选C【点睛】此题重点考察学生对两直线位置关系的理解,掌握两直线的位置关系是解题的关键. 10.如图,已知点E在BC的延长线上,则下列条件中不能判断AB∥CD的是( )A.∠B=∠DCE B.∠BAD+∠D=180°C.∠1=∠4D.∠2=∠3【答案】D【解析】【分析】根据平行线的判定定理即可直接作出判断.【详解】A、根据同位角相等,两直线平行即可证得,故选项错误;B、根据同旁内角互补,两直线平行,即可证得,故选项错误;C、根据内错角相等,两直线平行即可证得,故选项错误;D、∠2和∠3是AD和BC被AC所截形成的角,因而不能证明AB∥CD,故选项正确.故选:D.【点睛】本题考查了平行线的判定定理,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.11.如图,下列判定两直线平行错误的是()A.若∠D=∠3,则BE∥DF B.若∠B=∠2,则AB∥CDC.若∠1+∠D=,则BE∥DF D.若∠1+∠B=,则AB∥CD18001800【答案】A【解析】【分析】根据平行线的判定逐一判断即可.【详解】A. ∠D和∠3是一组同旁内角,根据“同旁内角互补,两直线平行”,可得本选项错误;B. ∠B和∠2是一组同位角角,根据“同位角相等,两直线平行”,可得本选项正确;C. 因为∠1 = ∠3,若∠1+∠D=,则∠3+∠D=,根据“同旁内角互补,两直线18001800平行”,可得本选项正确;D. ∠1和∠B,是一组同旁内角,根据“同旁内角互补,两直线平行”,可得本选项正确.故选:A.【点睛】本题考查平行线的判定方法;熟练掌握平行线的判定方法,并能进行推理论证是解题关键.12.如图,已知CD、BF相交于点O,∠D=,下面判定两直线平行正确的是650()A.当∠C=时,AB∥CD B.当∠A=时,AC∥DE6501150C.当∠E=时,CD∥EF D.当∠BOC=时,BF∥DE12501150【答案】D【解析】选项A中,∠C和∠D是直线AC、DE被DC所截形成的内错角,内错角相等,判定两直线平行;选项B中,不符合三线八角构不成平行;选项C中,∠E和∠D是直线DC、EF被DE所截形成的同旁内角,因为同旁内角不互补,所以两直线不平行;选项D中,∠BOC的对顶角和∠D是直线BF、DE被DC所截形成的同旁内角,同旁内角互补,判定两直线平行【详解】解:A、错误,因为∠C=∠D,所以AC∥DE;B、错误,不符合三线八角构不成平行;C、错误,因为∠C+∠D≠180°,所以CD不平行于EF;D、正确,因为∠DOF=∠BOC=140°,所以∠DOF+∠D=180°,所以BF∥DE.故选:D.【点睛】本题考查平行线的判定,解题关键是在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.13.如图,下列条件中,能判断FB∥CE的是()A.∠F+∠C=B.∠ABF=∠C C.∠F=∠C D.∠A=∠D1800【答案】B【解析】【分析】分析四个选项,看哪个选项的条件满足平行线的判定定理,由此即可得出结论.【详解】解:A、∠F+∠C=180°,不能得出FB∥CE,A不可以;B、∠ABF=∠C,同位角相等,两直线平行,B可以;C、∠F=∠C,不能得出FB∥CE,C不可以;D、∠A=∠D,内错角相等,两直线平行,但得出的是DF∥AC,D不可以.【点睛】本题考查平行线的判定定理,解题的关键是牢记平行线的判定定理.本题属于基础题,难度不大,解决该题型题目时,寻找相等或互补的角去证明直线平行.14.如图,一根直尺EF压在三角板的角∠BAC上,欲使CB∥EF,则应使∠ENB的度300数为()A.B.C.D.1000110012001300【答案】C【解析】【分析】根据平行线的判定方法即可解答.【详解】解:因为三角板含有30°的角,所以∠B=60°,当∠ENB+∠B=180°时,根据“同旁内角互补,两直线平行”,可使CB∥EF,此时∠ENB=180°-∠B=180°-60°=.1200故选:C.【点睛】本题考查平行线的判定方法,解题关键是熟练掌握判定方法,根据题目要求选择简单方法.15.如图,直线a与直线b被直线c所截,b⊥c,垂足为A,∠1=69°,若使直线b与直线a平行,则可将直线b绕着点A顺时针旋转( )A.69°B.49°C.31°D.21°【答案】D【解析】先根据b⊥c得出∠2的度数,再由平行线的判定定理即可得出结论.【详解】∵b⊥c,∴∠2=90°.∵∠1=69°,a∥b,∴直线b绕着点A顺时针旋转的度数=90°﹣69°=21°,故选D.【点睛】本题考查了垂直的定义,平行线的判定,熟练掌握和正确运用相关知识是解题的关键. 16.如图是小敏作“过已知直线外一点画这条直线的平行线”,从图中可知,小敏画平行线的依据是( )①两直线平行,同位角相等②两直线平行,内错角相等③同位角相等,两直线平行④内错角相等,两直线平行A.①②B.②③C.③④D.①④【答案】C【解析】【分析】①②为平行线的性质,③④为平行线的判定定理.【详解】解:根据平行线的判定与性质可知,①②为平行线的性质,③④为平行线的判定定理,∴小敏是依据③④画平行线的.故选:C.【点睛】本题主要考查平行线的判定与性质,解此题的关键在于熟记平行线的判定定理与性质的区别.17.如图,下列结论:若,则∥;若,则∥;若①∠1=∠3AB CD②∠2=∠4AB CD③∠ADC=∠5,则AD//BC;若∠DAB+∠ABC=180°,则AD//BC,其中正确的个数是④()A.1个B.2个C.3个D.4个【答案】C【解析】【分析】根据内错角相等,两直线平行可以对①②③进行判断,根据同旁内角互补,两直线平行可以对④进行判断,由此即可得答案.【详解】①若∠1=∠3,则AB∥CD,正确;②若∠2=∠4,则AD∥BC,故②错误;③若∠ADC=∠5,则AD//BC,正确;④若∠DAB+∠ABC=180°,则AD//BC,正确,故选C.【点睛】本题考查了平行线的判定,熟练掌握平行线的判定定理是解题的关键.18.如图,下列推理正确的是( )A.∵∠1=∠2,∴AD∥BC B.∵∠3=∠4,∴AB∥CDC.∵∠3=∠5,∴AB∥DC D.∵∠3=∠5,∴AD∥BC【答案】C【解析】【分析】利用平行线的判定方法判断即可得到结果.【详解】∵∠3=∠5,∴AB∥DC(同位角相等,两直线平行).故选C.【点睛】此题考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键.二、解答题∠AED=∠C∠1=∠B EF//AB19.如图,,,说明:.【答案】见解析.【解析】【分析】先由同位角相等,得出两直线平行,再根据两直线平行,得出内错角相等,最后根据同位角相等,得出两直线平行即可.【详解】∠AED=∠C∵(已知)DE//BC∴(同位角相等,两直线平行)∠1=∠EFC又∵(两直线平行,内错角相等)∠B=∠EFC∴(等量代换)EF//AB∴(同位角相等,两直线平行)【点睛】本题主要考查了平行线的判定与性质,解题时注意:两直线平行,内错角相等;同位角相等,两直线平行.20.如图,已知∠ABC=180°-∠A,BD⊥CD于D,EF⊥CD于E.(1)求证:AD∥BC;(2)若∠ADB=36°,求∠EFC的度数.【答案】(1)证明见解析;(2)36°.【解析】【分析】(1)求出∠ABC+∠A=180°,根据平行线的判定推出即可;(2)根据平行线的性质求出∠DBC,根据垂直推出BD∥EF,根据平行线的性质即可求出∠EFC.【详解】(1)证明:∵∠ABC=180°-∠A,∴∠ABC+∠A=180°,∴AD∥BC;(2)∵AD∥BC,∠ADB=36°,∴∠DBC=∠ADB=36°,∵BD⊥CD,EF⊥CD,∴BD∥EF,∴∠DBC=∠EFC=36°【点睛】本题考查了平行线的性质和判定的应用,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.21.平面上有6条直线,共有12个不同的交点,画出它们可能的位置关系(画三种图形).【答案】详见解析.【解析】【分析】从平行线的角度考虑,先考虑只有二条直线平行,再考虑三条平行,作出草图即可看出.【详解】如下图.【点睛】本题考查平行线与相交线的综合运用.没有明确平面上六条不重合直线的位置关系,需要运用分类讨论思想.22.如图,根据要求填空.(1)过A作AE∥BC,交______于点E;(2)过B作BF∥AD,交______于点F;(3)过C作CG∥AD,交__________于点G;(4)过D作DH∥BC,交BA的__________于点H.【答案】(1)DC;(2)DC;(3)AB;(4)延长线.【解析】【分析】根据要求,直接进行作图就可以解决.【详解】(1)过A作AE∥BC,交DC于点E;(2)过B作BF∥AD,交DC于点F;(3)过C作CG∥AD,交AB的延长线于点G;(4)过D作DH∥BC,交BA的延长线于点H.【点睛】本题主要考查平行线的作法以及几何语言的准确性.23.探索与发现:(1)若直线a1⊥a2,a2∥a3,则直线a1与a3的位置关系是__________,请说明理由.(2)若直线a1⊥a2,a2∥a3,a3⊥a4,则直线a1与a4的位置关系是________.(直接填结论,不需要证明)(3)现在有2 011条直线a1,a2,a3,…,a2 011,且有a1⊥a2,a2∥a3,a3⊥a4,a4∥a5…,请你探索直线a1与a2 011的位置关系.【答案】(1)a1⊥a3,理由详见解析;(2)a1∥a4;(3)a1⊥a2 011.【解析】【分析】(1)根据两直线平行,同位角相等得出相等的角,再根据垂直的定义解答;(2)根据(1)中结论即可判定垂直;(3)根据规律发现,与脚码是偶数的直线互相平行,与脚码是奇数的直线互相垂直,根据此规律即可判断.【详解】(1)a1⊥a3.理由如下:如图1,∵a1⊥a2,∴∠1=90°,∵a2∥a3,∴∠2=∠1=90°,∴a1⊥a3;(2)同(1)的解法,如图2,直线a1与a4的位置关系是:a1∥a4;(3)直线a1与a3的位置关系是:a1⊥a2⊥a3,直线a1与a4的位置关系是:a1∥a4∥a5,以四次为一个循环,⊥,⊥,∥,∥以此类推,a1∥a2009,a1⊥a2010,所以直线a1与a2011的位置关系是:a1⊥a2011.【点睛】本题考查了平行公理的推导,作出图形更有利于规律的发现以及规律的推导.三、填空题24.已知,如图,要使得AB∥CD,你认为应该添加的一个条件是________【答案】∠ECD=∠A(答案不唯一).【解析】【分析】根据平行线的判定定理,即可直接写出条件.【详解】添加的条件是:∠ECD=∠A(答案不唯一).故答案为:∠ECD=∠A.【点睛】本题考查了平行线的判定定理,解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.本题是一道探索性条件开放性题目,能有效地培养学生“执果索因”的思维方式与能力.25.在同一平面内,三条不同的直线a、b、c,若a⊥c,b⊥c,则______.【答案】a∥b【解析】【分析】根据平行线的判定解答即可.【详解】在同一平面内,三条不同的直线a、b、c,若a⊥c,b⊥c,则a∥b.故答案为:a∥b.【点睛】本题考查了平行线的判定与性质,在同一平面内,垂直于同一直线的两直线平行的性质,是基础题,熟记平行线的判定是解题的关键.126.设a、b、c为平面上三条不同直线,(1)若a∥b,b∥c,则a与c的位置关系是________;(2)若a⊥b,b⊥c,则a与c的位置关系是________.【答案】a∥c;a∥c.【解析】【分析】(1)根据两条直线的位置关系直接写出答案.(2)根据垂线的性质去解答即可.【详解】设a、b、c为平面上三条不同直线,(1)若a∥b,b∥c,则a与c的位置关是a∥c,(2)若a⊥b,b⊥c,则a与c的位置关系是a∥c.故答案为(1). a∥c (2). a∥c【点睛】此题重点考察学生对两直线的位置关系和垂线性质的理解,掌握两直线的位置和垂线的性质是解题的关键.27.如图,某工件要求AB∥ED,质检员小李量得∠ABC=146°,∠BCD=60°,∠EDC=154°,则此工件________.(填“合格”或“不合格”)【答案】合格【解析】【分析】作CF∥AB,由平行线的性质得出∠ABC+∠1=180°,求出∠1,得出∠2,由∠2+∠EDC=180°,得出CF∥ED,证出AB∥ED,即可得出结论.【详解】作CF∥AB,如图所示:则∠ABC+∠1=180°,∴∠1=180°-146°=34°,∴∠2=∠BCD-∠1=60°-34°=26°,∵∠2+∠EDC=26°+154°=180°,∴CF∥ED,∴AB∥ED;故答案为:合格.【点睛】本题考查了平行线的性质与判定;熟练掌握平行线的判定与性质,并能进行推理论证是解决问题的关键28.如图,EN⊥CD,点M在AB上,∠MEN=156°,当∠BME=________°时,AB∥C D.【答案】66.【解析】【分析】过点E作EF∥AB,由平行线的性质可得∠BME=MEF,利用平行线的判定定理和性质定理可得∠NEF=90°,易得∠BME.【详解】过点E作EF∥AB,∴∠BME=MEF,∵AB∥CD,∴EF∥CD,∵EN⊥CD,∴EN⊥EF,∴∠NEF=90°,∵∠MEN=156°,∴∠MEF+90°=156°,∴∠MEF=∠BME=156°-90°=66°.故答案为:66.【点睛】本题主要考查了平行线的判定定理及性质定理,综合运用定理是解答此题的关键.29.如图,已知CD⊥DA,DA⊥AB,∠1=∠2. 试说明DF∥AE. 请你完成下列填空,把解答过程补充完整.解:∵CD⊥DA,DA⊥AB,∴∠CDA=90°,∠DAB=90°( ).∴∠CDA=∠DAB(等量代换).又∠1=∠2,从而∠CDA-∠1=∠DAB-________(等式的性质).即∠3=_______.∴DF∥AE( ).【答案】垂直的定义;∠2;∠4;内错角相等,两直线平行【解析】【分析】(1)根据垂直的定义填空;(2)根据等式的性质进行填空;(3)根据图象中角的位置关系进行解答;(4)根据平行线的判定定理进行解答即可.【详解】解:∵CD⊥DA,DA⊥AB,∴∠CDA=90°,∠DAB=90°(垂直的定义),∴∠CDA=∠DAB(等量代换),又∠1=∠2,从而∠CDA-∠1=∠DAB-∠2 (等式的性质).即∠3=∠4,∴DF∥AE(内错角相等,两直线平行).故答案为:垂直的定义;∠2;∠4;内错角相等,两直线平行.【点睛】本题主要考查了平行线的判定定理等知识点,解此题的关键在于熟记书本中基本的知识点.30.如图,当∠1=∠__时,AB∥DC.【答案】4【解析】【分析】当∠1=∠4 时,根据内错角相等,两直线平行可以判定AB∥DC.【详解】∵∠1=∠4,∴AB∥DC(内错角相等,两直线平行).【点睛】此题主要考查了平行线的判定,内错角相等,两直线平行.。
(完整版)平行线习题(含答案)
2019年4月16日初中数学作业学校: ______________ 姓名: _____________ 班级:_______________ 考号:______________一、单选题1. 如图,经过直线a外一点O的4条直线中,与直线a相交的直线至少有()A. 4条B. 3条C. 2条D. 1条【答案】B【解析】【分析】根据经过直线外一点有且只有一条直线和已知直线平行得出即可.【详解】解:根据经过直线外一点有且只有一条直线和已知直线平行,得出如果有和直线a平行的,只能是一条,即与直线a相交的直线至少有3条,故选:B.【点睛】本题考查了平行线和相交线的应用,注意:经过直线外一点有且只有一条直线和已知直线平行.2. 下列说法中,正确的个数有()①在同一平面内不相交的两条线段必平行;②在同一平面内不相交的两条直线必平行;③在同一平面内不平行的两条线段必相交;④在同一平面内不平行的两条直线必相交.A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【分析】根据平面内直线和线段的位置关系判断.详解】解:(1)线段不相交,延长后不一定不相交,错误;(2)同一平面内,直线只有平行或相交两种位置关系,正确;(3)线段是有长度的,不平行也可以不相交,错误;(4)同(2),正确;所以(2)(4)正确.故选:B.【点睛】本题主要考查在同一平面内两直线的位置关系,需要注意(1)和(3)说的是线段.3.下列表示平行线的方法正确的是()A. ab// cdB. A // BC. a// BD. a// b【答案】D【解析】【分析】根据平行线的表达方法来判断即可得出结论.【详解】解:直线可以用两个大写字母表示,也可以用一个小写字母表示,故正确的表示方法是D.故答案为:D【点睛】本题主要考查了学生对平行线的表达方法的掌握情况,掌握平行线的表达方法是解题的关键.4 .在同一平面内,下列说法正确的是()A .没有公共点的两条线段平行B .没有公共点的两条射线平行C.不垂直的两条直线一定互相平行D .不相交的两条直线一定互相平行【答案】D【解析】【分析】根据平行线的定义,即可求得此题的答案,注意举反例的方法.详解】A. 在同一平面内,没有公共点的两条线段不一定平行,故本选项错误;B. 在同一平面内,没有公共点的两条射线不一定平行,故本选项错误;C. 在同一平面内,不垂直的两条直线不一定互相平行,故本选项错误;D. 在同一个平面内,不相交的两条直线一定互相平行,故本选项正确;【点睛】此题考查了平行线的判定.解题的关键是熟记平行线的定义.5.下列说法不正确的是( )A .过任意一点可作已知直线的一条平行线B. 同一平面内两条不相交的直线是平行线C. 在同一平面内,过一点只能画一条直线与已知直线垂直D. 在同一平面内,经过直线外一点有且只有一条直线与已知直线平行【答案】A【解析】【分析】根据平行线的定义及平行公理进行判断.【详解】A 中,若点在直线上,则不可以作出已知直线的平行线,而是与已知直线重合,错误B. C. D 是公理,正确.故选A.【点睛】本题考查了平行线的定义和公理,熟练掌握定义和公理是解题的关键.6.在同一平面内,无公共顶点的两个直角,如果它们有一条边共线,那么另一边互相( )A •平行B.垂直C.共线 D.平行或共线【答案】A【解析】【分析】结合图形,由平行线的判断定理进行分析.【详解】如图所示:n n无公共顶点的两个直角,如果它们有一条边共线,内错角相等,或同旁内角互补,那么另一边互相平行•故选A.【点睛】本题考查了平行线的判定,熟练掌握判定定理是解题的关键7 .下列结论正确的是()A .过一点有且只有一条直线与已知直线垂直B. 过一点有且只有一条直线与已知直线平行C. 在同一平面内,不相交的两条射线是平行线D. 如果两条直线都与第三条直线平行,那么这两条直线互相平行【答案】D【解析】【分析】本题可结合平行线的定义,垂线的性质和平行公理进行判定即可.【详解】(1)过一点有且只有一条直线与已知直线垂直,应强调在同一平面内,故本项错误;(2)过一点有且只有一条直线与已知直线平行,应强调在经过直线外一点,故是错误的.(3)在同一平面内,不相交的两条直线是平行线,射线不一定,故本项错误;(4)如果两条直线都与第三条直线平行,那么这两条直线也互相平行是正确的.故选D.【点睛】本题主要考查了平行线的定义,垂线的性质和平行公理.熟练掌握公理和概念是解决本题的关键.8 .在同一平面内,直线AB与CD相交,AB与EF平行,则CD与EF()A •平行B.相交C. 重合D.三种情况都有可能【答案】B【解析】【分析】先根据题意画出图形,即可得出答案.【详解】如图,•••在同一平面内,直线AB与CD相交于点O, AB // EF,••• CD与EF的位置关系是相交,故选B.【点睛】本题考查了平行线的性质的应用,能根据题意画出图形是解此题的关键,注意:数形结合思想的应用.9 .下列语句不正确的是()A .在同一平面内,过直线外一点有且只有一条直线与已知直线平行B. 两直线被第三条直线所截,如果同位角相等,那么两直线平行C. 两点确定一条直线D. 内错角相等【答案】D【解析】【分析】根据平行线的公理、推论及平行线的判定,可得答案.【详解】A、在同一平面内,过直线外一点有且只有一条直线与已知直线平行,故A正确;B、两直线被第三直线所截,如果同位角相等,那么两直线平行,故B正确;C、两点确定一条直线,故C正确;D、两直线平行,内错角相等,故D错误;故选D.【点睛】本题考查了平行公理及推论,熟记公理、推论是解题关键.10 .下列说法正确的有()①两点之间的所有连线中,线段最短;②相等的角是对顶角;③过直线外一点有且仅有一条直线与已知直线平行;④两点之间的距离是两点间的线段;⑤如果一个角的两边与另一个角的两边垂直,那么这两个角相等.A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【分析】依据线段的性质、平行公理、两点间的距离以及垂线的定义,即可得到正确结论.【详解】解:①两点之间的所有连线中,线段最短,正确;②相等的角不一定是对顶角,错误;③过直线外一点有且仅有一条直线与已知直线平行,正确;④两点之间的距离是两点间的线段的长度,错误;⑤如果一个角的两边与另一个角的两边垂直,那么这两个角相等或互补,错误. 故选:B.【点睛】本题考查线段的性质、平行公理、两点间的距离以及垂线的定义,解题时注意:平面上任意两点间都有一定距离,它指的是连接这两点的线段的长度.11 .下列说法中正确的是()A .两条相交的直线叫做平行线B. 在直线外一点,只能画出一条直线与已知直线平行C. 如果a // b, b // c,贝U a不与b平行D. 两条不平行的射线,在同一平面内一定相交【答案】B【解析】【分析】根据平行线的性质进行解题即可,见详解.详解】解:两条不相交的直线叫做平行线,故A 错误,在直线外一点,只能画出一条直线与已知直线平行如果a// b , b // c ,则a // b,平行线的传递性,故C 错误, 射线一端固定,另一端无限延伸,故D 错误, 综上选B. 【点睛】,属于简单题,熟悉平行线的性质是解题关键【解析】【分析】 根据平行线的传递性即可解题 【详解】解:••• AB // CD ,CD // EF ,••• AB // EF ,(平行线的传递性)故选A. 【点睛】本题考查了平行线的传递性 ,属于简单题,熟悉平行线的性质是解题关键13 •一条直线与另两条平行直线的关系是 ( )A .一定与两条平行线平行B .可能与两条平行线的一条平行,一条相交C . 一定与两条平行线相交D .与两条平行线都平行或都相交【答案】D 【解析】 【分析】根据在同一平面内,两条直线的位置关系有两种:平行和相交,可知如果一条直线与另 两条平行线中的一条相交,则它与另一条平行线也相交;如果一条直线与另两条平行线中的一条平行,则它与另一条平行线也平行即可求出本题答案【详解】,正确,// EF ,那么AB 和EF 的位置关系是本题考查了平行线的性质C.垂直D.不能确定【答案】A•••在同一平面内,两条直线的位置关系有两种:平行和相交,•••如果一条直线与另两条平行线中的一条相交,则它与另一条平行线也相交,否则与平行公理相矛盾;如果一条直线与另两条平行线中的一条平行,根据平行于同一直线的两条直线平行,则它与另一条平行线也平行.故答案为:D.【点睛】本题考查了平行线的相关知识,熟练掌握平行线的有关性质是本题解题的关键. 14.下列说法中,正确的个数为( )①过一点有无数条直线与已知直线平行;②如果a// b, a // c,那么b // c;③如果两线段不相交,那么它们就平行;④如果两直线不相交,那么它们就平行.A.1 个B.2 个C.3 个D.4 个【答案】A【解析】【分析】根据平行线的定义、公理及推论判断即可求出本题答案.【详解】(1) 过直线外一点有且只有一条直线与已知直线平行,故错误;(2) 根据平行公理的推论,正确;(3) 线段的长度是有限的,不相交也不一定平行,故错误;(4) 应该是“在同一平面内”,故错误.正确的只有一个,故选A.故答案为:A.【点睛】本题考查了平行公理及推论,平行线,熟练掌握该知识点是本题解题的关键.15 •已知在同一平面内有一直线AB和一点P,过点P画AB的平行线,可画()A • 1条B. 0条 C. 1条或0条D.无数条【答案】C【解析】【分析】根据平行公理:经过直线外一点,有且只有一条直线与这条直线平行可得答案.【详解】如果点P在直线上,过点P画直线与AB的平行线可画0条,如果点P在直线外,过点P画直线与AB的平行线可画1条•故答案为:C.【点睛】本题考查了平行公理及推论,熟练掌握该知识点是本题解题的关键16 .下列说法中,正确的是()A •平面内,没有公共点的两条线段平行B. 平面内,没有公共点的两条射线平行C. 没有公共点的两条直线互相平行D. 互相平行的两条直线没有公共点【答案】D【解析】【分析】回忆线段之间、射线之间与直线之间的位置关系;对于A,可在纸上画出两条没有公共点的线段,观察两条线段的位置关系;对于B,可在纸上画出两条没有公共点的射线,观察两条线段的位置关系;对于C,思考若两条直线不在一个平面内,是否能够得到两条直线不平行也不相交,对于D,根据平行线的定义可作出判断•【详解】对于A,如图所示,A错误;对于C,如果两条直线不在同一个平面内,不相交也可能不平行,则C错误;对于D,根据平行线的定义可知D正确•故答案为:D.【点睛】本题考查了两条直线的位置关系,直线、射线、线段的定义,熟练掌握直线的位置关系及相关定义是本题解题的关键•17 .下面说法正确的是( )A .过两点有且只有一条直线B.平角是一条直线C.两条直线不相交就一定平行D.过一点有且只有一条直线与已知直线平行【答案】A【解析】【分析】根据直线公理:经过两点有且只有一条直线;角的概念;平行线的定义和平行公理及推论进行判断.【详解】A、由直线公理可知,过两点有且只有一条直线,故本选项正确;B、平角是有公共端点是两条射线组成的图形,故本选项错误;C、同一平面内两条直线不相交就一定平行,故本选项错误;D、经过直线外一点有且只有一条直线与已知直线平行,故本选项错误.故选:A .【点睛】本题属于综合题,考查了直线的性质:两点确定一条直线;角的定义:有公共端点是两条射线组成的图形叫做角,其中这个公共端点是角的顶点,这两条射线是角的两条边;同一平面内,两条直线的位置关系:平行或相交;平行公理:经过直线外一点,有且只有一条直线与这条直线平行.18 .下列说法错误的是( )A .对顶角相等B.两点之间所有连线中,线段最短C.等角的补角相等D.过任意一点P,都能画一条直线与已知直线平行【答案】D【解析】【分析】A .根据对顶角的性质判定即可;B. 根据线段的性质判定即可;C. 根据补角的性质判定即可;D .根据平行公理判定即可 .【详解】A .对顶角相等,故选项正确;B. 两点之间连线中,线段最短,故选项正确;C•等角的补角相等,故选项正确;D .过直线外一点P,能画一条直线与已知直线平行,故选项错误•故选D.【点睛】本题分别考查了对顶角、邻补角的性质、线段的性质、余角、补角的关系及平行公理,都是基础知识,熟练掌握这些知识即可解决问题 .二、填空题19 . L i, 12, 13为同一平面内的三条直线,如果11与12不平行,12与13不平行,则11与13的位置关系是_______________ .【答案】相交或平行【解析】【分析】根据关键语句“若?有?不平行,??与?不平行,”画出图形,图形有两种情况,根据图形可得答案.【详解】根据题意可得图形:根据图形可知:若?不平行,??与?3不平行,则?3可能相交或平行,故答案为:相交或平行•【点睛】本题主要考查了直线的位置关系,在同一平面内,两条直线的位置关系:平行或相交20 •小明列举生活中几个例子,你认为是平行线的是________________ (填序号).①马路上斑马线;②火车铁轨;③直跑道线;④长方形门框上下边.【答案】①②③④【解析】【分析】根据平行线的判定进行判断即可•【详解】解:是平行线的是①②③④.故答案为:①②③④【点睛】本题考查了平行线的含义,应结合生活实际进行解答21.如图,用符号表示下列两棱的位置关系.AB ___ A ' B AA ' __________ AB ; AD _____ B ' C【答案】// 丄 //【解析】【分析】根据题意,可由立体图形中的平行线的判定条件,以及垂直的判定条件进行分析,然后填空即可.【详解】解:由图可知,AB// A B', AA丄AB AD// B' C'【点睛】本题主要考查的是直线的位置关系•22 .如图,在正方体中,与线段AB平行的线段有________ 条.【答案】3【解析】【分析】与线段AB平行的线段的种类为:①直接与AB平行,②与平行于AB的线段平行. 【详解】解:与AB平行的线段是:DC EF;与CD平行的线段是:HG所以与AB线段平行的线段有:EF、HG DC.故答案是:EF、HG DC【点睛】本题考查了平行线•平行线的定义:在同一平面内,不相交的两条直线叫平行线.23 .如图所示,用直尺和三角尺作直线AB , CD,从图中可知,直线AB与直线CD的位置关系为 ________ .【答案】平行【解析】【分析】根据同位角相等,两直线平行判断.【详解】如图,C 亠丘D根据题意,/ 1与/ 2是三角尺的同一个角,所以/仁/2,所以,AB // CD (同位角相等,两直线平行)故答案为:平行.【点睛】本题考查了平行线的判定熟练掌握同位角相等,两直线平行,并准确识图是解题的关键.24 .在如图的长方体中,与棱AB平行的棱有 ________________________________________;与棱AA'平行的棱有DD , BB , CC解析】【分析】根据平行的定义,结合图形直接找出和棱AB平行的棱,与棱AA平行的棱即可.【详解】由图可知,和棱AB平行的棱有CD , AB', CD;与棱AA 平行的棱有DD ,BB ,CC .故答案为:CD , A B , C D ;DD , BB , CC .【点睛】本题考查了认识立体图形的知识点,熟练掌握平行的定义是本题解题的关键.25.在同一平面内,直线AB 与直线CD 满足下列条件,则其对应的位置关系是(1)____________________________________________________________________ 若直线AB 与直线CD 没有公共点,则直线AB 与直线CD 的位置关系为 __________________________ ;(2)直线AB 与直线CD 有且只有一个公共点,则直线AB 与直线CD 的位置关系为_______________ 【答案】平行;相交.【解析】【分析】根据“在同一平面内,两条直线的位置关系是:平行或相交.平行没有公共点,相交只有一个公共点”即可推出本题答案.【详解】在同一平面内,直线AB 与CD 满足下列条件,则其对应的位置关系是:(1)若AB 与CD没有公共点,则AB与CD的位置关系是平行;(2 )若AB与CD有且只有一个公共点,则AB 与CD 的位置关系为相交.故答案为:(1)平行;(2)相交.【点睛】本题考查了直线的位置关系,熟练掌握判定方法是本题解题的关键.三、解答题26 .把图中的互相平行的线段用符号“//”写出来,互相垂直的线段用符号“丄”写出来:【解析】根据平行线和垂直的定义即可解答.【详解】 解:如图所示,在长方体中 :互相平行的线段:AB// CD EF// GH MN PQ 互相垂直的线段:AB 丄 EF, AB 丄 GH CDL EF, CDL GH【点睛】本题考查了平行线和垂直的定义 ,理解定义是解题的关键•27 .如图,过点 0 '分别画 AB , CD 的平行线.【答案】详见解析•【解析】【分析】把三角板的一条直角边与已知直线重合, 用直尺靠紧三角板的另一条直角边, 沿直尺移 动三角板,使三角板的原来和已知直线重合的直角边和 O 点重合,过O 点沿三角板的直角边画直线即可.【详解】解:如图,本题考查了学生利用直尺和三角板作平行线的能力28 •如图,按要求完成作图⑴过点P 作AB 的平行线EF ;(2) 过点P 作CD 的平行线 MN ;(3) 过点P 作AB 的垂线段,垂足为 G.【答案】作图见解析【点睛】【分析】利用题中几何语言画出对应的几何图形.【详解】如图,本题考查了平行线的作法和作垂线的步骤.29 •我们知道相交的两条直线的交点个数是 1 ;两条平行线的交点个数是0;平面内三条平行线的交点个数是0,经过同一点的三条直线的交点个数是 1 ;依此类推(1) 请你画图说明平面内五条直线最多有几个交点.(2) 平面内五条直线可以有4个交点吗?如果可以,请你画出符合条件的所有图形;如果不可以,请说明理由.(3) 在平面内画出10条直线,使交点个数恰好是31.【答案】(1)平面内五条直线的交点最多有10个,⑵五条直线可以有4个交点,⑶答案不唯一•【解析】【分析】(1)直接让五条直线中的任意两条互相相交即可;(2)不妨先让其中的四条直线相交得到3个交点,然后再使最后一条直线,与其中任意一条相交且与之前的交点不重合即可,接下来自己试着想想还有哪些画法;(3)结合已知,禾U用平行线的性质画出图形即可【详解】解:(1)平面内五条直线的交点最多有 10个,如图①.(2)五条直线可以有4个交点,如图②(a // b// c // d),图③(AD // BC , AB // DC),图④(a // b).團② 関③(3) 答案不唯一,如图, a / b / c / d / e , f // g // h , l // m.【点睛】此题考查平面内不重合直线的位置关系, 解答时要分各种情况解答, 的所有情形,不要遗漏,否则讨论的结果就不全面.30 •如图,在方格纸上:(1)已有的四条线段中,哪些是互相平行的?⑵过点M 画AB 的平行线.⑶过点N 画GH 的平行线.37T~/ 、A7 D 、M / 7~■【答案】(1)AB // CD ; (2)画图见解析;⑶画图见解析【解析】【分析】(1) 根据图形可观察出互相平行的线段.(2) 过点M 画AB 的平行线.(3)过点N 画GH 的平行线.要考虑到可能出现【详解】(1)由图形可得:AB // CD .⑵(3)所画图形如下:【点睛】 本题考查了平行线的判定方法及过一点作平行线的知识, 的判定方法及作图的基本步骤.属于基础题, 主要掌握平行线。
平行线的判定专项练习题有答案
1.:如图,BE平分∠ABC,∠1=∠2.求证:BC∥DE.2.如图,∠A=∠F,∠C=∠D,试说明BD∥CE.3.如下图,AB⊥BC,BC⊥CD,BF和CE是射线,并且∠1=∠2,试说明BF∥CE.4.如图,AB⊥BC,∠1+∠2=90°,∠2=∠3,求证:BE∥DF.5.如图,OP平分∠MON,A、B分别在OP、OM上,∠BOA=∠BAO,则AB平行于ON吗?假设平行,请写出证明过程;假设不平行,请说明理由.6.:如图,∠1=∠2,∠A=∠C.求证:AE∥BC.7.,如图B、D、A在一直线上,且∠D=∠E,∠ABE=∠D+∠E,BC是∠ABE的平分线,求证:DE∥BC.8.如图,∠AEC=∠A+∠C,试说明:AB∥CD.9.如图,AC∥ED,EB平分∠AED,∠1=∠2,求证:AE∥BD.10.如图,直线AB、CD与直线EF相交于E、F,:∠1=105°,∠2=75°,求证:AB∥CD.11.如图,∠D=∠A,∠B=∠FCB,求证:ED∥CF.12.如图,AB⊥BC,CD⊥BC,∠1=∠2,求证:EB∥FC.13.如下图所示,BE是∠B的平分线,交AC于E,其中∠1=∠2,则DE∥BC吗?为什么?14.如图,∠C=∠D,DB∥EC.AC与DF平行吗?试说明你的理由.15.如图,AC⊥AE,BD⊥BF,∠1=35°,∠2=35°,求证:AE∥BF.16.如图,AB∥CD,∠1=∠2,求证:BE∥CF.17.∠BAD=∠DCB,∠1=∠3,求证:AD∥BC.18.如图,AD是三角形ABC的角平分线,DE∥CA,并且交AB与点E,∠1=∠2,DF与AB是否平行?为什么?19.如图,:∠C=∠DAE,∠B=∠D,则AB平行于DF 吗?请说明理由.20.如图,点B在AC上,BD⊥BE,∠1+∠C=90°,问射线CF与BD平行吗?说明理由.21.∠1的度数是它补角的3倍,∠2等于45°,则AB∥CD 吗?为什么?22.:如图,BDE是一条直线,∠ABD=∠CDE,BF平分∠ABD,DG平分∠CDE,求证:BF∥DG.23.如图,四边形ABCD中,∠A=∠C=90°,BF、DE 分别平分∠ABC、∠ADC.判断DE、BF是否平行,并说明理由.24.如图,假设∠CAB=∠CED+∠CDE,求证:AB∥CD .25.如图,CD⊥AB,GF⊥AB,∠1=∠2.试说明DE∥BC.26.如下图,∠CAD=∠ACB,∠D=90°,EF⊥CD.试说明:∠AEF=∠B.27.:如下图,C,P,D三点在同一条直线上,∠BAP+∠APD=180°,∠E=∠F,求证:∠1=∠2.28.如图,∠D=∠1,∠E=∠2,DC⊥EC.求证:AD∥BE.29.如图,在四边形ABCD中,∠A=∠C,BE平分∠ABC,DF平分∠ADC,试说明BE∥DF.30.:如图,∠1=∠2,∠A=∠F,则∠C与∠D相等吗?试说明理由.31.如图,在四边形ABCD中,∠A=∠C=90°,∠1=∠2,∠3=∠4,求证:BE∥DF.32.如图,∠1=∠2求证:a∥b.33.如图,DE⊥AO于E,BO⊥AO于O,FC⊥AB于C,∠1=∠2,找出图中互相平行的线,并加以说明.34.如图,∠1=∠2,∠C=∠CDO,求证:CD∥OP.35.如图,DE平分∠BDF,AF平分∠BAC,且∠1=∠2.求证〔1〕DF∥AC;〔2〕DE∥AF.36.如图,AD平分∠BAC,EF平分∠DEC,且∠1=∠2,试说明DE与AB的位置关系.37.如图,在△ABC中,点D在AB上,∠ACD=∠A,∠BDC的平分线交BC于点E.求证:DE∥AC.38.如图,AB与CD相交于点O,并且∠A=∠1,试问∠2与∠B满足什么关系时,AC∥BD?说明理由.39.如图,∠1=∠A,∠2=∠B,则MN与EF平行吗?如果平行,请说明理由.40.如图,直线AB、CD被直线EF所截,∠1+∠4=180°,求证:AB∥CD.41.如下图,:∠1=∠2,∠E=∠F.试说明AB∥CD.42.如图,EF⊥CD于F,∠GEF=25°,∠1=65°,则AB 与CD平行吗?请说明理由.44.直线AB,CD被直线EF所截,∠1=∠2,直线AB 和CD平行吗?为什么?45.:如图,AD⊥BC,EF⊥BC,∠1=∠2.求证:AB∥GF.46.如图,B、C、D三点在同一条直线上,∠B=∠1,∠2=∠E,试说明AD∥CE.47.直线AB、CD与GH交于E、F,EM平分∠BEF,FN平分∠DFH,∠BEF=∠DFH,求证:EM∥FN.48.如下图,∠ABC=∠BCD,BE、CF分别平分∠ABC 和∠BCD,请你说出BE与CF的位置关系,并说出你的理由.50.如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.〔1〕CD与EF平行吗?为什么?〔2〕如果∠1=∠2,DG∥BC吗?为什么?51.如图,:HG平分∠AHM,MN平分∠DMH,且∠AHM=∠DMH.问:GH与MN有怎样的位置关系,请说明理由.〔请注明每一步的理由〕52.:如图,∠C=∠1,∠2和∠D互余,BE⊥FD于点53.如图,直线AB,CD被EF所截,∠3=∠4,∠1=∠2,EG⊥FG.求证:AB∥CD.54.:如图,CD是直线,E在直线CD上,∠1=130°,∠A=50°,求证:AB∥CD.〔1〕AD∥BC吗?〔2〕AB∥CD吗?为什么?56.如图,四边形ABCD,∠1=30°,∠B=60°,AB⊥AC,则AD与BC一定平行吗?AB与CD呢?假设平行请说明理由,反之则不用说明理由.57.:如图,∠A=∠F,∠C=∠D.求证:BD∥CE.58.如图,AD⊥BC于点D,∠1=2,∠CDG=∠B,请你判断EF与BC的位置关系,并加以证明,要求写出59.:如图,CE平分∠ACD,∠1=∠B,求证:AB∥CE.60.如图,∠1=∠2,∠3=∠4,可以判定哪两条直线平行?。
平行线与垂直线的练习题
平行线与垂直线的练习题练习题一:1. 画出下面两条线段,使它们互相平行。
AB = 5cmCD = 5cm2. 给定直线l和点P,在直线l上找出与点P不重合的一点Q,使直线PQ与l平行。
直线l:y = 2x + 3点P(-1, 4)练习题二:1. 画出下面两条线段,使它们互相垂直。
EF = 4cmGH = 4cm2. 给定直线m和点R,在直线m上找出与点R不重合的一点S,使直线RS与m垂直。
直线m:y = -0.5x + 2点R(3, 1)练习题三:1. 画出下面两条线段,使一条线段平行于x轴,另一条线段平行于y轴。
IJ = 6cmKL = 6cm2. 给定直线n和点T,在直线n上找出与点T不重合的一点U,使直线UT平行于y轴。
直线n:y = 3x - 1点T(-2, 2)解答及示意图见下一页。
(以下为题目的解答及示意图,为方便呈现,采用文字形式展示)练习题一:1. 线段AB和线段CD的示意图如下所示:(请参考示意图1)2. 线段PQ与直线l平行,示意图如下所示:(请参考示意图2)练习题二:1. 线段EF和线段GH的示意图如下所示:(请参考示意图3)2. 线段RS与直线m垂直,示意图如下所示:(请参考示意图4)练习题三:1. 线段IJ和线段KL的示意图如下所示:(请参考示意图5)2. 线段UT与直线n平行于y轴,示意图如下所示:(请参考示意图6)注意:示意图中的线段和箭头仅用于表示相对方向,并非按照实际比例进行绘制。
感谢阅读以上练习题的答案。
希望这些练习题能够帮助您更好地理解平行线和垂直线的概念和特性。
如有任何疑问,请随时向我提问。
平行线性质练习题30题
平行线性质练习题1. 已知直线AB和CD平行,若BE平分∠ABC,求证:BE也平分∠ECD。
2. 在平行线l1和l2之间,有一条横穿它们的直线l3,形成了八个角。
求证:同旁内角互补。
3. 若直线a ∥ b,直线b ∥ c,求证:直线a ∥ c。
4. 已知直线AB ∥ CD,点E在AB上,点F在CD上,且∠BEF = 120°,求∠EFD的度数。
5. 在平行线l1和l2上分别取点A、B、C、D,若AB = CD,BC = DA,求证:四边形ABCD是平行四边形。
6. 已知直线l1 ∥ l2,点P在l1上,点Q在l2上,若PQ垂直于l1,求证:PQ也垂直于l2。
7. 在平行线l1和l2之间,有一条横穿它们的直线l3,形成了八个角。
求证:内错角相等。
8. 若直线a ∥ b,直线c与a、b都相交,且∠1 = ∠2,求证:直线c ∥ b。
9. 已知直线AB ∥ CD,点E在AB上,点F在CD上,且∠AEF = 30°,求∠CFD的度数。
10. 在平行线l1和l2上分别取点A、B、C、D,若AB = CD,AD = BC,求证:四边形ABCD是矩形。
11. 已知直线l1 ∥ l2,点P在l1上,点Q在l2上,若PQ = QR,PR = QR,求证:∠PQR = 90°。
12. 在平行线l1和l2之间,有一条横穿它们的直线l3,形成了八个角。
求证:同位角相等。
13. 若直线a ∥ b,直线c与a、b都相交,且∠1 + ∠2 = 180°,求证:直线c ∥ a。
14. 已知直线AB ∥ CD,点E在AB上,点F在CD上,且∠BEF = 135°,求∠EFD的度数。
15. 在平行线l1和l2上分别取点A、B、C、D,若AB = CD,AC= BD,求证:四边形ABCD是菱形。
16. 已知直线l1 ∥ l2,点P在l1上,点Q在l2上,若PQ垂直于l1,且PQ = QR,求证:PR垂直于l2。
平行线判定与性质习题经典
∠D=
D
图2
180(已知)
C
∴___A_B__∥__C__D__( 同旁内角互补,两直线平行)
∴∠B+∠C=___1_8_0(0 两直线平行,同旁内角互)补
1.如图已知a∥b找出其中相等的角和互补的 角。
∠1=∠3(两直线平行,内
5
错角相等);
12
∠5=∠4(两直线平行,同
位角相等);
4
3
∠2+∠4=180°(两直线
则∠ DGO=———
B
O
A
C
G
D
B’ C’
如图:AD∥BC, ∠A=∠C.试 说明AB∥DC
证明:∵AD∥BC(已知)
AD
E
∴∠C=∠CDE(两直线平行,内错角相等) 又∵ ∠A=∠C(已知)
∴ ∠A=∠CDE(等量代换) F
B
C
∴AB∥DC(同位角相等,两直线平行)
4.如图10,DE∥BC,∠D∶∠DBC = 2∶1,∠1 =∠2,求∠DEB的度数.
即 ∠1+∠2=90°.
变式思考一: 已知AB∥CD,GM,HM平分
∠FGB, ∠EHD,试判断GM与HM是否垂
直?
E
A
G
B
CH
M D
F
变式思考:若已知GM,HM平分 ∠FGB,∠EHD,GM⊥HM,试判断AB与CD 是否平行?
E
A
G
B
CH
M D
F
拓展1:已知AB∥CD,GP,HQ平分 ∠EGB, ∠EHD,判断GP与HQ是否平行?
平行线判定定理
定理1 同位角相等 定理2 内错角相等
两直线平行 两直线平行
初一平行线例题
初一平行线例题Example Problems on Parallel Lines for Seventh Grade1. Basic UnderstandingExample 1: Determine whether the following lines are parallel or not:Line 1: y = 2x + 3Line 2: y = 2x - 1Solution: Both lines have the same slope (2) and different y-intercepts. Since they have the same slope, they are parallel.2. Finding Parallel LinesExample 2: Given the line y = -x + 5, find another line that is parallel to it.Solution: A line parallel to y = -x + 5 will have the same slope (-1) but a different y-intercept. For example, the line y = -x + 2 is parallel to the given line.3. Applications of Parallel LinesExample 3: Two telephone poles are standing upright on the ground. If the top of one pole is directly above the other, are the poles parallel?Solution: No, the poles are not parallel. Parallel lines are infinite and extend in both directions without intersecting. In this case, the poles intersect at the ground, so they are not parallel.4. Angles and Parallel LinesExample 4: Given two parallel lines intersected by a transversal, if one angle is 70°, what is the measure of its corresponding angle?Solution: Since the lines are parallel, the corresponding angles are equal. Therefore, the measure of the corresponding angle is also 70°.。
平行线的判定练习题(含答案)
平行线的判定练习题一、选择题(每小题3分,共36分)1.下面四个图中,∠1=∠2一定成立的是( C )2.如图,已知点O 是直线AB 上一点,∠1=65°,则∠2的度数是( D )A.25°B.65°C.105°D.115°3.下列说法正确的是( A )A.a ,b ,c 是直线,且a ∥b,b∥c,则a∥cB.a ,b ,c 是直线,且a⊥b,b⊥c,则a⊥cC.a ,b ,c 是直线,且a ∥b,b⊥c,则a∥cD.a ,b ,c 是直线,且a∥b,b∥c,则a⊥c4.如图,下列各语句中,错误的语句是( B )A .∠ADE 与∠B 是同位角 B.∠BDE 与∠C 是同旁内角C.∠BDE 与∠AED 是内错角D.∠BDE 与∠DEC 是同旁内角5.如图,点O 在直线AB 上,且OC⊥OD.若∠COA=36°,则∠DOB 大小为( B )A.36°B.54°C.64°D.72°6.体育课上,老师测量跳远成绩的依据是( C )A.平行线间的距离相等B.两点之间,线段最短C.垂线段最短D.两点确定一条直线7.如图,∠ACB=90°,CD⊥AB ,垂足为D ,则下面的结论中,不正确的是( A )A.点B 到AC 的垂线段是线段CAB.CD 与AB 互相垂直C.AC 与BC 互相垂直D.线段AC 的长度是点A 到BC 的距离8.如图,直线AB ,CD 相交于点0,E0⊥CD.下列说法错误的是( C )A.∠AOD =∠BOCB.∠AOE+∠B 0D=90°C.∠AOC=∠AOED.∠AOD+∠BOD=180°9.如图,直线AB ,CD 相交于点0,0E 平分∠AOD.若∠CO E =140°,则∠BOC=( D )A.50°B.60°C.70°D.80°10.对于图中标记的各角,下列条件能够推理得到a∥b 的是( D )(第4题)(第5题)(第2题)(第7题) (第8题)A.∠1=∠2B.∠2=∠4C.∠3=∠4D.∠1+∠4=180°11.如图,90,ACD CE AB ︒∠=⊥,垂足为E ,则下面的结论中,不正确的是(A )A.点C 到AB 的垂线段是线段CDB.CD 与AC 互相垂直C.AB 与CE 互相垂直D.线段CD 的长度是点D 到AC 的距离12.如图,已知1234∠=∠=∠=∠,则图中的平行线有( C )A.2组B.3组C.4组D.5组二、填空题(每小题3分,共15分)13.已知∠α=35°40’,则∠α的余角为______,补角为______.14.如图,AC⊥BC,AC=3,BC=4,AB=5,则点B 到AC 的距离为______.15.如图,已知OA⊥OB,OC⊥OD,∠AOC=27°,则∠BOD 的度数是______.16.如图,在同一平面内,OA⊥l,OB⊥l,垂足为O ,则OA 与OB 重合的理由是______.17.如图,AB⊥EF 于点G ,CD⊥EF 于点H ,GP 平分∠EGB,HQ 平分∠CHF,则图中互相平行的直线有__________________.三、解答题(共49分)18.(5分)一个角的补角比这个角的余角的3倍大10°,求这个角的度数.19.(共9分,每空1分)如图,完成下列推理过程.(1)已知∠1=108°,∠2=72°,由∠1+∠2=108°+72°=180°,可得______∥______,根据是________;(2)已知∠1=108°,∠3=108°,由∠l=108°=∠3,可得______∥______,根据是___________;(3)已知∠2=72°,∠4=72°,由∠2=72°=∠4,可得______∥______,根据是_________.20. (5分)如图,在直角三角形ABC 中,∠ACB=90°,将直角三角形ABC 向下翻折,使点A 与点C 重合,折痕为DE ,试说明:DE ∥BC.21. (5分)如图,已知∠1与∠3互余,∠2与∠3的余角互补,问直线l1∥l2吗?为什么?22. (5分)如图,直线AB,CD相交于点0,OA平分∠EOC.(1)若∠E0C=72°,求∠BOD的度数;(2)若∠D0E=2∠AOC,判断射线0E,0D的位置关系并说明理由.23.(5分)如图,DE平分∠ADC,CE平分∠BCD,且∠1+∠2=90°.试判断AD与BC的位置关系,并说明理由.24.(5分)如图,四边形ABCD,∠1=30°,∠B=60°,AB⊥AC,则AD与BC一定平行吗?AB与CD呢?若平行请说明理由,反之则不用说明理由.25.(5分)已知:如图,CD是直线,E在直线CD上,∠1=130°,∠A=50°,求证:AB∥CD.26.(5分)如图,若∠1=∠2,请判断DB与EC的位置关系,并说明理由.参考答案1.C2.D3.B4.B5.A6.C7.A8.C9.D 10.D13.54°20’ 144°20’ 14.4 15.153° 16.同一平面内,过一点有且只有一条直线与已知直线垂直 17.AB∥CD,GP∥HQ18.解:这个角的度数为50°19.(1)AB CD 同旁内角互补,两直线平行 (2)AB CD 同位角相等,两直线平行(3)AE DF 内错角相等,两直线平行20.解:因为将直角三角形ABC向下翻折,使点A与点C重合,折痕为DE,所以∠AED=∠CED=90°.又因为∠ACB=90°,所以∠AED=∠ACB=90°.所以DE∥BC.21.解l1∥l2.理由:因为∠1+∠3=90°,∠2+(90°-∠3)=180°,所以∠3=90°-∠l,∠2+90°-90°+∠1=180°.所以∠2+∠1=180°.所以l1∥l2.22.解:(l)∠BOD=36°.(2)0E⊥0D.理由如下:因为∠D OE=2∠AOC,OA平分∠EOC,所以∠DO E=∠EOC.又因为∠DOE+∠EOC=180°,所以∠DOE=∠EOC=90°.所以OE⊥OD.23.解:AD∥BC.理由如下:因为DE平分∠ADC,CE平分∠BCD,所以∠ADC=2∠1,∠BCD =2∠2.因为∠1+∠2=90°,所以∠ADC+∠BCD=2(∠1+∠2)=180°,所以AD∥BC.24.(1)AD与BC一定平行.理由如下:∵AB⊥AC,∴∠BAC=90°,∵∠1=30°,∠B=60°,∴∠1+∠BAC+∠B=180°,即∠BAD+∠B=180°,∴AD∥BC.(2)AB与CD不一定平行.25.:∵∠1+∠2=180°,∠1=130°,∴∠2=50°,∵∠A=50°,∴∠A=∠2,∴AB∥CD.26.DB与EC的位置关系是平行,理由:∵∠1=∠3,∠2=∠4(对顶角相等),又∵∠1=∠2,∴∠3=∠4,∴BD∥EC.。
平行线的判定和性质专项练习题
[一]、平行线的性质一、填空1.如图1,已知∠1 = 100°,AB∥CD,则∠2 = ,∠3= ,∠4 = .2所截,若∠1 =∠2,则∠AEF 3(1)若EF∥AC,则∠A +∠ = 180°,∠F + ∠ = 180°( ).(2)若∠2 =∠ ,则AE∥BF.(3)若∠A +∠ = 180°,则AE∥BF.4.如图4,AB∥CD,∠2 = 2∠1,则∠2 = .5.如图5,AB∥CD,EG⊥AB 于G ,∠1 = 50°,则∠E= .6.如图6,直线l 1∥l 2,AB⊥l 1于O ,BC 与l 2交于E ,∠1 = 43°,则∠2 = . 7.如图7,AB∥CD ,AC⊥BC ,图中与∠CAB 互余的角有 .8.如图8,AB∥EF∥CD,EG∥BD,则图中与∠1相等的角(不图 B 图1 2 3 4 5 A B C D F E 图1 2 A B C D E F 图图1 A B C D E F G H 图1 2 D A C B l l 图1 A B F C D E G 图C D F E B A包括∠1)共有 个.二、解答下列各题9.已知:如图,BC ∥DE .BE 平分∠ABC ,.求证:∠1=∠210、如图:已知,AB ∥ON ∠BOA=∠BAO ,求证:OP 平分∠MON 。
11、已知,如图B 、D 、A 在一直线上,DE ∥BC ,BC 是∠ABE 的平分线,求证:∠D=∠E .12、如图,已知AB ∥CD ,试说明:.∠AEC=∠A+∠C.13、如图,已知,DB ∥EC .AC ∥DF ,那么∠C=∠D 吗?试说明你的理由.14.如图,DE∥BC,∠D∶∠DBC = 2∶1,∠1 =∠2,求∠DEB 的度数.11.如图,已知AB∥CD,试再添上一个条件,使∠1 =∠2成立.(要求给出两个以上答案,并选择其中一个加以证明) 12.如图12,∠ABD 与∠BDC 的平分线交于E ,BE 交CD 于点F ,∠1 +∠2 = 90°. 求证:(1)AB∥CD; (2)∠2 +∠3 = 90°.[二]、平行线的判定 图2 1 B C ED 图1 2 A BEF D C 1 AB一、填空1.如图1,若∠A=∠3,则 ∥ ; 若∠2=∠E ,则 ∥ ;若∠ +∠ = 180°,则 ∥ .2.若a⊥c,b⊥c,则. 3.如图2个能判定直线l 1∥l 2的条件: .4.在四边形ABCD 中,∠A +∠B = 180°,则 ∥ ( ).5.如图3,若∠1 +∠2 = 180°,则 ∥ 。
七年级数学平行线的性质专项练习题
七年级数学平行线的性质专项练习题【例1】如图,点D,E在AC上,点F,G分别在BC,AB上,且DDDD∥BBBB,∠1=∠2.(1)求证:DDBB∥EEEE;(2)若EF⊥AC,∠1=50°,求∠ADG的度数.【变式1-1】已知:如图,AAEE⊥BBBB,EEDD⊥BBBB,∠BBEEAA=∠EEDDBB,∠DD=∠AABBBB+50°,∠BBBBDD= 70°.(1)求证:AABB∥BBDD;(2)求∠BB的度数.【变式1-2】如图,△ABC中,∠BAC的角平分线交BC于D,点F在BA的延长线上,点E 在线段CD上,EF与AC相交于点G,且∠BBDDAA+∠BBEEDD=180°.(1)求证:AADD∥EEEE;(2)若点H在FE的延长线上,且∠EDH=∠C,则∠F与∠H相等吗?请说明理由.【变式1-3】(2022·湖北·武汉市新洲区阳逻街第一初级中学三模)如图,已知AADD⊥BBBB,EEEE⊥BBBB,∠1=∠2.(1)求证:EEEE∥AADD;(2)求证:∠BBAABB+∠AADDDD=180°.【例2】如图,∠1=∠2,∠AA=∠DD.求证:∠BB=∠BB.(请把下面证明过程补充完整)证明:∵1=∠2(已知)又∵∠1=∠3(____________)∴∠2=∠3(____________)∴AAEE∥EEDD(_____________)∴∠AA=∠_____(______________)∵∠AA=∠DD(已知)∴∠DD=∠BBEEDD(等量代换)∴_____∥BBDD(__________________)∴∠BB=∠BB(____________)【变式2-1】阅读并完成下面的证明过程:已知:如图,AABB∥EEEE,∠1=∠2,BBEE、BBEE分别平分∠AABBBB和∠BBBBDD,求证:BBEE⊥BBEE.证明:∵BBEE、BBEE分别平分∠AABBBB和∠BBBBDD.∴∠AABBEE=∠EEBBBB=12∠AABBBB∠2=________=12∠BBBBDD(角平分线定义)又∵∠1=∠2,∴∠1=∠EEBBDD()∴EEEE∥BBDD()又∵AABB∥EEEE(已知)∴________________()∴∠AABBBB+∠BBBBDD=180°()∴∠AABBEE+∠2=12(∠AABBBB+∠BBBBDD)=90°,又∵AABB∥EEEE,∴∠AABBEE=∠BBEEEE()∴∠BBEEEE+∠1=90°,∴∠BBEEBB=90°,∴BBEE⊥BBEE()【变式2-2】完成下面证明过程并写出推理根据:已知:如图所示,∠BBAABB与∠AABBDD互补,∠1=∠2.求证:∠EE=∠EE.证明:∵∠BBAABB与∠AABBDD互补(已知),即∠BBAABB+∠AABBDD=180°,∴____________∥_____________(_____________________),∴∠BBAABB=∠AABBBB(_____________________).又∵∠1=∠2,∴∠BBAABB-∠1=∠AABBBB-∠2(等式的性质),即∠3=∠4,∴____________∥_____________(_____________________),∴∠EE=∠EE(_____________________).【变式2-3】推理填空:完成下面的证明过程.如图,已知∠1+∠2=180°,∠B=∠DEF,求证:.DE∥BC证明:∵∠1+∠2=180°()∠2=∠3(_______________________________)∴∠1+∠3=180°∴______∥______(_____________________________)∴∠B=______(________________________________)∵∠B=∠DEF(已知)∴∠DEF=_______ (_______________________)∴DE∥BC()【例3】如图,含有30°角的直角三角板的两个顶点EE、EE放在一个长方形的对边上,点EE为直角顶点,∠EEEEDD=30°,延长EEDD交BBDD于点BB,如果∠3=65°,那么∠2的度数是()A.100°B.105°C.115°D.120°【变式3-1】将一直角三角板与两边平行的纸条如图所示放置,下列结论:(1)∠1=∠2;(2)∠3=∠2;(3)∠2+∠4=90°;(4)∠4+∠5=180°,其中正确的个数是()A.1 B.2 C.3 D.4【变式3-2】将一块直角三角板AABBBB∠AABBBB=30°,AA,BB两点分别落在直线mm、nn上,∠1=20°,添加下列哪一个条件可使直线mm∥nn()A.∠2=20°B.∠2=30°C.∠2=45°D.∠2=50°【变式3-3】小明把一副三角板按如图所示方式摆放,直角边CD与直角边AB相交于点F,斜边DDEE∥BBBB,∠B=30°,∠E=45°,则∠CFB的度数是()A.95° B.115° C.105° D.125°【例4】如图,aa∥bb,一块含45°的直角三角板的一个顶点落在直线b上,若∠1=58°54′,则∠2的度数为()A.103°6′B.104°6′C.103°54′D.104°54′【变式4-1】用一块含60°角的直角三角板和一把直尺按图中所示的方式放置,其中直尺的直角顶点与三角板的60°角顶点重合,直尺两边分别与三角板的两条直角边相交,若∠1= 50°,则∠2的度数为()A.25° B.22.5° C.20° D.15°【变式4-2】如图,AB∥CD,将一副直角三角板作如下摆放,∠GEF=60°,∠MNP=45°.下列结论:①GE∥MP;②∠EFN=150°;③∠BEF=75°;④∠AEG=∠PMN.其中正确的是_______.【变式4-3】如图所示,将一直角三角板放在AB,CD两条平行线之间:(1)图甲中,容易求得∠1+∠2=90°,请直接写出图乙中∠1,∠2的数量关系;(2)请问图丙中∠1,∠2的数量关系是什么?并加以说明;(3)请直接写出图丁中∠1,∠2的数量关系.【例5】如图①,AB∥CD,M为平面内一点,若BM⊥MC,则易证∠ABM与∠DCM互余.(1)如图②,AB∥CD.点M在射线EA上运动,猜想点M在点A和D之间时,∠BMC与∠ABM、∠DCM之间的数量关系,并证明.(2)在(1)的条件下,当点M在射线EA的其它位置上时(不与点E,A,D重合)请直接写出∠BMC与∠ABM、∠DCM之间的数量关系.【变式5-1】(2022·辽宁·兴城市第二初级中学七年级阶段练习)已知,点A,点B分别在线段MN,PQ上,且∠ACB-∠MAC=∠CBP.(1)如图1,求证:MN∥PQ;(2)分别过点A和点C作直线AG、CH使AG∥CH,以点B为顶点的直角∠DBI的两边分别与直线CH,AG交于点F和点E,如图2,试判断∠CFB、∠BEG之间的数量关系,并证明;(3)在(2)的条件下,若BD和AE恰好分别平分∠CBP和∠CAN,并且∠ACB=80°,求∠CFB 的度数.(直接写出答案)【变式5-2】(2022·湖北·宜昌市第九中学七年级期中)如图,∠1=∠2,∠DD=∠BBCCDD.(1)求证:AADD∥NNDD;(2)若∠AA+∠DDDDDD=180°,试探索:∠AANNBB,∠NNBBDD,∠1的数量关系;(3)在(2)的条件下,若∠AANNBB:∠BBNNDD=2:1,∠1=100°,∠NNBBDD=130°,求∠AA的度数.【变式5-3】(2022·湖北·潜江市高石碑镇第一初级中学七年级期中)如图1,AB∥CD,直线AE分别交AB、CD于点A、E.点F是直线AE上一点,连结BF,BP平分∠ABF,EP平分∠AEC,BP与EP交于点P.(1)若点F是线段AE上一点,且BF⊥AE,求∠P的度数;(2)若点F是直线AE上一动点(点F与点A不重合),请写出∠P与∠AFB之间的数量关系并证明.【例6】实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等.如图1,一束光线m射到平面镜a上,被a反射后的光线为n,则入射光线m、反射光线n与平面镜a所夹的锐角∠1=∠2.(1)如图2,一束光线m射到平面镜a上,被a反射到平面镜b上,又被b反射.若被b反射出的光线n与光线m平行,且∠1=50°,则∠2=°,∠3=°.(2)请你猜想:当射到平面镜a上的光线m,经过平面镜a、b的两次反射后,入射光线m与反射光线n平行时,两平面镜a、b间的夹角∠3的大小是否为定值?若是定值,请求出∠3,若不是定值,请说明理由.(3)如图3,两面镜子的夹角为α°(0<α<90),进入光线与离开光线的夹角为β°(0<β<90).试探索α与β的数量关系,并说明理由.【变式6-1】如图,直线AB∥CD,点M,N分别在直线AABB,BBDD上,H为直线BBDD下方一点.(1)如图1,CCDD和NNDD相交于点H,求证:∠CCDDNN=∠AACCDD−∠BBNNDD.(温馨提示:可过点H作AABB的平行线)(2)延长DDNN至点G,∠BBCCDD的平分线CCEE和∠DDNNDD的平分线NNEE相交于点E,DDCC与BBDD相交于点F.①如图2,若∠BBCCEE=50°,∠EENNDD=30°,求∠CCDDNN的度数;②如图2,当点F在点N左侧时,若∠BBCCEE的度数为xx°,∠EENNDD的度数为yy°,且xx+yy的值是一个定值,请问∠CCDDNN的度数是否会随x的变化而发生改变?若不变,求出∠CCDDNN的度数;若变化,请说明理由.③如图3,当点N在点F左侧时,②中其他条件不变,请问∠CCDDNN的度数是否会随x的变化而发生改变?若不变,直接写出....∠CCDDNN的度数;若变化,请说明理由.【变式6-2】如图1,点A、D分别在射线BM、CN线上,BM∥CN,BM⊥BC于点B,AE 平分∠BAD交BC于点E,连接DE,∠1+∠2=90°.(1)求证:AE⊥ED;(2)求证:DE平分∠ADC;(3)如图2,∠EAM和∠EDN的平分线交于点F,试猜想∠F的值是否为定值,若是,请予以证明;若不是,请说明理由.【变式6-3】直线CCNN与直线AABB、BBDD分别相交于点EE、EE,∠CCEEBB与∠BBEECC互补(1)如图1,试判断直线AABB与直线BBDD的位置关系,并说明理由.(2)如图2,∠BBEEEE与∠EEEEDD的平分线交于点BB,EEBB的延长线与BBDD交于点DD,DD是CCNN上一点,且DDDD⊥EEDD,求证:PF∥GH.(3)如图3,在(2)的条件下,连接BBDD,KK是DDDD上一点,使∠BBDDKK=∠DDBBKK,作BBPP平分∠EEBBKK,求证:∠DDBBPP的大小是定值.【例7】如图,已知AABB//BBDD,若按图中规律继续划分下去,则∠1+∠2+⋯+∠nn等于()A.nn•1800B.2nn•1800C.(nn−1)•1800D.(nn−1)2•1800【变式7-1】如图,已知直线AAEE,BBEE被直线AABB所截,且AAEE//BBEE,AABB1,BBBB1分别平分∠EEAABB,∠EEBBAA;AABB2,BBBB2分别平分∠BBAABB1和∠AABBBB1;AABB3,BBBB3分别平分∠BBAABB2,∠AABBBB2…依次规律,得点BB nn,则∠BB nn的度数为()A.90−902nn B.180−902nn−1C.902nn−1D.1802nn【变式7-2】如图(1)(2)(3)中,都满足AB∥CD.试求:(1)图(1)中∠A+∠C的度数,并说明理由.(2)图(2)中∠A+∠APC+∠C的度数,并说明理由.(3)图(3)中∠A+∠AEF+∠EFC+∠C的度数,并简要说明理由.(4)按上述规律,∠A+……+∠C(共有n个角相加)的和为【变式7-3】阅读并探究下列问题.(1)如图①,将长方形纸片剪两刀,其中AABB∥BBDD,则∠2与∠1、∠3有何关系?请进行证明.(2)如图②,将长方形纸片剪四刀,其中AABB∥BBDD,则∠1、∠2、∠3、∠4、∠5的关系为 .(3)如图③,将长方形纸片剪2016刀,其中AABB∥BBDD,则共剪出个角.若将剪出的角(∠A、∠C除外)分别用∠E1、∠E2、∠E3…表示,则被剪出的这些角的关系为 .(4)如图④,直线AABB∥BBDD,∠EF=∠HMN=x°,∠FGH=3x°,∠CNP=y°|2xx+yy−102|+�xx+yy−72=0由上述结论求∠GHM的度数.【例8】综合与实践:折纸中的数学知识背景我们在七年级上册第四章《几何图形初步》中探究了简单图形折叠问题,并进行了简单的计算与推理.七年级下册第五章我们学习了平行线的性质与判定,今天我们继续探究:折纸中的数学﹣﹣长方形纸条的折叠与平行线.知识初探(1)如图1,长方形纸条ABGH中,AABB∥DDDD,AADD∥BBDD,∠A=∠B=∠G=∠H=90°,将长方形纸条沿直线CD折上,点A落在A'处,点B落在B'处,B'C交AH于点E,若∠ECG=70°,则∠CDE=;类比再探(2)如图2,在图1的基础上将∠HEC对折,点H落在直线EC上的H'处,点G落在G'处得到折痕EF,则折痕EF与CD有怎样的位置关系?说明理由;(3)如图3,在图2的基础上,过点G'作BG的平行线MN,请你猜想∠ECF和∠H'G'M的数量关系,并说明理由.【变式8-1】如图,已知四边形纸片AABBBBDD,∠BB=∠DD=90°,点EE在AADD边上,把纸片按图中所示的方式折叠,使点DD落在BBBB边上的点EE处,折痕为BBEE.(1)试判定AABB与EEEE的位置关系,并说明理由;(2)如果∠AA=100°,求∠DDEEBB的度数.【变式8-2】学习了平行线以后,小明想出了用纸折平行线的方法,他将一张如图1所示的纸片,其中AADD//BBBB,先按如图2所示的方法折叠,折痕为CCNN;(CCBB′与AADD相交于点BB)然后按如图3的方法折叠,折痕为BBPP(AA′BB与BB′CC落在一条直线上).(1)在图2的折叠过程中,若∠1=130°,求∠2的度数(2)如图3,小明认为在折叠过程中,产生的折痕CCNN与BBPP平行,请把小明的思考步骤补充完整.由折叠可知,∠BB′CCNN=∠BBCCNN=12∠BBCCBB′;∠AA′BBPP=∠AABBPP=12∠AABBAA′;∵AABB//BBBB∴∠AABBAA′=∠BBCCBB′;(①)∴② =③ (等量代换)∴BBPP//CCNN.(内错角相等,两直线平行)【变式8-3】(2022·广东佛山·七年级期末)某公司技术人员用“沿直线AB折叠检验塑胶带两条边缘线a、b是否互相平行”.(1)如图1,测得∠1=∠2,可判定a∥b吗?请说明理由;(2)如图2,测得∠1=∠2,且∠3=∠4,可判定a∥b吗?请说明理由;(3)如图3,若要使a∥b,则∠1与∠2应该满足什么关系式?请说明理由.【例9】一辆汽车在笔直的公路上行驶,两次拐弯后,在与原方向相反的方向上平行行驶,则这两次拐弯的角度应为()A.第一次向右拐38°,第二次向左拐142°B.第一次向左拐38°,第二次向右拐38°C.第一次向左拐38°,第二次向左拐142°D.第一次向右拐38°,第二次向右拐40°【变式9-1】一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,则两次拐弯的角度可以是()A.第一次向右拐40°,第二次向左拐140° B.第一次向左拐40°,第二次向右拐40° C.第一次向左拐40°,第二次向右拐140° D.第一次向右拐40°,第二次向右拐40°【变式9-2】如图,防城港市的一条公路修到海边时,需要拐弯绕海而过,如果第一次拐角是∠AA=130°,第二次拐的角是∠BB=160°,第三次拐的角是∠BB,这时的道路恰好和第一次拐之前的道路平行,则∠BB度数为______.【变式9-3】如图所示,一条公路修到湖边时,需要拐弯绕湖而过,第一次拐的角∠AA=110°,第二次拐的角∠B=145°,则第三次拐的角∠BB=__________时,道路BBEE才能恰好与AADD平行.【例10】结合“爱市西,爱生活,会创新”的主题,某同学设计了一款“地面霓虹探测灯”,增加美观的同时也为行人的夜间行路带去了方便.他的构想如下:在平面内,如图1所示,灯AA射线从AACC开始顺时针旋转至AANN便立即回转,灯BB射线从BBBB开始顺时针旋转至BBPP便立即回转,两灯不停交叉照射巡视.若灯AA转动的速度是每秒2度,灯BB转动的速度是每秒1度.假定主道路是平行的,即BBPP//CCNN∠BBAACC:∠BBAANN=2:1.(1)填空:∠AABBBB=______°;(2)若灯BB射线先转动60秒,灯AA射线才开始转动,在灯BB射线到达BBPP之前,AA灯转动几秒,两灯的光束互相平行?(3)如图2,若两灯同时转动,在灯AA射线到达AANN之前,若射出的光束交于点BB,过BB作∠AABBDD 交BBPP于点DD,且∠AABBDD=120°,则在转动过程中,请探究∠BBAABB与∠BBBBDD的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请说明理由.【变式10-1】(1)如图1,将一副直角三角板按照如图方式放置,其中点C、D、A、F在同一条直线上,两条直角边所在的直线分别为CCNN、BBPP,∠BBAABB=30°,∠DDEEEE=45°.AABB与DDEE相交于点O,则∠BBBBEE的度数是__________;(2)将图1中的三角板AABBBB和三角板DDEEEE分别绕点B、F按各自的方向旋转至如图2所示位置,其中BBAA平分∠CCBBBB,求∠BBEEAA的度数;(3)将如图1位置的三角板AABBBB绕点B顺时针旋转一周,速度为每秒10°,在此过程中,经过_________秒边AABB与边DDEE互相平行.【变式10-2】嘉嘉和琪琪在用一副三角尺研究数学问题:一副三角尺分别有一个角为直角,其余角度如图1所示,AB=DE,经研究发现(1)如图2,当AB与DE重合时,∠CDF=°;(2)如图3,将图2中△ABC绕B点顺时针旋转一定度使得∠CEF=156°,则∠AED=°;拓展(3)如图4,继续旋转使得AC垂直DE于点G,此时AC与EF位置关系,此时∠AED=°;探究(4)如图5,图6∥DF图5中此时∠AED=°,图6中此时∠AED=°.【变式10-3】如图1,PQ∥MN,点A,B分别在MN,QP上,∠BAM=2∠BAN,射线AM绕A点顺时针旋转至AN便立即逆时针回转,射线BP绕B点顺时针旋转至BQ便立即逆时针回转.射线AM转动的速度是每秒2度,射线BP转动的速度是每秒1度.(1)直接写出∠PPBBAA的大小为_______;(2)射线AM、BP转动后对应的射线分别为AE、BF,射线BF交直线MN于点F,若射线BP比射线AM先转动30秒,设射线AM转动的时间为t(0<t<180)秒,求t为多少时,直线BF∥直线AE?(3)如图2,若射线BP、AM同时转动m(0<m<90)秒,转动的两条射线交于点C,作∠ACD=120°,点D在BP上,请探究∠BAC与∠BCD的数量关系.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4. 如图.已知0是直线AB上一点,∠1=50°,0D平分∠BOC,
则∠2的度数是( ).
(A)25° (B)50° (C)65° (D)70°
6.如图.直线a∥b,∠l=70°,那么∠2的度数是( ).
(A)50° (B)60° (C)70° (D)80°
11.若∠l和∠2是对顶角,∠1=25°,则∠2的度数是度.
13.如图,木工师傅用角尺画出工件边缘的两条垂线就可以在工件上找出两条平行线a∥b.木工师傅这样画平行线的方法所依据
教材中的判定方法是.
18.如图,已知CE∥DF,∠ABF=100°,∠CAB=20°,则∠ACE的度
数为度.
24.(本题8分)
完成推理填空:
如图,已知∠l=∠2,∠BAC=70°,∠AGD=110°.将证明EF∥AD的过程填写完整
证明:∵∠BAC=70°, ∠ACD=110°
∴∠BAC+∠AGD=180°
∴∥ ( )
∴∠1= ( )
又∵∠l=∠2.
∴∠2=∠3.
∴EF∥AD( )
26.(本题l0分)
三角形ABC沿直线BC方向平移至三角形DEF的位置,G是DE上一点,连接AG,过点A、D作直线MN.
(1)如图1,求证∠AGE=∠GAD+∠ABC;
(2)如图2,∠EDF=∠DAG , ∠CAG+∠CEG=180°,判断AG 与DE 的位置关系, 并证明你的结论.
5.如图,点E 在CD 的延长线上,下列条件中不能判定AB ∥CD 的是 ( ) A .∠1=∠2 B .∠3=∠4 C .∠5=∠B D .∠B +∠BDC =180°
8.如图,将三角板与直尺贴在一起,使三角板的直角顶点C (∠ACB=90°)在直尺的一边上,若∠1=25°,则∠2的度数等于 ( ) A.25° B.45° C.75° D.65°
10.下列说法正确的个数是 ( ) ①同位角相等; ②过一点有且只有一条直线与已知直线垂直; ③过一点有且只有一条直线与已知直线平行; ④直线外一点到这条直线的垂线段的长度叫做点到直
线的距离;
⑤若a ∥b ,b ∥c ,则a ∥c.
A.1个
B.2个
C.3个
D.4个 14.如图,已知AB ∥CD ,∠1=60°,则∠2= 度.
18.如图所示,已知AB ∥CD ,∠C =70°,∠F =30°,则∠A 的度数为 .
19.如果∠α与∠β的两边分别平行,∠α比∠β的3倍少36°,则∠α的度数是 .
25.(本题6分)完成下面的证明,并在括号里填上根据. 如图,∠1+∠3=180°,∠CDE+∠B=180°,求证:∠A=∠4.
证明:∵∠1=∠2( )
又∵∠1+∠3=180°,
∴∠2+∠3=180°,
(第26题图)
(第8题图)
1
2
A B
C
(第14题图)
(第18题图)
∴∥()
∴∠CDE+=180°
又∠CDE+∠B=180°,
∴∠B=∠C
∴AB∥CD()
∴∠A=∠4()
得分 26.(本题5分)
如图EF∥AD,∠1=∠2,试猜想∠BAC与∠CGD有怎样的大小关系,并说明理由.
6.如图,下列条件中能判定AB∥CD的是( ) .
(A)∠AEC=∠BFD (B)∠CEF=∠BFE
(C)∠AEF+∠CFE=180° (D)∠C =∠B FD
14.如图,直线AB、CD相交于点O,OE⊥AB,∠EOC=o
28,则∠AOD=__________度.
15.把命题“对顶角相等”写成“如果……,那么…….”的形式:
.
20.如图,直线AB∥CD,点E、F分别为直线AB和CD上的点,点P为两条平行线间的一点,连接PE和PF,过点
P作∠EPF的平分线交直线CD于点G,过点F作FH⊥PG,垂足为H,若∠BEP=10°,则∠CGP-∠PFH=度.
23.(本题8分)
完成下面推理过程,并在括号内填上推理依据.
如图,∠BAE+∠AED=180°,∠M=∠N,试说明:∠1=∠2.
解:∵∠BAE+∠AED=180°(已知)
∴ AB ∥()
∴∠BAE= ∠AEC ()
又∵∠M=∠N(已知)
∴∥()
∴∠NAE= ∠AEM ()
∴∠BAE-∠NAE=∠AEC - ∠AEM()
即∠1=∠2
25.(本题10分)
在四边形ABCD中,AD∥BC,AE平分∠BAD交BC于点E,点F是AB上的一点,连接DF,交AE于点H,
∠FDC+1
2
∠ABC=90°,过点D作DG∥AE交BC延长线于点G.
(1)如图1,求证:∠FDC=∠BGD A
B
C D
E
(第6题图)
14题图
28°
O
E
A B
D
C
(第14题图 )
H
F D
C P
A B
(第20题图)
(第23题图)
(2)如图2,延长DF 和CB ,交于点K ,若DK⊥AE,在不添加任何辅助线的情况下,请直接写出与∠CDG 相等的所有角
8.在下列命题中,①两条直线平行,内错角相等.②相等的角是对顶角.③等角的余角相等.④在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行.其中正确命
题的个数是( )
A.1
B.2
C.3
D. 4 9.如图,AD ∥BC,∠C =30°,∠ADB ∶∠BDC =1∶2, 则∠DBC 的度数是( )
A 45°
B 30°
C 50°
D 36°
10.如图,直线EF 分别交CD 、AB 于M 、N ,且∠EMD=65°,
∠MNB=115°,则下列结论正确的是( )
A.∠A=∠C
B.∠E=∠F
C.AE ∥FC
D.AB ∥DC 20.如图AD ∥BC ,∠A=30°,∠D=70°,做射线CE ∥AB , 则∠DCE= .
24.(8分)请把以下证明过程补充完整,并在下面的括号内填上推理理由: 已知:如图,∠1=∠2,∠A =∠D. 求证:∠B =∠C 证明:∵∠1=∠2,(已知) 又:∵∠1=∠3,( ) ∴∠2=_______,(等量代换)
∴AE ∥FD( ) ∴∠A =∠BFD( ) ∵∠A =∠D (已知)
∴∠D=_______(等量代换)
∴_______∥CD( ) ∴∠B =∠C( )
27.10分)在同一平面内,三条直线两两分别相交于点A 、B 、C 三点,点E 是直线BC 上一动点(点E 不与点B 、C 重合),过点E 分别作直线AB 、AC 的平行线,分别交直线AC 、AB 于点F 、D. (1)如图1,当点E 在B 、C 两点之间时,求证:∠DEF=∠BAC ;
(2)如图2,当点E 在线段BC 延长线时,试判断∠DEF 与∠BAC 的数量关系; (3)如图3,点E 在线段CB 延长线时,∠BEF 的平分线交直线AB 于G ,过点E 作EG 的垂线.交直线AB 于M ,点N 在FE 延长线上;若∠ABC=80°,∠DEM ∶∠BED =2∶3, 求∠BAC 的度数.
C
B
F
H
D
A
G
E (第25题图1)
C
B K
F
H
D
E G
A
(第25题图2)
图1
图3
图2。